
YASOL
Yet Another Socket Library for Forth

Rafael Gonzalez Fuentetaja

Copyright c© Placed in the Public Domain. NO WARRANTY.

YASOL
User manual
Manual revision 1.00
12 February 2008

i

Table of Contents

1 Linux TCP and UDP Socket Bindings . 1
1.1 Non-blocking sockets and multitasking . 1
1.2 Glossary . 1

1.2.1 Handling Linux errno codes . 1
1.2.2 Handling IP addresses . 2
1.2.3 TCP/IP Sockets . 4
1.2.4 UDP Sockets . 6
1.2.5 Non-blocking connection-oriented socket I/O . 7
1.2.6 Non-blocking connectionless socket I/O . 9
1.2.7 Multiplexed I/O . 10

2 GENIO Socket Device . 11
2.1 Socket Device Creation . 11
2.2 Exceptions . 11
2.3 Glossary . 12

2.3.1 Blocking/Non-Blocking socket API vectors . 12
2.3.2 Common, low level factors . 12
2.3.3 Socket driver Entry points . 13
2.3.4 Open and vector table . 14
2.3.5 Device Creation . 15

3 Examples . 17
3.1 Very simple TCP client example. 17
3.2 Very simple TCP server example. 17
3.3 Multitasked TCP client example. 18
3.4 Simple TCP server example. 19

Chapter 1: Linux TCP and UDP Socket Bindings 1

1 Linux TCP and UDP Socket Bindings

Defines a socket wordset to be used in a variety of situations. The main I/O words have been
defined with a similar stack effect as the file wordset. The ior codes are throwable.

Choosing names for this BDS style socket API has been problematic because it uses common
words such as bind or close that could clash with other applications or wordlists. I have opted
to append an s (for socket) to most of these words to keep them readable, concise and avoid
name clashes. So close becomes closes and bind becomes binds.

Regarding portability, There has been no special effort to produce a portable library, only to
make it work. It would probably be quite easy to port it to GForth. Some asumptions taken:
• 1 char = 1 byte = 8 bits.
• 1 cell = 4 bytes = 32 bits.
• There are words to read/write 16 bit values on unaligned addresses.
• IP addresses are IPv4 32 bit addresses, fitting into 1 cell.
• Structure defining words supplied by VFX Forth, whose field produces unaligned fields.

Apparently, that’s what was needed to clone some C wire structures.
• There is a facility to access external shared library. I have used the ones supplied bf VFX

Forth.
• Used VFX extended locals notation in some cases to interface C system calls.
• There are available some convenient but non ANS standard words like 3drop 4drop 3dup

4dup.
• There is a word to print z-strings (actually, it is .z$).

1.1 Non-blocking sockets and multitasking

A non-blocking I/O wordset has been included to use together with cooperative multitaskers.
Since VFX Forth for Linux includes a preemptive multitasker, blocking I/O can be used within
each task and the non-blocking counterparts have, in principle, little interest. However, facilities
like messages between tasks or task events are driven using the traditional pause word. If you
plan to use such facilities, then you must use the non-blocking words to ensure that pause is
called frequently enough.

1.2 Glossary

1.2.1 Handling Linux errno codes

Socket I/O uses a variety of system calls that may fail for a number of reasons. The following
words help keep track of errno codes thrown as exceptions.

As far as I know, VFX do not have yet embedded all the errno codes as part of its error handling
wordset, nor do not offer an easy way to automatically read the z-strings returned by strerror()
and define them with #AnonErr. All of VFX’s error defining words are parsing words.

Note: This section is likely to change as soon as possible.

-5000 Value errno-base

2 Yet Another Socket Library for Forth

Base value for OS errno throw codes. Can be customized at runtime to coexist with other throw
codes.

: errno>excp \ errno -- n1
Converts Linux errno values in throw codes.

: excp>errno \ n1 -- errno
Converts throw code back to genuine Linux errno values.

AliasedExtern: errno int * __errno_location(void);
errno is the well known errno C global variable used by libraries and system calls. Actually, it
is a thread local (aka USER) variable. Can be read by @ and written by !

: throwable \ flag -- -ior
Takes a boolean flag and makes it a throwable ior with the False makes a zero ior.

Extern: char * strerror(int errnum); \ -- z-addr
Get the human readable errno string. See man strerror for details.

: .errno \ n1 --
Given the Linux n1 errno number prints the associated z-string. A factor for the word below.

: .errno-excp \ n1 --
Prints the errno exception value thrown in n1. n1 must be < errno-base.

1.2.2 Handling IP addresses

The following words help using and declaring IP addresses.

Reusable bits

struct /hostent \ -- len
Mimics the Linux struct hostent. See man gethostbyname.

struct /sockaddr_in \ -- len
Mimics the Linux struct sockaddr in. See man ip.

2 Constant PF_INET
IP sockets family.

0 Constant INADDR_ANY
Used to listen to any IP address of a host.

-1 Constant INADDR_BROADCAST
The special broadcast address 255.255.255.255 encoded as binary.
The following constants are possible values left in h errno C global variable. Comments are
extracted form the <netdb.h> header file.

-1 Constant NETDB_INTERNAL
Internal error. See errno.

0 Constant NETDB_SUCCESS
No problem.

1 Constant HOST_NOT_FOUND
Authoritative Answer Host not found.

2 Constant TRY_AGAIN
Non-Authoritative: Host not found, or SERVERFAIL.

3 Constant NO_RECOVERY

Chapter 1: Linux TCP and UDP Socket Bindings 3

Non recoverable errors, FORMERR, REFUSED, NOTIMP.

4 Constant NO_DATA

Valid name, no data record of requested type.

4 Constant NO_ADDRESS

No address, look for MX record. Currently, the same value as NO_DATA.

AliasedExtern: h_errno int * __h_errno_location (void);

h_errno is the h errno C global variable. Actually, it is a thread local (aka USER) variable. Can
be read by @ and written by !

AliasedExtern: ux-gethostbyname void * gethostbyname(const char * name);

See man gethostbyname.

Extern: uint32 htonl(uint32 hostlong);

See man htonl.

Extern: uint16 htons(uint16 hosthort);

See man htons.

: c-string \ c-addr1 u -- c-addr2

Converts a Forth string into an null terminated C string. The z-string c-addr2 is stored in the
PAD. Taken from GForth.

: gethostbyname \ c-addr1 u -- addr2 ior

Get a struct hostent from a symbolic name or IP dotted notation Returns the /hostent structure
base address addr2 and an ior. Negative ior values can be thrown as exceptions. Positive ior
values denotes one of HOST_NOT_FOUND, TRY_AGAIN, NO_RECOVERY, NO_DATA NO_ADDRESS failed
search results errors. addr2 is undefined if ior <> 0.

: host>addr \ c-addr1 u -- u1

Converts an Internet host name into a binary u1 IPv4 address. The resulting address is in
network byte order. This word may throw errno exceptions if internal errors are detected. It
may also call abort" with the texts shown in the constants glossary above if the search results are
one of the following HOST_NOT_FOUND, TRY_AGAIN, NO_RECOVERY, NO_DATA NO_ADDRESS values.

: port! \ port addr1 --

Fills int the /sockaddr_in structure or EndPoint: given by addr1 with the PF_INET protocol
family and port.

struct /endpoint \ -- addr

Extends the /sockaddr_in structure with a ep.rlen field for convenience. This field is a
convenient placeholder for storing returned length of a /sockaddr_in structure in various Linux
system calls. Allocation of /endpoint structures can be made with allocate or EndPoint:
(recommended).

Main words
: EndPoint: \ "<name>" -- addr1

Defining word to create an IP end point. The /sockaddr_in structure address addr1 is returned
just to be initialized by words known-ip, unknown-ip any-ip or broadcast-ip.

Examples:

4 Yet Another Socket Library for Forth

� �
s" localhost" 7624 EndPoint: remote known-ip \ for clients
7624 EndPoint: local any-ip \ for servers
EndPoint: receiver unknown-ip \ to use in recvsfrom
 	

: known-ip \ c-addr1 u1 port addr2 --
An initializer to a /sockaddr_in given by addr2 that declares a well known port plus c-addr1
u1 IP address, typically used by clients to connect to remote peers or servers. Host string can be
either a symbolic name or a IP dotted notation string. This word calls the resolver host>addr
word, so it may throw errno exceptions.

: any-ip \ port addr1 --
An initializer to a /sockaddr_in given by addr1 that declares an end point ready to listen to a
given port but any IP address. Typically used by servers.

: broadcast-ip \ port addr1 --
An iniializer to a /sockaddr_in given by addr1 that declares an end point ready to send
broadcast messages to a given port. Can be used by clients or in UDP based application protocols
to announce and discover.

: unknown-ip \ addr1 --
An initializer to a /sockaddr_in given by addr1 that declares an uninitialized end point to be
filled by binds, accepts or recvsfrom words. Syntactic sugar.

1.2.3 TCP/IP Sockets

Reusable bits

Description of most words in this section is available by generating the additional detailed level
of documentation.

AliasedExtern: ux-socket int socket(int domain, int type, int protocol);
See man socket.

AliasedExtern: ux-bind int bind(int fd, void * my_addr, int addrlen);
See man bind.

AliasedExtern: ux-listen int listen(int fd, int backlog);
See man listen.

AliasedExtern: ux-connect int connect(int fd, const int * serv_addr, int addr_len);
See man connect.

AliasedExtern: ux-accept int accept(int fd, void * rem_addr, int * addr_len);
See man accept.

AliasedExtern: ux-close int close(int fd);
See man close.

AliasedExtern: ux-send int send(int s, const void * msg, int len, int flags);
See man send.

AliasedExtern: ux-recv int recv(int s, void * msg, int len, int flags);
See man recv.

Extern: int setsockopt(int fd, int level, int opt, void * val, int vallen);
See man setsockopt.

1 Constant SOL_SOCKET
Select socket level in get/setsockopt()

Chapter 1: Linux TCP and UDP Socket Bindings 5

2 Constant SO_REUSEADDR

Socket level option to reuse address. Typically used in server sockets.

1 Constant SOCK_STREAM

Stream type socket.

2 Constant SOCK_DGRAM

Datagram type socket.

: reuse-IP \ fd -- ior

Configure a socket fd to reuse its IP address through setsockopt. Usually done at servers.
Returns a throwable ior.

Main words
#6 Constant TCP

Used to create a TCP socket with socket. Same value as Linux #define IPPROTO_TCP.

#17 Constant UDP

Used to create an UDP socket with socket. Same value as Linux #define IPPROTO_UDP.

: socket \ n1 -- fd ior

Creates a TCP or UDP socket given the constant TCP or UDP passed in n1. Returns a descriptor
fd and throwable ior. fd is undefined when the ior is not zero. Socket I/O on the returned fd
is blocking by default. See man socket.

: connects \ addr fd -- ior

Client connects to a remote socket server. addr is a remote /sockaddr_in or /endpoint struc-
ture. Returns a throwable ior.

: binds \ addr fd -- ior

Binds the server socket to a port and address (ANY address usually). Reuse port+IP address if
possible. addr can be either a /sockaddr_in or a /endpoint structure. Returns a throwable
ior.

#5 Value BackLog

Backlog of pending connections to listens.

: listens \ fd -- ior

Server socket fd listens to incoming connections. Returns a throwable ior. See man listen.

: accepts \ addr1 fd1 -- fd2 ior

Accept an incoming socket connection. Returns a new socket descriptor fd2 and a throwable ior.
addr1 must be a defined an /endpoint struct to be filled in with the incoming client IP address
& port. fd2 is undefined when ior is non-zero. Socket I/O on the returned fd2 is blocking by
default. See man accept.

: closes \ fd -- ior

Close the socket. Returns a throwable ior. See man close.

$4000 Constant MSG_NOSIGNAL

Transmission/reception flag to make <recvs> or <sends> not to throw a SIGPIPE signal when
the other end closes a connection. Only applicable to connection oriented sockets. See man send
or man recv.

$02 Constant MSG_PEEK

Reception flag to make <recvs> or <recvsfrom> peek at incoming data without dequeueing
from system internal buffers. See man recv.

6 Yet Another Socket Library for Forth

$100 Constant MSG_WAITALL
Reception flag to make <recvs> or <recvsfrom> block until all requested bytes have been read.
See man recv.

: <sends> \ c-addr1 +n1 fd n2 -- +n3 ior
Send n1 bytes starting from c-addr1 through socket given by fd. Transmission flags must be
or-ed in a single n2. The actual amount sent is returned in n3. In certain conditions, n3 can be
< n1. Returns a throwable ior. n3 is undefined if ior is non-zero. See man send.

: sends \ c-addr1 +n1 fd -- +n2 ior
The common use case for transmission. SIGPIPE is disabled. If the remote end closes connection,
ior will contain a EPIPE throwable errno code. See man send. Defined as :

MSG_NOSIGNAL <sends> ;

: <recvs> \ c-addr1 +n1 fd n2 -- +n3 ior
Receive through socket given by fd an amount of n1 bytes and copy them into c-addr1. Reception
flags must be or-ed in a single n2. Returns the actual amount received in n3 and a throwable ior.
If there is no data, the socket will block until something is available. If the socket is non-blocking
and there is no data, ior will contain a EAGAIN throwable exception. See man recv.

#32 Constant EPIPE
errno code returned when the other end closes a connection.

: epipe? \ #read ior1 -- #read ior2
Generate an artificial, throwable EPIPE errno code when the remote end closes the connection
and signals are disabled. This happens when <recvs> returns 0 0.

: recvs \ c-addr1 +n1 fd -- +n2 ior
The common use case for reception. If the remote side closes the connection, recvs generates
an artificial errno code through epipe?. Defined as :

MSG_NOSIGNAL <recvs> epipe? ;

: recvs-all \ c-addr1 +n1 fd -- +n2 ior
Blocks until all n1 bytes are received. If the remote side closes connection, \fo{recvs-all}
generates an artificial errno code through epipe?. Defined as :

[MSG_WAITALL MSG_NOSIGNAL or] literal <recvs> epipe? ;

1.2.4 UDP Sockets

This section defines additional words to handle UDP sockets.

Reusable bits

AliasedExtern: ux-sendto int sendto(int, const void *, int, int, const void *, int);
See man sendto.

AliasedExtern: ux-recvfrom int recvfrom(int, void *, int, int, void *, int *);
See man recvfrom.

Main words

: sendsto \ c-addr1 +n1 addr2 fd -- +n2 ior
Send n1 bytes starting from c-addr1 through socket given by fd to an /endpoint or /sockaddr_
in given by addr2. n2 is the actual amount of data sent. Returns a throwable ior. n2 is
undefined if ior is non-zero. See man sendto.

Chapter 1: Linux TCP and UDP Socket Bindings 7

: <recvsfrom> { c-addr1 n1 addr2 fd n2 -- +n3 ior }

Receive data from a remote /endpoint addr2. n1 is the amount to read through socket fd and
c-addr1 is the receiving buffer. Recepcion flags in n2 must be or-ed together. Returns the
actual amount received in n3 and a throwable ior. See man recvfrom.

: recvsfrom \ c-addr1 +n1 addr2 fd -- +n2 ior

The common use case for reception. Equivalent to <recvsfrom> when n2 = 0. See <recvsfrom>.

: recvsfrom-all \ c-addr1 +n1 addr2 fd -- +n2 ior

Blocks until all n1 bytes are received. Equivalent to <recvsfrom> when n2 = MSG_WAITALL
flag. See <recvsfrom>.

1.2.5 Non-blocking connection-oriented socket I/O

The following words are intended for use with a cooperative multitasker using pause and non-
blocking sockets, although they also work with blocking sockets without multitasker. All xxx-mt
words are the multitasked counterparts of xxx words.

NOTE 03Jan07: xxx-mt words have been refactored to avoid throwing exceptions from the
inside words. The internal ior codes have been proagated to the outermost word instead. This
has caused a lot of headaches and have added significant complexity to xxx-mt words.

Reusable bits
Extern: int fcntl(int fd, int cmd, LONG arg);

See man fcntl.

3 Constant F_GETFL

File control ’get flags’ command. See man fcntl.

4 Constant F_SETFL

File control ’set flags’ command. See man fcntl.

$800 Constant O_NONBLOCK

Mark a file descriptor as non-blocking. To perform a multitasked I/O, instead of the usual
multiplexed I/O using select(). See man open.

: fcntl@ \ fd -- n1 ior

Get the socket file control flags (only handles O APPEND, O ASYNC, O NONBLOCK,
O DIRECT). Returns a throwable ior. n1 is undefined if ior <> 0. See man fcntl.

: fcntl! \ n1 fd -- ior

Set the socket file control flags (only handles O APPEND, O ASYNC, O NONBLOCK,
O DIRECT). n1 is the new flag value. Returns a throwable ior. See man fcntl.

11 Constant EAGAIN \ Try Again

errno code returned for non-blocking I/O in accepts sends recvs sendsto recvsfrom.

114 Constant EALREADY

errno code returned for non-blocking socket when performing connects when former connects
request is still in progress.

115 Constant EINPROGRESS \ Operation now in progress

errno code returned for non-blocking socket when performing connects request that would need
to wait for completion.

: again? \ ior1 -- ior2 flag

8 Yet Another Socket Library for Forth

Process ior1 to filter the EAGAIN value. In this case, flag is true and ior2 is zero. Any other
ior1 will produce the same value in ior2 and a false flag.

: in-progress? \ ior1 -- ior2 flag

Process ior1 to filter the EINPROGRESS or EALREADY values when using connects. In this case,
flag is true and ior2 is zero. Any other ior1 will produce the same value in ior2 and a false
flag. Please note that connects can return EAGAIN but this denotes a different error situation
(see man connect.)

Main words
: -blocking \ fd -- ior

Configure the socket as non blocking. Returns a throwable ior.

: +blocking \ fd -- ior

Configure the socket as blocking. Returns a throwable ior.

: peeks? \ fd -- flag ior

Peek into the socket system buffer to check for data available. Returns a true flag if one or more
bytes are waiting to be read and a throwable ior.

1 Value #ms-delay

poll period in non-blocking xxx-mt I/O words below setting this value to 0 increases the CPU
load. The default value is enough to produce a negligible load but with a reduced performace.

: delayed \ --

By using this word, the caller is delayed #ms-delay ms. and allows task switching if multitasking
is enabled.

: connects-mt \ addr1 fd1 -- ior

Non-blocking I/O counterpart of connects. This word loops over connects and uses internally
delayed.

: accepts-mt \ addr1 fd1 -- fd2 ior

Non-blocking I/O counterpart of accepts. This word loops over accepts and uses internally
delayed.

: (sends-mt) \ c-addr1 +n1 fd ior1 -- c-addr2 n2 fd ior2

This word is an internal factor of sends-mt for non-blocking I/O and should not be used. Tries
to send n1 bytes to socket given by fd and loops over until the socket says it would not block.
Returns the remaining buffer c-addr2 n2 to be sent.

: (recvs-mt) \ c-addr1 n1 fd ior1 -- c-addr2 +n2 fd ior2

This word is an internal factor of recvs-mt for non-blocking I/O and should not be used. Tries
to receive n1 bytes to socket given by fd and loops over until the socket says it would not block.
Returns the remaining buffer c-addr2 n2 to be received.

: #bytes-io \ c-addr1 n1 x1 ior n2 -- n3 ior

This word is a factor for some loop epilogs below and should not be used. Returns the number
of bytes processed in I/O in n3 from the total requested n2 and the remaining amount n1.
Reorders the result to place ior on TOS. x1 is a don’t care cell left in the loop exist that gets
dropped in the way.

: sends-mt \ c-addr1 n1 fd -- n2 ior

Non-blocking I/O counterpart of sends. This word loops over sends and uses internally
delayed.

: recvs-mt \ c-addr1 +n1 fd -- +n2 ior

Chapter 1: Linux TCP and UDP Socket Bindings 9

Non-blocking I/O counterpart of recvs. This word loops over recvs and uses internally
delayed.

: halt-loop? \ n2 fd ior -- n2 ior fd flag

This word is an internal factor of recvs-all-mt. Do not use. This word factors the loop end
detection while preserving stack ordering. Returns true if ior < 0 or n2 = 0, false otherwise.

: recvs-all-mt \ c-addr1 +n1 fd -- +n2 ior

Non-blocking I/O counterpart of recvs-all. This word loops over recvs and uses internally
delayed.

1.2.6 Non-blocking connectionless socket I/O

The following words are intended for use with a cooperative multitasker using pause and non-
blocking sockets, although they also work with blocking sockets without multitasker. All xxx-mt
words are the multitasked counterparts of xxx words.

Reusable bits
: lover \ x1 x2 x3 -- x1 x2 x3 x1

"long" over, although the name actually suggest something different :-)

: halt2-loop? \ n2 addr2 fd ior -- n2 addr2 ior fd flag

This word is an internal factor of recvs-all-mt and recvsfrom-all-mt. Do not use. This
word factors the loop end detection while preserving stack ordering. Returns true if ior < 0 or
n2 = 0, false otherwise.

: (sendsto-mt) \ c-addr1 +n1 addr2 fd ior -- c-addr3 +n2 addr2 fd ior

This word is an internal factor of sendsto-mt for non-blocking I/O and should not be used.
Tries to send n1 bytes to socket fd and loops over and over again until socket says it would not
block. Returns the remaining buffer c-addr3 n2 to be sent. addr2 denotes the destination IP
/endpoint. ior is propagated from sendsto.

: (recvsfrom-mt) \ c-addr1 +n1 addr2 fd ior -- c-addr1 +n2 addr2 fd ior

This word is an internal factor of recvsfrom-mt for non-blocking I/O and should not be used.
Tries to receive +n1 bytes into buffer c-addr1 from socket fd and loops over and over again until
socket says it would not block. Returns the remaining buffer c-addr3 n2 to be received. addr2
denotes the destination IP /endpoint. ior is propagated from recvsfrom.

Main words
: sendsto-mt \ c-addr1 +n1 addr2 fd -- +n2 ior

Non-blocking I/O counterpart of sendsto. This word loops over sendsto and uses internally
delayed.

: recvsfrom-mt \ c-addr1 +n1 addr2 fd -- +n2 ior

Non-blocking I/O counterpart of recvsfrom. This word loops over recvsfrom and uses inter-
nally delayed.

: recvsfrom-all-mt \ c-addr1 +n1 addr2 fd -- +n2 ior

Non-blocking I/O counterpart of recvsfrom-all. This word loops over recvsfrom-all and
uses internally delayed.
Warning: Unpredictable results are obtained if several simultaneous clients send their data to
the same connectionless socket in the receiving side. Data will be mixed in the same buffer and
a wrong byte count will be reported.

10 Yet Another Socket Library for Forth

1.2.7 Multiplexed I/O

An alternative to multitasked I/O when blocking sockets are used. The poll() system call is
easier to implement than select().

Reusable bits

Internal documentation.

AliasedExtern: ux-poll int poll(void * ufds, unsigned int nfds, int timeout);

See man poll.

Main words

$0001 Constant POLLIN

On pollfd.events: notify when data ready. On pollfd.revents: data ready to read.

$0004 Constant POLLOUT

On pollfd.events: notify when write will not block. On pollfd.revents: write will not block.

$0008 Constant POLLERR

On pollfd.revents: Error condition.

$0010 Constant POLLHUP

On pollfd.revents: Hangup. Remote socket closed.

$0020 Constant POLLNVAL

On pollfd.revents: Invalid request. File descriptor is not open.

struct /pollfd \ -- len

Mimics the Linux struct pollfd. See man poll.
1 cells field pollfd.fd \ file descriptor
2 chars field pollfd.events \ requested events
2 chars field pollfd.revents \ returned events

end-struct

: polls \ addr1 n1 n2 -- n3 ior

Poll the system for I/O events. An array of /pollfd structures is passed starting at addr1.
n1 is the array length in structure units (not bytes). n2 is a timeout in milliseconds. n2 < 0
indicates an infinite timeout. n3 is the number of structures having pollfd.revents <> 0 If
n3 = 0, a timeout has occured. If n3 < 0, an internal error has occured and ior contains a
throwable errno code. See man poll.

NOTE: Tests made shows that when a remote side closes the socket poll returns with an POLLIN
event instead of POLLHUP. Performing a recvs on that socket returns a zero length.

Chapter 2: GENIO Socket Device 11

2 GENIO Socket Device

This Generic IO Device operates on a TCP socket for input and output. Flags specify whether
to create a client or server socket and also the blocking/non-blocking mode.

2.1 Socket Device Creation

In order to create a named socket device on the dictionary, use the SOCKDEV: definition given
later. These devices can be created in the heap using allocate, and must be initialized using
initSockDev.

Under GENIO, sockets are opened by using either open-gen or open-gio. The following flags
control options at open time:

• SOCKDEV_NONBLOCK, to open the socket in non-blocking mode.

• SOCKDEV_SVR, to open the socket in server mode using accepts. Needs to pass the parent
socket fd.

• SOCKDEV_ECHO to echo characters to remote peer socket when using ANS ACCEPT word on
this socket.

When using this driver to program server sockets, it is up to the developer to set up and configure
the parent socket with socket, binds and listens or -blocking. An example:� �

-1 Value master
7624 EndPoint: local any-ip

: new-master (--)
TCP socket throw to master
local master binds throw
master listens throw ;
 	

2.2 Exceptions

When examining the stack signature of GENIO drivers, there were no place to report I/O errors.
Two options were available: either ignore them or to throw exceptions. I have chosen the latter
strategy as a way to detect bugs and unexpected situations.

The following xxx-gio words may throw exceptions when using the underlying sockets vocab-
ulary:

open-gio, close-gio, read-gio, readex-gio, write-gio, key?-gio, key-gio, accept-gio,
emit-gio, type-gio, cr-gio, lf-gio, ff-gio and bs-gio.

The following xxx-gio words throw abort" operation not supported" exceptions:

ekey-gio, ekey?-gio, bell-gio, setpos-gio, getpos-gio and ioctl-gio,

12 Yet Another Socket Library for Forth

The following xxx-gio words do nothing:

flushOP-gio, init-gio, term-gio and config-gio.

2.3 Glossary
MODULE GENIO-SOCK

GENIO Module name for socket I/O.

struct /SockDev \ -- len ;

The socket SID structure, passed around as a handle by all xxx-gio words.
gen-sid + \ reuse field names of GEN-SID
1 cells field sd.flags \ Mode flags (see below).

end-struct

1 Constant SOCKDEV_NONBLOCK

Non-Blocking bit for fam flag in open-gio. Also stored in sd.flags.

2 Constant SOCKDEV_SVR

Server bit for fam flag in open-gio. Also stored in sd.flags.

4 Constant SOCKDEV_ECHO

Echo bit in fam flag in open-gio. Makes ACCEPT echo character back to the sender socket.
Option available for server sockets only. Also stored in sd.flags.

2.3.1 Blocking/Non-Blocking socket API vectors

Handling blocking or non-blocking socket connections is deferred until open time. It makes much
easier life to code several entry points with a slight overhead.

Defer socket-connect \ addr fd -- ior

Vector for connects or connects-mt.

Defer socket-accept \ addr1 fd1 -- fd2 ior

Vector for accepts or acceptss-mt.

Defer socket-send \ c-addr1 +n1 fd -- +n2 ior

Vector for sends or sends-mt.

Defer socket-recv \ c-addr1 +n1 fd -- +n2 ior

Vector for recvs or recvs-mt.

Defer socket-recv-all \ c-addr1 +n1 fd -- +n2 ior

Vector for recvs-all or recvs-all-mt.

Defer sd-key? \ sid -- flag

Vector for (sd-key?) or (sd-key?-mt).

2.3.2 Common, low level factors

: (sd-key?) \ sid -- flag

Test for any character received by configuirng the socket as non-blocking mode, do a peek and
check for EAGAIN errno. Then, the socket is configured as blocking again.

: (sd-key?-mt) \ sid -- flag

More efficient operation when socket is already open in non-blocking mode.

Chapter 2: GENIO Socket Device 13

: NotSockDev \ --
Issue a SockDev error message.

: (sd-create) \ addr len sid -- addr fd sid 0 | sid ior
Creates the socket. len is unusued but addr will be used later,

: (sd-connect) \ addr fd sid -- fd sid 0 | sid ior
Connects or closes the socket if not succesfull. addr is a /sockaddr_in, /enpoint structure or
NULL.

: (sd-accepts) \ addr len sid -- fd sid 0 | sid ior
Creates a new child socket from parent socket. addr is an /enpoint structure or NULL. len is
the parent spcket descriptor

: (sd-gen!) \ fd sid -- sid 0
Sets the internal handle to be the file descriptor returned by socket creation words.

: open-client \ addr len sid -- sid ior
Open socket device and connect to remote /sockaddr_in or /endpoint addr for client sockets.
len is unusued. Leave it to -1.

: open-server \ addr len sid -- sid ior
Open socket device for children server sockets. addr is an /enpoint structure or NULL. len is
the parent socket descriptor returned beforehand by socket.

2.3.3 Socket driver Entry points

: sd-close \ sid -- ior
Closes the socket and initializes the gen-handle back to invalid state.

: sd-read \ addr len sid -- ior
Read all the bytes up to len from the socket device.

: sd-readex \ addr len sid -- #read ior
Read all the bytes up to len from the socket device. May return less bytes than requested.

: sd-write \ addr len sid -- ior

: sd-key \ sid -- char

: sd-ekey \ sid -- echar
Not supported.

: sd-ekey? \ sid -- flag
Not supported.

: sd-emit \ char sid --

: sd-emit? \ sid -- flag
ALways true. does not check for full Tx buffer.

: sd-type \ addr len sid --

: sd-cr \ sid --
Send CR+LF characters

: sd-lf \ sid --
Linefeed.

: sd-ff \ sid -- ; page/cls on display devices

: sd-bs \ sid -- ; destructive on display devices

: sd-bell \ sid -- ; audible beeper

14 Yet Another Socket Library for Forth

Not supported.

: sd-setpos \ x y mode sid -- ior

Not supported.

: sd-getpos \ mode sid -- x y ior

Not supported.

: sd-ioctl \ addr len fn sid -- ior

Not supported. All is done at open time.

: sd-flushOP \ sid -- ior

Not supported.

: sd-init \ addr len sid -- ior

Not supported.

: sd-term \ sid -- ior

Not supported.

: sd-config \ sid -- ior ; produces a dialog

Not supported.

Support for ACCEPT

For the sd-accept entry points, we have deconstructed its loop into pieces.

: wait-key \ sid -- sid

Wait until next character arrives.

: /loop \ addr1 len sid - cnt sid addr2 addr3

Initializes accept loop, converting (start, count) pair into (starting , ending) addresses
addr2,addr3.

: cr? \ c -- c flag

Test for carriage return. Returns true id CR is detected.

: ?echo \ cnt sid c -- cnt sid c

Conditionally echoes back the character, depending on the SOCKDEV_ECHO flag.

: ?backspace \ cnt1 sid c -- cnt2 sid index

Handle possible backspace character c by going back into the array and decreasing by 1 the
count and loop index. Normal operation increases by 1 the count and loop index.

: discard-lf \ cnt sid c -- cnt sid

c is a CR, therefore, read LF and discard it.

: sd-accept \ addr len sid -- #read

Accept chars from socket until cr is detected. Returns number of characters read.

2.3.4 Open and vector table
: +block-all

Set vectors for blocking mode.

: -block-all

Set vectors for blocking mode.

: sd-open \ addr len fam sid -- sid ior

Chapter 2: GENIO Socket Device 15

addr is an /endpoint structure. fam containst the two mode bits defined above. len is -1 for
client socke or else the parent fd. when opening a child server socket. sid is the /SockDev
structure.

create sd-vectors \ -- ; Exec: -- addr

Table of GENIO execution tokens.

2.3.5 Device Creation

: initSockDev \ sid --

Initialise the sid for a socket device. Use it to initialize the structure has been allocated from
the heap.

: SockDev: \ "name" -- ; Exec: -- sid

Create a Socket based Generic IO device in the dictionary.

Chapter 3: Examples 17

3 Examples

Some straightforward examples.

3.1 Very simple TCP client example.

Shows usage of basic words.

\ ===

include ../src/sockets.fs

-1 Value mysock

s" localhost" 7624 EndPoint: remote known-ip

: (client)
TCP socket throw to mysock
remote mysock connects throw
cr ." Connected to server" cr
s" Hello TCP World!" mysock sends throw .
mysock closes throw

;

: client
[’] (client) catch
dup errno-base < if .errno-excp else throw then ;

client

3.2 Very simple TCP server example.

Shows non-blocking use of sockets. Child sockets are blocking even if the master is not. recv-mt
returns when something is available, even if we asked to read BufSize bytes.

\ ===

include ../src/sockets.fs

-1 Value master
-1 Value slave

7624 EndPoint: local any-ip
EndPoint: remote unknown-ip

256 Constant BufSize

BufSize Buffer: RxBuffer

18 Yet Another Socket Library for Forth

: (server)
TCP socket throw to master
local master binds throw
master listens throw

remote master accepts-mt throw to slave
slave -blocking throw
cr ." A client has connected" cr
RxBuffer BufSize slave recvs-mt throw
RxBuffer swap type cr

;

: server
[’] (server) catch
dup errno-base < if .errno-excp else throw then ;

server

3.3 Multitasked TCP client example.

This example shows a multitasked client using the VFX preemptive multitasker. Upon starting
the client, the Forth console is still available and active tasks are shown using multitasker’s
.tasks word.

I/O through sockets is done using a GENIO /SockDev driver, so words like cr, type, or accept
are available. Note that this example does not use event passing nor messages, so there is no
need to call pause and blocking sockets are used. Also note that wihin the task, text can be
printed in the console surronded by a [io, io] context.

\ ===

include /usr/share/doc/VfxForth/Lib/Lin32/MultiLin32.fth
include ../src/sockets.fs
include ../src/Genio/sockets.fs

0 Constant myflags

s" localhost" 7624 EndPoint: remote known-ip \ the "remote" end point

SockDev: mysock

\ ---

: default-io \ -- ; set up default I/O
xconsole setIO ;

: suicide
pause termThread 0 pthread_exit ;

Chapter 3: Examples 19

: run-task \ xt --
\ wrapper around real task code given by xt
catch default-io dup errno-base <= if dup .errno-excp then suicide ;

\ ---

: .connect
cr ." Connected to server " cr ;

: .selfmsg \ --
." task " self ." sent a message" cr ;

: task1-init
mysock SetIO
remote -1 myflags open-gen throw drop
[io default-io .connect io]

;

: (task1-action)
task1-init
begin

s" Hello TCP World!" type cr \ send to remote
[io default-io .selfmsg io]
3000 ms

again
;

: task1-action
[’] (task1-action) run-task ;

\ --

task task1

’ task1-action task1 initiate

3.4 Simple TCP server example.

This example shows a multitasked server using the VFX preemptive multitasker. A master
server thread is created to listen to incoming connections and spawns dynamically created slave
threads. Slave threads get the text from a client and print it in the Forth console.

I/O through sockets is done using a GENIO /SockDev driver, so words like cr, type, or accept
are available. Note that this example does not use event passing nor messages, so there is no
need to call pause and blocking sockets are used. When remote clients close connections, slave
tasks print exceptions and die.

Upon starting the server, the Forth console is still available and active tasks are shown using
multitasker’s .tasks word.

20 Yet Another Socket Library for Forth

\ ===

include /usr/share/doc/VfxForth/Lib/Lin32/MultiLin32.fth
include ../src/sockets.fs
include ../src/Genio/sockets.fs

SOCKDEV_SVR Constant myflags

-1 Value master \ master listening socket fd

7624 EndPoint: local any-ip
EndPoint: remote unknown-ip

256 Constant BufSize
BufSize +User RxBuffer \ slave tasks reception buffers

\ --

variable sock-sid \ shared between tasks
semaphore sock-sem \ to syncronize access

: sock-sid@ \ -- sid
sock-sem request sock-sid @ sock-sem signal ;

: sock-sid! \ sid --
sock-sem request sock-sid ! sock-sem signal ;

\ --
\ COMMON WORDS
\ --

: default-io \ The default Forth console I/O
xconsole SetIO ;

: suicide \ The way a task terminates itself cleanly
pause termThread 0 pthread_exit ;

: is-action \ xt -- ; wrapper around real action code given by xt
catch
default-io dup errno-base <= if .errno-excp else drop then suicide ;

\ --
\ SLAVE TASKS
\ --

: new-task \ -- tcb ; creates an unnamed, dynamically allocated task
/TCB protAlloc dup initTCB ;

: .selfmsg \ #nread --
dup if ." task " self . RxBuffer swap type cr else ." Read 0!" cr then ;

Chapter 3: Examples 21

: (slave-task) \ slave task action
sock-sid@ setIO
begin

RxBuffer BufSize accept
[io default-io .selfmsg io]

again
;

: slave-task \ slave task wrapper
[’] (slave-task) is-action ;

\ --
\ MASTER TASK
\ --

: new-master \ creates the master socket, in blocking mode
TCP socket throw to master
local master binds throw
master listens throw

;

: new-sockdev \ -- sid ; dinamically allocated /sockdev
/SockDev protAlloc dup initSockDev ;

: .connect
cr ." A client has connected " cr ;

: (server) \ Main server action
new-master
begin

new-sockdev dup >r sock-sid!
remote master myflags r> open-gio throw
.connect
[’] slave-task new-task initiate

again
;

: server
[’] (server) is-action ;

: myshutdown
sock-sem ShutSem ;

\ Main task creation and startup. Leaves a fully operating Forth console

sock-sem InitSem
task server-task
’ server server-task initiate
’ myshutdown AtExit

	Linux TCP and UDP Socket Bindings
	Non-blocking sockets and multitasking
	Glossary
	Handling Linux errno codes
	Handling IP addresses
	TCP/IP Sockets
	UDP Sockets
	Non-blocking connection-oriented socket I/O
	Non-blocking connectionless socket I/O
	Multiplexed I/O

	GENIO Socket Device
	Socket Device Creation
	Exceptions
	Glossary
	Blocking/Non-Blocking socket API vectors
	Common, low level factors
	Socket driver Entry points
	Open and vector table
	Device Creation

	Examples
	Very simple TCP client example.
	Very simple TCP server example.
	Multitasked TCP client example.
	Simple TCP server example.

