VFX Forth for MacOS

Native Code Forth-2012

Microprocessor Engineering Limited







VFX Forth for MacOS

Native Code Forth-2012



MPE VFEX Forth for Mac OS X
Copyright (©) 1997-2014, 2015, 2016, 2017, 2018, 2019, 2020 Microprocessor Engineering Limited
Published by Microprocessor Engineering

User manual
Manual revision 5.1

27 May 2021

Software
Software version 5.1

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com




Table of Contents

1 Licensing and other matters.................................. 1
1.1 Commercial USe . ..... ... 1
1.2 Community LICENCE . . . ...t e 1

1.2.1 Distribution of application programs..............c.cueiiiieeeniiiiiiiinnnn... 1
1.2.2  Distribution of filles........... i e 2
1.2.3 Warranties, support, and copyright........ .. .. 2
1.3 Enterprise licence. . ... 3
1.3.1 Distribution of application programs............ ... .o, 3
1.3.2 Distribution of files . ... ... .o 3
1.3.3 Warranties, support, and copyright......... . ... . 4

2 Introduction, Installation and Configuration.............. .. 5
2.1 Introduction. ... ...t 5
2.2 Installation . . ... 5

2.2.1 VEX Borth .. 5
2.2.2 Directory StruCture . ... .o e )
2.2.3 Executable file naming converntion............. ... . i 6
2.2.4 Executable flles. .. ... 6
2.2.5  Getting started . ... 7
2.3 Configuration .. ...t 7
2.3.1  Set up your editorlO<q . ..o v vttt 7
2.3.2 Set up the PDF help system ....... ..o e 9
2.4 New features in this VErsion . ...ttt 10
2.5 AcCKknowledgements . . . ...t 10

3 How Forth is documented ................................... 11
3.1 Forth Words ... oooo 11
3.2 Stack NOtAtION . ... 12
3.3 Input teXt . oo 13
3.4 Other markers. .. ... 14

4 Base Kernel Definitions................. ... .. .............. 15
4.1 Glossary Notation . ... e 15
4.2 Main Vocabularies. ... ... e 15
4.3 ASCII Character Constants ...ttt 15
4.4 System CONSTANTS ... e e e 16
4.5 Defined USER Variables. ......... i e 17
4.6 System Variables and Buffers........ ... . 18

4.6.1 Variables . ... 18
4.6.2 ValUes. . ..o 20
4.7 Kernel DEFERred words . ... ... e 20
4.7.1 Input and Outpub ... ..ot e 21
4.7.2 Kernel and COonvenience ... ........ouuueeiiie et 21
4.7.3 GUIinterface hooKS . ... e 22
4.8 Logic fUnCtioNS . . . ..o 23
4.9  Stack manipulations. ... ... ... e 23

410 COMPATISOTIS « « + v ettt ettt e et e et e e e e e e 26



ii

VFEFX Forth for macOS X

4.11  Arithmetic OpPerators. . ... ..o e e 27
411 SR S ottt 27
4.11.2  Multiplication .. ... ... 28
411,83 DIVISION . ¢ vttt ettt e 28
4.11.4 Combined multiply and divide......... ... i 29
4.11.5 Traditional short forms......... ... 30
4.11.6  Addition and subtraction . ........ ... i e 30
4.11.7 Negation and absolution.......... ..ot e 31
4.11.8 Converting between single and double numbers ............... ... ... ... ... 31
4.11.9 Portability aids. . ....couuiii e 31

4.12  Dictionary Memory Manipulation ........... ..o i i 32

4.13 Branch and flow control . .......... 32

4. 14 Memory OPEratorS. . .ot e 35

415 SETING OPETratOrS. . oottt et e 37
4.15.1 Caddr/len strings ....... ...t 37
4.15.2  Counted SETTINES . . ..ottt 39
4.15.3 Zero-terminated StTings...........ooi i 40
4.15.4 Pattern matching. ... ... ... i 40
4.15.5 SYSPAD buffering ... 42

4.16 Formatted and Unformatted number conversion............... ... ... ... ... 42
A.16. 1 00l . o oo 42
4.16.2 Numeric outpub . . ..o e 43
4.16.3 Numeric INPUt CONVETrSION . . ...\ttt 44

4.17  More sString WOrdsS . . .. ..ot e 46

4.18 Linked Lists . ..o o 46

4.19 Wordlists and Vocabularies. ... 47

4.20 Input Specification and Parsing....... ... ... 47

4.21 Support for constructing words ........ ... 49

4.22  Defining Words . ... .oo i 50

4.23  Compilation t00IS . ... ...ttt 52

4.24 Literal t00ls. .. ..o 53

4.25  FInding Xbs . ..o o3

4.26 Parsing strings and characters......... ..o i 54

4.27  COMIMENES . . .ottt et e e 55

4.28 Generic stack get/set. ... ... 56

4.29  Text INterPreter . . ... e 56
4.29.1 Recognizer type structure. ......... ... 57
4.29.2 Word and number recognition .......... ... 57
4.29.3 Main recognizer and text interpreter............. ... ... 58

4.30 DEFERred words and Vectored Execution............. ... ... o i i, 59

4.31 Time and Date. ... ... e 59

4.32  Millisecond timing. ...... ... e 60

4.33 Heap - Runtime memory allocation........... ... .. i i i 60

4.34 Nested definitions . ... e 61

Dictionary Organisation/Manipulation..................... 63

5.1 Definition Header Structure ......... ..o i 63

5.2 Header Manipulation Words . ...... ... i 64

5.3 Definition and Data Space ACCESS. . ... u vttt 65



6 Search Order: Wordlists, Vocabularies and Modules...... 69
6.1 Wordlists and Vocabularies........... .. o i 69
6.1.1  Creation . ...oooo 69

6.1.2  Searching. ... .......ooooiii 69

6.1.3 Removing Words. ... ... ...ttt e 71

6.1.4 Processing words in a wordlist ........ ... . .. 72

6.2 Source Code Modules. . ... 73
6.2.1 Module defInition. . .....ooo i 73

6.2.2 Module management . ........ ... 74

6.2.3 An Example Module. ... ... ... 74

7 Generic IO ... .. 77
7.1 Format of a GENIO DrIiver . ... ... 77
7.2 Current Thread Device ACCeSS. . ...ttt e 79
7.3 10 based on a Nominated Device ........... .o 80
7.4 Standard Forth words using GenericlO ....... ... ... i i 81
7.5 Miscellaneous I/O Words. ... ... ... 81
7.6 Supplied Devices . . . ... 82
7.6.1 Memory Buffer Device. ... ... 82

T7.6.2 File DeviCe . . ..o 84

T7.6.3 NULL DeVICE. . oottt e e e e e e 84

7.6.4 Serial Device . ... .o 84

7.6.5 XTERM DeVICE .. ..ot e e 88

T.6.6  SOCKEES. .ot 90

8 Local variable support ........... ... ... L. 95
8.1 Extended locals notation .......... ... . 95
8.2 ANS local defInitions . .. ..ottt 97
8.3 Local variable construction tools......... ... .. 97

9 Working with Files............. ... ... ... ... ... .. ... 99
9.1 Source flle NameS . . ..ot 99
9.2 ANS File Access WordSet. . ...ooovii i 99
9.3 File Caching .. ...t 102
9.4 "Smart File" InCluSIOn . .. ...t 102
9.5 Source File Tracking ... ......couuoiii e 103
9.6 Control DireCtives . .. ..ottt 104
10 Tools and Utilities......... ... ... ... . . . .. 105
10.1  Conditional Compilation ..........ooieiiii i 105
10.2 Console and development t00lS . ... 106
10.3  Zero Terminated STTings .. ......o.u it 107
10.4  SEIUCHUTES . ottt e e e e 107
10.4.1 Forth200x Structures ... ...ttt e e 110

10.5 ENVIRONMENT QUETIES « . oottt ettt et ittt et e ettt e e e 110
10.5.1 Predefined qUeTries. . ... .. ...t e 110
10.5.2  USEr WOIdS . .ottt et e e e e 111

10.6  Automatic build numbering . ......... ... 112
10.7 PDF help Systemi. . ... 113
T10.8 INI fIleS . o oottt e 115
10.8.1 Shared library interface.......... .o 117

T10.8.2  TO0IS oot 119



iv VFX Forth for macOS X
10.8.3 Using the Lbrary . ... .o 120
10.8.4  Operating SyStem geNeriCs. ... ....uu ittt 121
10.8.5 Operating system Specifics. .. ... 122
10.8.6 System initialisation chains......... .. ... 123

10.9 Converting from the previous mechanism................ ... ... .. L. 124
10.10  Switch Chains . . ... . 124
10.10.1  Introduction ....... ..o e 124
10.10.2  Switches gloSsary . ... ..o e 125
10.11  First-In First-Out Queues. ... i 126
10.12  Random numbers ... ... ... e 126
1013 LONE SEIINES « e v ettt e e e e e e e e e 127
10.14 Command Line parser. .. ... .....oo ot 128
10.15 C Language Style Helpers. .. ... e 128
10.16  Stack guarding. . ..........u oo e 129
10.17  Transient Word TegIONS . ... ...ttt e 129
10.18 Eliminating compilation Surprises ............c.ooooiiiiiiiiiiiiii e 130
11 OS X specifictools ................. . ... .. 131
11.1 Shell Operations . ... ...ttt e e e e 131
T1.1.1  Primitives. . oo et e 131
11.1.2  Command Operations. .. ........oouuuttu it 132
11.2  OS X signal handling. . ......oui i e e 132
11.2.1  SOIUCHUTLES. .« oottt e e e e e e 132
11.2.2  Signal handling. ... 134
11.3  Error variables . .. ... e 135
11.4  Environment variables. ...... ... i 135
11.5  Critical SECTIONS . ..\ttt ettt e e e 135
11.6  Millisecond tImer. . ... .ottt e 136
117 RaW CIIer . oo 136
11.8 Time handling ... ..o 136
11.9 A structure to mimic the timeval structure for libc.......... ... ... ... ... ... 136
11.10 A structure to mimic the tm structure for libc........... ... .. ... ... ... ..., 136
11,11 Time and date . ... 137
11.12  Program launch status ... 137
11.13  Folders and Files. ..o 138
12 1Intel 386+ Assembler ............. ... ... .. . ... ... ... ...... 139
12.1 Using the assembler. . ... e 139
12.2  Assembler extension Words ............iiii 140
12.3 Dedicated Forth registers.......... ..o 141
12.4  Default SegmMent SIZe .. ... ....oiiiiii i 141
12.5  ASSEmMDIEr SYNEAX . . ..ottt 142
12.5.1 Default assembler notation ........... .. ... i 142
12.5.2 Register to register. ... ... 142
12.5.3 Immediate mode ... ... e 142
12.5.4 Direct Iode. ... ..ot e 143
12.5.5 Base + displacement ........... 143
12.5.6 Base 4 index + displacement................. i 144
12.5.7 Base + index*scale + displacement ................cooiiiiiiiiiiii.. 144
12.5.8  Segment OVerrides . ... .....oon it 144
12.5.9 Data size oVerrides . .. ... ... e 145
12.5.10 Near and far, long and short .......... .. ... o i i 146

12.5.11  Syntax eXCeptionsS . ... ...ttt e 146



12.5.12 Local labels. ... ..o 147
12.5.13 CPU 8eleCtion. .. ..ot 148
12.6  Assembler StruCtures . ... ..ot e 148
12.7  Assembler mode SWItCheS. . ... ..ttt 149
12.8 Macros and ASSEMDIEr ACCESS. ...ttt e 149
12.9  Assembler error COAES . .. vttt e e 151
13 Intel 386+ Disassembler .................................. 153
13.1 Low-Level Disassembly Words. .........c.ooiiiiiiiii e 153
13.2 Higher Level Disassembly .. ... 153
14 Floating Point......... ... ... .. ... ... . . . . ... 155
141 Introduction . .......oo e 155
14.1.1 Ndp387.fth - coprocessor StacK. ..........uuiiriteiii i, 155
14.1.2 Hfp387.fth - external FP stack......... ... ... i 155
14.2 Radians and Degrees . ... ... ..o e 155
14.3 Number formats, ANS and Forth200xX ...........coiiiiiiiiii e, 156
14.4  Floating point eXCeptions. .. .....oouuuu i e 157
14.5 Standards compliance, F>Sand F>D ....... ... .. ... 157
14.6  Configuration .. ........o i e 157
14.7  ASSEMDIET MACTOS . . . .ttt et ettt et e e e e e e e e 158
14.8  OptimisSer SUPPOIT . ...ttt et e e e e 158
14.9 FP constants. ... e 158
14.10 FP control operations . ... .......ouiii i e 158
14.11  FP Stack operations ... ... 159
14.12 Memory operations SFQ SF! DFQ DFletc ... 159
14.13 Dictionary operations .. ... ...ttt 161
14.14  FP defining wWords. .. ..ot 162
14.15 Basic functions + - * / and others........... ... .. . i 162
14.16 Integer to FP conversion ...........c..uuiiiiiiiiii i e 163
14.17  FP COMPATISONS . « . v vt ettt ettt ettt e e et e e 163
14.18 Words dependent on FP compares.......... .o 164
14.19 FP logs and POWETS . ..ottt e et e 164
14.20 RoUunding .. ... ...t 164
14.21  FP Arigonometry . . ..o 165
14.22  NUImDEr COMVETSION. . .\ttt ettt ettt e ettt ettt 166
14.23  FP OUtpUb . .o 166
14.24 Patch FP into the system ........... i e 168
14.25 PFW2.x compatibility . ... 168
14.26  Debugging SUpPOIt. .. ..ot 169
14.27  EXEENSIONS . . vttt ettt 169

14.27.1 F.P. stack jugglers .. ... 169



vi VEFX Forth for macOS X

15 Multitasker...... ... .. 171
15,1 Introduction ... ..o e 171
15.2  Configuration ... ... ... e 171
15.3 Initialising the multitasker ........ ... 171
15.4  Writing a task .. ..o 171

15.4.1 Task dependent variables......... ... i i 172
15.5  Controlling tasks . ... ...t e 172

15.5.1  Activating a task. ... 172

15.5.2  StOppINg @ task .. ..ottt 173

15.5.3 Terminating a task........co i 173
15.6  Critical SeCtIONS . ...\ i ittt 174
15.7 Multitasker internals . ...... ... i 174
15.8 A simple example ... ... 175
15.9  Structures and SUPPOTT . . .. .v vttt ettt et et e et e e 176
15.10 Task definition and ACCESS. ... ...ttt e e 177
15.11 Task handling primitives........ ... 177
15.12  Task Management . . ... ...ttt e 178
15.13  Task synchronisation.......... ... e 179
15.14  SemaphOresS . . ..ottt 180
15.15  EXCIUSIVE QCCESS . - - vttt ettt e e 180

16 Periodic Timers.......... .. ... ... . i i 181
16.1 The basics of tIMerS. .. ..ottt e 181
16.2 Considerations when using timers ......... ..o i 182
16.3 Implementation ISSUES. .. ... ...ttt e 182
16.4  Timebase loSSary . ... ...ttt 182

17 A BNF Parser in Forth ................................... 185
17. 1 Introduction . ... 185
17.2  BNEF EXPIresSIOnS. . . ...ttt ittt e ettt 185
17.3 A Simple Solution through Conditional Execution .............................. 186
17.4 A Better SOIUtION . .. ...ttt e e 186
175 NOBABION . . oo e e e 187
17.6 Examples and Usage .. ... e 188
17.7  CatutionS . . ..ottt e e 189
17.8 Comparison to "traditional" work......... ... ... 190
17.9 Applications and Variations ............ouuiieiitt i 190
17.10 R erences . ... 191
17.11 Example 1 - balanced parentheses........... ... .. .. 191
17.12 Example 2 - Infix notation ........ ... i 192
17.13 Example 3 - infix notation again with on-line calculation....................... 194
1714 Acknowledgements ... ... ...ttt 196
L7050 GlOSSATY « v e ettt et e 196
17.16  ETror repOTting . ..ottt e 198

18 Text macro substitution...................... ... . ... ... 199
18 L USa e oot e 199
18.2 Basic WOTdS . . oottt 199
18.3  UtIltIeS . o o e ettt e e e e e e 200
18.4  System Defined Macros .. ......oouutiii e 202
18.5  MacOS SPECIICS . « o vttt 203

18.6 Editor and LOCATE acCtionsS . .. ....uutttnt e 203



19 VFX Code Generator .................... ... .. ... ........ 205
19.1 Enabling the VFX optimiser ..........oo e 205
19.2 Binary inlining. .. ... e 205

19.2.1 Colon definitions . ... 205
19.2.2  Code definitions . . . ...ttt e e 206
19.3 VFX Optimiser Switches ... ... 206
19.4 Controlling and Analysing compiled code.......... ... ... 208
19.5 Hints and Tips. ... oo i 208
19.6  VEX Forth vA4.x. ..o e 209
19,7 TOKEIMISET . . .ottt e e 209
19.7.1 Tokeniser state . . ... ..o 209
19.7.2  Tokeniser COntrol. .. ... ..o e 210
19.7.3  GOtChaS . .« oo e 211
19.8 Code/Data separation. .. .............iuiuiuieiiiiiii i 213
19.8.1 Problem and solution. . ... 213
19.8.2  Defining words and data allocation ......... ... ... .. i il 214
19.8.3  GOtChaS . . oo e 215
19.8.4  GlOSSATY o vttt 215

20 Functions in DLLs and shared libraries.................. 217
20.1 Introduction . ... ....ooiiiii i 217
20.2  FOTmat .. ..ottt e 218
20.3  Calling Conventions . . ... ... ...ttt e 218
20.4 Promotion and Demotion . ... 219
20.5 Argument Reversal..... ... ... i 219
20.6 C comments in declarations .. ....... ...ttt 219
20.7 Controlling external references ............ ... 219
20.8  Library Imports. ... ..ot 220

20.8.1 Mac OS X eXEeNSIONS. . .t vttt ettt e e 221
20.9 Function Imports .. ... ..o 222
20.10 Pre-Defined parameter types ... .....veet et 223

20.10.1 Calling conVEntIONS . ... ..ottt e 224

20.10.2  Basic TyPes. ..ttt 224

20.10.3 WIndows Types . ...ttt e 226

20.10.4  Linux Types . ..vvt i 234

20.10.5  MAC OS X TyPeS. ¢ ottt ettt et e 235
20.11  Compatibility Words ... ... e 236
20.12 Using the Windows hooks. ... ... i e 237

20.12.1 Deferred words and variables........ ... ... i 237

20.12.2  Default versions. ...........ouii i 237

20.12.3 Protected EXTERNS. ... 239
20.13 Interfacing to CH+4 DLLS . ..ottt e 240

20.13. 1 CAVEAES . ¢ v vttt e 240

20.13.2 Example code. ... ... 240

20.13.3 Accessing constructors and destructors ... 240

20.13.4  Accessing member functions. ........... ... i 241

20.13.5 Accessing third party C++ DLLS . ... 242
20.14 Changes at V4.3 ..o 243

20.14.1  Additional C types. ..ottt 243

20.14.2 More Operating SyStems . ... ..ottt 243

20.14.3 MiScellaneous . . . . oottt 243



viii VFEFX Forth for macOS X

21 Swupported shared libraries.................... ... ... ... 245
211 LAbCUTL . ..o 245
21.2  LABICONY . o ottt 246
21.3  SQILTE . . e ettt 247
214zl D 247

21.4.1  WiIndows SPeCIfiCS . . .. oottt 247
21.4.2 Mac OS X SPeCifiCs. .« oottt 248
21.4.3  LAnux SPeCifiCs . . oottt 248
21.4.4  Generic COAE . ...ttt e 248
21.5 LibXL - Excel interface .........oooii 248
21.5.1  Test code ..o 249

22 Callback functions..................... . ... . 251
22.1 Simple CALLBACK functions. .............uiiiiii i 251
22.2  An example. Creating a signal handler .......... ... ... ... ... ... .. ... ... 252
22.3 Implementation NOtES . ... ..ot 252

23 Building Standalone Programs ........................... 255
23. 1 The DasiCs . o oot 255

23.1.1 Windows GUIL. ... 255
23.1.2  Windows COMSOLE . . . ..ot e 255
23.1.3 OS X and Linux Console. .. ...ttt 255
23.2 Sequence of Events. . ... 256
23.3 The EntryPoint Word. .. ... ..ot 256
23.4  Startup and Shutdown words. ... 257
23.5 Saving to an Mach-o file. ... ... ... 258

24 Exception and Error Handling............................ 261

24.1 CATCH and THROW ... e e 261
24.1.1 Example implementation ............. i 261
24.1.2 Example USe . ... ..o 262
24.1.3  WOTASEt . o oottt 263
24.1.4 Extending CATCH and THROW ... .. i 263

24.2 ABORT and ABOR T ... . 264

24.3  Defining Error/Throw codes. ..... ...t 264

24.4  System Frror Handling. ...... ..o i 267

25 Using libgtk2 widgets from Forth ........................ 269
25.1 External Linkages . ... ... e 269
25.2  Signal Connection . ... ....... ot e e 269

25.2.1 Recommended .. .......ooiii 270
25.2.2  MACTOS .« oot 270
25.3 G Ty DS . ottt 270
25.4  GTEK mMESSAZE PUIID .« .ttt e ettt ettt et et e e e 271
25.4. 1 WINAOWS . oottt e e e 271
25.4.2  LAIUX « o ettt e et e e e e e e e e e e 271
25.4.3 Mac OS X o 271
25.5 Operating System Dependencies. ........ ..., 272
25.5. 1 LAMUX « ettt et e 272
25.5.2  WINAOWS . . ottt e e 272
25.5.3  Mac OS X o 272

25.6 Loading GTK Builder files ....... ..o e 273



20T DIAlOgS o oo 274
25.8 Event Callbacks. .. .. ... 274
25.9 GTK startup and shutdown ... e 275
25.10 GTEK teSt COAE. .ottt e e 275
25.11 Graphics in the Borland style .......... . i 276
25.11.1 Global Data. ... 276
25.11.2 Internal operations. .. ........oouiin e 276
25.11.3  Application WOrds. ... ....oouuiitii e 277
25.12 A text editor in Glade ... ... . 278
25.12.1 TOOIS . o eee e 279
25.12.2  Status bar operations ......... ... 279
25.12.3 TextViews and buffers............ i 279
25.12.4 Loading and Saving texXt . ... .....ouuuueeii it 280
25.12.5 Clipboard . ... 280
25.12.6  Callbacks . ... 281
25.12.7 Initialisation and termination............ ... .. 281
26 DocGen Documentation Generator ...................... 283
26.1 What DocGen does . .. ...t e 283
26.2 USINg DOCGEN . ..ottt 284
26.3 Marking up your texXt .. ...t 285
26.3.1  COmmMENt BAES . .ottt ettt e e 286
26.3.2 Formatting Macros .. ... ...ttt e 289
26.3.3 Table MaCTOS. . . . ..ottt 289
26.3.4 TmMAZE IACTOS -+« vttt ettt ettt ettt e e 290
26.4 Defining a new personality ....... ..o 290
26.4.1 Personality description notation ............ ... i 290
26.4.2 Using control codes. ... ... ... 293
26.4.3 Writing the action Words ... e 293
26.4.4 Formatting commands. ....... ...ttt e 294
26.4.5 Personality words glossary . ....... ..o 295
26.5  HTMLS OUbPUL - .. v e e 295
26.5.1 HTIMLS MACTOS . . o ettt ettt e e et e et e e et 296
26.6 Markdown outpUb . ... ...t 298
26.6.1 MarkdOwWn IMACTOS. . ..ottt ettt et e 298
26.7 TeX output with texinfo.tex...... ... 299
26.7.1  Texinfo MACTOS . . ..ottt ettt e e e e 300
26.8 LaTeX2e OUbPUL . .o ene e 302
26.8.1 Imstallation. . ... ... e 302
26.8.2 BaSIC USAEE . oottt 302
26.8.3 Adding a title pAge. ... .ot 302
26.8.4 Adding a Table of Contents ........ ..o 303
26.8.5 LaTeX MACTOS . . ...ttt ettt et ettt 303
26.9 DocGen kernel hooks. . ... 304
26.10 Organising Manual generation............ ..., 305
26.10.1 Sample DocGen Control file. ...t 305
26.10.2 Example file liSt. . ... o 308
26.10.3 Example batch file ... 309
26.10.4 Example Texinfo title page...... ..o 310

26.11 DocGen/SC. ... . 312



X VFEFX Forth for macOS X

27 Library files ....... ... 313
27.1 Building cross references ... ... ... i 313
27.1. 1 Introduction .. ... 313
27.1.2 Initialisation . ... ... e 313
27.1.3 Decompilation and SHOW . ... .. . e 313
27.1.4 Extending SHOW ... ..o 313
2715 GlOSSATY - . ettt ettt e e e e 314
27.2 Extended String Package....... ... 316
27.3 Extensible CASE Mechanism . .......... ..o 317
27.3.1 Using the chain mechanism........... . ... i 317
27.4  BiInary Overlays. .. ...t 318
27.4.1 Introduction ..........oi i 318
27.4.2 USING OVETLAYS. .« oottt e e 318
27.4.3 Load and Release actions......... ... .o 319
27.4.4 File name CONVENTIONS . . ...t vtt ettt ittt e e et e 319
27.4.5 Version control. ... ... e 320
27.4.6 ReStriCtionS . . ...ttt e 320
27.4.7 GOtChas . ... 321
27.4.8 OVerlay GloSSary . ..ottt e 322
27.5 XML SUPPOTE o oottt et 324
27.5.1  Why XML ..o 324
27.5.2 Using the XML Parser .......ooiiii e e 326
27.5.3 Generating XML output. ... 326
2754 T00IS .ottt 326
27.5.5 XML INpubt ParSer . . ..ttt et e 330
27.5.6 Data content input and output ......... ... .. 333
27.5.7 Test COAe .ot e 336
27.6  Configuration files. ... ... ... 336
27.6.1 Loading and saving configuration files ........... .. ... .. ..o o il 337
27.6.2 Loading and saving data ...........c. i 337
28 ClassVIix OOP ... ... 341
28.1 Introduction .. ... .. ..o e 341
28.2 How to use TYPE: Words ........ooii e 341
28.3  Predefined types . . ..ot 343
28.4 Predefined methods/operators........... ... . i 343
28.5 Example structure . ... ... e 344
28.6 Data structures created by TYPE: . ... oo 344
28.6.1 TYPE: definitions. . ..o e 345
28.6.2 MAKE-INST definitions. .. ....ouoi i e 345
28.7 Local variable INStances . ...... ... 345
28.8 Defining methods ... ... 345
28.9 Create Instance of an object....... ... i 346
28.10 Defining TYPE: and friends....... ... i 346
28.10.1 TYPE definition .. ..o e 346
28.11 Dot NOtation PATSET . . . ...ttt ettt et e 347
28.11.1 Compiling for VEX v4 ... 348

28.11.2 Compiling for VEX v ... 348



29 CIAO - C Inspired Active Objects ....................... 351
29.1 Token and Parsing Helpers........... i 351
29.2 The THIS Stack . ... e e 351
29.3 CIAO Constants and Internal Data Stores.......... ... ... 351
29.4  Search Order Utilities . .. ....out it e e 352
29.5  Method Lists. ..ot 352

29.5.1 The Format of a Method List........ ... i 352
20.5.2 TYPE _DAT A .. 353
29.5.3 TYPE_STATICDATA ... e 353
20.5.4 TYPE_CODE. ... .. . e 353
29.5.5 TYPE_STATICCODE. ... e 353
29.5.6 TYPE_VIRTUALCODE ... .. e 353
29.5.7 TYPE _CLASS . e 353
29.5.8 TYPE_CLASSPTR ... e 354
29.5.9 The definitions which deal with lists are:........... ... ... ... ... ... . ..... 354
29.6  Operator List ... ... e 354
29.7 The CLASS SEIUCEUTE . . ..ttt e e e e e e 355
29.8 Method Searching.......... ... e e 355
29.9 Default Method Actions. .. ... ..o e 355
29.10 Method Scope Specification ......... ...t 356
29.11 Name Format Checking ....... ... e 356
29.12 Method Type OVerrides . . ... ... i 356
29.13 Data Method Prototyping......... ..o 357
29.14 Code Method Prototyping ..........ooiiioi e 357
29.15  Class Method Prototyping ... 357
29.16  Operator ASSOCIAtION . ... ...ttt e e 357
29.17 CLASS Definition . . . ..ottt e 358
29.18 STRUCTures - A new slant on CLASS ... ... . . 358
29.19 Colon and SemiColon OVerride. ..........ooiiuiiiiii i 358
29.20 OOP Compiler/Interpreter Extension Core Part 1 - EVALUATE BUFFER .... 359
29.21 OOP Compiler/Interpreter Extension Core Part 2 - Method Compile .......... 359
29.22  OOP Compiler/Interpreter Extension Core Part 3 - Single Token Check........ 360
29.23 OOP Compiler/Interpreter Extension Core Part 4 - Compounds............... 361
29.24 Installing CIAO into VFX Forth ....... . . 362
20.24. 1 VX VA X ittt 362
29.24.2 VEX V5.1 OnWards . ..ot 362
29.25 Instance Creation Primitives....... ... i 362
29.26 Instance Creation ... .. ... ...t e e 363
29.27 AutoVar - An example of a Class. ...ttt 363
29.28 AutoVar2 - Another Example ....... .. 365
29.29  Class Library ... ... 365
29.29.1 Base OPErators . ... ...ttt 365
29.29.2  Primitive Types. ...t 366
29.29.3 WiIndows TyPes . ...ttt e 367
29.29.4 Windows SErUCEUTES . . . ..ottt ettt e e e 367
29.29.5 CPOINT - Point Class .. ..ottt 367
29.29.6 CRECT - Rect Class . . ..ottt e 367

29.29.7 CString - Dynamic String Class ...... ..o 367



xii VFEFX Forth for macOS X

30 Internationalisation............................... ... ... 371
30.1 Long string parsing SUPPOTt . . ... cvu ittt et 371
30.2  Data StrucCtures . ... ...ttt e e 371

30.2.1 Rationale . ... ... 371
30.2.2 /TEXTDEF Structure. ........c.oouiuuniniiiiii i 372
30.2.3  String STIUCTUTE . . . oottt ettt e e e e e e 372
30.3 Creating and referencing LOCALE Strings..........cooiiiiiiiiiinian... 372
30.4 ANS LOCALE Word S€t. ...ttt e e e 373
30.5 ANS LOCALE extension Word Set............ouuiiiiiiiiiiiiieiiiaiean.. 374
30.6 Windows language SUpport . ... ... ... 375

31 Obsolete words............... ... .. 377
31.1 Removed from VFX Forth v4.0. ... ... 378

32 Migrating to VFX Forth.................................. 379
32.1 VFX generates native code. ... ...t e 379
32.2 VFX uses absolute addresses ....... ..ot e 379
32.3 VFXisan ANS standard Forth ........ .. .. . 379
32.4 COMPILE is now IMMEDIATE. ... e 379
32.5 Comma does not compile. ... ... ... e 379
32.6 COLON and CURRENT .. ... e 379
32.7 The Assembler is built-in......... ... 380
32.8 The Inner Interpreter is different ........... ... ... . 380
32.9 The FROM-FILE word has gone ..., 380
32,10 Gemeric I/O. oo 380
32.11 External APT Linkage . .. ... e 380
32.12 DLL generation . . ... ..o 380
32.13 Windows Resource Descriptions.............o i 380
32.14 ANS Error Handling . ... 381
32.15  ODbSolete WOTdS .. ..ottt 381

33 Rebuilding VFX Forth for Mac OS X.................... 383
331 PrerequiSites . . ...t 383
33.2 Rebuilding the executable stub........ ... . 383
33.3 Rebuilding VEX Forth .. .. .. 384

33.3.1  Kernel ..o 384
33.3.2 SeCond SEAZE . ..ttt 384
33.3.3  Third stage .. ...t 384
334 Manuals . ..o 384
33.5 Rebuilding the tools. ... 385
33.5.1 Rebuilding the libraries......... ... i 385
33.6 Packaging. ...... ..o 386
33.7 Mission edition builds . ... 386

34 Further information ................. ... ... .. 387
341 MPE COUTSES . - oo vttt ittt e e e e 387
34.2 MPE consultancy .. ... .....ooiiiiiiiii i e 387
34.3 Recommended reading ..........o.uiiii i 388



Chapter 1: Licensing and other matters 1

1 Licensing and other matters

The license terms here apply to all versions of VFX Forth 5.1 and beyond. Separate sections of
this chapter cover both the Community (non-commercial use) and Enterprise (commercial use)
licenses.

Unless otherwise stated, all files supplied are copyright MicroProcessor Engineering Limited.
1.1 Commercial use
Commercial use means that money changes hands, either by the sale of a product or by payment

for a job or employment. If commercial use applies to you, your organisation or employer, you
need an Enterprise licence.

If you sell an application written with VFX Forth, that is commercial use.
If you sell a service that uses or was developed with VFX Forth, that is commercial use.
If you are paid to write software with VFX Forth, that is commercial use.

If you sell hardware or software but give away software written with VFX Forth to enhance it,
that is still commercial use.

If you think that you are a special case, please contact us and we will consider your case.

If you teach a class using VFX Forth in a class, that is a special case, and a Community non-
commercial licence is all that is required, both for the teachers and the students, but for the
duration of the class only.

1.2 Community licence

The terms in this section apply to compilers supplied with the Community licence.

All applications written with the Community licence must acknowlege this at sign on and in the
documentation.

Commercial use with the Community licence is not permitted.

You may not use VFX Forth or MPE cross compilers to produce products that compete with
one or more MPE Forth products.

Unless otherwise stated, all files are copyright MicroProcessor Engineering Limited.

1.2.1 Distribution of application programs

There are several ways in which VFX Forth applications can be distributed. These are:
e Sealed turnkey application with no access to the interactive Forth.
e Sealed except for engineering and maintenance access by the developer.
e Open Forth interpreter/compiler provided for the end user.



2 VFX Forth for macOS X

Sealed turnkey applications

Providing that the user can have no access to the underlying Forth and its text interpreter,
turnkey applications written in VFX Forth may be distributed without licence. An acknowl-
edgement of the VFX Forth Community licence is required at start up of the application.

Engineering and maintenance access

If the developing organisation wishes to provide what the user sees as a sealed turnkey appli-
cation, but in which an open Forth can be exposed for engineering and maintenance access by
the developer organisation no licence will be charged for. However a license agreement must be
signed with MPE in order to protect MPE’s copyright. An acknowledgement of the VFX Forth
Community licence is required at start up of the application.

If the company or person responsible for maintenance is not the developer then the maintenance
company or person must have a licence.

Our objective here is to protect our copyright and to ensure that no undocumented Forth systems
are shipped.

User open Forth interpreter

In order to distribute a system with an open Forth interpreter for the end user, a licence
agreement must be signed with MPE.

Our objective here is to protect our copyright and to ensure that no undocumented Forth systems
are shipped.

1.2.2 Distribution of files

Unless special license terms say otherwise, this section applies.

Shipped applications may be based on the files VfxForth_z86_mac.mo or Vfz-
ForthB_x86_mac.mo.

Object code generated from the source files can of course be included in your applications. MPE
source files and all other files including editors, support programs and shared libraries are part
of the development environment, which may not be distributed without prior permission in
writing from MicroProcessor Engineering. However, the INI parser libraries, mpeparser.dll or
libmpeparser.* may be distributed with your applications - these files are distributed under an
MIT license.

The source directories provided with VFX Forth may not be distributed, and remain the in-
tellectual property of MicroProcessor Engineering Ltd. Some source directories, e.g. the INI
parser, contain additional licenses which apply to those directories only.

1.2.3 Warranties, support, and copyright

We try to make VFX Forth as reliable and bug free as we possibly can. We support our products.
If you find a bug in VFX Forth or its associated programs we will do our best to fix it. Please
send us sample code and a listing of the problem. We will then let you know of an update when



Chapter 1: Licensing and other matters 3

we have fixed the problem. Do however, check with us first in case the problem has already
been fixed. Technical support is only provided for the current shipping version of VFX Forth.

Make as many copies as you need for backup and security.

1.3 Enterprise licence

The terms in this section apply to compilers supplied with commercial use permitted.

If you have a subscription, commercial use is only permitted while the subscription is valid, i.e.
paid for.

You may not use VFX Forth or MPE cross compilers to produce products that compete with
one or more MPE Forth products.

Unless otherwise stated, all files are copyright MicroProcessor Engineering Limited.

1.3.1 Distribution of application programs

There are several ways in which VFX Forth applications can be distributed. These are:
e Sealed turnkey application with no access to the interactive Forth.
e Sealed except for engineering and maintenance access by the developer.

e Open Forth interpreter/compiler provided for the end user.

Sealed turnkey applications

Providing that the user can have no access to the underlying Forth and its text interpreter,
turnkey applications written in VFX Forth may be distributed without royalty. An acknowl-
edgement will be gratefully appreciated.

Engineering and maintenance access

If the developing organisation wishes to provide what the user sees as a sealed turnkey applica-
tion, but in which an open Forth can be exposed for engineering and maintenance access by the
developer organisation no royalty will be charged. However a license agreement must be signed
with MPE in order to protect MPE’s copyright. If the company responsible for maintenance is
not the developer then the maintenance company must have a license.

User open Forth interpreter
In order to distribute a system with an open Forth interpreter for the end user, a license agree-
ment and royalty terms must be agreed with MPE. MPE is able to help you supply selected

portions of the development environment, or to provide end user documentation. The cost of
such licenses will depend on the facilities required.

1.3.2 Distribution of files

Unless special license terms say otherwise, this section applies.

Shipped applications may be based on the file VfzForth*.mo and any number of overlays.



4 VFX Forth for macOS X

MPE source files and all other files including editors, support programs and shared libraries are
part of the development environment, which may not be distributed without prior permission
in writing from MicroProcessor Engineering. However, the INI parser libraries, mpeparser.dll
or libmpeparser.* may be distributed with your applications - these files are distrubuted under
an MIT license.

The source directories provided with VFX Forth may not be distributed, and remain the in-
tellectual property of MicroProcessor Engineering Ltd. Some source directories, e.g. the INI
parser, contain additional licenses which apply to those directories only.

1.3.3 Warranties, support, and copyright

We try to make VFX Forth as reliable and bug free as we possibly can. We support our products.
If you find a bug in VFX Forth or its associated programs we will do our best to fix it. Please
send us sample code and a listing of the problem, and let us know the serial number of the
prodct. We will then send you an update when we have fixed the problem. Do however, contact
us or your supplier first in case the problem has already been fixed. Please note that the level
of Technical Support that we can offer will depend on the Support Policy purchased with VFX
Forth. Technical support is only provided for the current shipping version of VFX Forth.

Make as many copies as you need for backup and security. The distribution is not copy protected.
VFEX Forth is copyrighted material and only one copy of it should be in use at any one time.
Contact MPE or your vendor for details of multiple copy terms and site licensing.

As we sell copies of VFX Forth through dealers and purchasing departments we cannot keep
track of all our users. If you have not already been in contact with us, please send your details
to

mailto:techsupport@mpeforth.com



Chapter 2: Introduction, Installation and Configuration 5

2 Introduction, Installation and Configuration

2.1 Introduction

VFX Forth is a fast modern Forth that compiles to native code. It is designed for large projects
as well as small.

"VFX has been the most solid and cleanly designed Forth I've used in years (probably ever
actually)."

VFEX Forth is supplied under a free-of-charge Community licence for non-commercial use (see
the license chapter) and under an Enterprise licence for commercial use. There are versions for
Windows, macOS, x86 Linux and ARM Linux (including Raspberry Pi).

2.2 Installation

2.2.1 VFX Forth

Install VEX Forth for Mac OS X either from the package file or from the tarball. Then follow
the on-screen instructions.

2.2.2 Directory structure

The main installed directory (folder) structure looks like this:

-
/usr/local/bin - issue binaries
~/VfxForth/
Doc
AnsForth.Htm - ANS Forth HTML documentation
VixLin.htm - VFX Forth HTML documentation
Bin - development binaries (not all versions)

Examples - Examples to look at and use
- has subdirectories

Lib - library of tools maintained by MPE
CIA0 - C Inspired Active Objects 00P package
FSL - A port of the Forth Scientific Library
GENIO - Examples of Generic I/0 drivers
00P - A Neon-style 00P package

0sx32 - Osx specific code
Cocoa - interface to Cocoa

x86 - x86 specific code
Sources - source code if applicable
- has subdirectories
Kernel - source code if applicable
- has subdirectories
VFXBase - source code if applicable
- has subdirectories
TOOLS - useful third party 0/S specific tools
- not present in all versions
XTRA - Additional third party 0/S specific tools

- not present in all versions




6 VFX Forth for macOS X

2.2.3 Executable file naming converntion

Binary file names are of the form

VExForth<t>_<cpu>_<os>.<fe>

e.g.
VEfxForthK_x86_win.exe

Where:

-
<t> = null for main binary
= K for kernel
= KH for high kernel (for shared library builds)
= B for base version (Windows only)
<cpu> = x86 for 32 bit Intel i32
= x64 for 64 bit AMD/Intel
= arm for 32 bit ARM CPUs
= arm64 for 64 bit ARM/Cortex CPUs
<os> = win for Windows
= mac for macOS
= lin for Linux
<fe> = exe for Windows PE and PE+
= elf for Unices/Linuces
= mo for Mach-0 files

The installer scripts should have created a short cut for you, either vixforth or VfxForth, de-
pending on the operating system.

2.2.4 Executable files

Executables and shared libraries are in the folder ~/VfxForth/Bin. The installation system also
places them in /usr/local/bin or /usr/lib, which is in the executable search order. The change
from /usr/bin to /usr/local/bin was required for OS X 11.10 El Capitan. If you are installing
on 10.10 or earlier, previous VFX Forth files in /usr/bin will be removed.

o VfxForth_z86_mac.mo - the development version with a full set of tools.

o VfxForthK_x86_mac.mo - a minimal kernel produced by cross compilation. This file is not
available in all versions.

o ufrsupp.1.dylib - a support library for development use.

e [ibmpeparser.0.dylib - a support library for use with initialisation files.

The installer script should have created a short cut for you, vfrosz.

The support library, vfrsupp.1.dylib, extends the number handler to search for Mac OS X con-
stants that are then treated as if their value had been entered numerically. The search is case
sensitive, and yes we have seen constants which differ only in case and return different values.
This library avoids having to keep a huge number of constant definitions in the Forth dictionary.
The support library is only needed for development, and may not be shipped with applications.



Chapter 2: Introduction, Installation and Configuration 7

Installing from the tarball

The tarball was created with

tar cvfz ...

Extract the tarball to a suitable directory.

tar xvfz ...
View, edit if necessary, and then run the supplied script InstallMe.Osz32.sh.

The executables and shared libraries are in the Bin subdirectory. You should now copy these
to the "right" places, /usr/bin and /usr/lib. The files to copy to /usr/bin are vfrosz and
skimpage.scpt. The files to copy to fusr/lib are libmpeparser.0.dylib and vfrsupp.1.0.1.dylib.
This last needs a symbolic link as vfxsupp. 1.dylib.

In -s vfxsupp.1.0.1.dylib vfxsupp.1l.dylib

The shared library libmpeparser.0.dylib contains the code to support persistent INI files and and
vfrsupp.1.0.1.dylib contains a large number of (case-sensitive) constants from Mac OS X header
files.

2.2.5 Getting started

If you do not know Forth, the downloads contain a PDF version of "Programming Forth" by
Stephen Pelc. You can also obtain the same PDF file from the MPE website.

Books on Forth are available from MPE and others. For more details see:

http://www.mpeforth.com/books.htm

Do not be afraid to play. Forth is an interactive system designed to help you explore its own
programming environment. There is plenty of source code in the Examples and Lib directories,
so look at it, edit it, and see what happens!

2.3 Configuration
2.3.1 Set up your editor19<q

VEX Forth for Mac OS X is not supplied with an editor. If you want to set one, use:
editor-is <editor>
editor-is /Applications/TextWrangler.app/Contents/Mac0S/TextWrangler
editor-is /Applications/UltraEdit.app/Contents/Mac0S/UltraEdit
editor-is /bin/vi

editor-is emacs

The word editor-is needs a Unix command line path to the executable. If your editor is
installed as a bundle, you can usually find the executable file as follows using Text Wrangler as
an example. Finder will usually show it in



8 VFX Forth for macOS X

Applications/TextWrangler

which is really a special directory called

Applications/TextWrangler.app

The executable file is usually in a subfolder called

Contents/Mac0S

which gives the full path
/Applications/TextWrangler.app/Contents/Mac0S/TextWrangler

A much easier and more reliable way to construct a path name is to use the tool "Find Any
File" from the App Store. If you enter TextWrangler as the name to search for, look for the
result labelled "Unix Executable File", select it, right click in the bottom status bar and you
can then copy it into your editor or into the VFX console.

SetLocate tells VFX Forth how your editor can be called to go a particular file and line. Use
in the form:

SetLocate <rest of line>

where the text after SetLocate is used to define how parameters are passed to the editor, e.g.
for Emacs, use:

SetLocate +51% "hER" &

-
EMACS
editor-is emacs
SetLocate +%1% "%E%"
--no-wait +%1% "%hfh"
TextWrangler (download command line tools)
editor-is edit
SetLocate +%1% "Wfh" &
UltraEdit
editor-is /Applications/UltraEdit.app/Contents/Mac0S/UltraEdit
SetLocate -- "%f%" --lchlh:1
-

Note that UltraEdit requires you not to add the trailing ’&’. In most cases it is needed, but
you will have to try it to find out.

Thanks to Charles Curley for the additional EMACs information. See
http://www.charlescurley.com. He also notes that you should add the following to
your .emacs file:

(if (or (string-equal system-type "gnu/linux")
(string-equal system-type "cygwin"))
(server-start)
(message "emacsserver started."))




Chapter 2: Introduction, Installation and Configuration 9

It is essential to place the quote marks around the %f% macro if your source paths include
spaces.

For LOCATE and other source code tools to work, VFX Forth must know where its source code
is. The root of the source code directory is saved in the VFXPATH text macro, which is expanded
when needed. To see what the current setting is, use:

ShowMacros

To see how the macro is used, look at the source file list:

.Sources

To set the macro, use something like
c" /Users/stephen/VfxForth" setMacro VfxPath

If you are going to use the Cocoa interface, you may also need to set the BasePath macro:
c" /Users/stephen/VfxForth" setMacro BasePath

For more information on text macros, see the chapter on "Text macro substitution".

2.3.2 Set up the PDF help system

For words for which you do not have the source, but are documented in the manual, you can
use HELP <name>, e.g.
help help

This needs configuration according to which PDF viewer and version you are using.

The default incantations are for zpdf.

s" xpdf %h¥%.pdf %p’ &" HelpCmd$ place
s" %LOAD_PATHY,/../doc/VEx0sx" HelpBase$ place
#17 HelpPageO !

The first line tells the system how to run a PDF viewer so that it displays the page %p%. The
second line defines the PDF file base name, which is used to find the PDF file and its associated
index file. The third line defines the page offset from the start of the PDF file to page number
1, i.e. to step over the table of contents and so on.

The default PDF viewer for Mac OS X is Preview. It can be run from the command line using:

open -a Preview filename.pdf
however, going to a page number is undocumented. The best solution we have found is to install
the Skim package from:

http://skim-app.sourceforge.net/

This can be run using the supplied executable script skimpage.scpt. Copy the script file from



10 VFX Forth for macOS X

the VFX Bin directory to a suitable directory such as /usr/bin in the usual executable path.
The script will be run in the form:

skimpage.scpt "<file>" <pageno>

A suitable setup for VFX Forth is:
s\" skimpage.scpt \q%h’%.pdf\q %p’%" HelpCmd$ place
s" /Users/<name>/VfxForth/PDFs/VfxOsx" HelpBase$ place
#14 HelpPageO !

The configuration information is preserved between sessions in a configuration file, by default
~ /. VfzForth.ini.

2.4 New features in this version

Changes between versions are documented in reverse chronological order in the file
<VFX>/Doc/Release.vfz.tzt, which is available from the Help menu in the Windows version.
The file contains the changes for all versions.

The major changes in v5.1 are interpreter changes:

1. to support the NDCS model (non-default compilation semantics) described in the paper by
Stephen Pelc at EuroForth 2017. See PDF paper .

2. to add recognisers to the interpreter. Recognisers consist of tables of parsing words which
recognise particular features of Forth such as words, integers, floating point number, and
dot parsers for ClassVFX and CIAO. Recognisers are currently being standardised by the
Forth 202x committee, and the details should be regarded as subject to change.

The additional words are described in the paper and the changes to the Forth text interpreter
can be seen in the file Kernel/Common/kernel.fth. The main changes are the introduction of
three words:

e IMMEDIATE? Xt — flag ; return true if the word is immediate
e NDCS? Xt — flag ; return true if the word has non-default compilation semantics
e NDCS, i*x xt — j*x ; like COMPILE, but may parse.

In practice, these changes have almost no impact on normal Forth programming. However, if
you want to explore words that have different actions during compilation and interpretation,
these changes are important.

2.5 Acknowledgements

The following people have gone out of their way in the production of VFX Forth for Mac OS X.

e Joel Reymont sorted out the gory details of the Mach-O executable file format. He made
the system feasible.

e Vic Watson sorted out a new header file parsing mechanism and ported it to OS X and
Linux.

e Fokko van Duin convinced us to buy a Mac.
e Ward MacFarland at Megawolf ported MacForth to VFX.
e Roelf Toxopeus at BMB ported his Cocoa layer to VFX.


http://www.mpeforth.com/arena/SpecialWords3.pdf

Chapter 3: How Forth is documented 11

3 How Forth is documented

The Forth words in this manual are documented using a methodology based on that used for
the ANS standard document. As this is not a standards document but a user manual, we have
taken some liberties to make the text easier to read. We are not always as strict with our own
in-house rules as we should be. If you find an error, have a complaint about the documentation
or suggestions for improvement, please send us an email or contact us in some other way.

When you browse the words in the Forth dictinary using WORDS or when reading source code
you may come across some words which are not documented. These words are undocumented
because they are words which are only used in passing as part of other words (factors), or
because these words may change or may not exist in later versions.

"Documentation is like sex: when it is good, it is very, very good; and when it is bad, it is better
than nothing." - Dick Brandon

3.1 Forth words

Word names in the text are capitalised or shown in a bold fixed-point font, e.g. SWAP or SWAP.
Forth program examples are shown in a Courier font thus:

: NEW-WORD \ ab--ab
OVER DROP

If you see a word of the form <name> it usually means that name is a placeholder for a name you
will provide.

The notation for the glossary entries in this manual have two major parts:
e The definition line.

e The description.

The definition line varies depending on the definition type. For instance - a normal Forth word
will look like:

[: and \ nl n2 -- n3 6.1.0720 }

The left most column describes the word NAME and type (colon) the center column describes
the stack effect of the word and the far right column (if it exists) will specify either the ANS
language reference number or an MPE reference to distinguish between ANS standard and MPE
extension words.

The stack effect may be followed by an informal comment separated from the stack effect by a
’;” character.

[: and \ x1 x2 -- x3 ; bitwise and }




12 VFX Forth for macOS X

This is a "quick reference" comment.

When you read MPE source code, you will see that most words are written in the style:

-
: foo \ nl n2 -- n3

\ *G This is the first glossary description line.

\ ** These are following glossary description lines.

Most MPE manuals are now written using the DocGen literate programming tool available
and documented with all VFX Forths for Windows, Mac OS X and Linux. DocGen extracts
documentation lines (ones that start "\ *X ") from the source code and produces HTML or PDF
manuals.

3.2 Stack notation

before —-- after

where before means the stack parameters before execution and after means stack parameters
after execution. In this notation, the top of the stack is to the right. Words may also be shown
in context when appropriate. Unless otherwise noted, all stack notations describe the action of
the word at execution time. If it applies at compile time, the stack action is preceded by C: or
followed by (compiling)

An action on the return stack whill be shown

R: before -- after

Similarly, actions on the separate float stack are marked by F: and on an exception stack by E:.
The definition of >R would have the stack notation

x-—-; R —— x

Defining words such as VARIABLE usually indicate the stack action of the defining word
(VARIABLE) itself and the stack action of the child word. This is indicated by two stack ac-
tions separated by a ’;’ character, where the second action is that of the child word.

: VARIABLE \ -- ; -- addr

In cases where confusion may occur, you may also see the following notation:
: VARIABLE \ —— ; —-— addr [child]

Unless otherwise stated all references to numbers apply to native signed integers. These will be
32 bits on 32 bit CPUs and 16 bits on embedded Forths for 8 and 16 bit CPUs. The implied
range of values is shown as {from..to}. Braces show the content of an address, particularly for
the contents of variables, e.g., BASE {2..72}.

The native size of an item on the Forth stack is referred to as a CELL. This is a 32 bit item on a
32 bit Forth, and on a byte-addressed CPU (the vast majority, most DSP chips excluded) this



Chapter 3: How Forth is documented 13

is a four-byte item. On many CPUs, these must be stored in memory on a four-byte address
boundary for hardware or performance reasons. On 16 bit systems this is a two-byte item, and
may also be aligned.

The following are the stack parameter abbreviations and types of numbers used in the documen-
tation for 32 bit systems. On 16 bit systems the generic types will have a 16 bit range. These
abbreviations may be suffixed with a digit to differentiate multiple parameters of the same type.

( N
Stack Number Range Field
Abbreviation Type (Decimal) (Bits)
flag boolean O=false, nz=true 32
true boolean -1 (as a result) 32
false boolean 0 32
char character {0..255} 8
b byte {0..255} 8
W word {0..65535%} 16
here word means a 16 bit item, not a Forth word
n number {-2,147,483,648 32
..2,147,483,647
X 32 bits N/A 32
+n +ve int {0..2,147,483,647} 32
u unsigned {0..4,294,967,295} 32
addr address {0..4,294,967,295} 32
a-addr address {0..4,294,967,295} 32
the address is aligned to a CELL boundary
c-addr address {0..4,294,967,295} 32
the address is aligned to a character boundary
32b 32 bits not applicable 32
d signed {-9.2e18..9.2e18} 64
double
+d positive  {0..9.2e18} 64
double
ud unsigned {0..1.8e19} 64
double
sys 0, 1, or more system dependent entries
char character {0..255} 8
"text" text read from the input stream
N J

Any other symbol refers to an arbitrary signed 32-bit integer unless otherwise noted. Because
of the use of two’s complement arithmetic, the signed 32-bit number (n) -1 has the same bit
representation as the unsigned number (u) 4,294,967,295. Both of these numbers are within the
set of unspecified weighted numbers. On many occasions where the context is obvious, informal
names are used to make the documentation easier to understand.

3.3 Input text

Some Forth words read text from the input stream (e.g the keyboard or a file). That text is
read from the input stream is indicated by the identifiers "<name>" or "text". This notation
refers to text from the input stream, not to values on the data stack.



14 VFX Forth for macOS X

Likewise, ccc indicates a sequence of arbitrary characters accepted from the input stream until
the first occurrence of the specified delimiter character. The delimiter is accepted from the input
stream, but it is not one of the characters ccc and is therefore not otherwise processed. This
notation refers to text from the input stream, not to values on the data stack.

Unless noted otherwise, the number of characters accepted may be from 0 to 255.

3.4 Other markers

The following markers may appear after a word’s stack comment. These markers indicate certain
features and peculiarities of the word.

C The word may only be used during compilation of a colon definition.

I The word is immediate. It will be executed even during compilation, unless special
action is taken, e.g. by preceding it word with the word POSTPONE.

Affected by multi-tasking

U A user variable.



Chapter 4: Base Kernel Definitions 15

4 Base Kernel Definitions

This section describes a number of the base kernel definitions available to the system. This
wordset includes the vast bulk of the ANS Forth specified words as well as a number of useful
additions. Note that further information about some words may be found in the draft ANS
specification, accessible from the Help menu.

4.1 Glossary Notation

The notation for the glossary definitions found in this manual have two major parts:
e The definition Line.

e The description Line.

The definition line varies depending on the definition type. For instance - a normal Forth word
will look like:

[: AND \ n1 n2 -- n3 6.1.0720 }

where the left most column describes the word AND and type (colon), the center column describes
the stack effect of the word and the far right column will specify the ANS standard’s reference
ID, an MPE reference ID, Forth200x to indicate that the word is a standards proposal, or this
field may be empty.

4.2 Main Vocabularies
vocabulary FORTH \ —
The standard general purpose vocabulary.

vocabulary ROOT \ -
This vocabulary contains only the words which ensure that you can select other vocabularies.

vocabulary SYSTEM \ —-
A repository for those words which are required internally by the compiler/system but should
never appear in user code. SYSTEM words may be changed without notice.

vocabulary ENVIRONMENT \ --
Storage for ANS ENVIRONMENT stuff.

vocabulary SourceFiles \ --
Storage for SourceFile descriptions after INCLUDE.

vocabulary substitutions \ -~
Repository for text macros.

vocabulary Externals \ --
Repository for external library calls.

4.3 ASCII Character Constants

Various constants for ASCII characters to aid readability and to provide some insulation between
VFX Forth implementations on different operating systems.

$07 constant ABELL \ -- char



16 VFX Forth for macOS X

Bell/sound character

$08 constant BSIN \ —- char
Backspace on input character

$7F constant DELIN \ -- char
Delete character

$08 constant BSOUT \ -- char
Backspace on output character

$09 constant ATAB \ -- char
Tab character

$0D constant ACR \ —-- char
Carriage Return character

$0A constant ALF \ -- char
Line Feed character

$0C constant FFEED \ —-- char
Form Feed character

$20 constant ABL \ -- char
Space character

$2E constant ADOT \ -- char
Dot character

$00 constant AEQL \ -- char
Generic EOL marker.

#13 constant ANL \ -- char

Host specific constant for the character returned when you press the Enter key on your keyboard.

create eol$ \ -- addr
A counted and zero terminated string holding the operating system specific end of line sequence
as a counted and zero terminated string.

e For Windows, DOS and bare metal systems without an operating system, this is CR/LF,
e For Unix and derivatives such as Linux and Mac OS X, this is LF,
e For Mac OS up to 9, this is CR.

create crlf$ \ -- addr
A counted and zero terminated string holding a CR/LF pair.

4.4 System CONSTANTSs

Various constants for the internal system.

0 constant FALSE \ -0 6.2.1485
The well formed flag version for a logical negative.

-1 constant TRUE \ —- -1 6.2.2298
The well formed flag version for a logical positive.

ABL constant BL \ - u 6.1.0770
An internal constant for blank space.

$40 constant C/L \ - u



Chapter 4: Base Kernel Definitions

Max chars/line for internal displays under C/LINE.

64 constant #VOCS \ - u
Maximum number of Vocabularies in search order.

#VOCS cells constant VSIZE \ ——u
Size of CONTEXT area for search order.

$200 constant FILETIBSZ \ —— len
Size of TIB buffer when SOURCE-ID is a file pointer.

#260 constant MAX_PATH \ -- len

17

Size of longest file/path name for Windows and DOS. 1024 is used for Linux and OS X.

$00 constant NULL
NULL pointer.

4.5 Defined USER Variables

USER variables are the Forth equivalent of Thread Local Storage. They are for task specific

information and act as normal variables within their thread scope.

USER variables can be defined by the words USER and +USER. They are defined using an offset
from a base address assigned at the start of each task.* Offsets in the USER area below $1000
are reserved for kernel use. The variable NEXTUSER is used by +USER and is initialised to $1000
in the primary build of VFX Forth, with 4k bytes of memory available for application use.

The following USER variables have been declared within the system.

$00 cells user SO \ -- addr
Initial Base of data stack.

$01 cells user RO \ -- addr
Initial Base of return stack.

$02 cells user #TIB \ -- addr ;
Number of characters currently in TIB.

$04 cells user >IN \ -- addr ;
Pointer to next char in input stream.

$05 cells user OUT \ -- addr
Number of characters output since last CR.

$06 cells user BASE \ -- addr
Numeric Conversion Base.

$07 cells user HLD \ -- addr

Used during number formatting to point to next character to save.

$08 cells user #L \ -- addr
Number of cells converted by NUMBER? and friends.

$09 cells user #D \ -- addr

Number of digits converted by NUMBER? and friends.

$0A cells user DPL \ —-- addr

Position of double number indicator in number text.

6.2.0060

6.1.0560

6.1.0750



18 VFX Forth for macOS X

$0B cells user ’TIB \ -- addr
Address of TIB.

$0E cells user OP-HANDLE \ -- addr
Generic 10 output handler structure.

$OF cells user IP-HANDLE \ -- addr
Generic 10 input handler structure.

$10 cells user CURROBJ \ -- addr
Current Object Pointer for OOP extensions.

$11 cells user ’AbortText \ —- addr
Pointer to counted string for last ABORT".

$12 cells user $S0 \ -- addr
Initial Base of string stack.

$13 cells user $SP \ -- addr
Current string stack pointer.

$14 cells user fsO
Initial Base of float stack.

$15 cells user fsp
Current float stack pointer.

$16 cells user line# \ SFP001

Current source input line number. Note that this variable does NOT describe the number of
lines output, but is reserved to hold the number of lines read from the current source input
device. For console devices, LINE# should be set to -1 to indicate that the source cannot be
recovered for words such as LOCATE and XREF.

$17 cells user op-line# \ -- addr

Current output line number, incremented by CR and reset by QUIT.

$18 cells USER ThreadExit? \ -- addr

Used in the multitasker to indicate that the task/thread should terminate.
$19 cells USER ThreadTCB \ -- addr

Holds the address of a task/thread’s Task Control Block.

$1A cells USER ThreadSync \ -- addr

User in a task/thread for synchronisation.

user PAD \ —- addr ; 6.2.2000
Transient data area. The size of PAD is given by the constant /PAD in the ENVIRONMENT vocab-
ulary.

4.6 System Variables and Buffers

4.6.1 Variables

variable c/Line \ -- addr
Maximum number of chars/line in interpret console.

variable c/Cols \ -- addr
Character height in DEFAULT-CONSOLE device.

variable dp-char \ -- addr



Chapter 4: Base Kernel Definitions 19

Holds up to four ASCII values of double number separators. Unused bytes must be set to zero.

variable fp-char \ -- addr
Holds up to four ASCII values of floating point number separators.

variable ign-char \ -- addr
Holds ASCII values of characters that are ignored during number scanning. Set to ’:” by default.

variable diril-char \ -- addr

CELL, holds the primary directory separator character used when scanning file names. Set to
'\’ by default for Windows/DOS and to ’/’ for Unix derivatives.

variable dir2-char \ -- addr

CELL, holds the secondary directory separator character used when scanning file names. Set to
’/? by default for Windows/DOS and to "\’ for Unix derivatives.

variable FENCE \ -- addr
End of protected dictionary.

variable VOC-LINK \ —— addr
Links vocabularies.

variable wid-link \ -- addr
Links word-lists.

variable res-link \ -- addr
Links resources.

variable 1lib-link \ -- addr
Links dynamic/shared libraries.

variable ovl-link \ —-- addr
Links active overlays.

variable ovl-id \ -- addr
Holds unique overlay ID

variable <id> \ -- addr
A variable that holds the next available ID number. See NEXTID: in the Resources Section.

variable import-func-link
Links imported API functions in shared libraries.

variable SCR \ -- addr
For mass storage by old-timers.

variable BLK \ -- addr
User input device: 0 for keyboard/file, non-zero is block number.

variable STATE \ -- addr
Interpreting (0) or compiling (non-zero).
variable CSP

Stack pointer saved for error checking.

variable CURRENT \ -- addr
Holds the wordlist/vocabulary in which new definitions are created.

vsize buffer: CONTEXT \ -- addr
Search order array.



20 VFX Forth for macOS X

vsize buffer: MinContext \ -- addr

A CONTEXT array for minimum search order.

variable LAST \ -- addr
Points to last definition (after Link Field).

variable #THREADS \ -- addr

Default number of threads in a new wordlist.

variable CHECKING \ -- addr

True if checking structure definitions is enabled. Note that this variable may be removed in a
future release.

2variable SOURCE-LINE-POS \ -- addr
Contains double file position before refill.

variable Saved>IN \ -- addr
Holds the value of >IN before each token parse in interpret.

variable <HeaderLess> \ -- addr
A flag. Declares the presence of a header in the last definition.

variable ’SourceFile \ -- addr

Pointer to source include struct for current file, or 0.

variable tabwordstop \ -- addr
Cursor X Position for tab stops.

variable Optimising \ -- addr
Variable is set TRUE when optimisation should be used.

variable NextUser

Next Valid offset for a new user variable.

variable OPERATORTYPE \ -- addr
Set by prefix operators such as TO and ADDR.

variable Top-Mask \ -- addr ; controls loop alignment
Mask that controls the alignment of loop heads during code generation.

variable TextChain \ -- addr

Anchor for the linked list of error message structures.

variable debugl \ -- addr
When set, INCLUDE displays the lines of the file.

4.6.2 Values

0 value FpSystem \ --n

The value FPSYSTEM defines which floating point pack is installed and active for compilation.
See the Floating Point chapter for further details.

0 value original-xt \ -- xt

Set during a redefinition to preserve the xt of the word being redefined.

4.7 Kernel DEFERred words

These words are DEFERred to allow later modification.



Chapter 4: Base Kernel Definitions 21

4.7.1 Input and Output

Although the standard Forth I/O functions are deferred, users are strongly encouraged to use
the generic I/O mechanism rather than to change the global effect of the I/O words. The I/0O
words are DEFERred for historical reasons and to ease porting.

defer EMIT \ char -- ; display char
Display char on the current I/O device.

defer EMIT? \ -- ior
Return a non-zero ior if the current output device is ready to receive a character. The ior may
be device dependent.

defer KEY \ -- char ; receive char
Wait until the current input device receives a character and return it.

defer KEY? \ -- flag ; check receive char
Return true if a character is available at the current input device.

defer EKEY \ -- char ; receive char

Wait until the current input device receives a character and return it. Note that the behaviour
of EKEY and EKEY? may be implementation dependent. See the ANS Forth standard for more
details.

defer EKEY? \ -- flag ; check receive char

Return true if a character is available at the current input device. Note that the behaviour
of EKEY and EKEY? may be implementation dependent. See the ANS Forth standard for more
details.

defer CR \ -- ; display new line
Perform the equivalent of a CR/LF pair on the current output device. This action may be
device dependent.

defer TYPE \ c-addr len -- ; display string
Display /write the string on the current output device.

defer ACCEPT \ c-addr +nl -- +n2

Read a string of maximum size nl characters to the buffer at c-addr, returning n2 the number
of characters actually read. Input may be terminated by a CR. The action may be input device
specific.

4.7.2 Kernel and Convenience

These words are deferred to improve kernel portability, and to provide points at which the
default behaviour of the Forth kernel can be changed.

defer EntryPoint \ hmodule O commandline show -- res

This word is the entry point from the startup code to the Forth system. The arguments follow
the WinMain conventions, except that the command line may include the program name. See
the chapter about creating turnkey applications for more and important details.

defer ABORT \ i*x -- ; R: j*x -- ; error handler
Empty the data stack and perform the action of QUIT, which includes emptying the return stack,
without displaying a message.

defer isNumber? \ caddr len --d 2 | n1 | O
Attempt to convert the string caddr/len to an integer. The return result is either zero for failed,
a single cell number and one for a single-cell conversion, or a double cell number and two for



22 VFX Forth for macOS X

a double number conversion. The ASCII number string supplied can also contain an explicit
radix (number base) override. A leading $ enforces hexadecimal, a leading # enforces decimal
and a leading % enforces binary. Hexadecimal numbers can also be specified by a leading '0x’
or trailing 'h’. After a floating point pack has been compiled from the Lib directory, the action
of NUMBER? is changed to accept floating point numbers as well as integers.

: NUMBER? N\addr - d 2 | n1]|O0

As isNumber? but takes a counted string.

defer ShowSourceOnErrorHook \ —-
Performed at the end of SHOWSOURCEONERROR.

defer EditOnError \ -

Performed in DOERRORMESSAGE. The default is NOOP. This word is assigned a new action by the
Studio environment.

defer pause \ -

The multitasker is installed here. Until a multitasker is installed the action is NOOP or YIELD.
Do not call PAUSE inside callbacks.

defer ms \'n--

Wait for n milliseconds.

defer ticks \ ——n

Return the system timer value in milliseconds. Treat the returned value as a 32 bit unsigned
number that wraps on overflow.

defer interpret \ i*x -- j*x ; process current input line

Process the current input line as if text entered at the keyboard.

defer QUIT \ —— ; R: ixx —- 6.1.2050

Empty the return stack, store 0 in SOURCE-ID, make the console the current input device,
and enter interpretation state. QUIT repeatedly ACCEPTs a line of input and INTERPRETS it,
with a prompt if in interpretation state. See the separate chapters on error handling and
internationalisation for details of error message display.

defer .Prompt \ --

The Forth console prompt.

4.7.3 GUI interface hooks

These words provide hooks into systems, both GUI and kernel, which use message passing or
event handlers. These words are mostly used by Generic I/O devices while waiting.

defer Idle \ -

Windows only: Despatches the next message, waiting if none are present. Idle only returns
when a message has been received.

defer WaitIdle \ -

Linux, OS X and DOS: Despatches the next message/event, waiting if none are present.
WaitIdle only returns when a message has been received.

defer BusyIdle \ --

Despatches one message/event if available. The word returns immediately if no messages are
available. The default action is (BusyIdle). See also EmptyIdle.

defer EmptyIdle \ --



Chapter 4: Base Kernel Definitions 23

Empty the message/event loop, returning when no messages are available. EmptyIdle can
be used in applications to ensure that the GUI system has an opportunity to process mes-
sages/events.

4.8 Logic functions

Perform various logic and bit based operations on stack items.

: and \ n1 n2 -- n3 6.1.0720
Perform a logical AND between the top two stack items and retain the result in top of stack.
: or \ n1 n2 -- n3 6.1.1980

Perform a logical OR between the top two stack items and retain the result in top of stack.

: xor \ n1 n2 -- n3 6.1.2490
Perform a logical XOR, between the top two stack items and retain the result in top of stack.

: invert \ n1 -—- “ni 6.1.1720
Perform a bitwise inversion.

: not \ nl1 -- ni

Perform a bitwise NOT on the top stack item and retain result. OBSOLETE but retained
because of widespread use. In VFX, not is the same as invert, but in other Forth systems not
may be the same as 0=.

: and! \ x addr --
Logical AND x into the cell at addr.

: or! \ x addr --
Logical OR x into the cell at addr.

: xor! \ x addr --
Logical XOR x into the cell at addr.
: bic! \ x addr --

Invert x and logical AND it into the cell at addr. The effect is to clear the bits at addr that are
set in x.

: false= \ n1 -- flag
Perform a logical NOT on the top stack item.

4.9 Stack manipulations

The following words manipulate items on the data and return stacks

: NOOP \ -
A NOOP, null instruction.
: NIP \ x1 x2 -- x2 6.2.1930

Dispose of the second item on the data stack.

: TUCK \ x1 x2 -- x2 x1 x2 6.2.2300
Insert a copy of the top data stack item underneath the current second item.

: PICK \xu .. xOu -- xu .. x0 xu 6.2.2030
Get a copy of the Nth data stack item and place on top of stack. 0 PICK is equivalent to DUP.

: RPICK \'n--a
Get a copy of the Nth return stack item and place on top of stack.



24 VFX Forth for macOS X

: ROLL \ nn..n0 n -- nn-1..n0 nn 6.2.2150
Rotate the order of the top N stack items by one place such that the current top of stack becomes
the second item and the Nth item becomes TOS. See also ROT.

: nDrop \ XN..X1 N -- xn..x2
Drop N items from the data stack.

: ROT \ n1 n2 n3 -- n2 n3 ni 6.1.2160
ROTate the positions of the top three stack items such that the current top of stack becomes
the second item. See also ROLL.

: -ROT \ n1l n2 n3 -- n3 nl n2
The inverse of ROT.

: >R \x-—-; R: —— x 6.1.0580
Push the current top item of the data stack onto the top of the return stack.

: R> \ - x; R: x —— 6.1.2060
Pop the top item off the return stack and place on the data stack.

: R@ \ - x 6.1.2070
Copy the top item of the return stack and place on the data stack.

: 2>R \ x1 x2 —— ; R: —— x1 x2 6.2.0340
Transfer the two top data stack items to the return stack.

: 2R> \ —— x1 x2 ; R: x1 x2 —- 6.2.0410
Transfer the top two return stack items to the data stack.

: 2RO \ —— x1 x2 ; R: x1 x2 —- x1 x2 6.2.0415
Copy the top two return stack items to the data stack.

: N>R \xn .. x1 N-—— ; R: ——x1 .. xnn
Transfer N items and count to the return stack.

: NR> \ —-xn .. x1 N ; R: x1 .. xn N —-
Pull N items and count off the return stack.

: DROP \ x —- 6.1.1260
Lose the top data stack item and promote NOS to TOS.

: 2DROP \ x1 x2 -- 6.1.1290
Discard the top two data stack items.

: 3drop \ x1 x2 x3 --
Discard the top three data stack items.

: 4drop \ x1 x2 x3 x4 —-
Discard the top four data stack items.

: SWAP \ x1 x2 -- x2 x1 6.1.2260
Exchange the top two data stack items.

: 2SWAP \ x1 x2 x3 x4 —— x3 x4 x1 x2 6.1.0430
Exchange the top two cell-pairs on the data stack.

: DUP \ X - x X 6.1.1290
Duphcate the top stack item.

: 7DUP \'x - 0| xx 6.1.0630
DUPlicate the top stack item only if it is non-zero.



Chapter 4: Base Kernel Definitions 25

: 2rot \123456-345612 8.6.2.0420
Perform ROT operation on 3 double numbers.

: 2DUP \ x1 x2 -- x1 x2 x1 x2 6.1.0380
DUPlicate the top cell-pair on the data stack.

: 3dup \ x1 x2 x3 -- x1 x2 x3 x1 x2 x3

DUPlicate the top three items on the data stack.

: 4dup \ x1 x2 x3 x4 —- x1 x2 x3 x4 x1 x2 x3 x4

DUPlicate the top 4 data stack items.

: OVER \ x1 x2 -- x1 x2 x1 6.1.1990
Copy NOS to a new top-of-stack item.

: 20VER \ x1 x2 x3 x4 —— x1 x2 x3 x4 x1 x2 6.1.0400
Similar to OVER but works with cell-pairs rather than cell items.

: UPQ \ -- up

Get the current address value of the user-area pointer.

: UP! \ up --

Set the current address value of the user-area pointer.

: SP@ \ - n

Get the current address value of the data-stack pointer.

: SP! \'n -

Set the current address value of the data-stack pointer.

: RP@ \ - m

Get the current address value of the return-stack pointer.
: RP! \'m —-

Set the current address value of the return-stack pointer.

: DEPTH \ -- +n 6.1.1200
Return the number of items on the data stack, excluding the count.

: RDEPTH \ -- +n
Return the number of items on the return stack.

: min \ nl n2 -- ni|n2 6.1.1880
Given two data stack items preserve only the smallest.

: MAX \ nl n2 -- n1|n2 6.1.1870
Given two data stack items preserve only the largest.

: umin \ nl n2 -- nl|n2
Given two data stack items preserve only the smallest.

: umax \ n1 n2 -- n1|n2
Given two data stack items preserve only the largest.

: LOWORD \ n -- nlé6
Mask off the low 16 bits of a cell.
: HIWORD \ n -—- nl6

Mask off the high 16 bits of a cell and shift right by 16 bits.
: MAKELONG \ lo hi -- 32bit



26

Given two 16 bit numbers produce a single 32 bit one.

: nslWiden \ ... n--
Sign extend from 32 bits to cell width on Nth stack item.

: nswWiden \ ... n -
Sign extend from 16 bits to cell width on Nth stack item.

: nsbWiden \ ... n -

Signed extend from 8 bits to cell width on Nth stack item.

: nulWiden \ ... n—
Zero extend from 32 bits to cell width on Nth stack item.

: nuwWiden \ ... n-—-
Zero extend from 16 bits to cell width on Nth stack item.

: nubWiden \ ... n-—-
Zero extend from 8 bits to cell width on Nth stack item.

4.10 Comparisons

Various words to compare stack items and return flags.

: 0= \n-—- t/f

Compare the top stack item with 0 and return TRUE if equals.

. 0<> \'n - t/f

Compare the top stack item with 0 and return TRUE if not-equal.

: O< \'n-- t/f
Return TRUE if the top of stack is less-than-zero.

: 0> \'n - t/f
Return TRUE if the top of stack is greater-than-zero.

D= \ nl n2 -- t/f
Return TRUE if the two topmost stack items are equal.

VFX Forth for macOS X

6.1.0270

6.2.0260

6.1.0250

6.2.0280

6.1.0530

6.2.0500

6.1.0480

6.1.0540

6.2.2350

D <> \ nl n2 -- t/f

Return TRUE if the two topmost stack items are different.

: < \ nl n2 —-- t/f

Return TRUE if the second stack item is less than the topmost.

D> \ nl n2 —— t/f

Return TRUE if the second stack item is greater than the topmost.

: <= \ nl n2 -- t/f

Return TRUE if the second stack item is less than or equal to the topmost.
T >= \ nl n2 - t/f

Return TRUE if the second stack item is greater than or equal to the topmost.
: U> \ nl n2 —— t/f

An UNSIGNED version of >.

: U< \ n1 n2 -- t/f

An UNSIGNED version of <.
: U>= \ nl n2 -- t/f

6.1.2340



Chapter 4: Base Kernel Definitions 27

An UNSIGNED version of >=.

: U= \ nl n2 —— t/f
An UNSIGNED version of <=.
: WITHIN? \ n1 n2 n3 -- flag

Return TRUE if N1 is within the range N2..N3. This word uses signed arithmetic.

: WITHIN \ nl|ul n2[u2 n3|u3 -- flag 6.2.2440
Return TRUE if n2|u2 <= nl|ul < n3 The ANS version of WITHIN?. Note the conditions This
word uses unsigned arithmetic, so that signed compares are treated as existing on a number
circle.

: DO< \ d -- flag 8.6.1.1075
Return true if d is less than zero (is negative).

: DO= \ d -- flag 8.6.1.1080
Return true if d is zero.

: DO<> \ d —- flag

Return true if d is non-zero.

: d= \ d1l d2 -- flag 8.6.1.1080
Return true if the two double numbers are equal.

:d< \ d1l d2 -- flag 8.6.1.1110
Return TRUE if the double number d1 is less than the double number d2.

:ad> \ d1 d2 -- flag

Return TRUE if the double number d1 is greater than the double number d2.

: dmax \ dl d2 -- d1ld2 8.6.1.1210
Return the maximum double number from the two supplied.

: dmin \ dl 42 -- d1ld2 8.6.1.1220
Return the minimum double number from the two supplied.

: DU< \ udl ud2 -- flag

True if udl<ud2.

: DU> \ udl ud2 -- flag

True if ud1>ud2.
4.11 Arithmetic Operators.

4.11.1 Shifts

: LSHIFT \ x1 u - x2 6.1.1805
Logically shift X1 by U bits left. The result of shifting by more than 31 bits is undefined.

: RSHIFT \ x1 u -- x2 6.1.2162
Logically shift X1 by U bits right. The result of shifting by more than 31 bits is undefined.

: arshift \ x1 u -- x2
Shift x1 right by u bits, filling with the previous top bit. An arithmetic right shift. The result
of shifting by more than 31 bits is undefined.

: ROL \ x1 u -- x2
Loglcally rotate X1 by U bits left. The result of shifting by more than 31 bits is undefined.

: ROR \ x1 u - x2



28 VFX Forth for macOS X

Logically rotate X1 by U bits right. The result of shifting by more than 31 bits is undefined.
4.11.2 Multiplication

Dok \ nl n2 -- n3 6.1.0090
Standard signed multiply. N3 = nl * n2.

: Mx \ nl n2 - d 6.1.1810
Signed multiply yielding double result.

: UM \ ul u2 -- ud 6.1.2360
Perform unsigned-multiply between two numbers and return double result.

: D2x% \ dl -- di1*2 8.6.1.1090

Multiply the given double number by two.

4.11.3 Division

The ANS specification contains a discussion of symmetric and floored division.

Division produces a quotient q and a remainder r by dividing operand a by operand b. Division
operations return g, r, or both. The identity

bxq + r = a
shall hold for all a and b.

When unsigned integers are divided and the remainder is not zero, q is the largest integer less
than the true quotient.

When signed integers are divided, the remainder is not zero, and a and b have the same sign, q
is the largest integer less than the true quotient. If only one operand is negative, whether q is
rounded toward negative infinity (floored division) or rounded towards zero (symmetric division)
is implementation defined.

Floored division is integer division in which the remainder carries the sign of the divisor or is zero,
and the quotient is rounded to its arithmetic floor. Symmetric division is integer division in which
the remainder carries the sign of the dividend or is zero and the quotient is the mathematical
quotient rounded towards zero or truncated. Examples of each are shown in the tables below.

-
Floored Division Example

Dividend Divisor Remainder Quotient
10 7 3 1
-10 7 4 -2
10 -7 -4 -2
-10 -7 -3 1




Chapter 4: Base Kernel Definitions 29

( N
Symmetric Division Example

Dividend Divisor Remainder Quotient

10 7 3 1

-10 7 -3 -1

10 =7 3 -1

-10 =7 -3 1

NS J

Unless otherwise noted or specified, VFX Forth uses symmetric division.

: UM/MOD \ ud u -- urem uquot 6.1.2370
Perform unsigned division of double number UD by single number U and return remainder and
quotient.

: SM/REM \ d1 nl -- n2 n3 6.1.2214

Divide d1 by nl, giving the symmetric quotient n3 and the remainder n2. Input and output
stack arguments are signed. An ambiguous condition exists if nl is zero or if the quotient lies
outside the range of a single-cell signed integer.

: FM/MOD \ d1 n1 -- n2 n3 6.1.1561

Divide d1 by nl, giving the floored quotient n3 and the remainder n2. Input and output stack
arguments are signed. An ambiguous condition exists if nl is zero or if the quotient lies outside
the range of a single-cell signed integer.

: MU/MOD \ udl u2 -- urem ud#quot
Perform an unsigned divide of a double by a single, returning a single remainder and a double
quotient.

: /MOD \ nl n2 -- rem quot 6.1.0240
Signed division of N1 by N2 (single-precision) yielding remainder and quotient.

:/ \ nl n2 -- n3 6.1.0230
Standard signed division operator. n3 = nl/n2.

:u/ \ ul u2 -- u3
Unsigned division operator. U3 = ul/u2.

: MOD \ nl n2 -- n3 6.1.1890
Return remainder of division of N1 by N2. n3 = nl mod n2.

: M/ \ d nl -- n2
Signed divide of a double by a single integer.

: D2/ \ di -- d1/2 8.6.1.1100
Divide the given double number by two. Signed and implemented as an arithmetic right shift,
and so produces floored dividion.

4.11.4 Combined multiply and divide

These words provide combined multiply and divide operations with extended precision interme-
diate results. The point is to prevent overflow during integer scaling operations.

: */MOD \ nl n2 n3 -- rem quot 6.1.0110
Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
remainder and quotient. The point of this operation is to avoid loss of precision.

: ox/ \ nl n2 n3 -- n4 6.1.0100
Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
quotient. The point of this operation is to avoid loss of precision.



30 VFX Forth for macOS X

:omk/ \ dl n2 +n3 -- dquot

The result dquot=(d1*n2)/n3. The intermediate value d1*n2 is triple-precision. In an ANS
Forth standard program n3 can only be a positive signed number and a negative value for n3
generates an ambiguous condition, which may cause an error on other implementations.

4.11.5 Traditional short forms

1+ \ nllul -- n2|u2 6.1.0290
Add one to top-of stack.

D2+ \ nilul -- n2|u2
Add two to top-of stack.
: 4+ \ nllul -- n2|u2
Add four to top-of stack.
1- \ nllul -- n2|u2 6.1.0300
Subtract one from top-of stack.
: 2- \ nilul -- n2|u2
Subtract two from top-of stack.
: 4- \ nllul -- n2|u2
Subtract four from top-of stack.
T 2% \ x1 —- x2 6.1.0320
Slgned multiply top of stack by 2.
1 4% \ x1 -- x2
Slgned multiply top of stack by 4.
: 8% \ x1 -- x2
Slgned multiply top of stack by 8. In 64 bit systems only.
: 2/ \ x1 —- x2 6.1.0330

Right shift x1 one bit, sign preserved. From build 1276 onwards, this is an ANS compliant
signed right shift. For an unsigned result, use U2/ or 1 RSHIFT.

: U2/ \ x1 -- x2
Un81gned divide top of stack by 2.
1 4/ \ x1 -- x2

Right shift x1 two bits, sign preserved. From build 1276 onwards, this is an ANS compliant
signed right shift. For an unsigned result, use U4/ below or 2 RSHIFT.

: ud/ \ x1 —— x2
Un51gned divide top of stack by 4

: 8/ \ x1 -- x2
Right shift x1 three bits, sign preserved For an unsigned result, use U8/ below or 3 RSHIFT.

: u8/ \ x1 —— x2
Un51gned divide top of stack by 8.

4.11.6 Addition and subtraction

D+ \ nllul n2|u2 -- n3|u3 6.1.0120
Add two single precision integer numbers.
P - \ nllul n2|u2 -- n3|u3 6.1.0160

Subtract two single precision integer numbers.



Chapter 4: Base Kernel Definitions

: D+ \ dl 42 -- d3 8.6.1.1040
Add two double precision integers together.
: D- \ dl d2 -- d3 8.6.1.1050

Subtract two double precision integers. D3=D1-D2.

: M+ \ din -- 42 8.6.1.1830
Add double d1 to sign extended single n to form double d2.

4.11.7 Negation and absolution
: NEGATE \ nl -- n2 6.1.1910
Negate a single precision integer number.

: 7NEGATE \ n1 flag -- nl1|n2
If flag is negative, then negate nl.

: ABS \'n--u 6.1.0690
If n is negative, return its positive equivalent (absolute value).

: DNEGATE \d - -d 8.6.1.1230
Negate a double number.

: 7dnegate \'dn -- @’
If n is negative, negate the double number d.

: DABS \d -- |dl 8.6.1.1160
Double precision version of ABS.

4.11.8 Converting between single and double numbers
: S>D \'n--4d 6.1.2170
Convert a single number to a double one.

: D>S \d --n 8.6.1.1140
Convert a Double number to a single.

4.11.9 Portability aids

31

These words make porting code between 16, 32, and 64 bit systems much easier. They avoid
the use of heritage shortforms such as 2+ and 4+ which are dependent on the size of items on

the data stack and in memory.

: CELL+ \ a-addrl -- a-addr2 6.1.0880
Add size of a cell to the top-of stack.

: CELLS \ nl -- n2 6.1.0890
Return size in address units of N1 cells in memory.

: CELL/ \ nl -- n2

Divide top stack item by the size of a cell.

: CELLS+ \ n1 n2 -- n3

Modify address 'n1’ by the size of 'n2’ cells.

: CELL- \ a-addrl -- a-addr2

Decrement an address by the size of a cell.

: CELL \ -—— n

Return the size in address units of one cell.



32 VFX Forth for macOS X

: CHAR+ \ c-addrl -- c-addr2 6.1.0897
Increment an address by the size of a character.

: CHARS \ n1 -— n2 6.1.0898
Return size in address units of N1 characters.

: cellbits \ - u

Count the number of bits in a cell - relies on 2s complement arithmetic. Useful when porting
code between 16, 32 and 64 systems. Note that this is not a constant; the calculation is made
at each use.

4.12 Dictionary Memory Manipulation

The following definitions provide the primitives for manipulation of dictionary memory.

variable DP \ -- addr
Holds the address of the next free location in the dictionary.

: HERE \ -- addr 6.1.1650
Return the current dictionary pointer which is the first address-unit of free space within the
system.

: ALLOT \'n -- 6.1.0710
Allocate N address-units of data space from the current value of HERE and move the pointer.

: ALLOT&ERASE \'n -~
Allot n bytes of dictionary space and fill with Zero.

HE \ x —- 6.1.0150
Place the CELL value X into the dictionary at HERE and increment the pointer.

: L, \ x —- 6.1.0150
Place the 32 bit value X into the dictionary at HERE and increment the pointer.

W, \ x —-

Place the WORD value X into the dictionary at HERE and increment the pointer.

: C, \ x —- 6.1.0860

Place the CHAR value X into the dictionary at HERE and increment the pointer.

: ALIGNED \ addr -- a-addr 6.1.0706
Given an address pointer this word will return the next ALIGNED address subject to system wide
alignment restrictions.

: HALF-ALIGNED \ addr -- a-addr
Align an address pointer to within half the size of a CELL.

: ALIGN \ —- 6.1.0705
Align dictionary pointer using the same rules as ALIGNED. Unused dictionary space is ERASEd.

: HALF-ALIGN \ --
Align the dicionary pointer to a half-cell boundary. Unused dictionary space is ERASEd. )

4.13 Branch and flow control

The following definitions allow for a variety of loops and conditional execution contructs.

N \ - n 6.1.1680
Return the current index of the inner-most DO ... LOOP.



Chapter 4: Base Kernel Definitions 33

:J \ --n 6.1.1730
Return the current index of the second DO ... LOOP.

: unloop \ -- ; R: loop-sys -- 6.1.2380
Remove the DO ... LOOP control parameters from the return stack.

: BOUNDS \ addr len -- addr+len addr

Modify the address and length parameters to provide an end-address and start-address pair
suitable for a DO ... LOOP construct.

: EXIT \ -- ; R: next-sys -- 6.1.1380
Compile code into the current definition to cause a definition to terminate. This is the Forth
equivalent to inserting an RTS/RET instruction in the middle of an assembler subroutine.

: EXECUTE \ xt -—- 6.1.1370
Execute the code described by the XT. This is a Forth equivalent of an assembler JSR/CALL
instruction.

: perform \ addr --

EXECUTE contents of addr if non-zero.

: DO \ Run: nllul n2|u2 -- ; R: -- loop-sys 6.1.1240
Begin a DO ... LOOP construct. Takes the end-value and start-value from the stack.

: 7DO \ Run: nllul n2|u2 -- ; R: -- | loop-sys 6.2.0620

Compile a DO which will only begin loop execution if the loop parameters do not specify an
interation count of 0.

: LOOP \ Run: -- ; R: loop-sysl -- | loop-sys2 6.1.1800

The closing statement of a DO ... LOOP construct. Increments the index and terminates when
the index crosses the limit.

: +L00P \ Run: n -- ; R: loop-sysl -- | loop-sys2 6.1.0140

As LOOP except that you specify the increment on the stack. The action of n +L0OOP is peculiar
when n is negative:

-1 070 i . -1 +LOOP

prints 0 -1, whereas:
0070 i . -1 +LOOP

prints nothing. This a result of the mathematical trick used to detect the terminating condition.
To prevent confusion avoid using n +L0O0OP with negative n.

: LEAVE \ -- ; R: loop-sys -- 6.1.1760
Compile code to exit a DO ... LOOP. Similar to ’C’ language break.

: PLEAVE \ flag -- ; R: loop-sys --

A version of LEAVE which only takes effect if the given flag is non-zero.

: BEGIN \ C: -— dest ; Run: —- 6.1.0760
Mark the start of a BEGIN. . [WHILE]..UNTIL/AGAIN/REPEAT construct.

: AGAIN \ C: dest -— ; Run: —- 6.2.0700
The end of a BEGIN. .AGAIN construct which specifies an infinite loop.

: UNTIL \ C: dest -- ; Run: flag -- 6.1.2390
Compile code into definition which will jump back to the matching BEGIN if the supplied condi-
tion flag is zero (false).



34 VFX Forth for macOS X

: WHILE \ C: dest -- orig dest ; Run: flag -- 6.1.2430
Separate the condition test from the loop code in a BEGIN ... WHILE ... REPEAT block.
: REPEAT \ C: orig dest -- ; Run: -- 6.1.2140
Loop back to the conditional test code in a BEGIN ... WHILE ... REPEAT construct.

: IF \ C: -- orig ; Run: x -- 6.1.1700
Mark the start of an IF ... [ELSE] ... THEN conditional block. ELSE is optional.

: THEN \ C: orig -- ; Run: -- 6.1.2270

Mark the end of an IF..THEN or IF..ELSE. .THEN conditional block.

: ENDIF \ C: orig -- ; Run: --
An alias for THEN. Note that ANS Forth describes THEN not ENDIF.

: AHEAD \ C: -- orig ; Run: -- 15.6.2.0702
Start an unconditional forward branch which will be resolved later.

: ELSE \ C: origl -- orig2 ; Run: -- 6.1.1310
Begin the failure condition code for an IF.

: CASE \ C: -- case-sys ; Run: -- 6.2.0873
Begin a CASE. .ENDCASE construct. Similar to the C switch.

: OF \ C: -- of-sys ; Run: x1 x2 -- | x1 6.2.1950
Begin conditional block for CASE, executed when the switch value z1 is equal to z2.

: 70F \ C: -- of-sys ; Run: flag --
Begin conditional block for CASE, executed when the flag is true.

: ENDOF \ C: case-sysl of-sys -- case-sys2 ; Run: -- 6.2.1343
Mark the end of an OF conditional block within a CASE construct. Compile a jump past the
ENDCASE marker at the end of the construct.

: ENDCASE \ C: case-sys -- ; Run: x -- 6.2.1342
Terminate a CASE ... ENDCASE construct. DROPs the switch value from the stack.

: END-CASE \ C: case-sys -- ; Run: --
A Version of ENDCASE which does not drop the switch value. Used when the switch value itself
is consumed by a default condition or another result is to be returned.

: BEGINCASE \ C: -- case-sys ; Run: -- 6.2.0873

Start a BEGINCASE ... NEXTCASE construct. This construct is a loop which uses OF ... ENDOF
clauses like CASE ... ENDCASE, but the loop terminates after the action in the OF ... ENDOF
clause. BEGINCASE ... NEXTCASE is used to construct multiple-exit loops without the appearance
of spaghetti code.

: NEXTCASE \ C: case-sys -- ; Run: x --
Terminate a BEGINCASE ... NEXTCASE construct. DROPs the switch value and branches back to
BEGINCASE. Note that from VFX Forth 4.0, BEGINCASE must be used with NEXTCASE.

: NEXT-CASE \ C: case-sys -- ; Run: --

A Version of NEXTCASE which does not drop the switch value. Used when the switch value itself
is consumed by a default condition. Note that from VFX Forth 4.0, BEGINCASE must be used
with NEXTCASE.

: cs-pick \xu .. x0u--xu .. x0 xu 156.6.2.1015
Get a copy of the uth compilation stack item.

: cs-roll \ xu..x0 u -- xu-1..x0 xu 15.6.2.1020



Chapter 4: Base Kernel Definitions 35

Rotate the order of the top u compilation stack items by one place such that the current top of
stack becomes the second item and the uth item becomes TOS.

: cs-drop \ x —-
Discard the top item on the compilation stack.

: RECURSE \ Comp: -- 6.1.2120
Compile a recursive call to the colon definition containing RECURSE itself. Do not use RECURSE
between DOES> and ;. Used in the form:

: foo ... recurse ... ;

to compile a reference to FOO from inside FOO.
4.14 Memory operators

The following words are used to operate on memory locations and arbitrary memory blocks.

: ON \ addr --
leen the address of a CELL this will set its contents to TRUE.
: OFF \ addr --
leen the address of a CELL this will set its contents to FALSE.
: @OFF \ addr -- x
Read cell at addr, and set it to 0.
: Qon \ addr -- val
Fetch contents of addr and set to -1.
: o+ \ n addr -- 6.1.0130
Add N to the CELL at memory address ADDR.
: w! \ w addr —-
Add W to the 16 bit word at memory address ADDR.
: C+! \ b addr --
Add B to the character (byte) at memory address ADDR.
-1 \ n addr --
Subtract N from the CELL at memory address ADDR.
: ow-! \ w addr —-

Subtract W from the 16 bit word at memory address ADDR.

: C-! \ b addr --
Subtract B from the character (byte) at memory address ADDR.

: incr \ a-addr --
Increment the data cell at a-addr by one.

: decr \ a-addr --
Decrement the data cell at a-addr by one.

1 20 \ a-addr -- x1 x2 6.1.0350
Fetch and return the two CELLS from memory ADDR and ADDR+sizeof(CELL). The cell at
the lower address is on the top of the stack.

: Q \ addr -—- n 6.1.0650
Fetch and return the CELL at memory ADDR.



36 VFX Forth for macOS X

: 10 \ addr -- val
Fetch and 0 extend the word (32 bit) at memory ADDR.

: wo \ addr -- val
Fetch and 0 extend the word (16 bit) at memory ADDR.

: c@ \ addr -- val 6.1.0870
Fetch and 0 extend the character at memory ADDR

: 10s \ addr -- val
Fetch and sign extend the word (32 bit) at memory ADDR. This word is in 64 bit systems only.

: wls \ addr -- val(signed)
A sign extending version of W@.

: c@s \ addr -- val(signed)
A sign extending version of C@.

: 2! \ x1 x2 addr -- 6.1.0310
Store the two CELLS x1 and x2 at memory ADDR. X2 is stored at ADDR and X1 is stored at
ADDR+CELL.

;! \ n addr -- 6.1.0010
Store the CELL quantity N at memory ADDR.

: 1! \ val addr --
Store the word (32 bit) quantity VAL at memory ADDR.

:ow! \ val addr --
Store the word (16 bit) quantity VAL at memory ADDR.

: ¢! \ val addr -- 6.1.0850
Store the character VAL at memory ADDR.

: fill \ addr len char -- 6.1.1540
Fill LEN bytes of memory starting at ADDR with the byte information specified as CHAR.

: set-bit \ mask c-addr --
Apply the mask ORred with the contents of c-addr. Byte operation.

: clear-bit \ mask c-addr --
Apply the mask inverted and ANDed with the contents of c-addr. Byte operation.

: toggle-bit \ mask c-addr --
Invert the bits at c-addr specified by the mask. Byte operation.

: test-bit \ mask addr -- flag
AND the mask with the contents of addr and return true if the result is non-zero (-1) or false
(0) if the result is zero.

! cmove \ addrl addr2 count -- 17.6.1.0910

Copy COUNT bytes of memory forwards from ADDRI to ADDR2. Note that as VFX Forth
characters are 8 bit units, there is an implicit connection between a byte and a character.

: cmove> \ addrl addr2 count -- 17.6.1.0920

As CMOVE but working in the opposite direction, copying the last character in the string first.

Note that as VFX Forth characters are 8 bit units, there is an implicit connection between a
byte and a character.

: MOVE \ addrl addr2 u -- 6.1.1900



Chapter 4: Base Kernel Definitions 37

An intelligent memory move which avoids memory overlap problems. Note that as VFX Forth
characters are 8 bit units, there is an implicit connection between a byte and a character.

: movex \ src dest +n --

An optimised version of MOVE. If n<=0, no action is taken.

: ERASE \ a-addr u -- 6.2.1350
Fill U bytes of memory from A-ADDR with 0.

: BLANK \ a-addr u -- 17.6.1.0780
Blank U bytes of memory from A-ADDR using ASCII 32 (space)

: UNUSED \ —-u 6.2.2395

Return the number of bytes free in the dictionary.

4.15 String operators

The following words are used to operate on strings. With care, some of them may also be used
on arbitrary memory blocks.

In modern Forth strings are usually described by caddr/len pairs on the stack ( -— caddr len),
where caddr points to first character and len is the number of characters in the string. Another
form often used is counted strings { -- caddr ) in which caddr points to a count byte that is
then followed by that many characters. Zero terminated strings are supported and are used for
interfacing with the operating system and other libraries. Zero terminated string handling is
described in a separate section of this manual.

In VFX Forth implementations for byte-addressed CPUs such as are used on PCs, a character
is a byte-sized item. This means that the common assumption that a character=byte is true.
However, if your code has to be ported to CPUs for which this assumption is not true (e.g.
DSPs) or for which the size of a character is not one byte, then be very careful.

4.15.1 Caddr/len strings
: /string \ addr len n -- addr+n len-n 17.6.1.0245
Modify a string address and length to remove the first N characters from the string.

: SKIP \ c-addr u char —-- ’c-addr ’u

Modify string description by skipping over leading occurrences of char. Note that when a space
char is given, tabs are also ignored.

. scan \ caddr u char -- caddr2 u2

Look for first occurrence of char in string and return the new string. C-addr2/u2 describe the
string with char as the first character. Note that when a space char is given, a tab is also treated
as a space.

: -TRAILING \ c-addr ul -- c-addr u2 17.6.1.0170
Modify a string address/length pair to ignore any trailing space or tab characters.

: -leading \ caddr len -- caddr’ len’
Modify a string address/length pair to ignore any leading space or tab characters.

: —-white \ caddr len —-- caddr’ len’

Remove leading and trailing white space from a string.

: UPC \ char -- char’



38 VFX Forth for macOS X

Convert supplied character to upper case if it was alphabetic otherwise return the unmodified
character. UPC is English language specific.

: UPPER \ addr len --
Convert the ASCII string described to upper-case. This operation happens in place. UPPER is
English language specific.

: ucmove \ addrl addr2 len --

Copy len bytes/characters of memory forwards from addrl to addr2, converting to upper case.
Note that as VFX Forth characters are 8 bit units, there is an implicit connection between a
byte and a character.

: ucmove> \ addrl addr2 len --
Copy len bytes/characters of memory backwards starting at addri_len-1 to addr2+len-1, con-
verting to upper case. Note that as VFX Forth characters are 8 bit units, there is an implicit
connection between a byte and a character.

: umove \ addrl addr2 u --

An intelligent memory move which avoids memory overlap problems. Characters are converted
to upper case during the move. Note that as VFX Forth characters are 8 bit units, there is an
implicit connection between a byte and a character.

: uplace \ c-addrl u c-addr2 --
Copy the string described by c-addr1/u to an upper-case counted string at c-addr2.

1 os= \ addrl addr2 len -- flag
Compare two same-length strings or memory blocks, returning true if they are identical.

: str= \ addrl lenl addr2 len2 -- flag
Compare two addr/len memory blocks, returning true if they are identical both in length and
contents. The comparison is case sensitive.

: is= \ c-addrl c-addr2 u -- flag
Compare two same-length strings/memory blocks, returning true if they are identical. The
comparison is case insensitive.

1 istr= \ addrl lenl addr2 len2 -- flag
Compare two addr/len memory blocks, returning TRUE if they are identical both in length and
contents. The comparison is case insensitive.

: compare \ c-addrl ul c-addr2 u2 -- n 17.6.1.0935
Compare two strings. The return result is 0 for a match or can be -ve/+ve indicating string
differences. If the two strings are identical, n is zero. If the two strings are identical up to the
length of the shorter string, n is minus-one (-1) if ul is less than u2 and one (1) otherwise. If
the two strings are not identical up to the length of the shorter string, n is minus-one (-1) if
the first non-matching character in the string specified by c-addrl ul has a lesser numeric value
than the corresponding character in the string specified by c-addr2 u2 and one (1) otherwise.

: icompare \ c-addrl ul c-addr2 u2 -- n
A case insensitive version of COMPARE.
: SEARCH \ c-addrl ul c-addr2 u2 -- c-addr3 u3 f 17.6.1.2191

Search the string c-addril/ul for the string (\i{c-addr2/u2}. If a match is found return c-
addr3/u3, the address of the start of the match and the number of characters remaining in
c-addrl/ul, plus flag f set to true. If no match was found return c-addri/ul and f=0. Case
sensitive.

: instring \ pattern lenp source lens -- flag



Chapter 4: Base Kernel Definitions 39

Return true if the source text contains the pattern text. Case-sensitive.

: $Null \ -- caddr 0
Return a null string.

: extractNum \ caddr len base -- caddr’ len’ u
Extract a number in the given base from the start of the string, returning the remaining string
starting at the first non-numeric character and the converted number.

: ExtractText \ caddr len char -- raddr rlen laddr llen
Extract text delimited by char from the string caddr/len. Text before the leading delimiter is
ignored. Return the string remaining and string between the delimiters. For example:

s" ’foo’ 1 2 10 " char ’ ExtractText

will return the strings " 1 2 10 " and "foo". If either of the delimiters is not present, the original
string is returned as raddr/rlen and laddr/llen is a null string.

: csplit \ addr len char -- raddr rlen laddr llen

Extract a substring at the start of addr/len, returning the string raddr/rlen which includes char
(if found) and the string laddr/llen which contains the text to left of char. If the string does not
contain the character, raddr is addr+len and rlen=0.

: not-overlapped? \ caddrl lenl caddr2 len2 --
Return true if the two strings do not overlap.

: overlapped? \ caddrl lenl caddr2 len2 --
Return true if the two strings overlap.

4.15.2 Counted strings

create cNull \ -- addr
Return the address of an empty counted string.

: place \ c-addrl u c-addr2 --

Copy the string described by c-addrl u to a counted string at the memory address described by
c-addr2.

: count \ addrl -- addr2 len 6.1.0980
Given the address of a counted string in memory this word will return the address of the first
character and the length in characters of the string.

: $move \ caddrl caddr2 -- ; move counted string
Copy a counted string from caddr! to caddr2. Overlapped strings are handled properly.

: SMOVE \ caddrl caddr2 --
Copy the counted string at caddr! to caddr2. Overlapped strings are handled properly.

: addchar \ char string --
Add the character to the end of the counted string.

: append \ c-addr u $dest --
Add the string described by c-addr/u to the counted string at $dest.

D o$+ \ $addrl $addr2 --
Add the counted string $ADDRI to the counted buffer at $ADDR2.

: s+ \ source dest --
Given the addresses of two counted strings, add the source string to the end of the destination
string.



40 VFX Forth for macOS X

4.15.3 Zero-terminated strings

This section provides a set of simple words for handling zero-terminated strings. Additional
words can be found in the tools layer.

create zNull \ -- addr
Return the address of a zero terminated null string.

: zstrlen \ addr -- len
Return the length of a 0 terminated string.

: zcount \ zaddr -- zaddr len
A version of COUNT for zero terminated strings, returning the address of the first character and
the length.

: zplace \ caddr len zaddr --
Copy the string caddr/len to zaddr as a 0 terminated string.

: zmove \ src dst -- ; shows off the optimiser
Copy a zero terminated string.

: zAppend \ caddr len zdest --
Add the string defined by caddr/len to the end of the zero terminated string at zdest.

: Appendz \ caddr len zdest --
OBSOLETE and REMOVED: use zAppend above instead.

(z$+) \ caddr u zdest$ --
Add the source string caddr/u to the end of the zero terminated destination string. OBSOLETE
and REMOVED: use zAppend above instead.

: z$+ \ zsrc$ zdest$ -- ; add zsrc$ to end of zdest$
Add the source string to the end of the destination string. Both strings are zero terminated.

: zterm \ caddr len -- caddr len
Zero terminate the given string.

: >zterm \ caddr len -- z$
Convert a caddr/len string to a zero-terminated string.

: c>czterm \ c$ -- z$
Convert a counted string in place to a counted and zero terminated string. The address of the
zero-terminated section is returned.

: czplace \ caddr len dest
Store the string caddr/len as a counted and zero-terminated string at dest. The strings must
not overlap.

4.15.4 Pattern matching
VFEX Forth provides a few words that check if a string matches a template string that can

have simple wildcards. If you need something more sophisticated, you are probably best off
interfacing to a regex library such as the one at

WWW.pCre.org

Our thanks to Graham Smith at Tectime for the code.

Take two strings, a ’source’ string and a ’pattern’. The test is to see if the source matches the



Chapter 4: Base Kernel Definitions 41

pattern where the pattern can contain the wildcard characters ’?’ and ’*’. These two characters
can be ’escaped’ using the character "\’.

The asterisk as a wildcard implies ’any of zero or more characters match’. Thus "*’ will match
with each of ’a’, ’12abxyz’ and the zero length string ”. An asterisk then matches anything. A
pattern of "ab*12" will match any text which starts with ’ab’ and ends with ’12’.

The question mark indicates any one character. Under DOS/Windows the question mark can
also match zero characters but this behaviour seems inconsistant - see below for an example.
The code here insists that a question mark matches exactly one of any one character. Thus ’?’
matches ’a’; ’b” and "%’. It does not match the zero-length string ”.

-
Source Pattern Match

"abc" "abc" yes

"abcd" "abc" no

"abc" "abcx" yes

"abc" "abc?" yes

llabcll H*abcll yes

"abc" "7abc" no

"ab" "a?b" no

"a" e yes

"123abc" "*abc" yes

"123abc" "7?abc" no

"123abc" "?77abc" yes

"123abc" "1xc" yes

" " yes
- J
: wcMatch? \ src slen ptn plen -- t/f

Wild Card Match. src is the address of the start of a souce string and slen is its length. Similarly,
ptn is the address of a pattern string and its length is plen. A value of TRUE is returned only if
the source string matches the pattern according to the rules described above. The comparison
is case sensitive.

: iwcMatch? \ src slen ptn plen -- t/f

As wcMatch? above, but the comparison is case insensitive.

: strRmatch \ *s lastS il #p lastP jl -- flag

Return true if the string described by addr last first matches the pattern described by a similar
set of three parameters. In the set of three parameters (triple), addr is the start of the string,
last is the zero-based index of the last character in the string. and first is the zero-based index
of the first character. Originally coded as a primitive of $cstrmatch and $strmatch, this word
now converts the two triples to the more standard Forth addr length doubles and calls wcMatch?.
: $cstrmatch \ src srclen patt pattlen -- flag

A synonym for WCMatch?.
: $strmatch \ src patt -- flag
Perform wcMatch? on two counted strings.

: zstrmatch \ src patt -- flag

Perform wcMatch? on two zero-terminated strings.



42 VFX Forth for macOS X

DOS/Windows inconsistency

When using the wildcard character ’?’ in a file path/name matching routine in Windows or
DOS, e.g. the DIR shell command, the question mark sometimes matches zero characters. For
instance a pattern of ’ab?.*’ matches the file nme ’ab.txt’. However, placing the question mark
in another position causes the match to fail. For example, the pattern ’?ab.*’ does not match
‘ab.txt’.

4.15.5 SYSPAD buffering

The SYSPAD mechanism replaces the use of PAD in the kernel. SYSPAD is built in the user area
of each task and forms a circular buffer of strings. The lifetime of each string is not defined. It
will last until another buffer request causes the memory to be reused.

: getSyspad \ u -- addr

Reserve u bytes in the SYSPAD area and return the base address.
: >Syspad \ caddr len -- caddr’ len

Copy a string to SYSPAD and return the new string.

: >SyspadC \ caddr len -- caddr’

Copy a string to SYSPAD and return the new counted string.

: >SyspadZ \ caddr len -- zaddr

Copy a string to SYSPAD and return the new zero terminated string.

4.16 Formatted and Unformatted number conversion

4.16.1 Tools
: BELL \ -

EMIT the ASCII ’7’ bell character. Not all output devices support this function. The USER
variable OUT is not incremented by this word.

: SPACE \ —- 6.1.2220
Output a space (ASCII #32) character to the terminal.

: SPACES \'n-- 6.1.2230
Output 'n’ spaces to the terminal, where n>0. For n<=0 no action is taken.

: >pos \ +n --

Place cursor on current line to column n if possible.

: BS \ ——

Output a destructive backspace sequence to the terminal. If the cursor is not at column 0,
ASCII characters 8, 32 and 8 are EMITted and the USER variable OUT is decremented by one.

: HEX \ - 6.2.1660

Change current number conversion base to base 16.

: DECIMAL \ - 6.1.1170

Change current number conversion base to base 10.

: BINARY \ -

Change current number conversion base to base 2.



Chapter 4: Base Kernel Definitions 43

4.16.2 Numeric output

These words are used for displaying numbers.

: HOLD \ char -- 6.1.1670
Insert the ASCII 'char’ value into the pictured numeric output string currently being assembled.

: HOLDS \ caddr len --
Insert the string caddr/len into the pictured numeric output string currently being assembled.

: SIGN \'n—- 6.1.2210
Insert the ASCII 'minus’ symbol into the numeric output string if 'n’ is negative.

T # \ udl -- ud2 6.1.0030

Given a double number on the stack this will add the next digit to the pictured numeric output
buffer and return the next double number to work with. N.B. the output string is built from
right (Isd) to left (msd).

: #S \ udl -- ud2 6.1.0050

Keep performing # until all digits are generated.

T <# \ - 6.1.0490

Begin definition of a new numeric output string buffer.

T #> \ xd —— c-addr u 6.1.0040

Terminate defnition of a numeric output string. Returns address and length of the ASCII result.

.BYTE \ b --
Display the byte b as a 2 digit hex number.

.WORD \ w --
Display the 16 bit word 'w’ as a 4 digit hex number.

.LWORD \ dw --
Display the 32 bit long word 'dw’ as an 8 digit hex number. The two groups of four digits are
separated by a ’:’.

.DWORD \ dw -
An ’Intel-ised’ alias for .LWORD.

.XWORD \ dx --
Display the 64 bit xlong word ’dx’ as an 16 digit hex number. The four groups of four digits are

9.9

separated by ’:’ characters.

.ASCII \ char --

Output the supplied ASCII character ’char’ via EMIT if it is a displayable character. Otherwise
a period ’.” is output.

(u.) \ u -- caddr len
Return the ASCII string corresponding to the unsigned number w.

.) \ n -- caddr len
Create an ASCII string for the the signed number n.

(u.r) \ u +n -- caddr len

Return the string corresponding to the unsigned number u. The string is right aligned in a field
+n characters wide.

(u.r) \ u +n -- caddr len



44 VFX Forth for macOS X

Return the string corresponding to the unsigned number u. The string is right aligned in a field
+n characters wide.

: UD.R \ ud n —-

Output the unsigned double number 'ud’ using the current BASE, right justified to 'n’ characters.
Padding is inserted using spaces on the left side.

: D.R \dn -- 8.6.1.1070

Output the signed double number ’d’ using the current BASE, right justified to 'n’ characters.
Padding is inserted using spaces on the left side.

: D. \d - 8.6.1.1060

Output the double number ’d’ without padding.
\ n -- 6.1.0180

Output the cell signed value 'n’ without justification.

: U. \u -- 6.1.2320

As with . but treat as unsigned.

: U.R \un -- 6.2.2330

As with D.R but uses a single-unsigned cell value.

.R \ nl n2 -- 6.2.0210

As with D.R but uses a single-signed cell value.

4.16.3 Numeric input conversion

VFEX Forth provides a flexible number conversion system. It is designed for application use as
well as for compiling Forth source code.

The ANS and Forth200x Forth standards specify that floating point numbers must be entered
in the form 1.234e5 and must contain a point ’.” and ’e’ or ’E’. Double numbers (integers) are
terminated by a point ’.’.

This situation prevents the use of the standard conversion words in international applications
because of the interchangable use of the ’.” and ’,” characters in numbers. To ease this, VFX
Forth uses two system variables, FP-CHAR and DP-CHAR, to hold the characters used as the
floating point and double number integer indicator characters. By default, FP-CHAR is initialised
to ’.” and DP-CHAR is initialised to ’,” and ’.’. For ANS and Forth200x compliance, you should

set them as follows:



Chapter 4: Base Kernel Definitions 45

~
\ ANS standard setting
char . dp-char !
char . fp-char !
: ans-floats \ -- ; for strict ANS compliance
[char] . dp-char !
[char] . fp-char !

-

\ MPE defaults
char , dp-char c!
char . dp-char 1+ c!
0 dp-char 2+ c!
char . fp-char !
: mpe-floats \ -- ; for VFX Forth v4.4 onwards
[char] , dp-char c!
[char] . dp-char 1+ c!
0 dp-char 2+ c!
[char] . fp-char !

: mpe-floats \ -- ; for VFX Forth before v4.4
[char] , dp-char !
[char] . fp-char !

You can of course set these variables to any value that suits your application’s language and
locale. Note that integer conversion is always attempted before floating point conversion. This
means that if FP-CHAR and DP-CHAR contain the same characters, floating point numbers must
contain e’ or 'E’. If they are different, a number containg a character in FP-CHAR will be
successfully converted as a floating point number, even if it does not contain e’ or 'E’.

: DIGIT \ char base -- 0 | n true
If the ASCII value char can be treated as a digit for a number within the number conversion

base base, i.e. in the range 0..base-1, then return the digit and a TRUE/-1 flag, otherwise return
FALSE/0.

: SKIP-SIGN \ addrl lenl -- addr2 len2 t/f

Given the address and length of a string skip a leading plus or minus symbol and return modified
address and length. The flag t/fis TRUE if a leading minus was found. From build 2514 onwards,
conversion is case insensitive.

: +DIGIT \ di n --d2
Accumulate digit value n into double d1 to form d2 such that d2=d1*base+n.

: isSep? \ char addr -- flag
Return true if char is one of the four bytes at addr. If less than than four bytes are needed, a
zero byte acts as a terminator.

: +CHAR \ char -- flag
The character char is not a digit, so check to see if it is another permitted character in a number
such as a double number separator. Return true if char is valid.

: +ASCII-DIGIT \ dl char -- d2 flag
Accumulate the double number d1 with the conversion of char, returning true if the character
is a valid digit or part of an integer.

: OverrideBase \ caddr u -- caddr’ u’
Used by isInteger? to force a BASE override. See isInteger? below for details.



46 VFX Forth for macOS X

: isInteger? \ caddr len -~ d 2 | n 1] 0

Attempt to convert the string caddr/len to an integer. The return result is either 0 for failed,
1 for a single-cell integer return result above that cell or 2 above a double cell integer. The
ASCII number string supplied can also contain number conversion base overrides. A leading $
enforces hexadecimal, a leading # enforces decimal and a leading % a leading ’0x’ or trailing "h’.
Character literals can be obtained with 'x’ where x is the character. A double number contains
one of the characters in the variable DP-CHAR, by default ’,” and ’.".

: integer? \caddr --d 2 | n1] O

As isInteger? but takes a counted string.

: >NUMBER \ udl c-addrl ul -- ud2 c-addr2 u2 6.1.0570

Accumulate digits from string c-addrl/ul into double number udl to produce ud2 until the
first non-convertible character is found. c-addr2/u2 represents the remaining string with c-
addr2 pointing the non-convertible character. The number base for conversion is defined by the
contents of USER variable BASE. From build 1656 onwards >NUMBER is case insensitive.

4.17 More string words
: 8. \ c-addr --
Output a counted string to the output device.

) \ -- a-addr
OBSOLETE and REMOVED.

" \ "ccc<quote>" --

Output the text up to the closing double-quotes character.

variable “null \ -- *null

Return a "pointer-to-null" address.

: wcount \ addrl -- addr2 len
Given the address of a 16-bit word-counted string in memory WCOUNT will return the address of
the first character and the length in characters of the string.

ED) \ -- waddr u ; step over caller’s in line string
Returns the address and length of inline 16-bit word-counted and 16-bit zero-terminated string.
Steps over the inline text to a cell-aligned boundary.

(w")) \ -- waddr u ; dangerous factor!

A factor provided for the generation of long string actions that have to step over an inline string.
For example, to define W." which uses a long string, you might compile (W.") and then use W",
to compile the inline string. The definition of (W.") then might be:

W.") \ -
((W")) type

4.18 Linked lists
: link, \ var-addr -- ; lay a link in a chain whose head is at var-addr

Add a link to a chain anchored at address var-addr. The old contents of var-addr are added to
the dictionary as the new link, and the address of the new link is placed at var-addr.

: AddLink \ item anchor -- ; add a new item to end of chain, link is first



Chapter 4: Base Kernel Definitions 47

Used instead of LINK, when a new item in the chain already exists, e.g. it has been ALLOCATEd.
The item is added to the start of the chain. Note that this word requires the link to be at offset
0 in the item being added.

: AddEndLink \ item anchor --
Add an item (a structure) to the end of of the chain anchored at anchor. The link field must
be at offset 0 in item.

: DelLink \ item anchor -- ; remove item from chain
Delete/Remove an item from a chain achored at address anchor. Note that this word requires
the link to be at offset 0 in the item being removed.

: ExecChain \ anchor --
Execute the contents of chain with the following structure:
link | xt |

Each word that is run has the stack effect
“link -- “1link

Where ~link is the address of the link field in the structure. Thus, data that follows the xt can
easily be accessed.

: AtExecChain \ xt anchor --
Add the word whose zt is given to the chain anchored at address anchor.

: ShowChain \ anchor --
Display the names of the words in the chain. If the word is headerless, the name of the first
header before it will be shown.

4.19 Wordlists and Vocabularies

Wordlists and vocabularies are described in a separate chapter.
4.20 Input Specification and Parsing

The Forth interpreter operates on a "terminal input buffer". This buffer is parsed space-
delimited token by token by the system. Standard words exist for managing the source of
the text.

0 value SOURCE-ID \ 6.2.2218
SOURCE-ID describes the method used to refill the terminal input buffer. If the value is "0" the
input source is the console, a value of "-1" indicates the input source is a string - via EVALUATE
- any other value is taken to be a file-id for source inclusion from a text file.

: TIB \ -- c-addr 6.2.2290
Returns the address of the terminal input buffer. Note that tasks requiring user input must
initialise the USER variable ’TIB. New code should use SOURCE and TO-SOURCE instead for ANS
Forth compatibility.

tib-len constant tib-len \ ——u
Returns the size of the console input buffer.

: SOURCE \ -- c-addr u 6.1.2216
Returns the address and length of the current terminal input buffer contents.

: TO-SOURCE \ c-addr u --



48 VFX Forth for macOS X

Set the address and length of the system terminal input buffer.

: SAVE-INPUT \ —— xn..x1n 6.2.2182

Save all the details of the input source onto the data stack. If it later becomes necessary to
discard the saved input, NDROP will do the job. If you want to move the data to the return stack,
N>R and NR> are available.

: RESTORE-INPUT \ xn..x1 n -- flag 6.2.2148
Attempt to restore input specification from the data stack. If the stack picture between
SAVE-INPUT and RESTORE-INPUT is not balanced, a non-zero is returned in place of n. On
success a 0 is returned.

: QUERY \ — 6.2.2040
Reset the input source specification to the console and accept a line of text into the input buffer.

: REFILL \ -- flag 6.2.2125
Attempt to refill the terminal input buffer from the current source. This may be a file or the
console. An attempt to refill when the input source is a string will fail. The return result is a
flag indicating success with TRUE and failure with FALSE. A failure to refill when the input
source is a text file indicates the end of file condition.

: PARSE \ char"ccc<char>" -- c-addr u 6.2.2008

Parse the next token from the terminal input buffer using <char> as the delimiter. The next
token is returned as a c-addr/u string description. Note that PARSE does not skip leading
delimiters. If you need to skip leading delimiters, use PARSE-WORD instead.

: PARSE-WORD \ char -- c-addr u

An alternative to WORD below. The returned string is a c-addr/u pair rather than a counted
string and no copy has occured, i.e. the contents of HERE are unaffected. The returned string is
in the input buffer, which should not be modified. Because no intermediate global buffers are
used PARSE-WORD is more reliable than WORD for text scanning in multi-threaded applications
and in callbacks.

: parse-name \ -- c-addr u ; Forth200x

Equivalent to BL PARSE-WORD above. Do not modify the returned string if you want to be
compliant with the ANS or Forth-2012 standards. PARSE-NAME can replace BL WORD COUNT in
most cases. Because no intermediate global buffers are used PARSE-NAME is faster and more
reliable than WORD for text scanning in multi-threaded applications and in callbacks.

: WORD \ char"<chars>ccc<char>" -- c-addr 6.1.2450
Similar behaviour to the ANS PARSE definition but the returned string is described as a counted
string which is found at HERE.

: parse-leading \ char --
skip over leading characters of char in the input stream. Tab characters are treated as spaces.

: GET-TOKEN \ "<name>" -- addr
A version of BL WORD in which the returned string is converted to upper case.

: next-name \ -- c-addr u
A version of parse-name that works across multiple lines. If a name cannot be obtained, the
input stream is REFILLed.

: get-word \ char -- c-addr
A version of WORD that works across multiple lines. If a word cannot be obtained, the input
stream is REFILLed.

: GetPathSpec \ -- c-addr u | c-addr 0 ; O if null string



Chapter 4: Base Kernel Definitions 49

Parse the input stream for a file/path name and return the address and length. If the name
starts with a '’ character the returned string contains the characters between the first and
second """’ characters but does not include the *"’ characters themselves. If you need to include
names that include "’ characters, delimit the string with ’(” and ’)’. In all other cases a space
is used as the delimiting character. GetPathSpec does not expand text macro names.

"xxx" \ "xxx" -- caddr len
Parse a string enclosed by quotes from the input stream, e.g.

"Quoted string"

4.21 Support for constructing words

defer DOCOLON, \ —-
Compile the code required at entry to a colon definitions.

defer DOSEMICOLON, \ -
Compile the code required at exit from a colon definitions by ;.

defer Compile, \ xt —- 6.2.0945

Compile the word specified by xt into the current definition. Only for "normal" words that are
not NDCS.

defer ndcs, \ xt --
Perform the compilation action of an NDCS word. This may have a stack effect or parse the
input stream.

: compile-word \ i*x xt -- j*x
Process an XT for compilation.
(;CODE) \ == ; R: a-addr --
Part of the run time action of ;CODE and DOES>, executed when the defining word executes to

create a new child word. Patch the last word defined (by CREATE) to have the run time action
that follows immediately after (;CODE).

: DOCREATE, \ —-
Compile the run time action of CREATE.

(ndcs,) \ i*x Xt -- j*x
Like (COMPILE,) but executes the NDCS action for a word and may parse and/or have a stack
effect during compilation.

: LIT \ - x
Code which when CALLED at runtime will return an inline cell value.

#16 value /code-alignment \ --n
The default code alignment used by FASTER below. Must be a power of two.

#16 value /data-alignment \ --n
The default data alignment used by FASTER below. Must be a power of two.

/code-alignment value code-alignment \ - n
The start of a colon or CODE definition is aligned to an alignment boundary defined by this value,
which must be a power of two.

/data-alignment value data-alignment \ --n
The start of the data areas defined by CREATE and friends is aligned to a boundary defined
by this value, which must be a power of two.

: smaller \ -



50 VFX Forth for macOS X

Selects smaller code using the minimum of alignment.

: faster \ —-
Selects faster code using the preset alignment in /CODE-ALIGNMENT, which will usually increase
speed and the size of the dictionary headers.

: CODE-ALIGN  \ --
ALIGN filling with breakpoints (used for code boundaries).

: data-align \ —-
ALIGN filling with breakpoints (used for data boundaries). The alignment is followed by the
run-time code for CREATE and the data area is then aligned on the boundary.

: set-compiler \ xt --

Set zt as the compiler of the LATEST definition. The word whose xt is given to SET-COMPILER
receives the zt of the word it is to compile ( xt —== ). This is done so that information can be
extracted from the word. If you use this in a defining word use INTERP> rather DOES>. See the
VFX code generator section of the manual for more details.

: get-compiler \ -- xt
Get at of the compiler of the LATEST definition. If the return value is zero, the word has no
compiler.

4.22 Defining words

These are word involved in the construct of new words.

(:) \ C: caddr len -- colon-sys ; Exec: i*x -- j*x ; R: -- nest-sys
Begin a new colon definition with the name given by caddr/len.

: \ C: "<spaces>name" -- colon-sys ; Exec: i*x -- j*x ; R: -- nest-sys 6.1.04!
Begin a new definition called name.

:NONAME \ C: -- colon-sys ; Exec: i*x -- j*x ; R: -- nest-sys 6.2.0455
Begin a new colon definition which does not have a name. After the definition is complete the
semi-colon operator returns the XT of the newly compiled code on the stack.

T \ C: colon-sys -- ; Run: -- ; R: nest-sys -- 6.1.0460
Complete the definition of a new ’colon’ or :NONAME word.

: DOES> \ C: colon-sysl -- colon-sys2 ; R: nest-sys -- 6.1.1250
Begin definition of the runtime-action of a child of a defining word. You may not use RECURSE
after DOES>.

: INTERP> \ C: colon-sysl -- colon-sys2 ; R: nest-sys --

Begin definition of the runtime-action of a child of a defining word that sets a compiler with
SET-COMPILER for its children between CREATE and INTERP>. You may not use RECURSE after
INTERP>. INTERP> and setCompiler are used to avoid defining words with state-smart run-time
actions.

: COMP: \ —-

Start a :NONAME word that is the compiler for the previous word. When executed, the:NONAME
word is passed the xt of the word that is being compiled. NOTE that the COMP: word must
not contain the word it is applied to because the word would be compiled before its compilation
word has been completed.

: >DOES \ xt -- addr
Given the xt of the child of a defining word, return the address of the run-time code.



Chapter 4: Base Kernel Definitions 51

: Synonym \ "<new-name>" "<curdef>" --

Create a new definition which redirects to an existing one. Normal dictionary searches for
<new-name> will return the xt of <curdef>.

: Alias: \ <"new-name"> <"curdef"> --
A synonym for SYNONYM.
: CONSTANT \ x "<spaces>name" -- ; Exec: -- x 6.1.0950

Create a new CONSTANT called name which has the value x. When NAME is executed the value is
returned.

: 2constant \ nl n2 -- ; Exec -- nl1 n2 8.6.1.0830
A double number equivalent of CONSTANT.

: VARIABLE \ "<spaces>name" -- ; Exec: -- a-addr 6.1.2410

Create a new variable called name. When Name is executed the address of the data-cell is returned
for use with @ and ! operators.

: 2VARIABLE \ "<spaces>name" -- ; Exec: -- a-addr 8.6.1.0440

A double number equivalent of VARIABLE.

. user \ u "<name>" -- ; Exec: —— addr

Create a new USER variable called name. The 'u’ parameter specifies the index into the user-area
table at which to place the A =405 THROW occurs if there is no more user space. The VFX kernel
supports 4K bytes of USER area space starting at offset 4096. USER variables are located in a
separate area of memory for each task or callback procedure. They are equivalent to "thread
local storage" in Windows parlance. Use in the form:

$1000 USER TaskData

: +USER \ n "<spaces>name" -- ; Exec: -- user-a-addr

Create a new USER variable called name and reserve N bytes of USER space, e.g. 8 CELLS +USER
TaskStruct. N is rounded up to the next CELL boundary. See USER above. The use of +USER
avoids having to keep track of assigned USER variable offsets. ) +USER is non-ANS but for
portability is trivially defined by:

VARIABLE NEXTUSER
: +USER \n--; -- addr
NextUser @ user aligned NextUser +!

:outt \ "<name>"-- u

Return the index of the USER variable whose name follows, e.g.
u# SO
: Buffer: \ n "name" -- ; [child] -- addr

Create a memory buffer called name which is 'n’ bytes long. When name is executed the address
of the buffer is returned.

: value \'n--; 777 —— 777 ; 6.2.2405

Create a variable with an initial value. When the VALUE’s name is referenced, the value is
returned. Precede the name with TO or —> to store to it. Precede the name with ADDR to get
the address of the data. The full list of operators is displayed by .0PERATORS ( -- ).



52 VFX Forth for macOS X

( N
5 VALUE FOO \ initial value of FOO is 5

FOO . \ will give 5

6 TO FOO \ new value is 6

FOO . \ will give 6

ADDR FOO @ . \ will give 6
N J
: 2value \ x1 x2 —— ; ?7?7? —— 777 ; 6.2.2405

Create a cell pair with an initial value. When the 2VALUE’s name is referenced, the value is
returned. Precede the name with TO or -> to store to it. Precede the name with ADDR to get

the address of the data.

: operator \'n -~
Define an operator with the given number.

: Operator: \ —-
Define a new operator with automatic numbering.

: op# "name" -- n [int] ; "name" -- [comp]
Return or compile the operator number

.Operators \ —-
List the operators by number and name.

The standard VFX Forth set of operators is as follows. All of them are supported by children

of VALUE, but not all are supported by other words that use operators.

( N
0 operator default \ fetch
1 operator -> \ store
1 operator to A
2 operator addr \ address operator
3 operator inc \ increment by one
4 operator dec \ decrement by one
5 operator add \ add stack item to contents
6 operator zero \ set to zero
7 operator sub \ subtract stack item from contents
8 operator sizeof \ return item size
9 operator set \ set to -1
- J
The following are provided to ease porting from other systems.
5 operator +to \ add stack item to contents
7 operator -to \ subtract stack item from contents
: DEFER \ Comp: "<spaces>name" -- ; Run: i*x -- j*x
Creates a new DEFERed word. A default action, CRASH, is automatically assigned. See CRASH

and the section on vectored execution.
4.23 Compilation tools

These words are mostly used for building new interpreting and compiling words

1CSP \ x —-

Mark the position of the compilation stack pointer for later compile time checking.

: ?7CSP \ -



Chapter 4: Base Kernel Definitions 53

Check that the compilation stack pointer is the same as when last marked by !CSP.

: 7EXEC A
Perform #-403 THROW if not in interpretation state.
: 7?COMP \ -
Perform -14 THROW if not in compilation state.
: 7STACK \ -
Perform -4 THROW if the data stack pointer is out of range.
: ?PUNDEF \ flag --
Perform -13 THROW if flag is false/0, usually because a word is undefined.
L \ - 6.1.2500
Switch compiler into interpreter state.
: ] \ - 6.1.2540

Switch compiler into compilation state.

4.24 Literal tools
: LITERAL \ Comp: x -- ; Run: -- x 6.1.1780
Compile a literal into the current definition. Usually used in the form

[ <expression ] LITERAL

inside a colon definition. Note that LITERAL is IMMEDIATE.

: DLITERAL \ Comp: d -- ; Run: -- d
A double number version of LITERAL.

: 2LITERAL \ Comp: x1 x2 -- ; Run: -- x1 x2 8.6.1.0390
A two cell version of LITERAL.

: DoIsNumber? \ caddr len —— Nn .. N1 n | O
Wrapper for isNumber? Used by the system to add the XREF hook for literals. See isNumber?.

4.25 Finding xts

) \ "<spaces>name" -- xt 6.1.0070
Fmd the xt of the next word in the input stream. An error occurs if the xt cannot be found.

[’] \ Comp: "<spaces>name" -- ; Run: -- xt 6.1.2510
Find the xt of the next word in the input stream, and compile it as a literal. An error occurs if
the xt cannot be found.

’syn \ "<spaces>name" -- xt
Find the xt of the next word in the input stream. Unlike ’ above, if the word is a child of
SYNONYM, the xt of the SYNONYM is returned, not the xt of the original word.

defer Compile, \ xt -- 6.2.0945
Compile the word specified by xt into the current definition.

: EXECUTE \ xt -- 6.1.1370
Execute the word specified by xt.

[COMPILE] \ "<spaces>name" -- ; 6.2.2530
Compile the compilation action of the next word in the input stream. [COMPILE] ignores the
IMMEDIATE state of the word. Its operation is mostly superceded by POSTPONE. See also [INTERP]
below.



54 VFX Forth for macOS X

[INTERP] \ "<spaces>name" --
Compile the interpretation action of the next word in the input stream. [INTERP] is necessary

when you want the interpretation behaviour of words such as S" to be compiled. See also
[COMPILE] above.

4.26 Parsing strings and characters

. 8, \ caddr len --
Lay the string into the dictionary at HERE, reserve space for it and ALIGN the dictionary.

", \ "ccc<quote>" --
Parse text up to the closing quote and compile into the dictionary at HERE as a counted string.
The end of the string is aligned.

" \ "ccc<quote>" --
An alias for ", added because it is in common use.

: 8" \ Comp: "ccc<quote>" -- ; Run: -- c-addr u 6.1.2165
Describe a string. Text is taken up to the next double-quote character. The address and length
of the string are returned.

: C" \ Comp: "ccc<quote>" -- ; Run: -- c-addr 6.2.0855

As S" except the address of a counted string is returned.

: Z" \ Comp: "ccc<quote>" -- ; Run: -- c-addr

A Version of C" which returns the address of a zero-terminated string.

create EscapeTable \ -- addr

Table of translations for \a..\z.

: parse\" \ caddr len dest -- caddr’ len’

Parses a string up to an unescaped '"’, translating '\’ escapes to characters much as C does.

The returned translated string is a counted string at dest The supported escapes (case sensitive)
are:

\a BEL (alert)

\b BS (backspace)

\e ESC (escape, ASCII 27)

\f FF (form feed, ASCII 12)

\1 LF (ASCII 10)

\m CR/LF pair - for HTML etc.
\n newline - CR/LF for Windows/DOS, LF for Unices
\q double-quote

\r CR (ASCII 13)

\t HT (tab, ASCII 9)

\v VT

\z NUL (ASCII 0)

\" "

\[0-7]+  Octal numerical character value, finishes at the first non-octal character

\x [0-9a-f] [0-9a-f]
Two digit hex numerical character value.



Chapter 4: Base Kernel Definitions 55

\\ backslash itself
\ before any other character represents that character
: readEscaped \ "string" -- caddr

Parses an escaped string from the input stream according to the rules of parse\" above, return-
ing the address of the translated counted string.

. \" s \ n Strlng" —_—
Parse text up to the closing quote and compile into the dictionary at HERE as a counted string.
The end of the string is aligned.

AN \ "ccc<quote>" --
As .", but translates escaped characters using parse\" above.
: S\" \ "string" -- caddr u

As S", but translates escaped characters using parse\" above.

: C\" \ "string" -- caddr

As C", but translates escaped characters using parse\" above
1 Z\" \ "string" -- z$

As Z", but translates escaped characters using parse\" above
: Z\", \ "CC<quOte>" _

Parse text up to the closing quote and compile into the dictionary at HERE as a zero terminated
string. The end of the string is not aligned.

: CHAR \ "<spaces>name" -- char 6.1.0895
Return the first character of the next token in the input stream. Usually used to avoid magic
numbers in the source code.

[CHAR] \ Comp: "<spaces>name" -- ; Run: -- char 6.1.2520
Compile the first character of the next token in the input stream as a literal. Usually used to
avoid magic numbers in the source code.

: SLITERAL \ comp: c-addrl u -- ; Run: -- c-addr2 u 17.6.1.2212
Compile the string c-addrl/u into the dictionary so that at run time the identical string c-
addr2/u is returned. Note that because of the use of dynamic strings at compile time the
address c-addr2 is unlikely to be the same as c-addrl.

4.27 Comments

:\ \ "ccc<eol>" -- ; 6.2.2535
Begin a single-line comment. All text up to the end of the line is ignored.

¢ \ "ccc<paren>" --; ( ... ) ; 6.1.0080
Begin an inline comment. All text up to the closing bracket is ignored. In VFX Forth, the
comment may extend over several lines.

. ( \ "cc<paren>" - ; .( ... ) 6.2.0200
A documenting comment. Behaves in the same manner as ( except that the enclosed text is
written to the console.

: ParseUntil \ c-addr u --

Parse the input stream for a white-space delimited string, REFILLing as necessary until the string
is found or input is exhausted. Mostly used for block comments. The string compare is case
insensitive.

(( N == (Ceen )



56 VFX Forth for macOS X

Block comment operator. Any source following this is ignored upto and including the terminator,
’))’, which must be white space separated.

(* N\ ——; (koL %)
Block comment operator. Any source following this is ignored upto and including the terminator,
"*)’, which must be white space separated.

D #! \ -- ; #! /bin/bash
Begin a single-line comment. All text up to the end of the line is ignored. This form is provided
for Unix-based systems whose shells use #! to specify the program to use with the file.

: StopIncluding \ --
Used in a source file to skip the rest of a file, otherwise behaves like \.

:\\ \ -

A synonymm for StopIncluding above.

4.28 Generic stack get/set

What is called a stack here is actually a table whose first element contains the number of items
in the stack. The ’top’ of the stack is the last entry in the table.

nl|lxn | ... | x1 |
#32 constant /max-stack \ -- u
Maximum number of items in a stack.
. stack: \ "<name>" -- ; -- stack
Create a stack of /max-stack elenents. At run time
stack: rec-stackl

: get-stack \ stack -=— x1 ... xnn
Retrieve the contents of the stack, where xn is the top of the stack.

: set-stack \ x1 ... xn n stack --
place n items on the empty stack, where xn is the top of the stack.

: -stack {: x astack -- :}
Remove all instances of the given item from the given stack.

: +stack \ x astack —-

The given item is added as the top of the stack. Duplicate entries are removed.

: +stack-bot \ x astack --

The given item is added at the bottom of the stack. Duplicate entries are removed.

4.29 Text interpreter

From VFX 5.1 onwards, the text interpreter is built around recognisers. The major advantage
of recongnisers is that they provide an extensible interpreter, and in particular they permit
different OOP packages to be installed and removed at will, so permitting the various OOP
packages to coexist in one application.

Recognisers are a technique to allow the Forth text interpreter to be extended and reconfigured
for application purposes. Text items are parsed to see if they fit into one or another type. An
action for the appropriate type is then performed.



Chapter 4: Base Kernel Definitions 57

A recogniser for a particular type of data consists of a parsing word which determines whether
the string matches a particular data type. Associated with each parsing word is a data structure
that holds the interpret, compile and postpone xts for that data type. On a match, the relevant
xt is executed.

Applications use a set of recognisers as required. In VEX, minimum set is usually the Forth word
finder (dictionary look up) and the literal handler (single, double, float). A set of recognisers is
held as a table of xts of the parsing words.

4.29.1 Recognizer type structure

The recognizer type structure is the interface between the type information returned by the
parser and the actions (xts) contained in the type structure.

: RecType: \ xtint xtcomp xtpost "name" -- ; -- struct
Create a recogniser data structure associated with the three actions (interpret, compile, post-
pone) associated with its data type.

: RECTYPE>INT ( rectype-token -- xt-interpret) Q ;
Given a recogniser structure, return the interpretation xt for it. Execution of the xt converts
the data returned by the parser into the form returned by the text interpreter.

: RECTYPE>COMP ( rectype-token -- xt-compile ) cell+ @ ;
Given a recogniser structure, return the compilation xt for it. Execution of the xt compiles the
data returned by the parser into the form used inside a colon definition.

: RECTYPE>POST ( rectype-token -- xt-postpone ) cell+ cell+ @ ;
Given a recogniser structure, return the postpone xt for it.

4.29.2 Word and number recognition

: 11 \ --
Switch the compiler into POSTPONE state. All words between 1] and [[ are POSTPONEd. The
code below is evalent to postpone dup postpone 5 postpone 6.

:t J]] dup 56 [[ ;

The 11 ... [[ notation is experimental and my be removed in a future version

(L
Switch the compiler out of POSTPONE state.

: Undefined \ c-addr u --
Default action taken by compiler when a parsed token is not recognised as a word or number.

> undefined dup dup RecType: r:fail \ -- struct
Contains the three actions for unrecognised words, i.e. the fail case.

> execute ’ compile, ’ postnorm RecType: r:word
Contains the three actions for non-immediate words.

> execute ’ ndcs, ’ postndcs RecType: r:ndcs
Contains the three actions for NDCS words.

> execute ’ execute ’ postimm RecType: r:immediate
Contains the three actions for immediate words.

: rec-find \ addr u —- xt r:word | r:fail



58 VFX Forth for macOS X

Searches a word in the search order (wordlist stack). The xref utility code is contained inside
the dictionary search code.

¢ x1it, \xl .. xnn --
Lay a numeric literal.

: post-xlit \x1 .. xnn -~
Postpone a numeric literal.

> drop ’ x1it, ’ post-xlit RecType: r:num \ -- type
Contains the three actions for numbers, including single integers, double integers and floating
point numbers.

. rec-num \addr u ~- n 1 r:num | d 2 rinum | r: -2 r:num | r:fail
The parsing portion that checks for a literal number.

4.29.3 Main recognizer and text interpreter

/max-stack 1+ cells buffer: main-recognizer \ -- stack
The default stack used for recognizers.

main-recognizer value forth-recognizer
Set the current recognizer.

: get-recognizers \ - xtl ... xtn n
Return the content of the recognizer stack.

set-recognizers \ xtl ... xtn n
Set the recognizer stack from the data stack.

: recognize \ caddr len stack -- tokens data-type | fail-type
Apply a recognizer stack to a string, delivering optional tokens and a data type indicator.

: parser \ addr u -- i*x xt
Pass the string to the current recognizer stack and extract the xt needed to process it.

: page-check \ -
For legacy reasons, the VFX INCLUDE allows files with page breaks (ASCII form feed character)
at the start of the line and replaces them with spaces.

(interpret) \ --
The default action of INTERPRET.

: postpone \ "<name>" -- ; POSTPONE <name> ; 6.1.2033

Append the compilation semantics of name to the current definition, i.e. the one containing
POSTPONE <name>. For a normal word, the current definition compiles <name>. For an immediate
word, the current definition will execute <name> rather than it executing immediately. POSTPONE
delays the execution of a word by one time frame.

: EVALUATE \ i*x c-addr u -- j*x 6.1.1360
Process the supplied string as though it had been entered via the interpreter.

: assess \ i*x c-addr u -- j*x
A version of EVALUATE that saves the current state, switches to interpret mode, interprets the
string and then restores state.
init-quit \ -
Perform the set up required before entering the text interpreter.

defer QuitHook \ --



Chapter 4: Base Kernel Definitions 59

A place holder for user defined clean up actions after a THROW) occurs in *\fo{QUIT.

: reset-stacks \ 7?7 —- ; F: 7?7 —
Reset the data and floating point stacks.

4.30 DEFERred words and Vectored Execution

A DEFERred word is defined at one point in the source and can have its action ASSIGNed later
both during compile time and at execution time. It is similar to a VARIABLE which has @ EXECUTE
appended to its execution semantics.

DEFER words are used to
e avoid forward references

e define words whose actions are modified at run time.

: CRASH \ -
The default action of a DEFERed word. CRASH will THROW a code back to the system.

: DEFER \ Comp: "<spaces>name" -- ; Run: i*x -- j*x
Creates a new DEFERed word. A default action, CRASH, is automatically assigned.

: IS \ xt "<spaces>name" -- ; Forth200x

The second part of the ’ xxx IS yyy construct. IS assigns the given XT to be the action of a
DEFERed word yyy which is named in the input stream.

: ASSIGN \ "<spaces>name" -- xt
A state smart word to get the XT of a word. The source word is parsed from the input stream.
Used as part of a ASSIGN xxx TO-DO yyy construct.

: TO-DO \ xt "<spaces>name" --
The second part of the ASSIGN xxx TO-DO yyy construct. T0O-DO assigns the given XT to be the
action of a DEFERed word which is named in the input stream.

: action-of \ "<name" -- xt ; Forth200x

Returns the xt of the current action of the DEFERred word whose name is given. Use in the form
ACTION-OF <deferred-word> if you need to save and later restore the action of a word. The xt
returned by ACTION-OF can be used by TO-DO.

: BEHAVIOR \ "<spaces>name" -- xt

Returns the xt of the current action of the DEFERred word whose name is given. Since BEHAVIOR
is just a synonym for ACTION-0F, OBSOLETE and REMOVED.

: DEFER®@ \ xtl -- xt2 Forth200x
Given xt1, the xt of a DEFERred word, return xt2, the action of xt1.

: DEFER! \ xtl xt2 -- Forth200x
Xt1 becomes the action of the DEFERred word defined by xt2.

4.31 Time and Date

0 value dow \ -- dow ; O=Sunday
Returns the local day of the week, starting at 0=Sunday. This value is updated when TIME&DATE
below is called.

: time&date \ -- seconds mins hours day month year
Return the operating system local time and date, and set DOW as a side effect.



60 VFX Forth for macOS X

0 value SysDow \ -- dow ; O=Sunday
Returns the system day of the week, starting at 0=Sunday. This value is updated when
SYSTIME&DATE below is called.

: systime&date \ -- seconds mins hours day month year
Return the operating system local time and date, and set SYSDOW as a side effect.

4.32 Millisecond timing

Most timing in VFX Forth application uses a millisecond timer provided by the host operating
system. The words provided are compatible with those used by MPE’s embedded systems. The
primary word is ticks which returns a time in milliseconds.

defer ms \'n --
Wait for n milliseconds. Calls the multitasker through PAUSE.

defer ticks \ ——n
Return the system timer value in milliseconds. Treat the returned value as a 32 bit unsigned
number that wraps on overflow.

: later \'n--n’

Generates a time value for termination in n milliseconds time. Because many applications use
a timer value of zero to indicate that a timer is not in use, later never returns a value of zero,
and always forces the bottom bit of n” to be set to 1.

: expired \ n -- flag ; true if timed out
Flag is returned true if the time value n has timed out. Calls PAUSE.

: timedout? \ n -- flag ; true if timed out

Flag is returned true if the time value n has timed out. Does not call PAUSE, so timedout? can
be used in callbacks. In particular, TIMEDOUT? should be used rather than EXPIRED inside timer
action words to reduce timer jitter.

4.33 Heap - Runtime memory allocation

The heap memory access wordset is compliant with the ANS Standard. The heap is provided
and managed by the host operating system and is only limited by the available memory and/or
maximum paging file size. See the later paragraphs for implementation-specific details.

defer allocate \ size -- a-addr ior

Allocate SIZE address units of contiguous data space. If successful an aligned pointer and a 0
IOR are returned. On failure the A-ADDR item is invalid and a non-0 IOR is returned. The
contents of newly allocated heap memory are undefined.

defer resize \ a-addr newlen -- a-addr ior

Attempt to resize a block of allocated heap memory to newlen size in address units. The
contents of the memory block are preserved on a successful resize operation but the address of
the memory block may change depending on heap load and the type of resizing requested.

defer free \ a-addr -- ior
Attempt to release allocated memory at A-ADDR back to the system. IOR will return as 0 on
success or non-zero for failure.

: ProtAlloc \ n -- addr
A protected version of ALLOCATE which THROWs on failure.

: ProtFree \ addr --



Chapter 4: Base Kernel Definitions 61

A protected version of FREE which does nothing if addr=0, and THROWs on failure.
From VFX Forth 4.0 onwards, the heap system has changed. ALLOCATE, FREE and RESIZE are
now directly DEFERred to use operating system dependent words.

Under Windows the new heap is much faster but is far less tolerant of programming errors. In
particular, releasing the same block twice or FREEing memory you did not ALLOCATE may/will
lead to a crash with the crash screen showing a fault outside VFX Forth. Newly allocated
memory is zeroed and executable.

The Linux man page for malloc() says:

"Crashes in malloc(), free() or realloc() are almost always related to heap corruption, such as
overflowing an allocated chunk or freeing the same pointer twice."

The SYSTEM vocabulary contains INITVFXHEAP ( —— ) and TERMVFXHEAP ( -- ) which initialise
and destroy the heap. They are in the cold and exit chains. Note that if you are generating a
DLL or shared library, these words must be explicitly run as the cold and exit chains are not
run before DLLMAIN.

4.34 Nested definitions

Quotations provide nested colon definitions, in which the inner definition(s) are nameless. The
expression:

{ : foo ... [: some words ;] ... ;

is equivalent to:

:noname some words ; Constant #temp#
: foo ... #temp# ... ;

A simple quotation is an anonymous colon definition that is defined inside a colon definition or
another quotation. It has no access to locals of the enclosing definitions. Quotations can use
local variables and RECURSE.

A good example use of quotations is to provide a solution to the use of CATCH in a form like the
TRY ... EXCEPT blocks of other languages.

-
: foo \ i*x -- j*x

setup

[: fee fi fo fum ;] catch

if ... then

teardown

( throw again )
-

[: \ comp: -- i*x orig colon-sys

Compilation: suspends compiling to the current definition, starts a new nested definition, and
compilation continues with this nested definition. Outer locals are not visible in the nested



62 VFX Forth for macOS X

definition. Locals may be defined in the nested definition. Inside the nested definition RECURSE
applies to the nested definition.

3] \ comp: i*x orig colon-sys -- ; run-time: -- xt
Compilation: Ends the current nested definition, and resumes compilation to the previous cur-
rent definition. At run-time the xt of the nameless definition is returned.



Chapter 5: Dictionary Organisation/Manipulation 63

5 Dictionary Organisation/Manipulation

The heart of any Forth system is the dictionary. There are two types of word which act on the
dictionary. The first are those words which act on definition headers, whilst the second set act
on dictionary "data-space."

5.1 Definition Header Structure

Definitions created with any standard defining word except :NONAME have a header within the
dictionary. The header format is:

Link | Ctrl | Count | <name> | Term | Line# | Info | XRef | Len/xt | Cgen

Cell | Byte | Byte | n Bytes| Byte | Word | Word | Cell | Cell | Cell

Link Also called LFA. This field contains the address of the "Ctrl Byte" of the previous
word in the same wordlist.

Ctrl The Control Byte: The top two bits are set. The lower six bits are:

( N

Bitb NDCS bit

Bit4 SYNONYM bit
Bit3 Smudge bit
Bit2 Immediate bit
Bit1 *x bit

BitO **x* bit

k J

Count Also called the Count Byte. This field contains a byte which is the length of the
name. The address of the byte is often called the "Name Field Address"

<name> A string of ASCII characters which make up the definition name.

Term All definition names are terminated with a 0 ASCII byte.

Line# This field holds the line number of the first line of source which built the defini-
tion. The actual source file reponsible can be found from the SOURCES structure
described in the FILE section of this manual.

Info MPE/CCS Reserved field.

XRef Pointer to XREF Information

Len/xt Binary length of the word, or the xt of the code generator for this word.
Cgen Holds the address of additional code generator information.

64bit? [if] #29 [else] #17 [then] equ /AfterName

The number of bytes that follow the name of a word.



64 VFX Forth for macOS X

5.2 Header Manipulation Words

These words allow the manipulation and navigation of dictionary headers.

cell 2+ /AfterName + constant HEADSIZE \ -- n
Return the size of a standard dictionary header minus the name text.

.NAME \ nfa --
Display a definition’s name given an NFA.

: name> \ nfa -- xt
Move a pointer from an NFA to the XT.

: name> \ nfa -- xt
Move a pointer from an NFA to the XT.

: ctrl>nfa \ “ctrl -- nfa
Move a pointer from the control byte to the name field.

: nfa>ctrl \ nfa -- “ctrl
Move a pointer from the NFA to the control byte field.

: >name \ xt -- nfalxt

Move a pointer from an XT back to the NFA or name-pointer. If the original pointer was not
an XT or if the definition in question has no name header in the dictionary the returned pointer
will be useless. Care should be taken when manipulating or scanning the Forth dictionary in
this way. If zt is outside the dictionary, a dummy for "777" is returned.

: >BODY \ xt -- a-addr 6.1.0550

Move a pointer from an xt to the body of a definition. This should only be used with children of
CREATE. For example, if FOOBAR is defined by CREATE FOOBAR, then the phrase > FOOBAR >BODY
would yield the same result as executing FOOBAR.

: BODY> \ a-addr -- xt
The inverse of >BODY. Note that this word is only valid for children of CREATE for which the data

area follows the code portion. For words created by VARIABLE, VALUE, and BUFFER: amongst
others, the result may/will be invalid, especially if the +IDATA switch is in use.

: >line# \ xt -- addr
Move a pointer from an XT to the Line# field.

: >info \ xt -- addr
Move a pointer from an XT to the header INFO field.

: >line# \ xt -- addr
Move a pointer from an XT to the Line# field.

: >info \ xt -- addr
Move a pointer from an XT to the header INFO field.

: >xref \ xt -- xref
Move a pointer from a supplied XT to the XREF field in the header.

: >code-len \ xt -- addr
Move a pointer from an XT to the length/xt field.

: >code-gen \ xt -- addr
Move a pointer from an XT to the optimiser token stream field.

: ZeroOptData \ cl --



Chapter 5: Dictionary Organisation/Manipulation 65

Zero the optimiser fields at code-len.

: N>LINK \ addr -- a-addr’
Move a pointer from a NFA field to the Link Field.
: LINK>N \ a-addr -- addr’

The inverse of N>LINK.

: >LINK \ xt -- a-addr’
Move a pointer from an XT to the link field address.

: LINK> \ a-addr -- xt
The inverse of >LINK.

: name? \ addr -- flag
Check to see if the supplied address is a valid NFA. A valid NFA satisfies the following:
e Previous byte is hex Cx, bit 7 and 6 set,
e Previous byte is at an aligned address,
e String has a 0 terminator,
e All characters within string are printable ASCII within range 33..255,

e String Length is non-zero.

: InOvl1? \ addrl -- addr2]|0

Returns the overlay address (addr2) if the given address (addrl) is within an overlay, otherwise
returns 0.

: InForth? \ addr -- flag
Returns true if the given address is within the Forth dictionary or an overlay.

: IP>NFA \ addr -- nfa
Attempt to move backwards from an address within a definition to the relevant NFA.

: xtoptimised? \ xt -- flag
Is the definition with the given XT optimised?

: patched? \ xt -- flag
Is the definition with the given XT patched/plugged?

: patchxt \ xtnew xtold -- ud patchflag

Patch the code for ztold to jump to ztnew. Return the first 8 bytes of atold as ud. *i{Patchflag}
is non-zero if ztold had already been patched. All optimisation for xtold is disabled.

: unpatch \ ud patchflag xt --
Reverse the effect of PATCHXT.

5.3 Definition and Data space access.

These words act upon definition information or dictionary data space.

: LATEST \ -- c-addr
Return pointer past the Link of the last definition. Note that this is NOT the name field, but
the control field of the dictionary header. Use CTRL>NFA to move to the name field.

: latest-xt \ -- xt
Returns the xt of the last definition to have a dictionary header.

: SMUDGE \ -



66 VFX Forth for macOS X

Toggle the SMUDGE bit of the latest definition.

: HideName \ nfa --
Hide (make unFINDable) the word whose NFA is given.

: RevealName \ nfa --
Reveal (make FINDable) the word whose NFA is given.

: HIDE \ —-
Make the last word defined invisible to SEARCH-WORDLIST, FIND and friends.

: REVEAL \ —-
Make the last word defined visible to SEARCH-WORDLIST, FIND and friends.

: >#THREADS \ wid -- a-addr

Converts a wid wordlist identifier to address of the cell holding the number of threads in the
wordlist.

: >THREADS \ wid -- a-addr

Converts a wid wordlist identifier to address of the first thread in the wordlist.

: WID-THREADS \ wid -- addr len

Given a wid, return the address and length of its table of threads.

TRUE value warnings? \ -- flag
Returns true if redefinition warnings are enabled.

: +warnings \ -
Enable redefined warnings.

: -warnings \ -
Disable redefined warnings.

0 value LastNameFound \ -- nfal0
Set by SEARCH-WORDLIST to contain the NFA of the last word found, or zero if no word was
found. Use of LASTNAMEFOUND avoids having to use >NAME later.

Defer RedefHook \ —-

A hook available for handling redefinitions. The NFA of the previous word is given by
LastNameFound, and its xt by Original-Xt.

(RedefHook) \ —-
The default action of RedefHook, which is to display the name of the word being redefined.

($CREATE) \ caddr u --

Create a new definition in the dictionary with the name described by caddr/u. The phrase S"
foobar" ($CREATE) has the same effect as typing CREATE foobar at the console.

: $create-in \ caddr len wid --

Create a new definition in the dictionary with the name described by caddr/u in the wordlist
given by wid.

: $CREATE \ c-addr --

As with ($CREATE) but takes a counted string.

: CREATE \ -- ; CREATE <name>

Create a new definition in the dictionary. When the new definition is executed it will return the
address of the definition’s data area.

: ndcs \ -



Chapter 5: Dictionary Organisation/Manipulation 67

Mark the last defined word as NDCS, i.e having "non-default compilation semantics". NDCS
words will execute special behaviour during compilation.

: ndcs: \ --

Defines the compilation actions of an NDCS word after the interpretation action has been
defined. NDCS: sets flags, starts compilation of a :NONAME definition and sets the compilation
action of the last word defined. Use this for code generators for words that have different
interpretation and compilation actions, e.g. IF or S". Such words may parse or produce or
consume items from the stack. NOTE that the *\fo{NDCS: word must not contain the word
it is applied to because the word would be compiled before its compilation word has been
completed.

S \ "ccc<quote>" --

\ Output the text up to the closing double-quotes character.
[char] " word $. ;

ndcs: ( -- ) compile (.") ", discard-sinline ;

: ndcs? \ xt -- flag
Return true if the word at ¢ is an NDCS word. Immediate words are also NDCS words.

: IMMEDIATE \ —- 6.1.1710

Mark the last defined word as immediate. Immediate words will execute whenever encountered
regardless of STATE. IMMEDIATE words are marked as NDCS.

: Immediate? \ xt -- flag

Return true if the word at 2t is immediate.






Chapter 6: Search Order: Wordlists, Vocabularies and Modules 69

6 Search Order: Wordlists, Vocabularies and
Modules

The definitions within the Forth dictionary are divided into groups called WORDLISTs. A wordlist
is identified by a unique number called a WID (Wordlist IDentifier), which is returned when a
wordlist is created by the word WORDLIST.

At any given time the system has a "search-order", which is an array of WID values representing
the wordlists which are searched. This is the CONTEXT array. The system also uses one WID to
contain any new definitions. This is called the CURRENT wid.

Vocabularies are named wordlists. When a vocabulary is created by VOCABULARY <name> a word
is built which has a new wordlist. When <name> executes the wordlist replaces the first entry
in the search order

Modules are special wordlists for hiding implementation details that should not be modified by
application programmers.

6.1 Wordlists and Vocabularies

6.1.1 Creation

: WORDLIST \ —- wid 16.6.1.2460
Create a new wordlist and return a unique identifier for it.

: VOCABULARY \ -- ; VOCABULARY <name>

Create a VOCABULARY called <name>. When <name> executes, its wordlist replaces the first entry
in the search order

: voc>wid \ xt(voc) -- wid
Return the WID from a vocabulary with the XT supplied.

6.1.2 Searching

1 value CheckSynonym? \ -- flag
If true, words with the synonym bit set in the header will return the original word’s xt, otherwise
the xt of the child of SYNONYM will be returned. The setting affects SEARCH-WORDLIST and any
words that use it, e.g. >, [’] and FIND.

: SEARCH-WORDLIST \ c-addr u wid —— 0 | xt 1 | xt -1 16.6.1.2192
Search the given wordlist for a definition. If the definition is not found then 0 is returned,
otherwise the XT of the definition is returned along with a non-zero code. A -ve code indicates
a "normal" definition and a +ve code indicates an IMMEDIATE word.

: Search-Context \ c-addr len - 0 | xt 1 | xt -1

Perform the SEARCH-WORDLIST operation on all wordlists within the search order. Returns -1
for a "normal" word and +1 for an IMMEDIATE word.

: FIND \ c-addr -- c-addr O | xt 1 | xt -1 6.1.1550

Perform the SEARCH-WORDLIST operation on all wordlists within the current search order. This
definition takes a counted string rather than a c-addr/u pair. The counted string is returned
as well as the 0 on failure. On success, -1 is returned for normal words, or 1 is returned for
immediate words.

: FORTH \ —- 16.6.2.1590



70 VFX Forth for macOS X

Install Forth Wordlist into search-order.

: FORTH-WORDLIST \ -- wid 16.6.1.1595
Return the WID of the FORTH wordlist.

: ResetMinSearchOrder \ —-
Reset the minimum search-order. The minimum search-order reflects a minimal set of WIDs

which make up the search order when ONLY is executed.
: >MIN-ORDER \ wid --
Add a given WID to the minimum search-order.

: GET-CURRENT \ —- wid 16.6.1.1643
Return the WID for the wordlist which holds any definitions made at this point.

: SET-CURRENT \ wid -- 16.6.1.2195
Change the wordlist which will hold future definitions.

: GET-ORDER \ -- widn...widl n 16.6.1.1647

Return the list of WIDs which make up the current search-order. The last value returned on
top-of-stack is the number of WIDs returned.

: SET-0RDER \ widn...widl n -- ; unless n = -1 16.6.1.2197
Set the new search-order. The top-of-stack is the number of WIDs to place in the search-order.
If N is -1 then the minimum search order is inserted.

: ONLY \ - 16.6.2.1965
Set the minimum search order as the current search-order.

: ALSO \ —- 16.6.2.0715
Duplicate the first WID in the search order.

: PREVIOUS \ —- 16.6.2.2037
Drop the current top of the search order.

: DEFINITIONS \ -- 16.6.1.1180
Set the current top of the search order as the current definitions wordlist.
: VOC? \ wid -- flag
Return TRUE if *wid’ is actually a vocabulary
.voC \ wid --

Display the name of a vocabulary if the WID is a valid wordlist identifier associated with a
vocabulary.

: ORDER \ -
Display the current search-order. WIDs created with VOCABULARY are displayed by name, others
are displayed as numeric representations of the WID.

: VOCS \ --
Display all vocabularies by name.

: WIDS \ -- ; display wordlists by address or VOC name
Display all created wordlists by address or vocabulary name.

: —-ORDER \ wid --
Remove all instances of the given wordlist from the CONTEXT search order.

: +0RDER \ wid --
The given wordlist becomes the top of the search order. Duplicate entries are removed.



Chapter 6: Search Order: Wordlists, Vocabularies and Modules 71

: 70RDER \ wid -- flag
Return true if the given wordlist is in the search order.

6.1.3 Removing words

: trim-dictionary \ start end --
Unlink all definitions in the memory region from start to end. See MARKER for more details of
removing words from the dictionary. The dictionary pointer DP and HERE remain unchanged.

: cut-dictionary \ start --
Unlink all definitions in the memory region from start to HERFE. Reset the dictionary pointer
to start.

! prune: \ -

Starts a nameless definition that is added to the prune chain and is later executed by children
of MARKER. See MARKER for more details. Pruning words are passed the start and end addresses
of the region being pruned. The stack action of the definition must be:

start end —-- start end

! prunes \ xt -- ; add xt to prune chain

Adds the xt to the prune chain that is executed by children of MARKER. See MARKER for more
details. Pruning words are passed the start and end addresses of the region being pruned. The
stack action of xt must be:

start end —- start end

: remember: \ ——
Starts a nameless definition that is added to the remember chain that is executed by MARKER.
See MARKER for more details. The stack action of the new definition must be:

. remembers \ xt -—— ; add xt to remember chain
Adds zt to the remember chain that is executed by MARKER. See MARKER for more details. The
stack action of zt must be:

: marker \ "<spaces>name" 6.2.1850

MARKER <name> creates a word that when executed removes itself and all following definitions
from the dictionary. MARKER is the ANS replacement for FORGET. MARKER automatically trims all
vocabulary and wordlist vocabulary-based chains. If you need to clean up your data structures,
you can add code to do this using the words PRUNE:, PRUNES, REMEMBER: and REMEMBERS. When
MARKER runs, the 'remember’ chain words are executed to construct preservation data. When the
child of MARKER, <name>, is run, all the words in the 'prune’ chain are executed to remove/restore
the data to its previous state.

: anew \ " name" --

A variant of MARKER that executes a previous child of MARKER of the same name if it exists, and
then creates the marker. This allows you to place ANEW FOO at the start of a source file being
debugged so that previous versions of the code are always replaced.

: Empty \ -

Remove all words added since the system was loaded or SAVEd.

: forget \ "<spaces>name" 15.6.2.1580

Used in the form FORGET <name>, <name> and all following words are removed from the dic-

tionary. This word is marked as obsolescent in the ANS specification, and is replaced by the
extensible and more powerful word MARKER.



72 VFX Forth for macOS X

: $forget \ § —-
FORGET the word whose name is the given counted string. See FORGET and MARKER.

6.1.4 Processing words in a wordlist
(MAX-DEF) \ wid-copy -- addr c-addr

Returns addr and top definition pointer from a copy of a wordlist. The thread is then truncated
by one ready for the next call.

: WalkWordList \ xt wid --

Walk through a wordlist calling the definition XT for each word. The definitions are walked in
reverse chronological order. The definition at XT will be passed the THREAD# and NFA. This
provides a future-proof method of parsing through a wordlist. It will be supported by future
versions of the compiler. The XT definition has the stack form:

[: MyDef \ thread# nfa -- flag ; Return TRUE to continue }

: WalkAllWordLists \ xt-to-call --

Call the given XT once for each WORDLIST. The callback is given the WID and a flag and will
return TRUE to continue the walk or false to abandon it. The FLAG supplied will be TRUE if
the WID represents a VOCABULARY and FALSE if the WID represents a child of WORDLIST.

[: MyDef \ wid flag -- t/f ; return TRUE to continue j

: WalkAllWords \ xt --

Walk through all wordlists calling the given XT for each word. The definitions are walked
in reverse chronological order of wordlists and then by reverse chronological order within each
wordlist. When run, the XT will be passed the THREAD# and NFA. This provides a future-
proof method of parsing through all wordlists. The XT definition has the stack form:

[: MyDef \ thread# nfa -- flag ; return TRUE to continue J

: traverse-wordlist \ xt wid -- ; Forth2012

Walk through the wordlist identified by wid calling the definition «t for each word. The words
in the wordlist are walked in reverse chronological order. The word defined by xt is passed an
nt, which in VFX Forth is an NFA. The XT definition has the stack form:

[: MyDef \ nt -- flag ; Return TRUE to continue }

: name>string \ nt/nfa -- caddr len ; Forth2012

Given an NT/NFA return the name string.

: name>interpret \ nt/nfa -- xt ; Forth2012

Convert an NT/NFA to the corresponding xt.

: name>compile \ nt/nfa -- xtl xt2 ; Forth2012

Given an NT/NFA return xt1, the xt of the word, and zt2, the word used to compile it. If xt!
is immediate, xt2 is of EXECUTE, otherwise it is of COMPILE-WORD.

: CheckDict \ --
Check the dictionary for corruption and if corrupt perform a #-418 THROW.



Chapter 6: Search Order: Wordlists, Vocabularies and Modules 73

: Xt>Wid \ xt -- wid|0

Attempts to locate the wordlist which contains the given XT. This word is designed for inter-
preter extensions and tools - it is not thread safe or re-entrant! Xt>Wid searches all wordlists
and vocabularies - it can be slow.

: MoveNameToWid \ nfa new-wid -- okay?

Detach the the word whose nfa is given from its wordlist and attach it to the wordlist specified
by new-wid. The word is attached to the new WID at the correct place in a thread to match its
original chronological origin. Okay? is returned true if the operation was successful.

: changeNameWid { nfa oldwid newwid -- }
Move the word whose nfa is given from the wordlist oldwid to the wordlist newwid. No error
checking is performed. ChangeNameWid is much faster than MoveNameToWid.

6.2 Source Code Modules

Apart from wordlists and vocabularies, VFX Forth provides ’source modules’. A MODULE is a
section of source code which handles a given task. Rather than having all the factored ’sub-words’
built into the public dictionary, a module exists in its own private wordlist and only provides
visible access to those words which have been deliberately EXPORTED by the author. This method
helps to improve the maintainability of large source projects both for single programmers and
for group efforts.

When using this system, the implication is that a function exported by the author will be
maintained and not change its meaning or implementation in an ’invisible’ manner. Unexported
words may change at any time.

For example, a module written by one person for use by another may require a sub-word to lay
a string in the dictionary. If initially this word takes a counted string and builds a 0 terminated
one in the dictionary it is possible that other sources will use this function for their own use. If
at a later date the author of the original module needs to store strings in unicode format due to
a change in the overall architecture of the module all other unauthorised uses of the sub-word
will break through no fault of the original author. By hiding the mechanics of an API in a
module this breakage cannot happen.

6.2.1 Module definition

: Module \ <"name"> -- old-current
Begin the definition of a new source module. Modules can be nested and the EXPORTs from any
module are placed in the current user definitions vocabulary.

: End-Module \ old-current --
Mark the end of the current module under definition.

: EXPORT \ old-current —-- old-current ; EXPORT <name>
Export a module definition into the user’s definition wordlist. The dictionary header for the
word is relinked from the wordlist in which it was defined to the user’s definition wordlist.

EXPORT <name>

: Set-Init-Module \ xt --
St the initialisation action of a module, which can be triggered by INIT-MODULE <name>. Must
be executed within a module definition, and the xt must have no stack effect ( —).

> <action> SET-INIT-MODULE

: Set-Term-Module \ xt --



74 VFX Forth for macOS X

Set the termination action of a module, which can be triggered by TERM-MODULE <name>. Must
be executed within a module definition, and the xt must have no stack effect ( — ).

> <action> SET-TERM-MODULE

: INIT-MODULE \ "<name>" -- ; INIT-MODULE <name>
6.2.2 Module management

Calls the initialiser of the module whose name follows.

: TERM-MODULE \ "<name>" -- ; TERM-MODULE <name>

Calls the terminator of the module whose name follows.

: REQUIRES \ "<name>" -- ; REQUIRES <name>

Specifies by name a module which is required in order to compile the current source code. If
the required module is not present compilation is ABORTed.

requires MyModule

: EXPOSE-MODULE \ -- ; EXPOSE-MODULE <name>

This word will add the private word-list of the module <name> to the search order. It is a
debugging aid and should only be used as such. Using this method to get at a module’s internal
definitions defeats the purpose of the module mechanism.

expose-module MyModule

6.2.3 An Example Module

The code below defines a module with one public word. The module itself doesn’t actually do
anything of consequence but it does show the definition syntax.

After compilation the only publically available words will be the two exported at the bottom of
the module. All other definitions will be hidden and can only be accessed after an EXPOSE-MODULE
is executed. In this way the actual implementation of the API can be isolated, only the author
needs to worry about it.



Chapter 6: Search Order: Wordlists, Vocabularies and Modules

75

~
MODULE counter
variable counter
incr-counter \ —-
1 counter +!
: get-counter \ -- val
counter Q@
set-counter \ val —-
counter !
: CounterInitialise \ —-
0 set-counter
: Counter@++ \ —- value
get-counter incr-counter
> CounterInitialise SET-INIT-MODULE
> CounterInitialise SET-TERM-MODULE
EXPORT CounterInitialise \ Public word to init
EXPORT Counter@++ \ Fetch value and incr.
END-MODULE
_
: WIDInfo \ wid --

Display loads of information about a given wordlist







Chapter 7: Generic 10 7

7 Generic 10

Generic 10 is the name given to VFX Forth’s entire input/output architecture. This system
allows for a "device-driver" to be written to a standard format such that the drivers are all
interchangeable within the Forth System. As noted later you will see that all standard Forth
I/O words (such as EMIT) are passed through Generic I/0. )

Under VFX each thread has it’s own current input and output stream and can be accessed via
the standard Forth IO words and a general purpose wordset which acts upon current thread
devices. (See Later) In addition Generic IO also supports a wordset which can use a nominated
device directly. This second wordset follows the same naming convention as the current-thread
wordset.

7.1 Format of a GENIO Driver

An instance of a Generic Driver is described by the following structure, the address of such a
structure is called a SID (structure-identifier).

CELL Device Handle (interpretation depends on device),
CELL Pointer to function Table (see below),
7777 Device Private Data.

The function table is a list of execution tokens for words to perform various standard actions.
Each action word will receive the SID to operate upon at the top of the data stack.



78 VFX Forth for macOS X

To be a "Generic Device" the vector table must hold valid entries for:

~
Index Name Description

0 OPEN Open/Initialise a device.

1 CLOSE Close a device.

2 READ Read to a block of memory.

3 WRITE Write a specified block of memory.

4 KEY Perform an action equivalent to Forths
KEY definition, (i.e. a blocking character
read.)

5 KEY? Perform an action equivalent to Forths
KEY?, (i.e. any-input-pending?)

6 EKEY Supports EKEY

7 EKEY? Supports EKEY?

8 ACCEPT Added to support FORTH definition of the
same name. Read a character stream into
a memory buffer.

9 EMIT Write a single character to a stream.

10 EMIT? Check that EMIT can work.

11 TYPE As with Forths TYPE. Write a string of
characters to a device.

12 CR Perform nearest equivalent action of
"carriage return" on the device.

13 LR As with CR except for "line-feed"

14 FF As with CR except for "form-feed"

15 BS As with CR except for "backspace"

16 BELL Where applicable to the device emit an
audible beep.

17 SETPOS Set current position. May reflect screen
cursor/file position etc.

18 GETPOS Read current position.

19 IOCTL Perform a special function. Each device
may or may not support various IOCTL
codes. The currently assigned function
codes used by MPE are documented later.

20 FLUSHOP Flush any pending output for device.

21 RFU/READEX As READ with additional return of count.

L Not available on all devices.

Devices that require additional functions may add these at the end of the table. If additional
functions are added the first three must be as below. It is valid for these to perform no action
except to return a zero ior.

22 initialise device addr len sid -- ior
23 terminate device sid -- ior
24 configure device sid -- ior ; produces a dialog




Chapter 7: Generic 10 79

7.2 Current Thread Device Access

The following definitions act upon the nominated input or output stream for the calling thread.
Definitions declared with IPFUNC act upon the current input stream and definitions declared
with OPFUNC act upon the current output stream.

struct gen-sid \ -- len
Define the generic I/O structure known as a SID. This structure does not include any private
data.
cell field gen-handle
cell field gen-vector
0 field gen-private
end-struct

OpenFnid OPFunc open-gen \ addr len attribs -- handle/sid ior
Perform the Generic I0 "OPEN" action for current output device.

CloseFnid 0OPFunc close-gen \ -- ior
Perform the Generic IO "CLOSE" action for current output device.

ReadFnid IPFunc read-gen \ addr len -- ior
Perform the Generic IO "READ" action for current input device.

WriteFnid  OPFunc write-gen \ addr len -- ior
Perform the Generic IO "WRITE" action for current output device.

KeyFnid IPFunc key-gen \ -- char
Perform the Generic IO "KEY" action for current input device. This operation is identical to
the Forth word KEY.

Key?Fnid IPFunc key?7-gen \ -- flag
Perform the Generic IO "KEY?" action for current input device. This operation is identical to
the Forth word KEY?.

EKeyFnid IPFunc ekey-gen \ -- echar
Perform the Generic IO "EKEY™" action for current input device. This operation is identical to
the Forth word EKEY.

EKey?Fnid  IPFunc ekey?-gen \ -- flag
Perform the Generic IO "EKEY?" action for current input device. This operation is identical
to the Forth word EKEY?.

AcceptFnid IPFUnc accept-gen \ addr len -- len’
Perform the Generic IO "ACCEPT" action for current input device. This operation is identical
to the Forth word ACCEPT.

EmitFnid OPFunc emit-gen \ char --
Perform the Generic IO "EMIT" action for current output device. This operation is identical
to the Forth word EMIT.

Emit?Fnid  OPFunc emit?-gen \ -- flag

Perform the Generic I0 "EMIT?" action for current output device. This operation is identical
to the Forth word EMIT?.

TypeFnid OPFunc type-gen \ addr len --
Perform the Generic IO "TYPE" action for current output device. This operation is identical
to the Forth word TYPE.



80 VFX Forth for macOS X

CRFnid OPFunc cr-gen \ --
Perform the Generic 10 "CR" action for current output device. This operation is identical to
the Forth word CR.

LFFnid OPFunc lf-gen \ -
Perform the Generic IO "LF" action for current output device.

FFFnid OPFunc ff-gen \ -
Perform the Generic IO "FF" action for current output device. This operation is identical to
the Forth word PAGE.

BSFnid OPFunc bs-gen \ --
Perform the Generic I0 "BS" action for current output device.

BellFnid OPFunc bell-gen \ --
Perform the Generic IO "BELL" action for current output device.

SetposFnid OPFunc setpos-gen \ d mode -- ior ; x y mode -- ior
Perform the Generic IO "SETPOS" action for current output device.

GetposFnid OPFunc getpos-gen \ mode -- d ior ; mode -- x y ior
Perform the Generic IO "GETPOS" action for current output device.

IoctlFnid  OPFunc ioctl-gen \ addr len fn# -- ior
Perform the Generic IO "IOCTL" action for current output device.

FlushOPFnid OPFunc FlushOP-gen \ -- ior
Perform the Generic 10 "FLUSH" action for current output device.

ReadExFnid IPFunc ReadEx-gen \ addr len -- #read ior
Perform the Generic I0 "READEX" action for current input device.

7.3 10 based on a Nominated Device

Generic 10 allows you to perform an action on any device without changing the thread’s current
Input or Output Channel. All the definitions listed as xxx-GEN also have an equivalent definition
called xxx-GI0 which has as top of stack an additional parameter which is the SID of the
nominated device.

OpenFnid  GIOFunc open-gio \ addr len attribs sid -- handle/sid ior
CloseFnid GIOFunc close-gio \ sid -- ior

ReadFnid  GIOFunc read-gio \ addr len sid -- ior

WriteFnid GIOFunc write-gio \ addr len sid -- ior

KeyFnid GIOFunc key-gio \ sid -- char

Key?Fnid  GIOFunc key7-gio \ sid -- flag

EKeyFnid  GIOFunc ekey-gio \ sid -- echar

EKey?Fnid GIOFunc ekey?-gio \ sid -- flag

AcceptFnid GIOFunc accept-gio \ addr len sid -- len’

EmitFnid  GIOFunc emit-gio \ char sid --

Emit?Fnid GIOFunc emit?-gio \ -- flag

TypeFnid  GIOFunc type-gio \ addr len sid --

CRFnid GIOFunc cr-gio \ sid --

LFFnid GIOFunc 1lf-gio \ sid --

FFFnid GIOFunc ff-gio \ sid --

BSFnid GIOFunc bs-gio \ sid --

BellFnid GIOFunc bell-gio \ sid --

SetposFnid GIOFunc setpos-gio \ d mode sid -- ior ; x y mode sid -- ior



Chapter 7: Generic 10 81

GetposFnid GIOFunc getpos-gio \ mode sid -- d ior ; mode -- x y ior
ToctlFnid GIOFunc ioctl-gio \ addr len fn# sid -- ior
FlushOPFnid GIOFunc FlushOP-gio \ sid -- ior

ReadExFnid GIOFunc ReadEx-gio \ addr len sid -- #read ior

RFUFnid GIOFunc RFU-gio \ sid --

InitFnid GIOFunc init-gio \ addr len sid -- ior

TermFnid  GIOFunc term-gio \ sid -- ior

ConfigFnid GIOFunc config-gio \ sid -- ior

7.4 Standard Forth words using GenericlO

The following standard Forth definitions are already vectored through their generic 10 equiva-
lents. The SID device handle used comes from the USER variables OP-HANDLE and IP-HANDLE.

[%CCEPT KEY KEY? EKEY EKEY? EMIT EMIT? TYPE CR J

Also affected are any 1/O words within the ANS Core wordset that use these primitives, such
as:

[. .S SEE U. ) $. F. DUMP EXPECT QUERY }

7.5 Miscellaneous I/0O Words

The following IO words are defined along with Generic IO and will use the standard Generic 10
vectors.

: page \ —-

Performs a FORM-FEED operation. The effect of this differs from device to device. Binary
devices will simply output the #12 character, screen devices will clear the screen and printer
devices will move on to the next page.

: cls \ -

An alias for PAGE which reads more clearly when using a screen based device.

1 at-xy \xy--

The ANS cursor relocation definition. Attempt to move the cursor to relative position X Y. The

actual translation of this varies from device to device since it is implemented with the SETPOS
generic 1O vector.

: SetIO \ sid --
Set the given device as the current I/O device.

[I0 \ -- ; R: -- ip-handle op-handle
Used inside a colon definition only to preserve the the current 1/O devices before switching them
temporarily. Usually used in the form:

[io SomeDev SetIO

io]

: 10] \ -- ; R: ip-handle op-handle --



82 VFX Forth for macOS X

Used inside a colon definition only to restore the the current I/O devices after switching them
temporarily. See [I0 for more details.
create szSID \ -- addr ; used as a property string

Within a winproc controlling a device, it is often useful to be able to reference the SID of the
device. This is best done by using the SetProp Windows call to set a property for the Window
- see the STUDIO directories for examples. MPE code uses the property string "SID" for this,
and szSID is the address of the zero terminated property string.

7.6 Supplied Devices

The following Generic 10 device implementations can all be found in the supplied source library
folder Lib/Genio.

7.6.1 Memory Buffer Device

This Generic 10 Device uses blocks of memory for input and/or output. The source code is
in LIB\ GENIO\ Buffer.fth. This is not a circular buffer system. After a buffer has been used,
the read and write pointers are not reset. You must reset the buffer pointers using the IOCTL
functions.

As of VFX Forth build 2380, this code has been overhauled. If this causes you problems, the file
BUFFER.old.FTH contains the previous (but now unsupported) version. The major changes
are:

More error checking.

The KEY operation (and hence ACCEPT blocks if no data is available.

The KEY? operation returns the number of unread bytes.

The EMIT? operation returns the number of unwritten bytes in the buffer..
The close operation is protected if the device is already closed.

The GENIO ReadEx function is implemented.

The Textbuff-sid GENIO structure has been documented.

IOCTL functions have been added. See later for details.

® NS e W

Note that the ACCEPT operation does not echo. It is designed for extracting lines from saved
input.

In order to create a device use the TEXTBUFF: definition given later. TEXTBUFF: is compatible
with ProForth 2.

When opening a memory device the parameters to OPEN-GEN have the following meaning;:
ADDR Address of memory to use as buffer or ignored if dynamic allocation is required.
LEN The maximum length of the memory image.

ATTRIBS  When zero the ADDR parameter is ignored and LEN bytes of memory are allocated
from the heap.

struct textbuff-sid \ -- len
Defines the length of a SID for a text buffer device.



Chapter 7: Generic 10 83

gen-sid +

int tb-len

int tb-attribs

int tb-wr

int tb-rd
end-struct

handle=buffer, reuse field names of GEN-SID
length of buffer

attributes

address to write to, set by SETP0OS, WRITE
address to read from set by SETPOS, READ

P

: ff-tb \ sid -- ; page/cls on display devices

This word is run by PAGE, CLS and FF-GEN. It resets (empties) the buffer.

: setpos-tb \ x y mode sid -- ior

This word is run by SETPOS-GEN. Mode controls the x and y input values as follows.

0 X = #bytes written, y is ignored

-1 x=col, y=line for next character to be written
-2 x = #bytes read, y is ignored

-3 x=col, y=line for next character to be read

: getpos-tb \ mode sid -- x y ior

This word is run by GETPOS-GEN. Mode controls the x and y return values as follows.
0 x = #bytes written, y = 0

-1 x,y for next character to be written

-2 x = #bytes read, y = 0

-3 x,y for next character to be read

-4 x = addr, y = len of unread data

-5 x = base address, y = size of data area

: ioctl-tb \ addr len fn sid -- ior

This word is run by IOCTL-GEN and IOCTL-GIO. Fn controls the meaning of addr, len and the
ior return value as follows:

0 Get buffer address: addr=0, len=0, tor=addr.
-1 Set write pointer: addr=0, len=offset, i0r=0.
-2 Get write pointer: addr=0, len=0, ior=offset.
-3 Set read pointer: addr=0, len=offset, i0r=0.

-4 Get read pointer: addr=0, len=0, ior=offset.

Device Creation
: initTextBuffSid \ addr --
Initialise a previously allocated SID for a text buffer to the default values.

: textbuff: \ "name" -- ; Exec: -- sid
Create a memory buffer called name.

: SizedTextBuff \ size -- sid|0
Allocates and opens a SID with a buffer of size size bytes, and returns the SID on success or 0
on failure.

: AllocTextBuff \ -- sidl0



84 VFX Forth for macOS X

Allocates and opens a SID with a default 16kb text buffer and returns the SID on success or 0
on failure.

: FreeTextBuff \ sid --
Closes the SID and frees memory allocated by AllocTextBuff or SizedTextBuff.

7.6.2 File Device

This Generic IO Device operates on a disk file for input and/or output. The source code can be
found in Lib\ Genio\file.fth. Neither input nor output are buffered, so that this device should
not be used when speed is required. A buffered version is available in Lib\ Genio\ File Buff.fth.

In order to create a device use the FILEDEV: definition given later. FILEDEV: is compatible with
ProForth 2.

When opening a file device the parameters to OPEN-GEN have the following meaning:

ADDR Address of string for filename.
LEN Length of string at ADDR.
ATTRIBS Open flags. These match the ANS r/o r/w etc.

The ReadEx function is now implemented.

Device Creation

struct /FileDev \ -- len
Returns the size of the sid structure for a file device.

: initFileDev  \ sid --
Initialise the sid for a file device. Mostly used when the structure has been allocated from the
heap.

: filedev: "name" -- ; Exec: —-- sid
Create a File based Generic IO device in the dictionary.

7.6.3 NULL Device

This Generic IO Device is used as a bit bucket for unwanted output. When used as input KEY?
is always false and and read will never return.

In order to create a device use the NULLDEV: definition given later.

When opening a null device the parameters to OPEN-GEN have no meaning.

Device Creation

: nulldev: \ "name" -- ; Exec: -- sid
Create a NULL Generic 10 device in the dictionary.

7.6.4 Serial Device

This Generic 10 Device operates on a serial port for input and/or output.

In order to create a device use the SERDEV: definition given later.



Chapter 7: Generic 10 85

When opening a serial device the parameters to OPEN-GEN and open-gio have the following
meaning:

ADDR Address of configuration string.
LEN Length of string at ADDR.
ATTRIBS file fam, usually R/W.

The configuration string takes the form:

[ /dev/ttyS0 9600 baud no parity 8 data 1 stop J

for Serial Port 0 at 9600 baud, 8 data bits, no parity, 1 stop bit. Only the device name is
mandatory. Words and IOCTL functions are available to modify the port setting later. Split
baud rates are not supported - you will have to set these yourself. If only the device name is
given, the line will be set to 115200 baud, N81 in raw mode. Additional configuration comands
are documented later in this section, e.g. for setting the DTR and RTS lines. The configuration
string is processed with BASE set to DECIMAL. USB serial devices are discussed at the end of this
section.

A good description of Mac OS X serial ports is at:
http://pbxbook.com/other/mac-tty.html

Serial primitives
struct /serial-sid \ -- len
Defines the SID of a serial device.

struct /termios \ -- size

A structure corresponding to the termios structure used by tcgetattr and tcsetattr. 32 bit
specific.

4 field termios.c_iflag
4 field termios.c_oflag
4 field termios.c_cflag
4 field termios.c_lflag
1 field termios.c_line

NCCS field termios.c_cc

3 field termios.padding
4 field termios.c_ispeed
4 field termios.c_ospeed

end-struct

input mode flags

output mode flags

control mode flags

local mode flags

line discipline

control characters

C aligns everything to 32-bits
input speed

output speed

PP A G

: setBaud \ hertz fildes —- ior ; O=success
Set the baud rate for an opened file descriptor.

: setParity \ char fildes -- ior ; O=success
Set the parity for an opened file descriptor. The character must be one of N,E,O.

: setData \ u fildes —-- ior ; O=success
Set the data size for an opened file descriptor. The data size u must be one of 5,6,7,8.



86 VFX Forth for macOS X

: setStop \ u fildes -- ior ; O=success
Set the number of stop bits for an opened file descriptor. The value of *i{u} must be one of 1
or 2.

: setDTR \ flag fildes -- ior ; O=success
Set DTR inactive if flag is zero, otherwise set it active.

: setRTS \ flag fildes -- ior ; O=success
Set RTS inactive if flag is zero, otherwise set it active.

: setUnix \ sid --
Set the line to have Unix line handling.

: setD0OS \ sid --
Set the line to have Windows/DOS line handling.
> setBaud SerCfg: baud \ sid ior baud -- sid ior’
Used in the configuration string to set the baud rate, e.g.
9600 baud
> setData SerCfg: data \ sid ior u -- sid ior’

Used in the configuration string to set the number of data bits, e.g.
8 data
> setParity SerCfg: parity \ sid ior u -- sid ior’
Used in the configuration string to set parity, where u is one of the characters N, E, or O.
Constants are defined, e.g.

no parity

even parity

odd parity
> setStop SerCfg: stop \ sid ior u -- sid ior’
Used in the configuration string to set the number of stop bits, e.g.
1 stop
2 stop
: 8nl \ sid ior -- sid ior’

Used in the configuration string to set the most common case, 8 data bits, no parity, 1 stop bit,
e.g.

8n1
> setDTR SerCfg: DTR \ sid ior flag -- sid ior’

Used in the configuration string to set the DTR line, where flag is non-zero for active and zero
for inactive.

1 DTR

> setRTS SerCfg: RTS \ sid ior flag -- sid ior’
Used in the configuration string to set the RT'S line, where flag is non-zero for active and zero
for inactive.

1 RTS
: Unix \ sid ior -- sid ior
Used in the configuration string. Set the serial line to use LF as the line terminator sequence.
CR characters will be ignored by ACCEPT.

: DOS \ sid ior -- sid ior



Chapter 7: Generic 10 87

Used in the configuration string. Set the serial line to use CR/LF as the line terminator sequence.
This can also be used for Macs before OS X, but LF characters will be ignored by ACCEPT.

: open-Ser \ addr len attribs sid -- sid ior

The string caddr/len is split into two. The space delimited left hand side is used as the device,
e.g. "/dev/ttyS4" which is opened in raw mode. A default set up of 115200 baud, n81 and Unix
line handling is applied, and then the right hand side of the string is parsed. Only the words
documented as available in the serial configuration string may be used.

: loctl-ser \ addr len fn sid -- ior
The serial ioctl functions provide control over the serial line outputs and Unix/DOS mode
handling. Where parameters are shown as ¢%, their value is ignored.

?? 7?7 #50 sid -- ior ; Unix mode, LF

?? ?? #51 sid -- ior ; DOS/Windows mode, CR/LF

?? 7?7 #52 sid -- ior ; Mac mode, CR

?? 7?7 #53 sid -- ior ; native mode, LF for Unices

caddr len #55 sid -- jor ; set string for CR.

linechar ignchar #56 sid -- ior ; set input chars for ACCEPT
?? flag #60 sid -- ior ; set DTR, nz=active

?? flag #61 sid -- ior ; set RTS, nz=active

(////////\

Device Creation

: initSerDev \ sid --
Initialise the sid for a serial device.

: serdev: \ "name" -- ; Exec: -- sid
Create a Serial Port based Generic 10 device in the dictionary.

serdev: <name>

OS X serial devices

When using USB serial devices, the name used varies according to the function. The names are:

You can list them at a Terminal prompt with
1ls /dev/tty*
1s /dev/cux

The /dev/tty* devices are for modems waiting for a call into the OS X machine. It is assumed
that the DCD line is active. Hence these are of little use for the three wire connections (RX,
TX, Gnd) typically used to connect to embedded systems.

The /dev/cu* devices are much better suited for connecting out (calling up) to other systems.

Mac serial terminal emulators

The ones listed here are just ones recommended by others.

screen - on every Mac. For hardcore Unix buffs.



88 VFX Forth for macOS X

screen /dev/cu.usbserial 19200

http://hints.macworld.com/article.php?story=20061109133825654

Coolterm - GUI app.

http://freeware.the-meiers.org

goSerial - GUI app.
http://wuw.furrysoft.de/?page=goserial

The most widely used equivalent to Windows’ HyperTerm appears to be minicom. It isn’t
pretty, but it works and is easy to use.

http://pbxbook.com/other/mac-tty.html#minicom

7.6.5 XTERM Device

The XTERM Generic 10 Device controls an xterm or equivalent device. Facilities are provided
for cursor positioning, setting the foreground and background colours, line editing and line
history. Cursor positioning uses ANSI escape sequences. Any terminal emulator which supports
these sequences, e.g. in ANSI or VT'100 mode, should work with this code. A good introduction
to ANSI escape sequences may be found at http://en.wikipedia.org/wiki/ANSI_escape_code.

In order to create a device use the XTERM: definition given later. When opening a device the
parameters to OPEN-GEN are unused. For compatibility with future versions please set them to
-1, e.g.

-1 -1 -1 <sid> open-gio
The IOCTL function has the following action

You can set the text foreground and background colours:

<fcolour> <bcolour> #10 <sid> IOCTL-GIO drop

where colour is a colour in the XTERM format. If a colour is set to -1 the existing colour is
left unchanged. For XTERMs and VT100/220 compatible terminals, the following colours are
standard.

constant Black

constant Red

constant Green

constant Yellow

constant Blue

constant Magenta

constant Cyan

constant White

: +bright \ color -- color’
\ Convert a colour into its bright version.
#60 +

OO W RO )

~




Chapter 7: Generic 10 89

Similarly, terminal positioning control uses ANSI (VT100 and VT220) sequences. If you are
connecting using Telnet or other remote access techniques (or even a real terminal), set it to
ANSI, VT100 or VT220 compatibility mode.

Line editing is performed using the cursor keys, BS (<- or "H) to delete before the cursor, and
the DELETE keys to delete after the cursor. You can also use "W and “R for cursor movement.
You can recall lines using the up (previous) and down (next) cursor keys. Lines can be edited
after recall. You can also use "E and "D instead of the up and down keys. Note that Linux
implementations are not consistent in the codes returned by keys such as BS and DELETE.

Unlike other devices, an XTERM uses three handles that correspond to stdin, stdout and stderr.
By default these are handles 0, 1 and 2 respectively. If you wish to use different handles, you
are responsible for their management. Use these handles by setting them into the /xterm-sid
structure below. By default, the open operation uses the preset handles, which are not closed
by the close operation.

The source code can be found in the file Lib/Osz32/Genio/xterm.fth, which is compiled during
the second stage build. If you change this file, perform a second stage build when you wish to
commit to using the changed file.

struct /xterm-sid \ —— len

Defines the SID of an xterm console device.

reuse field names of GEN-SID

input handle

output handle

error handle

control flags

bit 0 - QUIT control

bit 1 - rfu

bit 2 - 1=maintain history, O=none
bit 3 - 1=history in system ini file
address of 64k history buffer
current history line#

lowest history line#

pointer to INI file section name

gen-sid +
int xs.hIn
int xs.hOut
int xs.hErr
int xs.flags

int xs.hiBuff

int xs.hilndex

int xs.hilLowIndex

int xs.hiSection
end-struct

P A A L L A A e

: initXtermSid \ addr —-

Initialise a /xterm structure at addr.

: xterm: \ -— ; -- sid ; XTERM: <name>

Create a new terminal device.

xterm: xconsole \ -- addr

VEFX Forth console.

: init-xcon \ ——

Set up to use the xconsole device. Performed at start up and compilation.

: term-xcon \ -

Shut down the xconsole device. Performed at shut down.



90 VFX Forth for macOS X

7.6.6 Sockets

This Generic I0 Device operates on Mac OS X socket for input or output. General socket
programming words are made available in the Forth vocabulary.

In order to create a device use the SOCKDEV: definition given later.

When opening a socket device the parameters to OPEN-GEN have the following meaning;:

ADDR Address of configuration data structure
LEN connection name zstring
ATTRIBS O=socket, 1=connect, 2=listen.

Sockets API

Many of the BSD socket functions are defined. Note that the accept function is accessed by
SACCEPT to avoid a name clash with the ANS word ACCEPT.

AliasedExtern: saccept int OSCALL accept( int, void *, int *);
Because the sockets accept function has a name clash with the Forth word ACCEPT it is made
available as SACCEPT.

Network order (big-endian) operations

TCP/IP protocols usually send data in what is called network order, which just means most-
significant byte first. In memory, numbers are thus stored in big-endian form. The following
words provide memory operations for this. These functions have to be capable of fetching 32
bit cells from 16 bit aligned addresses, not just from 32 bit aligned addresses.

: we(n) \ addr -- ulé
Network order 16 bit fetch.

: w!'(n) \ ul6é addr --
Network order 16 bit store.

: @(n) \ addr -- u32
Network order 32 bit fetch.

' (n) \ u32 addr --
Network order 32 bit store.

: w, (n) \ w —-
Network order W,

, (n) \ x —-

Network order version of , (comma).

General socket functions in Forth

These words are available in the FORTH vocabulary for general socket programming.

max_path buffer: IPname \ -- addr
Holds the local computer’s name as a zero terminated string.

2 cells buffer: IPaddress \ -- addr



Chapter 7: Generic 10 91

Holds the local computer’s IP address as a four byte IPv4 number in network order. A value of
0 indicates that the address is unknown.

: findLinkIP \ caddr len addr --
Find the IP address assigned to the given link, e.g. ethO, and place the link address at addr.

: findCurrIP \ addr --
Place the IP address of the current network at addr. This word assumes that only one link is
active at a time. The assumption is usually true.

#256 buffer: NetIF$ \ -- addr
Holds the name of the default network device, usually en0. This is a counted string.

: Init0SXSockets \ -
Initialise sockets; called by the cold chain and during compilation.

: 7sockerr \ serr -- ior
If serr is -1, the actual errno value is returned, otherwise zero is returned.

: writesock \ c-addr u hsock -- len ior

Write the buffer to a socket, returning the length actually written and 0 on success, otherwise
returning SOCKET_ERROR and the Linux error code.

: readsock \ c-addr u hsock -- len ior

Read into a buffer from a socket, returning the length actually read and 0 on success, otherwise
returning SOCKET_ERROR and the Linux error code.

: pollsock \ hsock -- #bytes|-1
Poll a socket and return the number of bytes available to be read.

: sockReadLen \ caddr len hsock -- ior

Read len bytes of input from a socket to the buffer at caddr, returning ior=0 if all bytes have
been read. This is a blocking function which will not return until len bytes have been read or
an error OCcurs.

: bindTo \ hs af port ipaddr -- res

A non-BSD function that binds a socket to the given set of address family (af, usually AF_INET),
port (port) and IP address (ipaddr). The returned result (res) is 0 for success, otherwise -1. See
BIND.

(Connect) \ caddr u port# socket -- socket ior
Attempt to connect to a server. The socket has already been created in the appropriate mode.
Caddr/u describes the server address either as a name or an IPaddress string and port# is the
requested port. If u is zero, caddr is treated as a 32 bit number representing an IPv4 address.
On success, the socket and zero are returned, otherwise SOCKET_ERROR and the Linux error
code are returned.

: TCPConnect \ c-addr u port# -- socket ior

Attempt to create a TCP socket and connect to a server. */i{Caddr/u} describes the server
address either as a name or an [Paddress string and port# is the requested port. If u is zero,
caddr is treated as a 32 bit number representing an IPv4 address. On success, the socket and
zero are returned, otherwise SOCKET_ERROR and the Linux error code are returned.

: UDPConnect \ c-addr u port# -- socket ior

Attempt to create a TCP socket and connect to a server. */i{Caddr/u} describes the server
address either as a name or an IPaddress string and port# is the requested port. If u is zero,
caddr is treated as a 32 bit number representing an IPv4 address. On success, the socket and
zero are returned, otherwise SOCKET_ERROR and the Linux error code are returned.



92 VFX Forth for macOS X

Socket device

A socket device is created by SOCKETDEV: <name>.

[SocketDev: SDsid \ -- addr

When opening a socket device the parameters to OPEN-GEN have the following meaning:

ADDR Address of an /SDopen data structure.
LEN Address of Windows IP address zstring

If 0, /SDopen contains the IP adress.
ATTRIBS mode: O=socket, l=connect,

The following constants define the modes used to open socket:
SD_SOCKET SD_CONNECT SD_LISTEN
struct /SDopen \ -- len

The structure required for opening a socket Generic I/O device. Not all fields are used by all
modes. The */fo{/SDopen} structure is defined as follows:

int SDO.af \ address family, usually AF_INET
int SDO.type \ socket type, e.g. SOCK_STREAM
int SDO.protocol \ IPPROTO_TCP ...

sockaddr_in field SDO.sa \ SOCKADDR_IN structure
end-struct

The SDO.af field is AF_INET for all TCP/IP operations. The SDO.TYPE field is
SOCK_STREAM for TCP or SOCK_DGRAM for UDP. The SDO.protocol field is
IPPROTO_TCP for TCP or IPPROTO_UDP for UDP. The SDO.sa field is a SOCKADDR or
SOCKADDR_IN structure (same sizes), defined as follows:

~
struct sockaddr_in \ -- len
2 field sin_family \ address family, usually AF_INET
2 field sin_port \ port ; in network order
4 field sin_addr \ IP address ; in network order
8 field sin_reserved \ RFU
end-struct
_

Note that only the first field is stored in native (little-endian for Intel i32) order. The other
fields contain data in network (big-endian) form.

To open a socket, fill in a /SDopen structure, and call OPEN-GEN. The following example connects
to a server.



Chapter 7: Generic 10 93

( N
SocketDev: SDsid \ -- addr ; device

create zserver$ \ —- z$addr ; server name
z", www.mpeforth.com"

create MySDopen \ -- addr
AF_INET , \ internet family
SOCK_STREAM , \ connection type
IPPROTO_TCP , \ TCP protocol
AF_INET w, \ server family, start of SOCKADDR_IN
#80 w, (n) \ server port
#0 , (n) \ server IP address if known
\

8 allot&erase reserved

MySDopen zserver$ SD_connect SDsid open-gio
N J

This will return the sid again and a result code (0=success).

The socket can then be used as the current I/O device.

: UseSDsid \ -
SDsid dup op-handle ! ip-handle !

struct /socket-sid \ -- len
Defines the SID of a socket device.

: sd-flush \ sid -- ior
Output to the socket is buffered to avoid running out of Linux buffers. Call FLUSHOP-GEN ( --
ior ) or KEY? to transmit the buffered output.

: sd-close \ sid -- ior
The close function flushes pending output, closes the event object if used, performs shutdown
with how=1, and closes the socket.

: sd-type \ caddr len sid --
Buffered output.

: sd-write \ caddr len sid -- ior
Buffered output.

: sd-emit \ char sid --
Buffered output.

: sd-cr \ sid --
Buffered output.

: sd-key? \ sid -- #bytes|-1

The KEY? primitive for a socket returns the number of bytes available. If an error occurs, -1 is
returned and KEY returns CR (ASCII code 13) so that KEY and ACCEPT do not block. Use the
IOCTL function if you want to test for a specific error return code. Any buffered output is sent
first.

: sd-key \ sid -- char
If an error occurs, CR (ASCII code 13) is returned. Any buffered output is sent first.



94 VFX Forth for macOS X

: sd-ioctl ( addr len fn# sid -- ior )

The IOCTL primitive for a socket is used to get or set socket status. The following functions
are supported by IOCTL-GEN for sockets.

addr 0 #10 sid -- ior

Place the number of bytes available to be read by recv at addr.
0 0 #11 sid -- ior

Set the socket to notify when closed. N.B. This is not currently implemented
0 0 #12 sid -- ior

Tor is returned non-zero if the socket has been closed. Ior is is returned false (zero) if the socket
is still open or notification has not been requested. The socket must be open.

state FD_xxx #20 sid -- ior

Set the created socket to notify on the FD_xxx flags. If state is zero the socket is set/restored
to blocking mode otherwise it is set to blocking mode. N.B. This is not currently implemented

state FD_xxx #21 sid -- flags

Flags contains FD_xxx bits which indicate what events have occurred from the set rquested by
the call above. Flags is is returned false (zero) if no events have been reported or notification
has not been requested. The socket must be open. N.B. This is not currently implemented

0 0 #22 sid -- ior

Reset any notifications returned by function 21 above. lor is zero for success or the Linux error
code. N.B. This is not currently implemented

0 O #23 sid —-- ior

Stop notification. Ior is zero for success or the Linux error code. N.B. This is not currently
implemented

0 flags #30 sid —— 0 ; set the device flags
00 #31 sid -- flags ; get the device flags

The device flags control how some operations behave. Flags is a set of bits as follows:

[Bit 0 - set to stop echoing during ACCEPT.

Device Creation
: InitSD \ addr --
Initialise the data required for a socket device at addr.

: SocketDev: \ "name" -- ; Exec: —- sid
Create a new socket device called name in the dictionary.



Chapter 8: Local variable support 95

8 Local variable support

For programming a hosted Forth with a GUI interface and for other significant styles of pro-
gramming, the ANS Forth specification of local variables is inadequate. VFX Forth and other
modern Forth systems provide an alternative notation with more functionality and better read-
ability. A subset of this notation became the basis of the Forth200x local variables proposal.
The ANS locals mechanism is supported in VFX Forth for backwards compatibility.

8.1 Extended locals notation

The MPE extended local syntax provides a number of significant benefits to the ANS standard.
e Named inputs are in stack comment order rather than reverse to make source more readable.
e The definition line can declare a number of true local variables for tempory data storage.

e Ability to declare local arrays/buffers for structure definitions etc.

In this implementation, locals are allocated as a frame on the return stack. Note that the word’s
return address is no longer available.

The following example shows a code extract from a WINPROC, there are the traditional 4

inputs, a local array storing a temporary structure and one output.

( )

: WndProc {: hWnd uMsg wParam 1Param | clientrect[ RECT ] -- res :}
uMessage WM_SIZE =

if
hWnd clientrect[ GetClientRect drop \ Get client rect
hWndChild @ \ useto resize child
#0
#0

clientrect[ RECT.right @
clientrect[ RECT.bottom @
TRUE MoveWindow drop
0 exit

then

...... Other Messages ....

hWnd uMessage wParam 1Param DefWindowProc \ Msg default.

b

- J

The following syntax for named inputs and local variables is used.

The sequence:

[{: nil ni2 ... | 1vl 1v2 ... -—— ol 02 :} }

defines named inputs, local variables, and outputs. The named inputs are automatically copied
from the data stack on entry. Named inputs and local variables can be referenced by name



96 VFX Forth for macOS X

within the word during compilation. The output names are dummies to allow a complete stack
comment to be generated.

e The items between {: and | are named inputs.
e The items between | and — are local variables.

e The items between — and :} are outputs.

For compatibility with previous implementations, { is accepted in place of {: and } in place of
:}. The change to {: ... :} took place as a result of the Forth200x standard.

Named inputs and locals return their values when referenced, and must be preceded by -> or
TO to perform a store, or by ADDR to return the address.

Arrays may be defined in the form:

[arr[ n ]

Any name ending in the ’[" character will be treated as an array, the expression up to the
terminating ’]” will be interpreted to provide the size of the array. Arrays only return their base
address, all operators are ignored.

In the example below, a and b are named inputs, a+b and a*b are local variables, and arr[ is a
10 byte array.

-
: foo {: ab | atb a*b arr[ 10 ] -- :}
ab+ -> atb
ab *x -> axb
cr atb . axb .

b

-

Floating point arguments (inputs) and temporaries are declared by placing F: before the name,
but not for arrays of floats, which should be declared as above. Floating point locals use the
CPU’s native FP (80x87) stack, and so are most suitable for use with the %lib%/x86/ndp387.fth
floating point package. Floating point locals are stored in the extended 80 bit (10 byte) format.
This is the default for the %lib%/x86/ndp387.fth code. The default action of an FP local is to
return its value. The following operators can be applied:

e none - return the value,

e TO or -> - store to the local,

e ADDR - return the address of the data,
e ADD or +TO - add to the value,

e SUB or -TO - subtract from the value.

: foo2 {: a f: f1 b f: f2 | f: f3 f: f4d c d e -- :}

The arguments a and b above are integer arguments taken from the Forth data stack. The



Chapter 8: Local variable support 97

arguments f1 and f2 are FP arguments taken from the floating point unit. Local values f& and
f4 are FP locals and the others are integer locals. An example of using FP locals follows:
a N
: foo3 {: f: f1 | £: f2 f: £3 -- :}
0e0 -> f2 10e0 -> £f3 ( noop )
f1 add f2 f1 sub £3 ( noop )

f2 £f. £3 f£.
: { \ -
The start of the traditional brace notation { ... }.
: {: \ -
The Forth200x name to start the extended local variable notation. Use in the form:
{: ni1 ni2 ... | 1vl 1v2 ... —— ol 02 :}

8.2 ANS local definitions

The ANS locals definitions are provided for use with ANS standard compliant code. The ANS
locals system offers limited functionality.

(LOCAL) \ Comp: c-addr u -- ; Exec: -- x
When executed during compilation, defines a local variable whose name is given by c-addr/u.
If u is zero, c-addr is ignored and compilation of local variables is assumed to finish. When
the word containing the local variable executes, the local variable is initialised from the stack.
When the local variable executes, its value is returned. The local variable may be written to by
preceding its name with TO. The word (LOCAL) is intended for the construction of user-defined
local variable notations. It is only provided for ANS compatibility.

: LOCALS| \ "<namel> ... <namen> |" --
Create named local variables <name1> to <namen>. At run time the stack effect is ( xn..x1
--), such that <namel> is initialised to x1 and <namen> is initialised to xn. Note that this
means that the order of declaration is the reverse of the order used in stack comments! When
referenced, a local variable returns its value. To write to a local, precede its name with TO. All
locals created by LOCALS| are single-cell integers. In the example below, a and b are named
inputs.
( N
: foo \ab--

locals| b a |

ab+ cr .

abx*x cr .

I

- )

8.3 Local variable construction tools
variable LVCOUNT \ -- addr
Holds the offset in the frame for the next local integer variable.

: FRADJUST \ size -- offset
Adjust the size of the current local values frame. Used by words that create additional local
variables outside a LOCALS| ... | or { ... } notation.






Chapter 9: Working with Files 99

9 Working with Files

9.1 Source file names

The following words are useful when writing your own tools.

.SourceName \ “SFSTRUCT --
Given a source file structure such as that held by the variable ’SourceFile display the current
file name.

: CurrSourceName \ —- c-addr u
Returns the current source file name without expanding any text macros.

: stripFilename \ cstring --

The input 1is a counted string containing a full path and filename e.g.
"C:\WINDOWS\SYSTEM32\COMMAND.COM". The file name is removed to
leave "C:\WINDOWS\SYSTEMS32". Note that the actual directory separator used depends
on the host operating system.

9.2 ANS File Access Wordset

The basis for all file operations comes from the ANS specification wordset for Files. The following
group of definitions are implementations of the ANS standard set.

The following data types are used:
fam "File Access Method", describes read/write permission etc.

ior "TO Result", A return result from most 10O calls, this value is 0 for success or non-
zero as an error-code.

fileid "File Identifier", a handle for a file.
: bin \ fam -- ’fam

Modify a file-access method to include BINARY.
: r/o \ -- fam

Get ReadOnly fam

: w/o \ -- fam

Get WriteOnly fam

:r/w \ -- fam
Get ReadWrite fam

: Create-File \ c-addr u fam -- fileid ior
Create a file on disk, returning a 0 ior for success and a file id. Macro names are expanded
before the operating system file create call is made.

: Open-File \ c-addr u fam -- fileid ior
Open an existing file on disk. Macro names are expanded before the operating system file open
call is made.

: 7Relative-Open-File \ c-addr u fam -- fileid ior

Open an existing file on disk. Macro names are expanded before the operating system file open
call is made. If the first two characters of the file name are ’./’ the file path is taken to be
relative to the directory of the containing include file.



100 VFX Forth for macOS X

: Close-File \ fileid -- ior

Close an open file. Use correct method for VFCACHED files.

: Write-File \ caddr u fileid -- ior

Write a block of memory to a file.

: write-line \ c-addr u fileid -- ior

Write data followed by EOL. IOR=0 for success. Note that the end of line sequence is given by
EOL$ and is operating system dependent.

: Read-File \ caddr u fileid -- u2 ior

Read data from a file, use VF-CACHE Version where appropriate. The number of characters
actually read is returned as u2, and ior is returned 0 for a successful read.

: read-line \ c-addr ul fileid -- u2 flag ior 11.6.1.2090

Read an ASCII line of text from a file into a buffer, without EOL. Read the next line from the
file specified by fileid into memory at the address c-addr. At most u! characters are read. Up
to two line-terminating characters may be read into memory at the end of the line, but are not
included in the count u2. The line buffer provided by c-addr should be at least u1+2 characters
long.

If the operation succeeds, flag is true and ior is zero. If a line terminator was received before
ul characters were read, then 42 is the number of characters, not including the line terminator,
actually read (0 <= u2 <= ul). When ul = u2, the line terminator has yet to be reached.

If the operation is initiated when the value returned by FILE-POSITION is equal to the value
returned by FILE-SIZE for the file identified by fileid, flag is false, ior is zero, and w2 is zero. If
ior is non-zero, an exception occurred during the operation and ior is the I/O result code.

An ambiguous condition exists if the operation is initiated when the value returned by
FILE-POSITION is greater than the value returned by FILE-SIZE for the file identified by fileid,
or if the requested operation attempts to read portions of the file not written.

At the conclusion of the operation, FILE-POSITION returns the next file position after the last
character read.

: file-size \ fileid -- ud ior

Get size in bytes of an open file as a double number, and return ior=0 on success.

: file-position \ fileid -- ud ior

Return file position, and return ior=0 on success.

: Reposition-File \ ud fileid -- ior

Set file position, and return ior=0 on success.

: Resize-File \ ud fileid -- ior

Set the size of the file to ud, an unsigned double number. After using RESIZE-FILE, the result

returned by FILE-POSITION may be invalid. Note that for a VF-CACHEJ file, this operation is
performed on the underlying physical file.

: delete-file \ caddr len -- ior

Delete a named file from disk, and return ior=0 on success. Text macros will be expanded before
the file is opened.

: FileExists? \ caddr len -- flag

Look to see if a specified file exists, returning TRUE if the file exists. Text macros are expanded.



Chapter 9: Working with Files 101

: RelFileExists? \ caddr len -- flag

Look to see if a specified file exists, returning TRUE if the file exists. A ./’ prefix is treated as
a relative file. Text macros are expanded.

: FileExist? \ caddr len -- flag
Use FileExists? above. OBSOLETE, WILL BE REMOVED.

: RelFileExist? \ caddr len -- flag
Use RelFileExists? above. OBSOLETE, WILL BE REMOVED.

: file-status \ caddr len -- x ior 11.6.2.1524

Return the status of the file identified by the character string c-addr/len. If the file exists, ior is
zero; otherwise ior is the implementation-defined 1/0O result code. X contains implementation-
defined information about the file (always zero for VFX Forth).

: rename-file \ caddrl lenl caddr2 len2 —-- ior 11.6.2.2130

Rename the file named by the character string cZaddr/len1 to the name in the character string
caddr2/len2. Ior is the I/O result code.

: flush-file \ fileid -- ior

Flush changed file data to disk, and return ior=0 on success.

: include-file \ file-id --

Include source code from an open file whose file-id (handle) is given. The file is closed by
INCLUDE-FILE.

: included \ c-addr u --

Include source code from a file whose name is given by c-addr/u. Text macros will be expanded
before the file is opened.

: include \ "<name>" --
A more convenient form of INCLUDED. Use in the form:

INCLUDE <name>

Text macros will be expanded before the file is opened. See GetPathSpec for a discussion of file
name formats including spaces.

: required \ c-addr u --
If the file specified by c-addr/u has already been INCLUDED, discard c-addr/u; otherwise, perform
the function of INCLUDED. You must provide the source file’s extension.

: require \ "<name>" --

Skip leading white space and parse name delimited by a white space character. Put the address
and length of the name on the stack and perform the function of REQUIRED. You must provide
the source file’s extension.

: data-file \ -- size ; DATA-FILE <filename>

Loads a file to memory at HERE and ALLOTs memory. The size of the file is returned. This is a
good way to load data directly into the dictionary at compile time. It avoids having to convert
binary data into streams of digits and commas. For example, DocGen keeps a CSS file in the
dictionary:

CREATE BootstrapAddr \ —-
data-file bootstrap.min.css \ load the file
constant /Bootstrap \ keep the length




102 VFX Forth for macOS X

9.3 File Caching

VFX Forth supports memory caching of read-only files. Any file which is to be cached is opened
using VF-0PEN-FILE rather than the ANS word OPEN-FILE. The normal ANS wordset can then
be used with re-vectoring being automatic. The control directive +VFCACHE (see later) enables
INCLUDE and friends to use file caching automatically, which decreases compilation time for
larger projects.

: IsFileIDCached? \ fileid -- flag

Determine if an open file referenced by FILEID is a cached file.

: VF-Open-File \ caddr len fam -- fileid ior

Open a file using VFCACHE Mode. This means read the whole file into memory.
: VF-Close-File \ fileid -- ior

Close a VFCACHED file, i.e. free its memory.

: VF-Read-File \ caddr u fileid -- u2 ior

Read into a buffer from a VFCached file.

: Mem-Open-File \ c-addr u fam -- fileid ior
Open a memory block caddr/u using VFCACHE mode. Fam is ignored. When this file is closed,
no attempt is made to FREE caddr/u.

: IncludeMem \ c-addr u --
Include source code from a memory buffer. Errors cause a THROW.

9.4 "Smart File" Inclusion

Any pathname used to include source from a text-file passes through the Smart File filter. This
code attempts to resolve the file extension for a name passed to it. The resolve algorithm
looks for the file path as specifed, then with a number of common file extensions. See the
ResolveIncludefilename definition below. If no match is found then the original name is
passed back.

TRUE value bSmartFileLookUp?
When non-zero, the smart file filter is enabled. See also +SMARTINCLUDE and -SMARTINCLUDE
which should be used to control the smart file filter.

: dirChar? \ char -- flag
Returns true if the character is one of the two directory separators specified in the system
variables DIR1-CHAR and DIR2-CHAR.

: Extension? \ c-addr u -- len true | false

Treats c-addr/u as a file name and returns the extension length and true if the file name has an
extension (i.e. it ends in ".xxx’), or just false if no extension is present. The extension can be
of any length (including 0) as names of the form "name." are treated as having an extension.
Unfortunately such names can exist. A name of zero length returns false.

: ChangeEXT3 \ c-addr u c-addrl ul -- c-addr u

Change the last 3 characters of the string at c-addr u to use the text at c-addrl ul (where ul
is always 3).

: ResolveIncludeFileName \ c-addr u -- c-addr u

Given what may be a extension-less filename attempt to locate a matching file and return its
string description. Note that the returned string is built at HERE. Matching rules are:

e If the file name exists, return



Chapter 9: Working with Files 103

e If an extension is present, return.

e Look for a recognized extension.

The extensions ".BLD" ".FTH" ".F" ".CTL" ".SEQ" are searched for in that order. For case-
sensitive file systems, lower case extensions are tried before upper case. Mixed case is not
attempted.

9.5 Source File Tracking

VFX Forth automatically keeps track of compiled source files. Whenever a new source is com-
piled into the system, the file location and dictionary impact is recorded. One use of this system
is LOCATE specified below which can attempt to find the source for a definition and automatically
load it into your favourite editor for review.

Many users keep their source code in a path (directory or folder) with all the files being loaded
by a control file which contains many lines of the form:

include parti\petrol
include partil\gas

include part2\forms
include part2\recalculate

If the source code is moved, for example to a laptop, the new path may be different and LOCATE
and friends may then fail. In order to cope with this, additional tracking text can be added at
the start of the file name. This text is usually a macro name. What text is added is controlled
by the value BuildLevel and the macro DEVPATH.

If BuildLevel is set to 0, no additional information is added. If BuildLevel is set to -1, the
contents of the macro DEVPATH are prepended to the file name. Do not set BuildLevel to any
other values!

DEVPATH may itself contain a macro name. LOCATE expands macros before attempting to open
the file. This enables you to partition an application across several build phases, and still be
able to LOCATE words when the tree structures have been moved or modified.

0 value BuildLevel \ - n
Used to control what is added to the start of the file name for source file tracking. See above
for more details.

: +source-files \ --
Enable source file tracking.

: —-source-files \ --
Disable source file tracking.

defer sourceTrackRename \ zaddr --

A hook so that names for the source file tracking system can be updated to suit user habit. The
input zaddr is a pointer to a buffer containing a zero-terminated file name. The updated name
must be returned in the same buffer. The buffer is of size MAX_PATH bytes. The default action
is drop.



104 VFX Forth for macOS X

: AddSourceFile \ c-addr u —- ’c-addr ’u “SFSTRUCT | c-addr u -1

Add a source file to the tracking vocabulary. caddr/u represents the pathname supplied to
INCLUDED.

(whereis) \ xt -- c-addr u line# TRUE | FALSE

Given the XT of a word this will return the filename string, the line number and TRUE for the
definition. If the xt cannot be found, just a 0 is returned.

: whereis \ -- ; WHEREIS <name>
Use in the form WHEREIS <name> to find the source location of a word.

: source-info \ c-addr u -- start end size true | false

Return dictionary start/end and binary size of a compiled source file from a string. Returns
FALSE only if the source name was not recognized.

defer .locate \ --
Perform the desired action of LOCATE below. The LOCATE_PATH and LOCATE_LINE macros have
been set up.

defer .nolocate \ --
Perform the action of LOCATE below when the word has been found but has no source information.

: Locatelnfo \ caddr u line# --
Set the locate macros using caddr/u as the file name and line# as the line number. The file
name is expanded.

: locate \ <"name"> --

Use in the form LOCATE <name> and display its source code. This word is redefined by the
Windows Studio environment.

.sources \ -
Display list of sources used in build so far, includes size, source file name and dictionary pointers.

9.6 Control Directives

The following words can be used to control the filesystem extensions.

: +VFCACHE \ -
Enable caching of read-only files when opened.

: -VFCACHE \ -

Disable caching of read-only files.

: +SMARTINCLUDE A

Enable smart resolution of file extensions when including sources.
: —-SMARTINCLUDE \ -

Disable smart resolution of file extensions when including sources.
: +VERBOSEINCLUDE \ -

Enable verbose mode for file includes and overlay handling.

: —-VERBOSEINCLUDE \ -

Disable verbose mode for file includes and overlay handling.



Chapter 10: Tools and Utilities 105

10 Tools and Utilities

10.1 Conditional Compilation

The following words allow the use of [IF] ... [ELSE] ... [THEN] blocks to control which pieces
of code are compiled /executed and which are not. These words behave in the same manner as
compiled definitions of IF ... ELSE ... THEN structures but take immediate effect even outside
definitions. Nesting is supported.

variable cc-level \ —- addr

A variable used for error checking during compilation. It holds the number of [IF] ... [THEN]
blocks we currently inside. Cleared at cold start.

VOCABULARY Compilation? \ --

The COMPILATON? vocabulary holds the control code for passover operations during a conditional
block.

: PassOver \'n--
Skip n levels of nested conditional code.

: have \ "<name>" -- flag
Look to see if the word exists in the CONTEXT search order and return flag true if found.

[defined] \ "<name>" -- flag Forth200x

Look to see if the word exists in the CONTEXT search order and return flag TRUE if the word
exists. This is an immediate version of HAVE.

[undefined] \ "<name>" -- flag Forth200x
The inverse of [DEFINED]. Return TRUE if <name> does not exist.

[ELSE] A 15.6.2.2531
Marks the start of the ELSE clause of a conditional compilation block.

[IF] \ flag -- 15.6.2.2532
Marks the start of a conditional compilation clause. If flag is TRUE compile/execute the follow-
ing code, otherwise ignore all up to the next [ELSE] or [THEN]. Note that the parser for [IF]
and [ELSE] is really dumb. You cannot comment out an [ELSE] or or THEN. However they are
nestable.

[THEN] \ -- 15.6.2.2533
Marks the end of a conditional compilation clause.
[ENDIF] \ -

Marks the end of a conditional compilation clause.
The following definitions exist in the Compilation? vocabulary.

[IF] 1+ 1 cc-level +! ;
[IF] increments the number of levels to skip.
[THEN] 1- -1 cc-level +!
[THEN] decrements the number of levels to skip.
[ENDIF] 1- -1 cc-level +! ;
[ENDIF] decrements the number of levels to skip.

[ELSE] 1- dup if 1+ then ;
[ELSE] switches the redirection level.



106 VFX Forth for macOS X

10.2 Console and development tools

The following words provide useful diagnostic routines and/or general purpose functions in the
spirit of the ANS Forth TOOLS and TOOLS EXT wordsets.

.tabword \ addr$ --
Displays tabbed string, CRing if required. Variable TABWORDSTOP contains the size of a tab.

.tabwordN \ addr$ --
Displays tabbed *NAME*, CRing if required. Variable TABWORDSTOP contains the size of a tab.

0 value PauseConsole \ -- device
Some tools, e.g. WORDS and DUMP will pause periodically if PauseConsole returns the same value
as the output device in OP-HANDLE. Any interactive console can select this behaviour with:

op-handle @ to PauseConsole

You can stop any pausing with:

0 to PauseConsole

: flushKeys \ -
Flush any pending input that might be returned by KEY.

: HALT? \ -- flag

Used in listed displays. This word will check the keyboard for a pause key (<space> or <If> or
<cr>). If a pause key is pressed it will then wait for another key. The return flag is TRUE if the
second key is not a pause key. If the first key is not a pause key TRUE is returned and no key
wait occurs. Line Feed characters are ignored.

: DUMP \ addr u -- 15.6.1.1280

Display an arbitrary block of memory in a "’hex-dump’ fashion which displays in both HEX and
printable ASCII.

: LDUMP \ addr len -- ; dump 32 bit long words
Display (dump) len bytes of memory starting at addr as 32 bit words.
.S \ - 15.6.1.0220

Display to the console the current contents of the data stack. If the number base is not HEX
than a dump is also made in HEX.

1 .rs \ -
Display to the console the current contents of the return stack. Where possible a word name is
also displayed with the data value.

: 7 \ a-addr —- 15.6.1.0600
Display the contents of a memory location. It has the same effect as @ ..

: WORDS \ -
Display the names of all definitions in the wordlist at the top of the search order.

.FREE \ -
Text display of size of unused dictionary area in Kbytes

: mat \ -- ; MAT <wildcardpattern>

Search the current search-order for all definitions whose name matches the wild-carded expression
supplied. Expressions can contain either an asterix *’ to match 0 or more characters, or can be
a query '?’ to mark any single character.

: similars { | temp[ MAX_PATH ] -- }



Chapter 10: Tools and Utilities 107

A slightly faster version of MAT with a limited range. The definitions listed will contain <pattern>
within their name. The <pattern> can only contain printable ASCII characters.

: sim \ -- ; SIM <pattern>

A slightly faster version of MAT with a limited range. The definitions listed will contain <pattern>
within their name. <pattern> can only contain printable ASCII characters. A synonym for
SIMILARS.

10.3 Zero Terminated Strings

A group of simple primitive words to work with 0 terminated ASCII strings.
: caddr>zaddr \ caddr zaddr --
Copy a counted string to a 0 terminated string.
.z$ \ zaddr --
TYPE a zero terminated string.
: z$. \ zaddr --

TYPE a zero terminated string. Depending on the output device, this may be a bit more efficient
than .z$.

.z$EXPANDED \ zaddr --
TYPE a zero terminated string after macro expansion.
: z$, \ c-addr u —-

Lay the given string in the dictionary as a zero terminated string. The end of the string is not
aligned.

1 $>z, \ addr --

Lay a zero terminated string in the dictionary, given a counted string. The end of the string is
not aligned.

1 oz", \ "cc<quote>" --

"comma" in a zero terminated string from the following text. The end of the string is not
aligned.

: $>ASCIIZ \ caddr -- zaddr

Convert a counted string to a zero terminated string. The converted string is in a thread-local
buffer of limited lifetime

: asciiz>$ \ zaddr -- caddr

Convert a zero terminated string to a counted string. The conversion happens in place.

10.4 Structures

The data structure words implement records, fields, field types, subrecords and variant records.

The following syntax is used:



108 VFX Forth for macOS X

( 0
STRUCT <name>
n FIELD <fieldl>
m FIELD <field2>
SUBRECORD <subreci1>
a FIELD <sf1>
b FIELD <sf2>
END-SUBRECORD

END-STRUCT
- %

A structure may contain multiple subrecords, and subrecords may be nested.

A field adds its base offset to the given address [that of the record or subrecord]. A record
returns its length, and so can be used as an input to field.

len FIELD <name>
n len ARRAY-OF <name>

Subrecords are checked for stack depth, like branch structures. They may be nested as required.

Variant records describe an alternative view of the current record or subrecord from the start
to the current point. The variant need not be of the same length, but the larger is taken

SUBRECORD <name>

VARIANT <name2> .............. END-VARIANT
END-SUBRECORD

use

[<structure> BUFFER: <name> }

to create a new instance of a previously defined structure.

The VFX structures package has also been enhanced to handle areas of overlapping data called
"UNIONS". Consider the example:



Chapter 10: Tools and Utilities 109

~
struct test

int a
int b
union
int c
int d
part
1 field el
1 field e2
part
int f
subrecord jim
float jiml
int jim2
end-subrecord
end-union
20 field g
end-struct

Each part of a union is overlapped, but fields within a part are treated as individual items. So,
in the above example, ¢ and f refer to the same cell, but ¢ and d refer to different cells.

struct \ -- addr 0 ; -- size
Begin definition of a new structure. Use in the form STRUCT <name>. At run time <name> returns
the size of the structure.

: end-struct \ addr n —-
Terminate definition of a structure.

: field \ n <"name"> -- ; Exec: addr -- ’addr

Create a new field within a structure definition of size n bytes.

int \ <"name"> -- ; Exec: addr -- ’addr
Create a new field within a structure definition of size one cell.

: array-of \ n #entries size -- n+(#entriesx*size)
Create a new field within a structure definition of size #entries*size.

subrecord \n -—-n csp O [parent]
Begin definition of a subrecord.

: end-subrecord \ n csp len -- n+len
End definition of a subrecord.

: variant \n--ncspO
Currently an alias for subrecord. Begin a variant.

: end-variant \ n cspm -- nlm
Terminate a variant clause.

: union \ currentOffset -- csp O currentOffset currentOffset
Begin UNION definition block.

: part \ max base last -- max base start
Begin definition of alternative data description within a UNION.

: end-union \ csp maxLength baseOffset lastOffset -- next-offset
Mark end of a UNION definition block.



110 VFX Forth for macOS X

: field-type \'n -—-
Define a new field type of size n bytes. Use in the form <size> FIELD-TYPE <name>. When
<name> executes used in the form <name> <name2> a field <name2> is created of size n bytes.

10.4.1 Forth200x structures

The Forth200x standards effort has adopted s notation that is compatible with VFX Forth, but
changes some names.

: begin-structure \ -- addr 0 ; -- size
Begin definition of a new structure. Use in the form BEGIN-STRUCTURE <name>. At run time
<name> returns the size of the structure. The Forth200x version of the MPE word struct.

. end-structure \ addr n —-
Terminate definition of a structure. The Forth200x version of the MPE word end-struct.

: +FIELD \ n <"name"> -- ; Exec: addr —- ’addr

Create a new field of size n bytes within a structure definition. The Forth200x version of the
MPE word field.

: cfield: \ nl <"name"> -- n2 ; Exec: addr —- ’addr

Create a new field of size 1 CHARS within a structure definition,

. field: \ nl <"name"> -- n2 ; Exec: addr -- ’addr
Create a new field of size 1 CELLS within a structure definition. The field is ALIGNED.

10.5 ENVIRONMENT queries

The ENVIRONMENT system was defined by ANS Forth to enable you to find out about the
underlying Forth system. The needs of modern portable libraries have proven the ENVIRON-
MENT system to be inadequate and so it is little used. The ENVIRONMENT system may be
removed in a future standard.

You use the system through the word ENVIRONMENT?

caddr len —- false | i*x true

where caddr/len represents the name of a query. If the system does not know this query, it just
returns false (0). If it does know the query, it return the relevant value with true (-1) on top of
the stack.

In VFX Forth, ENVIRONMENT? is implemented by searching a vocabulary called ENVIRONMENT. If
the query is found, it is executed.

10.5.1 Predefined queries

The words in this section are defined in the ENVIRONMENT vocabulary.

#2655 constant /COUNTED-STRING \ - n
Maximum length of a counted string.

picnumsize constant /HOLD \ --n
Maximum size of HOLD area.

padsize constant /PAD \ ——n
Maximum size of PAD.



Chapter 10: Tools and Utilities 111

8 constant ADDRESS-UNIT-BITS \ --n
Number of bits in an address unit (byte in this system).

true constant CORE \ -- TRUE
The full CORE wordset is present.
true constant CORE-EXT \ -- TRUE

The full CORE-EXT wordset is present.

false constant FLOORED \ -- flag
The standard division operators use symmetric (normal) division.

#255 constant MAX-CHAR \ —— u ; max value of char
Characters are 8 bit units.

: MAX-D \ --d

Maximum positive value of a double number.

: MAX-N \ -=-n

Maximum positive value of a single signed number.

: MAX-U \ -- u ; max size unsigned number
Maximum value of a single unsigned number.

: MAX-UD \ -- u ; max size unsigned double
Maximum value of a double unsigned number.

: MAX-D \ --d

Maximum positive value of a double number.

: MAX-N \ -—— n

Maximum positive value of a single signed number.

: MAX-U \ -- u ; max size unsigned number
Maximum value of a single unsigned number.

: MAX-UD \ -- u ; max size unsigned double
Maximum value of a double unsigned number.

rp-size cell / constant RETURN-STACK-CELLS \ --n
Maximum size of the return stack (in cells).

sp-size cell / constant STACK-CELLS \ --n
Maximum size of the data stack (in cells).

true constant EXCEPTION \ -- TRUE

EXCEPTION word-set is present.

true constant EXCEPTION-EXT \ -- TRUE

EXCEPTION EXT word-set is present.

10.5.2 User words

> environment >body @ constant environment-wordlist \ -- wid
The wid used by ENVIRONMENT? for look ups. You can add your own queries to this wordlist.

: ENVIRONMENT? \ c-addr u -- false | i*x true 6.1.1345

The text string c-addr/u is of a keyword from ANS 3.2.6 Environmental queries or the optional
word sets to be checked for correspondence with an attribute of the present environment. If the
system treats the attribute as unknown, the returned flag is false; otherwise, the flag is true and
the i*x returned is of the type specified in the table for the attribute queried.



112 VFX Forth for macOS X

[environment?] \ "string" -- false | i*x true
As ENVIRONMENT? but is IMMEDIATE and takes the string from the input stream.

.environment \ --

Display a list of queries.

10.6 Automatic build numbering

The build numbering system allows you to generate a string in the system which can be used
for displaying version information.

The system relies on a file (normally called BUILD.NQO) which holds the complete build version
string. The string can consist of any characters, e.g "Version 1.00.0034". The contents of the
file can be placed as a counted string in the dictionary by BUILD$,. After successful compilation
of your application, UPDATE-BUILD will update the build number file by treating all the digits
in the build string as a single number to be incremented. )

: Make-Build \ buffer --

Read the contents of the build number file and place as a counted string in the application
defined buffer for later use.

: Build$, \ —-

Read the contents of the build number file and place as a counted string at HERE. ALLOT the
required space.

: Date$, A
Compile date as counted string.
: Time$, A
Compile time as counted string
: DateTime$, \ -

Compile date and time as counted string

: Set-BuildFile \ c-addr u --
Set the build number file.

: BuildFile \ —- ; Buildfile <filename>

Use GetPathSpec to parse a filename from the input stream, and make it the current build
number file.

: Update-Build \ --
Update the contents of the build number file ready for the next build.
The following example, defines which file to use, loads the text into a buffer, and finally updates
the build text. By placing Update-Build last in your load file, your build number file will only
be updated for each successful build.
( )
s" MyBuild.no" Set-Buildfile \ set file to use
#256 buffer: MyVersion$ \ -- caddr

MyVersion$ make-build \ load version string

update-build \ put this last in load file
- J




Chapter 10: Tools and Utilities 113

10.7 PDF help system

MPE documentation is produced by using DocGen to produce an indexed PDF file. The PDF
help system parses the index file produced by pdfter to display the relevant page of the PDF
manual. To display a particular line in a PDF file requires the following incantation for Adobe
Reader v7 and beyond:

<reader> /A "page=n=OpenActions" "<pdffile>"

The page number is the PDF file page number, not the page number in the document section.
For example, to display page 10 on a Windows PC, use:

"C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.exe"
/A "page=10=0OpenActions" "%h%.pdf"
"C:\Products\VfxCommunity\Sources\Manual\PDFs\VfxWin.pdf"

For VFX Forth for Windows, you can use the menu item Option -> Set PDF help ... for the
configuration. For all versions, when setting the base of the PDF file name, do not add the file
extension. This is because the PDF file and the index file share the same base name.

The page number is extracted from the index file VfxWin.viz, from which this example comes:

\initial {A}

\entry {\code {abelll}}{11}
\entry {\code {abl}}{12}

\entry {\code {abort}}{15, 200}

\entry {\code {abort"}}{200}
-

The file is parsed for the entry containing the word name, the page number is extracted, and
the file page is displayed. The index file is derived from the .fns file produced by pdftex.

The source code is in Lib\ PDFhelp.fth.

TextMacro: p \ —- $text
Defines the page number macro p.

TextMacro: h \ -- $text
Define the help file macro h.

#256 constant /Help$ \ --n
Size of the command and base string buffers.

/Help$ buffer: HelpCmd$ \ -- addr

Holds the pathname and command line of the PDF viewer as a counted string. In the command
line, the page number is supplied by the text macro %p%, and the base help file path/name
with no extension is supplied by the text macro %h%. This string may include other macros.
For Acrobat Reader under Windows, we must use the full reader pathname; we cannot use an
association. The default string is

"<reader>" /A \gpage=Vp%=0penActions\q %hJ.pdf

where <reader> is



114 VFX Forth for macOS X

"C:\Program Files\Adobe\Reader 8.0\Reader\AcroRd32.exe"

If you change the settings, use S\" as you may need to have double-quotes characters in the
string around path names that include spaces.

One alternative is the free PDF-XChange Viewer from
http://www.tracker-software.com/product/pdf-xchange-viewer

"<path>\PDFXCview.exe" /A "page=Y/p%h" "%h%.pdf"

Another alternative is the free Foxit Reader from

http://www.foxitsoftware.com/

The required command strings for Foxit Reader are

"<path>\Foxit Reader.exe" /A "page=lph" "%h%.pdf"
The rules for the Forit Reader command line need to be checked with every new major release!

Users have also suggested Nitro, Qpdfview and Sumatra among many others. MPE has no
position on this - it’s a matter of personal preference. Just check the viewer’s manual for the
command line incantation!

For some Linux systems, e.g. Ubuntu, zpdf is installed by default. The VFX defaults are
s\" xpdf %hl).pdf %p% &" HelpCmd$ place
s" ~/VfxLin<ver>/Doc/VfxLin" HelpBase$ place
#17 HelpPageO !

If you used the default installer script, replace <ver> by by one of Eval, Standard or Pro, e.g.
VixLinStandard.

Some Linux distributions, e.g. Debian, require shared documentation files to be compressed.
Type:
sudo find / -name "VfxLin.pdf"

To see where VfxLin.pdf has been installed, and to see what extension, e.g. .pdf.gz is in use.

For OS X, the default PDF viewer is Preview. It can be run from the command line using:

open -a Preview filename.pdf

However, going to a page number is undocumented. The best solution we have found is to install
the Skim package from:

http://skim-app.sourceforge.net/

Skim can be run using the supplied executable script Bin/skimpage.scpt. This is run in the
form:



Chapter 10: Tools and Utilities 115

skimpage.scpt "<file>" <pageno>

After copying the script file to a suitable directory such as /usr/bin (done by the install script),
a suitable setup is:

s\" skimpage.scpt \q%h’%.pdf\q %p’%" HelpCmd$ place
s" ~/VfxForth/Doc/Vfx0sx" HelpBase$ place
#14 HelpPageO !

/Help$ buffer: HelpBase$ \ -- addr

Contains a full path to the directory containing the help and index files, plus the base file name
with no extension. This string may include macros. A counted string, e.g for Windows

%LOAD_PATHY\ . .\doc\VfxMan

and for Linux

%LOAD_PATHY/ . ./doc/VfxLin

and for OS X
%LOAD_PATHY/ . ./doc/VEx0sx

variable HelpPageO \ -- addr

Holds the offset to be added to the index page number to convert it to a PDF page number.
This value may change according to the manual version, so it is extracted from the index file.

0 value DebugHelp? \ -- flag

Set this non-zero if you are having trouble setting up the help system. The command line will
be displayed.

: $Help \ caddr len -- ior ; O=success
Run the help file system using caddr/len as the search key.
: Help \ "<word>" -- ; e.g. HELP dup

Get help on the given word name, e.g.

help locate

Unlike LOCATE, HELP does not require the word to be present in the Forth dictionary and current
search order, it only requires that a word have an index entry in the PDF manual.

: PDFLoadCfg \ --
Load the PDF help configuration from the INI file. Linux and OS X only.

: PDFSaveCfg \ --
Load the PDF help configuration from the INI file. Linux and OS X only.

10.8 INTI files

If you are upgrading from a system installed before March 2012, you may/will need to change
how your application specifies its INI files.

The INI file mechanism used by Windows is also available for other operating systems. This
allows us to use the same configuration file mechanism for all operating systems that support
shared libraries (not in VFX Forth for DOS yet).



116 VFX Forth for macOS X

The code accesses a derivative of the iniParser v3.0b shared library published by Nicholas Dev-
illard at http://ndevilla.free.fr/iniparser/, where the latest version may be found. Note that
the MPE versions differ from this version, but are upward compatible. We have submitted our
changes to the author. A binary copy of the library can be found in the Bin folder. You are
free to release this with your applications.

The full sources for iniParser as wused by MPE are in the directories
<VFX>\Tools\iniparser3.0b\src and <VFX>\Tools\iniparser3.0b\src.win. The rele-
vant shared library (.so or .dll) is in the Bin folder and is copied to the Windows\System32 or
/user/lib directory during installation.

The private profile file mechanism used by VFX Forth for Windows before version 4.20 may be
found in < VFX>Lib\ Win32\ Profile.fth. The old mechanism is not portable between operating
systems and is much slower. We strongly recommend that you convert any existing code that
uses the PROFILE: : xxx words to use the new mechanism.

The following example shows how INI files are used. A later section describes the words in
detail.
a N
: SaveSome \ -
s" %IniDir%\UserIde.ini" Ini.Open O= if
S" Options" Ini.Section
s" FontSet" FontSet? Ini.WriteInt
s" LogFont" 1f[ LOGFONT Ini.WriteMem
s" Editor" szEditor zcount Ini.WriteStr
Ini.Close
endif

: LoadSome \ —-
s" %IniDir%\UserIde.ini" Ini.Open O= if
S" Options" Ini.Section
s" FontSet" O Ini.ReadInt dup -> FontSet? if
s" LogFont" 1f[ LOGFONT Ini.ReadMem
1f[ CreateFontIndirect -> hConsoleFont
endif
s" Editor" szEditor MAX_PATH zNull zcount Ini.ReadZStr
Ini.Close
endif

The main things to note are:
e The INI file must be opened before use.

e Sections are the parts of the INT file delimited by [name]. Sections contain key/value pairs
in the form key=value. The value portion is represented as text.

e Your code can use a key as a flag to determine how others are handled.

e The INI file must be closed, otherwise changes will not be written back.



Chapter 10: Tools and Utilities 117

10.8.1 Shared library interface

Library: libmpeparser64.so.0
The library reference.

: Inilib \ -- addrl0
Used to determine if the library is available and to isolate the host-dependent library name from
the rest of the code.

Library: libmpeparser.so.0
The library reference.

: IniLib \ -- addr|0
Used to determine if the library is available and to isolate the host-dependent library name from
the rest of the code.

Library: libarmmpeparser.so.0
The library reference.

: Inilib \ -- addrl0
Used to determine if the library is available and to isolate the host-dependent library name from
the rest of the code.

Extern: int iniparser_getnsec( void * dict );

This function returns the number of sections found in a dictionary. The test to recognize sections
is done on the string stored in the dictionary: a section name is given as "section" whereas a
key is stored as "section:key", thus the test looks for entries that do not contain a colon. This
function returns -1 in case of error.

Extern: char * iniparser_getsecname( void * dict, int n );

This function locates the n-th section in a dictionary and returns its name as a pointer to a
string statically allocated inside the dictionary. Do not free or modify the returned string! This
function returns NULL in case of error.

Extern: void iniparser_dump_ini( void * dict, void * file );
This function dumps a given dictionary into a loadable ini file. It is Ok to specify stderr or
stdout as output files.

Extern: void iniparser_dump( void * dict, void * file );

This function prints out the contents of a dictionary, one element by line, onto the provided
file pointer. It is OK to specify stderr or stdout as output files. This function is meant for
debugging purposes mostly.

Extern: char * iniparser_getstring( void #* dict, const char * key, char * def );
This function queries a dictionary for a key. A key as read from an ini file is given as "sec-
tion:key". If the key cannot be found, the pointer passed as 'def’ is returned. The returned char
pointer is pointing to a string allocated in the dictionary, do not free or modify it.

Extern: int iniparser_getint( void * dict, const char * key, int notfound );
This function queries a dictionary for a key. A key as read from an ini file is given as "sec-
tion:key". If the key cannot be found, the notfound value is returned. Supported values for
integers include the usual C notation so decimal, octal (starting with 0) and hexadecimal (start-
ing with Ox) are supported. Examples:

- ngon -> 42
- "042" -> 34 (octal -> decimal)
- "0x42" -> 66 (hexa -> decimal)




118 VFX Forth for macOS X

Warning: the conversion may overflow in various ways. Conversion is totally outsourced to
strtol(), see the associated man page for overflow handling.

Extern: int iniparser_getboolean( void * dict, const char * key, int notfound );

This function queries a dictionary for a key. A key as read from an ini file is given as "sec-
tion:key". If the key cannot be found, the notfound value is returned. A true boolean is found
if one of the following is matched:

( h
string starting with ’y’

string starting with ’Y’

string starting with ’t’

string starting with °T’

string starting with ’1°

|
i

A false boolean is found if one of the following is matched:

( )
string starting with ’n’

string starting with °N’

string starting with ’f’

string starting with ’F’

string starting with ’0’

|
= e e e

The notfound value returned if no boolean is identified, does not necessarily have to be 0 or 1.
Extern: int iniparser_set( void * dict, char * entry, char * val );

If the given entry can be found in the dictionary, it is modified to contain the provided value.
If it cannot be found, -1 is returned. It is Ok to set val to NULL.

Extern: void iniparser_unset( void * dict, char * entry );
If the given entry can be found, it is deleted from the dictionary.
Extern: int iniparser_find_entry( void * dict, char * entry );

Finds out if a given entry exists in the dictionary. Since sections are stored as keys with NULL
associated values, this is the only way of querying for the presence of sections in a dictionary.

Extern: void * iniparser_load( const char * ininame );

This is the parser for ini files. This function is called, providing the name of the file to be read.
It returns an ini dictionary object that should not be accessed directly, but through accessor
functions instead. The returned dictionary must be freed using iniparser_freedict().

Extern: int iniparser_save( void * d, char * ininame );

Saves a dictionary object. This is just a wrapper around iniparser_dump_ini() to provide insu-
lation between the caller and the file system for languages and operating systems which do not
expose the libc library. The returned error code is 0 for a successful operation. You still need
to call iniparser_freedict below.

Extern: void iniparser_freedict( void * dict );

Free all memory associated to an ini dictionary. It is mandatory to call this function before the
dictionary object gets out of the current context.




Chapter 10: Tools and Utilities 119

10.8.2 Tools

These tools are in the SYSTEM vocabulary and may change from version to version. If all you
are interested in is using the MPE parser interface API, skip this section.

0 value IniSrcFile \ -- addr
Holds the currently loaded INI source file pathname as a zero-terminated string.

0 value IniDestFile \ -- addr
Holds the currently loaded INI destination file pathname as a zero-terminated string.

0 value IniSection \ -- addr
Holds the current section name as a zero-terminated string.

0 value IniKey \ -- addr
Holds the current key as a zero-terminated string.

0 value IniData \ -- addr
Holds the current write data as a zero-terminated string,

0 value IniDefault \ —-- addr
Holds the current default as a zero-terminated string

0 value IniScratch \ -- addr
Holds the current scratch buffer for processing quote marks.

0 value IniDict \ -- addr

Holds the current dictionary pointer.

: IniAlloc \ ptr -- ior

Allocate /IniBuff bytes and place the buffer address at ptr. The first bye of pir is set to zero.
: IniFree \ ptr --

Free buffer memory allocated by us.

: InitIniBuffs \ -- ior

Initialise all the buffers and pointers.

: TermIniBuffs \ --
Free all the buffers and clear pointer.

: +DoubleQ \ z$1 —— z$2
Convert double quote characters to pairs of double quote characters.

: -DoubleQ \ z$1 —— z$2
Convert pairs of double quote characters to single double quote characters.

: >IniName \ caddr len dest --
Copy name to zero terminated string.

: >IniString \ caddr len dest --

Copy string to zero terminated string. If the last character is a ’\’, add a dummy comment " ;
x".

: WriteIniFile \ --

Write the current INT dictionary to the INI file.

: FormIniKey \ caddr u --
Form the key string from the current section name and the given key. The key string is of the
form "<section:<key>".



120 VFX Forth for macOS X

: setIniString \ dict entry val --
Calls iniparser_set() and marks the INI file as changed.

: IniExists \ caddr len --
If the file does not exist create an empty one.

: czplace \ caddr len dest

Store the string caddr/len as a counted and zero-terminated string at dest. The strings must
not overlap.

: nib>hex \ 4b -- char
Convert a nibble to a hex character.

: Mem>Hex \ caddr len zdest —-

Generate an ASCII hex representation of the memory block as a zero terminated string at zdest.
The length len of the memory block must be less than 128 bytes.

: Hex>Nib \ char -- 4b
Convert a hex character to a nibble.

: Hex>Mem \ zsrc caddr len —-

Convert the zero-terminated ASCII HEX string at zsrc to its memory representation in the
buffer caddr/len.

10.8.3 Using the library

The code here is not thread safe, you so may need a semaphore from open to close. Some data
is held in global variables/buffers.

: Ini.Open \ caddr len -- ior
Define and load the Ini file, returning zero on success. Sets the destination file to be the same
as the loaded file. Macros in the file name are expanded.

: Ini.Dest \ caddr len --
Set the destination file. This must be done after Ini.0Open and before Ini.Close.

: Ini.Close \ -~
If the dictionary has been changed, write it out to the destination file.

: Ini.Section \ caddr len --
Set the current section name.

: Ini.Section? \ caddr u -- flag
Given a section name, make it current, and return true if it exists.

: Ini.WriteSection \ caddr u --
Make the given section current, and write it to the dictionary.

: Ini.ReadStr \ c-addrl ul c-addr2 u2 c-addr3 u3 --

Read a string value under key c-addri/ul and return it in the result buffer specified by c-
addr2/u2. If the key couldn’t be read then the default string c-addr3/u3 is placed in the result
buffer. Note that the returned string is placed in the result buffer as a zero terminated and
counted string.

: Ini.ReadZStr \ c-addrl ul c-addr2 u2 c-addr3 u3 --

Read a string value under key c-addri/ul and return it in the result buffer specified by c-
addr2/u2. If the key couldn’t be read then the default string c-addr3/u3 is placed in the result
buffer. Note that the returned string is placed in the result buffer as a zero terminated string.



Chapter 10: Tools and Utilities 121

: Ini.ReadInt \ c-addrl ul default -- value

Attempt to read an integer value from key c-addri/ul and return it. If the key couldn’t be read
then the default is returned.

: Ini.ReadBool \ c-addrl ul defbool -- bool
Attempt to read an boolean value from key c-addri/ul and return it. If the key couldn’t be
read then the default is returned.

: Ini.ReadMem \ c-addrl ul c-addr2 u2 --

Read a memory block with key c-addrl/ul and return it in the result buffer specified by c-
addr2/u?. If the key couldn’t be read then the result buffer is filled with zero bytes. u2 must
be less than 128 bytes.

: Ini.WriteStr \ c-addrl ul c-addr2 u2 --

Write a string value attached to a key, into the currently named section of the current INI file.
C-addr1/ul describes the name of the key to place the entry under, and C-addr2/u2 the string
to write. If the key already exists it is updated.

: Ini.WriteZStr \ c-addrl ul caddrz --
Write a zero-terminated string value attached to a key, into the current section of the INI file.
C-addr1/ul describes the name of the key to place the entry under, and caddr\ the string to
write. If the key already exists it is updated.

: Ini.WriteInt \ c-addrl ul u2 --
Write a string value corresponding to decimal text for u2 to the key C-addri/ul in the current
section of the current dictionary.

: Ini.WriteBool \ c-addrl ul bool --
Write a string value corresponding to decimal text for bool to the key C-addri/ul in the current
section of the current dictionary.

: Ini.WriteMem \ c-addrl ul c-addr2 u2 --

Write a memory block attached to a key, into the currently named section of the current INI
file. C-addr1/ul describes the name of the key to place the entry under, and C-addr2/u2 the
memory block to write. If the key already exists it is updated.

: Ini.DeleteKey \ c-addrl ul --
Delete a key entry completely from the current section. C-addri/ul is the name of the key.

10.8.4 Operating system generics

#256 buffer: IniFile$ \ -- addr

A 256 byte buffer for the expanded INI file path name, which may include macros. The path
name is stored as a counted string. This buffer is initialised at startup from the three components
below.

#256 buffer: IniDir$ \ -- addr
A 256 byte buffer for the expanded INI file directory name, which may include macros. The
path is stored as a counted string. This buffer is initialised at startup

#256 buffer: AppSupp$ \ -- addr
The directory where application support files go, held as a counted string This directory must
already exist. May contain macros. You can change this for your own application.

#256 buffer: AppSuppDir$ \ -- addr

The directory in AppSupp$ in which the INI file is placed, held as a counted string. The directory
will be created if it does not already exist. This string may be null, or may define one or two
levels of directory. You can change this for your own application.



122 VFX Forth for macOS X

64 buffer: AppSuppIni$ \ -- addr
The name of the INI file in AppSuppDir$, held as a counted string. By default, the file is
VfzForth.ini. You can change this for your own application.

256 buffer: PrevIni$ \ -- addr
Holds the full pathname of a default file copied to the INI file if it does not exist. May contain
macros. You can change this for your own application.

-1 value GenINI? \ -- flag ; true to generate INI files

If this VALUE is set true (the default condition) .INI files will be generated for VFX Forth and
applications when the application performs BYE. Such files will also be loaded when VFX Forth
or an application is executed.

defer CheckSysIni \ --
This word is run at cold start before any INI file is loaded. It should provide an INI file if one
is needed and does not exist.

1 value IniParserModes \ -- modes
If you need only one INI file that could be in the directory from which the application is loaded,
set this to zero.

TextMacro: IniFile
A text macro that returns the INI file name after macro expansion at startup.

TextMacro: IniDir
A text macro that returns the INI file directory after macro expansion at startup.

: —ini-exec \ --
When used on the command line in lower case, —ini-exec causes the INI file to be loaded from
PrevIni$, which is usually in the executable directory.

(CheckSysIni) \ --
Creates the INI file directory if required and sets up the INI file macros. This is the default
action of CheckSysIni.

(CheckSysIni) \ --
Creates the INI file directory if required and sets up the INI file macros. This is the default
action of CheckSysIni.

10.8.5 Operating system specifics

Setting the INI files has changed. You must now set up four strings rather than two, and
IniFile$ is set at startup, and not by you. The defaults are shown below for three operating
systems.

These changes were required by changes in the Windows security system, the desire to fit in
"well" with Unix-derived systems, and the requirement for multiple application-specific data
files. See the IniDir macro in particular.

Windows

By default, the INI file is %$AppLocal %\ MPE\ VfzForth\ VfzForth.ini. If the directory or file
does not exist, as may happen after installation, the directory is created and/or a default file is
copied.

s" %$AppLocal’" AppSupp$ place \ system dir

s" MPE\VfxForth" AppSuppDir$ place \ our dir



Chapter 10: Tools and Utilities 123

s" VfxForth.ini" AppSuppIni$ place \ file
s" %load_path)\VfxForth.ini" PrevIni$ place \ default/previous

Mac OS X

By default, the INI file is %$home%/Library/Application Support/VfrForth/VfrForth.ini. If the
directory or file does not exist, as may happen after installation, the directory is created and/or
a default file is copied.

s" %$home¥/Library/Application Support" AppSupp$ place
s" VfxForth" AppSuppDir$ place

s" VixForth.ini" AppSuppIni$ place

s" %%home%/.VEixForth.ini" PrevIni$ place

s" %%home¥/Library/Application Support" AppSupp$ place
s" VixForth" AppSuppDir$ place

s" VfxForth64.ini" AppSuppIni$ place

s" %%home%/.VEixForth64.ini" PrevIni$ place

Linux

By default, the INI file is %$home% /. VfxForth/VfrForth.ini. If the directory or file does not
exist, as may happen after installation, the directory is created and/or a default file is copied.

s" %$home%" AppSupp$ place

s" .VfxForth" AppSuppDir$ place

s" VfxForth.ini" AppSuppIni$ place

s" %%home%/.VEfxForth.ini" PrevIni$ place

s" %$home%" AppSupp$ place

s" .VfxForth" AppSuppDir$ place

s" VfxForth64.ini" AppSuppIni$ place

s" %%home%/.VEfxForth64.ini" PrevIni$ place

10.8.6 System initialisation chains

These chains are used for configurations options which are preserved when VFX Forth closes
down, and are reloaded when it starts. Note that because of the position in the cold and exit
chains, you must be careful that you still have the configuration data. For example, if a window
is closed before configuration save, its position may have to be saved in a buffer rather than
reading it directly from the window. Similarly, when the configuration information is restored,
the window may /will not be open yet.

If you want to read and write directly from live information, it is more reliable to provide full
handlers in your application code. However, there will be a time penalty because the INI file is
repeatedly opened and closed.

variable IniLoadChain \ -- addr
The anchor for the initialisation load sequence.

variable IniSaveChain \ -- addr



124 VFX Forth for macOS X

The anchor for the initialisation save sequence.

: AtIniLoad \ xt --
The given word is run during the INT load sequence.

: AtIniSave \ xt --

The given word is run during the INI save sequence.
The words run must have no net stack action, and behave according to the rules of ExecChain.

: LoadSysIni \ --

Open the INI file specified by iniFile$, run the IniLoadChain, and close the file. Run in the
cold chain. No action is taken if GenINI? is zero.

: SaveSysIni \ --

Open the INI file specified by iniFile$, run the IniSaveChain, and close/save the file. Run in
the exit chain. No action is taken if GenINI? is zero.

10.9 Converting from the previous mechanism

By design, there is an almost one to one correspondence between the words in the profile and
INI mechanisms. There are two major differences.

e The new code rarely returns error codes as we and you nearly always DROPped them.

e You must use Ini.Close after you have finished with the INI file. The data is in memory,
and is only flushed at close.

For examples of use, see LoadUserIde and SaveUserIde in Studio\XTB.FTH for the Windows
versions.

10.10 Switch chains

10.10.1 Introduction

Switch chains provide a mechanism for generating extensible chains similar to the CASE ... OF
... ENDOF ... ENDCASE control structure, except that the user may extend the chain at any

time. These chains are of particular use when defining winprocs whose action may need to be
adjusted or extended after the chain itself has been defined.

The following example shows how to define a simple chain that translates numbers to text. At
a later date, translations in Italian are added.

Define some words which will be executed by the chain.

. one ." one"

: two " otwo"

: three ." three" ;
: many . ." more" ;

The following definition defines a switch called NUMBERS which executes ONE when 1 is the
selector, TWO if 2 is the selector, or MANY if any other number is the selector. Note that
MANY must consume the selector. The word RUNS associates a word with the given selector.



Chapter 10: Tools and Utilities 125

( N
[switch numbers many
1 runs one
2 runs two
switch]
cr 1 numbers

cr 5 numbers
. J

The next piece of code extends the NUMBERS switch chain, and demonstrates the use of RUN:
to define an action without giving it a name.
( M
[+switch numbers

3 runs three

4 run: ." four" ;
5 run: ." five" ;
switchl]

cr 1 numbers
cr 5 numbers

cr 8 numbers
_ J

The following portion of this example demonstrates how selectors are overridden by the last
action defined. Although an action has already been defined for selectors 1 and 2, if another
action is defined, it will be found before the old ones, and so the action will be performed.

e N
[+switch numbers
1 run: ." uno" ;
2 run: ." due" ;
switch]
cr 1 numbers
cr 2 numbers
cr 3 numbers
cr 5 numbers
cr 8 numbers
_ J

10.10.2 Switches glossary

code switch \ i*x id switchhead -- j*x
Given an id and the head of a switch chain, SWITCH will perform the action of the given id if
it is found, otherwise it will perform the default action, passing id to that action.

[switch \ "default" -- head ; i*x id -- j*x
Builds a new named switch list with a default action. Use in the form: [SWITCH <name>
<default.action> where <default.action> must consume the selector id.

[+switch \ "head" -- head ; to extend an existing switch
Used in the form [+SWITCH <switch> to extend an existing switch chain.

:orun: \ head id -- head ; add nameless action to switch
Used in the form <id> RUN: <words> ; to define a nameless action in a switch chain.

: runs \ head id "word" -- head
Used in the form <id> RUNS <word> to define a named action in a switch chain.

switchl] \ head -- ; finishes a switch chain or extension
Used to finish a [SWITCH <name> <default> or [+SWITCH <name> chain definition.



126 VFX Forth for macOS X

.switches \ -- ; lists defined switches
Lists all the defined switch chains.
: InSwitch? \ id xt -- flag
Returns true if the id is in the switch chain given by its xt.

10.11 First-In First-Out Queues

VFX Forth contains a set of words for managing character (8 bit ) queues. These queues are
allocated from the system heap.
STRUCT FIFO \ —- len

A structure which defines the internal format of the fifo. To create a new FIFO you must create
an instance of the structure. The instance pointer (address of structure) is then used as an
identifier for subsequent operations.

: InitialiseFIFO \ *FIF0 size -- ior

Initialise a FIFO with a maximum buffer size’ bytes long. the IOR is 0 for success and non-zero
for memory allocation failed.

: FreeFIFO \ *FIF0 -- ior

Destroy FIFO. Memory is released back into the heap.

: resetFIFO \ *fifo --

Discard any characters in the FIFO.

: FIFO0? \ #*FIFO0 -- n ; Return # bytes used in fifo
Return the number of storage bytes in use within a fifo.

: >FIF0(b) \ BYTE *FIF0 -- ior

Add a byte to the FIFO queue. IOR is 0 for success.

: FIFO>(b) \ *FIFO0 -- byte ior

Remove next byte from a FIFO. IOR is 0 for success.

10.12 Random numbers

The random number system in VFX Forth is based around the DEFERred word RANDOM (see
below). We have found that a single random number generator (RNG) is not adequate for all
applications. Some applications need a particular degree of randomness, others require more
speed. If you do not like the default RNG, you can install your own.

The implementation uses a seed in the variable *\fo{RandSeed), which is set to some time value
at start up. The default implementation is in the SYSTEM vocabulary.
defer RANDOM \ --u

Generate a random number.

: CHOOSE \ nl -- n2

Generate a random number *\i{n2) in the range 0..n1-1. The algorithm is from Paul Mennen,
1991 .

: +randDigits \ buff$ -- ; 64 bit version

Add a 32 bit random number as 8 hex digits at the end of the counted string in buff. Used for
generating random names for things like semaphores.



Chapter 10: Tools and Utilities 127

10.13 Long Strings

In order to extract very long strings from the source code, the word PARSE/L is provided.
Support is also provided for counted strings with a 16 bit count. These words allow long strings
such as those required for internationalisation to be generated without the restrictions of counted
strings that use a character-sized count.

The contents of this section are subject to change until the ANS Forth committee reaches a
conclusion about internationalisation issues. An implementation of the system descibed in the
paper on the MPE web site may be found in the file %LIB%\INTERNATIONAL.FTH.

: parse/l \ char -- c-addr len ; like PARSE over lines

Parse the next token from the terminal input buffer using <char> as the delimiter. The text up
to the delimiter is returned as a c-addr u string. PARSE/L does not skip leading delimiters.
In order to support long strings, PARSE/L can operate over multiple lines of input and line
terminators are not included in the text. The string returned by PARSE/L remains in a single
global buffer until the next invocation of PARSE/L. PARSE/L is designed for use at compile
time and is not thread-safe or winproc-safe.

: wcount \ addrl -- addr2 len
Given the address of a word-counted string in memory WCOUNT will return the address of the
first character and the length in characters of the string.

W™ \ -- waddr u ; step over caller’s in line string
Returns the address and length of inline 16-bit word-counted string. Steps over inline text.

(w")) \ -- waddr u ; dangerous factor!
A factor provided for the generation of long string actions that have to step over an inline string.
For example, to define W." which uses a long string, you might compile (W.") and then use
W', to compile the inline string. The definition of (W.") then might be:

W.") A
((W")) type
: wAppend \ c-addr u $dest --

Add string c-addr u to the end of word-counted string $dest.

(w$+) \ c-addr u $dest -- ; SFP0O1
Add string c-addr u to the end of word-counted string $dest.

: w+ \ $src $dest -- ; add $SRC to end of $DEST
Add word-counted string $src to the end of word-counted string $dest.

: w$, \ caddr len --
Lay a 16 bit string string into the dictionary at HERE, reserve space for it and ALIGN the dictio-
nary. The inline string string has a 16 bit count and 16 bit zero termination.

cow", \ -- ; compile a word counted string

multiline version of ",. Interprets multiline text and lays down inline string string with 16 bit
count and 16 bit zero termination.

: 1ls" \ ¢c: == ; i: -- caddr 1len

A version of 8" that can extend over several lines. Line separators are ignored.

: zls" \ ¢c: -— ; i: -- zaddr



128 VFX Forth for macOS X

A version of Z" that can extend over several lines. Line separators are ignored. The returned
address is that of the start of the zero-terminated string.

10.14 Command Line parser

VFX Forth includes code for handling the OS X command line. You can access the command
line using Forth versions of ARGV[] and ARGC as in C. At start up, VFX Forth attempts to
recreate the original command line using arge and the argv|[] strings so that the command line
can be treated as a sequence of Forth commands.

The attempt to recreate the command line is only partially successful because the C parser uses
double-quotes characters to denote literal strings. These are passed to the application as a single
string with the double-quotes characters removed. For example:

vixosx s" foo  bar" type

will give a command line error. You can escape the double-quotes characters in the usual C
manner, but this will not preserve the spaces.

vixosx s\" foo Dbar\" type

Most OS X system shells, including Bash, allow you to use single-quotes characters for literal
strings.

vixosx ’s" foo  bar" type’
:argc \ —-u
The number of defined arguments.
1 argv( \ n -- pointer|0

Given an index of 0..arge-1 return a pointer to the command line token’s zero-terminated string.
0 argv[ returns the executable’s name. If the argument does not exist, the pointer is zero.

: CommandLine \ -- c-addr len
Return the system command line. This is recreated from the data passed to VFX Forth and
may not be exact.

10.15 C Language Style Helpers

VFEX Forth supports a few "helper" definitions to aid the parsing of "C" header files. See
VFXBase/GenTools.fth.

These are especially helpful in the parsing of Windows resource scripts which are based on the
Microsoft RC Language for C, and for cutting and pasting from C header files.

: #define \ <spaces"NAME"> <eol"value-def"> -- ; Exec: -- value

A simple version of C’s #define preprocessor command. Any text between the definition name
and the end of the line is EVALUATEd when <NAME> is invoked.

2 // \ -
An implementation of the C++ single line comment.
VA \ -

A simple implementation of the C "/* ... */" comment.

: enum \ —-
Process an enum of the form:



Chapter 10: Tools and Utilities 129

enum <name> { a, b, c=10, d };

<name> is placed in the *\fo{NamedEnums) vocabulary. The elements appear as Forth constants
in the *\fo{ CURRENT) wordlist/vocabulary. The definition may extend over many lines. C
comments may occur after the ’;” separator, e.g.

JIM = 25, // comment about this line

: enumq{ \ -
Process an enum of the form:

enum{ a, b, c=10, d };

.NamedEnums \ —-
List all the named ENUMs.

10.16 Stack guarding

These words preserve the stack pointers, put dummy items on the stack, and restore the stack
later. Use these words inside a colon definition for protection of (say) a text interpreter. See
VFXBase/GenTools.fth.

[GuardSP ... GuardSP]

8 cells constant /guard \ —-n
The amount by which the stack is guarded.

[GuardSP \ -- ; R: -- 01dSO 01dSP
Reserves guard space on the data stack and resets the data stack pointers as if the stack was
empty.
: GuardSP] \ -- ; R: 01dSO 0ldSP --
Restore the stack condition saved by [GuardSP.

10.17 Transient word regions

There are occasions when we want to run words only once or twice in order to initialise existing
data. These words occupy space. The code here allows you to build words in a transient region
allocated from the heap. When the region is released, all the words in it are removed from the
dictionary and the memory is freed. The regions are nestable. See VFXBase/GenTools.fth.

[tr
: foo ....
foo

tr]

0 value anchorTR \ -- addr|0
Anchors the linked list of transient areas.

struct /transient \ -- len
Defines the head of the transient region.

[TR \ -
Allocate a new transient area
: TR] \ ——

End the current transient area and remove it



130 VFX Forth for macOS X

10.18 Eliminating compilation surprises

There are four things that you can do with a word:

1. Execute the interpretation behaviour of a word. This is what happens when you type it on
the console. You can pass the xt to EXECUTE.

2. Execute the compilation behaviour of a word.
3. Compile the interpretation behaviour of the word.

4. Compile the compilation behaviour of the word.

The four words here provide these functions explicitly. See VFXBase/GenTools.fth.

: exec—interp \ xt --
Execute the interpretation action as if on the console.

: exec-comp \ xt —-
Execute the compilation behaviour of the word.

: comp-interp \ xt --

Compile the interpretation behaviour of a word.

: comp-comp \ xt —-

Compile the compilation behaviour of a word.
(ndcs,) \ i*x xt —- j*x

Like (COMPILE,) but executes the NDCS action for a word and may parse and/or have a stack
effect during compilation.

: compile-word \ i*x xt -- j*x
Process an XT for compilation.



Chapter 11: OS X specific tools 131

11 OS X specific tools

The code described here is specific to VFEX Forth for Mac OS X. Do not rely on any of the words
documented here being present in any other VFX Forth implementation.

11.1 Shell operations

The VFX Forth console supports a number of command shell operations.

11.1.1 Primitives

The words in this section are used to build the tools.

: csplit \ caddr len char -- raddr rlen laddr llen

Extract a substring at the start of caddr/len, returning the string raddr/rlen which includes
char (if found) and the string laddr/llen which contains the text to left of char. If the string
does not contain the character, raddr is caddr+len and rlen=0.

: Xtype \ caddr len --
As TYPE, but LF characters cause a CR. This factor copes with some user-written generic I/0
devices that do not implement TYPE correctly.

: >pShell \ z$ -- ior

Execute the given zero-terminated string as a shell command, write any output to the current
output device, and return the result code from the popen() call. This word provides consistent
action regardless of whether operation is running in a console or is detached. This is the default
action of (>xShell) below.

defer >xShell \ z$ -- ior

Execute the given zero-terminated string as a shell command, and return the result code from
the relevant system call such that zero=success. Most words that cause shell actions use >xShell
as a primitive. To use a raw system call instead as the action use:

assign ssystem to-do >xShell
(>Shell) \ z$§ —-- ior
Execute the given zero-terminated string as a shell command, and return the result code from
>xShell above.
: >system \ z$ -- ior
Execute the given zero-terminated string as a shell command using the system() API call, and
return the result code.
: >Shell \ z$§ -—-
Execute the given zero-terminated string as a shell command using (>Shell) above. Output

from the command is written to the current output device. Text macros are expanded before
the operation.

: ShellCmd \ caddr len --
Execute the given caddr/len string as a shell command.

: Shellline \ caddr len --
Execute the given counted string as a shell command. Before execution, the remainder of the
input line is added to the given string.

: $shell \ cmd$ tail$ --



132 VFX Forth for macOS X

Take the command and tail counted strings and execute them as a shell command using system().
Text macros are expanded.

: $osx \ cmd$ tail$ --
A synonym for $shell.

11.1.2 Command operations

: sh \ —— ; "command"
Ask the host operating system to execute the supplied command line.

: 1s \ -- ; "[spec]l"
Display file information based on the supplied specification.

: dir \ -- ; "[specl"
Display file information based on the supplied specification. As LS but with colouring.

: makedir \ -- ; "name"
Create a new subdirectory from the current working one. This word has been renamed to avoid
a name conflict with the system mkdir() API.

: deldir \ —— ; "name"
Remove a specified subdirectory. You can only remove an empty directory. This word has been
renamed to avoid a name conflict with the system rmdir() APIL.

:rm \ -- ; "spec"

Delete a single file or group of files as described by the given file specification. The wildcard
may also be used.

1%

: cat \ -— ; "spec"
Perform an ASCII display of a file or group of files. No filtering of the data is performed. This
command should not be used to list binary files.

: pwd \ -
Display the currently active working directory using the shell pwd command.

: cwd \ == ; ["name"]

Attempt to change current working directory either as an offset from the current directory or as
a complete path. The wildcard '*’ can be used to match the first directory. If there is no tail,
CWD displays the current directory. No shell functions are used. Text macros are expanded.

: cd == ; ["name"]
A synonym for *fo{CWD}. Use *fo{CWD} as *fo{CD} will be removed in a future release to
avoid conflicts with hex numbers.

11.2 OS X signal handling
11.2.1 Structures

Signal numbers See /usr/include/sys/signal.h.

#define SIGHUP
#define SIGINT
#define SIGQUIT
#define SIGILL
#define SIGTRAP
#define SIGABRT
#define SIGIOT

D OO WN -



Chapter 11: OS X specific tools 133

#define SIGEMT 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGBUS 10
#define SIGSEGV 11
#define SIGSYS 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGURG 16
#define SIGSTOP 17
#define SIGSTP 18
#define SIGCONT 19
#define SIGCHLD 20
#define SIGTTIN 21
#define SIGTTOU 22
#define SIGIO 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26
#define SIGPROF 27
#define SIGWINCH 28
#define SIGINFO 29
#define SIGUSR1 30
#define SIGUSR2 31

struct /ts32 \ -- len
Regular thread state. See /usr/include/mach/i386/_structs.h _STRUCT_X86_THREAD_STATE32.

struct /£s32 \ -- len
Regular FPU environment. See Jusr/include/mach/i386/_structs.h
_STRUCT_X86_FLOAT_STATE32.

struct /excpt32 \ -- len
See /usr/include/mach/i386/_structs.h _STRUCT_X86_EXCEPTION_STATE32.

8 cells constant /dbg32 \ -- len ; dr0..dr7
See /usr/include/mach/i386/_structs.h _-STRUCT_X86_DEBUG_STATE32.

4 constant /sigset_t \ -- len
size of sigset_t.

struct /sigaltstack \ -- len
See /usr/include/sys/_structs.h

struct /mcontext \ -- len
Machine dependent context structure. See /usr/include/i386/_structs.h.

struct /ucontext \ -- len
See /usr/include/sys/_structs.h

struct /siginfo \ -- len
Siginfo structure in /usr/include/sys/signal.h.

struct /sigaction \ -- len
System sigaction structure.



134 VFX Forth for macOS X

11.2.2 Signal handling

The following is the stack structure seen by the siginfo signal handler.
( N

Return code | 8 bytes of code to return to kernel context at
| end of the handler run via a special system call
| (now a dummy left as a signature for debuggers
|
|

as many systems don’t allow execution from the

stack)
o +
| Floating | FPU state if FPU has been used by this process
| point state |
e +
| User I 0SX extension user context for the signal
| Context | handler. Includes pointer to register contents
+=>| | which are modifiable by the signal handler
| - +
| | Siginfo | Traditional signal information structure.
| | structure |<-+ Duplicates/simplifies some of User Context
| = + |
+-=| void * | | Pointer to 0SX user context
o + |
| siginfo_t * |--+ Pointer to 0SX Siginfo structure
Fomm - +
| Signum | Actual signal number generated
e +
| Return | Originally this pointed at the stack based
| address | return code above. Now points directly at the
I I sigreturn syscall gate in the vDSO
Fomm - +
- v
create sigNames \ -- addr

Holds the signal numbers and names as counted strings.

.sigName \'n -~
Given a signal number, display its name.

.RSitem \ x -~
Display an item retrieved from the faulting return stack.

.mcontext \ *mc --
Display data from the mcontext structure.

: SigThrow \ —-
Runs the O/S THROW action.

3 0 callback: SigGenTrap \ signum *siginfo *ucontext --
Generic trap handler that causes a -57005 THROW on return. Callbacks are documented in a
separate section of the manual.

1 value -NestedSigs? \ -- x
Set non-zero to cause an exit if a nested signal exception occurs in (SigGenTrap) below



Chapter 11: OS X specific tools 135

1 value SigPause? \ - x
Set non-zero to cause a pause when a signal is processed in (SigGenTrap) below.

(SigGenTrap) \ signum *siginfo *ucontext --
Action of SigGenTrap. Displays an error message. On return to OS X, a Forth THROW will occur.

: setSignal \ callback signum --
Set a signal handler to execute the given callback. The callback must have the stack effect (
signum *siginfo *ucontext -- )

: setSigTraps \ --
Install the SigGenTrap signal handler for signals SIGILL, SIGFPE, SIGBUS and SIGSEGV.
Performed at startup.

11.3 Error variables

VFX Forth for Mac OS X uses many functions from the libSystem shared library. The thread
local error variables are exposed.

AliasedExtern: errno int * __error( void );
errno is the well known errno C thread local variable used by libraries and system calls. Can
be read by @ and written by !

11.4 Environment variables

: ReadEnv \ naddrl nlen -- vaddr vlen
Read the environment variable whose name is given by naddr/nlen and return the string. If
there is no such variable vaddr is zNull and vlen is zero.

: WriteEnv \ vaddr vlen naddr nlen --
Write the string value vaddr/vlen to the environment variable named by vaddr/vien.

: DelEnv \ naddr nlen --
Delete the environment variable naddr/nlen.

: EnvMacro: \ naddr nlen "<var>" -- ; -- caddr
Create a text macro called <var> that queries the environment variable named by naddr/nlen
the returned string is a counted string. Use in the form:

s" HOME" EnvMacro: $home

By convention, environment macro names start with a ’$’.

s" HOME" EnvMacro: $home
Text macro for the home directory.

11.5 Critical sections

Critical sections are implemented using the standard OS X semaphore structures and calls.

struct /semosx \ -- len
We use a structure consisting of a pointer to the sem_t structure followed by a 32 byte zname.

: InitCritSec  \ *smo --
Initialise a critical section base on a /semosx structure. This must be done before using the
critical section.

: TermCritSec \ *smo --



136 VFX Forth for macOS X

Delete the critical section associated with the smaphore. This releases internal OS X data and
closes the semaphore. Nothing should be waiting on the seamphore before calling TermCritSec.

[CritSec \ *smo --
Wait until the section is available and lock it. Does not call PAUSE.

: CritSec] \ *smo --

Unlock the section.

The critical section words use OS X semaphores, which are counted semaphores. Thus when
using critical sections you must be careful to match the use of [CritSec and

11.6 Millisecond timer

The OS X ticker frequency varies between implementations. The code in this section provides
simple tools to return and handle a millisecond ticker.

(ticks) \ -—— ms ; return ticks in ms

Return the system ticker in milliseconds. Treat this as a 32 bit unsigned value that wraps around
on overflow.

: SetTicks \ —-
Calibrate the OS X ticker and install it as the action of TICKS. Performed at start up.

5 value tickStepMs \ —- ms
Minimum interval and granularity used by tick-ms below.

: tick-ms \ ms --
Waits for at least ms milliseconds. Uses PAUSE every tickStepMs. This is the default action of
MS, which is DEFERred.

11.7 Raw timer

The following timer tools have better resolution but are very basic.

: ns@ \ -- nanoseconds
Return a system ticker in nanoseconds.

: ms@ \ -- milliseconds
Return a system ticker in milliseconds.

11.8 Time handling

11.9 A structure to mimic the timeval structure for libc

4 field tv_sec
4 field tv_nsec
end-struct

11.10 A structure to mimic the tm structure for libc
: td>epoch \ seconds mins hours day month year -- epoch

Returns the seconds since the start of the epoch. The input time is treated as GMT/UTC.

: epoch>td \ epoch -- seconds mins hours day month year
Converts an epochal second into a GMT/UTC time and date.



Chapter 11: OS X specific tools 137

11.11 Time and date

These functions rely on the ANS Forth word TIMEZDATE ( -- s m h dd mm yyyy ) and the non-
standard DOW ( -- dow, 0=Sun) to get the day of the week.

create days$ \ -- addr
String containing 3 character text for the days of the week.

create months \ -- addr
String containing 3 character text for the months.

: .dow \ dow --
Display day of week.
.2r \'n--

Display n as a two digit number with leading zeros.

: .4r \'n--
Display n as a four digit number with leading zeros.

.Time&Date \smhdd mm yy —-
Display the system time The format is:

hh:mm:ss dd Mmm yyyy

.AnsiDate \ zone --

Display the day of week, date and time. If zone is 0 GMT (system time) is displayed, otherwise
local time is displayed. The format is:

dow, hh:mm:ss dd Mmm yyyy [GMT]
11.12 Program launch status

Programs can be launched in several ways.
e From a shell in foreground mode: it has a terminal.

e From a shell or script in background mode, e.g. vfxosx &: it shares a terminal which is
normally only useful for output.

e From the init process or detached by another process. There is no terminal at all.

This code allows you to determine how the program was launched.

0 value AppPPID \ - x
This application’s parent’s process ID.

0 value AppPGRP \ -- x
This application’s process group.

0 value ctPGRP \ - x
The controlling terminal’s process group.

0 value AppLaunch \ —— x
How the application was launched:
e -1 - detached
e 0 - backgrounded
e 1 - foreground

: TestLaunch \ --
Set the data above to determine how the application was launched. Run at program launch.



138 VFX Forth for macOS X

11.13 Folders and Files

(changedir) \ caddr len -- ior ; O=success
Expand text macros and change the current working directory. Return 0 on success.

: changeDir \ caddr len --
Expand text macros and change the current working directory. There is no return code.

: workingdir \ -- caddr len
Return the text for the current working directory.

: dirExists? \ caddr len -- flag
Return true if a directory exists. Macros are expanded.

: create-dir \ caddr len -- ior
Create a directory, returning zero on success. Macros are expanded. Default permissions are
used.

: forceDir \ caddr len -- ior
Create the directory if it does not exist. Macros are expanded.

: +dirSep \ c$ --
Add a directory separator to the end of a counted string.

: prepFileName \ caddr len --
Convert "\’ and ’/’ characters in-place as required by the operating system.

: prepDirName \ caddr --
Force the counted string at caddr to end with a "\’ character.

: makeDirLevels \ caddrl lenl caddr2 len -- ior

The string caddri/lenl represents a directory that must already exist. Caddr2/len2 represents
additional directory levels that may or may not already exist. The additional levels are created
if they do not exist. Successful operation returns 0. For example, to create the directory
/Users/stephen/jim/foo/bar, you could use

s" /Users/stephen" s" jim/foo/bar" makedirlevels

: copy-file \ src slen dest dlen failexist -- ior
Copy a file. Macros are expanded. If failezist is non-zero, existing files are not overwritten.



Chapter 12: Intel 386+ Assembler 139

12 Intel 386+ Assembler

VFEX Forth has a built-in assembler. This is to enable you to write time-critical definitions - if
time is a constraint - or to do things that might perhaps be more difficult in Forth - things such
as interrupt service routines. The assembler supports the 80386 and the 80387 chips. Definitions
written in assembler may use all the variables, constants, etc. used by the Forth system, and
may be called from the keyboard or from other words just like any Forth high-level word. It is
important when writing a code definition to remember which machine registers are used by the
Forth system itself. These registers are documented later in this chapter. All other registers may
be used freely. The reserved registers may also be used - but their contents must be preserved
while they are in use and reset afterwards.

The assembler mnemonics used in the Forth assembler are just the same as those documented
in the Intel literature. The operand order is also the same. The only difference is the need for
a space between each portion of the instruction. This is a requirement of the Forth interpreter.

The assembler has certain defaults. These cover the order of the operands, the default addressing
modes and the segment size. These are described later in this chapter.

12.1 Using the assembler

Normally the assembler will be used to create new Forth words written in assembler. Such words
use CODE and END-CODE in place of : and ; or CREATE and ;CODE in place of CREATE and DOES>.

The word CODE creates a new dictionary header and enables the assembler.

As an example, study the definition of 0< in assembly language. The word 0< takes one operand
from the stack and returns a true value, -1, if the operand was less than zero, or a false value,
0, if the operand was greater than or equal to zero.

-

CODE 0< \ n - t/f ; define the word 0<
OR EBX, EBX \ use OR to set flags
L, \ less than zero 7
IF, \ y:
MOV EBX, # -1 \ -1 is true flag
ELSE, \ n:
SUB EBX, EBX \ dirty set to 0
ENDIF,
NEXT, \ return to Forth
END-CODE

-

Notice how the word NEXT, is used. NEXT, is a macro that assembles a return to the Forth inner
interpreter. All code words must end with a return to the inner interpreter. The example also
demonstrates the use of structuring words within the assembler. These words are pre-defined
macros which implement the necessary branching instructions. The next example shows the
same word, but implemented using local labels instead of assembler structures for the control
structures.



140 VFX Forth for macOS X

( N
CODE 0< \ n - t/f ; define the word 0<
OR EBX, EBX \ use OR to set flags
JGE L$1 \ skip if AX>=0
MOV EBX, # -1 \ -1 is true flag
JMP L$2 \ this part done
L$1: \ do following otherwise
SUB EBX, EBX \ dirty set to O
L$2:
NEXT, \ return to Forth
END-CODE
N

12.2 Assembler extension words

There are several useful words provided within VFX Forth to control the use of the assembler.

;code \ --

Used in the form:
: <namex> CREATE .... ;CODE ... END-CODE

Stops compilation, and enables the assembler. This word is used with CREATE to produce defining
words whose run-time portion is written in code, in the same way that CREATE ... DOES> is used
to create high level defining words.

The data structure is defined between CREATE and ;CODE and the run-time action is defined
between ;CODE and END-CODE. The current value of the data stack pointer is saved by ;CODE
for later use by END-CODE for error checking.

When <namex> executes the address of the data area will be the top item of the CPU call stack.
You can get the address of the data area by POPing it into a register.

A definition of VARIABLE might be as follows:
( )
: VARIABLE
CREATE 0 ,
; CODE
sub ebp, 4
mov 0 [ebpl, ebx
pop ebx
next,
END-CODE

VARIABLE TEST-VAR
-

CODE \ --

A defining word used in the form:

CODE <name> ... END-CODE

Creates a dictionary entry for <name> to be defined by a following sequence of assembly language



Chapter 12: Intel 386+ Assembler 141

words. Words defined in this way are called code definitions. At compile-time, CODE saves the
data stack pointer for later error checking by END-CODE.

END-CODE  \ --

Terminates a code definition and checks the data stack pointer against the value stored when
; CODE or CODE was executed. The assembler is disabled. See: CODE and ;CODE.

LBL: \ ——

A defining word that creates an assembler routine that can be called from other code routines
as a subroutine. Use in the form:

LBL: <name>
...code...
END-CODE

When <name> executes it returns the address of the first byte of executable code. Later on
another code definition can call <name> or jump to it.

12.3 Dedicated Forth registers

The Forth virtual machine is held within the processor register set. Register usage is as follows:

EAX scratch

EBX cached top of data stack

ECX scratch

EDX scratch

EST Forth User area pointer

EDI Forth local variable pointer

EBP Forth data stack pointer - points to NOS
ESP Forth return stack pointer

All unused registers may be freely used by assembler routines, but they may be altered by the
operating system or wrapper calls. Before calling the operating system, all of the Forth registers
should be preserved. Before using a register that the Forth system uses, it should be preserved
and then restored on exit from the assembler routine. Be aware, in particular, that callbacks
will generally modify the EAX register since this is used to hold the value returned from them.

12.4 Default segment size

USE32
USE16

The first of these specifies that code from that point onwards is for a 32-bit segment. The
second directive specifies that, from that point onwards, code generated is for a 16-bit segment.
The default is USE32. These directives should be used outside a code definition, not within a
definition.

It is possible to override the default segment size on an instruction-by-instruction basis. This is
detailed later.



142 VFX Forth for macOS X

12.5 Assembler syntax
12.5.1 Default assembler notation

The assembler is designed to be very closely compatible with MASM and other assemblers. To
this end the assembler assembles code written in the conventional prefix notation. However,
because code may be converted from other MPE Forth systems, the postfix notation is also
supported. The default mode is prefix. The directives to switch mode are as follows:

PREFIX
POSTFIX

These switch the assembler from then onwards into the new mode. The directives should be
used outside a code definition, not within one. Their use within a code definition will lead to
unpredictable results.

The assembler syntax follows very closely that of other 80386 assemblers. The major difference
being that the VFX Forth assembler needs white space around everything. For example, where
in MASM one might define:

E’IOV EAX,10[EBX] }

we must write:

@OV EAX , 10 [EBX] }

This distinction must be borne in mind when reading the following addressing mode information.

12.5.2 Register to register

Many instructions have a register to register form. Both operands are registers. Such an
instruction is of the form:

[ MOV EAX , EBX J

This moves the contents of EBX into EAX. For compatibility with older MPE assemblers the
first operand may be merged with the comma thus:

MOV EAX, EBX

This use of a register name with a ’built-in’ comma also applies to other addressing modes.

12.5.3 Immediate mode

If the assembler is set for direct-as-default (the MPE directive has been used), immediate numbers
must be defined explicitly. This is done by the use of a hash (#) character:

MOV EAX , # 23

This example places the number 23 in EAX. The directives OFFSET and SEG are synonyms for
#.



Chapter 12: Intel 386+ Assembler 143

By default, the assembler is set to immediate-as-default (the INTEL directive has been used). In
this case immediate numbers do not have to be specifically defined:

MOV EAX , 23

The above code also places the number 23 in EAX.
12.5.4 Direct mode

If the assembler is set for direct-as-default (the MPE directive has been used), direct addresses
need not be defined explicitly:

MOV EAX , 23

This example places the contents of address 23 in EAX. If the assembler is set for immediate-
as-default (the INTEL directive has been used), direct addresses have to be specifically defined,
using the PTR or [] directives:

MOV EAX , PTR 23
MOV EAX , [1 23

Both the above code fragments also place the contents of address 23 in EAX.
12.5.5 Base + displacement

Intel define an addressing mode using a base and a displacement. In this mode, the effective
address is calculated by adding the displacement to the contents of the base register. An example:

MOV EBX , # 0100
MOV EAX , 10 [EBX]

In this example, EAX is filled with the contents of address 0100+10, or address 110.

The assembler lays down different modes for displacements of 8-bit or 32-bit size, but this
is internal to the assembler. The following registers may be used as base registers with a
displacement:

[EAX] [ECX] [EDX] [EBX] [EBP] [ESI] [EDI]

If the displacement is zero then the assembler internally defines the mode as Base only. However,
the displacement of zero must be supplied to the assembler:

MOV EBX , # 0100
MOV EAX , O [EBX]

This places in EAX the contents of address 100 (pointed to by EBX).

The following registers may be used as a base with no displacement:

(EAX] [ECX] [EDX] [EBX] [ESI] [EDI]



144 VFX Forth for macOS X

12.5.6 Base + index + displacement

The 80386 also allows two registers to be used to indirectly address memory. These are known
as the base and the index. Such instructions are of the form:

MOV EAX , # 100
MOV EBX , # 200
MOV EDX , 10 [EAX] [EBX]

This will place in EDX the contents of address 100+200+10, or address 310. EAX is the base
and EBX is the index. Again, the displacement may be 8-bits, 32-bits or have a value of zero.
The assembler distinguishes between these three cases. The base and index registers may be
any of the following:

[EAX] [EBX] [ECX] [EDX] [ESI] [EDI]

In addition, [EBP] may be used as the index register, and [ESP] may be used as the base register.
12.5.7 Base + index*scale + displacement

The 80386 further supports an addressing mode where the index register is automatically scaled
by a fixed amount - either 2, 4 or 8. This is designed for indexing into two-dimensional arrays
of elements of size greater than byte-size. One register may be used as the first index, another
for the second index, and the word size becomes implicit in the instruction. The form of this
addressing mode is very similar to that outlined above, with the exception that the index operand
includes the number which is the scale:

MOV EBX , # 100
MOV ECX , # 2
MOV EAX , 10 [EBX] [ECX*4]

This stores into EAX, the contents of address 100+(4*2)+10, or address 118. The list of registers
which may be used as base is the same as the above. The list of scaled indexes is as follows:

[EAX*2] [ECX=*2] [EDX=*2] [EBX*2] [EBP*2] [ESI*2] [EDI*2]
[EAX*4] [ECX=*4] [EDX=*4] [EBX*4] [EBP*4] [ESI*4] [EDI%*4]
[EAX*8] [ECX*8] [EDX=*8] [EBX*8] [EBP*8] [ESI*8] [EDI*8]

12.5.8 Segment overrides

Some instructions may be prefixed with a segment override. These force data addresses to refer
to a segment other than the data segment. The override must precede the instruction to which
it relates:

MOV EBX , # 100
ES: MOV EAX , 10 [EBX]

This will set EAX to the value contained in address 110 in the extra segment. The list of segment
overrides is:

CS: DS: ES: FS: GS: SS:



Chapter 12: Intel 386+ Assembler 145

12.5.9 Data size overrides

The default data size for a USE32 segment is 32-bit, but the default data size for a USE16 segment
is 16-bit. These are the default data sizes the assembler will use. If the data is of a different
size a data size override will have to be used. To define the size of the data the following size
specifiers are used:

BYTE or B.
WORD or W.
DWORD or D.
QWORD
TBYTE
FLOAT
DOUBLE
EXTENDED

It is only necessary to specify size when ambiguity would otherwise arise. For example:

MOV 0 [EDX], # 10 \ can’t tell
MOV 0 [EDX], EAX \ EAX specifies

The BYTE size defines that a byte operation is required:
MOVZX EAX , BYTE 10 [EBX]

The abbreviation B. may also be used in place of BYTE to define a byte operation. The WORD
specifier defines that 16-bits are required:

MOV AX , WORD 10 [EBX]

The abbreviation W. may also be used to define a word operation. DWORD is the default for a
USE32 segment, and indicates that 32-bit data is to be used:

MOV EAX , DWORD 10 [EBX]
FSTP DWORD 10 [EBX]

The abbreviation D. may also be used to specify a DWORD operation. The remaining size specifiers
define data sizes for the floating point unit.

QWORD defines a 64-bit operation:
FSTP QWORD 10 [EBX]

TBYTE defines a 10-byte (80-bit) operation, such as:
FSTP TBYTE 10 [EBX]

FLOAT, DOUBLE and EXTENDED are synonyms for DWORD, QWORD and TBYTE respectively.

The segment type defines the default data size and address size for the code in the segment. If
needed, it is possible to force the data size or the address size laid down to be the other. There
is a set of data and address size overrides which work for one instruction only. These are:



146 VFX Forth for macOS X

D16:
D32:
A16:
A32:

and they would be used as follows:
D16: MOV EAX , # 23
A16: MOV EAX , 10 [EBX]

The first of these, in a USE32 segment, would lay down 16-bit data to be loaded into AX. The
second would lay down a 16-bit offset from [EBX] for the effective address in the instruction.
The situation would be reversed in a USE16 segment - the A32: and D32: directives would cause
32-bit data or addresses to be laid.

12.5.10 Near and far, long and short

Jumps and branches may be either intra-segment or inter-segment. The former is a short branch
or call whilst the latter is a long branch or call. The assembler is able to lay down either form.
The default for a JMP or a CALL is near, whilst the default for a conditional branch is short.
RET follows the same pattern as CALL. The directives supporting short/long and near/far are:

SHORT LONG NEAR FAR

These would be used as follows:

-
2 CONSTANT THAT \ the segment number
LBL: THIS \ the address

CALL THIS

CALL NEAR THIS
CALL FAR THAT THIS
JMP THIS

JMP NEAR THIS

JMP FAR THAT THIS

JCC THIS
JCC SHORT THIS
JCC LONG THIS

RET THIS
RET NEAR THIS

RET FAR THAT THIS
-

For compatibility with older MPE assemblers the mnemonics CALL/F, RET/F and JMP/F are also
provided.

12.5.11 Syntax exceptions

The assembler in VFX Forth follows both the syntax and the mnemonics defined in the Intel
Programmers Reference books, for both the 80386 and the 80387. However, there are certain
exceptions. These are listed below.



Chapter 12: Intel 386+ Assembler 147

The zero operand forms of certain stack register instructions for the 80387 have been omitted.
Their functionality is supported however. Such instructions are listed below, with a form of the
syntax which will support the function:

(" N
FADD FADDP ST(1) , ST

FCOM FCOM ST(1)

FCOMP FCOMP ST(1)

FDIV FDIVP ST(1) , ST

FDIVR FDIVRP ST(1) , ST

FMUL FMULP ST(1) , ST

FSUB FSUBP ST(1) , ST

FSUBR  FSUBRP ST(1) , ST

Certain 80386 instructions have either one operand or two operands, of which

only one is variable. These instructions are:
= J

MUL DIV IDIV NEG NOT

These instructions take only one operand in the VFX Forth assembler.
12.5.12 Local labels

If you need to use labels within a code definition, you may use the local labels provided. These
are used just like labels in a normal assembler, but some restrictions are applied.

Ten labels are pre-defined, and their names are fixed. Additional labels can be defined up to a
maximum of 32. There is a limit of 128 forward references. A reference to a label is valid until
the next occurrence of LBL:, CODE or ;CODE, whereupon all the labels are reset.

A reference to a label in a definition must be satisfied in that definition. You cannot define a
label in one code definition and refer to it from another.

The local labels have the names L$1 L$2 ... L$10 and these names should be used when refer-
ring to them e.g.

JNE L$5

A local label is defined by words of the same names, but with a colon as a suffix:

L$1: L$2: ... L$10:

Additional labels (up to a maximum of 32 altogether) may be referred to by:
n L$

where n is in the range 11..32 (decimal), and they may be defined by:
n L$:

where n is again in the range 11..32 (decimal).



148 VFX Forth for macOS X

12.5.13 CPU selection

This assembler is designed to cope with CPUs from 80386 upwards. Some instructions are only
available on later CPUs. Note that CPU selection affects the assembler and the VFX code
code generator, not the run time of your application. If you select a higher CPU level than the
application runs on, incorrect operation will occur.

CPU=386 \ —— ; select base instruction set
CPU=PPro \ -- ; Pentium Pro and above with CMQOVcc
CPU=P4 \ —— ; Pentium 4 and above

PPro? \ -- flag ; true if at least Pentium Pro
pa~ \ -- flag ; true if at least Pentium 4

The VEFX code generator also uses this information to enable various code generation techniques.
For VFX Forth for DOS, the default selection is for 386 class CPUs, for all others it is for the
Pentium 4 instruction set.

12.6 Assembler structures

Structures like the Forth control structures have been added to the assembler. They allow for-
ward branches without the need for labels and impose the strictures of structured programming
to the assembler level. Devotees of spaghetti programming are free to go their own way as the
copious supply of branch instructions are still available, and the local label facility may be used
with all branch instructions.

The status flag indicator required must prefix conditional structures. The structure assembled
will have a branch opcode that is the logical inverse of the one specified. Thus for EQ, IF, a
JNE will be assembled so that the code after IF, is executed if the EQ status occurs. The
assembler structure words end in a comma e.g. IF, to differentiate them from the regular Forth
structures, and to indicate that code is being generated.

The structures are described below, and the symbol cc condition code) may be any one of the
following:

Z, equal to 0

NZ, not equal to 0

S, less than 0

NS, greater than or equal to 0

L, less than

GE, greater than or equal

LE, less than or equal

G, greater than

B, unsigned less than - address compares
AE, unsigned greater than or equal
BE, unsigned less than or equal

A, unsigned greater than



Chapter 12: Intel 386+ Assembler 149

0, overflow

NO, no overflow

PE, parity even

PO, parity odd

CY, carry flag set

NC, carry flag not set

NCXZ, ECX/CX register non-zero

The structure words build sets of assembler branches to perform functions equivalent to their
high-level namesakes, but the names end with a comma to distinguish them from the high-
level Forth words. Be sure you understand the high level structures before using the assembler
equivalents. The structures are:

e I
cc IF, ... THEN,

cc IF, ... ELSE, ... THEN,

BEGIN, ... AGAIN,

BEGIN, ... cc UNTIL,

BEGIN, ... cc WHILE, ... REPEAT,

_ J

An additional structure allows a section of code to be performed 'n’ times. All it actually does
is to load ECX with 'n’and mark the start of a backward branch so that the mark may be used
later. The structure is:

[% TIMES, ... LOOP, }

12.7 Assembler mode switches
: mpe \ -- ; force def # addressing

Select the MPE default addressing mode, in which the default addressing mode is direct ad-
dressing. This is provided for compatibility with legacy MPE systems. The indicators []1 and #
can be used for code which must be compiled in either condition.

: intel \ -- ; force def.direct addressing

Select the INTEL default addressing mode, in which the default addressing mode is immediate
addressing. The indicators [1 and # can be used for code which must be compiled in either
condition.

: prefix \ -- ; select prefix mode
Set the assembler to use prefix notation with the opcode first. This is the default condition.

: postfix \ -- ; select postfix mode
Set the assembler to use postfix notation with the opcode after the operands.

12.8 Macros and Assembler access

Because of the performance of the VFX optimiser, use of assembler is only necessary when
defining new compilation structures. Otherwise the use of assembler code should be avoided.



150 VFX Forth for macOS X

Assembler macros are defined as follows:
( N
MASM: <name>
<assembler code goes here>
; MASM
e.g. the following macro pops the top of the NDP stack to the external
floating point stack.

MASM: popFPU \ -- ; pops FTOS to float stack
mov  eax, FSP-OFFSET [esi] \ get FP stack pointer
lea  eax, -FPCELL [eax] \ update stack pointer
fstp fword O [eax] \ store and pop
mov  FSP-OFFSET [esi], eax \ restore FP stack pointer
; MASM
- )

In line assembler code may be compiled into the middle of a colon definition by using the phrase:

( N
: <name> \ just another Forth word

[ASM <insert assembler here> ASM]

I

- J

A fragment of assembler for compilation when the containing word is executed can be defined

by using the following:

( )
: a-compiler \ will compile some assembler

al[ <fragment to be compiled> Ja

J

- )

The following example compiles an in-line floating point literal.

( N
: o_flit, \ F: £ -— ; F: —— f ; compile floating point literal

al popFPU \ references a previous macro

jmp  here 2+ FPCELL + \ skip inline literal

la

f,

al[ f1d fword ptr here FPCELL - Ja
C J
When using in-line code generators such as [ASM .. .ASM] you should flush the code generator

contents with [0/F].

[[O/F] [ASM ... ASM] }




Chapter 12: Intel 386+ Assembler 151

After [ASM the top of the data stack will be in EBX with all other stack items pointed to by
EBP. The code generator expects this same state to exist after ASM].

: dxb \ b -— ; lay byte

Lay a byte into the instruction stream. Use in the form:
dxb $55

: dxw \ w —— ; lay 16 bits

Lay a 16-bit word into the instruction stream. Use in the form:
dxw $55AA

: dxl \ 1 -- ; lay 32 bit long

Lay a 32-bit dword into the instruction stream. Use in the form:
dx1l $11223344

: 8 \ -- chere
Return the PC value of the start of the instruction.

12.9 Assembler error codes

#-701 Invalid addressing mode

#-702 N not in range -128..+127

#-703 Label reference number out of range
#-704 Label definition number out of range

#-705 Invalid instruction for selected CPU type






Chapter 13: Intel 386+ Disassembler 153

13 Intel 386+ Disassembler

The VFX Forth system includes a disassembler for debugging purposes. Native code built by
the system can be viewed at a machine code level.

: al-init-dis \ addr len -- ; initialise disassembly
Initialise the disassembly range before using (DASM).
: ft-init-dis \ from to -- ; initialise disassembly
Initialise the disassembly range before using (DASM).

1DISASM \ -
Disassemble the next instruction. The range has already been set.

(dasm) \ —-
Disassemble a block of code whose range has already been set.

13.1 Low-Level Disassembly Words
: disasm/f \ addr --
Disassemble memory starting at ADDR.

: disasm/ft \ from to --
Disassemble memory between the memory addresses FROM and TO.

: DISASM/al \ addr len --
Disassemble LEN bytes of code starting at memory address ADDR.

: dasm \ —-- ; DASM <word>
Disassemble a given definition

13.2 Higher Level Disassembly

VFX Forth also contains some higher-level words to aid disassembly. These words attempt to
interpret the raw assembler code as provided by DASM to identify items such as inline strings and
USER variables.

: dis \ -- ; DIS <name>
Disassemble a supplied target word using the higher level interpreter to aid readability.

. see -- ; SEE <name>
An alias for DIS supplied for compatibility with other Forth systems.






Chapter 14: Floating Point 155

14 Floating Point

14.1 Introduction

The floating point packages use the FPU instruction set. The source code can be found in
the files Lib\z86\ Ndp387.fth, Lib\z86\Hfp387.fth and Ndp387.fth is the primary package, and
produces the fastest and smallest code. Lib\x86\ HfpGL32.fth has been retired. VFX Forth
v5.1+ with recognisers is required.

14.1.1 Ndp387.fth - coprocessor stack

In Ndp387.fth floating point numbers are kept in the floating point unit’s internal stack only.
This code is significantly faster than when using an external stack, but is limited to the use of
8 floats on the NDP stack, including any working temporary numbers.

By default, Ndp387.fth defines floating point stack items and literals to be in 80 bit extended
real format. If you need to save (a small amount of) space, the default can be changed by setting
the constant FPCELL to 8 for 64 bit double precision or to 4 for 32 bit single precision. If you do
this, accuracy and resolution may/will suffer.

From VFX Forth 3.70 onwards, Ndp387.fth includes an optimiser. According to the results of
Examples\ Benchmrk\mm.fth this nearly doubles the overall performance of the matrix multiply
floating point benchmark code. Well tuned algorithms may see speed improvements of over
three times. Use of the Pentium optimisations with +IDATA is recommended for performance
critical floating point code.

The file Ndp387.v36.fth contains the last release of the unoptimised code.

14.1.2 Hfp387.fth - external FP stack

In Hfp387.fth floating point numbers are kept on a separate stack, pointed to by the USER
variables FSP and FSO. The top of the FP stack is cached in the FPU.

All tasks, winprocs and callbacks are allocated a separate 4096 byte floating point stack. If you
need a larger one, allocate it from the heap using ALLOCATE, and modify FSP and FSO accordingly.
Note that the stack grows down.

By default, Hfp387.fth defines floating point stack items and literals to be in 80 bit extended real
format. If you need to save a bit of space, the default can be changed by setting the constant
FPCELL to 8 for 64 bit double precision or to 4 for 32 bit single precision. If you do this, accuracy
and resolution may/will suffer.

If you are uncertain of the state of the floating point unit, you can initialise it using FINIT ( —-
). After FINIT, the internal floating point stack is empty.

14.2 Radians and Degrees

Please note that the trig functions are calculated in radians, for calculations in degrees use
DEG>RAD beforehand, RAD>DEG afterwards.



156 VFX Forth for macOS X

14.3 Number formats, ANS and Forth200x

The ANS Forth standard specifies that floating point numbers must be entered in the form
1.234e5 and must contain a point ’.” and ’e’ or 'E’, and that double integers are terminated by

a point .’

This situation prevents the use of the standard conversion words in international applications
because of the interchangable use of the ’.” and ’,” characters in numbers. Because of this,
VFX Forth uses two four-byte arrays, FP-CHAR and DP-CHAR, to hold the characters used as
the floating point and double integer indicator characters. By default, FP-CHAR is initialised to
".” and DP-CHAR is initialised to to ’,” and ’.". For strict ANS and Forth-2012 compliance, you
should set them as follows:
( )
\ ANS standard setting

char . dp-char !

char . fp-char !
: ans—-floats \ —— ; for strict ANS compliance

[char] . dp-char !

[char] . fp-char !

-

\ MPE defaults
char , dp-char !
char . dp-char 1+ c!
char . fp-char !
: mpe-floats \ -- ; for existing and most legacy code
[char] , dp-char !
[char] . dp-char 1+ c!
[char] . fp-char !

[

\ Legacy defaults, including ProForth
char , dp-char !
char . fp-char !

: legacy-floats \ -- ; for legacy code
[char] , dp-char !
[char] . fp-char !

I

- )

You can of course set these arrays to hold any values which suit your application’s language
and locale. Note that integer conversion is always attempted before floating point conversion.
This means that if the FP-CHAR and DP-CHAR arrays contain the same character, floating point
numbers must contain ’e’ or 'E’. If the arrays are all different, a number containing the FP-CHAR
will be successfully converted as a floating point number, even if it does not contain ’e’ or "E’.

As of January 2007, recommendations made to the Forth200x standards effort have been adopted
by MPE for REPRESENT. The impact of these changes is that the minimum buffer size used
for REPRESENT should be at least #FDIGITS characters, normally 18 bytes. For details of the

proposal, see:
Examples/usenet/Ed/Represent_20.txt

Examples/usenet/Ed/Represent_30.txt




Chapter 14: Floating Point 157

14.4 Floating point exceptions

Exception handling is determined by the operating system. On current Windows platforms,
floating point exceptions are not generated by the NDP. This can be changed by altering the
bottom 6 bits of the NDP control word using CW@ and CW!.

By default, the system prompt will report exception status, and clear the pending exception
status. Exception status reporting does not mean that the Windows exception handler has been
triggered, it only means that the status flag has been set.

14.5 Standards compliance, F>S and F>D

After much discussion on the comp.lang.forth newsgroup, a consensus was reached that F>D and
F>S must truncate to zero. This is also the behaviour required by the Forth Scientific Library
(FSL). Historically, MPE floating point packs permit the integer rounding mode to be set by
the user. In order to support both camps, VFX Forth now behaves as follows:

e F>D and F>S truncate to zero,

e FR>D and FR>S follow the current rounding mode.

14.6 Configuration
0 value FpSystem
The value FPSYSTEM defines which floating point pack is installed and active. Each floating point
pack defines its own type as follows:
e ( constant NoFPSystem
e 1 constant HFP387System
e 2 constant NDP387System
e 3 constant OpenGL32System (obsolete)

#10 constant FPCELL \ ——n
Defines the size of literals and floating point numbers in memory and on floating point stacks
in memory. FPCELL can be changed to 8 for 64 bit double precision or to 4 for 32 bit single
precision. If you do this, accuracy and resolution may/will suffer.

constant #fdigits \ —-u
Returns the largest number of usable digits available from REPRESENT. Equivalent to the envi-
ronment variable MAX-FLOAT-DIGITS.
false constant [fpdebug] immediate
Set this true when compiling NDP387.FTH, and a debug build will be constructed. In this
state, the state of the FPU is checked after each word. If a floating point exception has been
generated, a diagnostic is issued, and the system aborts. Set this only when testing. Note that
the NDP387 optimiser may well cause this to be ignored.

defer fpcheck \ see later for real action
A DEFERred word called at the end of CODE routines when [FPDEBUG] is non-zero.

variable signed-zero \ -- addr

Set non-zero to display signed-zero.

1 constant FPext? \ -- flag
Set non-zero to compile FP extensions.



158 VFX Forth for macOS X

14.7 Assembler macros

: fword \ -
Selects appropriate floating point size for the assembler. Note that this is defined by the constant
FPCELL. FWORD will be a synonym for FLOAT, DOUBLE or TBYTE.

: fnext, \ -- ; can be changed for debugging
The equivalent of NEXT, for floating point routines. If [FPDEBUG] is non-zero, a call to FPCHECK
is assembled.

14.8 Optimiser support

This code is only provided for Ndp387.fth in VEX Forth 3.70 onwards.

0 value FPsin? \ -- flag
Returns non-zero if source inlining is permitted for words containing floating point code se-
quences. By default, FP source inlining is disabled.

[+FPsin \ - x

Start a [+FPSIN ... FPSIN] section in which new FP code can be source inlined.
[-FPsin \ - x

Start a [-FPSIN ... FPSIN] section in which new FP code cannot be source inlined.

: FPsin] \ x -
End a [+/-FPSIN ... FPSIN] section. The previous FP source inliner state is preserved.

: fseq: \ -- ; FSEQ: <name> ... ;FSEQ
Start an assembler sequence which is compiled for <name>.

;fseq \ —- ; FSEQ: <name> ... ;FSEQ
Ends an assembler sequence started by FSEQ:.

14.9 FP constants
code %0 \ F: —- f#(0)
Floating point 0.0

code %1 \ F: —— f#(1)
Floating point 1.0
code Ypi \ F: —— f#(pi)
Floating point PI

code %pi/2 \ F: —— f#(pi/2)
Floating point PI/2

code Ypi/4 \ F: —- f#(pi/4)
Floating point PI/4

code %lg2e \ F: -- log2(e)
Returns log (base 2) of e.

14.10 FP control operations
code finit \ F: —— ; resets FPU
Reset the floating point unit and NDP stack.

code cw@ \ -- cw ; get NDP control word
Return the floating point unit Control Word.



Chapter 14: Floating Point 159

code cw! \ cw —— ; set NDP control word
Set the floating point unit Control Word.

code sw@ \ -- sw ; get NDP status word
Return the floating point unit Status Word.

code fclex \ -- ; clear exceptions
Clear any pending floating point exceptions.

14.11 FP Stack operations
code fdup \F: f -ff
Floating point equivalent of DUP.

code fswap \ F: f1 f2 -- £f2 f1
Floating point equivalent of SWAP.

code F2SWAP \F: r1 r2r3r4d —— r3 rd4d rl1 r2
Floating point equivalent of 2SWAP.

code fdrop \ F: £ —-
Floating point equivalent of DROP.

code fover \ F: f1 f2 -- f1 f2 f1
Floating point equivalent of OVER.

code frot \ F: f1 f2 £f3 -- £2 £3 f1
Floating point equivalent of ROT.

code fpick \n--; F: —— ¢

Floating point equivalent of PICK. Note that because the pick index is an integer, it is on the
normal Forth integer data stack, and the result, being a floating point number, is on the floating
point stack.

code ndepth \ -- n ; depth of NDP stack
Returns on the Forth data stack the number of items on the FPUs’s internal working stack.
: fdepth \ —— #f

Floating point equivalent of DEPTH. The result is reurned on the Forth data stack, not the float
stack.

14.12 Memory operations SF@Q SF! DF@ DF! etc

code f@ \ addr -- ; F: —- f
Places the contents of addr on the float stack. The size of the item fetched was defined by
FPCELL at compile time.

code sf@ \ addr -- ; F: —- f
Places the 32 bit float at addr on the float stack.

code df@ \ addr -- ; F: —- f
Places the 64 bit double float at addr on the float stack.

code tf@ \ addr - ; F: —— £
Places the 80 bit extended float at addr on the float stack.

code f! \ addr - ; F: f —-
Stores the top of the float stack as an FPCELL sized number at addr.

code sf! \ addr -- ; F: f —-



160 VFX Forth for macOS X

Stores the top of the float stack as an 32 bit float number at addr.

code df! \ addr -- ; F: f —-

Stores the top of the float stack as an 64 bit double float number at addr.
code tf! \ addr -- ; F: f —-

Stores the top of the float stack as an 80 bit extended float number at addr.
code f+! \ F: f —— ; addr -- ; add f to data at addr
Add F to the data at ADDR.

code f-! \ F: f -—— ; addr -- ; sub f from data at addr
Subtract F from the data at ADDR.

code sf+! \ F: f -—— ; addr -- ; add f to data at addr
Add F to the 32 bit float at ADDR. NDP387.FTH only.

code sf-! \ F: f -—— ; addr -- ; sub f from data at addr
Subtract F from the 32 bit float at ADDR. NDP387.FTH only.

code df+! \ F: f -—— ; addr -- ; add f to data at addr
Add F to the 64 bit float at ADDR. NDP387.FTH only.

code df-! \ F: f -—— ; addr -- ; sub f from data at addr
Subtract F from the 64 bit float at ADDR. NDP387.FTH only.

code tf+! \ F: f -—— ; addr -- ; add f to data at addr
Add F to the 80 bit float at ADDR. NDP387.FTH only.

code tf-! \ F: f -—— ; addr -- ; sub f from data at addr
Subtract F from the 80 bit float at ADDR. NDP387.FTH only.

code f@+ \ addr -- addr’ ; F: -- f

Places the contents of addr on the float stack and increments the address. The size of the item
fetched and the increment is defined by FPCELL. NDP387.FTH only.

code sf@+ \ addr -- addr’ ; F: -- f
Places the 32 bit float at addr on the float stack, and increments addr by 4. NDP387.FTH only.

code df@+ \ addr -- addr’ ; F: —- f
Places the 64 bit float at addr on the float stack, and increments addr by 8. NDP387.FTH only.

code tf@+ \ addr -- addr’ ; F: —- f
Places the 80 bit float at addr on the float stack, and increments addr by 10. NDP387.FTH
only.

code f!+ \ addr -- addr’ ; F: f —

Stores the top of the float stack as an FPCELL sized number at addr, and updates addr appro-
priately. NDP387.FTH only.

code sf!+ \ addr -- addr’ ; F: f —

Stores the top of the float stack as a 32 bit float at addr, and updates addr appropriately.
NDP387.FTH only.

code df!+ \ addr -- addr’ ; F: f —-
Stores the top of the float stack as a 64 bit float at addr, and updates addr appropriately.
NDP387.FTH only.

code tf!+ \ addr -- addr’ ; F: f —-

Stores the top of the float stack as an 80 bit float at addr, and updates addr appropriately.
NDP387.FTH only.



Chapter 14: Floating Point 161

14.13 Dictionary operations

. tf, \ F: £ —-

Lays an 80 bit extended float into the dictionary, reserving 10 bytes
: df, \ F: £ —-

Lays an 64 bit double float into the dictionary, reserving 8 bytes
. sf, \ F: £ —-

Lays a 32 bit float into the dictionary, reserving 4 bytes

. f, \ F: f ——

lays a default float into the dictionary, reserving FPCELL bytes

: falign \ —-

Aligns the dictionary to accept a default float.

: faligned \ addr -- addr’
Aligns the address to accept a default float.

: float+ \ addr -- addr’
Increments addr by FPCELL, the size of a default float.

: floats \ nl -- n2

Returns n2, the size of nl default floats.

: sfalign \ -

Aligns the dictionary to accept a 32 bit float.

: sfaligned \ addr -- addr’
Aligns the address to accept a 32 bit float.

: sfloat+ \ addr -- addr’
Increments addr by the size of a 32 bit float.

: sfloats \ nl -- n2

Returns n2, the size of nl 32 bit floats.

: dfalign \ -

Aligns the dictionary to accept a 64 bit double float.

: dfaligned \ addr -- addr’
Aligns the address to accept a 64 bit float.

: dfloat+ \ addr -- addr’
Increments addr by the size of a 64 bit double float.

: dfloats \ n1 -- n2

Returns n2, the size of nl 64 bit double floats.

: tfalign \ --

Aligns the dictionary to accept an 80 bit extended float.

: tfaligned \ addr -- addr’
Aligns the address to accept an 80 bit extended float.

: tfloat+ \ addr -- addr’
Increments addr by the size of an 80 bit extended float.

: tfloats \ n1 -- n2
Returns n2, the size of nl 80 bit extended floats.



162 VFX Forth for macOS X

14.14 FP defining words
: fvariable \ F: -- ; -- addr

Use in the form: FVARIABLE <name> to create a variable that will hold a default floating point
number.

: farray \'n--; i-- addr

Use in the form: n FARRAY <name> to create a variable that will hold a default floating point
number. When the array name is executed, the index i is used to retun the address of the i’th 0
zero-based element in the array. For example, 5 FARRAY TEST will set up 5 array elements each
containing 0, and then f n TEST F! will store f in the nth element, and n TEST F@ will fetch it.

: fconstant \F: f-—-,; F: - f

Use in the form: <float> FCONSTANT <name> to create a constant that will return a floating
point number.

: fvalue \ F: f —— ; 77?7 —— 777

Use in the form: <float> FVALUE <name> to create a floating point version of VALUE that will
return a floating point number by default, and that can accept the operators TO, ADDR, ADD, SUB,
and SIZEOF. )

14.15 Basic functions + - * / and others
code f+ \ f1 £2 -- f1+£2

Floating point add.

code f- \ f1 £f2 -- f1-f2
Floating point subtract.

code fx* \ f1 £2 -- f1xf2
Floating point multiply.

code f/ \ f1 f2 —— f1/£2
Floating point divide.

code fmod \ F: f1 f2 —- £3

Floating point modulus. Returns {3 the remainder after repeatedly subtracting f2 from f1. Often
used to force arguments to lie in the range: 0 <= arg < 2

code fsqrt \ F: £ -- sqrt(f)
Floating point square root.

code 1/f \ F: £ - 1/f
Floating point reciprocal.

code fabs \ F: £ — |£f]
Floating point absolute.

code fnegate \ F: £ —- -f
Floating point negate.

code f2x \ F: £ —- f*2
Floating point multiply by two.
code f2/ \ F: £ —- /2
Floating point divide by two.



Chapter 14: Floating Point 163

14.16 Integer to FP conversion
code s>f \n-—-; F: ——-f
Converts a single integer to a float.

code d>f \d - ; F: —f
Converts a double integer to a float.

code f>s \ F: £ -=- ; == n ; convert float to integer

Converts a float to a single integer. Note that F>S truncates the number towards zero according
to the ANS specification. See FR>S below.

code f>d \ F: £ -- ; -— d ; convert float to double integer

Converts a float to a double integer. Note that F>D truncates the number towards zero according
to the ANS specification. See FR>D below.

code fr>s \F: £f ——; -—— n ; convert float to integer
Converts a float to a single integer using the current rounding mode.

code fr>d \ F: f -- ; -— d ; convert float to double integer
Converts a float to a double integer using the current rounding mode.

14.17 FP comparisons

: fO< \ F: f1 —— ; —— t/f ; less than zero?
Floating point 0<. N.B. result is on the Forth integer data stack.
: fO= \ F: f1 -- ; -- t/f ; equal zero?
Floating point 0=. N.B. result is on the Forth integer data stack.
: £O<> \ F: f1 -- ; -- t/f ; not equal zero?
Floating point 0<>. N.B. result is on the Forth integer data stack.

. £fO> \ F: f1 -- ; -- t/f ; greater than zero?
Floating point 0>. N.B. result is on the Forth integer data stack.

. f< \ F: f1 f2 -- ; -- t/f ; one less than the other?
Floating point <. N.B. result is on the Forth integer data stack.

. f= \ F: f1 f2 -—- ; —- t/f ; equal each other?
Floating point =. N.B. result is on the Forth integer data stack.

: < \ F: f1 f2 -- ; -- t/f ; one not equal the other?
Floating point <>. N.B. result is on the Forth integer data stack.

: > \ F: f1 f2 —— ; —— t/f ; one less than the other?
Floating point >. N.B. result is on the Forth integer data stack.

. f<= \ F: f1 f2 -- ; -- t/f ; one less or equal the other?
Floating point <=. N.B. result is on the Forth integer data stack.

1 f>= \ F: f1 f2 -- ; -- t/f ; one greater or equal the other?
Floating point >=. N.B. result is on the Forth integer data stack.

code fsignbit \ F: f -- ; -- sign
Return the sign bit of the floating point number. This is not the same as £0< for f=+/-0e0.

: fsign \ F: r1 -- ; -- sign

Get the sign of floating point ri1. The sign is zero for positive numbers and -1 for negative
numbers.



164 VFX Forth for macOS X

S \ F: f1 f2 £3 -- ; -- flag
Approximation function. If f3 is positive, flag is true if abs[f1-f2] is less than f3. If 3 is zero,

flag is true if the 2 is exactly equal to f1. If f3 is negative, flag is true if abs[f1-f2] less than
abs[f3*abs[f1+{2]].

14.18 Words dependent on FP compares
: 7fnegate \ F: f1 f2 —-- £3
Floating point NEGATE.

: fmax \ F: f1 f2 -- £3
Floating point MAX.

: fmin \ F: f1 f2 -- £3
Floating point MIN.

14.19 FP logs and powers

code flog \ F: £ -- log(£)

Floating point log base 10.

code fln \ F: £ -- 1n(£)

Floating point log base e.

code 2% \ F: £ - 2°f

Floating point: returns 2°F.

code fexp \ F: £ -—- e"f ; was called FE°X
Floating point e~f.

: fexpml \ F: £ -- (e"f)-1 ; 12.6.2.1516
Floating point log base (e~f)-1.

code flnpil \ F: f1 —- f2

The output f2 is the natural logarithm of the input plus one. An ambiguous condition exists if
f1 is less than or equal to negative one.

code falog \ F: £ -- 10°f ; was called £10"f, new name: ans
Floating point anti-log base 10.

code (f*x*) \ F: f1 f2 -- f1°£f2

Floating point returns f1 raised to the power f2. No error checking is performed. If floating
point execeptions are masked, which is the default condition, the system will return a NaN for
1<0.

: ek \ F: f1 f2 —- f1°f2
Floating point: returns f1 raised to the power f2. If f1<=0e0, 0e0 is returned. This behaviour is
required by the Forth Scientific Library.

14.20 Rounding

The default rounding configuration is round to nearest.
: fround \ F: f1 -- f1°

Round the number to nearest or even.

: ftrunc \ F: f1 —— f1°
Round the number towards zero, returning an integer result on the FP stack.



Chapter 14: Floating Point 165

: fint \ F: f1 -- f1°

A synonym for FTRUNC. FINT will be removed in a future release.
: floor \ F: f1 -- f1°

Floored round towards -infinity.

: roundup \ F: f1 —-- f1°

Round towards +infinity.

: rounded \ -- ; set NDP to round to nearest
Set NDP to round to nearest for all operations other than FINT, FLOOR and ROUNDUP.

: floored \ —— ; set NDP to floor
Set NDP to round to floor for all operations other than FROUND, FINT and ROUNDUP.

: roundedup \ -- ; set NDP to round up
Set NDP to round up for all operations other than FROUND, FINT and FLOOR.

: truncated \ -- ; set NDP to chop to O
Set NDP to chop to 0 for all operations other than FROUND, FLOOR and ROUNDUP.

code flit \ F: —— f ; takes floating point number inline
Followed in line by a floating point number (FPCELL bytes) returning this number when executed.

defer fliteral \ F: f -- ; F: —- f
Compiles a float as a literal into the current definition. At execution time, a float is returned. For
example, [ %PI F2* ] FLITERAL will compile 2PI as a floating point literal. Note that FLITERAL
is immediate, whereas (RLITERAL) below is not.

(rliteral) \F: f-—-; F: - f

Compiles a float as a literal into the current definition. At execution time, a float is returned.
This is the default action of FLITERAL above.

14.21 FP trigonometry

code ftan \ F: £ —- tan(f)
Floating point tangent.

code fatan \ F: £ -- atan(f)
Floating point arctangent.

code fsin \ F: £ —— sin(f)

Floating point sine.

code fasin \ F: f -- asin(f)
Floating point arcsine.

code fcos \ F: £ -- cos(f)
Floating point cosine.

code facos \ F: f —— acos(f)
Floating point arctangent.

code fsincos \ F: £ -- sin(f) cos(f)
Returns sine and cosine values of f.

: deg>rad \ F: fdeg -- frad
Converts a value in degrees to radians.

: rad>deg \ ——



166 VFX Forth for macOS X

Converts a value in radians to degrees.

code freduce \ F: f1 -- f2 ; reduce value to range 0..2pi
Reduce f1 to be in the range 0 <= {2 < 2PI.

: fcosec \ F: £ -- cosec(f)

Floating point cosecant.

: fsec \ F: £ -- sec(f)

Floating point secant.

: fcotan \ f: £ -- cot(f)

Floating point cotangent.

: fsinh \ F: f -- sinh(f) ; (e"x - 1/e"x)/2
Floating point hyberbolic sine.

: fcosh \ F: £ —— cosh(f) ; (e"x + 1/e"x)/2
Floating point hyberbolic cosine.

: ftanh \ F: £ —— tanh(f) ; (e"x - 1/e"x)/(e"x + 1/e"x)
Floating point hyberbolic tangent.

: fasinh \ F: £ —- asinh(f) ; ln(f+sqrt(1+f*f))
Floating point hyberbolic arcsine.

: facosh \ F: £ —— acosh(f) ; ln(f+sqrt(f*£f-1))
Floating point hyberbolic arccosine.

: fatanh \ F: £ —— atanh(f) ; 1n((1+£f)/(1-£))/2
Floating point hyberbolic arctangent.

14.22 Number conversion
: 10%*n \n-—-; —-f£
Generate a floating point value 10 to the power n, where n is an integer.

(>FLOAT) \ c-addr u -- flag ; F: - £ | —-
Try to convert the string at c-addr/u to a floating point number. If conversion is successful, flag
is returned true, and a floating number is returned on the float stack, otherwise flag is returned
false and the float stack is unchanged.
: >FLOAT \ c-addr u -- flag ; F: -- £ | —-
Try to convert the string at c-addr/u to a floating point number. If conversion is successful, flag
is returned true, and a floating number is returned on the float stack, otherwise flag is returned
false and the float stack is unchanged. Leading and trailing white space are removed before
processing. If the resulting string is of zero length, true is returned with a floating point zero.

Yes, this is what the standard requires. The previous behaviour without this special case is
available as (>FLOAT) above.

14.23 FP output

A significant portion of the output code is taken from FPOUT v3.7 by Ed. See
http://dxforth.webhop.org/

or one of its mirrors.

: precision \ ——u



Chapter 14: Floating Point 167

Returns the number of significant digits used by F. FE. and FS..

: set-precision \ u --
Sets the number of significant digits used by F. FE. and FS..

: places \u--
Sets the number of significant digits used by F. FE. and FS.. The ANS version of this word is
SET-PRECISION, which should be used in new code.

: BadFloat? \ F: f ——- ; -- caddr u true | false

If the float is a NaN or Infinite, return a string such as "+NaN" and true, otherwise just return
false (0).

! represent \ c-addr len -- n flagl flag2 ; F: f --

Assume that the floating number is of the form +/-0.xxxxEyy. Round the significand xxxxx to
len significant digits and place its representation at c-addr. If len is zero round the fractional
significand to a whole number. If len is negative the fractional significand is rounded to zero.
Flag?2 is true if the results are valid. N is the signed integer version of yy and flag! is true if f
is negative. In this implementation all errors are handled by exceptions, and so flag2 is always
true except for NaNs and Infinites. The number of characters placed at c-addr is the greater
of len or MAX-FLOAT-DIGITS. For a Nan or Infinite, a three character non-numeric string is
returned.

(FS.) \F: £f - ; n-- c-addr u
Convert float f to a string c-addr/u in scientific notation with n places right of the decimal
point.
: FS.R \F: r—-;nu--
Display float f in scientific notation right-justified in a field width v with n places right of the
decimal point.
: FS. \ F: £ —-
Display float f in scientific notation, with one digit before the decimal point and a trailing space.
(FE.) \F: r -—— ; n-- c-addr u
Convert float f to a string c-addr u in engineering notation with n places right of the decimal
point.
: FE.R \F: r—-;nu-—-
Display float f in engineering notation right-justified in a field width u with n places right of
the decimal point.
: FE. \ F: £ —-
Display float f in engineering notation, in which the exponent is always a power of three, and
the significand is always in the range 1.xxx to 999.xxx.
(F.) \F: f ——-; n-—- c-addr u
Convert float f to string c-addr/u in fixed-point notation with n places right of the decimal
point.
: F.R \F: f-—-;nu--
Display float f in fixed-point notation right-justified in a field width u with n places right of the
decimal point.
: F. \ F: £ —-
Display f as a float in fixed point notation with a trailing space. The ANS specification says that

the display is in fixed-point format, but restricted by PRECISION. What should 1e308 display?
In this implementation 1e308 displays a 1 followed by 308 zeros. Several people believe that the



168 VFX Forth for macOS X

specification for F. is broken. For a display word that always provides sensible output, use G.
below. Convert float f to string c-addr/u with n places right of the decimal point. Fixed-point
is used if the exponent is in the range -4 to 5 otherwise scientific notation is used.

: G.R \F: £f - ;nu -

Display float f right-justified in a field width « with n places right of the decimal point. Fixed-
point is used if the exponent is in the range -4 to 5 otherwise scientific notation is used.

: G. \ F: f —-

Display float f followed by a space. Floating-point is used if the exponent is in the range -4 to
5 otherwise use scientific notation. Non-essential zeros and signs are removed.

: £7 \ addr -- ; displays contents of addr
Displays the contents of the given FVARIABLE.

: f.s \ F: i*xf —- ixf

Display the contents of the floating point stack in a vertical format.
: f.sh \ F: ixf —— ixf

Display the contents of the floating point stack in a horizontal format.

14.24 Patch FP into the system
: isFnumber? V\caddr len - 0 | n1 1 d2 | -2 ; F: ——-r

Behaves like the integer version of isNumber? except that if integer conversion fails, and BASE is
decimal, a floating point conversion is attempted. If conversion is successful, the floating point
number is left on the float stack and the result code is -2.

: Fnumber? VNcaddr -0 | n1|]d2]| -2 ; F: -—-r
As isFnumber? above, but takes a counted string.
: post-float \ f: £ - ; -
POSTPONE a floating point number. The word being defined will itself compile the given
floating point number.
> noop °’ (rliteral) °’ post-float RecType: r:float \ -- struct
Contains the interpret, compile and postpone actions for floating point literals.
: rec-float \ caddr u —- r:float | r:fail ; F: -- [f]
The parser part of the floating point recogniser.
.FSysPrompt \ --
Adds floating point stack depth display.
: reals \ -- ; turn FP system on
Enables the floating point package for number conversion.
: integers \ -- ; turn FP system off

Disables the floating point package for number conversion.

14.25 PFW2.x compatibility
: f# \ -— f ; or compiles it [ state smart ]
Used in the form "F# <number>", the <number> string is converted and promoted if required to

a floating point number. If the system is compiling the float is compiled. If <number> cannot
be converted an error occurs. )



Chapter 14: Floating Point 169

14.26 Debugging support

Debugging floating point code is often difficult, as failures can occur because of the necessary
approximations involved in floating point operations.

If you set the constant [FPDEBUG] true when compiling Ndp387.fth, a debug build will be con-
structed. The state of the FPU will be checked after each word. If a floating point exception
has been generated, a diagnostic is issued, and the system aborts. Set this only when testing,
as it slows down the normal operation of floating point words.

The debugger works by intercepting the end of each code definition which is finished by FNEXT,
rather than the normal NEXT, or RET. See the source code in *\i{Lib/x86/Ndp387.fth for more
details.

: +fpcheck \ -- ; enable FP checking
Enables the floating point debugger if it has been compiled.

: —fpcheck \ -- ; disable FP checking
Disbles the floating point debugger if it has been compiled.

14.27 Extensions
14.27.1 F.P. stack jugglers

Due to the Mac’s usage of fp for all graphic related things, F.P. stack jugglers similar to those
for the data stack are handy. We deal with F.P. pairs as used for points, sizes and ranges and
F.P. quads for rectangles and colours. F2SWAP F20VER F2DROP FADUP FTUCK FNIP do what you
expect ...

code F2DUP \F: r1 r2 —rl r2rl r2
Floating point equivalent of 2DUP.

code F2SWAP \F: r1 r2 r3r4d —— r3rdrl r2
Floating point equivalent of 2SWAP.

code F20VER \F: r1 r2r3r4d —r1 r2r3rdrlr2
Floating point equivalent of 20VER.

code F2DROP \ F: r1 r2 --
Floating point equivalent of 2DROP.

code F4DUP \F: r1r2r3r4d - r1r2r3rdrlzr2rzr3rd
Floating point equivalent of 4DUP.

code FTUCK \ F: r1 r2 -- r2 rl1 r2
Floating point equivalent of TUCK.

code FNIP \ F: r1 r2 -- r2
Floating point equivalent of NIP.






Chapter 15: Multitasker 171

15 Multitasker

15.1 Introduction

As of VFX Forth for Mac v4.6, 25 May 2012, there has been an overhaul of the multitasker.
All attempts have been abandoned to maintain compatibility with the cooperative multitasker
used in MPE embedded systems. The effects of all retained words have not changed. The
new tasker does not affect most desktop applications, but does allow us to reduce CPU utili-

sation and hence power consumption. The original code is still present and may be found as
Lib/Osz32/MultiOsz32.trad. fth.

The multitasker supplied with VFX Forth is derived from the multitasker provided with the MPE
Forth cross compilers, v6.1 onwards. Using a multitasking system can greatly simplify complex
tasks by breaking them down into manageable chunks. This chapter leads you through:

e initialising the multitasker
e writing a task
e communicating between tasks

e handling events

The multitasker source code is in the file Lib/Osz32/MultiOsz32.fth. Note that the full version
of this file with all switches set except for test code is compiled as part of the second stage build,
but is not present by default in the kernel version of VFX Forth.

15.2 Configuration

The configuration of the multitasker is controlled by constants that control what facilities are
compiled:

0 constant test-code? \ -=-n
The test code will be compiled if this constant is true and has not already been defined.

15.3 Initialising the multitasker

The multitasker needs to be initialised before use. At compile time you must define the tasks
that your system requires and at run-time, all the tasks must be initialised.

Before use the multitasker must be initialised by the word INIT-MULTI, which initialises the
primary task MAIN, and enables the multi-tasker.

To disable the multitasker, use SINGLE.

To enable the multitasker, use MULTI, which starts the scheduler so new tasks can be added.

15.4 Writing a task

Tasks are very straightforward to write, but the way tasks are scheduled needs to be understood.
This implementation uses the OS X pthreads API, and so tasks are pre-emptively scheduled.
This is different from the cooperative scheduler used by embedded systems. Despite this, the



172 VFX Forth for macOS X

word PAUSE which yields a timeslice is retained for compatibility, and PAUSE is where the MPE
event handling is incorporated.

(" N
: ACTION1 \ -- ; An example task
TASKO-IO \ select the console as the I/0 device
DUP IP-HANDLE ! OP-HANDLE !
BEGIN \ Start an endless loop
[CHAR] * EMIT \ Produce a character )
1000 MS \ Wait 1 second
PAUSE \ Needed!
AGAIN \ Go round again
TASK TASK1 \ -- tcb ; name task, get space for it

- J

The task name created by TASK is used as the task identifier by all words that control tasks.

15.4.1 Task dependent variables

An area of memory known as the USER area is set aside for each task. This is often called
thread local storage. This memory contains user variables which contain task specific data. For
example, the current number conversion radix BASE is normally a user variable as it can vary
from task to task.

A user variable is defined in the form:

Gl USER <name> }

where n is the nth byte in the user area. The word +USER can be used to add a user variable of
a given size:

[ <size> +USER <name> J

The use of +USER avoids any need to know the offset at which the variable starts.

A user variable is used in the same way as a normal variable. By stating its name, its address
is placed on the stack, which can then be fetched using @ and stored by !.

15.5 Controlling tasks

Tasks can be controlled in the following ways:
e activated
e halted
e restarted after it has been halted

e terminated.

15.5.1 Activating a task

A task is started by activating it. To activate a task, use INITIATE,



Chapter 15: Multitasker 173

[’ <action> <task> INITIATE }

where ’> <action> gives the xt of the word to be run and <task> is the task identifier. The
task identifier is used to control the task. Tasks defined by TASK <name> return a task identifier
when <name> is executed.

15.5.2 Stopping a task

A task may be temporarily suspended. A task may also halt itself. To temporarily stop a task,
use HALT. HALT is used in the form:

{<t ask> HALT }

where <task> is the task to be stopped. To restart a halted task, use RESTART which is used in
the form:

[<t ask> RESTART }

where <task> is the task to restart.

To stop the current task (i.e. stop itself) use *\fo{STOP( — ).

15.5.3 Terminating a task

Terminating a task halts it, performs an optional clean up action, and calls the operating system
thread end function. A thread must terminate itself, which leads to some complexities. However,
it does give the task an opportunity to release any resources it may have allocated (especially
memory) at start up or during its execution. To terminate a task use:

[ <task> TERMINATE }

Before the operating system thread end function is called, the terminating task will execute its
clean up code. The XT of the clean up code is held in the task control block. If no clean up
action is required, zero is used.

[ ... [’] CleanUp MyTask AtTaskExit ... j

If you want a task to be a BEGIN ... UNTIL loop rather than an endless loop, this is perfectly
legal, as returning from a thread will call the clean up code and then the ExitThread function.
However, you must define an exit code before you return from the task. Note that on entry to
the task there will already be a 0 on the stack.



174 VFX Forth for macOS X

( N
: MyTask \ 0 -- exitcode

<initialisation> \ initialise task resources

begin \ round and round until done

<actions> MyDone @

until

drop O \ paranoid, return O as success
k, J

Unlike MPE’s embedded systems, under OS X you cannot predict how long a task will take to
start after INITIATE or shut down after TERMINATE.

15.6 Critical sections

Sometimes the multitasker has to be inhibited so that other tasks are not run during critical
operations that would otherwise cause the scheduler to operate. This is achieved using the
words SINGLE and MULTI. Note that these do *\{not} stop the OS X scheduler, only the MPE
extensions. If a full critical section is required, see the semaphore source to find out how to use
the critical section API.

SINGLE —-- ; inhibit tasker
MULTI -— ; restart tasker

A SEMAPHORE is a structure used for signalling between tasks, and for controlling resource usage.
It has two fields, a counter (cell) and an owner (taskid, cell). The counter field is used as a
count of the number of times the resource may be used, and the owner field contains the TCB
of the task that last gained access. This field can be used for priority arbitration and deadlock
detection/arbitration.

This design of a semaphore can be used either to lock a resource such as a comms channel or
disc drive during access by one task, or as a counted semaphore controlling access to a buffer.
In the second case the counter field contains the number of times the resource can be used.
Semaphores are accessed using SIGNAL and REQUEST.

SIGNAL increments the counter field of a semaphore, indicating either that another item has
been allocated to the resource, or it is available for use again, 0 indicating that it is in use by a
task.

REQUEST waits until the counter field of a semaphore is non-zero, and then decrements the
counter field by one. This allows the semaphore to be used as a COUNTED semaphore. For
example a character buffer may be used where the semaphore counter shows the number of
available characters. Alternatively the semaphore may be used purely to share resources. The
semaphore is initialised to one. The first task to REQUEST it gains access, and all other tasks
must wait until the accessing task SIGNALs that it has finished with the resource.

15.7 Multitasker internals

A multitasker tries to simulate many processors with just one processor. It works by rapidly
switching between each task. On each task switch it saves the current state of the processor, and
restores the state that the next task needs. The Forth multitasker creates a task control block
for each task. The task control block (TCB) is a data structure which contains information
relevant to a task.



Chapter 15: Multitasker 175

15.8 A simple example

The following example is a simple demonstration of the multitasker. Its role is to display a hash
‘#’ every so often, but leaving the foreground Forth console running. To use the multitasker
you must compile the file LIB\MULTIWIN32.FTH into your system. Note that the file has
already been compiled by the Studio IDE in VfzForth.eze, but is not present in VfrBase.exe.

The following code defines a simple task called TASK1. It displays a ’$’ character every second.

( N
VARIABLE DELAY \ time delay between #’s in milliseconds

1000 DELAY ! \ initialise time delay
: ACTION1 \ -- ; task to display #’s

TASKO-IO \ select the console as the I/0 device

DUP IP-HANDLE ! OP-HANDLE !

[CHAR] $ EMIT \ Display a dollar
BEGIN \ Start continuous loop
[CHAR] # EMIT \ Display a hash
DELAY @ MS \ Reschedule Delay times
PAUSE \ At least one per loop
AGAIN \ Back to the start
C J

The use of PAUSE in this example is not actually required as MS periodically calls PAUSE.

Before any tasks can be activated, the multitasker must be initialised. This is done with the
following code:

[}NIT—MULTI }

The word INIT-MULTI initialises all the multitasker’s data structures and starts multitasking.
This word need only be executed once in a multitasking system and is usually executed at start

up.

Note that on entry to a task, the stack depth will be 1. This happens because OS X requires a
return value when a task terminates, and a value of zero is provided by the task initialisation
code.

To run the example task, type:

TASK TASK1
ASSIGN ACTION1 TASK1 INITIATE

This will activate ACTION1 as the action of task TASK1. Immediately you will see a dollar and
a hash displayed. If you press <return> a few times, you notice that the Forth interpreter is
still running. After a few seconds another hash character will appear. This is the example task
working in the background.

The example task can be controlled in several ways:



176 VFX Forth for macOS X

e the rate of generation of hashes can be changed
e it can be halted
e once halted it can be restarted

e it can be started from scratch
Changing the variable DELAY can change the rate of production of hashes. Try:

{%OOO DELAY ! }

This changes the number of milliseconds between displaying hashes to 2000 milliseconds. There-
fore the rate of displaying hashes halves.

Typing the task name followed by HALT halts the task:

[TASKl HALT J

You notice that the hashes are not displayed any more.

The task is restarted by RESTART. Type:

{%ASKl RESTART }

You notice that the hashes are displayed again.

To restart the task from scratch, just kill it and activate it again:

TASK1 TERMINATE
ASSIGN ACTION1 TASK1 INITIATE

You notice the dollar and the hash are displayed, followed by more hashes.

15.9 Structures and support

struct /pthread_attr_t \ -- len
Equivalent of pthread_attr_t structure.

#38 constant /tcb.callback \ -- len

Size of the task callback data and code. Used for error checks.

struct /TCB \ -- size

Returns the size of a TCB structure, which controls the task.
int tcb.link \ link to next task ; MUST BE FIRST 0
int tcb.hthread \ task handle 4
int tcb.up \ user pointer 8
int tcb.pumpxt \ user hook 12
int tcb.status \ status bits 16
int tcb.clean \ xt of clean up handler 20



Chapter 15: Multitasker 177

/tcb.callback field tcb.callback \ task callback structure 24
aligned \ force to cell boundary
end-struct

The task status cell reserves the low 8 bits for use by VFX Forth. The other bits may be used
by your application.

Bit When set When Reset
task running task halted

1..7 RFU RFU

8..31 User defined User defined

cell +USER ThreadExit? \ -- addr
Holds a non-zero value to cause the thread to exit.

cell +USER ThreadTCB \ -- addr
Holds a pointer to the thread’s TCB.

cell +USER ThreadSync \ -- addr
Holds bit patterns used for intertask synchronisation. See later section.

. AtTaskExit \ xt tcb -- ; set task exit action
Sets the given task’s cleanup action. Use in the form:
’ <action> <task> AtTaskExit

: perform \ addr --
Execute contents of addr if non-zero. The non-zero contents of addr are EXECUTEd.

15.10 Task definition and access

create main \ —— addr ; tcb of main task
The task structure for the first task run, usually the console or the main application.

: InitTCB \ addr --
Initialise a task control block at addr.

. task \ —— ; —- addr ; define task, returns TCB address
Use in the form TASK <name>, creates a new task data structure called <name> which returns
the address of the data structure when executed.

: Self \ —— tcb|0 ; returns TCB of current task
Returns the task id (TCB) of the current task. If called outside a task, zero is returned.

: his \ task uservar -- addr
Given a task id and a USER variable, returns the address of that variable in the given task. This
word is used to set up USER variables in other tasks. Note that the task must be running.

15.11 Task handling primitives

0 value multi? \ -- flag
Returns true if the tasker is enabled.

: single \ -- ; disable scheduler
Disables the Forth portions of the scheduler, but does not disable OS X scheduling.

: multi \ -- ; enable scheduler



178 VFX Forth for macOS X

Enables the Forth portions of the scheduler, but does not disable OS X scheduling.

defer pause \ -

PAUSE is the software entry to the pre-emptive scheduler, and should be called regularly by all
tasks. The phrase sched_yield drop occurs at the end of the default action (PAUSE). If the
task needs more than this and does not use one of the existing message loop words such as IDLE,
place the XT of the message pump word in offset TCB.PUMPXT of the Task Control Block and
that XT will be called once every time PAUSE is called. Because of the way OS X works, PAUSE
also controls task closure. A task that does not call PAUSE cannot be safely terminated except
by the task itself, or by a call to the API function ki1l1(). A task that calls PAUSE in a loop
without calling any delay mechanism will cause CPU hogging.

(pause) \ -- ; the scheduler itself

The action of PAUSE after the multitasker has been compiled. If not called from a task, this is a
NOOP. If SINGLE has been set, no action is taken. If MULTI is set, the action is sched_yield until
the task status is non-zero.

: restart \ tcb -- ; mark task TCB as running
If the task has been initiated but is now HALTed or STOPped, it will be restarted.

: halt \ tcb -- ; mark thread as halted
Stops an INITIATEd task from running until RESTART is used.

: stop \ -- ; halt oneself
HALTs the current task.

: running? \ tcb -- u

Returns the task’s run status, where non-zero indicates that it is running.

15.12 Task management
: to-task \ xt task -- ; set action of task

Used in the form below to define a task’s action:

assign <action> <task> to-task

: to-pump \ xt task -- ; set message loop of task
Used in the form below to define rhe action of the message pump:

assign <action> <task> to-pump

: initiate \ xt task -- ; start task from scratch

Initialises a task running the given xt. All required O/S resources are allocated by this word.

: terminate \ task -- ; stop task, and remove from list

Causes the specified task to die. You should not make assumptions as to how long this will take.
Unlike the embedded systems implementations, this word is very operating system dependent.
The task may still be alive on return from this call.

N.B. Do not use self terminate to cause a task to end. Use the following instead:

: Suicide \ -- ; terminate current task
ThreadExit? on begin pause again

. Suicide

. start: \ task -- ; exits from caller



Chapter 15: Multitasker 179

START: is used inside a colon definition. The code before START: is the task’s initialisation,
performed by the current task. The code after START: up to the closing ; is the action of the
task. For example:

( N
TASK FOO
: RUN-FOO
FOO START:
begin ... pause again
S , J

All tasks must run in an endless loop, except for initialisation code. There are exceptions to
this, and these are discussed in the section on terminating a task. When RUN-FOO is executed,
the code after START: is set up as the action of task FOO and started. RUN-F0OO then exits. If you
want to perform additional actions after starting the task, you should use IINITIATE to start
the task.

: TaskState \ task -- state

Returns true if the task has started and zero if the thread has finished.

¢ init-multi \ -- ; initialisation of multi-tasking

Initialise the Forth multitasker to a state where only the task MAIN is known to be running.

INIT-MULTI is added to the cold chain and is also called during compilation of MultiOsx32.fth.
This word must be run from MAIN.

: term-multi \ -
Performed in the exit chain when the program terminates. closes all active tasks except SELF.
This allows all task clean-up actions to be performed before the program itself finishes.

.task \ task -- ; display task name
Given a task, e.g. as returned by SELF, display its name or address.

.tasks \ -- ; display active tasks
Display a list of all the active Forth tasks.

15.13 Task synchronisation

$AAAABS55 constant TaskReady \ --n
At task initiation, USER variable THREADSYNC is set to zero. Set THREADSYNC to this value to
indicate that the task is willing to synchronise with another task.

$5555AAAA constant TaskReadied \ -- n

A synchronising task sets another task’s THREADSYNC to this value to indicate that synchronisa-
tion is complete.

: WaitForSync \ --

Perform the slave synchronisation sequence.

[Sync \ task -- task
Used by a master task in the form:

[Sync ... Sync]

to synchronise and pass data to another task, usually when USER variables must be initialised.
The slave task must execute WAITFORSYNC.



180 VFX Forth for macOS X

: Sync] \ task --
Used by a master task in the form:

[Sync ... Sync]
to indicate the end of synchronisation.

15.14 Semaphores

struct /semaphore \ -- len
Structure used for OS X i32 semaphores.

: semaphore \ -- ; -- addr [child]

A SEMAPHORE is an extended variable used for signalling between tasks and for resource allocation.
The counter field is used as a count of the number of times the resource may be used, and the
arbiter field contains the TCB of the task that last gained access. This field can be used for
priority arbitration and deadlock detection/arbitration.

: InitSem \ semaphore --
Initialise the semaphore. This must be done before using it.

: ShutSem \ semaphore --
Delete the critical section associated with the smaphore.

: LockSem \ semaphore --
Lock the semaphore.

: UnlockSem \ semaphore --
Unlock the semaphore.

: signal \ sem -- ; increment counter field of semaphore,
SIGNAL increments the counter field of a semaphore, indicating either that another item has
been allocated to the resource, or that it is available for use again, 0 indicating in use by a task.

: request \ sem -- ; get access to resource, wait if count = 0

REQUEST waits until the counter field of a semaphore is non-zero, and then decrements the
counter field by one. This allows the semaphore to be used as a counted semaphore. For
example a character buffer may be used where the semaphore counter shows the number of
available characters. Alternatively the semaphore may be used purely to share resources. The
semaphore is initialised to one. The first task to REQUEST it gains access, and all other tasks
must wait until the accessing task SIGNALs that it has finished with the resource.

15.15 Exclusive access

The words GET and RELEASE access a resource variable to control access to a resource.

: GET \ varaddr --
If the resource variable is not available, wait until we have set it.

: RELEASE \ varaddr --
Release the resource variable if it belongs to this task.



Chapter 16: Periodic Timers 181

16 Periodic Timers

This code provides a timer system that allows many timers to be defined, all slaved from a
single periodic interrupt. The Forth words in the user accessible group documented below are
compatible with the token definitions for the PRACTICAL virtual machine and with the code
supplied with MPE’s embedded targets. This code assumes the presence of TICKS which returns
a time value incremented in milliseconds.

The timebase is approximate, and granularity and jitter are affected by OS X and the time
taken to run your own code. By default, the timer is set to run every 100ms. The source code
is in the the file Lib/Lin32/TimeBase.fth. If you are using the multitasker, you must compile
TimeBase.fth after MultiLin32.fth.

The timer chain is built using a buffer area, and two chain pointers. Each timer is linked into
either the free timer chain, or into the active timer chain.

All time periods are in milliseconds. Note that on a 32 bit system such as VFX Forth, these
time periods must be less than 2731-1 milliseconds, say 596 hours or 24 days, whereas if the
code is ported to a 16 bit system, time periods must be less than 2715-1 milliseconds, say 32
seconds.

16.1 The basics of timers

These basic words are defined for applications to use the
e N

START-TIMERS \ -- ; must do this first

STOP-TIMERS \ —— ; closes timers

AFTER \ xt ms —— timerid/0 ; runs xt once after ms

EVERY \ xt ms -- timerid/0 ; runs xt every ms

TSTOP \ timerid -- ; stops the timer

MS \ period -- ; wait for ms

N J

After the timers have been started, actions can be added. The example below starts a timer
which puts a character on the debug console every two seconds.
( A
start-timers
:t \ -- ; will run every 2 seconds
[char] * emit

’ t 2 seconds every \ returns timerid, use TSTOP to stop it
= %

The item on stack is a timer handle, use TSTOP to halt this timer.

AFTER is useful for creating timeouts, such as is required to determine if something has happened
in time. AFTER returns a timerid. If the action you are protecting happens in time, just use
TSTOP when the action happens, and the timer will never trigger. If the action does not happen,
the timer event will be triggered.



182 VFX Forth for macOS X

16.2 Considerations when using timers

All timers are executed within a single callback, and so all timer action words share a common
user area. This has some impact on timer action words. Since you do not know in which order
timer action words are executed, you must set up any USER variables such as BASE that you may
use, either directly or indirectly.

The callback that handles all the timers sets IP-HANDLE and OP-HANDLE to a default that cor-
responds to the interactive Forth console. If you use Forth I/O words such as EMIT and TYPE
within a timer action, you must set IP-HANDLE and OP-HANDLE before using the I/O. For the
sake of other timer action routines that may still be using default I/0, it is polite to save and
restore IP-HANDLE and OP-HANDLE in your timer action words.

Do not worry about calling TSTOP with a timerid that has already been executed and removed
from the active timer chain; if TSTOP cannot find the timer, it will ignore the request.

Be sure to use START-TIMERS in your main task, so that the timer is not destroyed if a thread
terminates.

16.3 Implementation issues

The following discussion is relevant if you want to modify this code or port it to an embedded
target. Functionally equivalent code is provided with MPE’s Forth VFX cross compilers. In the
OS X environment, timer interrupts are implemented by signals, callbacks and critical sections.

By default, the word DO-TIMERS is run from within the periodic timer callback. You may have
latency issues if a large number of timers is used, or if some timer routines take a considerable
time. In this case, it may be be better to set up the timer routine to RESTART a task which calls
DO-TIMERS, e.g.

~
: TIMER-TASK \ -
<initialise>
BEGIN
DO-TIMERS STOP
AGAIN
\:

Such a strategy also permits you to use a fast timer, say lms, for a clock, and to trigger
TIMER-TASK every say 32 ms.

16.4 Timebase glossary
/semosx buffer: lpcs \ -- sem
Semaphore used for critical sections.

#32 constant #timers \ -- n ; maximum number of timers

A constant used at compile time to set the maximum number of timers required. Each timer
requires RAM as defined by the ITIMER structure below.

struct itimer \ —- len
Interval timer structure.



Chapter 16: Periodic Timers 183

cell field itlink \ link to next timer ; MUST be first
cell field itTimerId \ timer ID
cell field itinterval \ period of timer in MS
cell field ittimeout \ next timeout
cell field itmode \ mode/flags, O=periodic, l=one shot
cell field itxt \ word to execute

end-struct

: after \ xt period -- timerid/0 ; xt is executed once,

Starts a timer that executes once after the given period. A timer ID is returned if the timer
could be started, otherwise 0 is returned.

1 every \ xt period -- timerid/0 ; periodically

Starts a timer that executes every given period. A timer ID is returned if the timer could be
started, otherwise 0 is returned. The returned timerID can be used by TSTOP to stop the timer.
: tstop \ timerid --

Removes the given timer from the active list.

seconds \'n--n’
Converts seconds to milliseconds.

struct /itimerval \ -- len
Corresponds to the OS X itimerval structure.

int it.currsecs \ current period

int it.currusecs \ in seconds & microseconds
int it.nextsecs \ next period (0 to stop)
int it.nextusecs \ in seconds & microseconds

end-struct

/itimerval buffer: TBtimer \ -- addr
Structure controlling the main timer.

: SetTimerData \ ms timer --
Set a OS X itimerval structure to run every ms milliseconds. Setting 0 ms will stop the timer.

#100 constant /period \ -- ms
Main timer period in milliseconds.

3 0 callback: SIGALRMhandler \ -- entrypoint
SIGALRM callback for main timer.

: doSIGALRM \ signum *siginfo *ucontext --
Action of main timer.

start-timers \ -- ; Start intermal time clock
Initialises the timebase system, and starts the timebase system. Note that all timer actions are
cleared. Performed at start up.

: Stop-Timers \ -- ; disable timer system
Halts the timebase interrupt.






Chapter 17: A BNF Parser in Forth 185

17 A BNF Parser in Forth

17.1 Introduction

Backus-Naur Form, BNF, is a notation for the formal description of programming languages.
While most commonly used to specify the syntax of "conventional" programming languages such
as Pascal and C, BNF is also of value in command language interpreters and other language
processing.

This paper describes a Forth extension which transforms BNF expressions to executable Forth
words. This gives Forth a capability equivalent to YACC or TMG, to produce a working parser
from a BNF language description.

This article first appeared in ACM SigFORTH Newsletter vol. 2 no. 2. Since then the code
has been updated from the original by staff at MPE, and this documentation has been derived
from the article supplied by Brad Rodriguez, whose original implementation is a model of Forth
programming.

The source code is compiled by the second stage build and is in the file Sources\ VFXBase\bnf.fth.

17.2 BNF Expressions

BNF expressions or productions are written as follows:

production = term ... term \ alternate #1
| term ... term \ alternate #2
| term ... term \ alternate #3

This example indicates that the given production may be formed in one of three ways. Each
alternative is the concatenation of a series of terms. A term in a production may be either
another production, called a nonterminal, or a fundamental token, called a terminal.

A production may use itself recursively in its definition. For example, an unsigned integer can
be defined with the productions

<digit> ::=0 | 1121314156161 7181]9
<number> ::= <digit> | <digit> <number>

which says that a number is either a single digit, or a single digit followed by another number
of one or more digits.

We will use the conventions of a vertical bar | to separate alternatives, and angle brackets to
designate the name of a production. Unadorned ASCII characters are terminals, the fundamental
tokens.



186 VFX Forth for macOS X

17.3 A Simple Solution through Conditional Execution

The logic of succession and alternation can be implemented in two "conditional execution"
operators, && and | |. These correspond exactly to the "logical connectives" of the same names
in the C language (although their use here was actually inspired by the Unix "find" command).
They are defined:

|| IF R> DROP 1 THEN ; ( exit on true)
: && O= IF R> DROP O THEN ; ( exit on false)

|| given a true value on the stack, exits the colon definition immediately with true on the stack.
This can be used to string together alternatives: the first alternative which is satisfied (returns
true) will stop evaluation of further alternatives.

&& given a false value on the stack, exits the colon definition immediately with false on the
stack. This is the "concatenation" operator: the first term which fails (returns false) stops
evaluation and causes the entire sequence to fail.

We assume that each "token" (terminal) is represented by a Forth word which scans the input
stream and returns a success flag. Productions (nonterminals) which are built with such tokens,
I'l, and &&, are guaranteed to return a success flag.

So, assuming the "token" words ’0’ thru ’9’ have been defined, the previous example becomes:

: <DIGIT> 0’ || *1° [ *2° || *3* || *4
11252 11 267 11 270 1] 280 1] 29

: <NUMBER1>  <DIGIT> && <NUMBER> ;

: <NUMBER>  <DIGIT> || <NUMBER1> ;

Neglecting the problem of forward referencing for the moment, this example illustrates three
limitations:

a. we need an explicit operator for concatenation, unlike BNF.

b. && and || have equal precedence, which means we can’t mix && and || in the same
Forth word and get the equivalent BNF expression. We needed to split the production
<NUMBER> into two words.

BNF production fails.

We will address these next.
17.4 A Better Solution

Several improvements can be made to this "rough" BNF parser, to remove its limitations and
improve its "cosmetics."

a)) Concatenation by juxtaposition. We can cause the action of && to be performed "invisibly"
by enforcing this rule for all terms (terminals and nonterminals): Each term examines the stack
on entry. if false, the word exits immediately with false on the stack. Otherwise, it parses and
returns a success value.



Chapter 17: A BNF Parser in Forth 187

To illustrate this: consider a series of terms

[<UNE> <TWO> <THREE> <FOUR> }

Let <ONE> execute normally and return "false." The <TWO> is entered, and exits immediately,
doing nothing. Likewise, <THREE> and <FOUR> do nothing. Thus the remainder of the
expression is skipped, without the need for a return-stack exit.

b)) Precedence. By eliminating the && operator in this manner, we make it possible to mix
concatenation and alternation in a single expression. A failed concatenation will "skip" only as
far as the next operator. So, our previous example becomes:

[: <NUMBER> <DIGIT> || <DIGIT> <NUMBER> ; j

c)) Backtracking. If a token fails to match the input stream, it does not advance the scan
pointer. Likewise, if a BNF production fails, it must restore the scan pointer to the "starting
point" where the production was attempted, since that is the point at which alternatives must
be tried. We therefore enforce this rule for all terminals and nonterminals: Each term saves the
scan pointer on entry. If the term fails, the scan pointer is restored; otherwise, the saved value
is discarded.

We will later find it useful to "backtrack" an output pointer, as well.

d)) Success as a variable. An examination of the stack contents during parsing reveals the
surprising fact that, at any time, there is only one success flag on the stack! (This is because
flags placed on the stack are immediately "consumed.") We can use a variable, SUCCESS, for
the parser success flags, and thereby simplify the manipulations necessary to use the stack for
other data. All BNF productions accept, and return, a truth value in success.

17.5 Notation

<BNF is used at the beginning of a production. If SUCCESS is false, it causes an immediate
exit. Otherwise, it saves the scan pointer on the return stack.

BNF> is used at the end of a production. If SUCCESS is false, it restores the scan position from
the saved pointer. In any case, it removes the saved pointer from the return stack.

<BNF and BNF> are "run-time" logic, compiled by the words ::= and ;; respectively.
::= name starts the definition of the BNF production name.
;; ends a BNF definition.

| separates alternatives. If SUCCESS is true, it causes an immediate exit and discards the saved
scan pointer. Otherwise, it restores the scan position from the saved pointer.

{ ... } denotes a production statement which is issued when successful evaluation of the preceding



188 VFX Forth for macOS X

checks has been performed.. The alternative form { _ }{ _ } allows conditional productions in
which the first part is produced when SUCCESS is true, and the second part is produced when
SUCCESS is false.

[[ ... ]] denotes a block that must be performed 0 or more times, and thus is totally optional.
Alternatives are not permitted.

<< ... >> denotes a block that must be performed at least once. Alternatives are not permitted.
There are four words which simplify the definition of token words and other terminals:
@QTOKEN fetches the current token from the input.

+TOKEN advances the input scan pointer.

=TOKEN compares the value on top of stack to the current token, following the rules for BNF
parsing words.

nn TOKEN name builds a "terminal" name, with the ASCII value nn.

The parser uses the Forth >IN as the input pointer, and the dictionary pointer DP as the output
pointer. These choices were made strictly for convenience; there is no implied connection with
the Forth compiler.

17.6 Examples and Usage

The syntax of a BNF definition in Forth resembles the "traditional" BNF syntax:

Traditional:

G)I"Od 1= term term | term term

Forth:

[::= prod term term | term term ;;

The first example below is a simple pattern recognition problem, to identify text having balanced
left and right parentheses. Several aspects of the parser are illustrated by this example:

a. Three tokens are defined on line 4. To avoid name conflicts, they are named with enclosing
quotes. <EOL> matches the end-of-line character in the Forth Terminal Input Buffer. often
encountered in BNF. The null alternative parses no tokens, and is always satisfied.

b. Not all parsing words need be written as BNF productions. The definition of <CHAR> is
Forth code to parse any ASCII character, excluding parentheses and nulls. Note that ::=
and ;; are used, not to create a production, but as an easy way to create a conditionally-
executing (per SUCCESS) Forth word. "true," and the "topmost" BNF production is
executed. on its return, SUCCESS is examined to determine the final result.



Chapter 17: A BNF Parser in Forth 189

c. PARSE also shows how end-of-input is indicated to the BNF parser: the sequence is defined
as the desired BNF production, followed by end-of-line.

The second example parses algebraic expressions with precedence. This grammar is directly
from [AHO77], p. 138. The use of the productions <T’> and <E’> to avoid the problem of
left-recursion is described on p. 178 of that book. Note also:

e <ELEMENT> requires a forward reference to <EXPRESSION>. We must patch this refer-
ence manually.

The third example shows how this algebraic parser can be modified to perform code generation,
coincident with the parsing process. Briefly: each alternative of a BNF production includes
Forth code to compile the output which would result from that alternative. If the alternative
succeeds, that output is left in the dictionary. If it fails, the dictionary pointer is "backtracked"
to remove that output. Thus, as the parser works its way, top-down, through the parse tree, it
is constantly producing and discarding trial output.

This example produces Forth source code for the algebraic expression.

e We have chosen to output each digit of a number as it is parsed. (DIGIT) is a subsidiary
word to parse a valid digit. <DIGIT> picks up the character from the input stream before
it is parsed, and then appends it to the output. If it was not a digit, SUCCESS will be false
and ;BNF will discard the appended character.

If we needed to compile numbers in binary, <KNUMBER> would have to do the output.
<NUMBER> could start by placing a zero on the stack as the accumulator. <DIGIT> could
augment this value for each digit. Then, at the end of <NUMBER>, the binary value on the

stack could be output. <KNUMBER> into two words, like <DIGIT>. But since <NUMBER>
only appears once, in <ELEMENT>, we append the space there.

e In <PRIMARY>, MINUS is appended after the argument is parsed. In <FACTOR>,
POWER is appended after its two arguments are parsed. <T’> appends * or / after the
two arguments, and likewise <E’> appends + or -.

e In all of these cases, an argument may be a number or a sub-expression. If the latter, the
entire code to evaluate the sub-expression is output before the postfix operator is output.
(Try it. It works.)

e PARSE has been modified to TYPE the output from the parser, and then to restore the
dictionary pointer.

17.7 Cautions

This parser is susceptible to the Two Classic Mistakes of BNF expressions. Both of these cautions
can be illustrated with the production <NUMBER>:

: := <NUMBER>
<DIGIT> <NUMBER> | <DIGIT> ;;

a)) Order your alternatives carefully. If <NUMBER> were written

: := <NUMBER>
<DIGIT> | <DIGIT> <NUMBER> ;;




190 VFX Forth for macOS X

then all numbers would be parsed as one and only one digit! This is because alternative #1 —
which is a subset of alternative #2 — is always tested first. In general, the alternative which is
the subset or the "easier to-satisfy" should be tested last.

b)) Avoid "left-recursion." If <NUMBER> were written

: := <NUMBER>
<NUMBER> <DIGIT> | <DIGIT> ;;

then you will have an infinite recursive loop of <NUMBER> calling <NUMBER>! To avoid this
problem, do not make the first term in any alternative a recursive reference to the production
being defined. (This rule is somewhat simplified; for a more detailed discussion of this problem,
refer to [AHO77], pp. 177 to 179.)

17.8 Comparison to "traditional" work

In the jargon of compiler writers, this parser is a "top-down parser with backtracking." Another
such parser, from ye olden days of Unix, was TMG. Top-down parsers are among the most
flexible of parsers; this is especially so in this implementation, which allows Forth code to be
intermixed with BNF expressions.

Top-down parsers are also notoriously inefficient. Predictive parsers, which look ahead in the
input stream, are better. Bottom-up parsers, which move directly from state to state in the
parse tree according to the input tokens, are better still. Such a parser, YACC (a table-driven
LR parser), has entirely supplanted TMG in the Unix community.

Still, the minimal call-and-return overhead of Forth alleviates the speed problem somewhat,
and the simplicity and flexibility of the BNF Parser may make it the parser of choice for many
applications. Experience at MPE shows that BNF parsers are actually quite fast.

17.9 Applications and Variations

Compilers. The obvious application of a BNF parser is in writing translators for other languages.
This should certainly strengthen Forth’s claim as a language to write other languages.

Command interpreters. Complex applications may have an operator interface sufficiently com-
plex to merit a BNF description. For example, this parser has been used in an experimental
lighting control system; the command language occupied 30 screens of BNF.

Pattern recognition. Aho & Ullman [AHO77] note that any construct which can be described by
a regular expression, can also be described by a context-free grammar, and thus in BNF. [AH077]
identifies some uses of regular expressions for pattern recognition problems; such problems could
also be addressed by this parser.

An extension of these parsing techniques has been used to implement a Snobol4-style pattern
matcher [ROD89a].

Goal directed evaluation. The process of searching the parse tree for a successful result is



Chapter 17: A BNF Parser in Forth 191

essentially one of "goal-directed evaluation." Many problems can be solved by goal-directed
techniques.

For example, a variation of this parser has been used to construct an expert system [ROD89b].

17.10 References

[AHO77] Alfred Aho and Jeffrey Ullman, Principles of Compiler Design, Addison-Wesley, Read-
ing, MA (1977), 604 pp.

[ROD89a] B. Rodriguez, "Pattern Matching in Forth," presented at the 1989 FORML Confer-
ence, 14 pp.

17.11 Example 1 - balanced parentheses

-~
\ Example #1 - from Aho & Ullman, Principles of Compiler Design, p137
\ This grammar recognises strings having balanced parentheses

hex

ascii ( token ’(’
ascii ) token ’)’
0 token <eol>

::= <char>
Q@token
dup 02A O7F within?
swap 1 027 within? or
dup success !
+token

A

1= <s>
)(J <s> J)J <s>
| <char> <s>

: parse
1 success !
<s> <eol>
cr success @
if ." Successful
else ." Failed"
endif




192

VFX Forth for macOS X

17.12 Example 2 - Infix notation
~
ascii + token ’+’ ascii - token ’-’
ascii * token ’x*’ ascii / token ’/’
ascii ( token ’(’ ascii ) token ’)°
ascii = token 7’
ascii O token ’0° ascii 1 token ’1°
ascii 2 token ’2’ ascii 3 token ’3’
ascii 4 token ’4’ ascii 5 token ’5’
ascii 6 token ’6’ ascii 7 token ’7’
ascii 8 token ’8’ ascii 9 token ’9’
0 token <eol>

= <digit>

)O) I )1) I )2) | 73) | 74) | 75) I )6) I )7) I )8) | 79)
= <number>

<digit> <number>

| <digit> { }

defer <expression>

<t’>

<element>

>(’ <expression> ’)°
| <number>

<primary>

’-’ <primary>

| <element>

<factor>
<primary> ’~’ <factor>
| <primary>

)%

<factor> <t’>
| °/’> <factor> <t’>

\ needed for a recursive definition




Chapter 17: A BNF Parser in Forth

193

-

<term>
<factor> <t’>

= <e’>
7+’ <term> <e’>
| ’-’ <term> <e’>
I
i
= <<expression>>

<term> <e’>
H

assign <<expression>> to-do <expression>

parse

1 success !
<expression> <eol>
cr success @

if ." Successful
else ." Failed"
endif




194 VFX Forth for macOS X

17.13 Example 3 - infix notation again with on-line calculation

-
: X7y \xy--n
dup O0< abort" can’t deal with negative powers"
1 swap O \--x1y0
?do over * loop \ - x x71i
nip \ -- x7y
1 constant mul
2 constant div
3 constant add
4 constant sub
: dyadic \xopy--n
case swap
mul of * endof
div of / endof
add of + endof
sub of - endof
1 abort" invalid operator"
endcase
decimal
ascii + token ’+’ ascii - token ’-’
ascii * token ’x*’ ascii / token ’/’
ascii ( token ’(’ ascii ) token ’)°

ascii = token 7’

ascii O token ’0° ascii 1 token ’1°

ascii 2 token ’2’ ascii 3 token ’3’

ascii 4 token ’4’ ascii 5 token ’5’

ascii 6 token ’6’ ascii 7 token 7’

ascii 8 token ’8’ ascii 9 token ’9’

bl token <sp>

9 token <tab>

0 token <eol>

::= <whitespacechar> \ -- ; could be expanded to refill input buffer

<sp> | <tab>

)

::= <whitespace>
[[ <whitespacechar> ]]




Chapter 17: A BNF Parser in Forth

195

-

<digit>
0 | 110 | 199 | 13> | 40 | 5 I 6 | s | ’8° | ’9°

<number>
{0} \ initial accumulator
<whitespace>
<< <digit>
{ 10 * last-token @ ascii 0 - + }
>>

defer <expression> \ needed for a recursive definition

<element>
>(’ <expression> ’)’
| <number>

::= <primary>
’-? <primary> { negate }
| <element>

::= <factor>
<primary> ’~’ <factor> { x7y }
| <primary>

::= <term-op>
>*%7 { mul }
| >/> { div }

1= <term>
<factor> [[ <whitespace> <term-op> <factor> { dyadic } 1]

. := <exp-op>
’+2 { add }
| »=> { sub }
::= <<expression>>

<term> [[ <whitespace> <exp-op> <term> { dyadic } 1]
;; assign <<expression>> to-do <expression>

: parse
1 success !
<expression> <whitespace> <eol>
cr success @

if ." Successful" cr ." Result ="
else ." Failed"
endif




196 VFX Forth for macOS X

17.14 Acknowledgements

This article first appeared in ACM SigFORTH Newsletter vol. 2 no. 2. Since then the code has
been updated from the original by staff at MPE.

Bradford J. Rodriguez

T-Recursive Technology

115 First St. #105

Collingwood, Ontario L9Y 4W3 Canada

bj@forth.org

17.15 Glossary

variable success \ -- addr
This variable is set true if the last BNF statement succeded, otherwise it is false.

variable skipspace \ -- addr
Controls space skipping. When set true, following spaces are skipped.

variable BNF-ignore-lines \ -- addr
Controls line break handling. When set true, line breaks are ignored by REFILLing the input
buffer.

vocabulary bnf-voc \ —-
Holds BNF internal words.

| \ -- ; performs OR function
Performs the OR function inside a BNF definition.

: 7bnf-error \ --
Produce an error message on parsing failure.

: save-success \ -- ; R: -- success
Save the SUCCESS flag on the return stack.

: check-success \ —- ; R: success --
Generate an error if the value of SUCCESS previously saved on the return stack was true but
now isn’t. Useful to provide sensible source error messages inside deeply nested definitions.

pi= \ -- sys ; defines a BNF definition
Start a BNF definition of the form:

::= <name> ... ;;

T \ sys -- ; marks end of ::= <name> ... ;; definition
Ends a BNF definition of the form:

::= <name> ... ;;

s { \ -- sys

Marks the start of production output if SUCCESS is true. Use in the form: "{ ... }{ ... }"
which generates the code for "SUCCESS @ IF ... ELSE ... THEN". Note that this notation
conflicts with the use of { ... } for locals, but not with {: ... :}.



Chapter 17: A BNF Parser in Forth 197

: H \ sys -- sys’

Allows an ELSE clause for production output.
: ) \ sys --

End of production output

The operators [[ ... |] define a sequence that may be performed 0 or more times. The operators
<< ... >> define a sequence that must be performed 1 or more times.

The point of this is to allow repetition to be defined more easily without constant recourse to
recursive definitions.

The block may not include | operators.

[[ \ -- addrl addr2 ; start of [[ ... ]] block, loop end inline
Starts an optional block (0 or more repetitions) of the form:
(C ... 11

Note that alternatives using | are not permitted.

: 1] \ addrl addr2 -- ; end of [[ ... ]] block, loop start inline
Ends an optional block of the form:
[(C ... 1]

Note that alternatives using | are not permitted.

;<L \ -- addrl addr2 ; start of << ... >> block, loop end inline
Starts a block (1 or more repetitions) of the form:
<< LLL>>

Note that alternatives using | are not permitted.

T >> \ addrl addr2 -- ; end of [[ ... 1] block, loop start inline
Ends a block (1 or more repetitions) of the form:
<< LLL>>

Note that alternatives using | are not permitted.

: token \'n--
Use in the form "<char> TOKEN <name>" to define a word <name> which succeeds if the next
token (character) is <char>.

: +spaces \ —-

Enables space skipping. If +SPACES does not call nextNonBL then it has to appear BEFORE
the last word for which spaces will not be skipped, which is confusing. This way the final word
which does not discard its following spaces appears in the source code before the +SPACES,
which looks more logical.

: -spaces \ -
Disables space skipping.

: string \ -- ; string <name> text ; e.g. string ’>CAP’ WS_CAPTION

Used in the form "STRING <name> text" to create a word <name> which succeeds when space
delimited text is next in the input stream. Note that text may not contain spaces. Because of
some parsing requirements, e.g. some BASICs and FORTRAN, a superset of text will succeed,



198 VFX Forth for macOS X

leaving the residue in the input stream. This means that for "STRING <name> abcd" the
strings "a", "ab", and "abc" will also succeed. Thus if you need to test a set of strings, you
should test the longest first, e.g:

( )
String strl abcd

String str2 abc

String str3 ab

\ WRONG because abcd will match str3

::= test str3 | str2 | strl ;;

\ RIGHT

::= test strl | str2 | str3 ;;
. J

17.16 Error reporting

Because the BNF parser is a top-down recursive descent parser, when a rule fails, it backtracks
to the previous successful position, both in terms of output and source file position. Because of
this, the reported error position may be some way before the actual location that triggered the
€rTor.



Chapter 18: Text macro substitution 199

18 Text macro substitution

18.1 Usage
VFX Forth implements text macro substitution, where a text macro named FOO my be sub-

stituted in a string. When referenced in a string the macro name must be surrounded by %
characters. If a % character is needed in a string it must be entered as %%.

Thus if FOO is defined as "c:\apps\vixforth" then the string

[ "Error in file %F00%\myfile.fth at line " J

would be expanded to

[ "Error in file c:\apps\vfxforth\myfile.fth at line " }

Macros are defined in the Substitutions vocabulary which is searched when the string is
expanded. When executed these words return the address of a counted string for the text to
substitute.

TextMacro: <name> defines an empty macro with a 255 character buffer in the Substitutions
vocabulary.

<string> SETMACRO <name> sets the given string into the required macro <name>. If <name>
does not exist in the Substitutions vocabulary an error is reported. SETMACRO may also be
used in colon definitions, providing that the macro name already exists. If a colon definition
needs to create a new macro name it should use $SETMACRO instead.
(" N
TEXTMACRO: FOO

C" c:\apps\vfxforth" SETMACRO FOO

: BAR \ -
C" h:\myapp" SETMACRO FOO

$100 buffer: temp

<source> <dest> $EXPAND \ expand source string into destination
- J

18.2 Basic words

: substitute \ src slen dest dlen -- dest dlen’ n ; 17.6.2.2255

Expand the source string using text macro substitutions, placing the result in the buffer dest/dlen
and returning the destination string dest/dlen’ and the number n of substitutions made. If an
error occurred, n is negative. Ambiguous conditions occur if the result of a substitution is too
long to fit into the given buffer or the source and destination buffers are the same.
Substitution occurs left to right from the start of src/slen in one pass and is non-recursive. When



200 VFX Forth for macOS X

text of a potential substitution name, surrounded by ?%?7 (ASCII $25) delimiters is encountered
by SUBSTITUTE, the following occurs:

a) If the name is null, a single delimiter character is passed to the output, i.e., %% is replaced
by %. The current number of substitutions is not changed.

b) If the text is a valid substitution name, the leading and trailing delimiter characters and
the enclosed substitution name are replaced by the substitution text. The current number of
substitutions is incremented.

c) If the text is not a valid substitution name, the name with leading and trailing delimiters is
passed unchanged to the output. The current number of substitutions is not changed.

d) Parsing of the input string resumes after the trailing delimiter.

: substituteC \ src slen dest dlen --

Expand the source string using text macro substitutions, placing the result as a counted string
at dest/dlen. If an error occurred, the length of the counted string is zero.

: substituteZ \ src slen dest dlen --
Expand the source string using text macro substitutions, placing the result as a zero terminated
string at dest/dlen. If an error occurred, the length of the string is zero.

: replaces \ text tlen name nlen -- ; 17.6.2.2141
Define the string text/tlen as the text to substitute for the substitution named name/nlen. If
the substitution does not exist it is created.

: subsitute-safe \ c-addrl lenl c-addr2 len2 -- c-addr2 len3 ior

Replace each '%’ character in the input string c-addri/lenl by two %’ characters. The output
buffer is represented by caddr2/len2. The output is caddr2/len3 and ior is zero on success. If
you pass a string through SUBSITUTE-SAFE and then SUBSTITUTE, you get the original string.

: unescape \ caddrl lenl caddr2 -- caddr2 len2 ; 17.6.2.2375

Replace each %’ character in the input string caddri/lenl by two '%’ characters. The output
is represented by caddr2/len2. The buffer at caddr2 shall be big enough to hold the unescaped
string. An ambiguous condition occurs if the resulting string will not fit into the destination
buffer caddr2.

18.3 Utilities

: MacroExists? \ caddr -- xt nz | O
If a macro of the given name exists, return its xt and a non-zero flag, otherwise just return zero.
The name is a counted string.

: MacroSet? \ caddr -- flag

If a macro of the given name exists and text has been set for it, return true. Often used to find
out if a macro has been set, so that a sensible default can be defined. In the following example,
IDIR is the current include directory and MC" is a version of C" that expands macros.

c" GuiLib" MacroSet? 0= [if]
mc" %IDIR)%" SetMacro GuilLib
[then]

: TextMacro: \ <"name"> --



Chapter 18: Text macro substitution 201

Builds a new text-macro with an empty macro string.

TextMacro: Foo

: setMacro \ string "<name>" --
Reset/Create a text macro. Used in the form:

C" abcd" SETMACRO <name>

For historical reasons, this word can be used inside a colon definition in the form:
C" abcd" SETMACRO <name>

If you want to use setMacro as a factor in another word, you probably want the interpretation
action, so use:

[INTERP] setMacro ...

rather than

. setMacro ...

: $setmacro \ string name --
This version of SETMACRO takes both the string and macro name as counted strings.

: getTextMacro \ caddr len -- macro$
Given a macro name, return the address of its text (a counted string). If the name cannot be
found the null counted string cNull is returned.

.macros \ —-
Display all text macros by macro name.

.macro \ "<name>" -- ; .MACRO <name>
Display the text for macro <name>.

: ShowMacros \ --
Display all macro names and text.

: Expand \ caddr len -- caddr’ len’

Macro expand the given string, returning a global buffer containing the expanded string. The
string is zero-terminated and has a count byte before caddr’. If len is longer than 254 bytes only
the first 254 bytes will be processed.

: $expand \ $source $dest --
Macro expand a counted string at $source to a counted string at $dest. The returned string is
counted and zero terminated.

: $ExpandMacros \ $ - §’
Macro expand a counted string. Note that the returned string buffer is in a global buffer.

: z$ExpandMacros \ z§ - ’z$
Macro expand a 0 terminated string. The returned string buffer is a global buffer.

: ExpandMacro \ c-addr len buff -- ’buff len’

Perform TextMacro expansion on a string in c-addr v with the result being placed as a counted
string at buff. The address and length of the expanded string are returned. The string at buff’
is zero terminated.

: Mt \ "text" --
Compile the text string up to the closing quote into the dictionary as a counted string, expanding
text macros as M", executes, usually at compile time. The end of the string is aligned.



202 VFX Forth for macOS X

: MS" \ Comp: "<quote>" -- ; Run: -- c-addr u
Like 8" but expands text macros. Text is taken up to the next double-quotes character. Text
macros are expanded at compile time. The address and length of the string are returned. To
expand macros at run time, use:

s" <string>" expand

: MC" \ Comp: "<quote>" -- ; Run: -- c-addr

Like C" but expands text macros. Text is taken up to the next double-quotes character. Text
macros are expanded at compile time. At run-time the address of the counted string is returned.
To expand macros at run time, use:

c" <string>" $ExpandMacros
18.4 System Defined Macros

The following text macros are defined by the system and are always available. They are imple-
mented as words in the substitutions vocabulary.

create VfxPath (--c¢c$) 0 c, $FF allot
The path containing the VFX Forth source code. For most users, this is the root folder of the
VFEX Forth installation; however for Mission and Ultimate edition users, VfxPath must be set

to the Sources folder of the VFX Forth installation. You must set this yourself. It is preserved
in the INI file.

create BasePath (--c$) O0c, $FF allot
The root folder of the VFX Forth installation. You must set this yourself. It is preserved in the
INI file. Do not use BasePath as the root of the VFX source tree.

create DevPath (--c$) O0c, $FF allot
The path containing the developer’s application source. If selected by setting BuildLevel to -1,
the contents of this macro will be prepended to source file names in the SOURCEFILES vocabulary.

create LOCATE_PATH (--c$) O0c, $FF allot
The name of the current/last file to be compiled. Used by LOCATE and friends.

create LOCATE_LINE (--c$) O0c, $FF allot
The line number of the line in the current file being compiled. Used by LOCATE and friends.

: £ locate_path ;
The name of the current/last file to be compiled. A synonym for LOCATE_PATH. Used by LOCATE
and friends.

: 1 locate_line ;
The line number of the line in the current file being compiled. A synonym for LOCATE_LINE.
Used by LOCATE and friends.

create LIBRARYDIR (--c$) O0c, $FF allot
The pathname of the VFX Forth Lib directory.

: 1lib LIBRARYDIR ;
A synonym for LIBRARYDIR above, which returns the pathname of the VFX Forth Lib directory.

create LOAD_PATH (-—-c¢c$) 0 c, $FF allot
The directory containg the running program’s executable.

: bin LOAD_PATH ;
The directory containing the VFX Forth executables. A synonym for LOAD_PATH.

. idir \ -- c$



Chapter 18: Text macro substitution 203

The current include directory. This string is ’.” if no file is being INCLUDEd and allows a load
file to be in the form below. The load file can then be referenced from any other directory.

\ include \diri\dir2\dir3\loadfile.fth
\ in loadfile.fth

include Y%idir%\filel.fth \ filel in dir3
include %idir’%\file2.fth \ file2 in dir3
create wd \ —— c$

The working directory. Under Windows, DOS, Unices and OS X this is ".". Do not change this
macro.

LOAD_PATH constant Forth-Buff \ -- caddr

Returns the address of a counted string holding the directory from which the application was
loaded. This gives programs easy access to the LOAD_PATH macro.

18.5 MacOS specifics

The code described here is specific to VFX Forth for MacOS. Do not rely on any of the words
documented here being present in any other VFX Forth implementation.

: GetExeNameZ \ zaddr --

Get the fully qualified name of the executable. It is saved as a 0 terminated string at zaddr.
The buffer is assumed to be at least 1024 characters long.

: InitMacros \ --
Initialises the directory macros. Run at start up.

18.6 Editor and LOCATE actions
#256 buffer: editor$ \ -- addr
A buffer holding the path and name of the preferred editor as a counted string, e.g.

/bin/vi
0 value EditOnError? \ -- flag
Set true to call the editor on an error.
: editor-is \ "<editor-name>" --
Set your preferred editor, e.g.
editor-is /bin/vi
editor-is /Applications/UltraEdit.app/Contents/Mac0S/UltraEdit
editor-is edit
.ed \ -

Display the name of your preferred editor

#256 buffer: locate$ \ -- addr
A buffer holding the macro expansion required to edit a specific line of a file. This information
is used by LOCATE. In the example below the macros %f% and %1% will be replaced by the file
name and line number.

%S —# h1%

= "RER" —-1chlh:l &



204 VFX Forth for macOS X

+%1% ll%f%ll &

: edit$ \ -- cstring
If the preferred editor has been set, return the program name, otherwise return the default
editor string for nano.

0 value Debuglocate? \ - x
If non-zero, the string passed to the shell for LOCATE is displayed before the system is called.

1 $edit \ cstring --
Edit the file provided as a counted string.

: edit \ "<filename>" --
Edit the file whose name follows in the input stream, e.g.

EDIT release.txt

(EditOnError) \ -- ; run editor on error
Edit the file at an error, using the contents of the variables >SOURCEFILE and LINE#.

: SetLocate \ -
Tells VFX Forth how your editor can be called to go a particular file and line. Use in the form

SetLocate <rest of line>

where the text after SetLocate is used to define how parameters are passed to the editor, e.g.
for Emacs, use

SetLocate +%1% "hf%" &

The rest of line following SetLocate is used as the editor configuration string. Within the
editor configuration string ’f” will be replaced by the file name and '’ will be replaced by the
line number. If you use file names with spaces, you should put quotation marks around the %f%
text macro. You must finish the line with " &" to run the editor detached from VFX Forth -
LOCATE adds this for you.



Chapter 19: VFX Code Generator 205

19 VFX Code Generator

The VFX code generator is a black box that simply does its job. Some implementations may
have switches for special cases.

19.1 Enabling the VFX optimiser

The optimiser can be enabled and disabled by the words OPTIMISED and UNOPTIMISED. The
state of the optimiser can be detected by inspecting the variable OPTIMISING.

19.2 Binary inlining

Binary inlining consists of copying the binary code for a word inline without the final return
instruction. This avoids the overhead of the call and return instructions. It is useful for very
short coded instruction sequences. For high level definitions the source inliner usually gives
better results.

The VFX code generator gives some control over the use of binary inlining, controlled by the
word INLINING (n -- ). When the code generator has completed a word, the length of the
word is stored. When the word is to be compiled, its length is compared against the value
passed to INLINING, and if the length is less than the system value, the word is compiled inline,
with the procedure entry and exit code removed. This avoids pipeline stalls, and is very useful
for short definitions.

By default four constants are available for inlining control, although any number will be accepted
by INLINING.

NO INLINING \ 0, binary inlining turned off
NORMAL INLINING \ 12-16, ~10% increase in size
AGGRESSIVE INLINING \ 255, useful when time critical
ABSURD INLINING \ 4096, unlikely to be useful

You can use INLINING anywhere in the code outside a definition.

19.2.1 Colon definitions
Any word that uses words that affect the return stack such as EXIT, or takes items off the return
stack that you didn’t put there in the same word, will automatically be marked as not being

able to be inlined.

Implementations that use absolute calls will disable inlining of any word that makes an absolute
call.

Note that when words are inlined, the effects may not be as expected.

A L. \ inlined
: B ... A ... \ A inlined, B can be inlined
:C...B ... B ... \ A, B inlined, C can be inlined




206 VFX Forth for macOS X

19.2.2 Code definitions

By default CODE definitions are not marked for inlining because the assembler cannot detect all
cases which may upset the return stack. If you want to make a code definition available for
binary inlining, follow it with the word INLINE.

CODE <name>

END-CODE InLine

19.3 VFX Optimiser Switches

Some instructions are only available on later CPUs. Note that CPU selection affects the assem-
bler and the VFX code code generator and compile time, not the run time instruction usage
of your application. If you select a higher CPU level than the application runs on, incorrect
operation will occur. The default selection is for the Pentium 4 instruction set.

CPU=386 \ —- ; select base instruction set
CPU=PPro \ -- ; Pentium Pro and above with CMOVcc
CPU=P4 \ —— ; Pentium 4 and above

Aspects of the VFX code generator are controllable by switches. In particular the inlining of
the DO ... LOOP entry code and local variable entry code may be turned on and off to suit your
particular coding style.

Note also that for large computationally intensive definitions, the SMALLER and FASTER pair of
switches may actually give better performance using SMALLER. The impact of these switches
varies considerably between CPU types and cache/memory architecture.

#16 value /code-alignment \ --n

The default code alignment used by FASTER below. Must be a power of two.

: smaller \ —

Selects smaller code using the minimum of alignment.

: faster \ --
Selects faster code using 16 byte alignment, which will increase the size of the dictionary headers.

: +polite \ -- ; suppresses some warnings

Suppresses some warning messages which some users may feel are commenting on their code.
In particular, if you define constants to enable and disable code without using conditional
compilation, you can use +POLITE to disable the warnings about conditional branches against a
constant. See also ~POLITE.

: —polite \ -- ; enables some warnings

Enables some warning messages which warn you if have used a phrase such as "<literal> IF".
See +POLITE. TOS MUST BE IN EBX, EAX is free after shufle TOS MUST BE IN EBX and
EAX free after shuffle TOS MUST BE IN EBX TOS MUST BE IN EBX

0 value MustLoad? \ --n

Returns true if indirect accesses are loaded rather than delayed.

: +MustLoad \ --



Chapter 19: VFX Code Generator 207

Forces indirect memory loads to be fetched into a register rather than delayed. For some
applications (mostly calculations with array indexing) this can lead to a performance gain.

: -MustLoad \ —-
Permits indirect memory loads to be delayed. This is the default condition.
: +short-branches \ -

Enables the VFX optimiser to produce short forward branches. If your code causes a branch
limit to be exceeded, you can put ~SHORT-BRANCHES and +SHORT-BRANCHES around the offending
words. By default, short branch generation is off because it gives better perforance on modern

CPUs.

: —-short-branches \ —-

Prevents the VFX optimiser producing short forward branches. By default, short branch gen-
eration is off.

: short-branches? \ -- flag ; true for short branches

Returns true if the optimiser will produce short forward branches.
[-short-branches \ -- sys

Disables short branch optimisation until the previous state is restored by SHORT-BRANCHES].
[+short-branches \ -- sys

Enables short branch optimisation until the previous state is restored by SHORT-BRANCHES].

: short-branches] \ sys --

restores the short branch optimisation previously saved by +/-SHORT-BRANCHES].

: LoopAlignment \ n --

Set loop starts, e.g. BEGIN. .XXX and DO..LOOP to be aligned on an n-byte booundary, where n
must be a power of two. This is useful to force the heads of loops onto a cache line boundary.

The default is 8.

#16 LoopAlignment \ set to 16 byte boundary
0 LoopAlignment \ revert to lowest setting
: +fastlvs \ —-

Enables generation of inline local variable entry code. This is the default condition, and is
strongly recommended.

: —-fastlvs \ ——

Disables generation of inline local variable entry code.
Most modern x86 operating systems use task gates for interrupt handling, which permits some
code generation to be better, especially for local variables.

Safe0S? value Safe0S? \ -- flag

Returns true if the operating system can be assumed to be safe.
: +SafelS \ —-

Assume a safe modern operating system.

: -SafelS \ -—-

Assume an old-fashioned or raw operating system.



208 VFX Forth for macOS X

19.4 Controlling and Analysing compiled code

These directives control the optimiser
: optimising? \ -- flag
Returns true if the optimiser is enabled.
: optimised \ -- ; turn optimisation on
Enables the optimiser.
: unoptimised \ -- ; turn optimisation off
Disables the optimiser.
These directives are used to turn optimisation on and off around sections of code.
[opt \ —- i*x
Save the current state of optimisation at the start of an [OPT ... OPT] structure. You can make
no assumptions about what the data stack contains.
[-opt \ —- i*x
Save the current state of optimisation at the start of an [-OPT ... OPT] structure and turn
optimisation off.

: optl \ ixx --
Restore the state of optimisation at the end of an [OPT ... OPT] structure to what it was at
the start.

The following directives are IMMEDIATE words that you can put inside your definitions to obtain
an idea of how code is being compiled. DIS <name> will disassemble a word.

(] \ -
Lay a NOP instruction as a marker, without flushing the optimiser.
[o/f] \ --

Flush the optimiser state, generating the canonical stack state again with TOS in the EBX
register, and all other stack items in the deep (memory) stack.
[o/s] \ —-

Show the state of the optimiser’s working stack.

19.5 Hints and Tips

On i32/x86 Pentium-class CPUs the PUSH and POP instructions generated by >R and R> are
slow, and the VFX code generator is quite conservative in optimising return stack manipulations
as compared with data stack anipulations. Although the code below is convenient, safe and easy
to write it is slow. The rect.xxx words are fields in a structure.

-
: Rect@ \rect —1trb
\ Retrieve the values x y r b from the RECT[ structure at
\ the address given.

>r

r@ rect.Left @

r@ rect.Top @

r@ rect.right @

r> rect.bottom @




Chapter 19: VFX Code Generator 209

The version below generates far better code when performance is important.

( )
: Rect@ \rect -—1trhb
\ Retrieve the values x y r b from the RECT[ structure at
\ the address given.
dup rect.Left @ swap
dup rect.Top @ swap
dup rect.right @ swap
rect.bottom @

b

- )

Because of the limited number of registers, better code is usually generated by passing a pointer
to a structure such as a rectangle rather than passing four items on the data stack. Use of words
such as Rect@ should be reseved for preparing parameters for a Windows API call.

19.6 VFX Forth v4.x

If you have written custom optimisers, the EAX register is no longer free for use, but must be
requested like any other working register. CODE definitions require no changes.

19.7 Tokeniser

From VFX Forth v4.3, build 2825, the tokeniser replaces the previous source inliner. The
change was made to improve ANS and Forth200x standards compliance, and to reduce issues
with particularly "guru" code. To prevent breaking your existing code, the tokeniser uses the
same word names for its control words.

The tokeniser keeps track of what is compiled for a word, and reruns the compilation of short
definitions rather than copying the compiled code inline. This gives the VFX code generator
many more opportunities to remove stack operations and produces smaller and faster code while
encouraging users to write short definitions. That having been said, the relationship of code size
with and without the tokeniser enabled is obscure at best.

Under some rare conditions, usually those requiring tinkering with internal structures of VFX
Forth during compilation, it is necessary to have a level of control over the tokeniser. This
section documents those words.

19.7.1 Tokeniser state

: discard-sinline \ -

Stops the current definition from being handled by the tokeniser. This is usually required by a
compilation word which generates inline data, and for which repetition of the word containing
the inline data would generate large code with little speed advantage.

#128 Value SinThreshold \ -- u
If the binary size of a word is less than this value, it can be tokenised. Subject to change.

.Tokens \ xt —-
Display the token stream for a word.

.Tokeniser \ --
Display tokeniser state



210 VFX Forth for macOS X

19.7.2 Tokeniser control
FALSE Value Sin? \ -- flag

A VALUE which enables tokenising when set. Using SIN? enables you to determine the state of
the tokeniser

false value sindoes? \ -- flag

A VALUE which enables tokenising of DOES> clauses when set. Using this value enables you to
determine the state of the tokeniser.

false value SinActive? \ -- flag

Returns true when the tokeniser is active. It is used to inibit some immediate words which must
not be rerun when the word they are in is tokenised.

: +sin \ -—-

Enable tokenising of following definitions.

: —-sin \ —-

Disable tokenising of following definitions.

: +sindoes \ -

Enable tokenising of the run time portions of defining words. Many defining words produced

with CREATE ... DOES> have short run time actions. The address returned by DOES> is a literal
and provides many opportunities for both space and speed optimisation.

: —-sindoes \ -
Disable tokenising of the run time portions of defining words.
[sin \ —- ix*x
[SIN and SIN] define a range of source code and must be used interpretively, not during com-
pilation. [SIN saves the current tokeniser state and SIN] restores it. Often used in the form:

[SIN -SIN ... SIN]
: sin] \ i*xx --
See [SIN above.
[-sin \ —-- ixx
[-SIN saves the current tokeniser state, and turns off the tokeniser. SIN] restores the saved
tokeniser state. Used in the form:
[-SIN ... SIN]
[+sin \ —- ixx

[+SIN saves the current tokeniser state, and turns on the tokeniser. SIN] restores the saved
tokeniser state. Used in the form:

[+SIN ... SIN]

: Sinlined? \ xt -- flag
Return true if the word defined by xt can be compiled by the tokeniser.

: RemoveSin \ xt —-
Remove tokeniser information from a word. If the word has no tokeniser information it is
unaffected.

: DoNotSin \ -

If the last word with a dictionary header must not be tokenised, place DoNotSin after its defi-
nition, e.g.

: foo ... ; DoNotSin



Chapter 19: VFX Code Generator 211

: IMMEDIATE \ --

Mark the last defined word as immediate. Immediate words will execute whenever encountered
regardless of STATE. IMMEDIATE also disables tokenising of the last defined word. In practice,
this is not a performance issue as IMMEDIATE words are executed at compile time.

: RemoveSINinRange \ start end --
Remove all tokeniser information for definitions within the given range.
: RemoveAllSins \ --

Remove all tokeniser data in the system. RemoveAllSins is executed by the exit chain during
BYE.

19.7.3 Gotchas

These gotchas are very rare conditions. They usually only appear when you write words that
affect the semantics (meaning) of compilation. You can use [-sin ... sin] to drill down to the
words that are causing problems.

[-sin
: foo ...
: poo ... ;
sin]

Immediate and defining words

The tokeniser hooks into the guts of COMPILE, and LITERAL. Compilation performed through
these words is unaffected by the tokeniser.

Tokenising of IMMEDIATE words is disabled to reduce problems with "guru" code. In nearly all
cases, these words are only executed at compile time, so there is minimal impact on applica-
tion performance. If an immediate word causes compilation using COMPILE, and LITERAL, the
tokeniser will detect this and generate tokens, e.g.

-
: z1 postpone dup postpone over ; immediate
: z2 z1
> z2 .tokemns
StartToken
DUP
OVER
End Token

In the majority of cases the tokeniser handles defining words quite adequately. In a few cases,
such as defining new types of xVALUE, better code generation can be obtained by performing
some calculation at compile time. Such defining words should set a compiler for their children.

To do this, use SET-COMPILER and INTERP> rather than DOES>. INTERP> indicates to the compiler
that what follows is performed when the child is interpreted and that a compiler for the child
has been defined. The following example is the kernel definition of VALUE.



212 VFX Forth for macOS X

( )
: value \'n-——-; 7?77 —— 777
create
, [’] valComp, set-compiler
interp>
vallnterp
\’ J

Note that the chidren of words using INTERP> are not immediate - they have separate interpreta-
tion and compilation actions. SET-COMPILER ( xt -- ) above sets valComp, to be the compiler
of the last word CREATEd. SET-COMPILER takes the zt of the word it is to compile so that
information can be extracted from the word.

There are rare occasions on which you may want to add a compiler to a non-defining word.
Rather than making the word immediate and state-smart, which can lead to problems, you can
add the compiler yourself. This is especially desirable when the compiler uses carnal knowledge
of VFX Forth rather than just COMPILE, and LITERAL, The example is taken from the VFX
Forth kernel.

: DO \ Run: nl|ul n2|u2 -- ; R: -- loop-sys
NoInterp ;
comp: drop s_do, 3 ;

Return stack modifiers

In nearly all cases, words that modify the return stack will be detected and these words will
not be tokenised. However, in some cases words containing such words should not be tokenised
because the flow of control has been modified. The first example below fails, but the second does
not. Note that, according to the ANS and Forth200x standards, these words are non-standard
because they make the assumption that, on entry to a word, the top item on return stack is
the return address. The example below is taken from a third-party application ported to VFX
Forth.

This example is correctly detected, but fails because the code also requires the word containing
LIST> not to be tokenised.
( h
: list> ( thread -- element )
BEGIN @ dup WHILE dup r@ execute REPEAT
drop r> drop ;

.fonts fonts LIST> .font ;
N J

The example above makes two assumptions, one about the return stack in the use of R@ and R>,
and another about how colon definitions begin in EXECUTE.

The solution is to disable the tokeniser when the word is compiled. The containing word is
forced to be untokenised.



Chapter 19: VFX Code Generator 213

( )
: (list>) ( thread -- element )

BEGIN @ dup WHILE dup r@ execute REPEAT

drop r> drop ;
: list> ( thread -- element )

postpone (list>) discard-sinline ; immediate

.fonts fonts LIST> .font ;
k J

If you need to write words such as these, partitioning them as above, plus careful use of :NONAME
to create the second part improves portability and maintainability.

Using :

If you build a new compiling word that uses colon, :, its children can themselves be tokenised.
If your new word saves and restores data from the return stack indirectly, the tokeniser may not
detect this, leading to obscure runtime or compilation errors. This situation can be avoided by
adding DISCARD-SINLINE after the use of colon, e.g.

( N
T MY: O\ --
postpone save-state discard-sinline

: MY; \ —-
postpone restore-state postpone ;

I

- J

Code size

Some coding styles can lead to excessive expansion of code size by the tokeniser. Apart from
turning the tokeniser off, you can try reducing the size set in the value SinThreshold. Note that
the relationship between the compiled size of a word and its equivalent after token expansion in
another word is often obscure.

19.8 Code/Data separation

From VFX Forth v4.3 onwards, code/data separation is turned on by default.

19.8.1 Problem and solution

CPUs from the Pentium 3 onwards have serious performance problems when data is close to
code, leading to a wide variation in performance depending on data location. Measurements on
the random number generator in the benchmark suite had a variation of 7:1.

The file Sources\ Kerne\386Com\ OPTIMISE\ Pjopt.fth (with Professional and Mission ver-
sions) contains code for data space management for these processors. Results show that per-
formance is improved by a factor of 2.3 on BENCHMRK.FTH and that performance is now
independent of location. There is no degradation of performance on other CPUs. The code
generation switches are:



214 VFX Forth for macOS X

+IDATA \ -- ; enable code/data separation
—-IDATA \ -- ; dsable code/data separation

Note that when enabled, phrases such as

VARIABLE <name> <size> ALLOT
will not give the expected result. This is discussed in more detail below.

The solution is to separate code and data. When the optimisation is enabled, data is held in
IDATA chunks away from code. There is no change to CREATE, ALLOT, comma and friends, which
still operate on normal dictionary areas. The notation is derived from cross compiler usage in
embedded systems.

19.8.2 Defining words and data allocation

The following is a conventional definition of a character/byte array defined in the dictionary.

: cCARRAY \n--; i -- c-addr
CREATE ALLOT DOES> + ;

The data space reserved by ALLOT is intermingled with code, leading to bad performance.
The second implementation is for best performance with P4 CPUs. IRESERVE ( n -- c-addr )
reserves an n-byte block in the IDATA area and returns its address. The children of ICARRAY are
made immediate in order to emulate the effect of the source inliner on children of CCARRAY. The
implementation below is is illustrative only. State-smart words (considered "evil" by some) can
be be avoided using set-compiler and interp>.

-
: icarray \'n--; i-- c-addr
dup ireserve dup rot erase \ reserve IDATA space
create immediate \ children are IMMEDIATE
s \ address in IDATA
does>
@ state @ if \ compiling
postpone literal postpone +
else \ interpreting
+
endif
U

In order to make the array defining word CARRAY independent of whether P4 optimisation is
enabled CARRAY simply selects which version to use.

: CARRAY \n--; i -- c-addr
idata?
if idicarray else ccarray endif




Chapter 19: VFX Code Generator 215

19.8.3 Gotchas

When +IDATA is in use, standard defining words such as VARIABLE and VALUE will reserve space
in the IDATA areas, but ALLOT still reserves space in the dictionary. Consequently code such as:

VARIABLE <name> <size> ALLOT

will break when +IDATA is active. Use:
<size> BUFFER: <name>

for all such allocations.

Words such as >BODY and BODY> will not work correctly on words whose data area is in an
IDATA region.

19.8.4 Glossary

variable iblock \ —- addr
Holds the address of the current IDATA block.
variable iblock# \ -- addr

Holds the size of the current IDATA block.

variable idp \ -- addr
Holds the current location in the current IDATA block.

variable def-igap \ -- addr
Holds the minimum code/data gap size, by default 8 kbytes.

variable def-iblock# \ -- addr
Holds the default IDATA block size, by default 64 kbytes.

: bin-align \'n -—-
Force alignment to an N byte boundary where N is a power of two. The space stepped over is
set to 0.

: alignidef \ —-

Align the dictionary to the IDATA default boundary.

: inoroom? \ n -- flag

Retuns true if there is not enough room in the current IDATA block.
: make-iblock \ n --

Make an IDATA block that is at least n bytes long. If n is less than the default size in
DEF-IBLOCK# the block will be the default size.

: ialign \ -

Step the IDATA block pointer to the next 4 byte boundary

: ialignil6 \ -

Step the IDATA block pointer to the next 16 byte boundary

: ireserve \ n -- a-addr
Reserve n bytes in the current IDATA block.

0 value idata? \ -- flag
Returns true if data is reserved in the IDATA block.

: +idata \ -



216 VFX Forth for macOS X

Force data to be reserved in IDATA blocks.

: —idata \ --
Data is reserved conventionally in the normal dictionary space.

: 2variable \ -- ; -- addr
If IDATA? is true data is reserved in an IDATA block, otherwise it is reserved in the dictionary.

: variable \ -- ; -- addr
If IDATA? is true data is reserved in an IDATA block, otherwise it is reserved in the dictionary.

: buffer: \ size -- ; -- addr
If IDATA? is true data is reserved in an IDATA block, otherwise it is reserved in the dictionary.

: value \n--; ——-n
If IDATA? is true data is reserved in an IDATA block, otherwise it is reserved in the dictionary.

: 2value \n-—-; —n
If IDATA? is true data is reserved in an IDATA block, otherwise it is reserved in the dictionary.

: CARRAY \'n--; i -- c-addr

Creates a byte array. When the child executes, the address of the i’th byte in the array is
returned. The index is zero based. If IDATA? is true data is reserved in an IDATA block,
otherwise it is reserved in the dictionary.

10 CARRAY MYCARRAY \ create 10 byte array
5 MYCARRAY . \ display address of element 5
: ARRAY \n--; i -—- a-addr

Creates a cell size array. When the child executes, the address of the i'th cell in the array
is returned. The index is zero based. If IDATA? is true data is reserved in an IDATA block,
otherwise it is reserved in the dictionary.

10 CARRAY MYARRAY \ create 10 byte array
6 MYARRAY . \ display address of element 6




Chapter 20: Functions in DLLs and shared libraries 217

20 Functions in DLLs and shared libraries

20.1 Introduction

VFX Forth supports calling external API calls in dynamic link libraries (DLLs) for Windows
and shared libraries in Linux and other Unix-derived operating systems. Various API libraries
export functions in a variety of methods mostly transparent to programmers in languages such
as C, Pascal and Fortran. Floating point data is supported for use with Lib\z86\ Ndp387.fth.

Before a library function can be used, the library itself must be declared, e.g.

{éIBRARY: Kernel32.d11 j

Access to functions in a library is provided by the EXTERN: syntax which is similar to a C style
function prototype, e.g.

EXTERN: int PASCAL SendMessage(
HWND hwnd, DWORD mesg, WPARAM wparam, LPARAM lparam
)3

This can be used to prototype the function SendMessage from the Microsoft Windows API, and
produces a Forth word SendMessage.

SendMessage \ hwnd mesg wparam lparam -- int

For Linux and other Unices, the same notation is used. The default calling convention is nearly
always applicable. The following example shows that definitions can occupy more than one line.
It also indicates that some token separation may be necessary for pointers:

( N
Library: libc.so.6

Extern: int execve(
const char * path,
char * const argvl[],
char * const envpl[]

)
N Y,

This produces a Forth word execve.

execve \ path argv envp -- int

The parser used to separate the tokens is not ideal. If you have problems with a definition,
make sure that * tokens are white-space separated. Formal parameter names, e.g. argv above
are ignored. Array indicators, [/ above, are also ignored when part of the names.

The input types may be followed by a dummy name which is discarded. Everything on the
source line after the closing ')’ is discarded.



218 VFX Forth for macOS X

From VFX Forth v4.3 onwards, PASCAL is the default calling convention in the Windows
version. The default for the Linux and OS X versions is "C". The default is always used unless
overridden in the declaration.

20.2 Format
p

EXTERN: <return> [ <callconv> ] <name> ’(’ <arglist> ’)’ ’;’

<return> := { <type> [ ’%’ ] | wvoid }

<arg> = { <type> [ ’*> ] [ <name> ] }

<args> = { [ <arg>, 1* <arg> }

<arglist> = { <args> | void } Note: "void, void" etc. is illegal.
<callconv> := { PASCAL | WINAPI | STDCALL | "PASCAL" | "C" }

<name> = <any Forth acceptable namestring>

<type> = (see below, "void" is a valid type)

- %

Note that during searches <name> is passed to the operating system exactly as it is written, i.e.
case sensitive. The Forth name is case-insensitive.

As a standard Forth’s string length for dictionary names is only guaranteed up to 31 char-
acters for portable source code, very long API names can cause problems. Therefore the
word AliasedExtern: allows separate specification of API and Forth names (see below).
AliasedExtern: also solves problems when API functions only differ in case or their names
conflict with existing Forth word names.

20.3 Calling Conventions

In the discussion caller refers to the Forth system (below the application layer and callee refers
to a a function in a DLL or shared library. The EXTERN: mechanism supports three calling
conventions.

e C-Language: "C"

Caller tidies the stack-frame. The arguments (parameters) which are passed to the library
are reordered. This convention can be specified by using "C" after the return type specifier
and before the function name. For Linux and most Unix-derived operating systems, this is
the default.

e Pascal language: "PASCAL"

Callee removes arguments from the stack frame. This is invisible to the programmer at
the application layer The arguments (parameters) which are passed to the library are not
reordered. This convention is specified by "PASCAL" after the return type specifier and
before the function name.

e Windows API: WINAPI | PASCAL | STDCALL

In nearly all cases (but not all), calls to Windows API functions require C style argument
reversal and the called function cleans up. Specify this convention with PASCAL, WinAPI or
StdCall after the return type specifier and before the function name. For Windows, this is
the default.




Chapter 20: Functions in DLLs and shared libraries 219

Unless otherwise specified, the Forth system’s default convention is used. Under Windows this
is WINAPI and under Linux and other Unices it is "C".

20.4 Promotion and Demotion

The system generates code to either promote or demote non-CELL sized arguments and return
results which can be either signed or unsigned. Although Forth is an un-typed language it must
deal with libraries which do have typed calling conventions. In general the use of non-CELL
arguments should be avoided but return results should be declared in Forth with the same size
as the C or PASCAL convention documented.

20.5 Argument Reversal

The default calling convention for the host operating system is used. The right-most argu-
ment/parameter in the C-style prototype is on the top the Forth data stack. When calling an
external function the parameters are reordered if required by the operating system; this is to
enable the argument list to read left to right in Forth source as well as in the C-style operating
system documentation.

Under certain conditions, the order can be reversed. See the words "C" and "PASCAL" which
define the order for the operating system. See L>R and R>L which define the Forth stack order
with respect to the arguments in the prototype.

20.6 C comments in declarations

Very rudimentary support for C comments in declarations is provided, but is good enough for
the vast majority of declarations.

e Comments can be // ... or /* ... x/,
e Comments must be at the end of the line,
e Comments are treated as extending to the end of the line,

e Comments must not contain the ’)’ character.

The example below is taken from a S@Lite interface.

Extern: "C" int sqlite3_openl6(

const void * filename, /* Database filename [UTF-16] */
sqlite3 ** ppDb /* OUT: SQLite db handle */

);

20.7 Controlling external references

1 value ExternWarnings? \ -- n

Set this true to get warning messages when an external reference is redefined.
0 value ExternRedefs? \ -- n

If non-zero, redefinitions of existing imports are permitted. Zero is the default for VFX Forth
so that redefinitions of existing imports are ignored.

1 value LibRedefs? \ --n



220 VFX Forth for macOS X

If non-zero, redefinitions of existing libraries are permitted. Non-zero is the default for VFX
Forth so that redefinitions of existing libraries and OS X frameworks are permitted. When set
to zero, redefinitions are silently ignored.

1 value InExternals? \ -=-—n

Set this true if following import definitions are to be in the EXTERNALS vocabulary, false if they
are to go into the wordlist specified in CURRENT. Non-Zero is the default for VFX Forth.

: InExternals \ --

External imports are created in the EXTERNALS vocabulary.

: InCurrent \ --
External imports are created in the wordlist specified by CURRENT.

20.8 Library Imports

In VFX Forth, libraries are held in the EXTERNALS vocabulary, which is part of the minimum
search order. Other Forth systems may use the CURRENT wordlist.

For turnkey applications, initialisation, release and reload of required libraries is handled at
start up.

variable 1ib-link \ -- addr
Anchors the chain of dynamic/shared libraries.

variable lib-mask \ -- addr
If non-zero, this value is used as the mode for dlopen() calls in Linux and OS X.

struct /libstr \ -- size
The structure used by a Library: definition.

int >1iblink \ link to previous library

int >libaddr \ library Id/handle/address, depends on 0/S
int >libmask \ mask for dlopen()

0 field >libname \ zero terminated string of library name

end-struct

struct /funcstr \ -- size

The structure used by an imported function.

: init-1lib \ libstr --

Given the address of a library structure, load the library.
: clear-1ib \ libstr --

Unload the given library and zero its load address.

: clear-1libs \ --

Clear all library addresses.

: init-libs \ -

Release and reload the required libraries.

: find-libfunction \ z-addr -- address|0

Given a zero terminated function name, attempt to find the function somewhere within the
already active libraries.

.Libs \ -



Chapter 20: Functions in DLLs and shared libraries 221

Display the list of declared libraries.

: #BadLibs \ —-u
Return the number of declared libraries that have not yet been loaded.

.BadLibs \ -—-
Display a list of declared libraries that have not yet been loaded.

: Library: \ "<name>" -- ; -- loadaddr|O0
Register a new library by name. If LibRedefs? is set to zero, redefinitions are silently ignored.
Use in the form:

LIBRARY: <name>

Executing <name> later will return its load address. This is useful when checking for libraries that
may not be present. After definition, the library is the first one searched by import declarations.
: topLib \ libstr --

Make the library structure the top/first in the library search order.

: firstLib \ "<name>" --

Make the library first in the library search order. Use during interpretation in the form:

FirstLib <name>

to make the library first in the search order. This is useful when you know that there may be
several functions of the same name in different libraries.

[firstLib] \ "<name>" --
Make the library first in the library search order. Use during compilation in the form:
[firstLib] <name>

to make the library first in the search order. This is useful when you know that there may be
several functions of the same name in different libraries.

20.8.1 Mac OS X extensions

The phrase Framework <name.framework> creates two Forth words, one for the library access,
the other to make that library top in the search order. For example:

framework Cocoa.framework

produces two words
Cocoa.framework/Cocoa

Cocoa.framework

The first word is the library definition itself, which behaves in the normal VFX Forth way,
returning its load address or zero if not loaded. The second word forces the library to be
top/first in the library search order. Thanks to Roelf Toxopeus.

As of OSX 10.7, FRAMEWORK (actually dlopen()) will search for frameworks in all the default
Frameworks directories:

e /Library/Frameworks
e /System/Library/Frameworks
e ~/Library/Frameworks



222 VFX Forth for macOS X

: framework \ —-
Build the two framework words. See above for more details. If LibRedefs? is set to zero,
redefinitions are silently ignored.

20.9 Function Imports

Function declarations in shared libraries are compiled into the EXTERNALS vocabulary. They form
a single linked list. When a new function is declared, the list of previously declared libraries is
scanned to find the function. If the function has already been declared, the new definition is
ignored if ExternRedefs? is set to zero. Otherwise, the new definition overrides the old one as
is usual in Forth.

In VFX Forth, ExternRedefs? is zero by default.

variable import-func-link \ -- addr
Anchors the chain of imported functions in shared libraries.

: ExternlLinked \ c-addr u -- address|O
Given a string, attempt to find the named function in the already active libraries. Returns zero
when the function is not found.

: init-imports \ --
Initialise Import libraries. INIT-IMPORTS is called by the system cold chain.

defer preExtCall \ —-

Windows only. A hook provided for debugging and extending external calls without floating
point parameters or return items. It is executed at the start of the external call before any
parameter processing.

defer postExtCall \ —-

Windows only. A hook provided for debugging and extending external calls without floating
point parameters or return items. It is executed at the end of the external call after return data
processing.

defer preFPExtCall \ —-

Windows only. A hook provided for debugging and extending external calls with floating point
parameters or return items. . It is executed at the start of the external call before any parameter
processing.

defer postFPExtCall \ --

Windows only. A hook provided for debugging and extending external calls with floating point
parameters or return items. It is executed at the end of the external call after return data
processing.

: InExternals \ --
External imports are created in the EXTERNALS vocabulary.

: InCurrent \ —-
External imports are created in the wordlist specified by CURRENT.

: Extern: \ "text" --

Declare an external API reference. See the syntax above. The Forth word has the same name
as the function in the library, but the Forth word name is not case-sensitive. The length of the
function’s name may not be longer than a Forth word name. For example:

Extern: DWORD Pascal GetLastError( void );

: AliasedExtern: \ "forthname" "text" --



Chapter 20: Functions in DLLs and shared libraries 223

Like EXTERN: but the declared external API reference is called by the explicitly specified
forthname. The Forth word name follows and then the API name. Used to avoid name conflicts,

e.g.
AliasedExtern: saccept int accept( HANDLE, void *, unsigned int *);

which references the Winsock accept function but gives it the Forth name SACCEPT. Note that
here we use the fact that formal parameter names are optional.

: LocalExtern: \ "forthname" "text" --
As AliasedExtern:, but the import is always built into the CURRENT wordlist.

: extern \ "text" --
An alias for EXTERN:.

: ExternVar \ "<name>" -- ; ExternVar <name>
Used in the form

ExternVar <name>

to find a variable in a DLL or shared library. When executed, <name> returns its address.

: AliasedExternVar \ "<forthname>" "<dllname>" --
Used in the form

AliasedExternnVar <forthname> <varname>

to find a variable in a DLL or shared library. When executed, <forthname> returns its address.
.Externs \ -- ; display EXTERNs

Display a list of the external API calls.

: #BadExterns \ -- u

Silently return the number of unresolved external API calls.
.BadExterns \ --

Display a list of any external API calls that have not been resolved.

: func-pointer \ xt -- addr
Given the XT of a word defined by EXTERN: or friends, returns the address that contains the
run-time address.

: func-loaded? \ xt -- addr|O

Given the XT of a word defined by EXTERN: or friends, returns the address of the DLL function
in the DLL, or 0 if the function has not been loaded/imported yet.

20.10 Pre-Defined parameter types

The types known by the system are all found in the vocabulary TYPES. You can add new ones
at will. Each TYPE definition modifies one or more of the following VALUEs. )

argSIZE  Size in bytes of data type.

argDEFSIGN
Default sign of data type if no override is supplied.

argREQSIGN
Sign OverRide. This and the previous use 0 = unsigned and 1 = signed.



224 VFX Forth for macOS X

argISPOINTER
1 if type is a pointer, 0 otherwise

Each TYPES definition can either set these flags directly or can be made up of existing types.

Note that you should explicitly specify a calling convention for every function defined.

20.10.1 Calling conventions

ngn \ _
Set Calling convention to "C" standard. Arguments are reversed, and the caller cleans up the
stack.

"PASCAL" \ —-
Set the calling convention to the "PASCAL" standard as used by Pascal compilers. Arguments
are not reversed, and the called routine cleans up the stack. This is not the same as PASCAL
below.

: PASCAL \ -

Set the calling convention to the Windows PASCAL standard. Arguments are reversed in C style,
but the called routine cleans up the stack. This is the standard Win32 API calling convention.
N.B. There are exceptions! This convention is also called "stdcall" and "winapi" by Microsoft,
and is commonly used by Fortran programs. This is not the same as "PASCAL" above.

: WinApi \ —-
A synonym for PASCAL.

: StdCall \ —-
A synonym for PASCAL.

: VC++ \ --

Defines the calling convention as being for a C++ member function which requires "this" in
the ECX register. The function must be defined with an explicit this pointer (void * this).
Because exported VC++ member functions can have either "C" or "PASCAL" styles, the this
pointer must be positioned so that it is leftmost when reversed (C/WINAPI/StdCall style) or
is rightmost when not reversed ("PASCAL" style). See also the later section on interfacing to
C++ DLLs.

: R>L \ -—-

By default, arguments are assumed to be on the Forth stack with the top item matching the
rightmost argument in the declaration so that the Forth parameter order matches that in the
C-style declaration. R>L reverses this.

: I>R \ —

By default, arguments are assumed to be on the Forth stack with the top item matching the

rightmost argument in the declaration so that the Forth parameter order matches that in the
C-style declaration. L>R confirms this.

20.10.2 Basic Types
: unsigned \ —-
Request current parameter as being unsigned.

: signed \ —-
Request current parameter as being signed.

: int \ --



Chapter 20: Functions in DLLs and shared libraries 225

Declare parameter as integer. This is a signed 32 bit quantity unless preceeded by unsigned.

: char \ —

Declare parameter as character. This is a signed 8 bit quantity unless preceeded by unsigned.
: void \ -

Declare parameter as void. A VOID parameter has no size. It is used to declare an empty
parameter list, a null return type or is combined with * to indicate a generic pointer.

DX \ —-
Mark current parameter as a pointer.
Dok \ -

Mark current parameter as a pointer.
T okokk \ —-

Mark current parameter as a pointer.
: const ; \ -

Marks next item as constant in C terminology. Ignored by VFX Forth.
: int32 \ -

A 32bit signed quantity.

: int16 \ -

A 16 bit signed quantity.

: int8 \ -

An 8 bit signed quantity.

: uint32 \ —-

32bit unsigned quantity.

: uint16 \ -

16bit unsigned quantity.

: uint8 \ -

8bit unsigned quantity.

: Longlong \ —-

A 64 bit signed or unsigned integer. At run-time, the argument is taken from the Forth data
stack as a normal Forth double with the top item on the top of the data stack.

: LONG int
A 32 bit signed quantity.

: SHORT \ -
For most compilers a short is a 16 bit signed item, unless preceded by unsigned.
: BYTE \ -
An 8 bit unsigned quantity.
: float \ —-

32 bit float.

: double \ -

64 bit float.

: booll \ --

One byte boolean.



226 VFX Forth for macOS X

: bool4d \ -

Four byte boolean.

Do \ -

The parameter list is of unknown size. This is an indicator for a C varargs call. Run-time

support for this varies between operating system implementations of VFX Forth. Test, test,
test.

20.10.3 Windows Types

The following parameter types are non "C" standard and are used by Windows in function
declarations. They are all defined in terms of existing types.

: OSCALL PASCAL ;
Used for portable code to avoid three sets of declarations. For Windows, this is a synonym for
PASCAL and under Linux and other Unices this is a synonym for "C".

: DWORD unsigned int ;

32 bit unsigned quantity.

: WORD unsigned int 2 to argSIZE ;
16 bit unsigned quantity.

: HANDLE void *

HANDLESs under Windows are effectively pointers.
: HMENU handle ;

A Menu HANDLE.

: HDWP handle ;

A DEFERWINDOWPOS structure Handle.
: HWND handle ;

A Window Handle.

: HDC handle ;

A Device Context Handle.

: HPEN handle ;

A Pen Handle.

: HINSTANCE handle ;

An Instance Handle.

: HBITMAP handle ;

A Bitmap Handle.

: HACCEL handle ;

An Accelerator Table Handle.

: HBRUSH handle ;

A Brush Handle.

: HMODULE handle ;

A module handle.

: HENHMETAFILE handle ;
A Meta File Handle.

: HFONT handle ;



Chapter 20: Functions in DLLs and shared libraries 227

A Font Handle.

: HRESULT DWORD ;
A 32bit Error/Warning code as returned by various COM/OLE calls.
: LPPOINT void *

Pointer to a POINT structure.

: LPACCEL void *
Pointer to an ACCEL structure.

: LPPAINTSTRUCT void * ;
Pointer to a PAINTSTRUCT structure.

: LPSTR void *
Pointer to a zero terminated string buffer which may be modified.

: LPCTSTR void *

Pointer to a zero terminated string constant.
: LPCSTR void *

Another string pointer.

: LPTSTR void *

Another string pointer.

: LPDWORD void *

Pointer to a 32 bit DWORD.

: LPRECT void * ;

Pointer to a RECT structure.

: LPWNDPROC void * ;
Pointer to a WindowProc function.

: PLONG long *
Pointer to a long (signed 32 bit).

: ATOM word ;

An identifier used to represent an atomic string in the OS table. See RegisterClass() in the
Windows API for details.

: WPARAM dword ;
A parameter type which used to be 16 bit but under Win32 is an alias for DWORD.

: LPARAM dword ;

Used to mean LONG-PARAMETER (i.e. 32 bits, not 16 as under Win311) and is now effectively
a DWORD.

. UINT dword ;

Windows type for unsigned INT.

: BOOL int

Windows Boolean type. 0 is false and non-zero is true.

: LRESULT int
Long-Result, under Win32 this is basically an integer.

: colorref DWORD ;
A packed encoding of a color made up of 8 bits RED, 8 bits GREEN, 8 bits BLUE and 8 bits
ALPHA.



228 VFX Forth for macOS X

: SOCKET dword ;
Winsock socket reference.

: CURRENCYFMT void * ;
Contains information that defines the format of a currency string.

: ENUMRESNAMEPROC void * ;
An application-defined callback function used with the EnumResourceNames and EnumRe-
sourceNamesEx functions.

: FILETIME void * ;

Contains a 64-bit value representing the number of 100-nanosecond intervals since January 1,
1601 (UTC).

: HGLOBAL void * ;
A handle to the global memory object.

: HRSRC void * ;
A handle to a resource.

: LANGID void * ;
A language identifier.

: LCID void * ;
A locale identifier.

: LCTYPE void * ;
A locale information type.

: LONG_PTR void * ;
A signed long type for pointer precision. Use when casting a pointer to a long to perform pointer
arithmetic.

: LP void * ;
A long pointer.

: LPBOOL void * ;
A pointer to a BOOL.

: LPCWSTR void * ;

A pointer to a constant null-terminated string of 16-bit Unicode characters.

: LPFILETIME void * ;
A pointer to a FILETIME structure.

: LPMEMORYSTATUS void * ;
A pointer to a MEMORYSTATUS structure.

: LPMODULEENTRY32 void * ;
A pointer to a MODULEENTRY32 structure.

: LPOSVERSIONINFO void * ;
A pointer to a OSVERSIONINFO structure.

: LPOVERLAPPED void * ;
A pointer to a OVERLAPPED structure.

: LPWSTR void * ;
A pointer to a null-terminated string of 16-bit Unicode characters.

: LPVOID void * ;



Chapter 20: Functions in DLLs and shared libraries 229

A pointer to any type.
: LPCVOID void * ;

A pointer to a constant of any type.

: MSG void * ;

Contains message information from a thread’s message queue.
: NORM_FORM void * ;

Specifies the supported normalization forms.

: NUMBERFMT void * ;
Contains information that defines the format of a number string.

: PACTCTX void * ;

Pointer to an ACTCTX structure that contains information about the activation context to be
created.

: PBOOL void * ;
A pointer to a BOOL.

: PDWORD void * ;
A pointer to a DWORD.

: PHANDLE void * ;
A pointer to a HANDLE.

: PVOID void * ;

A pointer to any type.

: PULARGE_INTEGER void * ;
A pointer to a ULARGE_INTEGER structure.

: SIZE_T Dword ;
The maximum number of bytes to which a pointer can point. Use for a count that must span
the full range of a pointer.

: SYSTEMTIME void * ;

Specifies a date and time, using individual members for the month, day, year, weekday, hour,
minute, second, and millisecond. The time is either in coordinated universal time (UTC) or
local time, depending on the function that is being called.

. ULONG_PTR void * ;

An unsigned LONG_PTR.

: VA_LIST void * ;

A variable argument list.

: LPWIN32_FIND_DATA void * ;

A pointer to a WIN32_FIND_DATA structure.
: LPTPMPARAMS void * ;

A pointer to a TPMPARAMS structure.

: CODEPAGE_ENUMPROC void * ;

An application-defined callback function that processes enumerated code page information pro-
vided by the EnumSystemCodePages function. The CODEPAGE_ENUMPROC type defines a
pointer to this callback function.

: LPPROCESSENTRY32 void * ;



230 VFX Forth for macOS X

A pointer to a PROCESSENTRY 32 structure.

: LPPROGRESS_ROUTINE void * ;

The LPPROGRESS_ROUTINE type defines a pointer to this callback function. CopyProgress-
Routine is a placeholder for the application-defined function name.

: LPSECURITY_ATTRIBUTES void * ;

A pointer to a SECURITY_ATTRIBUTES structure.

: LPSYSTEMTIME void * ;
A pointer to a SYSTEMTIME structure.

: LPTCH void * ;
A pointer to the environment block.

: LPTIME_ZONE_INFORMATION void * ;
A pointer to a TIME_ZONE_INFORMATION structure.
: PMEMORY_BASIC_INFORMATION void * ;

A pointer to a MEMORY_BASIC_INFORMATION structure.

: LPBY_HANDLE_FILE_INFORMATION void * ;
A pointer to a BY HANDLE_FILE_INFORMATION structure.

: DEVMODE void * ;
The DEVMODE data structure contains information about the initialization and environment
of a printer or a display device.

: FONTENUMPROC void * ;
A pointer to the application defined callback function.

: HGDIOBJ void * ;
A handle to the graphics object.

: HPALETTE void * ;
A handle to a logical palette.
: HRGN void * ;
Handle to a region.

: LINEDDAPROC void * ;
The LineDDAProc function is an application-defined callback function.

: LOGBRUSH void * ;
The LOGBRUSH structure defines the style, color, and pattern of a physical brush.

: LOGFONT void * ;
The LOGFONT structure defines the attributes of a font.

: LOGPALETTE void * ;
The LOGPALETTE structure defines a logical palette.

: LOGPEN void * ;
The LOGPEN structure defines the style, width, and color of a pen.

: LPENHMETAHEADER void * ;
A pointer to an ENHMETAHEADER structure that receives the header record.
: LPFONTSIGNATURE void * ;

Pointer to a FONTSIGNATURE data structure.



Chapter 20: Functions in DLLs and shared libraries 231

: LPINT void * ;
A pointer to an INT.

: LPLOGFONT void * ;
A pointer to a LOGFONT structure.

: LPPALETTEENTRY void * ;
A pointer to a PALETTEENTRY structure.

: LPSIZE void * ;
A pointer to a SIZE structure.

: LPTEXTMETRIC void * ;
A pointer to a TEXTMETRIC structure.

: POINT void * ;

The POINT structure defines the x- and y- coordinates of a point.

: RECT void * ;

The RECT structure defines the coordinates of the upper-left and lower-right corners of a
rectangle.

: DLGPROC void * ;
Application-defined callback function used with the CreateDialog and DialogBox families of
functions.

: DRAWSTATEPROC void * ;
The DrawStateProc function is an application-defined callback function that renders a complex
image for the DrawState function.

: DWORD_PTR void * ;
A DWORD_PTR is an unsigned long type used for pointer precision.

: GRAYSTRINGPROC void * ;
A pointer to the application-defined function.

: HCONV void * ;

A conversation handle.

: HCONVLIST void * ;
A handle to the conversation list.

: HCURSOR void * ;
A cursor handle.

: HDDEDATA void * ;
A handle to a DDE object.

: HICON void * ;
A handle to a Icon.

. HKL void * ;
A handle to a keyboard layout.

: HMONITOR void * ;
A handle to the display monitor.

: HOOKPROC void * ;
HookProc is a placeholder for an application-defined name.

: HSZ void * ;



232 VFX Forth for macOS X

A handle to the string that specifies the service name of the server application with which a
conversation is to be established.

: INT_PTR void * ;

A signed integer type for pointer precision. Use when casting a pointer to an integer to perform
pointer arithmetic.

: LPBYTE void * ;
A pointer to a BYTE.

: LPCDLGTEMPLATE void * ;
A pointer to a DLGTEMPLATE structure.

: LPCMENUINFO void * ;
A pointer to a MENUINFO structure.

: LPCRECT void * ;
A pointer to a RECT structure.

: LPCSCROLLINFO void * ;
A pointer to a SCROLLINFO structure.

: LPDRAWTEXTPARAMS void * ;
A pointer to a DRAWTEXTPARAMS structure.

: LPINPUT void * ;
An array of INPUT structures.

: LPMENUITEMINFO void * ;
A pointer to a MENUITEMINFO structure.

: LPMONITORINFO void * ;
A pointer to a MONITORINFO or MONITORINFOEX structure that receives information
about the specified display monitor.

: LPMSG void * ;
A pointer to a MSG structure.

: LPMSGBOXPARAMS void * ;
A pointer to a MSGBOXPARAMS structure.

: LPSCROLLINFO void * ;
Pointer to a SCROLLINFO structure.

: LPTRACKMOUSEEVENT void * ;
A pointer to a TRACKMOUSEEVENT structure

: LPWNDCLASSEX void * ;
A pointer to a WNDCLASSEX structure.

: MONITORENUMPROC void * ;
A MonitorEnumProc function is an application-defined callback function.

: PAINTSTRUCT void * ;
The PAINTSTRUCT structure contains information for an application. This information can
be used to paint the client area of a window owned by that application.

: PCOMBOBOXINFO void * ;
A pointer to a COMBOBOXINFO structure.

: PCONVCONTEXT void * ;



Chapter 20: Functions in DLLs and shared libraries 233

A pointer to the CONVCONTEXT structure.

: PCONVINFO void * ;
A pointer to the CONVINFO structure.

: PFLASHWINFO void * ;
A pointer to a FLASHWINFO structure.

: PFNCALLBACK void * ;
A pointer to the application-defined DDE callback function.

: PICONINFO void * ;
A pointer to an ICONINFO structure.

: PROCESS_DPI_AWARENESS void * ;
PROCESS_DPI_AWARENESS enumeration.

: PSECURITY_QUALITY_OF_SERVICE void * ;
A pointer to a SECURITY_QUALITY_OF_SERVICE data structure.

: SECURITY_QUALITY_OF_SERVICE void * ;
The SECURITY_QUALITY_OF_SERVICE data structure contains information used to support
client impersonation.

: TCHAR void * ;
A Win32 character string that can be used to describe ANSI, DBCS, or Unicode strings.

: WNDCLASSEX void * ;

The WNDCLASSEX structure is similar to the WNDCLASS structure. There are two differ-
ences. WNDCLASSEX includes the cbSize member, which specifies the size of the structure,
and the hlconSm member, which contains a handle to a small icon associated with the window
class.

: WNDENUMPROC void * ;
A pointer to an application-defined callback function.

: LPNETRESOURCE void * ;
A pointer to the NETRESOURCE structure.

: LPHANDLE void * ;
A pointer to a handle.

: LPSHFILEOPSTRUCT void * ;
A pointer to an SHFILEOPSTRUCT structure.

: LPBROWSEINFO void * ;
A pointer to a BROWSEINFO structure.

: SHELLEXECUTEINFO void * ;
A structure that contains information used by ShellExecuteEx.

: REFKNOWNFOLDERID void * ;
A reference to the KNOWNFOLDERID.
: PIDLIST_ABSOLUTE void * ;

The ITEMIDLIST is absolute and has been allocated, as indicated by its being non-constant.

: PCIDLIST_ABSOLUTE void * ;
The ITEMIDLIST is absolute and constant.

: PWSTR void * ;



234 VFX Forth for macOS X

A pointer to a null-terminated string of 16-bit Unicode characters.

: LPPRINTER_DEFAULTS void * ;
A pointer to a PRINTER_DEFAULTS structure.

: PDEVMODE void * ;
A pointer to a DEVMODE data structure.

in ;

Microsoft header annotation.

_inout ;

Microsoft header annotation.

out

—_— b

Microsoft header annotation.

_in_opt ;

Microsoft header annotation.

__inout_opt ;
Microsoft header annotation.

__out_opt ;
Microsoft header annotation.

in

- — 3

Microsoft header annotation.

: _inout_ ;
Microsoft header annotation.

out 5

Microsoft header annotation.
: _in_opt_ ;
Microsoft header annotation.
: _out_opt_ ;
Microsoft header annotation.

: _Reserved_ ;
Microsoft header annotation.

[in] ;
Microsoft header annotation.
20.10.4 Linux Types
: OSCALL "c" oo,

Used for portable code to avoid three sets of declarations. For Windows, this is a synonym for
PASCAL and under Linux this is a synonym for "C".

: FILE uint32 ;
Always use as FILE * stream.

: DIR uint32 ;
Always use as DIR * stream.

: size_t uint32 ;
Linux type for unsigned INT.



Chapter 20: Functions in DLLs and shared libraries

: off_t uint32 ;
Linux type for unsigned INT.

: int32_t int32 ;
Synonym for int32.

: intl6_t intl6 ;
Synonym for int16.

: int8_t int8 ;
Synonym for int8.

: uint32_t uint32 ;
Synonym for uint32.

: uintl6_t uintl6 ;
Synonym for uint16.

: uint8_t uint8 ;

Synonym for uint8.

: time_t uint32 ;

Number of seconds since midnight UTC of January 1, 1970.

: clock_t uint32 ;
Processor time in terms of CLOCKS_PER_SEC.

: pid_t int32 ;
Process ID.

: uid_t uint32 ;
User ID.

: mode_t uint32 ;
File mode.

20.10.5 Mac OS X Types
: OSCALL "er

235

Used for portable code to avoid three sets of declarations. For Windows, this is a synonym for

PASCAL and under OS X this is a synonym for "C".

. FILE uint32 ;
Always use as FILE * stream.

: DIR uint32 ;
Always use as DIR * stream.

: size_t uint32 ;
Unix type for unsigned INT.

: off_t uint32 ;
Unix type for unsigned INT.

: int32_t int32 ;
Synonym for int32.

: intl6_t intl6 ;
Synonym for int16.

: int8_t int8 ;



236 VFX Forth for macOS X

Synonym for int8.
: uint32_t uint32 ;
Synonym for uint32.

: uintl6_t uintl6 ;
Synonym for uint16.

: uint8_t uint8 ;
Synonym for uint8.

: time_t uint32 ;

Number of seconds since midnight UTC of January 1, 1970.

: clock_t uint32 ;

Processor time in terms of CLOCKS_PER_SEC.
: pid_t int32 ;

Process ID.

: uid_t uint32 ;

User ID.

: mode_t uint32 ;

File mode.

20.11 Compatibility words

These words are mainly for users converting code from other Forth systems.

This section provides shared library imports in the form:

function: foo (abcd--x)

where the brackets must be space delimited. Imports use the default calling convention for the
operating system.

: FUNCTION: \ "<name>" "<parameter list>" --

Generate a reference to an external function. The Forth name is the same as the name of the
external function. Use in the form:

function: fool (abcd--)
function: foo2 (abcd - e )

function: foo3 (abcd--¢el eh )

The returned value may be 0, 1 or 2 items corresponding to void, int/long and long long on
most 32 bit systems.

: ASCALL: \ "<synonym-name>" "<name>" "<parameter list>" --

Generate a reference to an external function. The Forth name is not the same as the name of
the external function. Use in the form:

ascall: forthname funcname ( abcd --e )
: GLOBAL: \ "<name>" --
Generate a reference to an external variable. Use in the form:

global: varname



Chapter 20: Functions in DLLs and shared libraries 237

20.12 Using the Windows hooks

The hooks preExtCall and postExtCall are DEFERred words into which you can plug actions
that will be run before and after any external call. They are principally used:
e To save and restore the NDP state when using screen and printer drivers that do not obey
all the Windows rules.
e To save and restore the NDP state and you want the NDP state preserved regardless of any
consequences. Although this is safe, the system overhead is greater than that of preserving
your floats in variables or locals as required.

e Installing error handlers that work with nested callbacks.

The hooks preFPExtCall and postFPExtCall are compiled into calls with floating point pa-
rameters or return values. They do not affect the NDP state.

The examples below illustrate both actions.

20.12.1 Deferred words and variables

defer preExtCall \ —-
Windows only. A hook provided for debugging and extending external calls. It is executed at
the start of the external call before any parameter processing.

defer postExtCall \ -
Windows only. A hook provided for debugging and extending external calls. It is executed at
the end of the external call after return data processing.

defer preFPExtCall \ —-

Windows only. A hook provided for debugging and extending external calls with floating point
parameters or return items. It is executed at the start of the external call before any parameter
processing.

defer postFPExtCall \ —-

Windows only. A hook provided for debugging and extending external calls with floating point
parameters or return items. It is executed at the end of the external call after return data
processing.

variable XcallSaveNDP? \ -- addr

Set true when imports must save and restore the NDP state. Windows only. From build 2069
onwards, the default behaviour for Windows includes saving and restoring the FPU state. This
can be inhibited by clearing XcallSaveNDP? before execution.

variable abort-code \ -- addr
Holds error code for higher level routines, especially RECOVERY below. Windows versions only.

variable aborting? \ -- addr
Holds a flag to indicate whether error recovery should be performed by a calling routine.

defer xcall-fault \ -- ; handles errors in winprocs
Used by application code in the DEFERred words preExtCall and postExtCall above to install
user-defined actions.

20.12.2 Default versions

code PreExtern \ -- ; R: -- sys
\ Clears the abort code and saves the NDP state if XcallSaveNDP?
\ is set.



238 VFX Forth for macOS X

mov  dword ptr abort-code , # O \ no previous abort code
cmp [] XcallSaveNDP? , # O \ Win: required
nz, if,
pop eax
lea esp, —/fsave [esp]
fsave 0 [esp]
push eax
endif,
ret
end-code

assign preExtern to-do preExtCall

code PostExtern \ -- ; R: sys --
\ Restore the NDP state if XcallSaveNDP? is set and test the
\ abort code.

cmp [] XcallSaveNDP? , # O \ required
nz, if,
pop eax
frstor O [esp]
lea esp, /fsave [esp]
push eax
endif,
\ Detecting faults in nested callbacks.
cmp dword ptr abort-code , # O \ test previous aborting code
nz, if,
call [] ’ xcall-fault 5 + \ execute xcall-fault if set
endif,
ret
end-code

assign postExtern to-do postExtCall

code PreFPExtern \ -- ; R: -- sys ; SFP006

\ Clears the abort code.
mov  dword ptr abort-code , # O \ no previous abort code
ret

end-code

assign preFPExtern to-do preFPExtCall

code PostFPExtern \ -- ; R: sys -- ; SFP006
\ Test the abort code.
cmp dword ptr abort-code , # O \ test previous aborting code
nz, if,
call [] °’ xcall-fault 5 + \ execute xcall-fault if set
endif,
ret
end-code

assign postFPExtern to-do postFPExtCall

: DefaultExterns \ —

Set the default PRE and POST EXTERN handlers.



Chapter 20: Functions in DLLs and shared libraries 239

20.12.3 Protected EXTERNSs

Protected EXTERNS allow VFX Forth to recover when a crash occurs inside a Windows call
and the Forth registers have been corrupted. For example

255 0 GetCurrentDirectory

will crash because an address of zero is invalid. Protected EXTERNSs save the Forth registers
befor making the call so that exception handlers can restore VFX Forth to a known state.

code PreProtExtern \ -- ; R: -- sys
\ Clears the abort code and saves the NDP state if XcallSaveNDP?
\ is set.
mov edx, # XcallBuffer \ where the saved data goes
mov eax, 0 [esp] \ return address
sub eax, # 6 \ xt of EXTERN (call [] prexx)
mov 0 scb.xt [edx], eax \ save it
lea eax, 4 [esp] \ RSP on entry
mov 0 scb.esp [edx], eax
mov 0 scb.ebp [edx], ebp
mov 0 scb.esi [edx], esi
mov 0 scb.edi [edx], edi
mov  dword ptr abort-code , # O \ no previous abort code
cmp [] XcallSaveNDP? , # O \ Win: required
nz, if,
pop eax \ return address
lea esp, -/fsave [esp]
fsave 0 [esp]
push eax
endif,
ret
end-code
code PostProtExtern \ -- ; R: sys —-

\ Restore the NDP state if XcallSaveNDP? is set and test the
\ abort code.
mov  dword ptr XcallBuffer scb.xt , # O \ reset Extern in progress

cmp  [] XcallSaveNDP? , # O \ required
nz, if,
pop eax \ return address
frstor O [esp]
lea esp, /fsave [esp]
push eax
endif,
\ Detecting faults in nested callbacks.
cmp dword ptr abort-code , # O \ test previous aborting code
nz, if,
call [] ’ xcall-fault 5 + \ execute xcall-fault if set
endif,
ret

end-code



240 VFX Forth for macOS X

code PreProtFPExtern \ -- ; R: -- sys ; SFP006
\ Clears the abort code.
mov edx, # XcallBuffer \ where the saved data goes
mov eax, 0 [esp] \ return address
sub eax, # 6 \ xt of EXTERN (call [] prexx)
mov 0 scb.xt [edx], eax \ save it
lea eax, 4 [esp] \ RSP on entry
mov 0 scb.esp [edx], eax
mov 0 scb.ebp [edx], ebp
mov 0 scb.esi [edx], esi
mov 0 scb.edi [edx], edi
mov  dword ptr abort-code , # O \ no previous abort code
ret
end-code
code PostProtFPExtern \ -- ; R: sys -- ; SFP006
\ Test the abort code.
mov  dword ptr XcallBuffer scb.xt , # O \ reset Extern in progress
cmp dword ptr abort-code , # O \ test previous aborting code
nz, if,
call [] ’ xcall-fault 5 + \ execute xcall-fault if set
endif,
ret
end-code
: ProtectedExterns \ —-

Set the protected PRE and POST EXTERN handlers.

20.13 Interfacing to C++ DLLs
20.13.1 Caveats

These notes were written after testing on Visual C++ v6.0. Don’t blame us if the rules change!

20.13.2 Example code

The example code may be found in the directory EXAMPLES\VC++. Because of the inordinate
amount of time we spent wandering around inside debuggers to get this far, we recommend that
you adopt a cooperative and investigative attitude when requesting technical support on this
topic.

20.13.3 Accessing constructors and destructors

Example code for accessing the constructor of class is provided in TRYCPP.FTH which accesses
the class DllTest in DLLTEST.CPP.

Since C++ is supposed to provide a higher level of abstraction, apparently simple operations may
generate reams of code. So it is with the equivalent of

pClass = new SomeClass;



Chapter 20: Functions in DLLs and shared libraries 241

The actual code generated may/will be a call to a function new to generate an object structure
(not a single cell) followed by passing the return value from new to the class constructor.

The class constructor (in C++ CDlTest::CDIlTest()) is not normally exported from C++ without
some extra characters being added to the name. For example, the reference to it in the example
code is:

extern: PASCAL void * ?70CDLLTest@QQAE@XZ( void );

This function is not directly callable because it has to be passed the result of the new operator. To
solve this problem DLLTest.dll contains a helper function CallNew which is passed the address
of the constructor for the class. This is redefined as NEW for normal use.

-
\ C++ Helpers
extern: PASCAL void * CallNew( void * );

extern: PASCAL void CallDelete( void * this);
N

~
\ CDLLTest class specific
extern: PASCAL void * ?70CDLLTest@@QAEQXZ( void );

0 value CDLLTest \ -- class|0
: InitCDLLTest \ -- ; initialise the CPP interface

[’] ?70CDLLTest@OQAEQXZ func-loaded? -> CDLLTest

: New \ class -- *objl0
CallNew

: Delete \ *obj --
CallDelete

The word INITCDLLTEST gets the address of the constructor for the class, and NEW then runs the
CallNew function which executes the C++ new operator and calls the constructor. Unfortunately,
you will have to do this for each class that use in the DLL. What is returned by CallNew is an
object pointer. This is not the object itself, but the address of another (undocumented) data
structure. It can be used as the this pointer for all following member function calls.

Once you have finished with the onject, you must relase its resources using the delete method
(the destructor). This is implemented in VC++ by passing the object pointer to the delete
function. This is performed by the CallDelete function exported from the DLL. Again, the
Forth word DELETE provides syntactic sugar by just calling CallDelete.

20.13.4 Accessing member functions

A Visual C++ member function exported from a DLL requires the "this" pointer in the ECX
register. This can be achieved using the following form:



242 VFX Forth for macOS X

{%xtern: VC++ PASCAL BOOL TestWindowl( void * this, char * ch, int n, int nbyte };

The function must be defined with an explicit this pointer (void * this). Because exported VC++
member functions can have either C or "PASCAL" styles, the this pointer must be positioned
so that it is leftmost when reversed (C/PASCAL/WINAPI/StdCall/APIENTRY style) or is
rightmost when not reversed ("PASCAL" style).

( 0

extern: PASCAL VC++ BOOL GetHello( void * this, char * buff, int len );
extern: PASCAL VC++ BOOL TestWindowl( void * this, char * ch, int n, int nbyte );

extern: PASCAL VC++ BOOL TestWindow2( void * this, void * pvoid, int ndword, int
0 value CDLLTest \ -- constructor/class
InitCDLLTest \ --; 1Initialise the CPP interface

[’] ?70CDLLTest@@QAEQ@XZ func-loaded? to CDLLTest

3

create Magic# $AAAAS555 , \ -- addr
#64 buffer: StringBuff \ -- ; buffer for GetHello
: TestCDLLTest \ —-- ; test CDLLTest interface
InitCDLLTest CDLLTest if
cr ." Initialisation succeeded"
CDLLTest new 7dup if
cr ." new succeeded"

dup StringBuff #64 GetHello drop

cr ." GetHello returns: " StringBuff .z$
dup Magic# 4 5 TestWindowl drop

dup Magic# #20 #30 TestWindow2 drop

delete
cr ." delete done"
else
cr ." new failed"
endif
else
cr ." Initialisation failed"
endif
N J

Please note that the actual code in TRYCPP.FTH may/will be different as we extend the
facilities. See the source code itself!

20.13.5 Accessing third party C++ DLLs

Most third party C++ DLLs are provided with C header files which define the interfaces. Study
of these will provide the information you need to determine how to access them.

For simple C++ classes, the DIlTest.dll file can be used to provide constructor and destructor

nlong );



Chapter 20: Functions in DLLs and shared libraries 243

access. Note that classes with multiple constructors will export these as functions with the same
basic name differentiated by the name mangling.

The DLL Fth2V(C60.dll contains new and delete access for use with other DLLs. Note
that the third party DLLs must be compatible with VC++ v6.0. The example file EXAM-
PLES\VC++\USECPP.FTH demonstrates using Fth2VC60.dll.

( R
library: Fth2VC60.d11

extern: PASCAL void * FTH2CPPNew( void * constructor);
extern: PASCAL void FTH2CPPDelete( void * this);

: New \ *class -- *o0bjl|0
FTH2CPPNew
: Delete \ *obj --
FTH2CPPDelete
- J

If you are using an incompatible compiler or DLL, create a similar support DLL for that compiler.
You can use the source code for Fth2VC60.dll as an example.

20.14 Changes at v4.3

The guts of the EXTERN: mechanism have been rewritten to provide more features and to support
more operating systems.

20.14.1 Additional C types

The following C data types are now supported:
e Float - a 32 bit floating point item.
e Double - a 64 bit floating point item

e Longlong - a 64 bit integer. These are taken from and returned to the Forth data stack as
Forth double numbers with the high portion topmost on the stack.

Floating point numbers are taken from the NDP floating point unit. This is directly compatible
with the the Forth floating point pack in Lib\z86\ Ndp387.fth.

20.14.2 More Operating Systems

The requirements of newer operating systems, especially those for 64-bit operation, are more
stringent for things like data alignment. Consequently the underlying mechanism has changed.

20.14.3 Miscellaneous

These notes are probably only relevant for code that has carnal knowledge of the VFX Forth
internals.

e The XCALL primitive has been removed and is replaced by NXCALL.



244 VFX Forth for macOS X

e The compile time code generation is completely different and there is no centralised despatch
mechanism.

e Some faciliies provided by Lib\ Win32\SafeCallback.fth are now built in to the Windows
system. You must use the new version of SafeCallback.fth.

The word NXCALL is provided for constructing your own import mechanisms, but it only deals
with single-cell arguments and provides no type safety at all. It is used internally by VFX Forth
in the first stage build of a console-mode kernel.

code NXCALL \ i*x addr i -- res

Calls the operating system function at addr with ¢ arguments, returning the result res. As far
as the operating systems is concerned, i*z appear on the CPU return stack pointed to by ESP,
and the return value is taken from EAX. After executing NXCALL the return value res is the
contents of the EAX register.



Chapter 21: Supported shared libraries 245

21 Supported shared libraries

This chapter documents interfaces to shared libraries that can be used on all VFX Forth versions
with the Extern: shared library interface - all except DOS. We will add more library interfaces
as time goes by. Supported libraries can be found in < Vfz>/Lib/SharedLibs/.

We will support the interface code here, but our technical support cannot include teaching you
how to use these libraries. Generous we may be, a charity we are not.

Open Source libraries can be found using Google, and may already be installed on your machine.
For example, the SQLite database engine is used by FireFox and many other projects.

A reliable source of binaries for Windows is the MinGW distribution from:
http://sourceforge.net/projects/mingw/

http://www.mingw.org/

We will periodically put the Windows versions (and perhaps others) of the libraries on our FTP
site at:

ftp://soton.mpeforth.com/

You can use most browsers to access this. Login as "public" with a blank password and switch
to the SharedLibs directory.

21.1 LibCurl

The libcurl library/DLL provides high-level functions for transferring data across networks to
and from servers. be found at:

http://curl.haxx.se/libcurl/

Additional help may be found at the curl-library mailing list subscription and unsubscription
web interface:

http://cool.haxx.se/mailman/listinfo/curl-library/
struct /curl_httppost \ -- len
The Forth version of the curl_httppost structure.
0x10000001 constant CURL_WRITEFUNC_PAUSE

This is a magic return code for the write callback that, when returned, will signal libcurl to
pause receiving on the current transfer.
Note that all Curl callbacks must be defined with FromC.

struct /curl_fileinfo \ —— len

Content of this structure depends on information which is known and is achievable (e.g. by FTP
LIST parsing). Please see the url_easy_setopt(3) man page for callbacks returning this structure
— some fields are mandatory, some others are optional. The FLAG field has special meaning.



246 VFX Forth for macOS X

21.2 LiblIconv

LibIconv converts from one character encoding to another through Unicode conversion (see Web
page for full list of supported encodings). It has also limited support for transliteration, i.e.
when a character cannot be represented in the target character set, it is approximated through
one or several similar looking characters. It is useful if your application needs to support multiple
character encodings, but that support lacks from your system.

The latest version of the library can be obtained from

http://gnuwin32.sourceforge.net/packages/libiconv.htm

The required files are:
e libiconv2.dll
e libcharset1.dll
e libintl3.dll
e a compatible msvcrt.dll
e iconv.exe
e libiconvman.pdf - the library documentation
e libiconv.fth

To obtain a full list of the supported encodings, go to a operating system command line and
type:
iconv -1
: iconv_t wvoid *x
Define the iconv_t type as is done by the C header file.
: size_t uint32 ;
Type for unsigned INT.
Extern: iconv_t "C" libiconv_open( const char * tocode, const char * fromcode );

Allocates descriptor for code conversion from encoding fromcode to encoding tocode.

Extern: size_t "C" libiconv(

Converts, using conversion descriptor cd, at most *inbytesleft bytes starting at *inbuf, writing
at most *outbytesleft bytes starting at *outbuf.

Decrements *inbytesleft and increments *inbuf by the same amount.

Decrements *outbytesleft and increments *outbuf by the same amount.

iconv_t cd,
const char * * inbuf, size_t * inbytesleft,
char * * outbuf, size_t * outbytesleft

)

Extern: int "C" libiconv_close( iconv_t cd );

Frees resources allocated for conversion descriptor cd.



Chapter 21: Supported shared libraries 247

21.3 SQLite

The most recent version of SQLite can be found at:

http://www.sqlite.org/

This is a very compact and fast Open Source SQL database system that is ideal for managing
data in a single application.

The VFX Forth interface can be found in the direcory:
<Vfx>/Lib/SharedLibs/SQLite3
: pFunc void * ;
Pointer to a function.
: sqlite3 void ;
This should always appear as sqlite3 *. Since this is an opaque type, translating it to void *

is valid.

: sqlite3_stmt void * ;
Essentially a string pointer.

: sqlite3_value void * ;
Can be anything!

: sqlite3_context void * ;
Can hold anything!

: sqlite3_blob void * ;
Pointer to an object.

: sqlite3_vfs void * ;
Essentially a pointer.

: sqlite3_mutex void *
Essentially a pointer.

21.4 zlib

The zlib library/DLL provides high-level functions for compression and decompression. The
current version of the library is at

www.zlib.net

The file 2lib.fth is a conversion of zlib.h for VFX Forth. The 2zlib version is 1.2.5. If you are
using this code with a different version of zlib, use

zlibCompileflags ( -- x )

to check that the types and fields zLong and zInt defined here are correct.

21.4.1 Windows specifics

The most reliable source of binaries for Windows is the MinGW distribution from:
http://sourceforge.net/projects/mingw/
http://www.mingw.org/



248

[defined] Target_386_Windows [if]
library: zlibl.d1ll
also types definitions

: zexport "c"
: zlong uint32 ; \ uLong type
: zInt uint32 ; \ ulnt type

. z_off_t uint32 ;
previous definitions

: zlong 4 field ;
: zInt 4 field ;
[then]

21.4.2 Mac OS X specifics

[defined] Target_386_0SX [if]
\ library: libcurl.2.dylib
also types definitions

: zexport "c"

: z_off_t Longlong ;

: zlong uint32 ; \ uLong type
: zInt uint32 ; \ ulnt type
previous definitions

: zlong 4 field ;

: zInt 4 field ;

[then]

21.4.3 Linux specifics

[defined] Target_386_Linux [if]
\ library: libcurl.so.3

\ library: libcurl.so.4

also types definitions

: zexport "'

: z_off_t Longlong ;

: zlong uint32 ; \ uLong type
: zInt uint32 ; \ ulnt type
previous definitions

: zlong 4 field ;

: zInt 4 field ;

[then]

21.4.4 Generic code

struct /z_stream_s \ -- len

z_stream_s structure.

21.5 LibXL - Excel interface

VFX Forth for macOS X

LibXL is a library that can read and write Excel files. It doesn’t require Microsoft Excel or the
NET framework, and combines a set of easy to use and powerful features. The library can be

used to:



Chapter 21: Supported shared libraries 249

e Generate a new spreadsheet from scratch
e Extract data from an existing spreadsheet

e Edit an existing spreadsheet

LibXL is proprietary code, but the price is very reasonable. Versions exist for Windows, OS X,
iOS and Linux. LibXL can be obtained from:

www.libxl.com

This code is built as 32 bit code using the ASCII interface. Consequently, strings shown with
L" in the C examples are ASCII zero-terminated strings and the Forth word z" can be used
for them. The DLL interface uses the "C" calling convention for all operating systems. The
Windows version should use libXL.dll from the bin directory of LibXL distribution.

: enum \ —-
Process an enum of the form:

enum <name> { a, b, c=10, d };

<name> is ignored. The elements appear as Forth constants. The definition may extend over
many lines. C comments may occur after the ’,” separator, e.g.

JIM = 25, // comment about this line

: enum{ \ —-
Process an enum of the form:

enum{ a, b, c=10, d };

21.5.1 Test code

: UniPlace \ addr len destaddr --
Store a Unicode string to an address. The string is stored as a cell counted string with a 16 bit
zero terminator. The terminator is not included in the count.

: UniAppend ( addr len destaddr -- )
Append a string to the end of an address

: Ascii>Uni, \ addr len --
Store an ASCII string as a Unicode string in the dictionary. The string is stored as a cell counted
string with a 16 bit zero terminator. The terminator is not included in the count.

: Ascii>Uni \ addr len dest --
Store an ASCII string as a Unicode string at an address. The string is stored as a cell counted
string with a 16 bit zero terminator. The terminator is not included in the count.

: UniCount ( addr -- addr len )
Fetch a unicode string from an address.

: Lz \ "text" -- zaddr
Unicode string - should behave the same way as z"

: x1Test \ -
libXL example 1






Chapter 22: Callback functions 251

22 Callback functions

The CALLBACK mechanism provides the facility to wrap Forth definitions in code which is
callable by OS X.

22.1 Simple CALLBACK functions

variable ip-default \ -- addr
Holds the default value of IP-HANDLE that is set for each CALLBACK entry.

variable op-default \ -- addr
Holds the default value of OP-HANDLE that is set for each CALLBACK entry.

: set-callback \ xt callback --
Make the xt be the action of the callback.

: callback, \ #in #out -- address

Lay down a callback data structure. The first cell contains the address of the entry point. The
address of the data structure is returned.

: CALLBACK: \ #in #out "<name>" -- ; -- a-addr

Create a callback function. #IN and #OUT refer to the number of input and output parameters
required for the callback. When the definition <name>is executed it will return the address of
the callback function. For example

2 1 CallBack: Foo

creates a callback named Foo with two inputs, and one output. Executing Foo returns the entry
point used by OS X. To use it, pass Foo as the entry point required by OS X, e.g as the address
of a task action. Foo is built to use the "C" calling convention.

> FooAction to-callback foo

Having defined an action for the callback, you can now use the callback as if it was a C or
assembler function called by the operating system.

: CallProc: \ #in #out "<name>" -- ; -- entry

Create a callback function and start compilation of its action. #IN and #OUT refer to the
number of input and output parameters required for the callback. When the definition <name>is
executed it will return the entry point address of the callback function.

( N
4 1 CallProc: <name> \ #in #out -- ; -- entry

\ Callback action ; x1 x2 x3 x4 -- op

>
<name> \ returns entry point address
- J

: CB: \ xt #in "<name>" -- ; -- entry

Create a callback function that executes the action of xt. action. #IN refers to the number
of input parameters. The number of output parameters is 1. When <name>is executed it will
return the entry point address of the callback function. This word is provided to ease porting
from other Forth systems.



252 VFX Forth for macOS X

:noname (abc --d)

; 3 CB: <name>

: to-callback \ xt <"name"> --
Assign an XT as the action of a defined callback. This word is state smart.

22.2 An example. Creating a signal handler

An OS X signal handler has the prototype

void sa_siginfo( int signum, siginfo_t * siginfo, ucontext_t * uc );
As far as Forth is concerned we need to execute a Forth word that receives three parameters
and returns none.

(SigTrap) \ signum *siginfo *ucontext --

The code fragment below achives this.

-~
3 0 callback: SigTrap \ -- addr
\ executing SigTrap in Forth returns the C entry point.

: (SigTrap) \ signum *siginfo *ucontext --
\ Action of SigTrap.

nip \ discard siginfo

cr

cr ." Signal number " swap .sigName

uc.mcontext \ point at CPU context

cr ." at address " dup sc.EIP @ dup .dword
." , probably in " ip>nfa .name
cr
[’] SigThrow swap sc.EIP ! \ force return to SigThrow
assign (SigTrap) to-callback SigTrap
N

The callback entry code provides you with a default I/O device and sets BASE to decimal. It
does not set up a default THROW handler. If your callbacks must cope with exceptions, you must
provide a top-level CATCH yourself.

22.3 Implementation notes

Callbacks are (usually) C functions. In the case of VFX Forth these functions create a Forth
environment with two or more stacks, a USER area and so on. In a GUI environment, callbacks
are very common, and so must be established and discarded quickly. The easiest place to do
this is to use the calling C stack and build the Forth stacks and data areas on the C stack. This
has several consequences:

e VFX Forth uses stacks generously, so the C stack has to be large. Between 1 and 4Mb is
common. The need for this amount of memory is caused by a callback triggering another
callback. We have observed nesting levels of 12 or more in applications.

e To improve performance, VFX Forth does not "touch" the stack it needs when the Forth
environment is created. Therefore all the stack space must be "committed" in advance.



Chapter 22: Callback functions 253

e Only a limited number of USER variables are initialised: SO0, RO, BASE, IP-HANDLE,
OP-HANDLE, ThreadExit?, ThreadTCB, and ThreadSync.

e You can make no assumptions about the addresses used for the Forth environment. Two
separate invocations of the same callback may use quite different addresses. You can assume
that the addresses will not change within a callback unless the application has changed them.

e Callbacks, tasks and signals all use the same entry mechanism.






Chapter 23: Building Standalone Programs 255

23 Building Standalone Programs

23.1 The basics

After all the initialisation has been performed, the deferred word ENTRYPOINT is executed. The
most basic way to make a turnkey application is just to set ENTRYPOINT and then SAVE the
application. Some examples follow.

Later sections in this chapter discuss startup and shutdown in detail.
23.1.1 Windows GUI

You can use a messagebox or a modal dialog as the application; anything that runs the Windows
message pump will work.

( N
: start \ hmodule O commandline show -- res
4drop
WalkColdChain \ run startup chain
0 z" Hello World" z" VFX Forth" MB_OK MessageBox drop
0
> start is EntryPoint
Save hello
bye
- J
23.1.2 Windows console
( )
: start \ hmodule O commandline show -- res
4drop
WalkColdChain \ run startup chain
." Hello World! from VFX" cr
0
’ start is EntryPoint
SaveConsole hello
bye
- J
23.1.3 OS X and Linux console .
: start \ hmodule O commandline show -- res
4drop
WalkColdChain \ run startup chain
." Hello World! from VFX" cr
0
’ start is EntryPoint
Save hello
bye
- J




256 VFX Forth for macOS X

23.2 Sequence of Events

When a Forth program runs there are five stages from program launch to termination.

0S_Startup
The code required to bridge the gap between Forth and the host operating system.
This code is handwritten by MPE and cannot be changed in any manner (to do so
would cripple the system)

Initialisation
The setup of various system variables, stack pointers, user areas etc. Also the
initialisation of import DLL functions etc. The various words which perform these
operations are formed into a linked list called the Cold Chain which is executed
automatically at the start of EntryChain.

BootStrap
The execution of either the default interpreter or the end-user’s turnkey application.
There is a little stub of code which sets up some input parameters before calling the
DEFERed word EntryPoint.

EntryPoint
Should run WalkColdChain and then the application code which runs until shut
down.

Shutdown When the application terminates, VFX Forth runs an exit chain similar to the cold
chain. Any actions required for a clean shutdown should be added to this chain.

To generate stand-alone executable programs, three steps are required.

e Compile your application - you do this in the same way as you would during development.
The required initialisation and shutdown actions are usually defined using

xt AtCold
> foo AtExit

e Assign your entry point - you must define a word which serves as your program entry point
and assign it as the action of the entry point word EntryPoint.

e Save the compiled image - after compilation and entry point definition you commit your
compiled code to a file.

23.3 The EntryPoint word

At the end of the start up chain EntryPoint is called. This word is DEFERed and can be
re-assigned by the user.

The entrypoint definition is supplied by the end-user for a turnkey application. The system has
a default entry point which simply launches the interpreter. An entry point definition has the
following format:-

[ MyEntryPoint \ hmodule O commandline show -- res

Where the parameters are:

HMODULE The "module handle". For instance under Windows the module-handle is the base
address of the parent process when running in memory.



Chapter 23: Building Standalone Programs 257

0 A reserved field.

COMMANDLINE
A zero terminated string from the operating system describing the command line
used to launch the system. Where this information is unavailable this field will be

0.

SHOW An operating system specific field describing what visual effect should be used to
start the application. In Windows this value can be passed directly to ShowWin-
dow().

RES The result with which to exit the program.

The syntax used to reset the entry point is:

ASSIGN <myword> TO-DO ENTRYPOINT
or
> <myword> IS ENTRYPOINT

and should be placed at the end of your source build before SAVE.

Under some operating systems and I/O devices, you must flush pending output before shutting
down, otherwise it will be unseen (still be buffered) when the program terminates. For example,
this may not work.

-
: start \ hmodule O commandline show -- res
4drop
." Hello World! from VFX" cr
0
Assign start to-do EntryPoint
Save hello
bye
N

What happens is that the buffered output has not been displayed before the program terminates.
To fix this there are three options:

e Use flushOP-gen drop to flush the current output.
e Use key? drop as I/O drivers (should) flush output when an input request is made.

e Use 200 ms if you are uncertain or the O/S layer needs time, as can happen in some
networking situations.

Note that under some operating systems you cannot save a file of the same name as the one
that is currently executing.

23.4 Startup and Shutdown words

: ShowColdChain \ -
Show on the console the sequence of events which make up the current start up code. The
sequence is shown in the order in which it is executed.

: ShowExitChain \ -



258 VFX Forth for macOS X

Show on the console the sequence of events which make up the current exit actions. The sequence
is shown in the order in which it is executed.

: WalkColdChain \ --

Walk the cold chain. Used during startup.

: WalkExitChain \ -

Walk the exit chain. Used during shutdown.

: AtCold \ xt --

Specify a new XT to execute when the Cold chain sequence is run.

: AtExit \ xt -—-

Add a new XT to execute on BYE.

: FREEZE \ —-

Setup initial user area/global values for SAVE. FREEZE is performed by the guts of SAVE.
(init) \ -

Set up system variables, task0 user area, search order etc.

variable ExitCode \ -- addr

Holds exit code returned to the operating system.

: bye \ —-

Runs the shutdown chain, and exits to the operating system, returning the exit code from the
variable ExitCode. The meaning of the exit code is operating system dependent.

: cold \ --
System entry point. Runs the cold chain and then the application EntryPoint code. When the
application finishes, the exit chain is run and the application terminates.

23.5 Saving to an Mach-o file

The following sequence performs this operation:

ok SAVE myfile.mo
ok BYE
poop> ./myfile.mo

: Mb \n -- nMb ; nMb = n * 1048576
Given n, returns n megabytes. Useful before SET-SIZE or ALLOCATE.

: Kb \'n -—nkKb ; nKb = n * 1024

Given n, returns n kilobytes. Useful before SET-SIZE or ALLOCATE.

: get-size \ -- size

Return the amount of memory used by the Forth dictionary and system headers.

: set-size \ size --

Set the amount, of memory to be used by the Forth dictionary and system headers. This will

not take effect until the system has been SAVEd to form a new Mach-o file. The new dictionary
size will be used when the new Mach-o file is run.

: get-stacks \ -- size
Return the amount of memory available for Forth stacks and user areas.

: set-stacks \ size --



Chapter 23: Building Standalone Programs 259

Set the amount of memory to be used by the Forth stacks and user area. This will not take
effect until the system has been SAVEd to form a new Mach-o file. The new size will be used
when the new Mach-o file is run.

: $SaveImage \ caddr len -- len’
Save the Forth image to the given file. The image file size is returned.

: setExecPerms \ caddr len --
Set execute permissions on the file.

: Save \ "<name>" -- ; SAVE <name>
Save the application to the file given by the following file name. No extension is applied to the
name. The image is saved as a Mach-o file.






Chapter 24: Exception and Error Handling 261

24 Exception and Error Handling

24.1 CATCH and THROW

CATCH and THROW form the basis of all VFX Forth error handling. The following description of
CATCH and THROW originates with Mitch Bradley and is taken from an ANS Forth standard draft.

CATCH and THROW provide a reliable mechanism for handling exceptions, without having to prop-
agate exception flags through multiple levels of word nesting. It is similar in spirit to the "non-
local return" mechanisms of many other languages, such as C’s setjmp() and longjmp(), and
LISP’s CATCH and THROW. In the Forth context, THROW may be described as a "multi-level
EXIT", with CATCH marking a location to which a THROW may return.

Several similar Forth "multi-level EXIT" exception-handling schemes have been described and
used in past years. It is not possible to implement such a scheme using only standard words
(other than CATCH and THROW), because there is no portable way to "unwind" the return stack
to a predetermined place.

THROW also provides a convenient implementation technique for the standard words ABORT and
ABORT", allowing an application to define, through the use of CATCH, the behavior in the event
of a system ABORT.

24.1.1 Example implementation

This sample implementation of CATCH and THROW uses the non-standard words described below.

They or their equivalents are available in many systems. Other implementation strategies,
including directly saving the value of DEPTH, are possible if such words are not available.

SP@ ( — addr ) returns the address corresponding to the top of data stack.

SP! (‘addr — ) sets the stack pointer to addr, thus restoring the stack depth to the same
depth that existed just before addr was acquired by executing SPe@.

RPG@ ( — addr ) returns the address corresponding to the top of return stack.

RP! (‘addr — ) sets the return stack pointer to addr, thus restoring the return stack depth
to the same depth that existed just before addr was acquired by executing RP@.



262 VFX Forth for macOS X

( )
nnn USER HANDLER O HANDLER ! \ last exception handler
: CATCH ( xt -- exception# | 0 ) \ return addr on stack

SP@ >R ( xt ) \ save data stack pointer

HANDLER @ >R xt ) \ and previous handler

RP@ HANDLER ! xt ) \ set current handler

(
(
EXECUTE ( ) \ execute returns if no THROW
R> HANDLER ! () \ restore previous handler
R> DROP ( ) \ discard saved stack ptr
0 ( 0) \ normal completion
: THROW ( 77?7 exception# -- 777 exception# )
7DUP IF ( exc# ) \ 0 THROW is no-op
HANDLER @ RP! ( exc# ) \ restore prev return stack
R> HANDLER ! ( exc# ) \ restore prev handler
R> SWAP >R ( saved-sp ) \ exc# on return stack
SP! DROP R> ( exc# ) \ restore stack
\ Return to the caller of CATCH because return
\ stack is restored to the state that existed
\ when CATCH began execution
THEN
C J

The VFX Forth implementation is similar to the one described above, but is not identical.

24.1.2 Example use

If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had
returned it. In that case, the stack depth is the same as it was just before CATCH began execution.
The values of the i*x stack arguments could have been modified arbitrarily during the execution
of xt. In general, nothing useful may be done with those stack items, but since their number is
known (because the stack depth is deterministic), the application may DROP them to return to
a predictable stack state.

Typical use:



Chapter 24: Exception and Error Handling 263

s N
: could-fail \ -- char
KEY DUP [CHAR] Q =
IF 1 THROW THEN

: do-it \ab-—-c
2DROP could-fail

:otry-it \ —-
1 2 [’] do-it CATCH IF
( -- x1 x2 ) 2DROP ." There was an exception" CR
ELSE
." The character was " EMIT CR
THEN

: retry-it \ —-
BEGIN
1 2 [’] do-it CATCH
WHILE
( -- x1 x2 ) 2DROP ." Exception, keep trying" CR
REPEAT ( char )
." The character was " EMIT CR

I

=

24.1.3 Wordset

: >ep \ x —-

Push a cell item onto the exception stack.

: ep> \ —— x

Pop a cell item from the exception stack.

defer o_ABORT \ i*x -- ; R: j*x --

The exception handler of last resort. Clears the stacks and calls the DEFERred word QUIT.
: CATCH \ i*x xt -- j*x Oli*x n 9.6.1.0875
Execute the code at XT with an exception frame protecting it. CATCH returns a 0 if no error
has occurred, otherwise it returns the throw-code passed to the last THROW.

: THROW \ k*x n -- k*x|i*x n 9.6.1.2275

Throw a non-zero exception code n back to the last CATCH call. If n is 0, no action is taken except
to DROP n. If n is non-zero and no previous CATCH has been performed, there is an exception
frame error, and 0_ABORT is performed which finally calls the DEFERred word QUIT.

: 7THROW \ kxx flag throw-code -- k*x|i*x n

Perform a THROW of value throw-code if flag is non-zero.
24.1.4 Extending CATCH and THROW

The CATCH and THROW mechanism can be extended by the user if additional information needs
to be preserved. By default the following pointers are preserved - data stack, return stack,
float stack, local frame and current object. Additional information is saved and restored by
user-defined words as follows.



264 VFX Forth for macOS X

The save word must return n, the number of cells saved on the exception stack. The restore
word must consume n and restore n items from the return stack. The words >EP ( x -- ) and
EP> ( -- x ) are used to push and pop items respectively to and from the exception stack.

( N
variable vl

variable v2

: MySave \ -- n ; number of cells
vl @ >ep v2 @ >ep 2

: MyRestore \ n -- ; number of cells
drop ep> v2 ! ep> vl !

The new save and restore words are activated by the word EXTENDS-CATCH and the default action
is restored by DEFAULT-CATCH. See below.

: extends-catch \ xt-save xt-restore --
Sets the new save and restore actions of CATCH and THROW.

: default-catch \ —-
Restores the default actions of CATCH and THROW.

24.2 ABORT and ABORT"

These words are built on top of CATCH and THROW.

defer ABORT \ i*x -- ; R: j*x -- ; error handler
Empty the data stack and perform the action of QUIT, which includes emptying the return stack,
without displaying a message.

: ABORT" \ Comp: "ccc<quote>" -- ; Run: i*x x1 -- | i*x ; R: j*x —— | j*x 9.6.2.068(
If x1 is true at run-time, display the following string and perform ABORT, otherwise do nothing.
This is handled by performing -2 THROW after setting the variable > ABORTTEXT.

24.3 Defining Error/Throw codes

As of VFX Forth v3.6, the user definable mechanism has changed.

In order to simplify the construction and allocation of error messages and references, they can
be constructed automatically. Use ERRDEF and #ERRDEF as shown below to construct messages
for error handlers. These messages are created as /ERRDEF structures which are also used for
messages that can be internationalised. Note also that this structure and mechanism may be
subject to change to cope with internationalisation, which is documented in a separate chapter
of the manual.

EEeref ScrewUp "Oh bother, something went wrong" J

defines a constant called SCREWUP associated with a string. The constant SCREWUP can be passed



Chapter 24: Exception and Error Handling 265

to ERR$ to retrieve the address and length of the string. The value of the constant is generated
from the contents of variable NEXTERROR.

E)QQ #ErrDef Snafu "Situation Normal, All *x**ed Up" ]

defines a constant called SNAFU of value 999 and an associated text message.

When assigning error codes, please note that the ANS specification reserves error codes -255..-1
for ANS defined error messages. Error codes in the range -4095..-256 are reserved for use by
VFX Forth iteself. Applications may use other codes. Please do not use error codes 0..499
as these are reserved by VFX Forth for optional system extensions. By default, automatically
assigned error codes start at 501.

The error system relies on a data structure /JERRDEF which follows a constant value for the error
number. The /ERRDEF structure contains a link to the previous ERRDEF or #ERRDEF definition,
a message identifier which is 0 for non-databased strings in the ISO Latinl coding, the address
of the text, and the length of the text in bytes. The text is followed by two zero bytes, and the
text is long aligned. The /ERRDEF structure is a subset of the /TEXTDEF structure described in
the internationalisation chapter. This chapter also includes a discussion of the concepts used for
internationalisation. )

Error messages are linked into the chain used for all application strings that can be internation-
alised. This chain is anchored by the variable TEXTCHAIN.

The words PARSEERRDEF, ERR$ and .ERR are DEFERred. PARSEERRDEF creates the /ERRDEF
structure from the source text. It is the basis of error defining words such as ERRDEF. You
can install alternative versions of these words for internationalised applications. In this context,
#ERRDEF and friends can be used as the basis of any text handler that requires translation.
Note that PARSEERRDEF can be modified so that a message file is produced at compile time, and
ERR$ modified so that the message file is accessed at run time. Similarly, providing that the
application language is correctly handled, the run time can access translated messages in other
languages, character sets and character sizes. .ERR is similarly DEFERred and is used to display
the message. )

e N
struct /errdef \ -- len ; DOES NOT include constant definition

int ed.link \ link to previous ERRDEF

int ed.id \ 0 or message ID

int ed.caddr \ address of text string to use

int ed.len \ length of text string to use in bytes

int ed.lenInline \ length of inline text string in bytes
end-struct
k J

The previous kernel words GETERRORTEXT and GETERRORTEXTEX that existed up to VFX Forth
v3.3 have been removed and are replaced by ERR$, which has the same stack effect.

defer ParseErrDef \ "<text>" -- ; create /ErrDef structure
Create a /ErrDef structure in the dictionary, parsing the required text. The error number must
already have been laid.

defer Err$ \ n -- addr/n len/0O



266 VFX Forth for macOS X

Convert an error/message number to the address of the relevant string. Addr is the start of the
string, and len is its length in bytes. If the string cannot be found, addr is set to n and len is
set to 0.

defer .Err \ caddr u --

Given the address and length in bytes of a message that may have been internationalised, display
it. The default action is TYPE.

variable NextError

Holds the value of the next application error number to be allocated by ERRDEF. Application
error numbers are positive and are incremented by ERRDEF.

variable NextSysError

Holds the value of the next system error number to be allocated by SYSERRDEF. System error
numbers are negative and are decremented by SYSERRDEF.

variable TextChain

The anchor for the chain of error and text messages that may be internationalised.

: ErrStruct \ n -- struct|O ; produce pointer to error structure

Given an error number n, return the address of the /ERRDEF error structure containing its details.

.TextChain \ -- ; display all error messages

Display a list of all the error codes and messages defined by ERRDEF and #ERRDEF and other text
chain users.

(Err$) \ throw#/msg# -- c-addr u | throw#/msg# O
The default action of ERR$.

(ParseErrDef) \ "<text>" -- ; create /ErrDef structure
The default action of PARSEERRDEF.

: #ErrDef \n -—- ; —— n ; used as throw/error codes
Define a constant and associated message in the form:

<n> #ERRDEF <name> "<text>".

Execution of <name> returns <n>.
: ErrDef \ -=— ; -—— n ; used as throw/error codes
Define a constant and associated message in the form:

ERRDEF <name> "<text>"

Execution of <name> returns the constant automatically allocated from NEXTERROR.
: SysErrDef \ -- ; -— n ; used as throw/error codes
Define a constant and associated message in the form:
SYSERRDEF <name> "<text>"
: #AnonErr \ n "<text>" -- ; create anonymous error text
Create an anonymous error definition that has no name, e.g.

WSAEWOULDBLOCK #AnonErr "WSAEWOULDBLOCK"

#AnonErr is useful when dealing with operating system return codes whose names are available
from the support DLL.



Chapter 24: Exception and Error Handling 267

24.4 System Error Handling

The VFX Forth kernel handles the display of error messages using the word .THROW ( n -- )
which recognises two classes of message. The first class consists of the messages handled by
ABORT" <text>". At present these cannot be internationalised, and they are displayed by the
deferred word DOABORTMESSAGE. The second class handles all other error messages, and these
are displayed by the deferred word DOERRORMESSAGE.

See also:
LINE# Current source input line number.
’SourceFile

Pointer to source include struct for current source file, or 0.
SOURCE Return source line ; — c-addr u

CurrSourceName
Return source file name ; — c-addr u

Other subsidiary words are also documented here.

.ErrDef \'n--
Display the error/message number n and the associated message.

: ShowErrorLine \ -- ; display error line
Show the current source file and line number. If LINE# contains -1, no action is taken.

: ShowSourceOnError \ -- ; display pointer to error
Show the current text input line and a pointer to the error location defined by the current value
of >IN. If >IN contains -1, no action is taken.

.source-line \ --
Show the current source file, line and a pointer to the source position.

defer DoAbortMessage \ c-addr --

The action of this word is used by the kernel to print the text associated with an ABORT" from
the system. By default it simply TYPEs the counted string at c-addr, and shows the offending
source line. You can replace this action at any time, using:

ASSIGN <xxx> to-do DoAbortMessage

Note that ABORT" messages cannot be internationalised at present because all these messages
share a common throw code, -2. DOABORTMESSAGE is used by .THROW below.

defer DoErrorMessage \'n -

A deferred word which handles the display of error messages for the VFX Forth system’s text
interpreter. By default the ERRDEF mechanism above is used. DOERRORMESSAGE is used by . THROW
below.

.throw \ n —— ; show throw code n
Process the given THROW code. Throw codes 0 and -1 are silent by specification. Throw code -2
displays the string set by the last ABORT" <string>" and all other error messages are searched
for in the ERRDEF chain. See ERRDEF and #ERRDEF.

create zSysName \ -- zaddr
Returns the system name "VFX Forth" as a zero terminated string.






Chapter 25: Using libgtk2 widgets from Forth 269

25 Using libgtk2 widgets from Forth

The source code for his chapter can be found in the directory Examples/GTK. Additional di-
rectories provide tutorial code, including a small editor.

GTK provides a GUI interface and graphical toolkit for many operating systems. It also includes
a GUI designer program called Glade whose output can be read and used by GTK applications.
This chapter is not a tutorial on GTK programming.

Several GTK+ tutorials exist, including

http://developer.gnome.org/gtk-tutorial/

The book we used during development is Foundations of GTK+ Development, by Andrew Krause,
published by APress, ISBN 978-1-59059-793-4.

The file gtkbindings.fth links to the libgtk library and allows GTK calls to be made from Forth.
This provides VFEX Forth with a powerful widget library that works on Windows, Linux and
Mac OS X.

The file gtktools.fth provides basic functions including the main GTK message loop.

The file graphics.fth provides a graphics interface in the style of the old Borland BGI interface.
This is still very useful for many applications.

The file GraphicsDemo.bld loads all needed files and provides a number of demonstrations, of
which ShowGraphics3 is the most useful.

The file TextEd/editor.fth contains a simple text editor based on a tutorial by Micah Carrick.

25.1 External Linkages

The code loads required libraries and defines necessary API calls. There are two points to be
noted when using this code:

e The DLLs/libraries must be in the library search order when VFX Forth runs or compiles
this code.

e Under Windows, we use the MinGW version of GTK+. Like much Open Source software
built with gcc, it uses a C calling convention both for external functions and for callbacks.

: CCB: \ #in #out "<name>" -- ; -- entry

Behaves as CallBack: but enforces a C parameter-passing convention.

: CCBproc: \ #in #out "<name>" -- ; -- entry

Behaves as CallProc: but enforces a C parameter-passing convention.

25.2 Signal Connection



270 VFX Forth for macOS X

25.2.1 Recommended

extern: long "C" g_signal_connect_object(
void * instance, char * detailed_signal, void * c_handler,
void * gobject, uint connect_flags
)3
extern: long "C" g_signal_connect_data(
void * instance, char * detailed_signal, void * c_handler, void * data,
int destroy_data, uint connect_flags

)

: g_signal_connect \ instance detailed_signal c_handler data -- ulong
0 0 g_signal_connect_data

25.2.2 Macros

The GTK function gtk_signal connect_full() is the library signal connection function; the C
header file defines the other connect-style functions as macros. These words create the interface
as it is more usually used.

extern: unsigned int "c" gtk_signal_connect_full(
int * object,
char * name,
int * func,
int * unsupported,
int * data,
void * destroy_func,
int object_signal,
int after

)

: gtk_signal_connect \ object name func data --

Connect an event handler to a signal.

: gtk_signal_connect_after \ object name func data --

Connect an event handler to a signal, but at the end of the event chain.

: gtk_signal_connect_object \ object name func slot_object

Connect an event handler which takes a GtkObject pointer as its argument to a signal.
: gtk_signal_connect_object_after \ object name func slot_object

Connect an event handler which takes a GtkObject pointer as its argument to a signal, at the
end of the event chain.

25.3 GTK Types

GTK operates on a number of different object types - and these are frequently checked on call
(with assertion failures if the wrong type is used). These words should cause the object to be
cast correctly.



Chapter 25: Using libgtk2 widgets from Forth 271

~
\ object -- cast_object
GTK_OBJECT
GTK_CONTAINER

GTK_BOX

GTK_WIDGET

GTK_WINDOW
-

struct /GError \ -- len
Definition of a GError structure.

25.4 GTK message pump

: gtk-step \ -- flag

Iterate GTK’s inner loop, process any events and exit immediately. flag is returned true if a
GTK event was processed.

: gtk-step-blocking \ -- flag

Iterate gtk’s inner loop, process any events, wait until there are events if none are waiting when
the function was called.

: gtkPump \ -

Empty the GTK event queue.

25.4.1 Windows

: gui-Idle \ -

Wait for message or GTK events and process it/them.

: gui-BusyIdle \ --

If a message or GTK events are available, process them.

: gui-EmptyIdle \ --

While messages and GTK events are available, process them.

: gui-AppIdle \ --

Process messages until the GetMessage API call returns zero in response to a WM_QUIT mes-

sage. The VFX Forth variable ExitCode is set to the wParam value of this message. — This
version includes the GTK inner loop. —

: installGTKhooks \ --
Install the GTK+ versions of the message pumps.

25.4.2 Linux

. gui-WaitIdle \ --

Wait for message or GTK events and process it/them.

: gui-BusyIdle \ --

If a message or GTK events are available, process them.

: gui-EmptyIdle \ --

While messages and GTK events are available, process them.

: installGTKhooks \ -
Install the GTK+ versions of the message pumps.

25.4.3 Mac OS X
: gui-WaitIdle \ --
Wait for message or GTK events and process it/them.



272 VFX Forth for macOS X

: gui-BusyIdle \ --

If a message or GTK events are available, process them.

: gui-EmptyIdle \ --

While messages and GTK events are available, process them.

: installGTKhooks \ —-
Install the GTK+ versions of the message pumps.

25.5 Operating System Dependencies

25.5.1 Linux

If GTK+ and Glade are not already installed, install them using the system’s package manager.

25.5.2 Windows

Under Windows, we use the MinGW version of GTK+. Like much Open Source software built
with gcc, it uses a C calling convention both for external functions and for callbacks.

GTK+

We get our GTK + binaries from:
http://www.gtk.org/download/win32.php

The Windows version of GTK+ used by MPE is supplied as a directory tree that you place on
your PC. During development, the simplest way to work is to add the bin folder to your PC’s
system path. Depending on your version of Windows, this is done from Control Panel -> System
-> Advanced -> Environment Variables. You may have to reboot after changing the path.

If your application is being distributed into environments controlled by an IT department, it
may not be possible to alter the system path. In this case make sure that the GTK libraries
and executables are in the same folder as your application.

Glade

Glade is the GU designer for GTK+. At first, we tried to install Glade to use the version of GTK+
used for application run-time. This is a mistake! Installing a separate matched Glade/GTK+
pair permits much more reliable development. MPE gets Glade and GTK+ as one package from:

http://ftp.gnome.org/pub/GNOME/binaries/win32/glade3/

If you are feeling adventurous, go to:

http://glade.gnome.org/
25.5.3 Mac OS X

We use the GTK-OSX package. You can either use the package built by MPE and supplied
as gtkbins.tgz or you can work from the source package. At application run time, it is usually
sufficient to use the prebuilt binaries if you use absolute paths to the GTK shared libraries. For
development, install from the source package. One day, we’ll find a suitable incantation to run
Glade from the binary package.



Chapter 25: Using libgtk2 widgets from Forth 273

Installing gtkbins.tgz

Launch a terminal, select your home folder and unpack the package:

[ tar -zxvf gtkbins.tgz }

Executables will then be in ~/gtkbins/bin and shared libraries in ~/gtkbins/lib. Edit gtkbind-
ings.fth and other files such as gladetest.fth so that library references are correct.

Installing from source

During devlopment, it is convenient to use the source distribution, although it is tedious to
install.

If you want to use the Glade designer and you already have MacPorts or Fink installed, you will
need to create a new user and install GTK+ for that user in order to avoid conflicts.

Instructions for installing it are at:

http://sourceforge.net/apps/trac/gtk-osx/wiki/Build

Read these instructions fully and carefully before you start. In particular read the Snow Leopard
section and apply the changes for a 32 bit build before running jhbuild. Then perform the three
main GTK+ builds:

$ jhbuild bootstrap
$ jhbuild build meta-gtk-osx-bootstrap
$ jhbuild build meta-gtk-osx-core

Then build the libglade library needed at runtime and the Glade designer needed for development.

jhbuild build libglade
jhbuild build glade3

Executables will then be in ~ /gtk/inst/bin and shared libraries in ~ /gtk/inst/lib. Edit gtkbind-
ings.fth and other files such as gladetest.fth so that library references are correct.

In order to run Glade properly, it should be launched by

$ jhbuild shell
$ glade-3 &

This incantation is required to persuade Glade to find its icons.

25.6 Loading GTK Builder files
: zFindCallback \ zCbName -- entry true | O



274 VFX Forth for macOS X

Search the default search order for the given callback name. On success, the entry point is
returned.

7 0 CCBproc: BuilderConnect_cb \ *Builder *object zSignal zHandler *ConnObj flags *User --
The main Glade signal connection callback. This is called for each signal handler specified in

the Glade file, i.e. handlers named by the GUI designer. Handler names are looked up in the

current context. The words found are linked to the appropriate object by way of the GTK signal

connection bindings.

variable CurrBuilder \ -- addr
Holds the current builder handle.

: loadBuilderXML \ z$ -- builder|0

Load a Glade GtkBuilder XML file and return the pointer or zero on error. On success, the
connections are made and the variable CurrBuilder is set.

: BuilderObject \ z$ -- *widget

Obtain the widget pointer for the given named widget from the current builder object.

: freeBuilder \ —-

Free the current builder.

25.7 Dialogs

: runDlg \ dialog -- response
Given a *GtkDialog, run the dialog as a modal dialog and return the result.

: ErrorBox \ zMessage zTitle parent --
Displays an error box with the given message, title and parent window.

: AskSaveFileNameBox \ zaddr len parent -- flag

Given a buffer and parent window, ask for a file name. On success, the filename is returned
(clipped as required) in the buffer as a zero terminated string. If no file name is given the buffer
is left unchanged.

: AskOpenFileNameBox \ zaddr len parent -- flag

Given a buffer and parent window, ask for an existing file name. On success, the filename is
returned (clipped as required) in the buffer as a zero terminated string. If no file name is given
the buffer is left unchanged.

25.8 Event Callbacks

The GTK library calls back into Forth on various events. Here are some sample definitions. You
may need to modify them or add new ones according to the complexity of your UI. You can also
use this code to test your GTK installation.

Compile the file gtkbindings.fth. Then run
.1libs .badExterns

This will display the load addresses of the libraries and show you any unresolved external
functions. A library value of zero indicates that the library has not been found. If everything is
good at this point, run the test window:

gtktest

which should display a "hello world" window.



Chapter 25: Using libgtk2 widgets from Forth 275

: delete_event_fn \ *widget *event *data -- 0/1
Handles delete events. It returns zero so that the widget is destroyed.
3 1 CCB: delete_event \ -- addr ; *widget *event *data -- 0/1

Callback for the delete event. Return 0 to perform the default handling or return 1 to indicate
that the callback has done everything necessary.

: destroy_fn \ *widget data --

Handles the destroy event for the application. It calls gtk_main_quit().
2 0 CCB: destroy_event

Callback for the destroy event.

: wd_destroy \ addr --

Destroy the widget

1 0 CCB: widget_destroy_cb \ -- entry

Callback to handle the destroy event.

25.9 GTK startup and shutdown

0 value GTKstarted? \ - x

Non-zero when GTK has been started.

0 value AppFinished? \ - x

Non-zero when app must quit.

0 value gtk_main? \ - x

Non-zero if gtk_main is in use.

: noVfxGtk \ --

Mark the VFX Forth to GTK interface as unused.
: do_gtk_init { | temp[ cell ] -- }

Run gtk_init.

: do_gtk_main \ -

The tools version of gtk_main.

: initGTK \ —-

Call this to initialise the GTK system. Always call this word to start the GTK system.
: GtkAppQuit \ -

The GTK+ app should finish.

25.10 GTK test code

: hello_world_window \ —-

Launch the "hello world" window.

: gtktest \ --

Start GTK+, launch the hello world window, and wait until it closes.
: hw \ --

As gtktest but does not initialise GTK+ again.



276 VFX Forth for macOS X

25.11 Graphics in the Borland style

25.11.1 Global Data

struct /gwindow \ -- len
Structure to control a graphics window.

variable windows \ -- addr
Anchors chain for keeping track of all created windows.

CELL +USER CANVAS \ -- addr
The current drawing window.

25.11.2 Internal operations
: window> \ -- window
Get the current drawing window.

: penx \ -- addr
The current window’s X coordinate for subsequent drawing commands.

: peny \ -- addr
The current window’s Y coordinate for subsequent drawing commands.

: filled? \ -- addr
The current window’s internal flag affecting drawing commands; see filled.

CREATE mycolor Oxf£f£ff0000 , Oxffff w, O w, O w,
Initial foreground color for new windows

: window-dims \ window -- w h
Get the dimensions of a window from the window structure.

: load-pixbuf \ zaddr -- pixbuf
Load an image into a Gtk_Pixbuf, which can be drawn to the current window using PUT.

: redraw { window -- }
Make changes to a window’s graphics visible.

: ?redraw  { window -- }
Internal - redraw a window only if it is "dirty" (affected by any drawing commands). Immedi-
ately resets the window’s dirty flag, making it "clean" again

: ChainFach \ ... xt anchor -- ...
Execute xt on the contents of chain with the following structure:

link |

The given xt must have the stack effect
. link -- ...

Where link is the address of the link field in the structure.

You can pass your own values to each link, just remember to clean up afterwards.

1 1 CCBproc: timeout_event_cb \ 0 -- true ; -- entry
Callback run from a timer to redraw all "dirty" windows.

: +gtimer \ —-



Chapter 25: Using libgtk2 widgets from Forth 277

Start the graphics event timer.
: —gtimer \ -
Stop the graphics event timer

: winResized \ window --
Perform this when the window has been resized.

3 0 CCBProc: GframeCallback \ window event data -- ; -- entry
Callback to force window size to be updated and the window redrawn.

3 0 CCBProc: GExposeCallback \ window event data -- ; -- entry
Callback to force window to be redrawn.

: filled> \ -- flag
Fetch the filled flag

: drawdest> \ -- pixmap gc

Fetch the 2 objects from the current window that are passed to all GDK graphics functions.

1 dirty \ --

Mark the current window as dirty, which signals the GUI’s internal timer to make changes to
that window visible. Note that the flag is reset by redraw.

25.11.3 Application words

: COLOR: \ - ; —-
Builds a new GTK color. When the color is executed, the foreground color is set. Use in the
form:

COLOR: red Oxf£f££f0000 , Oxffff w, 0x0000 w, 0x0000 w,

The following colours are predefined:
red green blue yellow orange magenta
cyan white black  1ltgrey grey
dkred  dkgreen dkblue dkyellow brown
violet dkcyan dkgrey
: onto \ window --
Set the current target window structure for graphics commands.
: pen \ - xy
Get the current drawing coordinates.
:at \xy--
Set the current drawing coordinates.

: filled \ -
Makes the next command, such as rectangle or circle, filled instead of stroked.

: line { destx desty -- }
Draw a line from the pen to (destx,desty).

: lineto \ destx desty --
Draw a line from the pen to (destx,desty) and set the pen to (destx,desty).

: linerel \ dx dy --
Draw a line relative to the pen.

: linerelto \ dx dy --



278 VFX Forth for macOS X

Draw a line relative to the pen and move the pen to the end of the line

: ellipse { width height -- }
Draw an ellipse defined by width, height. The ellipse is positioned such that the pen points to
the top left corner of an imaginary rectangle around the ellipse.

: circle \ diameter --
Draw a circle.

The circle is positioned such that the pen points to the top left corner of an imaginary square
around the circle.

: rectangle { width height -- }

Draw a rectangle.

: putpixel \ -

Plot a single pixel.

: cleardevice \ --

Clear the current drawing window using the current color.

: put { pixbuf -- }

Draw a Gtk_Pixbuf to the current window at the current pen position.

: gwin: \ <name> -- ; -- window

Declare a named graphics window. The returned window is the address of a /gwindow structure.
gwin: MyWin \ -- window

: setupGwin { w h window —- }

Initialize a window control structure. This word is used to create a new window. SetupGwin
cannot be used with windows defined in Glade.

: initGladeGwin \ z$name builder window --
Use the Glade widget name (usually a drawing area) in the Glade builder to set up the given
/gWindow structure.

: initGwin \ *widget gwindow --
Use the widget to set up the given /gWindow structure.

: addEvent \ cbentry zname event window --
Add a callback to handle the name and event for a window structure.

: enable-graphics { window —-- %}
Enable the window for graphics operations and set the initial state.

25.12 A text editor in Glade
The original design and C code is by Micah Carrick, whose tutorial is well worth studying. It is
at:

http://www.micahcarrick.com/gtk-glade-tutorial-part-1.html

The Forth code presented here is liberally derived from that presentation and code.

To compile the text editor demo, CD to the directory containing editor.fth and then:
include TextEdDemo.bld

To run the editor from the Forth console:



Chapter 25: Using libgtk2 widgets from Forth

runTextEd

The code will run unchanged on VFX Forth for Windows, Mac and Linux.

struct /TextEd \ -- len

Everything we need to know about the editor can be derived from this structure.

0 value pTextEd \ -- addr

Holds the address of a structure for the current text editor.
#1024 constant /NameBuffer \ -- len

Largest file name.

/NameBuffer buffer: zFilenameBuffer \ -- zaddr

Buffer to hold current file name.

#2048 constant /StatusBuffer \ -- len
Size of the status buffer

/StatusBuffer buffer: zStatusBuffer \ -- zaddr

Text buffer for status bar.

25.12.1 Tools
: EdErrBox \ zmessage --

Displays an error message box.

25.12.2 Status bar operations

: sbParams \ —- sb context

REturn the status bar parameters

: setStatus \ z$1 z$2 —-

set the status buffer, merging the two strings. Then update the status bar.

: clearStatus \ -
Clear the status bar.

25.12.3 TextViews and buffers

: modified? \ -- flag

Return true if the current text has been modified and not saved.
: modified \ --

Mark the current text buffer as modified.

: unmodified \ -

Mark the current text buffer as unmodified.

: inactive \ —-

Set the current text window as inactive (unresponsive).

: active \ -

Set the current text window as active (responsive).

: getCurrText \ -- text

279

Get a copy of the current text. When you are finished with it, you must release it with g_free

( text —- ).



280 VFX Forth for macOS X

25.12.4 Loading and saving text
: CurrFilename \ -- z$

REturn the current text file name.

: MustSave? \ -- flag
Return true if the buffer has been modified and the user wants to save it.

: getSaveFileName \ —-
Set the current text file name for saving.

: getOpenFileName \ —-
Set the current text file name for loading.

: sbSaving... \ --
Show status bar as saving.

: sbLoading... \ --
Show status bar as loading.

: fileStatus \ —-
Show filename on status bar.

: loadCurrFile \ -- *text 0 | -1
Load the contents of the current file. On success, return a pointer to the text and zero. On
failure, just return -1. When finished with, the text pointer must be freed with g_free.

: loadCurrText \ —-
Load the text of the current window from the current file. No action is taken if the filename is
null.

: writeCurrText \ —-
Save the text of the current window to the current file. No action is taken if the filename is null.

: saveCurrText \ --
As writeCurrText but asks for a file name if one has not been set.

: saveAsCurrText \ -
As writeCurrText but always asks for a file name.

: checkedSave \ --
If text has been modified and the user wants saving, write the text to a file.

: openCurrText \ --
Open a new file.

: newCurrText \ —-
Start with an empty buffer.

25.12.5 Clipboard

: CurrSelection \ -- clipboard
Get the clipboard item for the current selection.

: doCut \ —-
Do the cut operation.

: doCopy \ -
Do the copy operation.

: doPaste \ -



Chapter 25: Using libgtk2 widgets from Forth

Do the paste operation.

: doDelete \ -
Do the delete operation.

25.12.6 Callbacks
File Menu

2 0 CCBproc: on_new_MainFileMenu_activate
Callback for the "New" button.

2 0 CCBproc: on_Open_MainFileMenu_activate
Callback for the "Open" button.

2 0 CCBproc: on_save_MainFileMenu_activate
Callback for the "Save" button.

2 0 CCBproc: on_SaveAs_MainFileMenu_activate
Callback for the "Save As" button.

2 0 CCBproc: on_MainWindow_destroy
Callback for final destroy of main window.

3 1 CCBProc: on_MainWindow_delete_event

281

\ *widget *editor --

\ *widget *editor --

\ *widget *editor --

\ *widget *editor --

\ *wiget *editor --

\ *widget *event *editor -- 0/1

When the window is requested to be closed, we need to check if they have unsaved work. We
use this callback to prompt the user to save their work before they exit the application. From
the "delete-event" signal, we can choose to effectively cancel the close based on the value we

return.

2 0 CCBproc: on_quit_MainFileMenu_activate
Callback for the "Quit" button.

Edit menu

2 0 CCBproc: on_Cut_MainEditMenu_activate
Callback for the "Cut" button.

2 0 CCBproc: on_Copy_MainEditMenu_activate
Callback for the "Copy" button.

2 0 CCBproc: on_Paste_MainEditMenu_activate
Callback for the "Paste" button.

2 0 CCBproc: on_Delete_MainEditMenu_activate
Callback for the "Delete" button.

Help menu

\ *wiget *editor --

2 0 CCBproc: on_About_MainHelpMenu_activate \ *widget *user -- ; -- entry
Callback to run the About dialog.
2 0 CCBproc: on_aboutdialogl_close \ *widget *user -- ; -- entry

Callback when about box is closed.

25.12.7 Initialisation and termination
: loadTeGUI \ -

Load the text editor’s GUI. After the file has been loaded, the widgets we need to access are
extracted and their object pointers saved in a /TextEd structure. The design file object is then

released.



282 VFX Forth for macOS X

: termTextEd \ -
free up the application data and perform termination actions.

: RunTextEd \ -
Run the text editor.



Chapter 26: DocGen Documentation Generator 283

26 DocGen Documentation Generator

"Documentation is like sex: when it is good, it is very, very good; and when it is bad, it is better
than nothing." - Dick Brandon

26.1 What DocGen does

DocGen is a simple form of literate programming that enables you to generate software man-
uals and Forth glossaries directly from the source code of the software. The documentation is
produced from formal comments within the source code. The manual for VFX Forth is itself
produced this way.

Unlike some other forms of literate programming, all editing is performed directly in the source
code itself with the same editor you use for editing the source code. This makes it easy to ensure
that your documentation is accurate and up

In order to provide for both on-screen and printed documentation, DocGen can generate output
in several forms, referred to as personalities. DocGen is supplied with several personalities.

e HTML personality. From June 2017, the output is HTML5 using a CSS stylesheet, boot-
strap.3.3.7.min.css.

e Markdown personality. Markdown is a simple alternative to HTML that has gained accep-
tance in many communities for text markup and software documentation.

e Latex and Texinfo personality. This is for generating PDFs and printed documentation.
It generates TeX output for use with the Texinfo package. From LaTeX you can generate
many other output formats.

e LaTeX2e personality This generates plain Tex output for LaTeX2e. From LaTeX you can
generate many other output formats.

For all operating systems, there is a range of LaTex implementations. For Windows we use
Miktek from

http://www.miktex.org

or TexLive from

https://www.tug.org/texlive/
For Linux and Macs we usually use the Texlive distribution.

If you wish to generate output in other forms, instructions for writing additional personalities
are provided later in this chapter.

DocGen supports the use of formatting commands (macros) within the DocGen formal com-
ments.

The DocGen HTML personality can generate separate output files for a table of contents and
an index of documented words. The Texinfo personality can also index documented words using
the facilities of Texinfo.



284 VFX Forth for macOS X

The source code for DocGen is in the file Lib/DocGen.fth. The earlier code that generates
HTML v2 is in Lib/DocGend.fth.

26.2 Using DocGen

In normal use DocGen is enbled by +DOCGEN and disabled by -DOCGEN which causes DocGen
comments to be generated when source code is compiled.

For use with embedded systems code that cannot be compiled by VFX Forth replace the use of
INCLUDE by DOCONLY or replace INCLUDED by PARSED. These can also be used to generate manuals
separately from the compilation process, which is useful when the ordering of the manual is not
the same as the compilation order. Note that the *>’ and *!’ tags described in the section
"Marking up your text" can provide fine grain control of ordering, especially for TeX and PDF
manuals.

An example of using DocGen for a software project is the manual for the ForthEd2 text editor
in Fxamples\ ForthEd2. FExamples\ ForthEd2\ Manual\ DocF'iles contains everything needed to
generate an indexed manual in both HTML and PDF formats. Feel free to use these as templates
for your projects.

DocGen is controlled by the following words.

defer DocGen-Spacing \ c-addr u -- c-addr’ u’

If your house rules require DocGen comments to start other than in the first column, assign
an action to this DEFERred word. The action should remove characters before the start of the
comment, returning the modified string as c-addr’ u’.

0 value DocGen? \ -- flag ; true if DOCGEN enabled

Returns true if DocGen is enabled, otherwise false.

. +DOCGEN \ -- ; enable DOCGEN

Enables DocGen generation of documentation. After using +DOCGEN an output file must be
selected using either the "*!’ (create) or '*>’ (append) tags.

: -DOCGEN \ -- ; disable DOCGEN

Disables DocGen generation of documentation. Note that the active output file is closed, and a
new output file must be specified after +DOCGEN is used again.

: PARSED \ c-addr u --

Similar to INCLUDED but performs no actual compilation. Macros are expanded, and file exten-
sions are resolved. PARSED allows formal comments to be processed from any suitable source
code, for example embedded systems code for cross compilers. +DOCGEN must be used before
PARSED to enable the DocGen system, and -DOCGEN should be used after the last file has been
processed. See also DOCONLY below.

: DocOnly \ "<text>" -- ; DOCONLY <filename>

Similar to INCLUDE but performs no actual compilation. This allows formal comments to be
parsed from any source code, for example embedded systems code for the MPE cross compilers.
Use in the form DOCONLY <filename>. +DOCGEN must be used before DOCONLY to enable the
DocGen system, and -DOCGEN should be used after the last file has been processed.

: +InternalDocs \ --



Chapter 26: DocGen Documentation Generator 285

Permits generation of documentation for internal use. DocGen behaves as normal, but also
accepts tags of the form +X as well as the normal *X form. This can be used to generate an
additional level of documentation above that prepared for normal use.

: -InternalDocs \ --
Turns off generation of internal use documentation. Only tags of the form *X will be accepted.

: +TOC \ -

Turn on Table of Contents generation. The table of contents file is called "contents.ext" where
ext is defined for the personality being used. The table of contents file is closed by -DOCGEN.
+TOC only affects HTML generation. Tex and Texinfo can already handle table of contents
generation.

The table of contents file has four levels, corresponding to the CH, SE, SS, and SH tags (T, S,
N and H tags).

: +Index \ —-

Turn on Index generation. The HTML index file is called "indices.html". The index file is
closed by -DOCGEN. For Texinfo and Latex2e the index entries are placed in the output and the
index is generated by Texinfo and LaTex. At present +Index only affects HTML and Texinfo
generation.

The HTML index file can later be sorted using the command line SORT utility which is still
present in all versions of Windows. The command line should be:

sort /+51 indices.html /0 sorted.html

DocGen produces indices.html with word names starting in column 51. The output of the SORT
utility is the file sorted.html.

The command line:

sort /7
will display the command syntax.

N.B. The index file contains no header or footer text, e.g. <HTML>, because the sorting process
will move these in the file. After sorting, the file should be edited to add suitable headers and
footers. For HTML output, examples follow.

-
<HTML><BODY bgcolor="#C2C1B4">
<BR><BR><HR><BR><H1><font color="#ff0000">
Index

</font></H1><BR><HR><BR><BR>

</HTML>
N

Texinfo and Latex indices are sorted by the makeinder program. You do not need to call this
yourself as it can be handled by the texify program. See the examples at the end of the chapter
for more details.

26.3 Marking up your text

DocGen output is derived from formal comments within the source code. The output format



286

VFX Forth for macOS X

defaults to HTML 5.0. The layout of the final document is controlled by DocGen tags at the
start of the comment and by formatting macros within the body of the comments.

26.3.1 Comment tags

The DocGen comment takes one of the following two forms:

\ *xy blah blah
\ *x blah blah

where the backslash character *\’ must be in the first column, and XY and X are the operation
codes or tags and "blah blah" is the control text.

( *XY blah blah )
( *x blah blah )

where the open bracket must be in the first column, the closing bracket must be the last character,
and XY and X are operation codes or tags and "blah blah" is the control text.

The use of two-character tags and backslash comments is recommended. Every single character
tag has a corresponding two-character tag. Not all two-character tags have single character
equivalents, for example the conditional documentation tags, *IF, *EL and *TH have no single-
character equivalents. All new DocGen tags will be two-character tags.

Please examine MPE supplied sources for a view of how DocGen is used to build library and
API documentation.

Two character tags

k%

>>

##

CH
SE
SS
SH
DF

The following text is a continuation for the current style. This can only be used
after a GL, EX, DF, IT, QU or PA tag.

Create and select a new output file. The control text is the filename without exten-
sion. The remaining text is the description which in HTML becomes the contents
of the <title>text</title> tag.

Create and select a new output file. The control text is the filename without ex-
tension. No header is added. This tag allows you to generate completely custom
formats in HTML using W tags.

Select and append to an existing output file. The control text is the filename without
extension. No header is added.

Finalize the current HTML page. Outputs a canned HTML footer which closes off
the sections used by the canned header.

Following text is a chapter/section title.
Following text is a section sub-title.
Following text is a section sub-sub-title.
A simple heading.

Following text is a definition. The first space delimited token is the term, the
remaining text the description.



Chapter 26: DocGen Documentation Generator 287

PA
EX
L(

IT
L)
GL

RH
RL
RM
RT
CD
Qu
C(

C)

HR

IF

EL

TH

EV

Begins a new paragraph.
Begins a paragraph which is a code example.

Starts a bullet list. The first character of the text defines how the lists are marked.
No text produces bullets, 1 produces a numbered list and A or a produce lettered
lists. Lists may be nested. N.B. Previous markups that did not use the *( and *) tags
still function as before, but the new layout is generally visually better. Note that
the LaTeX personality only handles bulleted and numbered lists. See the change
notes section of this chapter for more details.

Following text is a bulleted item.
Ends a bulleted list.

Following text is a glossary entry. The preceeding line is output in a fixed font code
format.

Following text is output directly when using HTML output.
Following text is output directly when using LaTeX output.
Following text is output directly when using Markdown output.
Following text is output directly when Using Texinfo output.

A fixed font line, e.g. a code example

A quotation which may extend over several lines.

The following code will also be copied into the documentation. DocGen lines are
handled as usual. You must use the *] tag to stop copying - it is not halted by other
tags. Do not use any other tags before copying is stopped.

Stops copying code into the documentation.

Inserts a line break, full width horizontal rule and a line break. Any text after the
tag is ignored.

The text after the tag is EVALUATEd as Forth source. If the result is non-zero,
DocGen carries on. If the result is zero, DocGen stops prodution until the next EL
or TH tag.

If the previous IF result was non-zero, production stops until the next TH tag. If
the previous IF result was zero, production restarts.

The end of a DocGen IF ... EL ... TH set of lines.

Evaluate the rest of the line as Forth source. Use this to define Forth flags that can
later be tested by an IF tag. Out using EMIT, TYPE and friends goes to the output
document.

*EV 1 constant Windows?
*EV O constant Mac?
*EV 0 constant Embedded?

Single character tags

*

The following text is a continuation for the current style. This can only be used
after a G, E, D, B, Q or P tag.



288

VFX Forth for macOS X

Create and select a new output file. The control text is the filename without exten-
sion. The remaining text is the description which in HTML becomes the contents
of the <title>text</title> tag.

Create and select a new output file. The control text is the filename without ex-
tension. No header is added. This tag allows you to generate completely custom
formats in HTML using W tags.

Select and append to an existing output file. The control text is the filename without
extension. No header is added.

Finalize the current HTML page. Outputs a canned HTML footer which closes off
the sections used by the canned header.

Following text is a section title.
Following text is a section sub-title.
Following text is a section sub-sub-title.
A simple heading.

Following text is a definition. The first space delimited token is the term, the
remaining text the description.

Begins a new paragraph.
Begins a paragraph which is a code example.

Starts a bullet list. The first character of the text defines how the lists are marked.
No text produces bullets, 1 produces a numbered list and A or a produce lettered
lists. Lists may be nested. N.B. Previous markups that did not use the *( and *) tags
still function as before, but the new layout is generally visually better. Note that
the LaTeX personality only handles bulleted and numbered lists. See the change
notes section of this chapter for more details.

Following text is a bulleted entry.
Ends a bullet list.

Following text is a glossary entry. The preceeding line is output in a fixed font code
format.

Following text is output directly when using TeX output.
Following text is output directly when using HTML output.
A fixed font line, e.g. a code example

A quotation which may extend over several lines.

The following code will also be copied into the documentation. DocGen lines are
handled as usual. You must use the *] tag to stop copying - it is not halted by other
tags. Do not use any other tags before copying is stopped.

Stops copying code into the documentation.

Inserts a line break, full width horizontal line and a line break. Any text after the
tag is ignored.



Chapter 26: DocGen Documentation Generator 289

Tags reserved for DocGen/SC

The following tags are reserved by MPE for use with DocGen/SC for safety critical applications.
*0 kA *V *U *M *X *Y *Z

If you extend DocGen yourself, avoiding these tags will help to ensure compatibility with future
versions of DocGen. DocGen/SC is described later in this chapter.

26.3.2 Formatting macros

From VFX Forth v3.70 onwards DocGen supports formatting commands that can be included
inside DocGen comments. Commands are of the form

. *\command{text} ...

The text is processed and output. The following commands are supported in all three default
personalities.

bold Displays text in bold.

b as bold

fixed Displays text in a fixed (typewriter) font.
f as fixed

italic Displays text in #talic.

i as italic

forth Displays text in bold and fixed.

fo as forth

br generates a line break. The text is ignored.
starbslash

Displays *\. The text is ignored.

These commands are used to change the formatting of small pieces of text and make it easier
to identify what is being referred to. For example, a reference to a Forth word can be produced
by:

\ ** the word *\forth{DUP} is often used

which produces the result:

\ ** the word DUP is often used

26.3.3 Table macros

Tables are described using DocGen macros, which are not present in the LaTex personality.

table{list}
Starts a table. The list contains an optional caption delimited by characters,
followed by space separated numbers. These are the percentage widths of each
column in the table, and so the list also defines the number of columns in the table.
There may be up to 16 columns.

o



290 VFX Forth for macOS X

endtable{}
Marks the end of the table.

hrow{} Marks the start of a header row. Header rows are formatted differently from normal
TOWS.

row{} Marks the start of a normal row.

col{} Marks the start of a new column in a row - you do need this for the first column.

26.3.4 Image macros

An image (graphics file) is incorporated using the image macro, which is not present in the
LaTex personality. It is used in the form:

[*\image{"caption” "file" "ext" hmm wi}

where caption is the text of the image caption; file is the basic file name with no extension; ext
is the file extension; hmm is the image height in millimetres for Texinfo and LaTex; and w% is
the image width in percent for HTML. All five parameters must be present.

Not all personalities will use all the parameters. For example, when using pdftex the file extension
may be unused, and pdf images are always used. When using HTML output the hmm parameter
is ignored, and the image size is taken from the percentage width.

When preparing PDF images for use with pdftex, note that most tools generate PDF pages.
Consequently, when preparing an image for export as a PDF image, first select portrait or
landscape page format as appropriate, then scale the image to fit the page, and then save it
as a PDF file. OpenOffice Draw is a suitable tool for converting most graphics files into PDF
format.

26.4 Defining a new personality

You can extend the DocGen system yourself. Many utility words are available in the mod-
ule DOCGEN. Because of the number of words you will have to write, we recommend that
new personalities be defined in a VOCABULARY or a MODULE. Use the DocGen source code in
Sources\ Lib\ Docgen4.fth as a model. The previous version is in Sources\ Lib\ Docgens.fth.

WARNING: From build 1720 onwards DocGen specific utility words defined in the DOCGEN
module are no longer EXPORTed. You must now surround the code that uses them with the
following fragment:

expose-module docgen

previous

26.4.1 Personality description notation

Defining a new personality consists of naming it, defining the file extension that will be added
to the output file name, and then defining the tags that the personality will react to. It is
recommended that you provide actions for all the tags provided as default, so that DocGen will



Chapter 26: DocGen Documentation Generator 291

still be able to generate documentation using any of the predefined personalities. The example
below is for the default HTML personality.



292 VFX Forth for macOS X
( N
[DocGen Docgen_html
DG_FileExt: html
\ the continuation tag entry  exit continuation
DG_Tag: * 0 illegal illegal illegal
\ tags whose text must fit on one line
DG_Tag: ! -1 >newf illegal illegal
DG_Tag: > -1 >tofl illegal illegal
DG_Tag: T -1 >titl illegal illegal
DG_Tag: S -1 >sect illegal illegal
DG_Tag: N -1 >sstl illegal illegal
DG_Tag: H -1 >head illegal illegal
DG_Tag: R -1 2drop illegal illegal
DG_Tag: W -1 >rweb illegal illegal
DG_Tag: C -1 >code  illegal illegal
\ tags that can have continuation lines
DG_Tag: D 1 >defn  defn> defn
DG_Tag: P 1 >para  para> para
DG_Tag: E 1 >exam exam> exam
DG_Tag: B 1 >bult  bult> bult
DG_Tag: G 1 >glos glos> glos
DG_Tag: Q 1 >quot  quot> quot
DG_Type: HTMLtype
[DG_Macros
: bold \ caddr u --
." <B>" prepro HTMLtype ." </B>"
: fixed \ caddr u --
." <TT>" prepro HTMLtype ." </TT>"
italic \ caddr u --
." <I>" prepro HTMLtype ." </I>"
: forth \ caddr u --
." <B><TT>" prepro HTMLtype ." </TT></B>"
: starbslash \ caddr u --
2drop S" *\" HIMLtype
DG_Macros]
DocGen]
- J




Chapter 26: DocGen Documentation Generator 293

[DOCGEN <name> defines a new personality. When <name> is executed, it becomes the current
personality.

DG_FileExt: <ext> specifies the extension that will be added to the output file names for this
personality.

DG_Tag: specifies the character, control code, and actions of a tag. The given character is used
as the second character of the '*x’ pair. The second entry is the control code and specifies the
state conditions required, see later. The next three entries are the names of the Forth words
executed on entry to the tag, on exit from that tag when another tag is selected, and how that
tag line should be handled. See later for how the three action words should be defined.

DG_Type: <name> specifies that <name> is the word used for TYPEing output.

The pair [DG_Macros and DG_Macros] delimit command words defined in the personality’s
private wordlist. These provide the actions of the command macros.

DOCGEN] marks the end of the personality description.

26.4.2 Using control codes

DocGen operates using three states - entry, exit and continuation. When a new tag is encoun-
tered, the previous tag’s exit code is run if the control code is non-zero. The exit code can for
example add a </P> paragraph end marker to HTML code.

If the tag’s control code is 1, the new tag becomes the currently active tag so that the "**’ tag
knows what to do, and the entry code for the new tag is run. This is the normal condition for
a tag that can have continuation lines.

If the tag’s control code is -1, the entry code is run, and the currently active tag state is set to
none. A condition code of -1 is used for tags whose following text must fit on a single line, for
example section titles.

If the tag’s control code is 0, the continuation action of the previous tag is run.

26.4.3 Writing the action words

The stack comments of the three action words are as follows. Text output of words such as EMIT
and TYPE has already been set to go to the last defined output file.

: entry \ caddr u -- ; consumes the text for the line
: continue \ caddr u -- ; consumes the text for the line
: exit \ -- ; close the tag

The utility word PREPRO is part of the primary definition and converts any special characters in
the DocGen comments. PREPRO has the stack effect:

[caddr u —-- caddr’ u’ }




294 VFX Forth for macOS X

where caddr u defines the input text and caddr’ u’ defines the output text. The MPE handlers
use the following special characters apart from those special to the output format itself.

0x09 tab character, convert to spaces, tab width is set to 8 characters
0x1E convert to open bracket character
0x1F convert to close bracket character

The following code is for the glossary *G tag in the HTML output. The word
LASTDEFINITIONLINE returns the text for the previous line.
( )
: >glos \ caddr u --

cr ." <PRE><CODE><B>" LastDefinitionlLine prepro type

." </B></CODE></PRE><P ALIGN=JUSTIFY>"

cr prepro type

: glos \ caddr u --
cr prepro type

: glos> \ -
cr ." </P>" cr

I

- J

The utility words NewDocFile and SwitchDocFile are provided to aid construction of the *!
and *> tags which create a new file or append to an existing file. Both have the stack comment:

[caddr u - }

which is the file name without extension. NewDocFile starts a new file, and you can add any
required file entry code as required. SwitchDocFile switches to the end of the named file.

The word PREPRO is available for processing text for tags and formatting macros. It has the
stack comment

caddr len —-- caddr’ 1len’

The input text is processed and passed to an output buffer. Special DocGen charactes (TAB,
0x1E, 0x1F) are converted and format commands are processed.

26.4.4 Formatting commands

DocGen supports formatting commands that can be included inside DocGen comments. Com-
mands are of the form

. *\command{text} ...

Each command is handled by a Forth word defined in a private wordlist for the personality.
The command word is passed the string text, and has the stack comment



Chapter 26: DocGen Documentation Generator 295

caddr len —-

Formatting commands use ." and friends for output. The text defined by caddr/len must be
processed by PREPRO before output. The string returned by PREPRO must be output by a version
of TYPE specific to the personality.

caddr len —-

The HTML version, called HTMLtype outputs the text converting special characters to the form
required by the output format, e.g it must handle '<’ and ’>’ for HTML and '\’ for Tex.

26.4.5 Personality words glossary
[DocGen \ "<spaces>name" -- ; -- ; start new DOCGEN personality

Defines the start of a new personality for DocGen. See the example above for details of the use
of [DOCGEN and DOCGEN].

: DocGen] \ -- ; end personality

Marks the end of a new personality for DocGen. See the example above for details of the use of
[DOCGEN and DOCGEN].

: DG_FileExt: \ "<spaces>text" -- ; define document file extension

Defines the file extension for the DocGen personality being defined. See the example above for
details of the use of DG_FILEEXT:.

: DG_Personality? \ xt -- ; check if xt is current personality
Check if xt is the active personality

[’ docgen_html DG_Personality? [if] ... [then] }

: DG_Tag: \ "<char>" "<code>" "<enter>" '"<exit>" "<continue>" --

Defines how a tag character is handled by DocGen. See the example above for details of the use
of DG_TAG:

: DG_Type: \ "<word>" --
Specifies the word which performs the action of TYPE ( addr len — ) for this personality. Special
characters are translated, e.g. in HTML the ’<’ character is issued as "&It;". Use in the form:

DG_Type: <name>
[DG_Macros \ -- oldcurrent

Marks the start of defining formatting macros.

: DG_Macros] \ oldcurrent --
Marks the end of defining formatting macros.

.DG_Macros \ --
Show the available formatting macros in the current personality.

.DG_Tags \ —-
Show the available tags in the current personality.

26.5 HTMLS5 output

This personality generates HI'ML output. From June 2017 onwards, the output is HTML5 using
a CSS stylesheet, bootstrap.3.3.7.min.css. The CSS file is "minified" to reduce its size.



296 VFX Forth for macOS X

The "*!’ tag generates a default HTML header. When this is not needed, use the "*~’ tag instead
and no header is made. The "*~’ tag is often used whn a fully custom indez.html is being used,
for example to use iframe tags.

Providing that the "*#’ tag is used to provide the HTML5 footer, HTMLS5 files produced by
DocGen will pass validation testing.

: MakeBootstrapFile \ --

HTML5 documents need a CSS file to output correctly. This word generates the DocGen default
CSS file, bootstrap.3.3.7.min.css in the current directory. The file is only created if it does not
exist,.

[DocGen Docgen_html \ -=— ; —-— ; select HTML5 for DOCGEN
Makes the HTML5 personality the current personality for DocGen. HTML5 will remain the
current personality until another personality is selected.

: HTMLback \ caddr len --
Sets the HTML background colour for the next output file. The string is the HTML colour
reference (limited to 31 characters), e.g.

s" #00C1B4" HTMLback

26.5.1 HTML5 macros

: bold \ caddr u --
Macro to display string in bold text.

*\bold{text in bold}

: fixed \ caddr u --

Macro to display string in a fixed-width font.
*\fixed{text in fixed font}

: italic \ caddr u --

Macro to display string in an italic font.
*\italic{text in italic font}

: forth \ caddr u --

Macro to display text as Forth source - bold and fixed font.
*\forth{text in Forth font}

: br \ caddr u --
Macro to insert a line break. Any text is ignored.
*\br{}

: starbslash \ caddr u --
Macro to insert *\’. Any text is ignored.

*\starbslash{}
: table \ caddr len --

Table start macro. The text is a quoted caption followed by a list of column widths in per-cent.
For a table with three columns, use (say)

*x\table{ "Table caption" 20 20 60 }

: endtable \ caddr len --
Table end macro. Any text is discarded



Chapter 26: DocGen Documentation Generator 297

x\endtable{}

: row \ caddr len —-
Macro that marks the start of a normal row. Any text is discarded.
*\row{}

: hrow \ caddr len --

Macro that marks the start of a header row. Any text is discarded.

*\hrow{}

: col \ caddr len --

Macro that marks the start of a column. Any text is discarded.
*\col{}

: image \ caddr len --

Macro to display an image from a file.

x\image{"caption" "file" "ext" hmm w%}

where caption is the text of the image caption; file is the basic file name with no extension;
ext is the file extension; hmm is ignored for HTML; and w% is the image width in percent for
HTML. All five parameters must be present.

: lname \ caddr len —-

HTML specific. Defines the current location as a point in the file that can be jumped to later
by a link. The text is the name of the location.

*\1name{ linkname }

: link \ caddr len --

HTML specific. Create a link to a previous lname in the current file. the link is of the form
"#linkname" and so must be in the current output file.

*\1link{linkname}
: htarget \ caddr len --

Defines the current location as a point in the file that can be jumped to later by a href. The
caption text is optional.

x\htarget{ "targetname" "caption" }

: href \ caddr len --

Create a link to another file or object. For HTML, the URL text is what is linked to and the
display text is what is shown in the link.

*\href{"url" "display"}
b bold ;
Convenient redefinition.
. £ fixed ;
Convenient redefinition.
i italic ;
Convenient redefinition.

: fo forth ;

Convenient redefinition.



298 VFX Forth for macOS X

26.6 Markdown output

This personality generates Markdown output. It does not yet support all the features of the
other personalities; in particular it does not provide a table of contents or an index.

To view Markdown text, the most convenient solution is probably to add the Markdown Viewer
to Google Chrome. Remember to check the box to enable access to file URLs.

[DocGen Docgen_markdown \ -- ; —— ; select Markdown for DOCGEN

Makes the Markdown personality the current personality for DocGen. Markdown will remain
the current personality until another personality is selected.

26.6.1 Markdown macros
: bold \ caddr u --
Macro to display string in bold text.

*\bold{text in bold}

: fixed \ caddr u --

Macro to display string in a fixed-width font.
*\fixed{text in fixed font}

: italic \ caddr u --

Macro to display string in an italic font.
*\italic{text in italic font}

: forth \ caddr u --

Macro to display text as Forth source - bold and fixed font.
*\forth{text in Forth font}

: br \ caddr u --
Macro to insert a line break. Any text is ignored.
*\br{}

: starbslash \ caddr u --

Macro to insert "*\’. Any text is ignored.
*\starbslash{}

: table \ caddr len —-

Table start macro. The text is a quoted caption followed by a list of column widths in per-cent.
For a table with three columns, use (say)

*x\table{ "Table caption" 20 20 60 }

: endtable \ caddr len --

Table end macro. Any text is discarded
*\endtable{}

: row \ caddr len --

Macro that marks the start of a normal row. Any text is discarded.
*\row{}

: hrow \ caddr len --
Macro that marks the start of a header row. Any text is discarded.



Chapter 26: DocGen Documentation Generator 299

*\hrow{}

: col \ caddr len --
Macro that marks the start of a column. Any text is discarded.

*\col{}

: image \ caddr len --
Macro to display an image from a file.

x\image{"caption" "file" "ext" hmm w’}

where caption is the text of the image caption; file is the basic file name with no extension;
ext is the file extension; hmm is ignored for HTML; and w¥% is the image width in percent for
HTML. All five parameters must be present.

: href \ caddr len --
Create a link to another file or object. For HTML, the URL text is what is linked to and the
display text is what is shown in the link.

*\href{"url" "display"}

K o) bold ;
Convenient redefinition.

. f fixed ;
Convenient redefinition.
i italic ;
Convenient redefinition.

: fo forth ;
Convenient redefinition.

26.7 TeX output with texinfo.tex

This personality generates TeXinfo output, using the file texinfo.tex supplied with many TeX
distributions. From TeX you can get to many other formats including PDF. Although we
originally recommended

TeXinfo is under-documented, especially in terms of examples, and has quirks. Despite this,
Texinfo can generate good quality PDF files with bookmarks and thumbnails, a table of con-
tents and an index. The MikTex CD package (see below) includes the Texinfo manual file
doc\tezinfo\texinfo.dvi which can be viewed using bin\yap.exe. Texinfo is a real "techie" ex-
tension to LaTex, but the more we use it, the more we appreciate it. It is worth the admittedly
steep learning curve. Texinfo code can be found in the examples at the end of this chapter.

Glossary entries (the ones with *G tags are indexed. Additional indexing macros will be added
in a future release.

For Windows, the MikTeX package should be suitable for use with the output of DocGen and
the file texinfo.tex is required. In addition, a converter from the TeX DVI output format to PDF
will be required if PDF manuals are to be generated and if you do not have pdftex or pdfiatex.
MikTeX includes pdfiatexr which is a version of LaTeX that produces PDF files directly. Most
distributions include pdftex which performs the same operation and may be more suitable for
TeXinfo than pdfiater.



300 VFX Forth for macOS X

The MikTeX home page is at www.miktex.org. Note that the v2.4 small distribution is over
24Mb. For other distributions, which are much larger, a CD is available from the home page
for a small charge. We encourage you to get the CD of the latest release if you intend to use
Texinfo.

If you are using the v2.4 distribution supplied by MPE, install the MikTex package by running
the installer. Make sure that the MIKTEX\BIN directory is in your search path, and generate
a master document file using MANUAL.TEX as a template. Run DocGen with the DOCGEN_
TEXINFO personality to produce your output files, and make sure that you have included lines
of the form @include file.tex for each file in the manual. Then run LATEX.EXE MANUAL to
produce a DVI file or PDFLATEX.EXE MANUAL to produce a PDF file.

Not all versions of Tex include the indexing package terindex.exe or the Texinfo package. For
windows you can get them from the GnuWin32 project:

http://gnuwin32.sourceforge.net/packages/texinfo.htm

For texindex you probably need only the binaries and can probably discard everything except
the directory containing texindex.exe which needs to be put in some directory in your PATH.
You may also want to keep the documentation, texindex.1.txt.

: 1pc \ char -- char’

Convert char to lower case if it was alphabetic.

[DocGen DocGen_TexInfo \ -- ; -- ; select TeX personality

This word makes the TexInfo personality the current personality for DocGen. TexInfo will
remain the current personality until another personality is selected.

26.7.1 Texinfo macros

: bold \ caddr u --

Macro to display string in bold text.
*\bold{text in bold}

: fixed \ caddr u --

Macro to display string in a fixed-width font.
*\fixed{text in fixed font}

: italic \ caddr u --

Macro to display string in an italic font.
*\italic{text in italic font}

: forth \ caddr u --

Macro to display text as Forth source - bold and fixed font.
*\forth{text in Forth font}

: br \ caddr u --
Macro to insert a line break. Any text is ignored.
*\br{}

: starbslash \ caddr u —-
Macro to insert *\’. Any text is ignored.

*\starbslash{}



Chapter 26: DocGen Documentation Generator 301

: table \ caddr len --
Table start macro. The text is a quoted caption followed by a list of column widths in per-cent.
For a table with three columns, use (say)

*\table{ "Table caption" 20 20 60 }

: endtable \ caddr len --

Table end macro. Any text is discarded
*\endtable{}

! row \ caddr len --

Macro that marks the start of a normal row. Any text is discarded.
*\row{}

: hrow \ caddr len --
Macro that marks the start of a header row. Any text is discarded.

*\hrow{}

: col \ caddr len --

Macro that marks the start of a header row. Any text is discarded.
*\hrow{}

: image \ caddr len --

Macro to display an image from a file.
x\image{"caption" "file" "ext" hmm w’}

where caption is the text of the image caption; file is the basic file name with no extension; ext
is the file extension; Amm is the height in mm except for HTML; and w% is the image width in
percent for HTML, ignored here. All five parameters must be present.

: rawimage \ caddr len --
Macro to display an image from a file.

x\rawimage{ "file" "w" "h" "alttext" ".ext" }

where file is the basic file name with no extension; ezt is the file extension; w% is the image
width in mm; and h is the height in mm. All five parameters must be present.

: href \ caddr len --

Create a link to another file or object. The URL text is what is linked to and the display text
is what is shown in the link.

*\href{"url" "display"}

:url \ caddr len —-

Create a link to another file or object. The URL text is what is linked to and the display text
is also the link.

*\url{"url"}
K o) bold ;
Convenient redefinition.
. £ fixed ;
Convenient redefinition.
i italic ;
Convenient redefinition.



302 VFX Forth for macOS X

: fo forth ;

Convenient redefinition.

26.8 LaTeX2e output

This personality generates LaTeX2e output. From LaTeX2e you can go to many other formats
including PDF. See the previous TeX section for details of the required associated tools and
their installation.

26.8.1 Installation

Install the MikTex or Texlive package by running the installer. Make sure that the MIK-
TEX\BIN directory is your search path, and generate a master document file using MAN-
UAL.TEX as a template. Run DocGen with the DOCGEN_LATEX personality to produce
your output files, and make sure that you have included lines of the form "\include{file}" for
each file in the manual. Then run "LATEX.EXE MANUAL" to produce a DVI file, or "PDFLA-
TEX.EXE MANUAL" or "PDFTEX MANUAL" to produce a PDF file.

26.8.2 Basic usage

The output of DocGen is a set of LaTex2e files as defined by the tags above. The man-
ual is then generated by processing these files with PDFLATEX.EXE. An example of MAN-
UAL.TEX is given below. Each file that you want to process should have a line of the form
"\include{filename}" where the .TEX extension will be assumed.

-
\documentclass [ad4paper, 10pt]{book}
\parindent Opt

\parskip lex plus .b5ex
\begin{document}

\include{docgen}

\end{document}
.

The output of running PDFLATEX MANUAL will be file called MANUAL.PDF ready for
distribution. There will also be a large number of MANUAL.* temporary files, all of which can
be deleted as required. The only one of potential interest is MANUAL.LOG, which contains the
error report. In most cases, there will be many reports of the form "Overfull \hbox" which can
be ignored.

You can configure the appearance of the manual by editing MANUAL.TEX as you require.
LaTeX is a very powerful document processing system, and you can modify nearly everything,
as well as add indices and so on. Several books about LaTeX and TeX are available from
Amagzon, and the best source of information about the system is at www.tex.ac.uk which will
point you at implementations for many machines as well as several tutorial packages.

26.8.3 Adding a title page

Adding a title page requires a few more lines, and an example is given below.



Chapter 26: DocGen Documentation Generator 303

( )
\NeedsTeXFormat{LaTeX2e}

\documentclass [adpaper, 10pt]{book}

\parindent Opt

\parskip lex plus .bex

\begin{document}

\author{MicroProcessor Engineering Ltd}

\tit1e{DOCGEN/SC}

\maketitle

\include{docgensc}

\end{document}
N J

26.8.4 Adding a Table of Contents

Adding a table of contents requires only a few more lines, and an example is given below.

\NeedsTeXFormat{LaTeX2e}
\documentclass [adpaper, 10pt]{book}
\parindent Opt

\parskip lex plus .bex
\begin{document}
\author{MicroProcessor Engineering Ltd}
\title{DOCGEN/SC}

\maketitle

\pagenumbering{roman}
\tableofcontents

\newpage

\pagenumbering{arabic}
\include{docgensc}

\end{document}
L J

Note that in order to generate a table of contents, LATEX needs to be run twice. On the first
run, the table of contents will be inaccurate as the table of contents file will be the one from
the previous run which is unlikely to match the new first run. After the second run on the same
files, the table of contents will be accurate.

[DocGen DocGen_LaTex \ -- ; -- ; select LaTeX personality

This word makes the LaTex personality the current personality for DocGen. LaTex will remain

the current personality until another personality is selected. See the previous section about TeX
for details of the system requirements.

26.8.5 LaTeX macros

: bold \ caddr u --
Macro to display string in bold text.

*\bold{text in bold}

: fixed \ caddr u --

Macro to display string in a fixed-width font.
*\fixed{text in fixed font}

: italic \ caddr u --

Macro to display string in an italic font.

*\italic{text in italic font}



304 VFX Forth for macOS X

: forth \ caddr u --
Macro to display text as Forth source - bold and fixed font.

*\forth{text in Forth font}

: br \ caddr u --

Macro to insert a line break. Any text is ignored.
*\br{}

: starbslash \ caddr u --

Macro to insert *\’. Any text is ignored.
*\startbslash{}

: href \ caddr len --

Create a link to another file or object. For HTML, the URL text is what is linked to and the
display text is what is shown in the link.

*\href{"url" "display"}

The hyperref package is needed. Include the line below where other packages are loaded.
\usepackage{hyperref}

K o) bold ;

Convenient redefinition.

. £ fixed ;

Convenient redefinition.

i italic ;

Convenient redefinition.

: fo forth ;
Convenient redefinition.

26.9 DocGen kernel hooks

The VFX Forth Kernel contains DEFERed hooks at strategic points within the com-
piler/interpreter. These hooks are used by DocGen to install and uninstall itself. The DocGen
hooks are:-

defer DOCGEN_PREREFILL \ --
Called within REFILL before another line of text is read.

defer DOCGEN_REFILL \ -
Called within REFILL after the next text line has been read. at this point you may process the
INPUT buffer (from SOURCE) but you must not under any circumstances change it.

defer -DOCGEN_HOOK A

Disables DocGen without closing the active output file. This is useful for conditional generation
of documentation, particularly if several versions of the software exist. Note that files containing
such phrases must be INCLUDEd, as DocOnly turns off the Forth interpreter.

[undefined] <someword> [if] -docgen_hook [then]
\ ** This documentation is needed if <someword>
\ **x exists ...

+docgen_hook




Chapter 26: DocGen Documentation Generator 305

defer +DOCGEN_HOOK \ --

Enables DocGen output again. See the previous example

26.10 Organising Manual generation

You can make manual generation very much easier by creating some auxiliary files which manage
the process.

e DocGen control file, INCLUDEd by VFX Forth to create the HTML and/or Tex files. This
file often also INCLUDESs the file below. To distinguish it, we usually give this file a ".DGS"
extension.

e List of source files to process. If you are creating both HTML and PDF documentation, the
process is simplified by using the same list for both generation phases. This file is usually
called something like jobfiles.fth.

e A batch file to run the whole process.

Examples are given of all of these files, somewhat attenuated to remove obvious repetition. The
examples are taken from the documentation for the MPE ARM USB Stamp on-board software.
Both HTML and PDF files are produced.

These examples contain several "MPEisms", in particular the use of ### files. After DocGen
has finished, we will find files ###.html and ###.tex. If these files have anything in them,
some documentation has been missed. When a source file ends, the following section adds further
DocGen output to the junk file:

At the start of each source file, you must declare where output goes using one of the *!” or
*>7 tags. Thus the ### junk files collect any documentation that has been written but not
associated with an output file. Looking at the junk files tells you if this has happened.

26.10.1 Sample DocGen Control file

There are two sections to this file, one for the HIT'ML documentation and one for the Texinfo
code that then creates the PDF documentation.

( )
\ USBSTAMP.DGS - ARM USB Stamp DOCGEN control file

\ turn on DOCGEN and select personality
+docgen docgen_html

cr ." Starting HTML manual generation" cr
= /

The following section produces the main HTML file with a left-hand chapter selection menu.



306

VFX Forth for macOS X

%~
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*W
*>

(/////////////////////////////////////\

index
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>MPE VFX Forth for Windows User Manual</title>

<!-- Bootstrap core CSS -—>
<link href="bootstrap.min.css" rel="stylesheet">
<script src="script.js"></script>
<style type="text/css">
#left_frame {
width: 30%;
height: 100vh;
border: Opx;
X
#right_frame {
width: 70%;
height: 100vh;
border: Opx;
b
#left_frame,
#right_frame { float: left; }

</style>
</head>

<body>

<iframe id="left_frame" src="mainmenu.html" name="menu"></iframe>
<iframe id="right_frame" src="titlepg.html" name="main"></iframe>

</body>
</html>
#H##

~

Then we can create the chapter selection menu, which references the HTML files produced by

DocGen.

( )
\ *! menu

\ *W <A target="main" HREF="stamptitle.html" >Home</A><BR>

\ *W <A target="main" HREF="intro.html" >Introduction</A><BR>

\ *W <A target="main" HREF="codearm.html" >Low level Kernel</A><BR>

\ *W <A target="main" HREF="romforth.html" >ROM FORTH extensions</A><BR>

\ *W <A target="main" HREF="xmodemtxrx.html" >XModem File Transfers</A><BR>

\ *> #it#

- J

We can create a title page.



Chapter 26: DocGen Documentation Generator 307

( N
\ *! stamptitle

\ *W <TABLE border=0 cellPadding=0 cellSpacing=0 width="100%">

\ *W  <TBODY>

\ *W  <TR><TD>

\ *W <IMG src="mpelogo.gif">

\ *W  </TD></TR>

\ *W  </TBODY>

\ *W </TABLE>

*W <CENTER>

*W <H1>MPE ARM Stamp Software Reference Manual</H1>

*W <P>7 October 2004</P>

*W <P><I>Documentation derived from the source code by DOCGEN
*W with VFX Forth for Windows

W </I></P>

*W <BR><BR><BR>

*W <B>(C)opyright 2004 MicroProcessor Engineering Limited.</B>
*W </CENTER>

*> #it#

f//////////

Now we can generate all the other files from the second file. Because DocGen automatically
adds a colour to the start of the INDEX. HTML file, we include a comment to remove it because
it will be in the wrong place when frames are used.

-
include stampfiles

cr ." HTML Manual generation done" cr

cr

CT " ssskskskskskskokkokokoskskokokskskk ok ko kokokokokok ook ok ok kok !

cr ." Remove the BODY tag in the first line of INDEX.HTML"
CT " sskskskskokokokokokokokokokoksk sk sk ok koo ok ok ok ok ok ok sk skok !

cr

-docgen

-

The procedure is essentially the same for the PDF documentation, except that the table of
contents is produced by Texinfo.



308

VFX Forth for macOS X

~
\ turn on DOCGEN and select personality
+docgen docgen_texinfo

Tex manual file

*! manual
*R \input texinfo

*R @setcontentsaftertitlepage
*R Qafourpaper

*R @setchapternewpage odd
*R @paragraphindent 0
*R Q@exampleindent 0
*R @finalout

P S G A L A

~

*R Q@include titlepg.tex
*R @include intro.tex
\ *R @include codearm.tex

P

\ *R Q@include romforth.tex
\ *R @include xmodemtxrx.tex

\ *R Gbye
\ *> #it#

include stampfiles

—-docgen
-

cr ." Starting Texinfo manual generation" cr

*R @setfilename usbstamp.info

*R @settitle MPE USB Stamp

cr ." Texinfo Manual generation done" cr

~

If you are generating an index, add the following three lines before the line containing "@Qbye"

\ *R @unnumbered{Index}
\ *R @%
\ *R @printindex fn

26.10.2 Example file list

The first section defines a set of text macros to reduce typing and ease changes when the project

directories (folders) are moved.



Chapter 26: DocGen Documentation Generator 309

( 0
\ STAMPFILES.FTH - DOCGEN include files

c" c:\buildkit.dev\software\rom\arm"
setmacro CpuDir
c" c:\buildkit.dev\software\rom\common"
setmacro CommonDir
c" c:\buildkit.dev\software\rom\examples"
setmacro ExampleDir
c" c:\buildkit.dev\software\rom\arm\hardware\LPC210x"

setmacro StampDir
- J

Now comes the list of files. This file was started before the word DocOnly was available. The
.FTH extension is not required as the smart file include system will try a range of extensions.
MPE habit is to give files that only contain DocGen comments a .MAN extension.

( )
s" intro.man" parsed

s" %CpuDir%\codearm.fth" parsed

s" %CommonDir%\kernel62.fth" parsed

s" %CommonDir\voctools.fth" parsed
s" %CommonDir?\xmodemtxrx.fth" parsed
DocOnly romforth.man

DocOnly examples.man

DocOnly titlepg.man
- J

26.10.3 Example batch file

The batch file controls the whole operation and removes the collection of temporary files pro-
duced by PDFTEX or TEXIFY. The "start /w" command is used to make the batch file wait
until a GUI program has finished.

Note that if an index is being generated by Texinfo, the line

pdftex manual

must be replaced by

texify -p manual.tex

where the extension must be supplied.



310 VFX Forth for macOS X

( )
Qecho off

rem B.BAT controls the operation

€ChO  skkskskskkokok sk sk skok koK ok o kok ok ook ok o Kok ok ook

echo Date changed in USBSTAMP.DGS?

eCho skkskskokokokokokkkok ok skok e skok ok ok skok ok sk ok o ok

del *.html

del *.tex

start /w c:\products\pfwvfx\bin\pfwvfx include usbstamp.dgs

echo Error log will be in manual.log
del manual.log

echo starting pass 1

pdftex manual

echo .. passl complete, starting pass 2
pdftex manual

echo .. pass 2 completed

pause

move manual.pdf USBStampCode.pdf
echo Manual is in file USBStampCode.pdf

echo Deleting temporary files
move manual.log temp.log

del manual.*

move temp.log manual.log

€ChO  kokokokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok %k

echo Modify the first line of INDEX.HTML
©@CRO  *akskakakokokok ok ok ok ok ok ok ok ok ok sk o o e o ok ok sk sk sk sk ok ok ok ok ok ok ok

echo Press Control-C not to issue manuals
pause

del ###.x*

del ..\*.html

del *.tex

move *.html
move *.pdf
copy *.gif

echo Done

pause
- J

26.10.4 Example Texinfo title page

This example only applies to the Texinfo personality.



Chapter 26: DocGen Documentation Generator

311

~
\ ==========

\ *! titlepg

\ ==========

\ *R @titlepage

\ *R

\ *R Q@title MPE ARM USB Stamp
\ *R Q@subtitle v1.0

\ *R @author Microprocessor Engineering Limited
\ *R @page

\ *R

\ *R @vskip Opt plus 1filll

\ *R

\ *R Copyright Qcopyright{} 2004 Microprocessor Engineering Limited
\ *R

\ *R Published by Microprocessor Engineering

\ *R

\ *R

\ *R

\ *R @page

\ *R

\ *R MPE ARM USB Stamp ox
\ *R User manual @*
\ *R Manual revision 1.00 @*
\ *R @today{} @*
\ *R @x*
\ *R @x*
\ *R Software @*
\ *R Software version 6.20 @*
\ *R (GRS
\ *R (GRS
\ *R For technical support ©@x*
\ *R Please contact your supplier @x*
\ *R @*
\ *R @*
\ *R For further information ox
\ *R MicroProcessor Engineering Limited Ox*
\ *R 133 Hill Lane o=
\ *R Southampton S015 5AF @
\ *R UK Qx
\ *R %
\ *R Tel: +44 (0)23 8063 1441 @x
\ *R e-mail: mpe@@mpeforth.com @x*

\ *R  tech-support@@mpeforth.com ©x*

\ *R web: www.mpeforth.com @

\ *R (GES
\ *R Q@page

\ *R @end titlepage

\ ======

\ x> #i#

\ ======




312 VFX Forth for macOS X

26.11 DocGen/SC

DocGen/SC is an extension of DocGen for documenting safety critical systems. DocGen/SC
allows test code to be provided after each word and to be extracted to separate test files, so
automating the production of regression tests.

DocGen/SC produces documentation that has been accepted by organisations such as the US
FDA for medical equipment. The documentation format and test files are also suitable for other
authorities and application domains including avionics and transport systems. Contact MPE
for more details.

All the tags of DocGen work as they did before. Some new tags have been defined to control
the safety critical documentation process.

0 followed by "initials" "name" "organisation". A list of authors is kept and authors
only need to be defined once.

A followed by "initials" selects the current author. Once selected, the author’s name
and organisation will be output for each word definition.

v followed by "version_text" sets the version information produced in the header for
each definition.

U followed by "10" sets the width of hard tabs, ASCII code 9, to the given integer
value. This value defaults to 8, and is used when expanding tab characters in the
source code and test code output. In general, we recommend that hard tabs are
always set to 8 characters as this is the default value used by many applications.

M starts the notes section of the output.

X followed by "filename" defines the file used to contain the test code. This file is
closed after each source file is PARSED and each source file should select a test file
into which the code between [TEST and TEST] is to be placed.

Y marks the start of the test code section.

VA marks the end of the definition and triggers checks.



Chapter 27: Library files 313

27 Library files

The Lib folder/directory contains tools maintained and and periodically updated by MPE. The
contents of Lib differ between the Windows, Linux, OS X and DOS versions as some of the tools
are operating system specific.

27.1 Building cross references

27.1.1 Introduction

Cross reference information helps you to manage your source code. When LIB\XREF.FTH is
loaded you can use XREF <name> to find out in which other words <name> is used. You can also
find out which words you defined but did not use. XREF is precompiled in the Studio version of
VFX Forth but not in the base version.

The compiler generates cross references by building a chain of fields including LOCATE format
(link:32, xt:32, line#:32) in a separate area of memory. Links and pointers are relative to the
start of the XREF memory area.

Two chains are maintained. The first produces a chain of where a word is used, so that the user
can find out where (say) DUP is used. The second produces a chain of which words and literals
are called in order. This is the basis of decompilation and debugging.

27.1.2 Initialisation

XREF is initialised by the switch +XREFS and is terminated by -XREFS. You must use +XREFS to
turn on the production of cross reference information.

By default 1Mb of cross reference memory is allocated from the heap. If you need more than
this for a very large application, use the phrase <n> XREF-KB to set the size of the cross reference
memory, where <n> is in kilobytes.

27.1.3 Decompilation and SHOW

Because the VFX code generator optimises so heavily, there is no direct relationship between
the binary code and the source code. Consequently DIS and DASM use disassembly and special
cases, but cannot produce a good approximation to the original source code.

The cross reference information includes a decompilation chain. When you use SHOW <name> the
cross reference information is used to produce a machine decompilation. This includes none of
the comments from the original source code, and is machine formatted.

27.1.4 Extending SHOW

The decompilation produced by SHOW is mostly default and automatic. However, some words
such as string handling take in line data which would not be displayed by SHOW without special
handling.

SHOW can be extended by adding items to the DCC-SWITCH chain. The stack effect of the action
is: addrx — addr ; where addrx is the offset of the cross reference packet in the cross reference



314 VFX Forth for macOS X

information memory. See the /REF [X] structure in LIB\XREF.FTH for details of the structure
of this data packet. The example below is for a word X" which takes an in-line string like S".

[+switch dcc-switch
> X" run: ." X" [char] " emit dup .$inline ;
switch]

Note that unlike previous VFX Forth decompilers, SHOW is based on cross reference information
which references the source word without knowledge of what it compiles. The only reasons for
special cases are control of the decompilation layout and display of associated data to reconstruct
source code.

27.1.5 Glossary

: dump (%) \ offset len --
Displays the specified contents of the XREF table. Note that the given address is an offset from
the start of the XREF table.

: init-xref \ —
Initialise XREF memory and information if not already set up.

: term-xref \ -
Free up XREF memory.

: save-xref \ -- ; save XREF memory to file

Save the cross reference memory to disc. Unless the file name has been changed by XREF:
<filename> the file will be called XREF.XRF.

: load—xref \ —— ; reload XREF file from disc

Load the cross reference memory from disc. Unless the file name has been changed by XREF:
<filename> the file used will be XREF.XRF.

. xref: \ "filename" -- ; enable XREFs
Use in the form XREF: <filename> to define the file that SAVE-XREF and LOAD-XREF will use.

: xref-kb \'n--
Specifies the size of the cross reference memory in kilobytes. By default this is 1024 kb, or 1Mb.

: +xrefs \ -- ; enable XREF
Initialises the cross reference system if it has not already been initialised, and enables production
of cross reference information.

: -xrefs \ —-—- ; disable XREF

Stops production of cross reference information, which can be restarted by +XREFS. Cross
reference memory is not erased or released. Thus, restarting with +XREFS will retain information.
To release all previous information use TERM-XREF before +XREFS.

: xref-report \ -- ; display XREF information
Displays some statistics about cross reference memory usage.

: WalkXref \ xtl xt2 -- ; XREF of XT1 using XT2 to display.

Used by application tools to walk the XREF chain for XT1. The structure offset for each step
in the chain is handled by XT2 ( offset — ). Because writing XT2 requires use of the internal
XREF structure, you must expose the XREFFER module: EXPOSE-MODULE XREFFER to get access
to the words in Libt\XREF.FTH.

(show) \ xt -- ; show/decompile words used by this XT



Chapter 27: Library files 315

Given an XT, produces a machine decompilation of the word using the cross reference informa-
tion. If cross referencing is not enabled, no action is taken.

: $show \ $addr --

Given a counted string, it is looked up as a Forth word name and (SHOW) produces a machine
decompilation of the word using the cross reference information. If cross referencing is not
enabled, no action is taken.

: show \ -- ; SHOW <name>

The following name is looked up as a Forth word name and (SHOW) produces a machine decom-
pilation of the word using the cross reference information. If cross referencing is not enabled,
no action is taken.

: hasXref? \ xt -- flag ; true if word has XREF info
produces TRUE if xt has XREF information otherwise FALSE is returned.

: hasXDecomp? \ xt -- flag ; true if word has XREF decompilation info
produces TRUE if xt has XREF decompilation information otherwise FALSE is returned.

: WalkDecomp \ xtl xt2 -- ; DECOMP of XT1 using XT2 to display.

Used by application tools to walk the decompilation chain for XT1. The structure offset for
each step in the chain is handled by XT2 ( offset — ). Because writing XT2 requires use of the
internal XREF structure, you must expose the XREFFER module: EXPOSE-MODULE XREFFER to
get access to the words in Lib\XREF.FTH.

: FindXrefInfo \ pc xt -- info | 0 ; finds xref packet corresponding to PC
Given the current PC and the XT of the word the PC is in, FindXrefInfo returns a pointer to
an XREF packet if the PC is at an exact compilation boundary, otherwise it returns zero.

: FindXrefNearest \ pc xt -- infol0

Given the current PC and the XT of the word the PC is in, FindXrefNearest returns a pointer
to the Xref packet for the address at or less than the PC. If no Xref information is available for
the word, zero is returned.

: GetXrefPos \ info -- startpos len line addr
Given a pointer to an XREF packet, GetXrefPos returns the position, name length, line number
of the source text in the source file, and the value of HERE at the time of compilation.

: NextXref \ infol -- info2
Steps to the next info packet, given the offset of the previous.

: xref \ -- ; XREF <name>
Use in the form XREF <name> to display where <name> is used.

: uses \ -- ; synonym for XREF
A synonym for XREF above.

. xref-all \ —- ; cross reference all words

Produces a cross reference listing of all the words with cross reference information. This infor-
mation is often too long to be directly useful, but can be pasted from the console to an editor
for sorting, printing, and other post-processing.

: xref-unused \ —- ; cross reference all words

Produces a cross reference listing of all the unused words with cross reference information. This
information is often too long to be directly useful, but can be pasted from the console to an
editor for sorting, printing, and other post-processing.

: ttx-set \ xt -—- ; xt TTX-SET "<text>"
The quoted string is saved as the tooltip text for the word whose xt is given, e.g.



316 VFX Forth for macOS X

> dup ttx-set "x -- x x ; duplicate top item on stack"

1 ttx-get \ xt -- caddr len
Given an zt, return the tooltip text for the word.

Dottx? \ xt -- flag
Return true if the word whose zt is given has a tooltip.

27.2 Extended String Package

This optional wordset found in /Lib/StringPk.fth contains the following definitions to aid in the
manipulation of counted strings.

: $variable \ #chars "name" --
Create a string buffer with space reserved for #chars characters

: $constant "name" "text" --
Create a string constant called "name" and parse the the closing quotes for the content.

($+) \ c-addr u $dest --
Add the string described by C-ADDR U to the counted string at $DEST. This word is now in
the kernel.

: $+ \ $addrl $addr2 --
Add the counted string $ADDRI to the counted buffer at SADDR2. This word is now in the
kernel.

: $left \ $addrl n $addr2 --
Add the leftmost N characters of the counted string at $ADDRI to the counted buffer at
$ADDR2.

: $mid \ $addrl s n $addr2 --
Add N characters starting at offset S from the counted string at ADDRI1 to the counted buffer
at SADDR.

: $right \ $addrl n $addr2 --
Add the rightmost N characters of the counted string at $SADDRI1 to the counted buffer at
$ADDR2.

: $val \ $addr -- nl..nn n

Attempt to convert the counted string at $ADDRI into a number. The top-most return item
indicates the number of CELLS used on stack to store the return result. 0 Indicates the string
was not a number, 1 for a single and 2 for a double. $VAL obeys the same rules as NUMBER?.

: $len \ $addr -- len
Return the length of a counted string. Actually performs C@Q and is the same as COUNT NIP.

¢ $clr \ $addr --
Clear the contents of a counted string. Actually sets its length to zero. Primarily used to reset
buffers declared with $VARIABLE.

: $upc \ $addr --
Convert the counted string at SADDR to uppercase. This acts in place.
: $compare \ $addrl $addr2 -- -1/0/+1

Compare two counted strings. Performs the same action as the ANS kernel definition COMPARE
except that it uses counted strings as input parameters.

;o $< \ $1 $2 -- flag



Chapter 27: Library files 317

A counted string equivalent to the numeric < operator. Uses SCOMPARE then generates a well
- formed flag.

1 $= \ $1 $2 -- flag

A counted string equivalent to the numeric = operator. Uses SCOMPARE then generates a well
- formed flag.

o \ $1 $2 —- flag

A counted string equivalent to the numeric > operator. Uses SCOMPARE then generates a well
- formed flag.

1 $> \ $1 $2 -- flag

A counted string equivalent to the numeric <> operator. Uses SCOMPARE then generates a
well-formed flag.

: $instr \ $1 $2 -- false | index true

Look for an occurance of the counted string $2 within the string $1. If found then the start
offset within $1 is returned along with a TRUE flag, otherwise FALSE is returned.

27.3 Extensible CASE Mechanism

A CHAIN is an extensible version of the CASE..OF..ENDOF..ENDCASE mechanism. It is very
similar to the SWITCH mechanism described in the Tools and Utilities chapter.

: case-chain \ —— addr ; -- addr MPE. 0000
Begin initial definition of a chain

: item: \ addr n -- addr ; MPE. 0000
Begin definition of a conditional code block

: end-chain \ addr -- MPE. 0000
Flag the end of the current block of additions to a chain

: in-chain? \ n addr -- flag ; MPE. 0000
Return TRUE if N is in the chain beginning at ADDR

: exec—chain? \ i*x n addr -- j*x true | n FALSE MPE. 0000

Run through a given chain using TOS as a selector. If a match is made execute the relevant
code block and return TRUE otherwise the initial selector and a FALSE flag is returned.

27.3.1 Using the chain mechanism

CASE-CHAIN <foo>
<n> ITEM: <words> ;
<m> ITEM: <words> ;
<k> ITEM: <words> ;
END-CHAIN

More items can be added later:

<foo>
<x> ITEM: <words> ;

END-CHAIN




318 VFX Forth for macOS X

The data structures are as follows:

CASE-CHAIN <foo> generates a variable that points to the last item added to the list.

ITEM: generates two cells and a headerless word:
selector
link
headerless word .... exit

27.4 Binary Overlays

27.4.1 Introduction

Binary overlays are pieces of the dictionary that have been compiled and saved with relocation
information. They can be reloaded as needed and released on demand. Binary overlays are
useful when you want to ship tools that are only needed during development, or if you have
a large application whose memory footprint you want to reduce by only loading parts of the
application when needed.

The binary overlay utility is not part of the kernel, but can be compiled from
LIB\OVLVFX.FTH. As of build 3.40.0808, there has been major change in the way overlays
are constructed. This change removes many restrictions that were present in earlier builds. To
use the new overlay handler, all overlays must be rebuilt.

27.4.2 Using overlays

An overlay is generated by MAKEOVERLAY

[ MAKEOVERLAY <sourcename> <overlayname>

the file <sourcename> is compiled twice. Relocation information is extracted and saved to the
overlay along with the raw binary information. If any previously loaded overlays are needed
by this overlay, their names are saved in the overlay and they will be automatically reloaded
if necessary. After the overlay has been generated, the overlay code is removed. Overlays can
be tested by compiling <sourcename> conventionally, and then finally generating the overlay
when you are satisfied with it. MAKEOVERLAY preserves and links all vocabularies including
SOURCEFILES. Overlay files are saved by MAKEOVERLAY in the current directory. The
compiler imposes the following initial condition before the overlay file is compiled:

[ DECIMAL -SHORT-BRANCHES +SIN +SINDOES

MAKEOVERLAY releases all previously loaded overlays. As a consequence, if the overlay
to be compiled requires other overlays, you must load them explicitly by specifying them as
dependencies before using MAKEOVERLAY. A dependency list is defined by the word [DE-
PENDENCIES followed by a list of overlay file names as required by LOADOVERLAY below.
The list is termininated by DEPENDENCIES]. Use in the form:



Chapter 27: Library files 319

[dependencies
primovl secovl ...

dependencies]

makeoverlay MyOvL

This will cause MAKEOVERLAY to load the dependent overlays PRIMOVL.OVX and SEC-
OVL.OVX and so on.

When an overlay is reloaded by LOADOVERLAY

[ LOADOVERLAY <overlayname>

the binary code and relocation information are loaded. If the overlay file references other over-
lays, these are loaded before the relocated binary code is installed. Overlay code is loaded into
memory allocated from the Windows heap, and are linked in reverse load order, so that the last
loaded is found first. The result of this is that the overlays are always loaded in dependency
order, and releasing a "leaf" overlay will not affect the dependencies of other previously loaded
overlays.

Although overlay files are saved by MAKEOVERLAY in the current directory, LOADOVERLAY
will look first in the current directory and then in the directory from which the application was
loaded. This allows all overlays and the main executable to reside in the same directory regardless
of the current directory, but maintains convenience during development.

An overlay can be released by the use of RELEASEOVERLAY.

[ RELEASEOVERLAY <overlayname>

All loaded overlays can be released by RELEASEALLOVERLAYS

[ ReleaseAllOverlays

27.4.3 Load and Release actions

A word can be set to excute whenever the overlay is loaded from file or released. These words
permit the overlay to allocate and free resources such as memory buffers.

? <load-action> Set0OvlLoadHook
’ <release-action> Set0OvlReleaseHook

Note that these settings should be in the overlay load file. The stack effect of <load-action> and
<release-action> must be neutral, i.e. take nothing and return nothing [ - |.

27.4.4 File name conventions

From VFX Forth v3.4 onwards, the naming conventions have been changed.

e The internal overlay name is always the output file name after any default extension name has



320 VFX Forth for macOS X

been added by MAKEOVERLAY.
e LOADOVERLAY checks the internal overlay name after adding the default file extension.

The binary overlay files have a ".OVX" extension. The word MAKEOVERLAY creates the
overlay for you as follows:

[ MAKEOVERLAY <sourcename> <overlayname> J

If the source file name does not have an extension, the rules of INCLUDED will be followed,
checking for files with extensions ".BLD" ".FTH" ".F" ".CTL" ".SEQ" in that order. If the
destination file name does not have an extension ".OVX" will be used. If the destination file
name is not provided, the source file name is used with a ".OVX" extension. Thus, just typing
MAKEOVERLAY FOO will compile FOO.FTH to create FOO.OVX. The overlay name held by
the system is the output file specification as given or created by MAKEOVERLAY, converted
to upper case. This is important when reloading the overlay.

If no extension is provided for LOADOVERLAY, a ".OVX" extension will be added to the
file name. Thus LOADOVERLAY FOO will check if an overlay called FOO.OVX has been
loaded, and will load from file FOO.OVX. Similarly, LOADOVERLAY FOO.OVX will check if
an overlay called FOO.OVX has been loaded, and will load from file FOO.OVX.

27.4.5 Version control

Each overlay contains VFX Forth information, and overlays cannot be loaded by a version of
VEFX Forth other than the one that built it. A user defined version string can be added to the
version control information using SETOVLVER, which takes the address of a counted string.
The format of the string is entirely user defined, the overlay handler simply checks the strings
for identity.

Note that this version of LIB\OVLVFX.FTH requires VFX Forth build 3.40.0808 of 15 March
2002 or later.

27.4.6 Restrictions

The following system state is preserved and restored by the overlay handler.

( N
Overlays needed by the current overlay

Vocabularies and vocabulary link

Wordlists and wordlist link

Libraries

Imported functions
- J

If you generate other system-wide chains, these will NOT be preserved. To preserve them,
modify the code in LIB\OVLVFX.FTH using the xxxIMPORTLINK words as a model. Future
versions of this code may support a chain of chains model, but this will require that ALL such
chains are anchored in the VFX Forth kernel /application before any overlays are either generated
or reloaded.

N.B. If you modify this code, please pass it back to MPE so that it can be incorporated in later



Chapter 27: Library files 321

builds. This will reduce your maintenance work, our technical support load, and you will benefit
from the work of others.

27.4.7 Gotchas

Bad or random data

The overlay is produced by comparing two versions of the binary at different addresses, and
generating relocation information from any differences. If a relocation value does not correspond
to another overlay or the VFX Forth kernel, the build of the overlay will cause an error. Such
errors can be caused by anything that inadvertently changes the data or code generation of the
two versions being compared.

Uninitialised buffers

If data space in the dictionary is not initialised at compile time, it may contain random data.
Compare:

<size> BUFFER: <name> \ safe
CREATE <name> <size> ALLOT \ unsafe
CREATE <name> <size> ALLOT&ERASE \ safe

Different initial conditions

The initial conditions of directives that affect code generation must be the same for each build.
At least the following directives should be considered:

+SHORT-BRANCHES -SHORT-BRANCHES  branch code size
+SIN -SIN source inlining
+SIN-DOES —-SIN-DOES DOES> clause inlining

Similarly the starting codition of BASE should also be considered. The compiler imposes the
following initial condition before the overlay file is compiled:

[ DECIMAL -SHORT-BRANCHES +SIN +SINDOES J

Search order issues

When compiling an overlay strict control of the initial search order is often necessary, especially
because of redefinitions. We recommend that overlays are constructed from a build file which
ensures that other required overlays are installed.

A sign of bad search order control is that the overlay can be correctly built with the source
inliner turned off, but will not build with it on.

Long file names

You cannot use file names with spaces, even though GETPATHSPEC is used to input the file
names, because the file names are internally used as Forth word names.



322 VFX Forth for macOS X

Code conflicts with address

There are occasions when a four-byte code sequence matches an address in another overlay,
causing false relocation data to be generated. The result will be code that is corrupt after
loading.

This situation has been drastically improved by the overhaul of 14 March 2002, but the warning
has been left in until we are confident that all situations have been covered.

27.4.8 Overlay glossary

defer ovl-init-compile \ -- ; set initial state
A DEFERred word to set the initial compilation state for both compilations of the overlay source
code. The default condition is:

[ decimal optimised -short-branches +sin +sindoes J

Do not rely on this word being present in future releases. It is only present for experimental use
with very large overlays.

[dependencies \ -- ; set up dependency list
This word is used before MAKEOVERLAY below to define a list of overlays required by the
overlay to be made. It is followed by a list of overlay file names as required by LOADOVERLAY
below. The list is termininated by DEPENDENCIES]. Use in the form:

[dependencies
primovl secovl ...
dependencies]

: $MakeOverlay \ c-addrl ul c-addr2 u2 --

Use the first string as the source file name and the second string as the overlay name. This word
constructs a MAKEOVERLAY string and EVALUATES it. $MAKEOVERLAY is provided for
the construction of higher level overlay management functions.

: MakeOverlay \ "src" ["dest"] -- ; MAKEOVERLAY <buildfile> <overlay>

Creates an overlay by loading an input file, which can itself load other files, and producing an
output file. If the source file name does not have an extension, the rules of INCLUDED will be
followed, checking for files with extensions ".BLD" ".FTH" ".F" ".CTL" ".SEQ" in that order.
If the destination file name does not have an extension ".OVX" will be used. If the destination
file name is not provided, the source file name is used with a ".OVX" extension. Thus, just
typing MAKEOVERLAY FOO will compile FOO.FTH to create FOO.OVX. The overlay name
held by the system is the output specification as given. This is important when reloading the
overlay. The compiler imposes the following initial condition before the overlay file is compiled:

[ DECIMAL -SHORT-BRANCHES +SIN +SINDOES j

: SetOvlLoadHook \ xt —— ; ’ <load-action> SETOVLOADHOOK

This word sets the action to be performed whenever the overlay is loaded from the file. This ac-
tion is NOT called by LOADOVERLAY if the overlay is already loaded. SETOVLLOADHOOK
must be included in the overlay load file.

: SetOvlReleaseHook \ xt -— ; ’ <release-action> SETOVLRELEASEHOOK



Chapter 27: Library files 323

This word sets the action to be performed when the overlay is released. SETOVLRELEASE-
HOOK must be included in the overlay load file.

: Set0OvlVer \ c-addr --

Sets the address of a counted string added to the version control information. All overlay loads
will be checked against this string. SETOVLVER must be used before MAKEOVERLAY. The
string can be reset at any time by 0 SETOVLVER.

: $0vlLloaded? \ c-addr u -- start true | 0 O

Converts the string to upper case and tests whether or not the overlay has been loaded, returning
its start address in memory and true if loaded, or two zeros if not loaded. See MAKEOVERLAY
for a discussion of overlay names.

: $Load0verlay \ c-addr u -- start|ior end|-1

Uses the given string as an overlay name, and reloads the the overlay if not already loaded. If
the overlay name does not have an extension, ".OVX" will be used. Any other required overlays
will be loaded before the requested overlay. The start and end+1 address of the overlay code
after installation are returned. $LOADOVERLAY is provided for the construction of higher
level overlay mangement functions. On error, the start and end values are replaced by ior and
-1.

: LoadOverLay \ '"name" -- ; LOADOVERLAY <name>

Load an overlay whose name follows in the input stream. See SLOADVERLAY for more details.

.overlays \ -- ; display loaded overlays

Shows the names of the the loaded overlays.

. lo "name" -- ; LO <name>

A synonym for LOADOVERLAY. See SLOADVERLAY for more details.

! mo \ "src" ["dest"] -- ; MO <buildfile> <overlay>
A synonym for MAKEOVERLAY.

: $Releaselverlay \ c-addr u -- ior

Release the overlay of the given name, returning a non-zero code if the overlay was not loaded.
The name is converted to upper case before the comparison is performed. $RELEASEOVERLAY
is provided for the construction of higher level overlay mangement functions. If the overlay was
loaded when OVL_IN_DICT was set FALSE (the default), overlays loaded after the specified
one will also be removed. If the overlay was loaded when OVL_IN_DICT was set TRUE, the
overlay is in the ’kernel’ area of the dictionary, and any code compiled or loaded after the overlay
will also be removed. Overlays dependent on this one will be removed.

: ReleaseQverlay \ "text" -- ; RELEASEOVERLAY <name>

Uses SRELEASEOVERLAY to release the overlay whose name follows. See SRELEASEOVER-
LAY for more details.

! ro \ "text" -- ; RO <name>

A synonym for RELEASEOVERLAY. See SRELEASEOVERLAY for more details.
: ReleaseAllOverlays \ —-

Releases and unhooks all overlays. Executed automatically by the Exit chain.

: ovl_in_dict \ -- addr ; true to load overlays in dictionary ; SFP022

Set this variable to TRUE to load overlays at the end of the dictionary, rather than in memory
allocated from the heap. This is only required in special circumstances. After overlays have
been built, restore OVL_IN_DICT to FALSE.



324 VFX Forth for macOS X

27.5 XML support

The code in Lib\ XML.fth contains support for parsing XML input and outputting XML using
TYPE and friends. The parser is derived from Jenny Brien’s JenX parser published at EuroForth
and in the magazine ForthWrite. Additional code was taken from a a modified JenX parser
by Leo Wong. The generic XML description is by permission of Willem Botha of Construction
Computer Software (http://www.ccssa.com).

Additional tools required for XML handling are contained in this file. These may be moved to
Lib\ Win32\ Helpers.fth in the future.

27.5.1 Why XML

Since XML is non-proprietary and easy to read and write, its an excellent format for the inter-
change of data among different applications.

XML is a non-proprietary format, not encumbered by copyright, patent, trade secret, or any
other sort of intellectual property restriction. It has been designed to be extremely powerful,
while at the same time being easy for both human beings and computer programs to read and
write. Thus its an obvious choice for exchange languages.

By using XML instead of a proprietary data format, you can use any tool that understands
XML to work with your data.

XML is ideal for large and complex documents because the data is structured. It not only lets
you specify a vocabulary that defines the elements in the document; it also lets you specify the
relations between elements.

XML also provides a client-side include mechanism that integrates data from multiple sources
and displays it as a single document.

XML doesnt operate in a vacuum. Using XML as more than a data format requires interaction
with a number of related technologies. These technologies include HTML for backward compat-
ibility with legacy browsers, the CSS and XSL stylesheet languages, URLs and URIs, the XLL
linking language, and the Unicode character set.

Cascading Style Sheets

Since XML allows arbitrary tags to be included in a document, there isnt any way for the browser
to know in advance how each element should be displayed. When you send a document to a
user you also need to send along a style sheet that tells the browser how to format individual
elements. One kind of style sheet you can use is a Cascading Style Sheet (CSS).

CSS, initially designed for HT'ML, defines formatting properties like font size, font family, font
weight, paragraph indentation, paragraph alignment, and other styles that can be applied to
particular elements.

Its easy to apply CSS rules to XML documents. You simply change the names of the tags youre
applying the rules to.



Chapter 27: Library files 325

Extensible Style Language

The Extensible Style Language (XSL) is a more advanced style-sheet language specifically de-
signed for use with XML documents. XSL documents are themselves well-formed XML docu-
ments.

XSL documents contain a series of rules that apply to particular patterns of XML elements. An
XSL processor reads an XML document and compares what it sees to the patterns in a style
sheet. When a pattern from the XSL style sheet is recognized in the XML document, the rule
outputs some combination of text.

XSL style sheets can rearrange and reorder elements. They can hide some elements and display
others. Furthermore, they can choose the style to use not just based on the tag, but also on the
contents and attributes of the tag, on the position of the tag in the document relative to other
elements, and on a variety of other criteria.

URLs and URIs

XML documents can live on the Web, just like HTML and other documents. When they do,
they are referred to by Uniform Resource Locators (URLs), just like HTML files.

Although URLs are well understood and well supported, the XML specification uses the more
general Uniform Resource Identifier (URI). URIs are a more general architecture for locating
resources on the Internet, that focus a little more on the resource and a little less on the location.
In theory, a URI can find the closest copy of a mirrored document or locate a document that
has been moved from one site to another.

XLinks and XPointers

As long as XML documents are posted on the Internet, youre going to want to be able to address
them and hot link between them. Standard HTML link tags can be used in XML documents,
and HTML documents can link to XML documents.

XML lets you go further with XLinks for linking to documents and XPointers for addressing
individual parts of a document.

XLinks enable any element to become a link, not just an A element. Furthermore, links can be
bi-directional, multidirectional, or even point to multiple mirror sites from which the nearest is
selected. XLinks use normal URLs to identify the site theyre linking to.

XPointers enable links to point not just to a particular document at a particular location, but
to a particular part of a particular document. An XPointer can refer to a particular element
of a document, to the first, the second, or the 17th such element, to the first element thats a
child of a given element, and so on. XPointers provide extremely powerful connections between
documents that do not require the targeted document to contain additional markup just so its
individual pieces can be linked to it. XPointers dont just refer to a point in a document. They
can point to ranges or spans.



326 VFX Forth for macOS X

How the Technologies Fit Together

XML defines a grammar for tags you can use to mark up a document. An XML document is
marked up with XML tags. The default encoding for XML documents is Unicode.

Among other things, an XML document may contain hypertext links to other documents and
resources. These links are created according to the XLink specification. XLinks identify the
documents theyre linking to with URIs (in theory) or URLs (in practice). An XLink may
further specify the individual part of a document its linking to. These parts are addressed via
XPointers.

If an XML document is intended to be read by human beingsand not all XML documents arethen
a style sheet provides instructions about how individual elements are formatted. The style sheet
may be written in any of several style-sheet languages. CSS and XSL are the two most popular
style-sheet languages, though there are others including DSSSLthe Document Style Semantics
and Specification Languageon which XSL is based.

27.5.2 Using the XML Parser

All parsing is processed using the input stream. This allows XML files to be parsed by INCLUDE,
and strings from sockets to be processed by EVALUATE.

The XML parser parses tags "<...>" and the text between them, called the contents. Inside a
tag the text is separated into the tag name and the attribute name/value pairs 'name="value"’.
Everything is held as text. Nested tags are supported. Three DEFERred words, doTags ( --
), doContents ( -- ) and doAttribute ( val vlen name nlen -- ) must be supplied by the
application to handle the data. These words are documented later. Their default action is to
display the data so that you can see what has been processed.

The parser just generates and isolates the text. It is up to your application how the data is
processed by the three words above. When a tag is processed, the tag handling routine can
find the current tag name, the tag type, any attributes and the preceeding contents. The most
common way to process tags and data is to ignore the contents before an opening tag, but to
handle attributes. At the closing tag, the contents represent the data to be processed. Closing
tag names include the leading ’/’ character so that opening and closing tags can be distinguished
by name as well as status.

27.5.3 Generating XML output

Simple facilities are provided for generating XML text and tags from various types of data.
These are designed to allow other scripting tools to generate XML output.

27.5.4 Tools

This section contains general-purpose tools which may be useful in other applications.

1 value .UnknownXML? \ -- flag
If non-zero (default), show unknown XML tags and attributes.

Strings
: movex \ src dest len —-
An optimised version of MOVE.



Chapter 27: Library files 327

: csplit \ addr len char -- raddr rlen laddr llen

Extract a substring at the start of addr/len, returning the string raddr/rlen which includes char
(if found) and the string laddr/llen which contains the text to left of char. If the string does not
contain the character, raddr is addr+len and rlen=0.

T #>c \ caddr u -- char

Converts a decimal or hexadecimal number to a single integer.
In XML white space is defined by tab and CR. Under some circumstances LF may also be
treated as white space.

: skip-white \ caddr u -- caddr’ w’
Remove leading white space.

: scan-black \ caddr u -- caddr’ u.
Remove leading spaces and control characters.

: scan—quote \ caddr u -- caddr’ u’

Step forward until either a single or a double quote character is found. The returned string
includes the quote character.

: scan-white \ caddr u -- caddr’ u’
Step to next white space character.

: —trailing-white \ caddr u -- caddr’ w’
Remove trailing white space.

: -leading-white \ caddr u -- caddr’ w’
Remove leading white space. A synonym for skip-white.

: -white \ caddr u -- caddr’ u’
Remove leading and trailing white space.

: >bl \ addr u -- addr u

Convert control characters to spaces.

Gregorian calendar

The output formats are:

: date> \ day month year -- ud ; see month codes
Convert a day/month/year into a Gregorian day number.

1 1 1980 date> 2constant date0 \ -- ud
Defines day 0 as 1 Jan 1980 for dates.

: sdate> \ day month year -- u
Convert a day/month/year to a single day integer based as above.

: >sdate \ u -- day month year

Convert a single day integer to day/month/year

Day time

Time of day may be stored as a single integer count of seconds. These routine provide conversion
into secs/mins/hours format.

#24 #60 * #60 * constant secs/day \ -- 86400
Seconds per day.



328 VFX Forth for macOS X

#60 #60 * constant secs/hr \ -- 3600
Seconds per hour.

#60 constant secs/min \ -- 60
Seconds per minute.

#60 constant mins/hr \ -- 60
Minutes per hour.

#24 constant hrs/day \ -- 24
Hours per day.

: tod> \ ss mm hh -- secs
Convert a time of day in ss/mm/hh form to a single integer.

: >tod \ secs -- ss mm hh
Convert a seconds integer to ss/mm/hh form.

Stackpads

Stackpads are effectively string stacks. String lengths are kept as cells. Stackpads can be in
statically (ALLOTed) or dynamically (ALLOCATEd) memory. A stackpad must be initialised by
SINIT before use and terminated by STERM after use. In this implementation, defined stackpads
are initialised at COLD and terminated at BYE.

Strings on a stackpad are held in the following format, where u is the length of the string in
bytes:

len contents

u string text
? padding to cell boundary
cell u

The stackpad’s top of stack pointer points to the length cell of the top item. To provide a valid
cell, a zero length item is always created when the stackpad is initialised. Because the length
cell is after the text, it is easy to manipulate the end of a string, to find the start address and
to discard a string.

The requirement to align the length cell adds a little complexity, but permits portability to
processors which require data alignment, e.g. ARM, and improves speed on PCs. Stackpads are
controlled using the /stackpad structure below. The sp.ptos field contains the stack pointer.
The sp.buff field permits underflow checks. The sp.len field permits overflow checks. The
other fields allow for automatic instantiation and termination of dynamically allocated stackpads.
Implementations without error checking only need the stack pointer and could use the first cell
of the buffer as the stack pointer.

struct /stackpad \ -- len
Structure defining a stackpad.

variable spChain \ -- addr

Anchors the linked list of defined stackpads.

: sSpad: \ len -- ; -- spad

Create a static stackpad with ALLOTed control area and data buffer.



Chapter 27: Library files 329

: mSpad: \ len -- ; -- spad
Create a mixed stackpad with an ALLOTed control area and an ALLOCATEd buffer.
: newSpad \ len -- spad

Create a dynamic stackpad with ALLOCATEd control area and data buffer. A THROW occurs if the
memory cannot be allocated.

: sinit \ spad --

Initialise a stackpad. A THROW occurs on error.

: sterm \ spad --

Release dynamic memory if the given stackpad has it.

: initSpads \ --

Initialise all defined stackpads. Performed at COLD.

: termSpads \ --

Clean up all defined stackpads, releasing any dynamically allocated memory. Performed at BYE.
: —align \ caddr -- addr’

Align a byte address to the previous cell boundary. N.B. This word assumes a byte addressed
32 bit Forth.

: >spstr \ 1p -- caddr u

Given a pointer to a length cell, return the string.

: >sps \ 1lp -- caddr

Given a pointer to a length cell, find the start of the string.

: >spe \ 1lp -- caddr

Given a pointer to the length cell, find the address of the character after the string.
: spush \ caddr u spad --

Push a string onto the stackpad.

: stos \ spad -- caddr u

Return the address and length of the top string. The string is not popped.
: sdrop \ spad --

Discard top string from stackpad.

: spop \ spad -- caddr u

Return the address and length of the top string. The string is popped. Note that the stackpad
cannot safely be used until all further processing of the string has been performed.

: snew \ spad --

Add a zero-length string.

: sappend \ caddr u spad --

Add the given string to the top stackpad string.

: s+char \ char spad --

Add the given character to the top stackpad string.
.spad \ spad --

Display the strings on a stackpad.



330 VFX Forth for macOS X

Servants

Servants are a solution to CASE statements involving strings. A wordlist is defined to hold the
actions required when a string is matched, the word names forming the strings to be matched. A
default action must be specified. Note that in MPE Forths, the name search is case insensitive.
Note also that without extensions to the word creation mechanism, the Because the strings are
isolated in wordlists, calls may be nested.

(Servant) \ i*x caddr u wid xt -- j*x
Looks up caddr/u in the wid wordlist. If the word is found, it is executed. If the word is not
found, the caddr/u string is passed to the default action at which is executed.

: servant \ wid xt -- ; i*x caddr u -- j*x

Servant creates a word that looks up caddr/u in a given wordlist and executes the matching
word if found or a default word if not found. Servant is supplied with the wid of the wordlist
and the zt of the default action.

: creation \ wid --
Perform CREATE, but define the word in the specified wordlist.

: def: \ wid --
Perform :, but define the word in the specified wordlist.
27.5.5 XML input parser

Required data and structures
cell +user CurrSpad \ -- addr
Holds the address of the stackpad being used for output.

cell +user RefillStatus \ -- addr
Holds non-zero when REFILL has failed.

#32 kb mSpad: TagText \ -- spad
Stackpad for tag text <tag ....>.

#32 kb mSpad: Contents \ -- spad
Stackpad for everything not in a tag.

#32 kb mSpad: Attribs \ -- spad
Stackpad for attribute handling in tags.

XML entities

In XML code the special characters and numbers are encoded in the form:

&xxx;

This code allows substitution of the original character.

: UnknownEntity \ caddr u --

The default action is to check for a number, and if that fails just to pass the string to the output
buffer. Note that the string includes the leading &’ but not the trailing ’;’.

wordlist constant entity? \ -- wid
The private wordlist used to contain action words for known entities.

1 centity \ char -- ; --



Chapter 27: Library files 331

Children of this defining word add a character to the current stackpad. The words are used by
the servant DENT below.

The following standard XML entities are predefined:

char < centity &LT

char > centity &GT

char ’ centity &APOS

char " centity &QUOT

char & centity &AMP

entity? ’ UnknownEntity servant dent \ caddr u --
A servant which converts known entities and XML numbers of the form &#xxx; to characters
or just copies the string to the current stackpad.

: dents+ \ caddr u --
Add the string to the top of the current stackpad, decoding and translating any entities.

Tag input

.Tag \ -
Default action of doTags below.

.Contents \ —
Default action of doContents below.

.Attribute \ val vlen name nlen --
Display the attribute name and value strings.

defer doTags \ -

User defined action (default .Tag) that handles tag strings. The tag handlers are responsible
for all handling of the contents stackpad. The top string on the *fo{TagText} stackpad is
discarded after processing the tag text.

defer doContents \ --
User defined action (default .Contents) that handles content strings. The contents stackpad
is not discarded by doContents.

defer doAttribute \ val vlen name nlen --
Process an attribute given strings for the value and name. The default action is to display the
attrubte.

: DefXML \ —-
Set the default XML handlers.

vocabulary inputTags \ --
Vocabulary containing tag actions on input.

> inputTags voc>wid constant widInputs \ -- wid
Wordlist containing tag actions on input.

vocabulary outputTags \ -
Vocabulary containing tag actions on output.

> outputTags voc>wid constant widOutputs \ -- wid
Wordlist containing tag actions on output.

#256 buffer: CurrName \ -- addr
Buffer for the current tag name. Held as a counted string. For multi-threaded use this should
be redefined as thread-local storage.



332 VFX Forth for macOS X

#256 buffer: LastName

Buffer for the previous tag name. Held as a counted string. For multi-threaded use this should
be redefined as thread-local storage.

variable TagStatus

Status indicator for the current tag. For multi-threaded use this should be redefined as thread-
local storage. The tag status is a bit mask in the bottom 16 bits of a cell The upper 16 bits are
reserved for application use.

$0000 equ OPENING_TAG
$0001 equ CLOSING_TAG
$0002 equ EMPTY_TAG
$0100 equ PI_TAG
$0200 equ SPECIAL_TAG

variable LastStatus

Status indicator for the previous tag. For multi-threaded use this should be redefined as thread-
local storage.

: defInputTag \ caddr u --

The default action for an unknown tag is to display the content and tag strings.

widInputs ’ defInputTag servant doInputTag \ caddr u --

Processes input tags given a tag name string.

: getTagName \ caddr u -- caddr’ u’ name nlen

From the given string, return the remaing string and the tag name, which is the first whitespace
delimited token. Note that tag names include leading ’?’ and ’!” characters.

: getAttribName \ caddr u -- caddr’ u’ name nlen

From the given string, return the remaing string and the attribute name, which is the first
whitespace delimited token before an '=’ character.

: getAttribValue \ caddr u -- caddr’ u’ value vlen

From the given string, return the remaing string and the attribute value string, which is enclosed
by quotation marks ’ or ".

: getAttribute \ caddr u -- caddr’ w’

From the given string extract an attribute name/value pair, pass it to the deferred word
doAttribute and return the remaining string. Attributes are of the form:

name = "value"

: SetTagStatus \ --

Set the tag status for opening/closing/empty, and for processing instruction and specials (the
Ixxx tags).

: doTagText \ caddr u --

Parse the tag text <text...> excluding the brackets, extracting the tag name and the attributes.
: RunInputTag \ --

The tag handler action of doTags for active processing of XML tags.

: ActiveXML \ —-
Set the active XML handlers, so that known tags are processed.



Chapter 27: Library files 333

XML Parser core

: AsFarAs \ char -- flag caddr u
Parse input stream up to char, returning the extracted string.

: withText \ newspad -- oldspad
Start a new string on the given stackpad for a block of processings and make it the current
stackpad. Return the previous current stackpad

: doneText \ oldspad --
Discard the current stackpad string and restore the previous stackpad.

: doXMLblock \ char --
Collect input text up to the terminating character into the current stackpad, and expand entities.

: skipPast \ c-addr u --
Step through the input stream for a string (not space delimited), REFILLing as necessary until
the string is found or input is exhausted.

: doTagBlock \ x —-

Process a tag block "<name ... >" starting immediately after the leading ’<’ character. The
tag text is discarded after the tag has been processed. If x is non-zero, the tag is initialised to
"?Xml"

9

: doContentBlock \ —-
Process a content block up to but not including the trailing <’ character.

: ReadXML \ -
Read XML from the current input stream.
: <7xml \ --

After <?7xml has been executed, all further input is treated as XML source and handled by the
XML parser.

27.5.6 Data content input and output

These words are factors that can be used when constructing systems that extract and produce
data in XML files. When producing an XML file, data is output by primitives that take the
address of the data. When reading an XML file, data is set by primitives that take a string and
the address of the data.

XML text output

XML text output of tag or content data must not contain the special characters which must be
converted to the standard entity format "&xxx;".

: XMLemit \ char --
Output a character translating the special characters.

: XMLtype \ caddr len --
Output a string translating the special characters.

Single and double integers
: ud#>cl \ ud -- caddr len
Convert an unsigned double to a decimal text string.

: d#>cl \ ud -- caddr len
Convert a signed double to a decimal text string.



334 VFX Forth for macOS X

: cl>d# \ caddr len -- d
Convert the string to a double number.

cl>ud# \ caddr len -- ud
Convert the string to an unsigned double number.
1 71 \ addr --
Dlsplay the contents of a signed 32 bit integer.

i \ caddr len dest --
Set the contents of a signed 32 bit integer.

: 7ui \ addr --

Dlsplay the contents of an unsigned 32 bit integer.

lui \ caddr len dest --
Set the contents of an unsigned 32 bit integer.
:7d \ addr --
Display the contents of a signed 64 bit integer in Forth format (high cell at low address).

'd \ caddr len dest --
Set the contents of a signed 64 bit integer in Forth format (high cell at low address).

: 7ud \ addr --
Dlsplay the contents of an unsigned 64 bit integer in Forth format (high cell at low address).

'ud \ caddr len dest --
Set the contents of an unsigned 64 bit integer in Forth format (high cell at low address).

: 7dI \ addr --
Display the contents of a signed 64 bit integer in Intel format (low cell at low address).

1dI \ caddr len dest --
Set the contents of a signed 64 bit integer in Intel format (low cell at low address).

: 7udl \ addr --
Display the contents of an unsigned 64 bit integer in Intel format (low cell at low address).

ludI \ caddr len dest --
Set the contents of a signed 64 bit integer in Intel format (low cell at low address).

Floating point numbers
: cl>f# \ caddr u -- ; F: —- f

Convert a string to a floating point number. If a conversion fault occurs, f is set to zero.

1 7fs \ addr --
Dlsplay the contents of 32 bit float.

Ifs \ caddr u dest --
Set the contents of a 32 bit float.

: 7fd \ addr --
Display the contents of 64 bit float.

1fd \ caddr u dest —-
Set the contents of a 64 bit float.

: 7ft \ addr --
Dlsplay the contents of an 80 bit float.



Chapter 27: Library files 335

1t \ caddr u dest —-
Set the contents of an 80 bit float.

Strings

.string \ caddr len --
Output the given string in XML format.

: 7cstring \ caddr --
Output a Forth counted string.

lcstring \ caddr len dest --
Set a Forth counted string.

: 7wstring \ caddr --
Output a word (16 bits) counted string

lwstring \ caddr len dest --
Set a word (16 bits) counted string

: 7lstring \ caddr --
Output a cell (32 bits) counted string

Ilstring \ caddr len dest --
Set a cell (32 bits) counted string

Time and date

:o.xuw \uw--
Display the unsigned number u as w digits.

.xdate \ day month year --
Output a date in XML format "CCYY-MM-DD".

.xtime \ secs mins hours —-
Output a time in XML format "HH-MM-SS".

.xdateTime \ secs mins hours day month year --
Output a date/time in XML format. No time zone is output.

DLtz \ mins --
Output a time zone indicator as an offset from UTC in minutes.

: xdt-utc \ secs mins hours day month year --
Output a date/time in XML format. UTC is indicated.

: xdt-zone \ secs mins hours day month year zmins --
Output a date/time in XML format. The time zone is indicated by a signed offset in minutes.
Tag output

.GenTag \ caddr len --
Display the text as a tag "<...>". Standard entities are encoded.

.GenTag+ \ attr alen name nlen --
Display attribute and tag name text as "<name attr>". Standard entities are encoded.

.ClosingTag \ caddr len --
Display the text as a closing tag "</...>". Standard entities are encoded.

.EmptyTag \ caddr len --
Display the text as an empty tag "<.../>". Standard entities are encoded.



336 VFX Forth for macOS X

27.5.7 Test code

initSpads
ActiveXML

27.6 Configuration files

Application configuration can be done in a number of ways, especially under Windows.

Registry A user nightmare to copy from one machine to another

INI files Very slow for large configurations (before mpeparser.dll)
binary Usually incompatible between versions

database Big and often similar to binary

Forth Already there, needs changes to interpreter. Independent of operating system.

A solution to this problem is available in Lib/ConfigTools.fth. Before compiling the file, ensure
that the file GenlO device from Lib/Genio/FILE.FTH has been compiled.

The Forth interpreter is already available, but we have to consider how to handle incompati-
bilities between configuration files and issue versions of applications. The two basic solutions
are:

e Abort on error
e [gnore on error

The abort on error solution is already available - it just requires the caller of included to provide
some additional clean up code.

-
: CfgIncluded \ caddr len --
-source-files \ don’t add source file names
[’] included catch
if 2drop endif \ clean stack on error
+source-files \ restore source action
C

In VFX Forth, INTERPRET is used to process lines of input. INTERPRET is DEFERred and the
default action is (INTERPRET). The maximum line size (including CR/LF) is FILETIBSZ, which
is currently 512 bytes. If we restrict each configuration unit to one line of source code, we
can protect the system by ignoring the line if an error occurs. We also have to introduce the
convention in configuration files that actions are performed by the last word on the line (except
for any parsing). This action has to be installed and removed, leading to the following code.



Chapter 27: Library files 337

( N
: CfgInterp \ -
\ Interprets a line, discarding it on error.

[’] (interpret) catch

if postpone \ endif

: CfgIncluded \ caddr len --

\ Interprets a file, discarding lines with errors.
-source-files \ don’t add source file names
behavior interpret >r
[’] CfgInterp is interpret
[’] included catch

if 2drop endif \ clean stack on error
r> is interpret
+source-files \ restore source action
- J

27.6.1 Loading and saving configuration files
: CfgInterp \ -
A protected version of (INTERPRET) which discards any line that causes an error.

: CfgIncluded \ caddr len --
A protected version of INCLUDED which discards any line that causes an error, and carries on
through the source file.

[SaveConfig \ caddr len -- structlO

Starts saving a configuration file. Creates a configuration file and allocates required resources,
returning a structure on success or zero on error. On success, the returned struct contains the
sid for the file at the start of struct.

: SaveConfig] \ struct --
Ends saving a file device by closing the file, releasing resources and restoring the previous output
device.

: SaveConfig \ caddr len xt --
Save the configuration file, using zt to generate the text using TYPE and friends. The word
defined by zt must have no stack effect.

27.6.2 Loading and saving data

We chose to support five type of configuration data:

e Single integers at given addresses. This copes with variables directly and values with addr.
e Double integers at given addresses.

e Counted strings

e Zero terminated strings

e Memory blocks.

All numeric output is done in hexadecimal to save space, and to avoid problems with BASE
overrides. All words which generate configuration information must be used in colon definitions.

: \Emit \ char --
Output a printable character in its escaped form.

: \Type \ caddr len --



338 VFX Forth for macOS X

Output a printable string in its escaped form.

.cfg$ \ caddr len --
Output a string in its escaped form, characters in the escape table being converted to their
escaped form. The string is output as Forth source text, e.g.

s\" escaped text\n\n"

.sint \ x —-
Output x as a hex number with a leading ’$’ and a trailing space, e.g.
$1234:ABCD

Single Integers

Single integers are saved by .SintVar and .SintVal.

> (SintVar) SimpleCfg: .SIntVar \ "<name>" --
Saves a single integer as a string. <name> must be a Forth word that returns a valid address.
Generates

$abcd <name> !

Use in the form:

.SIntVar MyVar
> (SintVal) SimpleCfg: .SIntVal \ "<name>" --
Saves a VALUE called <name>. Generates

$abcd to <name>

Use in the form:
.SIntVal MyVal

Double Integers

Double integers are saved by .DintVar.

> (DintVar) SimpleCfg: .DIntVar \ "<name>" --
Saves a double integer as a string. <name> must be a Forth word that returns a valid address.
Generates

$01234 $abcd <name> 2!

Use in the form:
.SIntVar MyVar

Counted strings

Counted strings are saved by .C$CFG.
> (c$cfg) SimpleCfg: .C$var \ "<name>" --
Saves a string <name> must be a Forth word that returns a valid address. Generates

s\" <text>" <name> place

Use in the form:

.C$Var MyCstring



Chapter 27: Library files 339

Zero terminated strings

Zero terminated strings are saved by .Z$var.

> (2z$cfg) SimpleCfg: .Z$var \ "<name>" --

Saves a zero terminated string at <name> which must be a Forth word that returns a valid
address. The output consists of one or more lines of source code, following lines being appended
to the first.

s\" <text>" <name> zplace

s\" <more text>" <name> zAppend

Use in the form:

.Z$var MyZstring

Memory blocks

Memory blocks are output by

.Mem <name> len

<Name> must be a Forth word that returns a valid address. Len must be a constant or a number.
The output takes one of three forms, depending on len.

bmem <name> num $ab $cd ...
wmem <name> num $abcd $1234 ...
Imem <name> num $1234:5678 $90ab:cdef

A block of memory is output by

.Mem <name> len

<Name> must be a Forth word that returns a valid address. Len must be a constant or a number.

: BMEM \ "<name>" "len" --
Imports a memory block output in byte units by .Mem.

: WMEM \ "<name>" "len" --
Imports a memory block output in word (2 byte) units by .Mem.

: LMEM \ "<name>" "len" --
Imports a memory block output in cell (4 byte) units by .Mem.






Chapter 28: ClassVfx OOP 341

28 ClassVfix OOP

There are two sets of documentation for the ClassVFX system. There is a chapter in the
main VFX Forth manual, and there is a full PDF manual in the Manual subdirectory of
Lib\OOP\ ClassVFX\.

28.1 Introduction

The source code is in the directory Lib\ OOP\ Class VFX. The file MakeClassVfz.bld is compiled
to produce the production version of the code. TestClassVfx.fth contains test code.

ClassVFX was developed over a number of years in collaboration with Construction Computer
Software of Cape Town, South Africa. We gratefully acknowledge their collaboration and per-
mission to release it. ClassVFX is heavily used in their construction industry planning software,
which is one of the largest Forth applications ever written. Modifications to ClassVFX will only
be released after the agreement of CCS.

ClassVFX is a halfway house between a full object oriented system and an intelligent structures
system. Types, or classes, can be defined with single inheritance. Method names have to be
predefined using

OPERATOR: <method-name>

Field, or data member, names are private, but are accessible using a dot notation. There are no
equivalents of SUPER and SELF. There is no late binding.

In this documentation types and classes are synonymous. Objects are instances of a type.
Objects have a default action if no method is specified. Usually the default action is to fetch
the contents of the object, but in a few cases the default action is to return an address.

Types/Classes can have both class and instance methods. The default method for a type is to
create an instance. If a type is used inside a colon definition a local variable version is created
and destroyed at run time.

Operators, or methods, must be declared as above before use.

28.2 How to use TYPE: words

TYPE: definitions may be used in four ways:
e as an abstract template which is used with a base address on the stack. In this case Point
is a type (class).
Point.x or x
e to define an instance of a structure in the dictionary, e.g.
Point: MyPoint
e to define a local variable inside a colon definition, but outside any other local variable
defining mechanism. If another locals defining mechanism such as the ANS LOCALS]| ... |

mechanism or the MPE { ... } mechanism has been used the use of Point: foo inside a
colon definition will simply add FOO to the existing local frame.

e to define a field inside another TYPE: definition.



342 VFX Forth for macOS X

( N
operator: <methodl>
operator: <method2>
operator: <method3>

type: line:
point: start
point: end

:m <method1> ... ;M

:m <method2> ... ;M

mruns <method3> <some-word>

‘m <XXX> abcd ;m structure-method
end-type

Line: MyLine
1 2 to Myline.start

5 to Myline.end.y
= J

At runtime, the method operates on the address of the data. Because of this, a method which
requires the address of the instance structure has to be marked by the word STRUCTURE-METHOD
which causes the compiler to generate the address of the instance structure, not the type struc-
ture.

ClassVFX allows both CLASS and INSTance methods to be defined for a type. INSTance methods,
the default, operate on the address of the data item. CLASS methods operate on the address of
the type data structure. As described above, STRUCTURE-METHODs operate on the instance data
structure.

Single inheritance can be defined using SUPERCLASS <type> or INHERITS <type> before any field
or method is defined.

TYPE: <type> SUPERCLASS <supertype>

END-TYPE

At run-time, methods are provided with the address of the required data. CLASS/TYPE
methods receive the address of the TYPE/CLASS data structure, INSTance methods receive
the address of the data item. INSTance methods that require the address of the instance data
structure must be marked by STRUCTURE-METHOD. Methods may be defined as nameless words:

:M <method-name> ... ;M

or as the action of a method:

MRUNS <method-name> <action-name>

The code below is taken from the definition of the default type.



Chapter 28: ClassVfx OOP

343

~
class \ define methods for the type
:m default make-inst ;m
:m sizeof type-size @ 7complit ;m
:m addr 7complit ;m
inst \ define methods for the instance
mruns default noop
:m sizeof type-size @ 7complit ;m structure-method
mruns addr noop
:m offsetof off-start @ 7complit ;m structure-method
:m +offsetof off-start @ 7complit+ ;m structure-method
-

To use the nested field system, the Forth system has been modified to accept compound names

[

in which the elements of the structure are separated by the ‘. character. This feature is enabled
and disabled by the words +STRUCTURES and -STRUCTURES

28.3 Predefined types

~
char: byte - 8 bit variable
word: word - 16 bit variable
int: long - 32 bit variable and synonyms
dword:
long:
ptr:
xlong: longlong - 64 bit variable
bytes: byte array: size specified by n BYTES BYTES:
cstring: counted string: size specified by BYTES before CSTRING:
zstring: zero term. string: size specified by BYTES before ZSTRING:
field: byte array, only ADDR operator, size specified by BYTES
-

28.4 Predefined methods/operators

Note that not

all predefined types support all methods.




344 VFX Forth for macOS X
( N
0 operator default usually a fetch operation
1 operator -> store operator
1 operator to "
2 operator addr address operator
3 operator inc increment by one
4 operator dec decrement by one
5 operator add n add to
6 operator zero set to O
7 operator sub subtract from
8 operator sizeof size
9 operator set set to -1
10 operator offsetof offset in object
11 operator +offsetof add offset in object
12 OPERATOR FETCH get contents
13 OPERATOR ADDR\CNT address under count
14 OPERATOR TWIST change endian of the data type
15 OPERATOR CONSTRUCT build an instance of this type
15 OPERATOR MAKE build an instance of this type
op# ADDR OPERATOR ADDROF
OPERATOR: <=> type_addr_y <=> <type_x> --- set typedef_x = typedef_y
op# <=> OPERATOR <copy>
OPERATOR: <blank> blank object for object size
OPERATOR: <erase> £ill obj with null for object size
OPERATOR: <COUNT>
OPERATOR: <make>
OPERATOR: <destroy>
OPERATOR: <INIT>
OPERATOR: <fetch>
- J
;8.5 Example structure .
TYPE: POINT: \ --
\ Defines a type called POINT: with the following fields )
PROVIDER: NOOP \ defines the address provider, defaults to NOOP
O OFFSET: \ defines the initial offset, defaults to O
INT: Y
INT: X
10 BYTES FIELD: FOO
\ fetch operation
:m default
20
;m
mruns to 2!
END-TYPE
- J

28.6 Data structures created by TYPE:

TYPE: definitions, fields, objects and so on all use a common data structure that is generated

by the defining words.



Chapter 28: ClassVfx OOP 345

These structures are associated with a word (the address provider) that can provide the starting
address of the structure implementation. By supplying the cfa of NOOP, no address is provided,
and so the structure is purely a template. For templates, address provider = 0 or NOOP, an offset
may also be defined. NOOP and 0 are the default address provider and offset of templates. )

A similar structure is used for instances of a TYPE:. These are created by the word MAKE-INST.

28.6.1 TYPE: definitions

The following structure is created by TYPE:

( 0
header standard PFW layout

0 jmp do_type 5 bytes

1 cfa of address provider 4 bytes

2 1initial offset 4 bytes O for class

3 1link to last field defined 4 bytes

4 type size - final offset 4 bytes

5 Magic number 4 bytes

6 anchor of instance method chain 4 bytes

7 anchor of type method chain 4 bytes

8 1link to previous type defined 4 bytes

9 private wordlist ? bytes

- J

28.6.2 MAKE-INST definitions

The following structure is created by MAKE-INST

( N
header standard PFW layout

0 jmp do_inst 5 bytes

1 cfa of address provider 4 bytes

2 offset from start of type 4 bytes

3 1link to last instance of type 4 bytes

4 size of instance data 4 bytes

5 0 4 bytes

6 pointer to TYPE/CLASS 4 bytes

7 data if static

- J

28.7 Local variable instances

When an instance is defined inside a colon definition, an uninitialised local variable/array is
built. Several instances can be built. Normally the size of all local variables is rounded up to a
cell boundary by the compiler

28.8 Defining methods

: method, \ struct "<method>" -- struct “xt
Given a TYPE structure, lay an entry in one of the method chains.

M \ struct "<method>" -- struct ; :M <operator> <actions ...> ;M
defines the start of a method. The method/operator name must follow.



346 VFX Forth for macOS X

M \ struct -- struct ; SFP012
marks the end of a method definition.

: MRUNS \ struct "<method>" "<word>" -- struct ; MRUNS <operator> <word>
Defines a method which runs a previously defined word.

28.9 Create Instance of an object

: CREATE-INST \ "<name>" -- ; -- addr
From VFX Forth v4.4, this is a synonym for CREATE. When compiling on previous VFX versions
instances needed to be immediate.

: make-inst \ class -- ; i*x —-- j*y ; build instance of type
Builds an instance of a TYPE:. This word has serious carnal knowledge of the internal workings
of VFX Forth. Don’t call us for help!

28.10 Defining TYPE: and friends

create type-template \ -- addr
The type chain from which others are derived.

CREATE ptr-template \ -- addr
The ptr chain from which others are derived.

28.10.1 TYPE definition

: type:-runtime \ type-struct --
The run-time action of children of TYPE:.

: CURR-TYPE-SIZE \ - u
Use between TYPE: <name> and END-TYPE to return the current size of the type.

: TypeChildComp, \ xt —-
Compile a child of TYPE:.

: type: \ -- struct ; --
Start a new TYPE: definition.

: PTR: \ -- struct ; --
Make a new structure defining word.

: end-type \ struct --
Finish off a TYPE: definition

: EXTEND-TYPE \ "<type>" -- struct ; EXTEND-TYPE <type> ... END-TYPE
Extend the given TYPE: definition.

: SUPERCLASS \ struct "<type>" -- struct
Use this inside a TYPE: definition before defining any data or methods. The current type will
inherit the data and methods of the superclass.

: INHERITS \ struct "type" -- struct
A synonym for SUPERCLASS.

: provider: \ struct "name" -- struct ; <name> is address provider
Sets a different address provider.

: with: \ -- ; WITH: <some-provider> LINE: <myline>
Used before declaring an instance to override the default address provider.

: SKIPPED \ struct size -- struct



Chapter 28: ClassVfx OOP 347

Increase overall size of struct by size. SKIPPED can be used to jump over items from a previous
instance.

: OFFSET: \ struct offset -- struct

Define the offset of a TYPE: as starting at a value other than zero. Must be used before any
data is defined.

: TypeCast: \ -- ; TYPECAST: <inst> <type>

Forces a previously defined instance to be a pointer to a type/class.

SYNONYM PointsTo: TypeCast: \ -- ; synonym for TYPECAST:

Forces a previously defined instance to be a pointer to a type/class.

: type-self \ -- type

Used in TYPE: <name> ... END-TYPE to refer to the type/class being defined.
: EXECUTE-MEMBER-METHOD \ struct-inst member-inst methodid ---

Attempt to execute method for inst. Return true if successful.

: EXECUTE-PTR-MEMBER-METHOD \ member-inst methodid ---

Attempt to execute method for inst. Return true if successful.

: EXECUTE-MEMBERS \ inst method --

Apply the given method to all members of the instance of a type/class.
: TWIST-STRUCTURE \ inst --

Twist structure method

: INIT-STRUCTURE \ inst --

Init structure method

28.11 Dot notation parser

In order to deal with structures and fields without having to backtrack the input stream or the
execution order, an additional stage is added to the Forth parser to allow phrases of the forms:

inst.field
inst.field.field
type.field

type.field.field

to be parsed, where each item is separated by a dot character. The first item must be an instance
of a type or a type. If it is an instance, the address is provided, otherwise the base address is
assumed to be on the stack. Any items between the first and last item add their offsets to the
address, and the last item performs the usual operation of the field as defined by an operator.
For example:



348 VFX Forth for macOS X

( N
type: point:
int: x0
int: yO

:m <opl> ... ;m
:m <op2> ... ;m
end-type

point: Mypoint
5 to MyPoint.x0
- J

We might define a line as joining two points:
( )
type: line:
point: pil
point: p2

end-type

line: MyLine
5 to MyLine.p2.y0

: must-be-inst-throw \ xt —-
THROW because the xt is not of an instance of a type.

: class-ise-throw \ —-
THROW because we have misconstructed a CLASS.

: COMP-1ST-STRUCT =** \ operator cfa flag --

Compile the first part of a dotted phrase. Instances of TYPE: or POINTER: are the only valid
cfa’s.

: COMP-MIDDLE-STRUCT ** ( operator cfa flag --- )
Compile the middle portions of a dotted phrase. Instances of TYPE: are the only valid cfas.

28.11.1 Compiling for VFX v4

VFX v4 provides a hook in the interpreter loop especially for object package parsers.

: +structures runword \ --
Switch on the structure compiler.

: -structures  runword \ --
Switch off the structure compiler.

28.11.2 Compiling for VFX v5

VFEX v5 uses recognisers for all parsers. Installing a dot notation parser is something of a kluge
as the minimum has been done to make code work without a total rewrite of the parsing code.

: dotNotation? \ -- flag
Return true if the text at POCKET appears to be a well-formed dot notation string

2variable DotPS$ \ -- addr
Temporarily holds text string address and length.



Chapter 28: ClassVfx OOP 349

isDotText? \ c-addr u -- flag
Return true if the text appears to be a well-formed dot notation string.

> doDotText ’ doDotText ’ postDotText RecType: r:classVFX \ -- struct
Contains the three actions for dot parsers.

: rec—classVFX \ caddr u -- r:float | r:fail
The parser part of the floating point recogniser.

. +structures runword \ --
Switch on the structure compiler.

: —structures runword \ --
Switch off the structure compiler.






Chapter 29: CITAO - C Inspired Active Objects 351

29 CIAQO - C Inspired Active Objects

CTAO is an OOP package modelled on C++ for VFX Forth. CIAO is designed to provide easy
interfacing to host operating system structures that are built around a C++ model.

The source code for CIAO is in the Lib\oop\ Ciao directory, as are several example class files.
To rebuild CTAO, compile the file ciao.bld.

29.1 Token and Parsing Helpers

Various utilities and factors useful for parsing text.

buffer: token-buffer

A Memory buffer used to hold the result of the last token parse. The size of this buffer comes
from the environement variable MAX-CHAR and is MAX-CHAR + 1 characters in length since
the string is stored as a counted string.

: new-word \ char -- $
This is a replacement for WORD which places the output in the token buffer.

: peek-token \ -- c-addr u
Copy the next token into the TOKEN-BUFFER without permanent change to the input spec-
ification (uses SAVE-INPUT and RESTORE-INPUT). Returns TOKEN-BUFFER as a c-addr

u pair.

: drop-token \ —-
Throw away the next token *without* corrupting TOKEN-BUFFER.

: ciao-token \ -- c-addr u
Grab the next space delimited token and return c-addr u. Fills TOKEN-BUFFER.

: bracketed? \ c-addr u -- flag
Is the string C-ADDR, U bracketed?

29.2 The THIS Stack

The heart of this OOP implementation is the concept of "THIS". Just like C++ "THIS" returns
the currently active object instance pointer. Instance data is accessed via this pointer as are the
"virtual" methods.

THIS is kept in a form of stack.

: >this \ val --
Set THIS to VAL. (Preservation is taken care of in the compiler.)

: this \ -- instance-pointer
Return the current instance pointer. Only valid within a method declaration.

29.3 CIAO Constants and Internal Data Stores

SCOPE_PUBLIC Value CurrentScope \ -- n
When defining a derived class this holds the scoping type employed.

0 Value CurrentClass \ --n
When defining a class this points to its CLASS structure.



352 VFX Forth for macOS X

0 Value DefFlags \ --n
The declaration flags to be employed by the next method or data member defined in the current
class. Records information from control definitions such as VIRTUAL and STATIC.

0 Value CurrentDefClass \ -- class
During compilation of a code method, this value holds a pointer to the associated CLASS
structure.

0 Value CurrentDefXT \ —— xt

During compilation of a code method, this value holds a pointer to the XT of the definition.
See the CIAO-COLON hook for details.

0 Value CurrentDefList \ -- list

During compilation of a code method, this value holds a pointer to the internal method list to
be used. The list will either be the classes public, protected or private chain depending on the
scope at the time of the method declaration prototype.

variable class-base-mem \ -- addr

This variable holds the value of HERE after the building of CIAO. It is used to sanity check
the values passed to the instance destruction definition DELETE. Any passed value between
this variables value and the current HERE is in dictionary space and must be a static instance
which cannot be DELETEd.

29.4 Search Order Utilities

: NSEARCH-WORDLIST \ WIDN .. WID1 N C-ADDR U -- XT FLAG | O

A most useful definition. FIND takes a counted string but searches the whole search-order.
SEARCH-WORDLIST takes a C-ADDR U pair but only searches one wordlist. This definition
combines the two, and looks through a number of wordlists for a name described by a C-ADDR
U pair. Usually used in association with GET-ORDER to provide a more useful version of
FIND.

(FindClass) \ c-addr u -- ptr | THROW
Run through the current search-order lookin for the name supplied. If the name is found then
a >BODY @ is employed on the XT to look for the MAGIC_CLASS identifier. Never called
directly, this definition is run from FINDCLASS via CATCH to protect against the times when
the token is found but is not a class. Due to the exception handling abilities of CATCH under
VFX, this operation should be safe no matter what XT it is employed against.

: FindClass \ c-addr u -- ptr | ABORTs
Invoke (FINDCLASS) via CATCH. Will look for the token supplied and if found will ensure it
really is a class definition. ABORTSs with text if anything goes wrong.

29.5 Method Lists

The Method Lists hold all the required compiler information for each method within a class.
In CIAO, methods don’t ever actually exist as regular Forth words. Instead the act of defin-
ing a class builds the method lists. Each class has three of these, one for each valid scope
(public/protected and private).

29.5.1 The Format of a Method List.

| Link | Type | Paraml | Param2? | Name Len | Name Text |
| CELL | CELL | CELL | CELL | CHAR | n chars |




Chapter 29: CITAO - C Inspired Active Objects 353

Link Pointer to start of previous list entry (or 0 for top)
Type The type of the method (see types below)
Parami Parameter 1, varies depending on TYPE.
Param2 Parameter 2, varies depending on TYPE.

NameLen  Length of method name.

NameText The text for the method name.

29.5.2 TYPE_DATA

Describes an instance data buffer, PARAMI is the base offset from THIS.

29.5.3 TYPE_STATICDATA

Describes a static data buffer. A static data buffer is placed within the global dictionary rather
than being offset from THIS. The net result is that all instances of the owning class and any
derived classes share the same location for this data element. PARAMI is the address in global
space of the buffer start.

29.54 TYPE_CODE

The default code method type. PARAMI points to a CELL in global dataspace which will
contain the XT of the method body as soon as it becomes available. A CODE method cannot
be re-defined or rewritten and it’s behaviour is inherited by any derived class.

29.5.5 TYPE_STATICCODE

The second type of code method. It behaves in a similar fashion to TYPE_CODE except the
instance pointer THIS is not valid within the method body. These means that a static member
has no access to any other member of the class which is non-static. A static member can also be
invoked from a colon definition or the interpreter by using the "named scope override" syntax,
which does not require an instance pointer. Primarily used to store "normal" functions in a
restricted namespace. Ie "do <something> in the name of <some class>"

29.5.6 TYPE_VIRTUALCODE

One of the most useful syntactic additions to C++ was the virtual method. A virtual method
can best be described as a method in a base class which you expect to have to modify or replace
in a derived class. PARAMI holds a 0 based index into a table of XTs called a "vtable". Each
class has a vtable which in the case of a derived class is initially inherited from the superclass. A
derived class can either omit its function body (and thus inherit the behaviour of the superclass)
or it can define its own body which can also optionally elect to invoke the superclass’s body by
using the named scope override syntax. Therefore a virtual method can be either modified or
replaced within the context of a derived class. A particularly useful feature of the usefulness of
virtual methods can be seen later.

29.5.7 TYPE_CLASS

This type of method specifies a static instance of another class as being a part of the current.
PARAMI specifies the class type whilst PARAM?2 specifies the offset from THIS for the instance
pointer of the contained class.



354 VFX Forth for macOS X

29.5.8 TYPE_CLASSPTR

A special form of data store which holds a pointer to a class instance. PARAMI specifies the
class type and PARAM2 the offset from THIS to a single cell. This cell will hold an instance
pointer which can be dynamically assigned.

29.5.9 The definitions which deal with lists are:

: list_link \ *entry -- *link
Modify a pointer to a list head to point to the link field.

: list_type \ *entry -- *type
Modify a pointer to a list head to point to the type field.

: list_paraml \ *entry -- *paraml
Modify a pointer to a list head to point to the paraml field.

: list_param2 \ *entry -- *param?2
Modify a pointer to a list head to point to the param?2 field.

: list_namelen \ *entry -- *namelen
Modify a pointer to a list head to point to the namelen field.

: list_name \ *entry -- *name

Modify a pointer to a list head to point to the name field.
.list-type \'n --

Given contents of a list entry’s type field print it’s name as an ascii text string.
.list-entry \ *entry --

Supplied with a pointer to a list entry this definition will print its contents in human readable
form.

.list \ *head --
Supplied with the address of a variable which points to a list entry this definition will walk
backwards through the linked list performing .LIST-ENTRY on each in turn.

: +LIST \ Type Paraml Param2 c-addr u *list-head --

Using the first 5 parameters lay a list-entry structure in the dictionary and add it to the end of
the list whose anchor address is at the address pointed to by *LIST-HEAD.

29.6 Operator List

Each class has a linked list called the Operator Chain. This list contains the mapping of
operator-id number against class method list entry (from above).

An operator structure entry consists of three fields, the link, the operator id number and a
method-list pointer.

: oplist_link ;
Given a pointer to an operator structure return pointer to link

: oplist_op# 1 cells + ;
Given a pointer to an operator structure return pointer to op#

: oplist_list 2 cells + ;
Given a pointer to an operator structure return pointer to *list

.op# \'n-—-



Chapter 29: CITAO - C Inspired Active Objects 355

Where possible print human readable description for operator id N

.oplist-entry \ *entry
Display an operator structure in human readable form.

.oplist \ *head --
Given a pointer to the head of an operator chain from a class, call .OPLIST-ENTRY for each
member.

: +0PLIST \ op# *list-entry *head --
Add record to the operator chain anchored at *HEAD

29.7 The CLASS structure

All classes defined have the same structure:

( )

Size Navigation Word Useage

CELL class_magic A magic 32 bit number used
to signify a CLASS structure.

CELL class_super Pointer to parent class for
a derived class object.

CELL class_private Method list anchor for PRIVATE
definitions.

CELL class_protected Method list anchor for PROTECTED
definitions.

CELL class_public Method list anchor for PUBLIC
definitions.

CELL class_opchain Anchor for the operator chain
for this class.

CELL class_sizeidata Size of Instance data required.

CELL class_#vtable Number of entries in the
virtual method table.

CELL class_pvtable Pointer to the virtual method
table.

= v

.class \ "name" --

Display as much information about the class "name" as possible in a human readable form.

29.8 Method Searching

Definitions used to find a given method within a class.

: FindMethodInClass \ c-addr u *class -- ptr SCOPE | -1

Given a string containing the method name and a pointer to a class structure, this definition
attempts to get the method list entry for that method. On success a pointer to the method
list structure is returned as well as the SCOPE indicator, if the method does not exist in the
specified class a -1 is returned.

29.9 Default Method Actions

Any code method has a default action assigned when it is prototyped as a debugging aid.
Invoking a method for which you have defined no code will give a polite message via ABORT"



356 VFX Forth for macOS X

: vcrash \ 7?7 —-
Default action for prototyped virtual methods.

: scrash \ 7?7 —-
Default action for prototyped static methods.

: icrash \ 77 —-
Default action for prototyped instance methods.

29.10 Method Scope Specification

During class definition the scope can be altered. These definitions are used to control/handle
scoping.

: public: \ -
During CLASS definition set the current scope to public.

: protected: \ —-
During CLASS definition set the current scope to protected.

: private: \ -
During CLASS definition set the current scope to private.

: GetCurrentlList \ -- #*list-head
Return the method list pointer for the current scope.

29.11 Name Format Checking

In order to reserve characters to provide the syntax for typecasts, scope overrides and method
definition certain characters are illegal for method and class names.

Brackets are illegal, since they are used to perform typecasts.
Colon is an illegal character since it is used for scope overrides.
Period (dot) is illegal since it is used for compound invokations.

Star (*) is illegal since it declares an instance pointer.

: 7validname \ c-addr u --
Check the name string supplied is valid for either a class or name. Causes an ABORT" on
failiure.

29.12 Method Type Overrides

Methods and instance variables defined in a class can have various attributes, these are controlled
by simple indicator words.

: static \ -
Modify the global DEFFLAGS to include the static type.

: virtual \ —-

Modify the global DEFFLAGS to include the virtual type.
: post-def \ —-



Chapter 29: CITAO - C Inspired Active Objects 357

Clear the global DEFFLAGS, called after a member definition to reset ready for the next
member.

29.13 Data Method Prototyping

These routines are used within a CLASS or STRUCTY{ definition to define data members.

: buff: \ size "name" --

Define a data member called "name" of SIZE bytes. By default instance specific data is created,
if the member was modified by the STATIC keyword, then global space is allocated. STATIC
data members share the same memory location for all instances of the class and any derived
classes.

. cell: "name" --
A shortcut for a BUFF: of one cell.

: char: \ "name" --
A shortcut for a BUFF': of one char.

29.14 Code Method Prototyping

These routines are used within a CLASS or STRUCTY definition to define methods.

: static-meth: \ "name" —-

The action invoked by METH: when the STATIC modifier was present. Static members have no
access to THIS or instance data and like static data members are shared between all instances
of the owning class and any derived classes.

: virtual-meth: \ "name" --

The action invoked by METH: when the VIRTUAL modifier is in force. Virtual methods can
be given a code definition for a class and later modified in a derived class.

: instance-meth: \ "name" --
The default action of METH: creates a method associated with that class.

: meth: "name" --

Create a code member (method). Dispatches to one of the above definitions depending on any
applied modifiers.

29.15 Class Method Prototyping

These routines are used within a CLASS or STRUCTY{ definition to define members which are
in turn classes.

: inst: \ *class "name" --

Embed an instance of the supplied class under the given "name".

: iptr: \ *class "name" --
Create a typed pointer for the given class inside the current one. NOT IMPLEMENTED YET!

29.16 Operator Association

This code is used to associate an operator with a given method in a class or structure.

: FindClassOperator \ op# *class -- *list-entry true | false



358 VFX Forth for macOS X

Given an operator ID and a class pointer attempt to locate the method list entry associated
with that id.

: AddOperatorToClass \ op# *list-entry *class --
Routine used to bind a method-list entry to an operator id for the given class.

: oper: \ "name" --
Attempt to assign the method "name" as the action of the currently active operator in the
current class.

29.17 CLASS Definition

Code to create CLASS definitions.

: derived? \ "text" -- true | "" -- false
A look-ahead parsing definition used as a factor in CLASS to see if the class name is followed
by a " : [<scope>| <name> " string for defining derived classes.

: derived-scope \ c-addr u -- scope flag

Another parsing definition used by CLASS, after passing the DERIVED? test the next token
is checked for a scope setting. If the next token is one of "public, protected or private" then
the scope id is returned and a true flag indicating the next token has been used, otherwise
SCOPE_PUBLIC is assumed and a false return flag tells CLASS that this token is the actual

base class name.

: class \ "name [ : [ <scope> ] <super> ]" -- ; Exec: -- ptr

Begin a new class definition called NAME. If the new class is derived from a base class, the
method lists are copied depending on C++ scoping rules, as is the Instance data size, operator
chain and vtable size. When a CLASS definition is invoked it can do one of two things: If
invoked within another CLASS definition it will invoke the class member instance creation (See
previous section "Class Method Prototyping"), at any other time a pointer to the class structure
is returned.

: end-class \ -
Finish the definition of the current CLASS. If this is a derived class, the vtable from the parent
is copied. After that any new vtable entries have the default crash vector attached.

29.18 STRUCTures - A new slant on CLASS

Under CIAO (like C++) a structure is a class. The only technical difference is that by default,
members of a STRUCTY{ are public.

STRUCTY is provided for more syntactic reasons than technical. It is expected that STRUCTY{
is used to declare structures consisting entirely of public data mapped in a contiguous manner
so it can be be used with operating system supplied structure pointers.

: struct{ \ "name [ : <scope> <super>" -- ; Exec: -- ptr
Begin a new STRUCTure definition. Used in the same fashion as CLASS.
: ) \ -

Terminate a STRUCTure definition. See also END-CLASS.

29.19 Colon and SemiColon Override

CIAO overrides the standard Forth : and ; definitions to allow for method definitions. After



Chapter 29: CITAO - C Inspired Active Objects 359

a class has been defined it is necessary to write the actual code for any methods prototyped
within it. CIAO like C++ takes a method name as being in the form

<class>: :<method>

: ciao-colon \ "name" -- | "name" -- "name"

The new action of : when CIAO is installed. Pre-parses the name to see if it contains a double
colon. If not then the original Forth : is called. If a double colon is found the assumption is
that this definition is a method. The first portion (before the ::) is taken to be a class name
and the second portion the member name. The class is looked up and its *class pointer stored
in a global, then the method name is looked up within that class and it’s method list entry is
also stored. Compilation is then triggered by :NONAME and the XT of this definition kept for
use in ;

: ciao-semicolon \ -

The CIAO over-riding action of ; to handle the closing of method definitions. If the current
definition was not a method-def then only the original ; is invoked. Otherwise ; is invoked and
the XT of the method is patched into the class structure depending on the method type.

Do \ "name" --

The actual overload of Forth’s :

Y A

The actual overload of the base Forth ;

29.20 OOP Compiler/Interpreter Extension Core Part 1 -
EVALUATE BUFFER

This code is used by the method compiler extension in the Forth interpreter loop. It is a number
of definitions used to create strings to pass to EVALUATE.

1024 buffer: CompileBuffer
The buffer used to build strings for EVALUATE.

: ResetCompileBuffer \ -
Resets the COMPILEBUFFER for a new string.

: ciao-evaluate \ c-addr u --
All EVALUATES for CIAO come through here.

: EvaluateCompileBuffer \ --
Pass the COMPILEBUFFER string to CIAO-EVALUATE.

: $+RCB \ c-addr u —-
Append the string in C-ADDR U to the COMPILEBUFFER.
: n+RCB \'n--

Append the ascii representation of the number N to the COMPILEBUFFER. The string added
is in the form "$<hex> "

29.21 OOP Compiler/Interpreter Extension Core Part 2 -
Method Compile

These definitions handle the compilation of method-list entries depending on type.



360 VFX Forth for macOS X

: CompileMethod_DATA \ xlist-entry --
Compiles code for an Instance Data member. Generates a pointer by laying code for "THIS
<offset> +".

: CompileMethod_STATICDATA \ *list-entry --

Compiles code for a static data member. This is simply a literal address of the global space.

: CompileMethod_CODE \ xlist-entry --

Compiles code for an instance code member. If the member has already been bound to a
definition then the definition XT is compiled along with execute (i.e. " $<XT> execute " is

compiled) otherwise a pointer to where the XT will be stored is compiled with a @ execute.

: CompileMethod_STATICCODE \ *list-entry --
Compiles code for a static code member. This is a literal address of where the XT will be and
a fetch-execute.

: CompileMethod_VIRTUALCODE \ *list-entry --
Compiles code for a virtual method. It compiles the following code.
( N
$<virtual-method-index> \ the index into the vtable
cells \ convert to vtable offset
this \ Get current instance pointer
cell- @ \ Fetch objects vtable pointer
+ @ \ extract XT from vtable
execute \ and run it
J
: CompileMethod_CLASS \ *list-entry --

Compile code for a class instance member. This is almost identical to instance data.

: OperatorProcess \ *class --
Compile code for any current operatortype.

: MethodTokenCompileFromList \ *entry --
The global factor for this section. Given a method-list-entry it will dispatch to one of the
COMPILEMETHOD _xxx definitions depending on type.

29.22 OOP Compiler/Interpreter Extension Core Part 3 -
Single Token Check

The single-token check is used at the beginning of the Forths token interpret before the normal
FIND. This is used to provide some special overrides to single Forth tokens. Namely:

1. If defining a code method, other members of the current class can be invoked simply by name.
Therefore when defining a method any single token needs to be looked up in the method table
before checking the normal Forth dictionary.

2. A token can be preceeded by :: which enforces that the name is searched for in global name
space (the Forth dictionary) regardless. This is usually used to get you out of rule #1. If for
instance you are defining a method for a class which has a member called DUMP, simply entering
"DUMP" will compile a reference to that member, if you actually want to use the Forth DUMP
you would type "::DUMP"

3. A token can consist of a class-name and method name separated by a double-colon. NOT
IMPLEMENTED YET!. This should compile a reference to a STATIC member of a class.



Chapter 29: CITAO - C Inspired Active Objects 361

: single-token \ c-addr u -- flag

Does the single-token-check operation and returns TRUE if the token has been processed. If the
token should be passed on to the normal Forth lookup FALSE is returned.

29.23 OOP Compiler/Interpreter Extension Core Part 4 -

Compounds
: ProcesslstToken \ c-addr u -- ap O | code-to-throw
Used to handle the first part of a dot-notation compound. The first *token’ needs to ultimately
lay the code generate THIS and needs to locate the correct class structure pointer that begins
this invocation (called the address-provider). How the first token is actually translated depends
on a number of rules:

1. If defining a method, the first token may be a class or class pointer member of the current
class.

2. If the first token is surrounded by brackets it’s a typecast. the name in brackets identifies
the address provider whilst the instance pointer is assumed to already be top of the data stack.

3. Next it could be that the first token is a named scope override. (as in rule 3 for single-token)
This behaviour is NOT IMPLEMENTED YET! This is generally used for a virtual method in
a derived class to invoke the action of the virtual method associated with it’s parent.

4. Finally the token can either be a name in global space or a name defined as a LOCAL.

: ciao-hook \ c-addr u -- flag

This code receives a token that has fallen through the Forth FIND and NUMBER? cycle. If the
string does not contain a dot separator it is not a compound statement and false is returned.
Otherwise the string is split into a heap allocated token buffer using dot as the delimiter and
the following steps taken:

1. If in compile state code is laid to preserve the current THIS.

2. The first token is passed to PROCESS1ISTTOKEN above to obtain the instance pointer and
address provider.

3. NOT IMPLEMENTED YET. The middle tokens should be processed. any of these tokens
MUST represent a Class instance or class instance pointer as a member of the current address-
provider. Each middle token should compile/execute code to modify THIS and the address
provider each time.

4. The Final token is processed according to special rules. It must exist in the name space of
the current address provider. If we are defining a method for the current address provider all
three scope lists are valid, otherwise the method must be in PUBLIC name space. If successfully
located according to scope rules the method entry is passed to METHODTOKENCOMPILE-
FROMLIST (see earlier) to compile the invokation code for that method and any applicable
operator.

5. The code to restore the saved value of THIS is compiled.



362 VFX Forth for macOS X

29.24 Installing CIAO into VFX Forth

CIO can be installed into VFX v4 or vb onwards.

29.24.1 VFX v4.x

: ciao-classhook \ caddr len -- flag
The action of CLASSHOOK when CIAO is installed.

: ciao—undefined \ caddr len --
The action of UNDEFINED when CIAO is installed.

: +ciao \ -
Install CIAQ’s system hooks.

: -ciao A
Uninstall CIAO’s system hooks.

29.24.2 VFX v5.1 onwards

> noop ’ mnoop ’ postCiaoText RecType: r:CiaoHook \ -- struct
Contains the three actions for dot parsers.

: rec-CiaoHook \ caddr u -- r:CiaoHook | r:fail
The parser part of the floating point recogniser.

> noop ’ noop ’ postCiaoText RecType: r:CiaoUndef \ -- struct
Contains the three actions for dot parsers.

: rec-CiaoUndef \ caddr u -- r:CiaoUndef | r:fail
The parser part of the floating point recogniser.

: +ciao \ —
Switch on the CTAO parser.

: -ciao \ -
Switch off the CIAO parser.

29.25 Instance Creation Primitives

: dynamicnew \ *class -- this

The runtime code called for instances created via DNEW. Allocate a block of heap memory
large enough for the 2 control cells (*class pointer and vtable pointer) followed by the instance
data. The THIS pointer returned is the beginning of the instance data.

: staticnew \ *class "name" -- ; Exec-child: -- this

Create a new instance of class called "name" in the dictionary. The instance is a child of
CREATE which has a body containing the *CLASS value, a pointer to the instance vtable then
the instance data. At runtime a THIS instance pointer is returned, this is 2 cells on from the
PFA (IE past the vtable.) Forms the action of NEW when invoked outside of a : definition.

: localnew2 \ *class frame-add --

I apologise unreservedly for this trick. This definition performs the compile-time tail of local-
new. Since LOCALNEW performs a create..does> I cannot add any compile time tail so I tick
this definition and push it on the return stack! Sorry ;-)

: localnew \ *class "name" --

This definition forms the action of NEW when making a local method. It hacks into VFX locals
to create a new entry on the local frame and lays the code necessary (in LOCALNEW2) to



Chapter 29: CITAO - C Inspired Active Objects 363

setup the two control cells AT RUNTIME. The net result is a very fast and useable named local
instance. Implementors beware, this is the most system specified piece of code imaginable.

290126 InstandexCreatiotnis

State smart definition to create a new class instance on the heap. returns a pointer to the
instance which can be stored. A heap allocated instance pointer can be held for as long as
required and does not go "out of scope" until explicitly removed with DELETE. Use this type
to create a dynamic instance which you can safely return from a method/colon definition. Note
that unlike in C++ you must use DNEW in CIAO for heap allocation.

: new \ *class '"name" --

A state smart definition to create a named instance of a class. When used within a : definition
the object is created in a locals frame (one is created if required). When invoked outside of a
definition the instance space is ALLOTed from the dictionary. The instance goes out of scope
(and is implicitly DELETEd when local) at the same time as the name goes out of scope. For a
static instance, i.e. one in the dictionary, it remains in scope for the lifetime of the application
(until BYE) whereas for a local instance it is DELETEd and goes out of scope at the end of
the definition. Therefore please note that returning a pointer to a local instance *will* break
your code - you must DNEW instead. You cannot ever explicitly DELETE a named instance.
In future you will be allowed to attempt it and the effect will be to call the destructor method,
as will happen when scope is lost anyway.

: delete \ this --

DELETE is used to release the memory of a dynamic instance created via DNEW. Memory
release for static and local instances is automagic. Any valid destructor is called prior to releasing
the memory back to the free-heap. In future performing DELETE on a static or local will simply
invoke the destructor.

29.27 AutoVar - An example of a Class

This example shows how to create and use a class called AUTOVAR. This class contains one
private data member and two public methods. one method initialises the data store, the other
will return the contents of that store and post-increment it.

Defining the class
class AutoVar \ begin a new class definition
private:
cell: m_data \ Where the count will be stored
public:
meth: read++ \ The method to read and increment
meth: set \ The method to initialise the count
end-class \ end definition

\




364 VFX Forth for macOS X

Coding the Methods

-
: AutoVar: :read++ \ -—— n ; Method

1 m_data dup @ -rot +! \ read and increment data store
: AutoVar::set \ n -- ; Method

m_data ! \ write to data store
\
Test Code

Here are three test routines which each take an initial value for an AutoVar type and then run
the read++ method 10 times writing the result. The first case uses a static instance of AutoVar,
the second case uses a local instance, and finally the third case shows how to use a heap allocated
instance and how to typecast an object pointer. Note that in CIAO there are separate words
for static/local instances with NEW and heap allocation with DNEW.

-
AutoVar new Foo \ create a static instance of Autovar
. testl \ n —— ; Test static instance FO0O
foo.set \ init with supplied index
10 0 do
cr foo.read++ . \ read and increment 10 times!
loop
: test2 \ n -- ; Same thing, local class tho’
AutoVar new Foobar \ create local instance of AUTOVAR

foobar.set
10 0 do

cr foobar.read++ .
loop

: test3 \ n —- ; Third time, heap allocated instance
AutoVar dnew \ create instance and store pointer
tuck (AutoVar).set \ use type cast on heap pointer )
10 0 do

cr dup (AutoVar).read++ . )

loop

delete \ destroy heap instance




Chapter 29: CITAO - C Inspired Active Objects 365

29.28 AutoVar2 - Another Example

AUTOVAR2 is a class derived from AUTOVAR to extend its functionality. AutoVar2 has no
publically accessable methods but uses operators to perform the read and initialise.

-
Class AutoVar2 : private Autovar \ Create new class, inherit from
\ Autovar with all methods in
\ private scope.
oper: read++ \ Default operator performs
\ read++ method
to oper: set \ TO operator performs set method

end-class

N

The test procedures could now look like:

~
AutoVar2 new Foo \ create a static instance
. testl \ n —— ; Test static instance F0O
to Foo \ init with supplied index
10 0 do
cr foo . \ read and increment 10 times!
loop
: test2 \ n -- ; Same thing, local class tho’
AutoVar2 new Foobar \ create local instance
to Foobar
10 0 do
cr foobar .
loop
k

29.29 Class Library

The following code documents the beginning of an MFC style class library for CIAQO.
29.29.1 Base Operators

The following operators have been defined and are used through out the base classes whenever
applicable. Each class will document its use of these operators.

operator: ++ \ —-

Increment by 1

operator: -- \ —-
Decrement by 1

operator: cout<< \ -—-



366

Display applicable output

operator: cout<<hex \ —-

Display applicable output in hex

operator: xywh-> \ x y width height --
Store X Y WIDTH HEIGHT parameters.

operator: lprect-> \ *Rect --

Store X Y WIDTH HEIGHT obtained from a RECT structure.
operator: [] \ index -- char

Get array element at index.

operator: []to \ index val --

Set element at index: <idx> <val> [|to <class>

operator: (LPCTSTR) \ —— z$

Get contents as a zero-termintated string.

operator: (LPCTSTR)to \ z$§ —-

Set contents from a 0 terminated string pointer.

operator: += \ instance-pointer --
Concatenate/Add from a class of same type.

operator: (LPCTSTR)+= \ z$ —-

Concatenate from a 0 terminated string.

29.29.2 Primitive Types

VFX Forth for macOS X

This collection of classes represents the primitive data types found in C++. They can be though

of as extended Forth VALUEs.

INT

This data type represents a simple number which is basically equivalent to a CELL. It has no

methods publically callable but simply uses operators to access.

The following operators have been assigned to methods for this class.

<default>
No operator, returns contents.

to Set content from stack item.
addr Get the address rather than contents.
++ Increment by 1.

- Decrement by 1.
cout<< Write contents to console.

cout<<hex
Write contents as hex to console.



Chapter 29: CITAO - C Inspired Active Objects 367

29.29.3 Windows Types

Defines some simple classes for Windows data-types. Most simple types under Windows are just
32 bit numbers. Therefore the following types are all simply private scope derived from the INT
type documented before.

LPVOID HANDLE HWND HMENU
HINSTANCE LPCTSTR LONG DWORD

29.29.4 Windows Structures

The following structures are defined using standard Windows names. all data members are one
of the previously defined Windows types.

(%ECT CREATESTRUCT POINT }

29.29.5 CPOINT - Point Class

This is simply a class version of the POINT structure. The reason for the separation is that
the STRUCTY{ version can be typecast from an OS supplied point-struct into a CIAO POINT
struct or CPOINT class

The CPOINT class is publicly derived from POINT with a method and operator for TO supplied
which takes another point as the source.

29.29.6 CRECT - Rect Class

This is a class version of the RECT structure. The CRECT class is publicly derived from RECT
with methods and operators.

( N
class CRect : public Rect

public:

meth: Width
meth: Height
meth: SetXYWH
meth: SetLPRECT
meth: dump

-> oper: SetLPRect
xywh-> oper: SetXYWH
lprect-> oper: SetLPRECT
cout<< oper: dump
- %

29.29.7 CString - Dynamic String Class

A CString object contains a variable-length sequence of characters. It also provides functions
and operators which allow for easy to Concatenation and comparison operators, together with
automatic memory management. CString objects are far easier to use than ordinary character
arrays.

CString is based on the FORTH char data type.



368 VFX Forth for macOS X

CString Objects have the following useful characteristics:

e (CString objects can grow as a result of concatenation operations. The memory management
is automatic.

e You can easily substitute CString objects for const char* and LPCTSTR function arguments
by using the (LPCTSTR) operator or its ) associated method GetLPCTSTR.

e You can lock a CString object to provide a character buffer at a fixed address and size for
hacking.

Variable Type Arguments

Some of the members of this class can take either a character or a zero-terminated string as
a parameter. This is autodetected by the simple assumption that any value greater than the
maximum value storable in a char is an array pointer. For 8 bit character systems this means a
pointer cannot be in the range 0..255.

The CString Class Members

: CString: :ResizeBuffer \ rsize --

Resize the current string buffer memory to RSIZE chars.

: CString::Empty \ -

Release all string memory and return to init state.

: CString: :GetAt \ idx -- char

Return the ascii character at IDX position in the string.

: CString: :GetLength \ --n

Return the length of the current string.

: CString::GetLPCTSTR \ -- z$

Return a pointer to the string as a zero-terminated. After obtaining this pointer, any operation
which modifies the string may destroy this pointer.

: CString: :IsEmpty \ -- BOOL

Return TRUE if there is no string information.

: CString: :SetAt \ idx char --

Place character CHAR, at the IDX position in the string.

: CString: :Add \ *CString --

Add the contents of the CString class pointed to onto the end of the current string.

: CString::AddLPCTSTR \ z$ --
Add the supplied zero terminated string to the end of the current.

: CString: :SetLPCTSTR \ z$ --
Replace the current string with the supplied zero terminated one.

: CString::to \ *CString --
Replace the current string with the contents of the CString class whose pointer is supplied.

: CString: :Compare \ z$ -- flag
Compare the current string with the zero-terminated string supplied.

: CString: :CompareNoCase \ z$ -- flag
As CString::Compare except character case is ignored.

: CString: :Mid \ first count -- *CString(dynamic)



Chapter 29: CITAO - C Inspired Active Objects 369

Return a new dynamic instance pointer for a CString which contains a substring of the current.
COUNT characters from index FIRST are copied.

: CString::Left \ count -- *CString(dynamic)
Return a new dynamic instance pointer for a CString which contains a substring of the current.
COUNT characters are copied from the start (left) of the string.

: CString::Right \ count -- *CString(dynamic)
Return a new dynamic instance pointer for a CString which contains a substring of the current.
COUNT characters are copied from the end (right) of the string.

: CString::Delete \ index count -- newlen

Remove COUNT characters from the string starting at the INDEX position. If count+index
exceeds the string length it is trucated. Also returns the new length of the string after the
delete.

: CString::Insert \ index z$ -- int | index char -- int

Passed either an index and a z$ or an index and a character this will perform an insert operation.
The string or character supplied is inserted starting at the original offset INDEX. Returns the
new length of the string.

: CString: :MakeUpper \ —-
Convert the classes string data to upper case where possible.

: CString: :MakeLower \ --
Convert the classes string data to lower case where possible.

Operator Associations

The following operators have been assigned to methods for this class.

(] GetAt — Get character at specified index.
[1to SetAt — Set chatacter at specified index.
(LPCTSTR)
GetLPCTSTR — Return Oterminated string pointer. )
to to — Assign from another CString.
(LPCTSTR) to
SetLPCTSTR - Assign from a 0 terminated string. )
+= Add — Append from another CString.
(LPCTSTR) +=

AddLPCTSTR - Append from a 0 terminated string. )






Chapter 30: Internationalisation 371

30 Internationalisation

Internationalisation often requires support for strings longer than the 255 characters supported
by counted strings in the 8 bit character set used by VFX Forth during application development.
Such strings may also not be in the character set or size used by the application developer.

Internationalisation often requires third parties to be able to convert text strings without having
to recompile the application.

Forth system developers and vendors need to make their systems compatible with their clients
existing approaches to internationalisation.

This implementation supports all these requirements, and is a compatible superset of the current
ANS Forth Internationalisation proposals, which are available from the downloads section of the
MPE web site at: http://www.mpeforth.com

If you are using this software with MPE’s VFX Forth system, the source code is in the file
Lib\International.fth.

MPE acknowledges the help and support of Construction Computer Software, Cape Town, South
Africa, in the design of this software. The CCS application has been internationalised for many
years, and their experience has been invaluable, both in defining the Forth 2012 standard and
in developing this code.

30.1 Long string parsing support
: parse/l \ char -- c-addr len ; like PARSE over lines

Parse the next token from the terminal input buffer using <char> as the delimiter. The text up
to the delimiter is returned as a c-addr u string. PARSE/L does not skip leading delimiters.
In order to support long strings, PARSE/L can operate over multiple lines of input and line
terminators are not included in the text. The string returned by PARSE/L remains in a single
global buffer until the next invocation of PARSE/L. PARSE/L is designed for use at compile
time and is not thread-safe or winproc-safe.

30.2 Data structures
30.2.1 Rationale

Although internationalised strings may be referenced by the addresses of suitable data structures,
these addresses will change from build to build of the application. The implementation here
permits strings to be given a number which does not change between builds. Together with a
compile-time hook which can generate a text file in the development language, application strings
can be translated in external text files without rebuilding the application. This is required in
situations in which translation is performed locally by dealers or by users themselves.

The /TEXTDEF structure described below permits messages to be accessed either by message
number or by the address of the structure.



372 VFX Forth for macOS X

30.2.2 /TEXTDEF structure

Internationalisation of messages relies on a data structure /TEXTDEF. The /TEXTDEF struc-
ture contains a link to the previous TEXTDEF or #TEXTDEF definition, a message identifier
which is 0 for non-databased strings in the ISO Latinl coding, the address of the text, and the
length of the text in bytes. The text is followed by two zero bytes, and the text is long aligned.
The /TEXTDEF structure is a superset of the /ERRDEF structure used for error messages by
VFX Forth.

The words #TEXTDEF and ERR$ are DEFERred. #TEXTDEF is used by TEXTDEF. The
user can install alternative versions of these words for internationalised applications. In this
context, #TEXTDEF and friends can be used as the basis of any text handler that requires
translation. Note that #TEXTDEF can be modified so that a message file is produced at
compile time, and ERR$ modified so that the message file is accessed at run time. Similarly,
providing that the application language is correctly handled, the run time can access translated
messages in other languages, character sets and character sizes.

The messages are linked into the same chain as is used for all error strings that can be interna-
tionalised. This chain is anchored by the variable TEXTCHAIN.

-
struct /textdef \ -- len ; DOES NOT include constant definition

int td.value \ value that identifies string

int td.link \ link to previous TEXTDEF td.link field

int td.id \ 0 or message ID

int td.caddr \ address of text string

int td.len \ length of text string

int td.lenlInline \ length of inline text string in bytes
end-struct
-

30.2.3 String structure

30.3 Creating and referencing LOCALE strings

In this implementation, the ANS locale string identifier "lsid" is a pointer to a /TEXTDEF
structure.

defer 1$CompileHook \ “textdef --

A DEFERred hook that the user can modify to produce additional data at compile time. For
example, the hook is commonly replaced by code that generates a text file in the development
language. This text file then serves as the basis for translation to other languages.

: L, \ n -- ; compile a long string

This can be thought of as a multiline version of ",. First a /TEXTDEF structure is created.
Then it collects multiline text and lays down an inline string with two zero bytes as termination.
The start of the string is aligned on a four-byte boundary. The end of the string is padded to a
four-byte boundary.

defer #TEXTDef \ n -- ; —— n

Define a constant and associated message in the form: <n> #TEXTDEF <name> "<text>".
Execution of <name> returns <n>.

: NextText \ -- addr



Chapter 30: Internationalisation 373

Returns the address of the variable holding the next constant used to identify an internationalised
string.

: NextText# \ --n
Return the contents of NEXTTEXT and increment NEXTTEXT.

: TextDef \ -=— ; —— n ; used as throw/error codes
Define a constant and associated message in the form: TEXTDEF <name> "<text>". Execution
of <name> returns the constant automatically allocated by NEXTTEXT#.

: 1$find \ n -- struct|0 ; produce pointer to TEXTDEF structure
Given a message number n, return the address of the /TEXTDEF structure containing its
details.

: 1$count \ 1lsid -- c-addr u
Given a /TEXTDEF structure, the address and length in bytes of the text string are returned.

: 1$addr \ 1lsid -- c-addr
Given a /TEXTDEF structure, the address of the text string is returned.

(1$") \ -- 1lsid
The runtime action of L$" to return the address of the /TEXTDEF structure associated with
the string compiled by L$".

: L$" \ —— ; -- 1sid
Used inside a colon definition to compile a string that will be internationalised. At run time the
address of the TEXTDEF structure will be returned.

: LS" \ -—— ; —— caddr u

Used to compile or extract a long string. When used during compilation L$", is used to a lay
down a string for internationalisation. At run time the address and length of the string are
returned.

: ZLS" \ --— ; —- c-addr
Used to compile or extract a zero terminated long string. When used during compilation L$",
is used a lay a string for internationalisation. At run time the address of the string is returned.

30.4 ANS LOCALE word set

In this implementation, the ANS locale string identifier "lsid" is a pointer to a /TEXTDEF
structure.

defer set-language \ lang -- ior

Set the current language code. At the very least, the action of this word must be to set the vari-
able <LANGUAGE>. The action may also include updating the string data in the TD.CADDR
and TD.LEN fields of all the /TEXTDEF and /ERRDEF structures. If the operation succeeds,
the returned ior is 0. If the operation fails, the returned ior is non-zero and the meaning of the
ior is implementation dependent.

: get-language \ -- lang
Return the current language code.

defer set-country \ country -- ior

Set the current country code. At the very least, the action of this word must be to set the
variable <COUNTRY>. The action may also include updating locale-sensitive routines such as
date and time display formatting words. If the operation succeeds, the returned ior is 0. If
the operation fails, the returned ior is non-zero and the meaning of the ior is implementation
dependent.



374 VFX Forth for macOS X

. get-country \ -- country

Return the current country code.

: 1 \ —— ; -- 1sid ; L" <native text>"

A locale-sensitive version of C" which returns an Isid (string indentifier) at run-time. The native
text may be compiled inline

Interpetation: The interpretation semantics for this word are undefined.

Compilation: \ "ccc<quote>" — Parse ccc delimited by a " (double-quote) and append the
run-time semantics given below to the current definition.

Runtime: \ — Isid Return Isid, an identifier for a locale string. Other words use lsid to extract
language specific information.

: LOCALE® \ 1lsid -- addr len(au)

Return the address and length in address units of the string (in the current language) that corre-
sponds to the native string identified by Isid. The format of the string at addr is implementation
dependent. The length of the string is returned in address units so that it may be copied by
MOVE without knowledge of the character set width.

Text macro substitution is performed by the Forth 2012 word *fo{substitute)

: substitute \ src slen dest dlen -- dest dlen’ n ; 17.6.2.2255

Expand the source string using text macro substitutions, placing the result in the buffer dest/dlen
and returning the destination string dest/dlen’ and the number n of substitutions made. If an
error occurred, n is negative. Ambiguous conditions occur if the result of a substitution is too
long to fit into the given buffer or the source and destination buffers are the same.
Substitution occurs left to right from the start of src/slen in one pass and is non-recursive. When
text of a potential substitution name, surrounded by % (ASCII $25) delimiters is encountered
by SUBSTITUTE, the following occurs:

a) If the name is null, a single delimiter character is passed to the output, i.e., %% is replaced
by %. The current number of substitutions is not changed.

b) If the text is a valid substitution name, the leading and trailing delimiter characters and
the enclosed substitution name are replaced by the substitution text. The current number of
substitutions is incremented.

c) If the text is not a valid substitution name, the name with leading and trailing delimiters is
passed unchanged to the output. The current number of substitutions is not changed.

d) Parsing of the input string resumes after the trailing delimiter.

The Forth 2012 standard contains a reference implementation for substitute and its friends
replaces and unescape

30.5 ANS LOCALE extension word set

In this implementation, the ANS locale string identifier "lsid" is a pointer to a /TEXTDEF
structure.

defer LOCALE-INDEX \ 1lsid --



Chapter 30: Internationalisation 375

Updates the internal data structure. Useful if structures are added and changes to internal
structures are required.

: LOCALE-LINK \ 1lsidl -- 1sid2
Given the address of one LOCALE structure, returns the address of the next.

defer LOCALE-TYPE \ addr len --
Displays the LOCALE string whose address and length in address units are given.

: NATIVEQ \ 1lsid -- c-addr len
Given a LOCALE structure, returns the address and length of the corresponding DCS native
string that was compiled by L".

30.6 Windows language support

Windows contains a large number of predefined language constants of the form LANG_xxx and
SUBLANG_xxx. A Windows locale is identified by merging a pair of these as described below.

o e +
| SubLanguage ID |  Primary Language ID |
e e o +
15 10 9 0 bit

These constants can be viewed from VFXForth by using:
SIM LANG_
SIM SUBLANG_

These codes use 0 as the current or neutral code, which matches using 0 as the language code
for the development character set, which is ISO Latin 1 for VFX Forth. In this set, the seven
bit ASCII character set defined by ANS Forth represents characters 0..127.

: langID \ primary secondary -- langid
Generate a Windows language code from the primary and secondary codes, e.g.
LANG_SPANISH SUBLANG_SPANISH_MEXICAN langid






Chapter 31: Obsolete words 377

31 Obsolete words

The following words are now obsolete and have been removed from the VFX kernel. If their use
is required, they may be found in LIB\OBSOLETE.FTH.

: ALIGN&ERASE \ -- MPE. 0000

Align the dictionary pointer, zeroing any intermediate memory. This word is now obsolete as
ALIGN now performs the same action.

: HALF-ALIGN&ERASE \ —-

HALF-ALIGN the dictionary pointer, zeroing any intermediate memory. This word is now obsolete
as HALF-ALIGN now performs the same action.

: M/MQOD \ d1 n2 -- rem quot MPE. 0000

Signed version of UM/MOD. This word is obsolescent and should be replaced by FM/MOD (floored
division) or SM/REM (symmetric division).

: CONVERT \ udl c-addrl ul -- ud2 c-addr2 6.2.0970

An obsolescent word corresponding to >NUMBER DROP.

cell +USER SPAN \ -- addr

Required by EXPECT and Forth 83 systems.

: EXPECT \ c-addr +n -- 6.2.1390

Wait for input from the console. Data is stored in the buffer at c-addr for upto n characters.
After input is complete due to either a full buffer or a carriage return, the length of the input
string is also stored in the variable SPAN. This word is marked as obsolescent in the ANS
specification, and new code should use ACCEPT instead.

: v-find \ caddr voc-xt -- cfa/cfa/caddr +1/-1/0 SYS.0000

A near equivalent to SEARCH-WORDLIST retained in VFX Forth as a concession to PFW 2.x users.
:all \ - -1-1

A ProForth 2.x compatibility word.

: from-file \ start end "<name>" --

A ProForth 2.x compatibility word.

: pto \ - MPE. 0000
Skip parsing until an ASCII 12 pagethrow is encountered.

: winapphandle@ \ -- hwnd

Return the console parent frame window handle.

: OFFSET \ x "<spaces>name" -- ; Exec: n -- nt+x*4 MPE. 0000

Create a new offset called name. On execution of name the supplied address will be incremented
by x cells.

: BOFFSET \ x "<spaces>name" -- ; Exec: n -- n+x MPE. 0000
As with OFFSET except the increment is specified in bytes rather than cells.
: instance \'n--; -- addr MPE. 0000

Create a named instance of a named structure. A memory buffer n bytes long called name is
built. When name is executed the address of the buffer is returned. Use buffer: instead.



378 VFX Forth for macOS X

31.1 Removed from VFX Forth v4.0

: <<n \ x1 u-- x2 MPE. 0000
Logically shift X1 by U bits left. Use 1shift instead.

: >>n \ x1 u--x2 MPE. 0000
Logically shift X1 by U bits right. The result of shifting by more than 31 bits is undefined. Use
rshift instead.

: 8>>n \ x1 u - x2 MPE. 0000
Shift x1 right by w bits, filling with the previous top bit. An arithmetic right shift. The result
of shifting by more than 31 bits is undefined. Use arshift instead.

($+) \ c-addr u $dest -—- MPE. 0000
Add the string described by C-ADDR/U to the counted string at $DEST. The strings must not
overlap. Use APPEND instead.

: z>here \ —-
Lay the counted string at PAD into the dictionary at HERE.



Chapter 32: Migrating to VFX Forth 379

32 Migrating to VFX Forth

VFX Forth is a major technical upgrade from the ProForth 2.x and other threaded-code Forth
compilers. This section describes some of the "gotcha’s" in porting code to VFX Forth from
ProForth, pre-ANS systems and non-optimising compilers.

VFX Forth is brutally intolerant of programming errors. We have found that this approach,
sometimes described as "crash early and crash often", leads to code with fewer lurking bugs.
One customer who converted a large application to VFX Forth found that VFX Forth crashes
revealed bugs that had been lurking for many years.

32.1 VFX generates native code
VFX Forth uses native code compilation with aggressive optimisation. This is perhaps the single

biggest difference between VFX Forth and ProForth. Execution speed is a primary goal, and
the benchmark figures show that we have achieved it.

Extra care should be exercised with any source code which requires knowledge of the underlying
architecure. This will particularly impact definitions which cause compilation and assembler
fragments. Many words are provided in VFX Forth to hide the implementation details.

32.2 VFX uses absolute addresses
The VFX Kernel runs in absolute address space just like any other Windows/Mac/Linux/DOS

application. There is no need to convert Windows addresses to Forth ones using words such as
REL>ABS and ABS>REL found in ProForth 2.x and some derivatives.

32.3 VFX is an ANS standard Forth

The VFX Kernel is based on the ANS language specification rather than Forth83. This intro-
duces a number of minor differences in the behaviour of the system and the code produced.

32.4 COMPILE is now IMMEDIATE

Previous MPE implementations used a non-immediate version of COMPILE which has "unpicked"
the following CALL instruction at run-time. This behaviour has been changed.

32.5 Comma does not compile

VFX Forth is a native code compiler. Threaded code systems allowed compilation by "comma-
ing" a CFA into the dictionary. This is no longer a valid method of generating code. The
ANS word COMPILE, should be used instead. Also the system must be in "compile state" when
COMPILE, is used.

32.6 COLON and CURRENT

Under VFX Forth, the CURRENT definitions wordlist is not modified by COLON (:). Also note
that : is no longer immediate.



380 VFX Forth for macOS X

32.7 The Assembler is built-in

The assembler within VFX is built in as part of the kernel since is used by the code generator.
The ASM and UNHOOK-ASM directives found in ProForth are redundant. VFX Forth does imple-
ment these two directives in a compatibility layer which will write a warning message to the
console hinting at non-portable code.

32.8 The Inner Interpreter is different

ProForth 2.x applications which relied on or modified the behaviour of the interpreter will not
port. VEX Forth has a unified interpreter rather than the C-LOOP and I-LOOP pair.

Both QUIT and INTERPRET are defered for those applications which must override the inter-
preter/compiler behaviour of the system but they should not be used for any new code.

32.9 The FROM-FILE word has gone

ANS specifies the ability to include source-code from ASCII text files. This behaviour is im-
plemented in VFX Forth. The MPE FROM-FILE handler code in ProForth 2 is not supported.
Programmers should look at the ANS definitions INCLUDED, INCLUDE-FILE and REFILL to un-
derstand the new approach.

32.10 Generic I/0

Although KEY and EMIT and friends are still DEFERred, we strongly recommend that you leave
them alone because many system tools rely on Generic I/O. This means that you should build
Generic I/0 tables for all devices you want to use. You can use the examples in LIB\GENIO
as models.

32.11 External API Linkage
The method used for linking to external library calls has changed radically. LIBFUNCTION: is
still supported in the compatibility layer but all new imports should use the EXTERN: syntax

described in this manual. The new syntax allows you to bind both C and PASCAL convention
definitions, as well as making the job of converting C header files easier.

32.12 DLL generation

The mechanism used by VFX Forth is completely different.

32.13 Windows Resource Descriptions

All the original MPE syntax for defining Windows resources such as menus and dialog-boxes
has been removed in favour of the new parser to handle Windows RC files.

The conversion of "old-style" resources to the new ones must be done "by-hand". The new
syntax is cleaner and easier to maintain as well as being largely compatible with 3rd party
resource editors.



Chapter 32: Migrating to VFX Forth 381

32.14 ANS Error Handling
Error handling in VFX is done using the ANS CATCH and THROW mechanism. The words ERROR

and 7ERROR from ProForth 2.x are gone. Please read the section on exception handling both in
this manual and the ANS Forth Standard.

32.15 Obsolete words

The file LIB\OBSOLETE.FTH contains definitions for many ProForth 2.x words which are not
present in VFX Forth.






Chapter 33: Rebuilding VFX Forth for Mac OS X 383

33 Rebuilding VFX Forth for Mac OS X

Users of the VFX Forth Professional and Mission editions have all the source code and tools
needed to rebuild the system. VFX Forth Mission includes the source code for the tools as well
as the Forth source code.

The source code is found in the Sources directory. Tools are in the Tools directory. The build
process is controlled by a set of shell scripts in the Sources directory itself. Some of these scripts
may contain hard-coded paths and should be checked and edited before running the scripts. The
resulting executables will be placed in the directory Sources\Images.

33.1 Prerequisites

In order to perform a full rebuild of VFX Forth for Mac, you need the following software installed.

e nasm and gcc. These are required to rebuild the executable stub. Do not rebuild the stub
unless you really need to and are running OSX 10.6 (Snow Leopard) or earlier. Use the
Apple versions from XCode. See the notes below about rebuilding the stub.

e MPE x386 cross compiler x386dev. This is required to cross compile the Forth kernel.

e LaTer is required to rebuild the manual. We use the MacTeX distribution from
www.tug.org/mactex.

e Find Any File is available from the app store and is the tool to find a file on a Mac. Yes,
you can live without it, but there are better things to do than waste time.

33.2 Rebuilding the executable stub

Up to OS X 10.6 Snow Leopard, the VFX Forth executable was self-contained -the Mach-O
headers were built in the Forth source code. From OS X 10.7 Lion, changes in the Mach-O
file format rules, and more particularly in the program loader, mean that we cannot use public
developer information to build OS X executable files.

In order to reduce our devlopment load when Apple change the rules again, a small stub written
in assembler is used. This stub is bound to the Forth image with some address and memory
manipulation to produce the final executable.

To rebuild the stub, make sure that you have the Apple version of nasm and gcc installed.
Switch to the Kernel/3860SX folder and type:

./bstubosx.sh

You may have to edit the binary file paths according to your installations. Some developer Macs
have more than one version of nasm and gcc installed.

The following source files in Kernel/3860SX must match for the stub and Forth to run correctly:
e stubosx.asm - assembler source file
e startup.fth - stub transfers control to this code.
e syspatch.fth - relies on information from the stub
o SaveOSX.fth - implements SAVE in VFX Forth for Mac.

e stubosx - stub executable



384 VFX Forth for macOS X

e binder.fth - binds stub and cross-compiled image

The Forth source files rely particularly on data copied from the stub into the Forth image. The
Forth variable EntryESP holds an address in the entry stack which is used by the Forth Image.
EntryESP is set in startup.fth, which also references OS X functions to handle shared libraries.

33.3 Rebuilding VFX Forth

The full build is performed by executing
./Rebuild0sx32.sh

from the Sources directory.

The build is performed in three stages:
e First stage - rebuild the kernel using the 1386+ Forth Cross Compiler
e Second stage - use the kernel to generate the base console

e Third stage - Future version: use the base console to generate the GUI development envi-
ronment.

Short cuts are available through shell scripts described later.

33.3.1 Kernel

The core kernel is cross-compiled from the Sources/Kernel folder by executing

./mosx.sh
which runs the cross compiler twice to produce the kernel vfxkern.mo.
33.3.2 Second stage

The second part of the build produces the base version of VFX Forth. This part of the build
occurs in Sources/VFXBase. Run:

./mosx32.sh
It compiles the second stage builds to produce vfzosz in the the Sources/Images directory.
33.3.3 Third stage
To be defined
33.4 Manuals
The PDF and HTML manuals are produced by DocGen in a separate pass. DocGen produces

.tez files which are used to produce the PDF manual using Tex. DocGen produces the HTML
file directly. The current DocGen file is Lib\ DocGen4.fth.

Make sure that you have a suitable version of TeX available for building the PDF manual. A
suitable place to start is



Chapter 33: Rebuilding VFX Forth for Mac OS X 385

http://tug.org/begin.html

You’ll need the full installation with:
texinfo

texindex

The HTML and PDF manuals are produced by DocGen. Change to the Sources\ Manual direc-
tory and run

./MakeOsx.sh

33.5 Rebuilding the tools

The tools source code supplied with the Mission edition will be found in the Tools\src directory.
Each subdirectory will contain a make file makefile or a script make.sh. Tools written in C will
have been compiled by gcc.

33.5.1 Rebuilding the libraries

The two shared libraries, libmpeparser.0.dylib for INI files and vfrsupp.1.0.1.dylib for OS X
constants, very rarely need rebuilding.

INI file library

The INI file support library enables persistent storage of configuration data using Windows-
style INT files. The code accesses a derivative of the iniParser v3.0b shared library published by
Nicholas Devillard at http://ndevilla.free.fr/iniparser/, where the latest version may be found.
Note that the MPE versions differ from this version, but are upward compatible. We have
submitted our changes to the author.

The source code for the MPE versions (Linux and Windows) are in Sources/Tools/iniparser3.0b.
For the Linux version, use Makefile in the root of the directory. For the Windows version, switch
to the src.win folder and run make.bat which is for use with VC6.

OS X constants library

The vfxsupp library allows the Forth system to look up Linux constants from header files without
applications having to be bloated by a vast number of headers. The number handling mechanism
in VFX Forth searches the library if the text cannot converted as a number.

The sources are in Tools/VfrSupport/Osz32. The library is built using Makefile. If you get an
error, especially after adding a new header file to headerlist.h, it is nearly always because the
constant cannot be correctly evaluated by the Forth application, e.g. because it is a pointer to a
text string. In this case, add the item to headerlist.exclude and rebuild. Keep going until there
are no MmMore errors.

The essence of the process is that the header files are run through the C pre-processor to produce
headerlist.i.orig, filtered by an awk script to produce headerlist.i, and then incorporated into the
shared library.



386 VFX Forth for macOS X

33.6 Packaging

At present, packaging is just creating a tarball, which is done in ReleaseOsz32.sh.

When we ship a bundle, everything will be done by PackageOsx32.sh.

33.7 Mission edition builds

The Mission edition of VFX Forth contains source code and tools for everything to do with VFX
Forth, including the full build, release and packaging scripts used by MPE to issue the software.
Assuming that the Mission release is in directory called VfxrCommunity, the complete process is
performed by changing to that directory and running;:

./Full0sx32.sh

The script FullOsx32.sh calls many other scripts
o getX(C386.sh - copy the cross compiler into the Tools directory.
o getGenDocs.sh - copy documentation shared with other MPE products.
o Manual/MakeOsz.sh - builds the OS X HTML and PDF manuals and helper files.
e RebuildOsz.sh - rebuilds the executable files.
o ReleaseOsx32.sh - builds the release folders from which the packages are built.



Chapter 34: Further information 387

34 Further information

34.1 MPE courses

MicroProcessor Engineering runs the following standard courses, which can be held at MPE or
at your own site:

e Architectual Introduction to Forth (AIF): A three-day course for those with little or no
experience of Forth, but with some programming experience. The AIF course provides an
introduction to the architecture of a Forth system. It shows, by teaching and by practical
example how software can be coded, tested and debugged quickly and efficiently, using
Forth’s interactive abilities.

e Embedded Software for Hardware Engineers (ESHE): A three-day course for hardware
and firmware engineers needing to construct real-time embedded applications using Forth
cross-compilers. Includes multitasking and writing interrupt handlers.

Custom courses are available

e Quick Start Course (QSC): A very hands-on tailored course on your site using your own
hardware, and includes installation of a target Forth on your hardware, approaches to
writing device drivers, designing a framework for your application and whatever else you
need. The course is usually three days long.

e Other custom courses we provide are for Open Boot and Open Firmware. These are derived
from the AIF course above.

34.2 MPE consultancy

MPE is available for consultancy covering all aspects of Forth and real-time software and hard-
ware development. Apart from our Forth experience, MPE staff have considerable knowledge of
embedded hardware design, Windows, Linux and DOS.

Our software orbits the earth, will land on comets, runs construction companies, laundries,
vending machines, payment terminals, access control systems, theatre and concert rigging, anaes-
thetic ventilators, art installations, trains, newspaper presses and bomb disposal machines.

We have done projects ranging from a few days to major international projects covering several
years, continents and many countries. We can operate to fixed price and fixed term contracts.
Projects by MPE cover topics such as:

e Custom compiler developments, including language extensions such as SNMP, and new
CPU implementations,

e Custom hardware design and compiler installations,

e Portable binary system for smart card payment systems,
e Machinery controllers,

e Connecting instrumentation to web sites,

e Virtual memory systems,

e Code porting to new hardware or operating systems.

We also have a range of outside consultants covering but not limited to:

e Communications protocols



388 VFX Forth for macOS X

Windows device drivers

All aspects of Linux

Safety critical systems

Project management (including international)

34.3 Recommended reading

A current list of books on Forth may be found at:
http://www.mpeforth.com/books.htm

For an introduction to Forth, and all available in PDF or HTML:
e "Programming Forth" by Stephen Pelc. About modern Forth systems.
e "Starting Forth" by Leo Brodie. A classic, but very dated.
e "Thinking Forth" by Leo Brodie. A classic.

For more experienced Forth programmers:
e "Object Oriented Forth" by Dick Pountain
e "Scientific Forth" by Julian Noble

Other miscellaneous Forth books:
e "Forth Applications in Engineering and Industry" by John Matthews

e "Stack Machines: The New Wave" by Philip J Koopman Jr

All of these books can be supplied by MPE.



Index

Index
!
b 36
L) o e 90
L o] o2 52
lestring ...l 335
LA 334
LA 334
LEd 334
L =P 334
Lt 335
Ld 334
Mlstring ... il 335
A . 334
A .o 334
5 P 334
lwstring ... il 335
n
PP 54
B e 224
Tpascal .. 224
& 49
#
B 43
B 56
B> 43
B C it 327
B0 . 327
BANONETT oottt e 266
#badexXterns . ... ...ii i 223
#badlibs ... 221
#define ...t 128
#errdef ... ... .. 266
BEAIGITS ..ot 157
S i e 43
#textdef ... ... ... 372
#threads ..ot 20
HEAmMeTS ottt 182
BUOCS . ottt ettt 17
$
e 151
B 39, 316
BHTCD . 359
B 54
T 46
B 316
B> 317
S P 317
B> 317
P ascidiz . 107
B>z, i 107
BT 316

389
BCOMSTANT .« oottt ettt 316
Fereate. ... 66
$create—dn...... ..o 66
$estrmatch. ... i 41
edit. .ot 204
$expand .. ... 201
$expandmacros. ... ... i 201
Bforget. .o 72
$help. ... 115
BAnStr. .. 317
Bleft. .o 316
3 =S o PP 316
$loadoverlay......cooouiiiiiiiii 323
$makeoverlay...........ooiiiiiiiiiiiii 322
$mid......... .. 316
POV .« & et 39
Bnull ... .o 39
BOS K ettt 132
$ovlloaded?. ... 323
$releaseoverlay .............oiiiiiiiiiii... 323
Sright. ..o 316
$saveimage ...l 259
$Setmacro . ... 201
$shell. ..ot 131
B OW . . ettt 315
$strmatch ...t 41
BUDPC . e 316
Sval ... 316
$variable ... 316
%
h0 158
/5 T 158
TLE2C . .ot 158
/3 3 P 158
UL/ 2. e 158
WPL/A . o 158
9
LD 53, 331, 332
sourcefile . ... ... 20
= ¢ 53
G 55
() e 46
€S I 316, 378
($create) ...t 66
(e 55
R ) ) 46, 127
S 56
[ 43
[ G35 50
(5€0d€) .ot 49
(>Float) .o 166



390

(>shell) ..o 131
(E$CEE) ot 338
(changedir) ...t 138
(checksySini).....covviuiiiiiniii i, 122
(comnect) ...t 91
(AaSm) ..ottt 153
(Aintvar) ..o 338
(editonerTor) .. ..o 204
(T oo 266
(B %) 164
CE ) e 167
(Fe.) i 167
(findclassS) .ot 352
(ES. ) e 167
(Andt) o 258
(interpret) ... ... 58
[ 373
(LoCal) . 97
(ApCtsStr) oo 366
(Apctstr)+=.. . ..o 366
(ApetsStr)to. . oo 366
(max—def) .....coviiiiii 72
(RACS, ) vttt et 49, 130
(parseerrdef) ......... ... ... i 266
(Pause) ...t 178
(redefhook) ...t 66
(rliteral) ...t 165
(servant) ........iiii i 330
[€=1:7) 70 T 314
(siggentrap) ..........ccoiiiiiiiiiiiiii. 135
(sintval) ..ot 338
(sintvar) .....oiiii 338
(BLCKS) oottt 136
[ TS 43
(L) 43
W) 46, 127
W) o 127
(Whereis) ..o 104
(Z8+) e 40
(ZCEQ) o 339
LS

K e e e 28, 225
K e 225
KKK e 225
K 29
KOG . . 29
+

o 30
e 35
o e 365
o e e e 366
+ascii-digit.......... ...l 45
FCRAT . 45
LA . et e 362
FAIgIt. . o 45
FAIrSeD .ottt 138
+AOCEeN ..o 284
+docgen_hook. ...t 305
+doubleq ...l 119

HEAStIVS o 207

VFX Forth for macOS X

Hfield. .. 110
+fpcheck ... 169
+gtimer ... 276
Fidata. . i 215
HindeX. ..o 285
+internaldoCsS. . ..ot 284
LAt 354
FL00D e 33
+mustload ... ... 206
FOPLASt e 355
FOTAT . o it 70
+polite ... 206
+randdigits........ ... ool 126
+8Af@0S .. e 207
+short-branches ...............coiiiiiininn. 207
=3 1+ PP 210
+SINA0ES . vt 210
+smartinclude........... ... i 104
+source-files.........o i 103
FSPACES Lot 197
FSTACK . . 56
+stack-bot .. .. 56
+structures....... ...l 348, 349
FEOC et e 285
FUSET . e 51, 177, 276, 330, 377
+verboseinclude ............. ... ..., 104
+vfcache ... .. 104
FWATNINGS i 66
FRTEE S . 314
9

s e e e 32
s 54
ST 90
ettt atiateeeeiieaaariaaaan 30
St PP 35
o e e e 365
—align. ... 329
SCA0 . 362
—docgen ... 284
—docgen_hooK............oooiiiiiiiiiiiiiiii 304
—doubleq .. ..o 119
—FaS VS i e 207
—fpcheck ........... ... 169
—gEIMeT .. 277
—idata. . . 216
—INI—eXEC i 122
—internaldoCs. ... .ot 285
“leading ... ... 37
-leading-white ..................... ...l 327
—mustload . ... 207
-nestedsigs?.......... ... 134
F e oo L= 70
“POLAte e 206
POt st 24
—Safe0S .. e 207
-short-branches .................ccoviviiiinn.. 207
B ¢ 210
—Sindoes ... 210
—smartinclude............. it 104
—source-files.........iiiiii i 103



Index

SSPACES Lt e 197
SO LACK . i e 56
-structures .......... ...l 348, 349
—trailing ... 37
—trailing-white........... ... ... ... 327
-verboseinclude .............. ... ... 104
—vfcache ... ... 104
SWArnINgS .. ... 66
—White . ... . 37, 327
ST S . 314
................................................ 44
O 46

(o 55
................................................ 226
L AP 55
7 137
AT e 137
ansidate ... 137
ASCId . ot 43
Lattribute. ... 331
badexterns. ... ... 223
badlibs .ot 221
byte. ... 43
CEg . o 338
Lo - Y= = 355
.closingtag.......ooviiiiiiiiii 335
LCONEENES .t 331
(o T-i (E-Ye3 of o 7= 295
dg_tags ... 295
o L P 137
AWOTd . . oottt 43
B 203
.emptytag ... 335
LENVITONMENT . .ottt et e 112
1= s 266
errdef ... ... 267
1= = v = 223
free. .. o 106
fsysprompt . ... 168
gentag ... 335
gentag+ ...l 335
5 = P 220
= P 354
list-entry.. ..o 354
dist-type......ooo 354
Llocate o 104
IWOrd . .o 43
1 E= T o e Y 201
1= Yo oo = P 201
MCONEEXt .ottt it e 134
TIAIME .« o v ettt et 64
LNAMEAEINUMS .« v v ettt ettt e e 129
N010CATE . i 104
OPH . o 354
operators............ il 52
Loplist ... 355
.oplist-entry.......... ... ...l 355
LOVETLaAYS oo 323
PTOMPL . oottt 22

B o 44
o= PP 106
TSitemM ..ot e 134

391

= A 106
signame .................... i 134
Sint .. 338
source-line. ...t 267
SOULCENAME . . o\ttt ete e e e ee e eieeeeeennannns 99
SOUT CES & ettt ettt et te ettt et 104
SPAA . .\ 329
SEring ... 335
SWitches ..o 126
tabword ... . 106
tADWOrdI . ..ot e 106
o2 - 331
S K. et e 179
L 1<) <= 179
textchain.......... ... . i i 266
BT OW. . e 267
time&date...... ... 137
TOKENISET ..ottt s 209
BOKREIS « vttt e 209
Bz et 335
UNKNOWNXML? . .ottt et 326
V0  w ettt et e e e e e 70
WOTA . ottt et e 43
XAat . .ot e 335
xdatetime ...... ... 335
XtAme. . 335
B b P 335
b4 e e R 43
2 107
z$expanded... ...l 107
/2 29
K 128
L 128
/code-alignment............................ 49, 206
/counted-string ........... ... ..ol 110
Jcurl_fileinfo .......... ..o 245
/curl_httppost ... 245
/data—alignment ..............iiiiiiiiiiiiaa... 49
JeXCPE32 .. 133
Jfiledev ... 84
4 =3 5 P 133
Jfuncstr ... 220
JBETTOT oottt 271
J8WAINAOW ..ot 276
Jhelp$. . 113
Jitimerval .. ... 183
JLibStT e 220
/Max=StaCK . ..ot 56
/mcontext .. ... 133
JMOd . o 29
/namebuffer............ ... ... ... 279
/period ... ... 183
/pthread_attr_t........ ... ... ... 176
/SAOPEIL. .ottt 92
/semaphore......... ... 180
JSEMOSK vttt ittt e 135
/serial-sid........... it 85
/sigaction........ ... ...l 133
/sigaltstack............oiiiiiiiiiiii 133
/siginfo ... ... ... ool 133

/SIgSet_t .ot 133



392
/socket—sid. ... ... . 93
/StACKPAd « o\ttt 328
/statusbuffer................... .. ... 279
JSErAng. ... 37
JECD 176
/tcb.callback. .....ooiiiiiiii 176
JEeTMIOS oottt 85
Jtexted .. ... 279
/transient ............. .. 129
JE832 . 133
Jucontext .. ... 133
/xterm—sid......... i 89
/Z SETaAM S .ottt 248
............................................ 50, 359
P PP 196
T ettt e e e e e e e e 345
TOMAME . .« o v ettt e e et e e et et et 50
’
S AP 50, 359
S PP 196
FS S P 62
sEseq. . 158
15 346
<
LS PPt 26
K 43
R 197
2 + PN 378
K e 26
> 26
KPXML . ot 333
<headerless> . ......iiiiiiiiii i 20
KA 19
S 26
>
D e 26
SHthreads .. ..ot 66
P 26
D 197
D o PP 378
D o 327
Shody . 64
>COAETEOI . .. 64
>code=den ... 64
DAOES ittt 50
DD 263
SEifo(b) i 126
SEloat. .o 166
D o TP 64
>ininame ... 119
>inistring..... ..o 119
Slaimet. 64

VFX Forth for macOS X

>MIn-order . ..... ... 70
STIAME . . .ottt ettt 64
SHUMDET . ..ottt 46
DPOS Lt 42
Spshell ... e 131
B 24
>SAATE . e 327
>shell.....oooi 131
D=1 o1 329
DS i 329
D<) o 1= v o PP 329
SSYSPad. oo 42
SSYSPAAC ¢t 42
SSYSPAAZ « o vttt 42
>SYSTOM .. 131
Sthis...ooo i 351
Sthreads ..ottt 66
SEOA. .o 328
SETEf . 64
>xshell ... 131
SZEOTM. .ottt 40
?

A 106
Thnf-error..... ... 196
PCOMP .+« vttt 53
o1 <O 52
PCSETINg ... ... 335
0 334
PAI L 334
?dnegate ... 31
PO 33
PAUD - vt 24
POKEC . ittt 53
1 334
?fnegate ... 164
6 = P 334
6 5 2N 334
[ AP 334
Pleave. ... ... 33
Plstring ... 335
PHEEAate. 31
oL 34
POTAET . oottt 71
Predraw ... 276
?relative-open-file............................ 99
PSOCKETT ... 91
Pstack. . ... 53
Pthrow. ... ... .. 263
TUA . o 334
UL . 334
TUL L 334
fundef ... 53
?validname.......... ... .. il 356
PWSETING ... .. 335

O e e 35
L1 o) 1 90
Qoff .. e 35
LT o PP 35



Index

Lo e 53
L2 53
[+fpsin ... .o 158
[+short-branches ..................ccoiiinei.n. 207
[F8im. o 210
[+switch .. oo 125
[Ffpsin ... i 158
(0Pt e 208
[-short-branches...........ccoiiiiiininno... 207
= ¢ P 210
[ 61
[l 57, 197
[0 o 208, 366
(b0 366
[char] ... oo 55
[compile] ... 53
[eritsec .o 136
[defined] ...t 105
[dependencies..............cooiiiiiiiiiii 322
[dg_macros..........c.oiiiiiiii i 295
[docgen ... 295
[else] ... 105
[endif] ..o 105
[environment?] .......... .. ... 112
[£irstlibl ..ot 221
[fpdebugl . ..ot 157
[guardsp ........oooiiiiiiiii 129
[Af] oo 63, 105
[An] oo 234
[interp] .. ... . 54
15T J R 81
[o/f] 208
[o/8] o 208
<3 5 2 P 208
[saveconfig. ..., 337
[Saim. oo 210
[switch ... 125
[sync......oooiiiiiii 179
[then]..... ..o 105
57 PP 129
[undefined] ............ ...t 105
1 A 53
T 57, 197
TRULL . e 46
A e 234
AN OPt 234
IN0OUL .o 234
_inout_opt...... ... 234
L OUE 234
out_opt ... 234
LAD 234
in_opt_ ... 234
IN0UL e 234
o1 PPt 234

393
LOUE 0Pt v 234
_TeSerVed_ ... 234
A 55
A 55
AN 56
NI . vttt 337
NEYPe. ot 337
| 196
0
O e 26
0> ot 26
S 26
0 26
1
L e 30, 58
L 30
L 162
TOKRKD. .o 166
1diSaSm ¢\ vttt e 153
2
2 36
2K 30
2KK 164
2t 30, 64
2 30
2 30
D2 24
20 35
2constant ........ ..ol 51, 327
2dT 0P . 24
2dUp . 25
21iteral .. ... 53
2OV T e ettt e e e e 25
D2 O 24
2o 24
2X0t vt 25
2SWAD « + vttt 24
2Value ..ottt 52, 216
2variable ....... ... il 51, 216
3
BALOD . 24
BAUP .. 25
4
Ak 30
At 30
A 30
A 30



394

AAUD . . 25
8

B L 30
8/ 30
BIL L 86

abell . .. e 15
AD L L 16
ADOTE ot 21, 264
AbOTt . e 264
abort-code........ ... i 237
aborting?........... .. 237
ADS . e 31
ACCEPL . ot 21
AT et e e 16
action—of ... . 59
ACEAVE. ottt e 279
AactiveXml . ..ot 332
addchar. ... e 39
addendlink ..........iiiiiiii 47
addevent ... e 278
Aaddlink. ... o 46
addoperatortoclass................. ...l 358
address-unit-bits.......... ... ... il 111
addsourcefile. ...ttt 104
A0 . ot 16
A0 L . e 16
after. ... . 183
AZAITL . 33
Ahead . ... 34
al-init-dis.........oiiiii 153
Al 16
ALAAS i e 51
aliasedextern: ......... ...t 222
aliasedexternvar ............ciiiiiiiiinainn... 223
AL . e 32
align&erase.................... ...l 377
aligned................. i 32
alignidef ........... .. ... 215
=0 377
2110Cate .ot 60
alloctextbuff........... .. ... .. 83
A0t . e e 32
Allot&erase . it 32
A8 0 it 70
ANChOT T .ot 129
AN . e e 23
And ! . e 23
FoN 4= 71
AN L e 16
append. ... ... 39
APPENAZ. . . 40
appfinished?............ ... ... ... ... L. 275
applaunch.............ooooiiiiiiiiiiiiiiii i 137
Eo o) o o= oy o 137
appppid ... 137
APPSUPPS - - vttt 121
appsuppdird . ... 121
appsuppini$. .. ... 122

VFX Forth for macOS X

ArEV . 128
BTTAY . vttt 216
array-of ... 109
arshift.. ... .o 27
ASCall: ... 236
asciiduni ... 249
ASCLIDUNL, oo i e 249
asCiizd>® . 107
asfaras ....... . e 333
askopenfilenamebox...........covvuuiiieennnnn. 274
asksavefilenameboX...........ooviiiirennannnn. 274
AS S S e ittt e e 58
asSign........ 59
F 2P 277
AL 81
AtaD . . 16
AtCold. ... 258
atexecchain...........oooiiiiiiniii i, 47
AteXit. . i 258
atiniload .......... ... 124
atinisave ... 124
ABOM . ettt 227
attaskexXit . ..ooiiii 177
B

Do 297, 299, 301, 304
badfloat? ...t 167
basepath ....... ... 202
begin...... ... 33
begin-structure ............coviiiiiiinnnnn. 110
begincase ............ ... 34
DehaVIOr ..ot e 59
o 5 42
o o 23
Dan .o 99, 202
bin-align.......... ... i 215
binary....... ... 42
DIndto. .o 91
blank. ... .o e 37
L <P 19
o5 1= | 339
bnf-ignore-lines............... ... ... ... ... 196
PRE-VOC . 196
DOAY> . .o 64
boffset ... i 377
bold......ooiiii 296, 298, 300, 303
DOOL . 227
DOOL L . e 225
D001 . 226
DOUNAS . ..ot e 33
o5 PP 296, 298, 300, 304
bracketed? . ... ...t 351
DS it 42
o=« P 16
bsmartfilelookup?..................... .. ... 102
= 1 v 16
o A 357
buffer: .. 19, 20, 51, 90, 113, 115, 182, 183, 216, 279
build$, .. oo 112
builderconnect_cb...........coiiiiiiiiiiia... 274
builderobject......... ... ...l 274
buildfile ...... oo 112
buildlevel .......ooiiiiiii i 103
busyidle ... 22



Index

C 36
e e 54
CH 35
Gy et e e e e 32
Cm 35
C/COLS . ottt 18
C/ L 16
C/line. ... 18
COCZEOTM . .ottt e 40
CO e 36
COS ittt e 36
C\ M 55
caddr>zaddr . ... 107
CallbacK, .ot 251
callback: ... e 251
CallproC: ..ottt 251
CATTAY .+« v v vvteeeeee et 216
o= Y1 =Y 34
case-cCchain...........iiiiiiiiiii i 317
At ot e 132
catCh. ... 263
o3 o 251
CClevel ... 105
CCD 269
CCDPIOC: e 269
CA ot e 132
cell .o 31, 111
CeLlld . 31
Celdl— . 31
CeLL/ o 31
Cell: . 357
Cellbits .ot e 32
CELLS ittt 17, 31
CELLSH . ittt e 31
centity ......... ... 330
cfgincluded................. ...l 337
cfginterp........... ... 337
cfield: ... e 110
chaineach .......ovviiiiiin it 276
changedir.................... ... 138
changeext3........... ... ... 102
changenamewid............... ... ...l 73
char ... . 55, 117, 225
Char+ . 32
Char: ... 357
o 4 - o < TP 32
CheCK=SUCCESS. .. ittt ittt it e ettt 196
checkdict ....ovii i 72
checkedsave...........coiiiiiiiiniiiiinnan.. 280
checking ............ . i 20
checksynonym?........ ..o 69
checksysini.........ooiiiiiiiiiiiiiiiiia 122
ChOOS . ottt e 126
€ia0-classhoOK ......ooiiiiiii ittt 362
Cla0=COlOm ..ottt 359
ciao-evaluate........c.ooviiiiiiiii i 359
Cla0—ho0K ... iti 361
Cia0-Semicolon .. ..oviii i 359
Cla0—tOKeN ...ttt 351

395
ciao-undefined ........... ...t 362
CArCle. .ot e 278
CloAf . . 334
Cl> . 334
cl>ud#. .. e 334
ClaS S ittt e e 358
class-base mem .......c.ovviiniiinennnennnnnnnn. 352
class-ise-throw............ccooiiiiiiinna... 348
clear-bit ...t 36
clear—-1ab ...t 220
clear-1libs ...t 220
cleardevicCe.......ouuiiiiii i e 278
clearstatus. ...t 279
CloCK T it 235, 236
close-file........iiiiiin i 100
o 8= PP 81
o3 11 X=X 36
CIMOVED . o e ettt et e ettt e e ettt 36
CnUL L . e 39
code-align.............. il 50
codepage _eNUMPIOC . .. .vvvvuurnnrnnnnnnnnnnnnnns 229
COL it 297, 299, 301
COLd .ot 258
oo 0 e 277
colorref ... ... 227
commandline..............iiiiii i 128
comp-1st-struct ................. i 348
COMP=COMP .« et ettt ettt ettt e e eee e, 130
comp-interp............. ...l 130
comp-middle-struct............................ 348
Lo 11 o 50
COMPATE. .ttt ettt et e i e 38
compilation?.......................ooooll 105
COmpPile, . .ovui 49, 53
compile-word.............. ... ...l 49, 130
compilebuffer............. ... .. il 359
compilemethod_class........................... 360
compilemethod_code............................ 360
compilemethod_data............................ 360
compilemethod_staticcode..................... 360
compilemethod_staticdata..................... 360
compilemethod_virtualcode.................... 360
o3 Y= 2P 225
constant..... 16, 47, 51, 110, 129, 133, 203, 328, 330
[oZ o3 45 AP 377
copy-file...... ... i i 138
o7 o =Y 111
oo oS5 A 111
COUME ottt ettt et e e 39
COUES L ettt e 365
COULKKNOX . oottt 366
o3 PP 21
Crash. ... 59
o = 1 PP 66
create—dir........coiiiiiiii 138
create-file...... ... 99
create—-inst....... ... 346
o oY= vk o« NP 330
critsec] ... 136
CrlE . 16
CS=AXOP. .ottt 35
CS—Pick. ... 34
CS=TOL L. o 34
O e 19



396
cstring::add......... ... ..o ool 368
cstring::addlpctstr........................... 368
cstring::compare................... ...l 368
cstring::comparenocase ....................... 368
cstring::delete........... ..., 369
cstring::empty ...... ... .. il 368
cstring::getat ......... ... .. it 368
cstring::getlength............................ 368
cstring::getlpctstr............ ... ... ... 368
cstring::insert............ ...l 369
cstring::isempty.............................. 368
cstring::left..... ... ... il 369
cstring::makelower............................ 369
cstring: :makeupper..................ooiiina 369
cstring::mid........... ...l 368
cstring::resizebuffer.................. ... ... 368
cstring::right ......... ... ... .o ool 369
cstring::setat ......... ... . ool 368
cstring::setlpctstr........................... 368
cstring::to...... ... 368
(o] 7)o = o« PO 137
ctrl>nfa ... 64
curl_writefunc_pause ......................... 245
curr-type-size .......... ... it 346
currbuilder.......... ... 274
currencyfmt............ ...l 228
CUTTENt. ...ttt 19
currentclass............coiiiiiiiiiii i 351
currentdefclass ............ ... ...l 352
currentdeflist .............. ... ... ... L. 352
currentdefxt......... ... ... .. o ool 352
currfilename................. ... ... ... oL 280
Lo 4 = = 331
currselection.................. oo 280
CUTTSOUTCENAME . ..o ot vnneeeeeinneeeeinnneennns 99
cut-dictionary .............oiiiiiiiiiiiiii, 71
CWl 159
CWO . .o 158
CWA o 132
CZPlacCe. ..ottt 40, 120
D
A#>CL. 333
At o 31
A= 31
< 44
d T 44
A< o 27
T 27
A> 27
A>F 163
A 31
AO< L 27
dOK> o 27
Q0= . 27
A2% . 28
A2/ o 29
dabs ... 31
dasm. ... 153
data-align.............oo ool 50
data-file......ccoiuiiiiiiii 101
dated, . ..o 112
date>. ... 327

VFX Forth for macOS X

datetime$, ... ... 112
days$. ... 137
debugl........ ... 20
debughelp?......... ... . il 115
debuglocate?............. ... ...l 204
decimal.....ooiiii i 42
o =Y o3 P 35
def-iblock#. ... ... ..o i 215
def-igap............oiiiii 215
def i 330
default-catch.........coiiiiiiiiiiiii.. 264
defaultexterns ..........coiiiiiiiinennnann.. 238
defer ... .o 52, 59
defer! ... .. 59
defer@....... ...t e 59
defflags ..........oooiiiiiiiiiiiiiiiiiiiilL 352
definitions...........oiiiiiiiiiii i 70
definputtag............. ...l 332
defxml. ... e 331
degdrad ........... 165
deldir. ... ... e 132
AELENV. .ottt e 135
delete. ... 363
delete-file.........ciiiiiiiiiiiiiiii i 100
delete_event........cooviiiiiinneiiiiineennnnn. 275
delete_event_fn.......... .. ..., 275
delin . ... e 16
AellinK. .ottt 47
dents+t. ... i 331
depth............ 25
derived-scope.......... ... .. il 358
derived? ... .. i 358
destroy_event........... ... ... il 275
destroy_fn... ...ttt 275
devmode . ... 230
devpath ............... 202
Al 160
Al 160
A+l 160
Af e 161
A= 160
A @ .ttt 159
A+ . o 160
dfalign........... ... 161
dfaligned..........cooiiiiiiiiiiii 161
dfloat+ ..ot 161
dfloats . ..vii e 161
dg_fileext:....... ... it 295
dg_macros] ... 295
dg_personality?................ ...l 295
dg_tag: ... o 295
dg_type: ... 295
digit.. ..o 45
dir ... 132, 234, 235
dirl-char .....c.iiiiiii i 19
dir2-char ...t 19
dirchar? ... o e 102
AirexistsS T . it 138
Airty. ... 277
Ais et 153
disasm/al ...t 153
disasm/f ... ... 153
disasm/ft ... ... 153
discard-sinline ..........c..couuiiiiiiiinnnnnnn. 209

Lo =y o T 231



Index

dliteral ....oiiiii e 53
AIAK .« oot ettt e 27
AMATL . et 27
dnegate. . ... 31
o 4 =1 363
o o TP 33
do_gtk_init.......... ... ... ool 275
do_gtk_main................ ... ..ol 275
doabortmessage ..., 267
doattribute........ .. .. 331
docgen-spacing ............ ..l 284
docgen? ... .. 284
docgen] ...l 295
docgen_html................ ... ... ..ol 296
docgen_latexX.........coiiiiiiiiiiiiiiii 303
docgen_markdown .............. ... ..ol 298
docgen_prerefill........... ..o, 304
docgen_refill....................... ...l 304
docgen_texinfo............. ...l 300
dOCOLOMm, vttt e 49
doconly .....oiiiiii e 284
docontentblock ...t 333
docontents.......oviiiiiii 331
dOCODY ..o it 280
docreate, .. ..iii e 49
o 1 Y1 1 7 280
dodelete ...ooiiiiii e 281
dodottext . ovvi i e 349
dOETrTOrmMESSAZE -« oo vt e ettt e e 267
OS> . ottt 50
doisnumber? . ... ...t e 53
donetext ..t 333
AonOotSin .o v it e 210
dopaste ... 280
AOS it e 86
doSemMIiCOLOn, oottt 49
dosigalrm..... ..o 183
dotagblock........................oLLL 333
dotags..........oiiiii 331
dotagtext .............. ..., 332
dotnotation?......... ..ot 348
dotpsS. ... 348
double. .. ...ii 225
o T 59
doxmlbloCK . ...t 333
AD o 32
dp-char...... ..o 18
drawdest> ... ... . 277
drawstateproc......................oooool 231
ATOP « v 24, 58
drop-token......................olL 351
AU L e 27
AU e 27
AUIP . .o 106
QUIP(X) oot 314
AUD ..o 24
[ 4 226
AWOTrd_pPtr ... 231
AR et 151
AR o 151
W e ettt et e e e e e s 151
dynamicnew........................L 362

397
E
ederrboX ... 279
1= P 204
edit. ... 204
editonerror . ..ot 22
editonerror T . @ . 203
editord ... 203
editor—aS ... i e 203
GREY . 21
BT T L 21
€11ipSe . 278
Bl S i 34
=3 T 21
=3 1 T P 21
DLy ot 71
emptyidle ... ... 22
enable-graphics ........ ...t 278
ENA=CaASE « it ittt e 34
end-chain........ ..ot 317
ENA=ClasSS .ttt 358
end-module ...... ...t 73
end-StruUCt . .....vii i 109
end-Structure...........oiiiiniiniiiaan... 110
end-subrecord......... ... .. i 109
end-type ... . 346
eNA-UNION . .ottt e 109
end-variant...........iiiiiii e 109
ENACASE . . ottt 34
endif ... ... e 34
endof ... 34
endtable.......... ... ... il 296, 298, 301
entrypoint ... 21
EIUM .« .ttt et e e et 128, 249
ENUMTESNAMEDPTOC o e e v vt eeeeeeeeeeeeeeeeeannnn.. 228
eNnVIronment ........uuiiitiiii 15, 111
environment?. . ...... ... it 111
13 487511 X o o X P 135
€0l .. 16
B i 263
epoch>td ... 136
3 - YT S PP 37
T . 265
errdef. ... .. 266
[« o P 135
ErTOTDOX « ittt 274
ErTrSEIUCE ..ttt 266
escapetable................ il 54
evaluate .. ... 58
evaluatecompilebuffer ..................... ... 359
L= o 183
exception..........ooiiiiiiiiiiiiiiiiii i 111
exception-ext.......... ...l 111
exec—chain?....... ..ot 317
@XECTCOMP .+« vt vvvvtttttetttt s 130
exec—interp...................o ool 130
execchain ....... ... 47
EXECULE .ottt it e 33, 53, 57
execute-member-method ........................ 347
execute-members ............c.oiiiiiiiiiae. 347
execute-ptr-member-method.................... 347
EXAT e 33
exitcode ... 258
@XPANA. . 201



398
BXPECT . ittt 377
expired. ... ... 60
@XPOTL ..ot 73
expose-module........... .. ... i 74
extend-type.................iiiii 346
extends-catch............ ... ... i, 264
eXtensSionT ... i e 102
EXE O, .t 223
1= =3 v 222
eXternalsS ..ot 15
externlinked............. ..., 222
externredefsT?. ... ... ... 219
CXLOIVAL . .ottt 223
externwarnings? .............. ...l 219
exXtractnum . ....ov it e 39
extracttext ... ...t 39
F
f o 202, 297, 299, 301, 304
P 159
F ol e 160
i 2 168
ok 162
kok 164
B 162
i e 160
e 161
i 162
i 160
o 167
i 167
< T 168
=« PP 168
972 TR 162
B 163
F o 163
B 163
T e 163
B 163
B e 163
A . 163
E S e 163
Tl 168
P 159
B O+ . 160
T 164
FOK et 163
FOK> e 163
FO= 163
FO> 163
2k 162
£ 162
f2drop.......o 169
F2dUp. 169
F20Ver. o 169
F2SWaAP - e 159, 169
FAUD . 169
=1 = P 162
facoS. 165
facosh. ... 166
falign....... ... 161
faligned ............ ... ... ..l 161
FalOg . o 164

VFX Forth for macOS X

falsSe=. i 23
farray. ... 162
fasin. ..o e 165
fasinh. ... ... ... 166
faster....... ... 50, 206
fatan. ... .o e 165
fatanh....... ... 166
FCle . i 159
fconstant ........ ... 162
o] o 1= AP 165
fcosec. ... 166
FCOSh. .ot 166
fcotan. ..o 166
fdepth....... ... ... . 159
fdrop..... ..o 159
fdup.......o 159
fe . 167
fe. T 167
= 0 o1 TR 19
fexp.. .o 164
fexpml. . .. 164
0 v o PP 83
ffeed. ... .o 16
field...ooi 109
field-type....coviiiii 110
field:. ... 110
s 1 o J NP 126
fifo>(b) i 126
a0 . 126
file . i 234, 235
file-position......... ... 100
file-size..... ..o 100
file-status.........ciiiiiiii 101
filedev: ..ot 84
fileexist . . it 101
fileexists . it 100
filestatus.......ooviiiniiii 280
filetibsz .. ... ... 17
filetime ... ... i 228
0 0 P 36
filled. .. ...t e 277
filled> ... e 277
filled .o e 276
find ..o e 69
find-libfunction.............. ... ... i, 220
findclass ... ..ot 352
findclassoperator............................. 357
findcurrip............... 91
findlinkip......... ... 91
findmethodinclass............coiiiiiniinann.. 355
findxrefinfo......... .. ... .. . i 315
findxrefnearest ............ ..., 315
Findt. . e 158
fint . 165
firstlib ... o 221
fixed ...... ... ... 296, 298, 300, 303
Flat .o 165
fliteral ...t 165
T e 164
flnpl. .o 164
£loat . 225
float+. . o 161
£loats. i e 161
£10g. 164
F100r. .o 165



Index

floored......ooiiiiiii 111, 165
flush-file....... ... i, 101
FlushKeys ... 106
FM/MOd . .. 29
fmaX . o 164
fmin. ..o 164
fmod . ... 162
fnegate ... 162
fnext, ..o 158
fnip... . oo 169
fnumber? ... ... . 168
O 297, 299, 302, 304
fontenumproc............ ... ...l 230
forcedir ...... .. 138
forget.. ... 71
forminikey......................oLL 119
forth..................... 15, 69, 296, 298, 300, 304
forth-wordlist ...t 70
OV et 159
fp-char..... ... 19
fpcell. . o 157
fpcheck ... ... 157
fpext?. ... 157
FPICK . e 159
fpsin?...... 158
fpsind .o 158
fpsystem......... ... ... 20, 157
oA . 163
i o>~ AP 163
fradjust ....... ... 97
framework ... ...t 222
freduce ....... ... 166
free ... 60
freebuilder.......... ...t 274
freefifo ... ... 126
freetextbuff....... ... ... ... 84
freeze. ...t 258
from—file ..... ...t 377
8 o X P 159
fround...... ...t e 164
P 167
i 167
fSeC . i 166
fSeq: . 158
fsign... ..o 163
fsignbit ... ... ... 163
FSan . o 165
FSINCOS .ot 165
fsinh. ... .. 166
fsqrt. ..o 162
ESWaAD . 159
ft-init-dis...... ... 153
Fran . . 165
ftanh. . ..o 166
FErunc. .. o 164
FUCK . e 169
func-loaded?.........ciiiiiii 223
func-pointer........ ... .. i 223
function: ... ... 236
fvalue. ... 162
fvariable ....... ... 162
fword. ... 158

399
G
B e 168
= ol 168
gen-sid......... .. 79
genini? .. ... 122
get 180
get-compiler................ ...l 50
get-country........... ... ...l 374
get-current.............. ...l 70
get-language......................ii.. 373
get-order ......... ... ... 70
get-recognizers ........ooiiiiiiiiiiiiiiiii 58
get-size......... ... ..l 258
get-stack............ . 56
get-stacks....................lLL 258
get—toKen ...... ... 48
BeL—WOIXd ...\t 48
getattribname............ ... ... o oLl 332
getattribute......... ... ... 332
getattribvalue ................. ... ... 332
getcurrentlist ............. ... ...l 356
getcurrtext...... ... ... i il 279
getexenamez . ...ttt 203
getopenfilename .............. ... ... ... ... 280
getpathspec.............. ... ...l 48
getpos—tb ... 83
getsavefilename ................ ... ... ... 280
getsyspad ... 42
gettagname................ ...l 332
gettextmacro................ ...l 201
getxrefpos.......... .. ...l 315
gexposecallback ................ ... ol 277
gframecallback ........................ ...l 277
global: ... ... 236
graystringproc...................ooiii. 231
gtk-step ....... ... 271
gtk-step-blocking............................. 271
gtk_main? . ... 275
gtk_signal_connect............cooviiiiiiiinn.. 270
gtk_signal_connect_after..................... 270
gtk_signal_connect_object.................... 270
gtk_signal_connect_object_after............. 270
gtkappquit ... 275
GERPUMD . ..ot 271
gtkstarted?......... ... ...l 275
gtktest .. ... ... 275
gUATdSP] ... 129
gui-appidle........... ... ...l 271
gui-busyidle............. ... ... ..l 271, 272
gui-emptyidle.............. ... ...l 271, 272
gui-idle....... ... .. 271
gui-waitidle............. ... ...l 271
gWin: ... ... 278
H
Mo 113
haccel ... ... 226
half-align.......coiiiiiiiiiiiiiiiiiie, 32
half-align&erase.............................. 377
half-aligned.............. ..., 32
halt .. 178
halt?.. ... 106



400

hasxdecomp? . ...t 315
hasxref ... . e 315
navE . . 105
hbitmap ..........o o i i 226
hbrush. ... ... e 226
NCOnV . o e 231
heonvVIisSt .ot 231
NCULSOT ..o e 231
A . oo 226
hddedata ........oiiiiiiiii i 231
hdwp.....o 226
hello_world _window.............coviiirinannn.. 275
Rl . 115
helppageO.......... ... 115
henhmetafile............ ... ... ... 226
BT . it 32
B o 42
HeX mMem . ..ot e 120
ReX>NabD .ot 120
hfont. ... ... 226
hgdiobj ... 230
hglobal .......... ... . il 228
hiCOm. . 231
hide ... .o 66
hidename .......ouniirniir it 66
hinstance ......... ..ot 226
BiS et 177
RAWOTd. . ot e 25
R e 231
MMenU. ..ot e 226
hmodule ... ..ot e 226
hmonitor ... e 231
hold ... e 43
NOLdS ..ot 43
home . e 135
hOOKPTOC ..\ 231
hpalette ... ..o 230
hpen . ... 226
href..... ... ... i 297, 299, 301, 304
hresult ... 227
hrgn..... ... 230
oW .ot 297, 298, 301
RrS/day ..o 328
ST, oot e 228
B Z it 231
htarget ........ ... . 297
htmlbacK . ..ot 296
B e 275
hwnd . ... 226
I

o 32, 297, 299, 301, 304
1align. ..o 215
1alignlb ... 215
ADLOCK . o it e 215
ADLOCKRH .o e 215
icompare ...... ... 38
1COMV _t oot e 246
ACrash. .ot 356
1dAatal . e 215
i B T 202
T = 22
Adp . 215
A 34

VFX Forth for macOS X

ign-char ......... ... i 19
image ... 297, 299, 301
immediate ........ ... .. il 67, 211
immediate? ... ... 67
import-func-link .......................... 19, 222
in-chain? ... . 317
inactive ... 279
include . ..o 101
include-file........ ..ot 101
included ... ..ot e 101
includemem. . .......oiuiiii e 102
S T o P 35
incurrent ... 220, 222
inexternals ..........c.c.iiiiiiiiiiiaiain. 220, 222
inexternals? ... ..ouiii e 220
Inforth? ..o 65
Inherits ..ot 346
Ini.closSe ...t 120
ini.deletekey.......coiiiiiiiiiiiiiii 121
ini.dest ... 120
inj.open ... 120
ini.readbool.......coiiiiiii 121
ini.readint....... ... .. .. . . 121
ini.readmem.......oovniiineeeeieeieeeneann. 121
ini.readstr......cviiiiii 120
ini.readzstr........ ..ot 120
ini.section.........oiiiiiiii i 120
Ini.section? ...ttt 120
ini.writebool........ ... .. i 121
ini.writeint...........oiiiiiiiii i 121
ini.Writemem. ....oouiiiin ettt 121
ini.writesection............. .. .. ..., 120
ini.writestr. ... ..ot 121
ini.writezstr. ... ..ot 121
INialloC ..ot 119
inidata ... e 119
inidefault ........cooiiiiiiin i 119
inidestfile....... ..o 119
inidict ..o 119
INIddr. oo 122
inidird ... 121
IniexistsS .o 120
Anifile ..o 122
inifile$ ... 121
inifree ... ... . 119
indkey. ..o 119
AnALdbD. e 117
iniloadchain............ccouiiiiiinnnenan. 123
iniparsermodes ............ ... o ool 122
inisavechain............ ..., 123
iniscratch......... .o 119
INISECTI0OM . ottt 119
inisrcfile..... ... i 119
init-imports......... ... .. i 222
init-lib ... . 220
init-libs ... ... 220
init-module....... ... ... 74
indit-multi....ooiii 179
init-quit ... ... 58
init-structure ........... ... .. i 347
ANIE =K COM « vt ettt et e e 89
init-xref ... .. .. 314
initecritsec. ... ..o 135
initfiledev....... ..ottt 84

initgladegwin.............. ... ...l 278



Index

indtgtk ... i 275
indtgwin . ... 278
initialisefifo ......... .. .. il 126
initiate ... 178
initinibuffs....... ... .. 119
INitmacrosS ... oot 203
initosSXsSoCKetS ...t 91
Andtsd. ... e 94
inditsem ... ..o e 180
initserdev....... ...t 87
initspads ...l 329
S v o o R 177
inittextbuffsid........... ... i 83
initxtermsid........c.iiiiii i 89
ANOTO0OM? .« ottt e 215
ANOV L . e 65
inputtags.....................oooooolaLL 331
S 0 = 357
installgtkhooks .......................... 271, 272
INStaANCe .. i e 377
instance-meth: ......... .. ... .. ..., 357
instring ... 38
Answitch? .o 126
Int ..o 109, 117, 118, 224, 246
int_ptr ... 232
S 7 P 225
ANE16 _t o 235
ANt 2. e 225
INE32 b oo 235
ANt . 225
ANt b e 235
integer? ......... ... 46
integers ......... ... 168
Antel . . e 149
BT 0 o= oo D PP 50
interpret ... i 22
S 1= o PP 23
T 81
10CtEL=8@T oottt 87
doctl-th ... e 83
ip-default......... ... .. il 251
ip>nfa.....oooi 65
ipfunc........... 79, 80
iptr:e ..o 357
I ESETVE ittt e 215
= P 59
= 38
18dotteXt T .t e 349
isfileidcached? ..........coiiiiinninennnnn. 102
isfnumber? ... ... 168
isinteger? . ...t 46
isnumber? ... ... 21
188eP? . 45
IS = 38
italicC .vviii 296, 298, 300, 303
A o e 317
Atdmer. .. 182
AWCMAtCR T L 41

401
K
KD e 258
Key ..o 21
ReY 21
L
Lo 202
L 36
L 374
L 373
L 372
18addr. . 373
1$compilehook. . ..vvuriini i 372
LECOUNE .« vt 373
18find. ..o 373
Ly e 32
I e 224
L0 . 36
S it e, 36
langid.......... ... 228, 375
1aSt e e 20
lastname .......ooiiiiii e 332
lastnamefound...............ciiiiiiiii. 66
laststatuUs . ...ooviini i e 332
At . et 60
latesSt . et 65
latest—Xt ..ot 65
1Cad . e 228
LY PE . e 228
TAUMP . oot 106
LAV . . ettt et e 33
e PP 202
LAb=TanK . . oottt 19, 220
1ib-masK ... e 220
libarmmpeparser.so.0 ............. ... ... 117
libmpeparser.so.0................. ... ... 117
libmpeparser64.s0.0...................... ... 117
library: ... 221
librarydir................ ...l 202
libredefs? ... ..ot e 219
dine . o e 277
lineddaproc................. il 230
linerel ... ... e 277
linerelto .. ....ovuiiii 277
1ineto. i e 277
LamK . et 297
1A, 46
1anR> . e 65
T 01 65
list_link ... 354
1iSt _MAME ..ottt et 354
list_namelen. .......c.uuuiiiiiunnnnennnnnneeen. 354
list_paraml............ ... i il 354
list_param2................ i 354
B = B v o= PP 354
it e e 49
diteral. ... e 53
81T (PPt 339
INaAME . .ttt e 297
d0 e e 323
load-pixbuf....... ... ... ..l 276
load-xref ... .. oo 314

load_path.........oooiiiiiiiiiiiiiiiiii i, 202



402

loadbuilderxml ........... ... 274
loadcurrfile. ...t 280
loadcurrtext........ooooiiiiiiiii L 280
loadoverlay........coviiiiiiiiiiiiiiinia... 323
loadsysini............... ...l 124
loadtegui...........ooiiiiiiiii i 281
locale-indexX........ ..ot 374
locale-link.................o ool 375
locale—type.......ooiiiiiiiiiiiii i 375
locale@ ...t 374
localeXtern: . ...ttt 223
localnewW ..ot 362
localnew2 ...t 362
1ocals| .o e 97
locate. .o 104
locate$ . ... 203
Jocate_line. ...t 202
locate_path...........ooiiiiii i, 202
locateinfo......... ... .. i 104
TOCKSEM .\ vt e 180
logbrush................ o i i 230
Togfont .. 230
logpalette ... 230
LOgPOM. 230
LOng . oot 225
long ptr ... i 228
1onglong ..ot 225
100D ittt 33
loopalignment....................... ..., 207
loword.......ooiiii 25
D 228
lpaccel ... ..o 227
1paTaAM. 227
IpbOoOL. .. 228
lpbrowseinfo.......... ... ... .. il 233
lpby_handle_file_information................ 230
1Pyt 232
IpC 300
lpcdlgtemplate ... 232
lpcmenuinfo........... ... .o ool 232
Ipcrect ... 232
Ipcscrollinfo.... .o 232
IPCSET . et 227
Ipctstr ..o 227
1pCvoid v 229
IPCWSEL e 228
lpdrawtextparams ..................... ... 232
1pAWOrd .. 227
lpenhmetaheader ................... ... ... 230
lpfiletime......... ... ... ...l 228
lpfontsignature.............................L 230
Iphandle ...ttt 233
lpinput ........ ..o 232
Ipint.....oooii 231
Iplogfont ........ooiiiiiiiiiiiiiiiiii 231
lpmemorystatus ...l 228
lpmenuiteminfo ........... ... ... 232
lpmoduleentry32............... ... .. 228
lpmonitorinfo........... ... ...l 232
IPMSE . e 232
1pmMSEDOXPATAMS ...ttt 232
lpnetresource............. ..., 233
lposversioninfo................... ... 228
lpoverlapped........ccoiiiiiiiiiiiiiiiii... 228

lppaintstruct................ ...l 227

VFX Forth for macOS X

lppaletteentry ... 231
Ippoint ... .. 227
lpprinter_defaults............................ 234
lpprocessentry32. ...t 229
lpprogress_routine.................... ... ... 230
IPreCt . o 227
Iprect=> . 366
lpscrollinfo......... ... ... il 232
lpsecurity_attributes .................... ... 230
lpshfileopstruct .........covvviiiiiiinnnnnnnnn. 233
IpsizZe. ... 231
IpStr . 227
lpsystemtime............ooooiiiiiiiiiiiiiiiL 230
Iptch. ..o 230
Iptextmetric........... ... .o il 231
lptime_zone_information...................... 230
lptpmparams.............oiuiiiiiiiiiiiai.. 229
lptrackmouseevent.......................l 232
IPEStET . e 227
Ipvoid........ooi 228
lpwin32_find_data.............. ... ... oo 229
1pWnAClasSSeX . .o vviiti e 232
1pwWndproc ... 227
IPWS T 228
Iresult ...t 227
LS 132
1S 127, 373
Ishift.. .o 27
IVCOUNE . oottt 97
Lz 249
M

M 201
MK Lo 28
IK/ 30
MF 31
I/ e 29
M/MOA . ¢ ottt et e 377
MacroexXists?. ... ... 200
macroset?........ ... .. 200
Main. ... 177
make-build............. ... ... ool 112
make=ibloCK. ... 215
make-inst ........ .. ... i 346
makebootstrapfile............... ... ... oL 296
makedir ...... .. 132
makedirlevels.............ooiiiiiiiiiiiii.. 138
MaKELONg . ..o 25
makeoverlay...............oiiiiiiiiiii. 322
MATKET . .\ 71
MAt 106
11F N 25
max-char ............ ... . o oo 111
Max—d.... .ot 111
11 E o« 111
1T 111
max-—ud............ i 111
max_path.......... .. ... 17
MD . 258
MG 202
mem-open-file........... ... .. ...l 102
MEMDNEX ..o 120
meth:.... ... .. i 357
method, ...... ... 345



Index

methodtokencompilefromlist................... 360
1T o P 25
mins/hr ... ... 328
1o P 323
1170 Yo PP 29
11T Yo L= PP 235, 236
modified ...... ...ttt 279
modified? ... ... 279
MOAULE . ..ottt et e e 73
monitorenumproc............... ...l 232
MONtRS . ..t e 137
MOV « v ettt ettt e et ettt e ettt 36
movenametowid....... ... ... i 73
MOVEX .ttt ittt et et et iee et 37, 326
1o 149
IEUIIS .« o v ettt e e e e e e et e et 346
11T JP PP 22, 60
S et e 202
MSQ . .ttt e 136
1 1F= O 229
mspad: ... 329, 330
MU/MOQ . oottt e 29
MUlti.. oo 177
MUlti?. . 177
must-be-inst-throw............. ... ... ... . ... 348
mustload? .. ... ... 206
MUSESAVE T .« ittt ettt ettt 280
MYCOLOT ..ttt 276

NHrCh . . e 359
N L An K. ottt e 65
0> 24
TLAIME > . o\ttt ettt e e e 64
name>compile. ... ... ..l 72
name>interpret .......... ... ... i, 72
name>String ... 72
0 =TT = 65
native® ... 375
NACS o ittt e 66
NACS, ot ittt e 49
NACS ottt 67
NACS T ottt e 67
ndepth....... ... ... .. 159
NATOP - ¢ vttt ettt 24
negate......... ... 31
netif .. ... 91
4= 363
NEW-WOLA « .o vt te et ee ettt iee e iee e 351
NeWCUXTteXt ..ottt e 280
newspad ............ i 329
NEXE=CaASE o ittt ettt 34
NEeXE=TAME . .. ittt ettt e e 48
X B CASE & ottt ettt et 34
BAT=5 <5 o oo P 266
NeXTSYSEIrTOr. ... ..ottt 266
nexttexXt ... .. e 372
nexttext# ... ... ... ... 373
B0 v F= = PP 20
nextxref .. ... 315
nfa>Ctrl e 64
NAib>heX oo 120

403
4T3« 23, 168, 362
norm_form........ .. ... ... 229
o o PP 23
not-overlapped? .......... ...l 39
novExgtk ... ... 275
DI ottt e e 24
IS0 . ot 136
nsbwiden .......... . 26
nsearch-wordlist............... ... ..., 352
NSIWAdeN .ottt 26
NSWWiden ... ...t e 26
nubwiden ......... .. 26
NULL 17
NULldev: ..., 84
nulwiden ... e 26
IUMDET Lttt 22
numberfmt ......... ... . 229
NUWWIdEN .. oot e 26
NXCALL . ottt 244
O
0_@DOTt o e 263
Of o 34
o3 5 35
OF b e 235
offset. ..o e 377
OffSet: oot 347
L3 o P 35
on_about_mainhelpmenu_activate.............. 281
on_aboutdialogl_close .............oouunnnnn. 281
on_copy_maineditmenu_activate............... 281
on_cut_maineditmenu_activate................ 281
on_delete_maineditmenu_activate............. 281
on_mainwindow_delete_event................... 281
on_mainwindow_destroy ........................ 281
on_new_mainfilemenu_activate................ 281
on_open_mainfilemenu_activate............... 281
on_paste_maineditmenu_activate.............. 281
on_quit_mainfilemenu_activate............... 281
on_save_mainfilemenu_activate............... 281
on_saveas_mainfilemenu_activate............. 281
ON LY ettt et 70
[ 4 e TP 277
OPH o oo 52
op-default......... ..o 251
open-file.......... ... ... 99
OPEI=SET ..ttt tttttttt s 87
OPENCUTTEEX L ...ttt 280
OO ettt 358
OPEerator ... 52
OPETALOT ! ..\t 52
(o oS3 af=N T ol o b of X o] 1T O 360
Operatortype. ... 20
OPEUNC . ottt 79, 80
oplist_link............. ... ... ool 354
oplist_list...........o il 354
OPLISt _OPH ..ot 354
OPt] 208
optimised.......... ... .. il 208
optimising.......... ... .. 20
optimising?.......... ... ..l 208
[ 23
O o 23
[ e =S PP 70



404

original-xXt..........ooiiiiiiiiiiiiiiiiiiiL 20
oscall......ooiiiiiiiiii 226, 234, 235
outputtags ... 331
[ = 25
overlapped?........ ... 39
Overridebase . .......oiuiiiiiiiii 45
ovl-id. ... 19
ovl-init-compile............. ... ... ..l 322
ovl-link ...... ... 19
ovl_din_dict........iiii 323

D ottt 113
PAcCtCtX ..o 229
Pad . 18
P o o ittt 81
pPage-check........ ... 58
paintstruct......... ... 232
PATSE . ottt et 48
parse-leading.................... ...l 48
PATSE NAME . . .. wtvteeeeeeee et 48
Parse-wWOrd .......... ...l 48
parse/l. ... ... 127, 371
Parse\ . . 54
parsed. ... i 284
parseerrdef ... 265
PATSET .t 58
parseuntil....... ... .. i 55
PATE 109
PASCAL. ottt 224
PASSOVEYL ..\ttt 105
patched? ......... ... ... 65
patchxt............. .o 65
PAUSE ..ottt 22,178
pauseconsole.............. i 106
Pbool. ... 229
pcidlist_absolute................. ... ... ... 233
pcomboboxinfo......... ... ... ool 232
pconvcontext..................a, 232
peconvinfo..............oaooaooon 233
PAeVIMOde .. ... 234
pdfloadcfg.......... ... 115
pdfsavecfg....... ... ... ...l 115
pdword. ... 229
peek-token............. ... ... 351
1S5 « AP 277
POIX L ottt 276
POILY - v ettt et e 276
perform........ ... ... 33, 177
pflashwinfo......... ..o 233
pfncallback...............o il 233
pfunc.......... 247
phandle ........ ... . il 229
Pick. ..o 23
piconinfo..................oooooolll 233
PId_t . 235, 236
pidlist_absolute.............. ... ... 233
Place..... ...l 39
Places. ... ... 167
plong......... 227
pmemory_basic_information.................... 230
point... ... . 231
POIntStO: L.t 347

POL1SOCK ... 91

VFX Forth for macOS X

post—def ... ... 356
post—float............ ... il 168
post—xLit ...... ... il 58
postextcall .............. ..ol 222, 237
postfix ... il 149
postfpextcall................... ... ....... 222, 237
POSTPOIE .. 58
precision.....................oooooa 166
preextcall ............................... 222, 237
prefix..... ... ..o 149
prefpextcall......... ..., 222, 237
prepdirname.......... ... 138
prepfilename..........................oLL 138
previni$ ... ... 122
Previous ...t 70
pPrivate: ... 356
process_dpi_awareness ........................ 233
processlsttoken.............. ... ...l 361
protalloc............ ... . il 60
protected: ......... ... ... ... ool 356
protectedexterns.............................. 240
protfree ... ... ... 60
provider: ... 346
PLUNE: .\ttt 71
PLUNES . ottt 71
psecurity_quality_of_service................ 233
ptexted ........ ... ... ool 279
Pto .. 377
ptr-template.................... ...l 346
PUL . 346
public: ....... ... 356
pularge_integer ................ ... ...l 229
PUL .. 278
putpixel ...... ... 278
pvoid... ... ... 229
PWA . 132
PWSET ... 233
Q

QUETY ettt et e 48
QUIT .o 22
quithook ............o i i 58

T/ 0 et 99
o)A A PPt 99
L et e 24
IO L 224
T 24
Tad>deg . ..o 165
TANAOM. .« ettt ettt 126
rawimage ... 301
rdepth...... ... o i 25
read—-file ....... ..t 100
read-line ........ ..ot 100
ANV .ottt ittt 135
readescaped.........c..iiiiiiiii 55
TeAdSOCK .ottt 91
readXml . ... ..ot 333
o= - T 168
rec-ciaohook. ......coiiiiiii i e 362
rec-ciaoundef........... ... .. ... 362



Index

rec—ClassviX. ...t 349
rec—find ... ... ... 57
rec—float ... i 168
TEOCTUM . « vt ov vttt e e et e e ee et e e ee e ee e 58
TECOZNIZE ...ttt 58
=Y o 231
rectangle ... 278
TECELYPE: « it 57
TECTYPEICOMP .+ ¢ e v ovvve ettt e e e eeieee s 57
TEeCtYPe >Int ...ttt 57
Tectype>post. ... ... 57
=Y o U T =Y 35
redefhook ..ot 66
AT AW. . oottt e e 276
refill. . ... 48
refknownfolderid................coviiiiinn.... 233
FELEASE .ottt 180
releasealloverlays.............ooovviiiiin... 323
releaseoverlay ............ouiiiiiiiinn... 323
relfileexist?...... .. . i 101
relfileexists? ..... ..o 101
TeMEMbET: ...t 71
TeMeMbETS . .ottt s 71
removeallsSins. .. ...ouiiiiiiin i 211
TEMOVESII . ottt ettt ettt e 210
removesininrange............. ...l 211
rename-file........ ... . i 101
TEPEAT .. 34
TEPlaces ...ttt 200
reposition-file.............. ... ... ... L 100
TEPTESENT .ottt ittt e 167
TEqUEST ... 180
require ... ... 101
required......... ... . ool 101
requires ... 4
res—1inK ... e 19
reset—stacksS. ...ttt 59
resetcompilebuffer............... ... .. ... 359
resetfifo....... ... 126
resetminsearchorder............ ... ... ... .. ... 70
TESIZE . ittt 60
resize-file........ ... i 100
resolveincludefilename ....................... 102
resStart ... 178
restore-input............ ... ... il 48
TOVEAL . .ttt e 66
revealname .. ...o.ut ettt e 66
0 11 P 132
0 o et et e e e 323
Ol ot 27
Ol o 24
o Yo X v PP 15
oo 27
o X v 24
rounded . ... 165
roundedup ... 165
TOUNAUD .+« o oo vv e e e e e e e 165
TOW ettt ettt e 297, 298, 301
TP 25
ITPQ ... 25
TPick. ..o 23
rshift. ... . e 27
B T 125
TURALE. .o 274

405
TUNDINGT L 178
a1 PP 125
runtexted ... ... 282
S
S e 54
S e 39
SHChaAr. .. 329
B e e e e e 38
S 378
S A 31
S F 163
S\ 55
SACCEPL. ... 90
SapPPend ... ... 329
SV . v ittt e 259
save—input ........ ... 48
SAVE = SUCCESS e vt vttt et ie et 196
save-xXref .. ... 314
SaveasCurrtext .......iiiii i e 280
saveconfig......... ... i 337
saveconfigl ... ... ... i 337
SAVECUTTteX T . .ttt 280
SAVEA AN vttt 20
savesysini........... ... 124
sbloading............. ... ... 280
Sbparams ... 279
sbsaving..............iiiiii 280
=T o2 « P 37
SCaAn-blacK .. ..ot 327
SCan—quoOte . ........ ... 327
scan-white......... ... 327
1= o P 19
SCTASh. .t e 356
SA=ClOSE .\ttt e 93
SA= G e et 93
SA=emit. . ..ot e 93
sd-flush ... ... e 93
SA=10CtL ..t 94
SA-KeY .ot 93
sd-Key?.. ... ... 93
SA-LYPe. ..o 93
SA-Write .. i e 93
Sdate>. .. 327
SATOP. ..o ot 329
SEATCH . .ttt 38
search-context .........ciiiiiiiiii i 69
search-wordlist ............oo ... 69
SECONMAS .+t ittt 183
SECS/MANM ..ot 328
security_quality_of_service................. 233
S it ittt 153
self .. 177
semaphore ........... ... .. i il 180
SETAEV .ottt 87
SETVANT .+t ittt it e 330
SEE=Dat. it 36
set-buildfile...........coiiiiiiiiiiii 112
set—callbacKk........ooiiiiiii i 251
set-compiler........ ..ot 50
set-country............. ...l 373
set—current . ... 70
set-init-module .......... ..., 73
set-language..............iiiiiiiiiiii 373



406

SEL=0TdeT ..ottt e 70
set-precision............. ...l 167
set-recognizers.................... ... 58
SEL=S1Z@ .\ttt e 258
set-stack ... e 56
Set—StaCKS ... .ot 258
set-term-module ........... ...t 73
setbaud............ ... i il 85, 86
setdata........... ... il 85, 86
SEEAOS . ottt 86
SetAtr. . . e 86
SetexXeCperms. ..., 259
setinistring......... ... ... o ool 120
SELI0 . i e 81
setlocate ... ...t 204
SEEMACTO « v vttt e ettt et e 201
setovlloadhook ........cooiiiiiiiniiii i 322
setovlreleasehook............oviiiiniiinnn. 322
SEEOV Ve .ottt e 323
setparity........... ...l 85, 86
setpos—tb........ ... . 83
=3 v = PP 86
setsignal .......... ... ...l 135
setsigtraps..........ooiiiiiiiiii 135
SELSTAtUS ... i i 279
SELSTOD. .o 86
settagstatus............. ... .. ..ol 332
SEELACKS o\ttt 136
settimerdata............ ..t 183
S EUNI . ottt e 86
Setupgwin.......... i 278
STl 159
STl 160
SEH 160
SE 161
STl 160
SE@ . . 159
SE @+ . . 160
sfalign........... ... .l 161
sfaligned........... ... ... i 161
Sfloat+ ..o 161
SEloats oot e 161
Sh 132
shellcmd ...ttt 131
shellexecuteinfo............... ... .. ... ... .... 233
Shellline ....vuiiiiin ittt 131
ShOT . . 225
short-branches? .............oiiiiiiinininnnn.. 207
short-branches] ............ ..., 207
S OW . ot 315
showchain ..........oi i 47
showcoldchain..........ooviiiiiinneninnenn. 257
showerrorline. ..........oouiiiiniinennnnannnnn. 267
showexitchain............. .. ... 257
ShOWMACTOS . o vt i ettt e 201
ShOWSOUYCEONETTOT . .\ttt ettt ieieeieeeeannn 267
showsourceonerrorhook ......................... 22
ShutSem ...t e 180
sigalrmhandler ................................ 183
siggentrap.............oiiiiiiiiiiiiiii 134
SIgn .. 43
signal........ ... .. 180
Signames ......... ...l 134
signed............. ool 224

VFX Forth for macOS X

sigpause? ... i 135
sigthrow........... ... ...l 134
= (P 107
SIMILATS o ittt e e 106
S e 210
SAn 210
SINACTIVE T ottt e 210
SINAOES T ot 210
single....... .. 177
single-token........... ... ... ..., 361
SAnAt . . 329
sinlined? ... ... 210
sinthreshold.............oiiiiiiiinennnnnn.. 209
size_t ...t 229, 234, 235, 246
sizedtextbuff......... ... .. ... .. 83
SRID ettt 37
skip-sign....... ... 45
skip-white........ ... . i 327
SKippast ... 333
skipped ...... ... 346
skipspace............ ...l 196
Sliteral ...t 55
SM/TEM. . oottt ettt e 29
smaller............ooiiiiiiiiiii 49, 206
SOV .+« v e ettt ettt e ettt e e e e 39
SMUAGE . ...t 65
=301 329
SOCKET . ottt e 228
socketdev: ... . 94
sockreadlen . ........viiiiii e 91
SOULCR . o e ettt ettt ettt e e 47
source=id ...t 47
source-info....... .. ... . i i 104
source-line-pos ............. ... .o ool 20
sourcefiles ... ... e 15
sourcetrackrename . ..........covuvunennennnnannn 103
S 25
SPO . . 25
SPACE .« vttt 42
SPACES . 42
spchain ......... ... 328
SPOD -« 329
spush......... i 329
sqlite3 ... ... 247
sqlite3_blob......... ... ... il 247
sqlite3_context ...........oiiiiiiiiiiii... 247
sqlite3_mutex.........cooiiiiiiiiiiiiiiiii, 247
sqlite3_stmt......... ... ... il 247
sqlite3_value........ooviiiiiininiennnnnneennn. 247
sqlite3_vis........o i 247
SSPAd: .. 328
SBACK: ottt e 56
starbslash....................... 296, 298, 300, 304
start-timers.......... ..ot 183
SEAT L e 178
StaAte . . i 19
Static. ..o 356
static-meth:.......... . ... ... i 357
staticnew........coo it 362
Stdcall ... 224
= =5 o PP 329
SEOD . o 178
stop-timers............ .. ... 183
stopincluding................. i 56
SO S ittt e 329



Index

= v o 38
String. ... ... . 197
stripfilename............ ... i 99
SErrmatch . ..o e 41
SErUCE . oot e 109
subrecord....... ... 109
subsitute-safe ........ ... i 200
substitute............. . il 199, 374
substitutec......... .. i 200
substitutez.........oiiiiiiiii 200
substitutions.......... ... . i 15
SUCCESS vttt ettt ettt 196
SUPETCLASS ..ttt ettt 346
SWO . .ot 159
5= o 24
SWALCH. oot 125
switch] ... . 125
SYNC] 180
E<i72:4 Yo% o1y 51
SYSAOW. ..\ttt 60
syserrdef ...l 266
SYSTOM. . 15
systemtime.............. ...l 229
systime&date............ ... ... ..ol 60
SZSIA . it 82
T

table . ... 296, 298, 301
tabWOrdsStop . ... 20
tagsStatus ... 332
BAS K . ottt 177
taskreadied...........oiiiiii i 179
taskready ........ooiiiiiii i 179
taskstate ... 179
o3 1 - o 233
TCPCONNECT ...t 91
td>epoch ...l 136
term—module........ ... 74
term—multi......ooiiii 179
BT =XCOM . vttt e 89
term—xref .. ... ... 314
termCritSec. . i 135
terminate .......... . 178
terminibuffs.......... ... ... ... 119
termSPads . ... 329
termtexted........ ... 282
test-bit ... ... 36
test-code? . . ... 171
testlaunch.......... ...t 137
textbuff-sid......... ... 82
textbuff: ... . 83
textchain .......... .. ... il 20, 266
textdef ... ... 373
BEXEMACTO: ottt 200
B 160
3 I 160
73 160
B, 161
L il 160
BE Q. 159
Lo 160
tfalign ... 161
tfaligned.........coiiiiiiiiiii 161

tfloat+ ... 161

407
tfloats i 161
4 =5 PP 34
thaS . 351
BT OW . ot 263
A 47
BiCKR—MS .ot 136
BACKS oot 22, 60
tickstepms..................oooLL 136
timed, .. 112
time&date .. ... 59
time_t.. .. oo 235, 236
timedout? ... ot 60
timeout_event_cb......... ... ... .. il 276
to-callback........ouiiii i 252
00 . o e 59
TO—PUMP ..\ttt 178
BO=SOULCE .\ttt 47
BO=taSK .. 178
B0 . 328
toggle-bit............. 36
ORI . ottt e 197
token-buffer........... ... ... ... 351
TOP—MASK ... 20
toplib.. ... 221
B 129
traverse-wordlist............. ..., 72
trim-dictionary ................. ...l 71
7 o =P 16
truncated . ... e 165
BSEOD . 183
ttx-get ... ... 316
TEX=Set .. 315
172 v 472N 316
BUCK . et e 23
twist-structure.......... ... ... .., 347
B P -ttt e 21
type-self ... ... 347
type-template................ ...l 346
1702 5 1= 346
type:-runtime........... ... ... ool 346
typecast: .. ... 347
typechildcomp, ... 346
U
U e 51
L T 44
LT PP 44
W/ e 29
L0 26
TS T ettt e e e 27
U ottt e e 26
U ettt e e e 26
U2/ oo 30
WA/ 30
U8/ 30
8 s 11T = PP 38
UCIMOVED . oottt ettt et e et ettt 38
UABDCL . et 333
U T e 44
UAPCONNECT . .t 91
Uid_t . 235, 236
0 227
WINt16. oo 225



408

WInt16_t ..o 235, 236
uint32. ... 225
uint32_t ... 235, 236
uint8. ... 225
Wint8_t. ..o 235, 236
ulong ptr.................iiii 229
UK L oottt ettt 28
UM/MOG .« ot ettt ettt e 29
UMAX © oottt e ettt ettt e e e e et 25
UMD . 25
UMOVE .« vttt et ettt et e et ee e e et e e e 38
undefined ........ ... 57
UNESCAPE -« v vvvveeeeeeeeee e 200
uniappend ... 249
unicount .......... i 249
UNIOM. . oot 109
uniplace ... 249
UNIX Lot 86
unknownentity........... ... o ool 330
unlocksSem..........ooiiiiiiiiiiiii 180
UNLOOP -+ttt 33
unmodified.......... .. ... 279
unoptimised............. .. ...l 208
unpatch.............. ...l 65
unsigned . ... 224
until. ..o 33
UNUSEA . . oottt ettt 37
VP 25
UPQ ... 25
UPC ettt et e 37
update-build............. ... ... 112
UPLACE . .ttt 38
UPPET .« o ettt ettt 38
UL . 301
WSET o ettt e ettt e 17, 18, 51
L8 <= < N 315
\%

v-find. ..o 377
Va_list ..o 229
value ..., 49, 51, 58, 207, 216, 351
variable. ... 51, 216
variant ... 109
VCHt 224
verash.. ... 356
vi-close-file.......... .. i 102
vi-open-file............ ... ...l 102
vi-read-file........ ... ... il 102
vixpath ... ... 202
virtual ... 356
virtual-meth:.......... ... ... .. ..o 357
voc-link ... 19
VOCOIWIA . .t 69
V0T T ottt e et 70
vocabulary............ ..o il 69
VOGS o ittt ettt 70
VOId .t 117, 118, 225
A%
W 36
WD) oo 90
W e 127

VFX Forth for macOS X

Wt 127
W, 127
WH D 35
Wiy ettt et e e e e 32
W, () oo 90
Wl 35
W/ 0 ettt 99
WO L e 36
WO(I) ..ot 90
WOS .« oot 36
waitforsync......... ... ...l 179
waitidle ... ..ot 22
walkallwordlists .....ovviiineniiiiiee 72
Walkallwords . ....oviii it 72
walkcoldchain.............oiiiiiiininnnnnnn. 258
walkdecomp............ ... ..o ool 315
walkexitchain........... ... ... i, 258
walkwordlist........ooiiiiiii i 72
walkxref ... ... 314
wappend ... 127
Warnings? ........ . 66
WCmatCh? ..o 41
WCOUNT . oottt et e 46, 127
WA o 203
WA_deSEIoY ..o ovi 275
Whereis ...t e 104
While . . .o 34
Wid=1dnK ..ot 19
wid-threads.......... ..ot 66
widget_destroy_cb.......... ... ... ... ..ol 275
widinfo. . ... 75
WS ot e 70
winapi........o i 224
winapphandle@.................. .. ... .. ... 377
window—-dims...........iiiiiii e 276
Window> ... . 276
WindoWS ..ottt 276
winresized.......... ... 277
With: oo 346
Within. ... ... . 27
Within?. ... . 27
withtext ...... ... .. 333
WILEIM . v ov v et et e e e e e e e et et e e 339
WNACLASSEX ot ottt et ittt et 233
WORAENUMPTOC . . vttt 233
WOLA oottt ettt 48, 226
WOordlist ..o 69
WOLA S . vttt ettt e 106
workingdir......................oooilllL L 138
WPATAIM. oo ettt ettt ettt ettt et 227
write—file . ... ..ot 100
write-line......... ... 100
writecurrtext.........oiiiiiii i 280
L T =Y =Y ¢ 7t 135
writeinifile........ ... ... .. i 119
WEATESOCK ittt e e 91

X

xcall-fault...........oiiiiiii i 237
xcallsavendpT. . ....uiiiiii 237
XCONSO0Le ittt et 89
XAT-UEC oo 335
XAE=ZOME . ottt 335



Index

XLteSt . e 249
Xmlemit ... 333
XMIEYPE . 333
e 23
b P 23
Xref . e 315
xref-all .. ... 315
xref-Kb ... 314
xref-report...... ... . o ool 314
xref-unused.......... ... 315
Xref i e 314
XEOWAA . 73
X O ottt e 89
xtoptimised?......................LL 65
XEYP . e 131
XYWH=> e 366

409
2 107
2t 40
2, 107
Z 107
Z$eXPaAndmaACTOS « ...ttt et 201
ZOheTe. 378
ZN\ e 55
Z\ e 55
ZAPPENd. . 40
ZCOUNE . ottt 40
zerooptdata............ ...l 64
zfindcallbacKk........ooiiiiiii i 273
Z1S 127, 373
4 11 o =Y 40
ZNUL L . e 40
ZPLaACE . . 40
2= v o =Y « Pt 40
zstrmatch .. ... o 41
ZSYSNAME . o vttt ettt e 267
ZE O M. oot e 40






	Licensing and other matters
	Commercial use
	Community licence
	Distribution of application programs
	Distribution of files
	Warranties, support, and copyright

	Enterprise licence
	Distribution of application programs
	Distribution of files
	Warranties, support, and copyright


	Introduction, Installation and Configuration
	Introduction
	Installation
	VFX Forth
	Directory structure
	Executable file naming converntion
	Executable files
	Getting started

	Configuration
	Set up your editor19<q
	Set up the PDF help system

	New features in this version
	Acknowledgements

	How Forth is documented
	Forth words
	Stack notation
	Input text
	Other markers

	Base Kernel Definitions
	Glossary Notation
	Main Vocabularies
	ASCII Character Constants
	System CONSTANTs
	Defined USER Variables
	System Variables and Buffers
	Variables
	Values

	Kernel DEFERred words
	Input and Output
	Kernel and Convenience
	GUI interface hooks

	Logic functions
	Stack manipulations
	Comparisons
	Arithmetic Operators.
	Shifts
	Multiplication
	Division
	Combined multiply and divide
	Traditional short forms
	Addition and subtraction
	Negation and absolution
	Converting between single and double numbers
	Portability aids

	Dictionary Memory Manipulation
	Branch and flow control
	Memory operators
	String operators
	Caddr/len strings
	Counted strings
	Zero-terminated strings
	Pattern matching
	SYSPAD buffering

	Formatted and Unformatted number conversion
	Tools
	Numeric output
	Numeric input conversion

	More string words
	Linked lists
	Wordlists and Vocabularies
	Input Specification and Parsing
	Support for constructing words
	Defining words
	Compilation tools
	Literal tools
	Finding xts
	Parsing strings and characters
	Comments
	Generic stack get/set
	Text interpreter
	Recognizer type structure
	Word and number recognition
	Main recognizer and text interpreter

	DEFERred words and Vectored Execution
	Time and Date
	Millisecond timing
	Heap - Runtime memory allocation
	Nested definitions

	Dictionary Organisation/Manipulation
	Definition Header Structure
	Header Manipulation Words
	Definition and Data space access.

	Search Order: Wordlists, Vocabularies and Modules
	Wordlists and Vocabularies
	Creation
	Searching
	Removing words
	Processing words in a wordlist

	Source Code Modules
	Module definition
	Module management
	An Example Module


	Generic IO
	Format of a GENIO Driver
	Current Thread Device Access
	IO based on a Nominated Device
	Standard Forth words using GenericIO
	Miscellaneous I/O Words
	Supplied Devices
	Memory Buffer Device
	File Device
	NULL Device
	Serial Device
	XTERM Device
	Sockets


	Local variable support
	Extended locals notation
	ANS local definitions
	Local variable construction tools

	Working with Files
	Source file names
	ANS File Access Wordset
	File Caching
	"Smart File" Inclusion
	Source File Tracking
	Control Directives

	Tools and Utilities
	Conditional Compilation
	Console and development tools
	Zero Terminated Strings
	Structures
	Forth200x structures

	ENVIRONMENT queries
	Predefined queries
	User words

	Automatic build numbering
	PDF help system
	INI files
	Shared library interface
	Tools
	Using the library
	Operating system generics
	Operating system specifics
	System initialisation chains

	Converting from the previous mechanism
	Switch chains
	Introduction
	Switches glossary

	First-In First-Out Queues
	Random numbers
	Long Strings
	Command Line parser
	C Language Style Helpers
	Stack guarding
	Transient word regions
	Eliminating compilation surprises

	OS X specific tools
	Shell operations
	Primitives
	Command operations

	OS X signal handling
	Structures
	Signal handling

	Error variables
	Environment variables
	Critical sections
	Millisecond timer
	Raw timer
	Time handling
	A structure to mimic the timeval structure for libc
	A structure to mimic the tm structure for libc
	Time and date
	Program launch status
	Folders and Files

	Intel 386+ Assembler
	Using the assembler
	Assembler extension words
	Dedicated Forth registers
	Default segment size
	Assembler syntax
	Default assembler notation
	Register to register
	Immediate mode
	Direct mode
	Base + displacement
	Base + index + displacement
	Base + index*scale + displacement
	Segment overrides
	Data size overrides
	Near and far, long and short
	Syntax exceptions
	Local labels
	CPU selection

	Assembler structures
	Assembler mode switches
	Macros and Assembler access
	Assembler error codes

	Intel 386+ Disassembler
	Low-Level Disassembly Words
	Higher Level Disassembly

	Floating Point
	Introduction
	Ndp387.fth - coprocessor stack
	Hfp387.fth - external FP stack

	Radians and Degrees
	Number formats, ANS and Forth200x
	Floating point exceptions
	Standards compliance, F>S and F>D
	Configuration
	Assembler macros
	Optimiser support
	FP constants
	FP control operations
	FP Stack operations
	Memory operations SF@ SF! DF@ DF! etc
	Dictionary operations
	FP defining words
	Basic functions + - * / and others
	Integer to FP conversion
	FP comparisons
	Words dependent on FP compares
	FP logs and powers
	Rounding
	FP trigonometry
	Number conversion
	FP output
	Patch FP into the system
	PFW2.x compatibility
	Debugging support
	Extensions
	F.P. stack jugglers


	Multitasker
	Introduction
	Configuration
	Initialising the multitasker
	Writing a task
	Task dependent variables

	Controlling tasks
	Activating a task
	Stopping a task
	Terminating a task

	Critical sections
	Multitasker internals
	A simple example
	Structures and support
	Task definition and access
	Task handling primitives
	Task management
	Task synchronisation
	Semaphores
	Exclusive access

	Periodic Timers
	The basics of timers
	Considerations when using timers
	Implementation issues
	Timebase glossary

	A BNF Parser in Forth
	Introduction
	BNF Expressions
	A Simple Solution through Conditional Execution
	A Better Solution
	Notation
	Examples and Usage
	Cautions
	Comparison to "traditional" work
	Applications and Variations
	References
	Example 1 - balanced parentheses
	Example 2 - Infix notation
	Example 3 - infix notation again with on-line calculation
	Acknowledgements
	Glossary
	Error reporting

	Text macro substitution
	Usage
	Basic words
	Utilities
	System Defined Macros
	MacOS specifics
	Editor and LOCATE actions

	VFX Code Generator
	Enabling the VFX optimiser
	Binary inlining
	Colon definitions
	Code definitions

	VFX Optimiser Switches
	Controlling and Analysing compiled code
	Hints and Tips
	VFX Forth v4.x
	Tokeniser
	Tokeniser state
	Tokeniser control
	Gotchas

	Code/Data separation
	Problem and solution
	Defining words and data allocation
	Gotchas
	Glossary


	Functions in DLLs and shared libraries
	Introduction
	Format
	Calling Conventions
	Promotion and Demotion
	Argument Reversal
	C comments in declarations
	Controlling external references
	Library Imports
	Mac OS X extensions

	Function Imports
	Pre-Defined parameter types
	Calling conventions
	Basic Types
	Windows Types
	Linux Types
	Mac OS X Types

	Compatibility words
	Using the Windows hooks
	Deferred words and variables
	Default versions
	Protected EXTERNs

	Interfacing to C++ DLLs
	Caveats
	Example code
	Accessing constructors and destructors
	Accessing member functions
	Accessing third party C++ DLLs

	Changes at v4.3
	Additional C types
	More Operating Systems
	Miscellaneous


	Supported shared libraries
	LibCurl
	LibIconv
	SQLite
	zlib
	Windows specifics
	Mac OS X specifics
	Linux specifics
	Generic code

	LibXL - Excel interface
	Test code


	Callback functions
	Simple CALLBACK functions
	An example. Creating a signal handler
	Implementation notes

	Building Standalone Programs
	The basics
	Windows GUI
	Windows console
	OS X and Linux console

	Sequence of Events
	The EntryPoint word
	Startup and Shutdown words
	Saving to an Mach-o file

	Exception and Error Handling
	CATCH and THROW
	Example implementation
	Example use
	Wordset
	Extending CATCH and THROW

	ABORT and ABORT"
	Defining Error/Throw codes
	System Error Handling

	Using libgtk2 widgets from Forth
	External Linkages
	Signal Connection
	Recommended
	Macros

	GTK Types
	GTK message pump
	Windows
	Linux
	Mac OS X

	Operating System Dependencies
	Linux
	Windows
	Mac OS X

	Loading GTK Builder files
	Dialogs
	Event Callbacks
	GTK startup and shutdown
	GTK test code
	Graphics in the Borland style
	Global Data
	Internal operations
	Application words

	A text editor in Glade
	Tools
	Status bar operations
	TextViews and buffers
	Loading and saving text
	Clipboard
	Callbacks
	Initialisation and termination


	DocGen Documentation Generator
	What DocGen does
	Using DocGen
	Marking up your text
	Comment tags
	Formatting macros
	Table macros
	Image macros

	Defining a new personality
	Personality description notation
	Using control codes
	Writing the action words
	Formatting commands
	Personality words glossary

	HTML5 output
	HTML5 macros

	Markdown output
	Markdown macros

	TeX output with texinfo.tex
	Texinfo macros

	LaTeX2e output
	Installation
	Basic usage
	Adding a title page
	Adding a Table of Contents
	LaTeX macros

	DocGen kernel hooks
	Organising Manual generation
	Sample DocGen Control file
	Example file list
	Example batch file
	Example Texinfo title page

	DocGen/SC

	Library files
	Building cross references
	Introduction
	Initialisation
	Decompilation and SHOW
	Extending SHOW
	Glossary

	Extended String Package
	Extensible CASE Mechanism
	Using the chain mechanism

	Binary Overlays
	Introduction
	Using overlays
	Load and Release actions
	File name conventions
	Version control
	Restrictions
	Gotchas
	Overlay glossary

	XML support
	Why XML
	Using the XML Parser
	Generating XML output
	Tools
	XML input parser
	Data content input and output
	Test code

	Configuration files
	Loading and saving configuration files
	Loading and saving data


	ClassVfx OOP
	Introduction
	How to use TYPE: words
	Predefined types
	Predefined methods/operators
	Example structure
	Data structures created by TYPE:
	TYPE: definitions
	MAKE-INST definitions

	Local variable instances
	Defining methods
	Create Instance of an object
	Defining TYPE: and friends
	TYPE definition

	Dot notation parser
	Compiling for VFX v4
	Compiling for VFX v5


	CIAO - C Inspired Active Objects
	Token and Parsing Helpers
	The THIS Stack
	CIAO Constants and Internal Data Stores
	Search Order Utilities
	Method Lists
	The Format of a Method List.
	TYPE_DATA
	TYPE_STATICDATA
	TYPE_CODE
	TYPE_STATICCODE
	TYPE_VIRTUALCODE
	TYPE_CLASS
	TYPE_CLASSPTR
	The definitions which deal with lists are:

	Operator List
	The CLASS structure
	Method Searching
	Default Method Actions
	Method Scope Specification
	Name Format Checking
	Method Type Overrides
	Data Method Prototyping
	Code Method Prototyping
	Class Method Prototyping
	Operator Association
	CLASS Definition
	STRUCTures - A new slant on CLASS
	Colon and SemiColon Override
	OOP Compiler/Interpreter Extension Core Part 1 - EVALUATE BUFFER
	OOP Compiler/Interpreter Extension Core Part 2 - Method Compile
	OOP Compiler/Interpreter Extension Core Part 3 - Single Token Check
	OOP Compiler/Interpreter Extension Core Part 4 - Compounds
	Installing CIAO into VFX Forth
	VFX v4.x
	VFX v5.1 onwards

	Instance Creation Primitives
	Instance Creation
	AutoVar - An example of a Class
	AutoVar2 - Another Example
	Class Library
	Base Operators
	Primitive Types
	Windows Types
	Windows Structures
	CPOINT - Point Class
	CRECT - Rect Class
	CString - Dynamic String Class


	Internationalisation
	Long string parsing support
	Data structures
	Rationale
	/TEXTDEF structure
	String structure

	Creating and referencing LOCALE strings
	ANS LOCALE word set
	ANS LOCALE extension word set
	Windows language support

	Obsolete words
	Removed from VFX Forth v4.0

	Migrating to VFX Forth
	VFX generates native code
	VFX uses absolute addresses
	VFX is an ANS standard Forth
	COMPILE is now IMMEDIATE
	Comma does not compile
	COLON and CURRENT
	The Assembler is built-in
	The Inner Interpreter is different
	The FROM-FILE word has gone
	Generic I/O
	External API Linkage
	DLL generation
	Windows Resource Descriptions
	ANS Error Handling
	Obsolete words

	Rebuilding VFX Forth for Mac OS X
	Prerequisites
	Rebuilding the executable stub
	Rebuilding VFX Forth
	Kernel
	Second stage
	Third stage

	Manuals
	Rebuilding the tools
	Rebuilding the libraries

	Packaging
	Mission edition builds

	Further information
	MPE courses
	MPE consultancy
	Recommended reading

	{Index}

