MPE Forth 5

64180 Target

Warranties, copyright and licences

Warranty

MPE software products hold a warranty of 90 days. Software errors, re-
ported within 90 days will be solved free of charge. After this time, fixes to
problems are charged on a time and materials basis.

Technical support is available on the latest version of software. We do not
maintain back-issues of software.

Modifications are only made to the latest version of the software. Therefore
solving a problem may involve an upgrade to the most recent version.

Copyright

Make as many copies as you need for backup and security. The discs are not
copy protected. Please treat this software like a book. It is copyrighted ma-
terial and only one copy of it should be in use at any one time. If you need to
photocopy the manual, you probably ought to purchase a second copy. Con-
tact ourselves or your vendor for details of multiple copy terms and site li-
censing.

All the source files are copyright material and may not be further distributed
without permission in writing from MicroProcessor Engineering.

The cross assembler in particular is copyright and the licence terms do not
cover any use on target systems.

Licences

Any sealed object code generated by the cross compiler may be distributed
without royalty. If your application is sealed (the user can’t get at the Forth

and does not know it is written in Forth) there will be no licence problems -
you are free to distribute the application.

If you leave the application open so that the text interpreter/compiler may be
used, leave an MPE copyright message along with your own copyright no-
tice as part of the sign on procedure, and contact MPE for details of OEM li-
censing terms. Please note that if the open Forth is not available to the
end-user, but is only for debug and test access, then there is no royalty due
to MPE.

OEM licences

The OEM licence allows developers to supply MPE documentation sets,
and to use the ROM PowerForth utilities in their open Forth systems. Con-
tact MPE for the current licence terms.

Registration

Because of the number of copies sold through dealers and purchasing de-
partments we cannot keep track of all our users. If you fill out the registration
form on the next page and return it or a photocopy to us, we will put you on
our mailing list. This way we will be able to keep you informed of updates
and new bolt-on goodies.

If you want direct technical support from us we will need these details to re-
spond to you.

Software Registration Form

SEND TO:

MicroProcessor Engineering Limited

133 Hill Lane

Southampton SO1 5AF

Hampshire

England

tel: (+44) 703 631441, fax: (+44) 703 339691

Customer details

Overseas customers - please include the country with your address.
Name:

Company:

Department:

Address:

Telephone number/extension:

Fax number:

Package details

Title: MPE Forth 5 for 64180
Processor and computer type:
Operating system:

Disc format: (3 5. 5))

Serial number:

Purchase date:

Bought from:

Forth 5 for 64180

USER MANUAL

64180 Target

Version: 5.100

User Manual

Revision: 1.01

Date: 9 February 1994

Package No:

For technical support:

Please contact your supplier

For further information:

MicroProcessor Engineering Limited
133 Hill Lane, Southampton

SO1 5AF, UK

Tel: 0703 631441

Fax: 0703 339691
Net:mpe@cix.compulink.co.uk

MPE Forth 5 for 64180
Copyright ©

Microprocessor Engineering Limited
1993

Acknowledgements

MPE would like to thank the following people for all their involve-
ment in the production of this product:

Jon Lee, Stephen Pelc, Paul Gallienne, Gary Ellis

Microprocessor Engineering Limited
133 Hill Lane
Southampton
SO1 5AF, UK

000 00000 5 000 64180 00000 00 ooooooono

Table of Contents

Chapter 1 - Installing the system 1
System requirements 1
Running the installer 1
Selecting the installation drive 1
Selecting the installation path 2
Standard or custom installation? 2
Standard installation 3
Custom installation system 3

Chapter 2 - The MPE Development System 5
XShell - the development environment 5
MPE Forth cross compiler 6
ROM target Forth 6
Umbilical Forth 7
Leburg EPROM emulator drivers 7
PC PowerForth Plus 7

Chapter 3 - Generating a ROM target Forth 9
Is your board already supported? 9
The control file 10
The memory map 10
Modifying the serial line drivers 13
Setting up the system 15
Cross-compiling 17
Downloading the compiled image 19
Running the target Forth 20
Cross-compiling an application 22

Chapter 4 - Generating an Umbilical Forth target 25
Requirements for Umbilical Forth 25
Is your board already supported? 26
The control file 26
The memory map 27
Modifying the serial line drivers 29

00000 00 Oo0oooon

000 00000 5 000 64180

oa

Setting up the system
Cross-compiling

The compilation summary
Running the target Forth
Cross-compiling an application

Chapter 5 - Optimising your target Forth

Reducing the size of your image
Speeding up your code

Chapter 6 - Z80/64180 Cross Assembler

Why write in assembler?

Creating Forth words in assembler
Assembling into memory

Creating defining words in assembler
Structured programming

Creating macros

Addressing modes

Number Bases

Instruction syntax

Glossary

Chapter 7 - Multitasker

Initialising the multitasker
Writing a task

Initialising a task
Controlling tasks
Handling messages
Creating events

The multitasker’s internals
A simple example
Glossary

Chapter 8 - Interrupts

The 64180 interrupt mechanism
Writing Forth interrupt handlers
Writing assembler interrupt handlers
Controlling the interrupts

Interrupt Handlers in detail
Glossary

31
33
34
35
36

39
39
41

43
43
43
45
45
46
48
49
51
52
58

61
61
62
64
64
65
66
68
68
71

75
75
75
78
79
80
82

000 00000 5 000 64180 00000 00 ooooooono

Chapter 9 - Software floating point 83
Entering floating point numbers 83
The form of floating point numbers 83
Creating variables 83
Creating constants 84
Using the supplied words 84
Setting degrees or radians 86
Displaying floating point numbers 86
Glossary 87

Chapter 10 - ROM PowerForth Utilities 95
Compiling text files 95
Compiling screen files 98
Downloading a binary image 99
ROM PowerForth 101
Glossary 104

Chapter 11 - Paged targets 109
Creating a paged target 110
Compiling code into a page 112
Compiling data into a page 113

Chapter 12 - Controlling the compiler 115
Starting the cross-compiler 115
Stopping the cross-compiler 115
Enabling floating point 116
Setting postfix or prefix assembler 116
Turning the log on and off 116
Selecting code and data page 116
Conditional compilation 117

Chapter 13 - Forth on the Target 119
Inside a ROM target Forth 119
The Forth memory map 119
Register Usage 121
Direct threading 121
Forth Models 121
Inside Umbilical Forth 122

Chapter 14 - Optimizing your development cycle 125
Speeding up the compilation 125
Speeding up the download 126

ooo

00000 00 Oo0oooon

000 00000 5 000 64180

oo

Chapter 15 - Technical glossary

Chapter 16 - Further information

MPE courses
Recommended reading

Appendix A - Converting targets from v4 to v5

Defining the memory map
Using an EPROM emulator
Selecting the compilation page

Appendix B - An example control file

The first page

Cross-compiler search order / loading macros

Configuring for an EPROM emulator
Activating floating point

Turning on the cross-compiler

Setting the target search order
Displaying the cross-compile log
Defining the target configuration
Defining the memory map

Output into EPROM emulator

Selecting compilation pages
Configuring for ROM PowerForth
Defining the number of tasks

Defining the user area size

Setting the stack sizes

Setting the Text Input Buffer size
Calculating the memory per task
Calculating the total memory requirement
Setting RAM for interrupt handlers
Allocation of RAM

Setting the stack addresses

Setting the size of the task control block
Compiling the kernel

Compiling the multitasker

Compiling the software floating point
Compiling the ROM PowerForth utilities
Defining the target sign-on message
Defining the last word

Finishing the cross-compilation

129

131
131
131

133
133
133
134

135
135
136
136
136
136
137
137
137
138
138
138
139
139
139
139
140
140
140
140
141
141
142
142
142
143
143
143
144
144

000 00000 5 000 64180 00000 00 ooooooono

Appendix C - Error Messages 145
General Forth Errors 0..15 145
System messages 16..31 146
64180 assembler errors 32..47 147
Module errors 48..63 148
Source file errors 64..79 148
DOS errors 80..112 149
Text file errors 112..127 149

Appendix D - Technical support 151
Technical Support 151

Index 153

00000 00 Oo0oooon 000 00000 5 000 64180

Blank Page

oo

000 00000 5 000 64180 0000 00 ooooooo

List of Figures

Figure 1 - The development system’s directory structure 6

Figure 2 - Example memory map 12
Figure 3 - The target sign-on 22
Figure 4 - Example turnkey application 24
Figure 5 - Example memory map 29
Figure 6 - Example umbilical turnkey application 37
Figure 7 - The Umbilical Forth sign-on 37
Figure 8 - Use of ;CODE 45
Figure 9 - Example macro definition 48
Figure 10 - Multitasking example 63
Figure 11 - Example paging mechanism 109
Figure 12 - Example page switch code 111
Figure 13 - The page switching mechanism 112
Figure 14 - Adding words to the compiler 117
Figure 15 - Conditional compilation example 117
Figure 16 - Conditional compilation example 118
Figure 17 - The Forth RAM memory map 120

ooo

0000 00 ooooooo 000 00000 5 000 64180

Figure 18 - Umbilical forth message passing 122
Figure 19 - Example version 4 memory definition 134
Figure 20 - Example version 5 memory definition 134
Figure 21 - Allocation of RAM 141

oooao

000 00000 5 000 64180 0000 00 oooooa

List of Tables

Table 1 - Key to cross-compiler log 18
Table 2 - Key to cross-compiler log 33
Table 3 - The Forth registers 44
Table 4 - Available condition codes 46
Table 5 - 64180 cross assembler notation 52
Table 6 - A task’s status word 67
Table 7 - Multitasker data structure 67
Table 8 - Available bus widths 127
Table 9 - Available EPROM sizes 127

oo

000 00000 5 000 64180 0000000000 000 oooooad

Installing the system

It is recommended that you install the MPE Forth 5 64180 Development
System by using the supplied installer. The installer helps you through the
installation process and will make sure you have all the files you need.

System requirements

To install and use the development system you need:

e IBM PC or compatible with DOS version 3 or higher with
480Kbytes of available memory

e A hard disc with at least 1.5Mbytes of free disc space

Running the installer
The installer is supplied on issue disc #1.

To install the development system from drive A:, place the installation disc
(disc #1) in drive A: and type

A:INSTALL
at the DOS prompt.

Selecting the installation drive

The installer lists all the available drives on your PC. Drive C: can be se-
lected by pressing ENTER. If you want to install on a different drive, selecta
drive using the cursor keys followed by ENTER.

oooo 1

0000000000 000 oooooo 000 00000 5 000 64180

Selecting the installation path

The installation path is the path to the directory where the system is to be in-
stalled. Press ENTER to use the default path.

Standard or custom installation?

The installer asks you whether you require a standard or custom installation.
Select standard to install the complete system. Select custom to chose which
parts of the system you want to install. Your choice of standard or custom
will normally depend on whether:

e yoOu are a new user
o this is an upgrade
e you are adding features which you didn’t install previously

A new user

If you are a new user and so are unfamiliar with MPE Forth development
systems, you should install the complete system by selecting standard. This
gives you the ability to explore what the development system has to offer.

An upgrade

If upgrading your development system, select standard. This installs the
whole system as software versions may be incompatible.

Adding to the system

Select custom to choose which items to install. If you have previously in-
stalled only part of the development system, but you now want to install
more of the system, select custom.

oooo 2

000 00000 5 000 64180 0000000000 000 oooooad

Standard installation

If you selected the standard installation, the installer installs the complete
development system. It prompts for certain information:

e PC PowerForth Plus path
e The XShell path

It then prompts for the discs it needs.

Custom installation system

If a custom 1installation has been selected, the installer will prompt for cer-
tain information:

e The items to install

e The EPROM emulator driver required
e The EPROM emulator base address

e The PC Powerforth plus path

e The XShell path

The items to install

The installer needs to know what parts of the development system you want
toinstall. By selecting YES for an item, the item will be installed. The space
bar toggles between YES and NO.

The emulator driver
The development system is supplied with two drivers for the LeBurg
EPROM emulator:
e TSRO21
e TSRO0O41
If you are going to use the LeProm emulator, select TSR021. If you are go-

ing to use the LeMeg or the LeBig emulators, select TSR041. If no EPROM
emulator is going to be used, select don ¢ install a driver .

oooo 3

0000000000 000 oooooo 000 00000 5 000 64180

The emulator base address

The installer needs to know what PC port address to map the emulator driver.

PowerForth path

PC PowerForth Plus is a Forth for your PC. Type the path where you want it
to be installed. Press ENTER to use the default path.

XShell path

XShell is the cross compiler environment supplied as part of the develop-
ment system. It is required to use the cross-compiler. Press ENTER to use
the default path.

oooo 4

000 00000 5 000 64180 000 000 00000000000 Ooooooa

The MPE Development System

Now that you have installed the MPE development system, you may be
wondering what you have got. The MPE development system is to the
Forth-83 standard and consists of:

o XShell - the development environment
e the MPE Forth cross compiler with source
e source for generating a ROM target Forth
e source for generating an Umbilical Forth
e drivers for the LeBurg emulators
e PC PowerForth Plus
The installer creates, by default, the directory structure of figure 1. The

places where XShell and PC PowerForth can be found may differ if the de-
fault directories were changed during installation.

XShell - the development environment

The MPE Development System is based around XShell. XShell is the envi-
ronment used to:

e cross compile source code
e communicate with the target
e download the image to an EPROM emulator or programmer
e cdit your source code
e run any DOS tools
XShell gives you a complete environment to generate, compile and execute

code for your target board. For more detailed information see the XShell
manual. The installer places XShell in the directory XSHELL.

oooo s

000 000 00000000000 oooooo 000 00000 5 000 64180

X180 T-Chip—— Configs
—Drivers
—Examples
~Rom——Configs
— Drivers
— Partial
—Paging
—Romforth
—Examples
— Softfp
-Compiler—Source
-Emu-tsr

-Pforth

-XShell

Decomp

000000 1 0 000 00000000000 0000000 000000000 000000000

MPE Forth cross compiler

The cross compiler can generate either a ROM target Forth or an Umbilical
Forth from your source code. The source code for the cross compiler is sup-
plied, so that you can extend the compiler and rebuild it from scratch if re-
quired.

The compiler can automate the generation of paged targets and also has a
built-in cross-assembler. The compiler is in the directory COMPILER and
the source is in the directories COMPILER\SOURCE and COM-
PILER\SOURCE\DECOMP.

ROM target Forth

Source code is supplied for developing a ROM target Forth. The Forth gen-
erated has a multitasker and software floating point.

It also has a larger wordset than an Umbilical Forth target, but is larger at 8K
or more. If you require the multitasker, you must generate a ROM target
Forth. The installer places the ROM target source code in the directory
ROM. See chapter 3 on how to generate a ROM target Forth.

0oooo e

000 00000 5 000 64180 000 000 00000000000 Ooooooa

Umbilical Forth

Source code is supplied to generate an Umbilical Forth. Umbilical Forthis a
significantly smaller Forth than the ROM target Forth. An interactive Um-
bilical Forth can be generated which is smaller than 2K. Umbilical Forth
does not have all words defined in the ROM target Forth, but is useful if
ROM space is ata premium. The Umbilical Forth source code is in the direc-
tory CHIP.

Leburg EPROM emulator drivers

The cross compiler can directly download code, as it is generated, to a Le-
Burg emulator. This is done via one of two TSR’s:

e TSR021.COM - LeProm
e TSR041.COM - LeMeg and LeBig

These are in the directory EMU-TSR.

PC PowerForth Plus

PC PowerForth plus is a Forth for your PC. It can be used to prototype code
in the host environment before porting to your target board. The installer
places PC PowerForth plus in the directory \PFORTH.

oooo 7

000 000 00000000000 oooooo 000 00000 5 000 64180

Blank page

oooo 8

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

Generating a ROM target Forth

This chapter describes how to generate a ROM target Forth for your target
board. It guides you through:

e setting up your hardware and software

e writing the serial line drivers

e modifying the memory map for your board

e compiling and running a target Forth
Supplied with your cross compiler are configurations for specific boards. If
you have one of these boards, the generation of a target Forth is greatly sim-

plified. If you do not have a supported board you will have to configure the
cross compiler for your board and write new serial line drivers.

Is your board already supported?

If you have the GNC uel80 board you can use the supplied control file. By
using this file, the installation of a ROM target Forth for your board will be
greatly simplified. If you are using the GNC board then use the control file
UE180.CTL. This is in the directory ROM\CONFIGS. There is also an ex-
ample control file for the Z84C15 evaluation board.

If you do not have either of these boards you will have to modify a control
file and serial line drivers for your board.

oooo 9

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

The control file

The control file contains all the details of your board that the cross compiler
needs to know. These include:

e the memory map of your board

o whether you wish a log to be displayed

e the number of tasks in your system

e the clock rate of your board
As well as containing configuration information, the control file contains
compiler directives and a list of files which are to be cross compiled. Once

the cross compiler knows these items, it can generate a correct binary image
from your source code. An example control file is shown in Appendix B.

Creating a control file

To create a new control file, copy an existing one and then modify it to match
your board. This is normally easier than generating one from scratch. Ex-
ample control files are in the directory ROM\CONFIGS.

The memory map

The memory map describes the addresses where ROM and RAM start and
end in your target system. The memory map is defined by the:

e start of ROM
e start of RAM
e c¢nd of ROM
e cnd of RAM

From this information, the cross compiler places any items it needs in the
correct area of memory.

Setting the memory map

The memory map is described in your control file, so once the file has been
created, you can change the memory map definition to match your board.

The memory map is described in three parts:

oooo 10

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

¢ the start and end of ROM
¢ the start and end of RAM

e the end of memory

Setting the start and end of ROM

The start and end of ROM are defined by using the compiler directive KER-
NEL. KERNEL is used in the form:

rom-start rom-end KERNEL <name>

where rom-start is the address of the start of ROM, rom-end is the address of
the end of ROM, and <name> is the name of the output file. The compiler
automatically gives the filename <name> an extension .IMG so <name>
must be just a name without an extension. The numbers rom-start and rom-
end are, by default, in decimal, but can be entered in hex by preceding them
bya$,e.g

$0100

The label <name> is also the name of the kernel page in a paged system. For
more information see chapter 11, Paged targets.

Setting the start and end of RAM

The start and end of RAM are defined by using the directive, KERNEL-RAM.
This is used in the form:

ram-start ram-end KERNEL-RAM

Setting the end of memory

The compiler needs to know the end of available memory. To set this use
MEM-END, in the form:

xxxx MEM-END

where xxxx 1s the end of available memory. This area is where the stacks are
placed.

oooo 1

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

Setting the compilation pages

In a non-paged system, the compiler must be instructed to compile into the
pages defined by KERNEL and KERNEL-RAM. Therefore, after the memory
map is defined you must code:

USE-CODE <namel>
USE-DATA <name2>

where <name1> is the name of the kernel ROM page defined with KERNEL
and <name?2> is the kernel RAM page defined with KERNEL-RAM.

An example

If your target board has a memory map as in figure 2, your control file should
be modified so that it reads,

$0000 $7FFF KERNEL Rom180
$8000 SFFFF 0 KERNEL-RAM Rom180-Data
$SFFFF MEM-END

USE-CODE Rom180
USE-DATA Rom180-data

This indicates two areas of memory with names ROM180 and ROM180-
DATA. With this setup, your kernel will have 32k of ROM and you have 32k

for variables and interactive development.

Ram-¢nd FFFF
RAM

Ram-start 8000

Rom-¢nd TFFF
ROM

Rom-start 0000

000000 2 0 0000000 O0o0oo ooo

oooo 12

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

Modifying the serial line drivers

Your target board communicates with the external world via a UART. If
you are using one of the more common external UARTS for the Z80/64180
family, or the internal ASCI on the 64180, one of the supplied serial drivers
can be used. These are in the directory ROM\DRIVERS.

If you are using a UART for which code has not been supplied, you will need
to write all the words required to:

e Initialise the UART

e Send a character

e Receive a character

o Test if a character has been received
All four words will normally be Forth CODE definitions. This is required
so that the send and receive words are as fast as possible. Example serial line
drivers in the files ROM\DRIVERS can be used as a template. As with the

control file it is normally easier to modify an existing serial line driver file
rather than creating your own from scratch.

Interrupt or polled drivers?

Two types of interrupt driver can be written:
e interrupt driven

e polled

Interrupt driven

An interrupt driven serial line can only be used if the UART generates inter-
rupt signals when characters are received. An interrupt driven driver will al-
low buffered serial communications to be implemented with least processor
overhead.

Polled

A polled driver will continuously poll a status bit in the UART to detect
when the UART has either transmitted or received a character.

oooo 13

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

Initialising the serial line
The word INIT-SER must perform all the UART initialisation required.
This includes setting:
e the baud rate
e any handshaking required
e the number of data bits
e the number of stop bits
e the parity to be used
It is recommended that the baud rate is initially set to 2400 baud until the tar-

get board 1s working. It can then be raised to 9600 or above, if possible,
which makes a more responsive target.

Sending a character to the host
The target code needs to be able to send a character to the host for display.
Therefore, you need to write a word which:
o waits for the transmit line to become available
e transmits a character to the host
e increments the variable OUT
The method used can be either a polled or interrupt driven driver but must be

called (EMIT). Once (EMIT) is written, it must be assigned to the defered
word EMIT. The stack effect of (EMIT) is,

(EMIT) \ char — ; send char to host

Receiving a character from the host
The target code needs the ability to receive a character from XShell. To do
this it needs to:

» wait for a character to be received

e place the character on the Forth stack

The method used can be polled or interrupt driven but the word must be
called (KEY). Once (KEY) has been written, it must be assigned to the
defered word KEY. The stack effect of (KEY) is:

(KEY) \— char ; wait for char to be received

oooao 14

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

Detecting a received character
The target needs (KEY?) to detect if a character has been received. This can
be used as part of (KEY). (KEY?) needs to:
e return true on the Forth stack if a character is available (-1)
 return false on the Forth stack if a character is not available (0)
Once (KEY?) is written, it must be assigned to the deferred word KEY. The
stack effect of (KEY?) is:

(KEY?) \—t/f; true if character received

Setting up the system

Setting up the system involves both hardware and software. The target
board, PC, EPROM emulator/programmer and serial line have to be con-
nected as well as configuring XShell to run the cross compiler.

Setting up the hardware

To generate an interactive Forth target you need:

e an IBM PC or compatible

e A serial cable

e A target board

e An EPROM emulator or programmer
Your PC needs to have at least one serial port for connecting to the target
board, so making the Forth interactive. The serial cable should be connected

to COM1 as this is the default port used by XShell. Other ports can be used
by configuring XShell. See the XShell manual.

Setting up the software

To compile source code that generates a Forth target, you need to configure
the cross compiler environment, XShell, to run the cross compiler. For de-
tailed information on configuring XShell, see the XShell manual.

oooao 15

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

Running XShell

If during installation, you allowed the installer to modify your AUTO-
EXEC.BAT, then to run XShell you just need to type XS3. If you didn’t or
you haven’t rebooted since you installed the system, then you need to state
the full path of XShell. For example, the installer will place XShell in the di-
rectory, \X 180\XSHELL by default.

Configuring XShell to use your control file

Before you can cross compile your source code, you must configure XShell.
XShell requires the name of the control file you are using. The configuration
file loads the remaining files so you need only to load the configuration file.
To setup the configuration file as the file to be loaded,

1) run XShell while in the ROM directory
i1) type Alt-K, Configuration options

ii1) press B, setup commands

iv) press E, compiler commands

v) type ALL FROM-FILE followed by the path and name of your configura-
tion file and press enter, e.g.

ALL FROM-FILE CONFIGS\UE180.CTL

vi) press the escape key to return to the previous menu
vii) press E, save configuration

viil) Press the escape key to return to the host Forth

Your XShell configuration is now set to cross compile your configuration
file.

Configuring the serial ports from XShell

XShell is used to communicate with the target. You therefore need to set up

XShell to the same serial line settings that you are going to use on the target
board.

To do this, type:
1) run XShell while in the ROM directory
i1) type Alt-K, Configuration options

oooo 1e

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

ii1) press D, serial line settings

1v) set up your settings by pressing letters a-z
v) press the escape key when finished

vi) type E, save configuration

vii) press the escape key to return to the host forth

Cross-compiling

Now the hardware and software have been set up, you can now cross com-
pile the source code to generate an executable image.

Creating an image

To cross compile the source code, press F3. XShell clears the display and the
cross compiler starts compiling. The compiler displays its sign-on message
then compiles the source code.

The cross compile log

Following the compiler sign-on you see the cross compile log. As each word
1s compiled the compiler displays the word’s address, its type and its short-
ened name. The type of item is coded as two characters as in table 1.

Turning the log on and off

Instead of having the data displayed for each compiled item, you can choose
to only display a dot. The advantage of this is that the compiler spends less
time displaying data and so the cross compilation is quicker. To do this,
change the compiler directive in the control file from LOG to NO-LOG. The
log can be turned on again by replacing LOG with NO-LOG in the control file.

Sending the log to a file

The cross compiler will redirect the log to a file instead of the display. To do
this, use:

oooo 17

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

FILE: <name>

where <name> is the filename to generate. This directive must be placed be-
fore the command CROSS-COMPILE.

Sending the log to a printer

The cross compiler will send the log to a printer. To do this, use:

PRN:
before the command CROSS-COMPILE.

The compilation summary

Once the cross compiler has finished cross compiling the source code, it dis-
plays information about the compilation. This includes:

e any unresolved references
e the size of the compiled image
e the initialised RAM table address and length

Unresolved references are words which are referenced in the source code
but are not defined. These can be due to spelling mistakes or not compiling
some of your code.

The size of the compiled image is the amount of actual code output into the
file. The actual file size will be the size of the ROM indicated by the memory
map.

The RAM table is the place in ROM where a variable’s initial value is stored.
When the target board is reset, the initialisation copies this table into RAM.
These initial values of variables will be modified in RAM when you store
into a variable.

The created image

The image created by the cross compiler is a straight binary executable. It
can be downloaded to a suitable EPROM emulator or programmer. The file
has the name given when defining the memory map using the compiler di-
rective KERNEL. It has the extension .IMG which cannot be changed.

oooo 18

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

Problems, Problems ...

If during compilation an error occurs, the compiler will stop and display the
line on which the error occurred. The cross compiler shows the line number
and the file name where the error occurred as well as the type of error that has
occured.

Downloading the compiled 1mage

Once the source code has been compiled the image needs to be downloaded
to an EPROM emulator or programmer.

Downloading to a LeBurg EPROM emulator

The MPE cross compiler supports the LeBurg emulator. If you have a Le-
Burg emulator, the installer should have set up your XShell configuration to
use it if it is already in the DOS path. In this case just press F4 and the Le-
Burg software should run. Ifthe installer could not find your Leburg emula-
tor software, you have to set up XShell to run your emulator software. Refer
to the XShell manual.

Downloading to a different emulator

The binary image can be downloaded to any EPROM emulator as long as the
emulator’s software supports binary image files. Refer to the XShell manual
on how to set up the XShell configuration and the emulator’s software man-
ual for download instructions.

Downloading to an EPROM programmer

The MPE development system supports the Sunshine programmer. If the in-
staller found the programmer’s software, then your configuration will be set
up already. To run the programmer’s software press F6. To set up XShell to
use an EPROM programmer, refer to the XShell manual.

oooo 19

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

Running the target Forth

The image generated by the compiler has been downloaded to the target, it is
ready to be reset and the Forth tested.

Switching to target mode

To receive characters from the target, XShell must be in target mode. The
current mode is displayed on the top banner. If you are not already in target
mode, type Alt-T or F5.

Reseting the target board

Once the image has been downloaded, you can reset the target board. You
can either use the reset supplied on the board or if no reset is on the board,
turn the board’s power off and on again.

The sign-on

Once the board has been reset, the target should sign-on. You should see the
message in figure 3. The version number and the number of bytes free will
depend on your system. You should now have a working Forth. Ifthe target
didn’t show the message, then you may have a problem with:

o the serial line drivers

e the memory map definition

e your target board

o your EPROM emulator/programmer

Each of these should be checked.

The serial line drivers

If you do not get the sign on message, your transmit word might not be work-
ing correctly. You can check that you can transmit a character up the serial
line, by appending code for emitting a character up the serial line, onto the
end of the initialisation word INIT-SER. Therefore a character can be trans-
mitted and seen early in the initialisation sequence.

oooo 20

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

The memory map definition.

If the memory map for the ROM definition is wrong. The target may not
sign-on at all. Ifthe definition of the RAM memory map is wrong, the target
may sign-on but may display ‘garbage’.

Your target board

It is always necessary to check the obvious. Is the serial line connected? Has
your target board got power? EPROMs/RAM plugged in correctly? Are
jumpers set correctly?

Your EPROM emulator/programmer

Check to see if your emulator is emulating an EPROM that your target board
is expecting. If you have the wrong EPROM set, your target will not sign on.

Testing the Forth - an example

Once the Forth has signed-on, you need to test that it’s working properly.
Type WORDS which will display all the Forth words available.

If this works then type in,

: FORTH-TEST \—; A quick test for forth
/"HELLO"

FORTH-TEST

This should display,
HELLO

followed by the ok prompt.

Cross-compiling an application

Once your Forth is working on your target board, you will now want to write
and compile your application.

oooo 21

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

MPE 64180 ROM PowerForth v3.00
24373 bytes free

ok

000000 3 0 000 000000 o000000

Writing an application

Supplied with XShell is the TED editor. This can be run by pressing F2. A
different editor can be used by changing the XShell configuration. See the
XShell manual.

Modifying the control file

Once your application has been written, you can add it to the control file.
Near the bottom of the control file, there is a list of commands in the form:

ALL FROM-FILE <name>

To compile your application files you add them to the end of the list.

Developing your application

As Forth is an interactive language, you can use this to your advantage by
writing small sections of code and testing as you go. To help you do this, the
ROM PowerForth utilities allow you to access your source files on the host.
Your source files can be compiled from the target without cross compiling
the whole application. See the chapter ROM PowerForth Utilities for more
information.

Running your application

To compile the application you need to:
e run the cross compiler (press F3)
e download to the EPROM emulator/programmer (F4 or F6)
o reset the target

The target board signs-on. You can now test your application.

oooo 22

000 00000 5 000 64180 0000000000 O 000 o00000 ooooa

Generating a turnkey application

Once you have written your application, you will want to make it start when
the target board is reset. This is known as a turnkey or autostarting applica-
tion. Your application does not necessarily need to be interactive, so the
compiler directive NO-HEADS can be used. This removes all the word head-
ers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the
form:

MAKE-TURNKEY <name>

where <name> is the name of the word to run at startup. The word <name>
must be defined before using this directive. The example in figure 4 gener-
ates a simple turnkey application when cross compiled. If you require the
use of serial communications or the multitasker, you must initialise them in
your application. To initialise the serial communications use the word INIT-
SER. To initialise the multitasker use INIT-MULTTI.

oooo 23

0000000000 O 000 o00000 ooooa 000 00000 5 000 64180

: MY-APP \—;
INIT-SER \ Initialise the serial line
BEGIN \ Application never ends...
" Hello" \
AGAIN \

2

MAKE-TURNKEY MY-APP

000000 4 0 0000000 0000000 Oo0ooooooooo

oooo 24

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

Generating an Umbilical Forth target

This chapter describes how to generate an Umbilical Forth target for your
target board. It guides you through:

e setting up your hardware and software

e writing the serial line drivers

e modifying the memory map for your board

e compiling and running a target Forth
Supplied with your cross compiler are configurations for specific boards. If
you have one of these boards, generating a target Forth is greatly simplified.

If you do not have a supported board you will have to configure the cross
compiler for your board and write new serial line drivers.

Requirements for Umbilical Forth

To generate an interactive target you require:
e a LeBurg EPROM emulator

e interrupt driven serial drivers

If you want to define new words interactively, you need to use a LeBurg
emulator. When the cross compiler generates code, it will write to the emu-
lator. This normally ‘upsets’ the processor so the processor should be put to
sleep while waiting for serial communications. Once the UART becomes
available, the processor will be taken out of sleep mode and will continue
processing.

Is your board already supported?

If you have the GNC uel80 board you can use the supplied control file. By
using this file, the installation of an Umbilical Forth for your board will be

oooo 25

0000000000 00 000000000 00000 oooooo 000 00000 5 000 64180

greatly simplified. If you are using the GNC board then use the control file
UE180.CTL. This is in the directory CHIP\CONFIGS.

If you do not have this board you will have to create a control file and serial
line drivers for your board.

The control file

The control file contains all the details of your board that the cross compiler
needs to know. These include:

e the memory map of your board
o whether you wish a log to be displayed
e the clock rate of your boards crystal

As well as containing configuration information, the control file contains a
list of files which are to be cross compiled.

Once the cross compiler knows these items, it can generate a correct binary
image from your source code.

Creating a control file

To create anew control file, copy an existing one and then modify it to match
your board. This is normally easier than generating one from scratch. Ex-
ample control files are in the directory CHIP\CONFIGS.

oooo 26

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

The memory map

The memory map describes the addresses where ROM and RAM start and
end in your target system. Therefore, there must be four items defined:

e the start of ROM
e the start of RAM
e the end of ROM
e the end of RAM

From this information the cross compiler places any items it needs in the cor-
rect area of memory.

Setting the memory map

The memory map is described in your control file, so once the file has been
created, you can change the memory map definition to match your board.
The memory map is described in three parts:

e the start and end of ROM

o the start and end of RAM

e the end of memory

Setting the start and end of ROM

The start and end of ROM are defined by using the compiler directive KER-
NEL. KERNEL is used in the form:

rom-start rom-end KERNEL <name>

where rom-start 1s the address of the start of ROM, rom-end is the address of
the end of ROM and <name> 1s the name of the output file. The compiler
automatically gives the filename <name> an extension .IMG so <name>
must be just a name without an extension. The numbers rom-start and rom-
end are, by default, in decimal, but can be entered in hex by preceding them
by a$.

The label <name> is also the name of the kernel page in a paged system. For
more information see chapter 11, Paged targets.

oooo 27

0000000000 00 000000000 00000 oooooo 000 00000 5 000 64180

Setting the start and end of RAM

The start and end of RAM are defined by using the directive, KERNEL-RAM.
This is used in the form:

ram-start ram-end KERNEL-RAM <name>

Setting the end of memory

The compiler needs to know the end of available RAM. To set this use
MEM-END, in the form:

xxxx MEM-END

where xxxx is the end of available memory.

Setting the compilation pages

In a non-paged system, the compiler must be instructed to compile into the
pages defined by KERNEL and KERNEL-RAM. Therefore, after the memory
map is defined you must code:

USE-CODE <namel>
USE-DATA <name2>

where <name1> is the name of the kernel ROM page defined with KERNEL
and <name2> is the kernel RAM page defined with KERNEL-RAM.

An example

If your target board has a memory map as in figure 5, your control file should
be modified so that it reads,

$0000 $7FFF KERNEL chip180
$8000 $FFFF 0 KERNEL-RAM chip180-data
$FFFF MEM-END

USE-CODE Chip180
USE-DATA Chip180-data

This indicates two areas of memory with names CHIP180 and CHIP180-
DATA. With this setup, your kernel will have 32k of ROM, and you will
have 32K or RAM available for variables.

oooo 28

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

Ram-end FFFF
RAM

Ram-start 8000

Rom-ond | | 7TFFF
ROM

Rom-start 0000

000000 5 0 O000000 o00ooo ooo

Modifying the serial line drivers

Your target board communicates with the the external world viaa UART. If
you are using one of the common external UARTSs used with the Z80/64180
families or the internal ASCI on the 64180, one of the supplied serial drivers
can be used. These are in the directory CHIP\DRIVERS.

If you are using a UART for which code is not supplied, you will need to
write all the words required to:

e Initialise the UART

e Send a character

e Receive a character

o Test if a character has been received
All of the four words will normally be Forth CODE definitions. This is re-

quired so that the send and receive words are as fast as possible. Example se-
rial line drivers in the files CHIP\DRIVERS can be used for a template.

As with the control file it is normally easier to modify an existing serial line
driver file rather than creating your own from scratch. The supplied drivers
are in the directory, CHIP\DRIVERS.

oooo 29

0000000000 00 000000000 00000 oooooo 000 00000 5 000 64180

Initialising the serial line
The word that must perform all the initialisation is the word INIT-SER. It
must perform all the UART initialisation required. This includes setting:
e the baud rate
e any handshaking required
e the number of data bits
e the number of stop bits
e the parity to be used
It is recommended that the baud rate is initialily set to 2400 baud until the

target board is working. It can then be raised to 9600 or above, if possible,
which makes the target more responsive.

Sending a character to the host
The target code needs to be able to send a character to the host for display.
Therefore, you need to write a word which:
e waits for the transmit line to become available
e transmits a character to the host.
The transmit word can either poll to detect whether the transmit line is avail-

able or, if available, an interrupt can be used. The word must be called
(EMIT). The stack effect of (EMIT) is,

(EMIT) \ char — ; send char to host

Receiving a character from the host

The target code needs the ability to receive a character from XShell. To do
this it needs to:

e wait for a character to be received

o place the character on the Forth stack
The receive word must be interrupt driven and the word must be called
(KEY). The stack effect of (KEY) is:

(KEY) \— char ; wait for char to be received

oooo 30

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

Detecting a received character

The target needs (KEY?) to detect if a character has been received. This can
be used as part of (KEY). (KEY?) needs to:

e return true on the Forth stack if a character is available (-1)

o return false on the Forth stack if a character is not available (0)

The stack effect of (KEY?) 1s:

(KEY?) \—t/f; true if character received

Setting up the system

Setting up the system involves both hardware and software. The target
board, PC, EPROM emulator/programmer and serial line have to be con-
nected as well as configuring XShell to run the cross compiler.

Setting up the hardware

To generate an interactive Forth target you need:
e an IBM PC or compatible
e A serial line
e A target board
e An EPROM emulator or programmer

Your PC needs to have at least one serial port for connecting to the target
board, so making the Forth interactive.

If the Leburg EPROM emulator is being used, you will also need to connect
the emulator to the digital I/O card installed in your PC.

Setting up the software

To compile the source code that generates the Forth target, you need to con-
figure the cross compiler environment, XShell. For more detailed informa-
tion on configuring XShell, see the XShell manual.

oooo 31

0000000000 00 000000000 00000 oooooo 000 00000 5 000 64180

Running XShell

If during installation, you allowed the installer to modify your AUTO-
EXEC.BAT, then to run XShell you just need to type XS3. Ifyoudidn’t, then
you need to state the full path of XShell. For example, the installer will place
XShell in the directory, \X180\XSHELL by default.

Configuring Xshell to use your control file

Before you can cross compile your source code, you must configure XShell.
XShell requires the name of the control file you are using. The configuration
file loads the remaining files so you need only to load the configuration file.
To setup the configuration file as the file to be loaded,

1) enter XShell while in the CHIP directory
11) type Alt-K, Configuration options

ii1) press B, setup commands

iv) press E, compiler commands

v) type ALL FROM-FILE followed by the path and name of your configura-
tion file and press enter, e.g.

ALL FROM-FILE CONFIGS\UE180.CTL

vi) press the escape key to return to the previous menu
vii) press E, save configuration

viil) Press the escape key to return to the host Forth

Your XShell configuration is now set to cross compile your configuration
file.

Configuring the serial ports from XShell

XShell is used to communicate with the target. You therefore need to set up

XShell to the same serial line settings that you are going to use on the target
board.

To do this, type:
1) run XShell while in the CHIP directory
i1) type Alt-K, Configuration options

i11) press D, serial line settings

oooo 32

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

1v) set up your settings by pressing letters a-z
v) press the escape key when finished
vi) type E, save configuration

vii) press the escape key to return to the host Forth

Cross-compiling

Now the hardware and software have been set up, you can now cross com-
pile the source code which is automatically compiled down to your EPROM
emulator.

Creating an image

To cross compile the source code, press F3. XShell clears the display and the
cross compiler starts compiling. The compiler displays its sign-on message
then compiles the source code.

The cross compile log

Following the compiler sign-on you see the cross compile log. As each word
1s compiled the compiler displays the words address, its type and its short-
ened name. The compiler type is coded as two characters as in table 2.

Turning the log on and off

Instead of having the data displayed for each compiled item, you can choose
to only display a dot. The advantage of this is that the compiler spends less
time displaying data and so the compilation is quicker. To do this, change
the compiler directive in the control file from LOG to NO-LOG. The log can
be turned on again by replacing log with no-log in the control file.

Sending the log to a file

The cross compiler will redirect the log to a file instead of the display. To do
this, use:

FILE: <name>

oooo 33

0000000000 00 000000000 00000 oooooo 000 00000 5 000 64180

where <name> is the filename to generate. This directive must be placed be-
fore the command CROSS-COMPILE.

Sending the log to a printer

The cross compiler will send the log to a printer. To do this, use:
PRN:

before the command CROSS COMPILE.

The compilation summary

Once the cross compiler has finished, it displays information about the com-
pilation. This includes:

e any unresolved references
o the size of the compiled image
o the RAM table address and length
Words that are unresolved references are words which are referenced in the

source code but are not defined. These can be spelling mistakes or some of
the code is not being compiled.

The size of the compiled image is the amount of image downloaded to your
emulator.

Problems, Problems ...

If an error occurs during compilation, the compiler will stop and display the
line on which the error occurred. The cross compiler shows the line number
and the file name where the error occurred as well as the type of error that oc-
cured.

Running the target Forth

The image generated by the compiler has been downloaded to the target, it is
ready to be reset and the Forth tested.

oooo 34

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

Reseting the target board

Once the source code has been compiled and automatically downloaded to
your LeBurg emulator you can reset the target board. Follow the instruc-
tions given by the cross compiler.

The sign-on

You will see the message in figure 7. The cross compiler itself displays this
message, so the target is not necessarily up and working. To test the target
board, you need to define a definition. Therefore if you type:

: FORTH-TEST \—; A quick test for forth
/" HELLO" \

FORTH-TEST

This should display,
HELLO

followed by the ok prompt.

If you didn’t get this response, then you may have a problem with:
o the serial line drivers
o the memory map definition
e your target board
e your serial line

e your EPROM emulator/programmer

Each of these should be checked.

Cross-compiling an application

Once your Forth is working on your target board, you will now want to write
and compile your application.

oooo 35

0000000000 00 000000000 00000 oooooo 000 00000 5 000 64180

Writing an application

Supplied with XShell is the TED editor. This can be run by pressing F2. A
different editor can be used by changing the XShell configuration. See the
XShell manual.

Modifying the control file
Near the bottom of the control file, there is a list of commands in the form:
ALL FROM-FILE <name>

To compile your application files you add the files to the end of the list.

Running your application

To compile the application you need to:
e run the cross compiler (press F3)
e reset the target

The target board signs-on. You can now test your application.

Generating a turnkey application

Once you have written your application, you will want to make it start when
the target board is reset. This is known as a turnkey or autostarting applica-
tion.

To make an application turnkey, use the directive MAKE-TURNKEY in the
form:

MAKE-TURNKEY <name>

where <name> is the name of the word to run at startup. The word <name>
must be defined before using this directive. The example in figure 6 gener-
ates a simple turnkey application when cross compiled. To see the example
working, you must switch XShell into target mode.

Blank Page

oooo 36

000 00000 5 000 64180 0000000000 00 000000000 00000 oooooa

Umbilical Forth v3.00

Target: 64180

Copyright(C) 1993 Microprocessor Eng. Ltd.
BASE now in DECIMAL

ok

000000 7 0 000 000000000 00000 Oo000000

: MY-APP \—;
INIT-SER \ Initialise the serial line
BEGIN \ Application never ends...
42 (EMIT) \
AGAIN

2

MAKE-TURNKEY MY-APP

000000 6 O 0000000 DO0O000000 0000000 O0ooooooooo

oooo 37

000 00000 5 000 64180 0000000000 0000 o00000 ooooa

Optimising your target Forth

Once you have a target Forth, you may want to either reduce the size of your
image or increase the execution speed of the code. This chapter describes
those features of the MPE development system which help you with this
aim.

Reducing the size of your image

During development you may need to reduce the size of your target image.
For example, your application may have grown too large for your ROM
space. Reducing ROM requirements is usually done by:

e removing headers

e factorising your code

e removing excess code

e using equates instead of constants

e using Umbilical Forth

Removing headers

To reduce the size of the compiled image, you can instruct the compiler to
compile all or some of the code without heads. For each word defined, the
cross compiler generates a header in the target image. A header is the name
of the word as a counted string and is used when the target is used interac-
tively. Therefore, by removing the heads of words you reduce the interactiv-
ity of your system.

Removing all headers

To remove the heads from all the code, use NO-HEADS. The compiler will
produce code which will be greatly reduced in size, but cannot be used inter-
actively.

oooo 39

0000000000 0000 o00000 ooooa 000 00000 5 000 64180

Selectively removing headers

To select anumber of words to be made headerless, use INTERNAL and EX-
TERNAL. INTERNAL instructs the compiler to stop generating headers, and
EXTERNAL instructs it to generate headers again.

Factoring your code

When writing in Forth, code should be reused as much as possible. By reus-
ing code, your target image can be reduced greatly. The smaller the proce-
dures you use, the more easily they can be reused. In addition, small
procedures are easy to test. Consequently code written with small proce-
dures is normally more reliable.

Removing excess code

During development, debug and test code is inserted into the source. This
code is easily left and forgotten about. By stripping out this excess code you
can gain more space in the EPROM. A tool like MPE’s cross-referencer,
XRef, is invaluable for this sort of pruning.

Using equates instead of constants

An equate is a constant that just resides within the cross compiler. It there-
fore cannot be referenced when interactively debugging on your target sys-
tem. The actual value of the equate is compiled ‘in-line’ instead of refering
to a constant. Therefore you save the space on the target board for each con-
stant (6 bytes + number of characters in the name) defined but sacrifice
some interactivity. This only works if you don’t refer to the equate many
times, as an equate uses two more bytes than a constant, every time it is re-
ferred to.

Defining an equate

An equate is defined in a similar way to a constant:

xxxx EQU <name>

where xxxx is the value of the equate and <NAME> is its name.

oooo 40

000 00000 5 000 64180 0000000000 0000 o00000 ooooa

Using an equate

An equate is used in the same way as a constant, by stating its name.

0100 EQU ADDRESS
ADDRESS 4 + EQU ADDRESS2

: SOME-WORD \—
... ADDRESS ...

Using Umbilical Forth

If you require a compact target Forth but without the inconvenience of re-
moving target headers, you can use Umbilical Forth. Umbilical Forth gives
you an interactive Forth in a very compact size (Umbilical Forth kernel is
about 2k). The kernel doesn’t contain all the words in the ROM target, so
you might have to write a few words to get your code to compile or copy
some code from the ROM target Forth. For more details see the chapter on
Generating an Umbilical Forth Target.

Speeding up your code
The normal way to increase the speed of your code is to code strategic words
in assembler. Good candidates for coding are:

e inner loops

e words containing a lot of stack manipulation words (DUP, SWAP
etc)

oooo 41

0000000000 0000 o00000 ooooa 000 00000 5 000 64180

Blank page

oooo 42

000 00000 5 000 64180 00000 Oooooooooo

7.80/64180 Cross Assembler

The MPE cross compiler has a built-in cross-assembler. This gives you the
ability to define new Forth words in assembler as well as in Forth. You can
also assemble code to anywhere in memory.

Why write in assembler?

Forth is compact and quick, so why write in assembler? An assembler defi-
nition is normally quicker than a group of corresponding forth words.

Creating Forth words in assembler

Forth words can easily be defined in assembler. They increase the execution
speed of your code and can sometimes make your code smaller.

Defining assembler words

Forth words written in assembler follow a similar form to a word written in
forth. Instead of a colon you have CODE. Instead of semi-colon you have
END-CODE. For example:

CODE <name>
NEXT,
END-CODE

creates a word called <name>. Any assembler code between the CODE and
END-CODE will be assembled into the word. When executed, the line NEXT,
will stop the execution of the assembler and return to the calling word.

Note: If you do not have NEXT, your application will crash.

oooo 43

00000 Oooooooooo

000 00000 5 000 64180

64180 register Forth register Function

BC IP Forth interpretive pointer.

SP SP Data stack pointer

Y RP Return stack pointer

IX Used 1n the slow, but small
implementation of NEXT,

UP User area pointer (in RAM)

HL Points to CFA on entry to

CODE definition.

Table 3 - The Forth registers

Writing assembler words

The syntax used for the opcodes have been kept as similar to that used by Hi-
tachi as possible. See the list at the end of the chapter for a comparison of Hi-
tachi versus Forth syntax.

Preserving the Forth registers

The Forth interpreter and compiler uses some of the target processor’s regis-
ters. These must be preserved if they are used in the assembler. They can be
saved on the stack, in memory or in other registers and restored at the end of
the word. The 64180 registers that are used are shown in table 3. Note that in
addition all registers of the alternate set are also used by the Forth itself in
CODE definitions.

Executing an assembler word

A Forth word written in assembler is executed in the same way as a word
written in Forth. It is executed by stating its name.

oooo 44

000 00000 5 000 64180 00000 Oooooooooo

Assembling into memory
Assembler code can be assembled into memory which is not in a Forth word.
To do this you need to:

e turn on the assembler

e write your assembler code

e turn off the assembler
To turn on the assembler, use the word ASSEMBLER. To switch back to
Forth use the word FORTH. Between the ASSEMBLER and FORTH defini-
tions, any assembler will be assembled. The assembled code will be placed
in the dictionary without a header. The code can be executed by the use of la-

bels. This is often used to define low level interrupts. See the chapter on In-
terrupts, for more details on writing low level interrupts.

Creating defining words in assembler

The cross compiler allows you to define the run-time (DOES>) part of a de-
fining word in assembler. To do this use ;CODE in the form:

: <name>
CREATE

;:CODE
END-CODE

An example is shown in figure 8.

: VARIABLE \ — ; — addr [child]
CREATE \ create a child header
HERE 2+, 0, \ lay address of data
;:CODE \ run time in assembler
hl inc hlinc hlinc \ skip CFA
e, (HL) 1d
hlinc d, (hl) Id \ get address in RAM
de push next, \ place on stack
END-CODE

000000 8 O OO0 OO0 ;0000

oooo 45

00000 Oooooooooo 000 00000 5 000 64180

Structured programming

Three facilities are available to give you the advantages of structured pro-
gramming, in assembler:

e control structures
e labels

e Jocal labels

Control structures

There are assembler equivalents to the Forth control structures. The avail-
able structures are:

cc IF, ... THEN,

ccIF, ... ELSE, ... THEN,

BEGIN, ... cc UNTIL,

BEGIN, ... CC WHILE, ... REPEAT
BEGIN, ... AGAIN,

where cc is one of the condition codes in table 4

Mnemonic Condition Mnemonic Condition
Z, Zero P, positive or 0
NZ, non-zero M, negative
CY, carry set PE, even parity
NCY, carry not set PO, odd parity

Table 4 - Available condition codes
Labels

Labels can be used to mark a place in assembler code. That place can then be
referenced in other areas of code.

Creating a label

Labels can be defined by using the command L:. It is used in the form:
l: <name>

where <name> is the name you want to call the label.

0000 46

000 00000 5 000 64180 00000 Oooooooooo

Referencing a label

A label is referenced by stating its name. For example,

Z, <name> JP

will assemble to ‘jump if zero’ to <name>.

Local labels

If you need to use labels within a code definition, you may use the local la-
bels provided. These are used just as normal labels in the assembler, but
some restrictions apply:

e there is a maximum of ten labels
e the names are in the form L$n where n is in the range 1 to 10

¢ areference is valid until the next occurence of CODE or ;CODE

Creating a local label

To define a local label use L$n:, where n is a number from one to ten. For ex-
ample:

L$1:

Referencing a local label

To reference a local label, type its name. For example,

LS$1JP

assembles code for a jump to L$1.

oooo 47

00000 Oooooooooo 000 00000 5 000 64180

Creating macros

A macro is a word that lays down code ‘in-line’ within an assembler defini-
tion. They are normally used when there is a repetitive use of a series of op-
codes.

Defining a macro

A macro is defined using colon and semi-colon. It must also be defined in
the cross compiler’s vocabulary, ASM-ACCESS. The place to create a macro
is in the control file and it must be defined before the word CROSS-
COMPILE. As an example, a macro NEXT, is shown in figure 9. This is de-
fined as amacro, so each time it is used, its code is layed down. This makes it
quicker than calling a subroutine.

\ switch to the cross-compilers ASM-ACCESS vocabulary
ONLY FORTH ALSO C-C ALSO ASSEMBLER
ALSO ASM-ACCESS DEFINITION

: NEXT, \—; lay inline code
A,(BC)LD BCINC L,ALD
A, (BC)LD BCINC H,ALD
(HL) JP

2

\ switch back to forth vocabulary
ONLY FORTH DEFINITIONS

000000 © 0 0000000 00000 0000000000

Using a macro

A macro is used by stating its name. For example, in a CODE definition,
NEXT, would be a macro.

oooo 48

000 00000 5 000 64180 00000 Oooooooooo

Addressing modes

This section lists the syntax used for the addressing modes. It is as close as
possible to the usual Hitachi syntax, but the operands have to be separated by
spaces. For example, where you would normally have written

LD (HL),A
in the Forth assembler you have to write:

(HL), A LD

If no other indications are given, the default addressing mode (the one cho-
sen if you do not indicate which one is required) is extended, where valid.
The usual 64180 convention of operand order of destination followed by
source is adhered to. The Forth assembler accepts the following addressing
mode formats.

Extended Addressing

Extended addressing is the default addressing mode of the 64180 assembler.
No indicator is required to specify the address:

A, 055AA LD

moves the contents of address 055AA into accumulator register A. Address
arithmetic may also be performed.

Immediate Addressing

Immediate addressing requires the # indicator to specify the immediate
number to use:

A, #0AALD

moves the value 0AA into accumulator register A.

oooo 49

00000 Oooooooooo 000 00000 5 000 64180

Indexed Addressing

Indexed addressing is specified by putting the index register in parentheses
and preceeding it with the displacement. The displacement must always be
present, even if it is 0. It cannot be forward referenced and must lie in the
range -80h..7Fh because it is added to the index register as a signed displace-
ment.:

A, 5(IX)LD
0 (IY) DEC

Address arithmetic may be performed on the offset.

Implied Addressing

On zero operand instructions the register to use is implied in the instruction
itself, but for instructions which require an operand you must specify the tar-
get register:

CPL
A, #55AND
(C), 2 TSTIO

Register Direct Addressing

The register to use is specified as one of the operands in the instruction:

A,BLD
D INC

Register Indirect Addressing

The register to use is specified as one of the operands in the instruction and is
in parentheses:

(BC), ALD
(HL) RL

oooo so

000 00000 5 000 64180 00000 Oooooooooo

Relative Addressing
This 1s only used by the branch instructions. The branch displacement (rela-
tive to the PC) is contained in the instruction:

loopstart DJNZ
Z,55J]R

I/O Addressing

This is only used by the 1/O instructions.
33 AOUTO

Number Bases

The number base in the Forth assembler can be indicated by the words BI-
NARY DECIMAL and HEX. In addition, numbers prefixed by the ‘$’ ‘#’
and ‘%’ characters are treated as special cases. These characters affect the
number base for that number only. Note that the characters ‘$’ and ‘%’ fol-
low Motorola usage. Note that the ‘#’ symbol attached to a number is not the
same as the # word that indicates immediate addressing.

Symbol Base Example
$ hex $55AA

decimal #1234

% binary $1011001

oooo 31

00000 Oooooooooo 000 00000 5 000 64180

Instruction syntax

The instructions are shown alphabetically with all their addressing forms.
Note this section describes the 64180 instruction set, so not all instructions
will be available for use on a Z80.

Notation

The notation follows the Hitachi conventions and is shown in table 5.

Text Meaning Text Meaning

gorg’ |Registes ABCDEHL |v Restart Address

WW Registers BC DE HLSP |morn |8 bit data

XX Registers BC DEIX SP | mn 16 bit data

vy Registers BC DEIY SP |r 8 bit register

77z Registers BC DE HL AF R 16 bit register

b Bit number (0-7) dorj 8 bit signed displacement
f Flag

Table 5 - 64180 cross assembler notation

Instruction list

Conventional Forth

ADCA, g A, g ADC
ADC A, (HL) A, (HL) ADC

ADC A, (IX+d) A, d (IX) ADC
ADC A, (IY+d) A,d (1Y) ADC
ADC A, m A, #m ADC
ADC HL, ww HL, ww ADC

ADDA, g A, g ADD
ADD A, (HL) A, (HL) ADD

ADD A, (IX+d) A, d (IX) ADD
ADD A, (IY+d) A,d (1Y) ADD
ADD A, m A, #m ADD
ADD HL, ww HL, ww ADD

ADD IX, xx IX, xx ADD

ADD Y, yy IY, yy ADD

AND g A, g AND
AND (HL) A, (HL) AND

oooo s2

000 00000 5 000 64180 00000 Oooooooooo

AND (IX+d) A, d (IX) AND

AND (IY+d) A,d (1Y) AND

AND m A, #m AND
BITb, g b g BIT
BIT b, (HL) b (HL) BIT

BIT b, (IX+d) b d (IX) BIT

BIT b, (IY+d) bd (IY) BIT

CALL f, mn f, mn CALL

CALL mn mn CALL
CCF CCF

CPD CPD
CPDR CPDR
CPg A, gCP

CP (HL) A, (HL) CP
CP (IX+d) A, d (IX) CP
CP (IY+d) A,d (1Y) CP
CPm A, #m CP
CPI CPI

CPIR CPIR

CPL CPL

DAA DAA
DECg g DEC
DEC (HL) (HL) DEC
DEC IX IX DEC
DECIY IY DEC
DEC (IX+d) d (IX) DEC

DEC (IY+d) d (IY) DEC

DEC ww ww DEC
DI DI

DINZj j DINZ

ElI ElI

EX AF, AF’ AF, AF’ EX

EX DE, HL DE, HL EX
EX (SP), HL (SP), HL EX

EX (SP), IX (SP), IX EX

EX (SP), IY (SP), IY EX

EXX EXX
HALT HALT

oooo s3

00000 Oooooooooo

000 00000 5 000 64180

IMO
IM 1
IM 2

IN A, (m)
IN g, (O)

INO g, (m)

INC g

INC (HL)
INC IX
INC 1Y
INC (IX+d)
INC (IY+d)
INC ww

IND
INDR
INI
INIR

JP f, mn
JP (HL)
JP (IX)
JP (IY)
JP mn

IR
JRC,j
JRNG, j
JRZ,j
JRNZ,]

LD A, (BC)
LD A, (DE)
LD A, I

LD A, (mn)
LD A,R

LD (BC), A
LD (DE), A
LDg, g’

LD g, (HL)
LD g, (IX+d)
LD g, (IY+d)
LD g, m

LD (HL), g
LD (HL), m
LD HL, (mn)
LDIL, A

oooo 54

0IM
1 IM
2IM
A, mIN
g (C)IN
g, m INO
g INC
(HL) INC
IX INC
IY INC
d (IX) INC
d (IY) INC
ww INC
IND
INDR
INI
INIR
f, mn JP
(HL) JP
(IX) JP
1Y) Jp
mn JP
jJIR
C,jJR
NC,jJR
Z,jJR
NZ,jJR
A, (BC)LD
A, (DE) LD
A, 1ILD
A, mn LD
A, RLD
(BC), ALD
(DE), ALD
g, g’ LD
g, (HL) LD
g, d (IX) LD
g, d (IY) LD
g, #mLD
(HL), g LD
(HL), # m LD
HL, mn LD
ILALD

000 00000 5 000 64180

00000 Oooooooooo

LD IX, mn
LD IY, mn
LD IX, (mn)
LD IY, (mn)
LD (IX+d), g
LD (IY+d), g
LD (IX+d), m
LD (IY+d), m
LD (mn), A
LD (mn), HL
LD (mn), IX
LD (mn), IY
LD (mn), ww
LDR, A

LD SP, HL
LD SP, IX
LD SP, IY
LD ww, mn
LD ww, (mn)

LDD
LDDR
LDI
LDIR
MLT ww
NEG
NOP

ORg

OR (HL)
OR (IX+d)
OR (IY+d)
ORm

OTDM
OTDMR
OTDR
OTIM
OTIMR
OTIR

OUT (m), A
OUT (O), g

OUTO0 (m), g

IX, # mn LD
IY, # mn LD

IX, mn LD

IY, mn LD

d (IX), g LD

d (IY), g LD

d (IX),#m LD

d{Y),#m LD

mn A LD

mn HL LD

mn IX LD

mn Y LD

mn ww LD
R,ALD
SP, HL LD
SP, IX LD
SP,IY LD
ww, # mn LD

ww, mn LD
LDD
LDDR
LDI
LDIR
ww MLT
NEG
NOP
A, g OR
A, (HL) OR
A, d (IX) OR
A, d (1Y) OR
A, #m OR
OTDM
OTDMR
OTDR
OTIM
OTIMR
OTIR

m A OUT

(©), gOUT

m g OUTO

oooo 55

00000 Oooooooooo

000 00000 5 000 64180

OUTD
OUTI

POP IX
POPIY
POP zz

PUSH IX
PUSH IY
PUSH zz

RESD, g

RES b, (HL)
RES b, (IX+d)
RES b, (IY+d)

RET
RET f

RETI
RETN

RLg

RL (HL)
RL (IX+d)
RL (IY+d)

RLA

RLCg
RLC (HL)
RLC (IX+d)
RLC (IY+d)

RLCA
RLD

RR g

RR (HL)
RR (IX+d)
RR (IY+d)
RRA

RRCg
RRC (HL)
RRC (IX+d)
RRC (IY+d)

RRCA
RRD
RSTv

oooo se

b (HL) RES
b d (IX) RES
b d (IY) RES

d (IX) RLC
d (IY) RLC

d (IX) RRC
d (IY) RRC

OUTD
OUTI

IX POP
IY POP
zz POP

IX PUSH
IY PUSH
zz PUSH

b g RES

RET
f, RET

RETI
RETN

gRL
(HL) RL
d (IX) RL
d (IY) RL

RLA

g RLC
(HL) RLC

RLCA
RLD

g RR
(HL) RR
d (IX) RR
d (IY) RR

RRA

g RRC
(HL) RRC

RRCA
RRD
v RST

000 00000 5 000 64180

00000 Oooooooooo

SBCA, g

SBC A, (HL
SBC A, (IX+d)
SBC A, (IY+d)
SBC A, m
SBC HL, ww

SCF

SETb, g

SET b, (HL)
SET b, (IX+d)
SET b, (IY+d)

SLA g
SLA (HL)

SLA (IX+d)
SLA (IY+d)

SLP

SRA g

SRA (HL)
SRA (IX+d)
SRA (IY+d)

SRL g

SRL (HL)
SRL (IX+d)
SRL (IY+d)

SUB g

SUB (HL)
SUB (IX+d)
SUB (IY+d)
SUB m

TST g
TSTm
TST (HL)

TSTIO m

XOR g
XOR (HL)
XOR (IX+d)
XOR (IY+d)
XOR m

A, g SBC
A, (HL) SBC
A, d (IX) SBC
A, d (IY) SBC
A, #m SBC
HL, ww SBC
SCF
b g SET
b (HL) SET
bd (IX) SET
bd (IY) SET
g SLA
(HL) SLA
d (IX) SLA
d (IY) SLA
SLP
g SRA
(HL) SRA
d (IX) SRA
d (IY) SRA
g SRL
(HL) SRL
d (IX) SRL
d (IY) SRL
A, g SUB
A, (HL) SUB
A, d (IX) SUB
A, d (1Y) SUB
A, #m SUB
A, g TST
A, #m TST
A, (HL) TST
(C), m TSTIO
A, g XOR
A, (HL) XOR
A, d (IX) XOR
A, d (1Y) XOR
A, #m XOR

oooo s7

00000 Oooooooooo 000 00000 5 000 64180

Glossary

This glossary details the words provided within the cross-assembler to con-
trol the use of the assembler.

;CODE — I
“semi-code”
Used in the form:

: <namex> CREATE ;CODE ... END-CODE

Stops compilation, and enables the assembler. This word is used
with CREATE to produce defining words whose run-time portion is
written in code, in the same way that CREATE ... DOES> is used to
create high level defining words.

The data structure is defined between CREATE and ;CODE and the
run-time action is defined between ;CODE and END-CODE. The
current value of the data stack pointer is saved by ;CODE for later
use by END-CODE for error checking. When <namex> executes the
address of the data area will be found on the processor stack, from
which it must be removed.

Aversion of VARIABLE for use ina ROM-based system might be:

: VARIABLE \— ; — addr [child] ; ROMable
CREATE HERE 2+, 0,\ lay pointer, and 0
;CODE \ start of code portion
hl inc hl inc hl inc \ Skip CFA
e, (hl) 1d

hlinc d, (hl)1d \ get addr in RAM
de push NEXT, \return it and exit
END-CODE

VARIABLE TEST-VAR

ASSEMBLER —

“assembler”
Starts a section of assembler code and turns on the assembler, but
without generating a dictionary header. This action is particularly
useful for generating the start-up code. Examples of this can be

found in CODE180.FTH.

CODE —
“COde”
A defining word used in the form:

oooo S8

000 00000 5 000 64180 00000 Oooooooooo

CODE <name> ... END-CODE

Creates a dictionary entry for <name> to be defined by a following
sequence of assembly language words. Words thus defined are
called code definitions. CODE stores the current data stack pointer
for later error checking by END-CODE.

END-CODE —

“end-code”
Terminates a code definition and checks the data stack pointer
against the value stored when ;CODE or CODE is executed. The
assembler 1s disabled. See: CODE ;CODE

FORTH —

“forth”
Terminates a section of assembler code started by the word
ASSEMBLER and turns off the assembler.

IS-ACTION-OF addr —

“is action of”
Used to tell the cross compiler that the given address is to be used as
the run time action of the word whose name follows. Usually found
in code definitions, but can also be used for high level definitions.
For example:

ASSEMBLER
HERE IS-ACTION-OF CONSTANT

ASSEMBLER

HERE IS-ACTION-OF <high-level-definer>
JSR DODOES

FORTH

oooo 59

00000 Oooooooooo 000 00000 5 000 64180

Blank Page

Ooooo eo

000 00000 5 000 64180 000 O000000o0oo

Multitasker

The multitasker supplied with the MPE development system can greatly
simplify complex tasks by breaking them down into manageable chunks.
This chapter leads you through:

e initialising the multitasker
e writing a task
e communicating between tasks
e handling events
The multitasker is in the file MULTI180.FTH in the \ROM directory.

Note: The multitasker cannot be used with Umbilical Forth

Initialising the multitasker

The multitasker needs to be initialised before use. At compile time the cross
compiler must be told the total number of tasks that your system requires and
at run-time, all the tasks must be 1nitialised.

Setting the number of tasks

The number of tasks is set in your control file. It is in the form:
xxxx EQU #TASKS

where xxxx is 8, by default, but can be set to a different number. This re-
duces the amount of memory that is allocated to all the tasks, so leaving
more RAM for your application.

oooo et

000 Oo00oooooooo 000 00000 5 000 64180

Starting the multitasker

To start the multitasker, use MULTI. MULTI starts the scheduler so new tasks
can be added.

Stopping the multitasker

To stop the multitasker, use SINGLE.

Writing a task

Tasks are very straightforward to write, but the way tasks are scheduled
needs to be understood.

Using the scheduler

The multitasker is software scheduled. This means that each task relin-
quishes control back to the scheduler when it’s ready. This is different from
a pre-emptive scheduler where the scheduler interrupts a task. Two words
are supplied so that a task can relinquish control back to the scheduler,
PAUSE and WAIT.

Using PAUSE

The word PAUSE passes control back to the scheduler which executes all the
other tasks once, then returns back to this task.

Using WAIT

The word WAIT suspends a task for a certain number of schedules. Itisused
in the form:

n WAIT

where n is the number of schedules to suspend the task. When WAIT is used,
it transfers control to the scheduler. The scheduler does not execute this task
again until all the other tasks have been executed n times.

0ooo e2

000 00000 5 000 64180 000 O000000o0oo

: TASK1 \— ; An example task
BEGIN \ Start an endless loop
7 EMIT \ Produce a beep
1000 WAIT \ Reshedule 1000 times
AGAIN \ Go round again

000000 10 O 000000000000 0000000

An example

An example task is shown in figure 10. The task is an endless loop with the
word WAIT embedded in it. When the word WAIT is executed, the scheduler
reschedules to the next task. The scheduler will not run this task until it has
run all other tasks 1000 times. Each time the task is executed, it will emit a
beep.

Task dependant variables

An area of memory is set aside for each task. This memory contains user
variables which contain task specific data. For example, the current base is
normally a user variable as it can vary from task to task.

Defining a user variable

A user variable is defined in the form:

n USER <name>

where n is the nth byte in the user area.

Using a user variable

A user variable is used in the same way as a normal variable. By stating its
name, its address is placed on the stack, which can then be fetched using @
and stored by !.

0000 e3

000 Oo00oooooooo 000 00000 5 000 64180

Initialising a task

Atask needs to be initialised before it is run. To to this it needs to be assigned
to a task number. The task number can range from zero to the maximum
number of tasks stated in the control file. A task is assigned in the form:

ASSIGN TASK1 N TO-TASK

where TASK1 is your task word and n is the task number. For example, to ini-
tialise the task in figure 10, to task 1, you type:

ASSIGN TASK1 1 TO-TASK

The task number is used to control the task.

Controlling tasks

Tasks can be controlled in the following ways:
e activated
e suspended for a number of schedules

e halted
o restarted after its been halted

You can also stop the current task.

Starting a task

A task can be started by activating it. To activate a task, use

n ACTIVATE

where n is the task number.

Stopping a task

Atask may be stopped for a number of cycles of the scheduler or temporarily
suspended. A task may also stop itself.

0000 e4

000 00000 5 000 64180 000 O000000o0oo

Stopping for a number of cycles

To stop the current task for a number of cycles, use WAIT. WAIT is used in
the form,

n WAIT

where n is the number of schedules to stop the task.

Temporarily stopping a task

To temporarily stop a task, use HALT. HALT is used in the form,
n HALT

where n is the task to be stopped.

To restart a stopped task, use RESTART. RESTART is used in the form,
n RESTART

where n is the task to restart.

Stopping the current task

To stop the current task (i.e. stop itself) use STOP. This word should obvi-
ously be used with caution. STOP is used in the form,

STOP

Handling messages

An essential feature of the multitasker is the ability to send and receive mes-
sages between tasks.

Sending a message

To send a message to another task, use the word SEND-MESSAGE. SEND-
MESSAGE is used in the form:

message task# SEND-MESSAGE

where message is a 16-bit message and task# is the number of the task to
send the message to. The message can be data, an address or any other type
of information but its meaning must be known to the receiving task.

oooo es

000 Oo00oooooooo 000 00000 5 000 64180

Receiving a message

To receive a message, use GET-MESSAGE. GET-MESSAGE suspends the
task until a message arrives. When a message is received the task is re-
activated and the sending task number and the data is returned.

Creating events

Events are analogous to interrupts. Whereas interrupts happen on hardware
signals, events happen under software control.

Writing an event

An event is a normal Forth word. An event is associated to a task so that
when the event is triggered, the task is activated. Therefore, an event is usu-
ally used as initialisation for a task.

Initialising an event

Events are initialised in a similiar way to tasks. They are assigned in the
form,

ASSIGN EVENTI1 n TO-EVENT

where EVENT]1 is your event handler and n is the task number of the task
that it is to be associated with.

Triggering an event

There are two ways of triggering an event:
e using SET-EVENT
e setting a bit in the status word

Using Set-event

SET-EVENT is a word which sets an event flag for a task. Once the event flag
1s set, the tasker will execute the event before it switches to the task. The task
1s also activated.

0000 e6

000 00000 5 000 64180

000 O000000o0oo

Bit when set when reset
7 Task is running Task i1s halted
6 Message pending No messages
5 Event has been triggered | No events

Table 6 - A task's status word
Field Contains Size
TCBSP Data stack pointer word
TCBST Task status byte byte
TCBID Task number of message sender byte
TCBMSG |Message code or address word
TCBEVENT |CFA of word run by task’s event handler word
TCBAC- CFA of main task word word
TION

Table 7 - Multitasker data structure

Setting a bit in the status word.

Abit can be set in a task’s status word which indicates to the multitasker that
an event has taken place. This method can be used to trigger an event from a
hardware interrupt. Refer to ‘The multitasker’s internals’ later in the chapter
for details on the status byte.

Clearing an event

To stop an event handler being run, use CLEAR-EVENT.

The multitasker’s internals

A multitasker tries to simulate many processors with just one processor. It
works by rapidly switching between each task. On each task switch it saves

oooo er

000 Oo00oooooooo 000 00000 5 000 64180

the current state of the processor, and restores the state that the next task
needs.

The Forth multitasker is software scheduled. This means that each task re-
linquishes control to the scheduler, which then switches to the next task. In
this way less processor state information needs to be saved.

The scheduler’s data structure

The Forth multitasker creates a task control block for each task. The task
control block (TCB) is a data structure which contains information relevant
to atask (figure). The status byte (TCBST) contains information on the exe-
cution of the task and its event (figure).

A simple example

The following example is a simple demonstration of the multitasker. Its sim-
ple role is to display a hash (#) every so often, but leaving the forground
Forth running. To use the multitasker you must cross-compile the file MUL-
TI180.FTH into your target.

Defining a simple task

The following code defines a simple task called TASK1. It displays a #
every 1000 schedules.

VARIABLE DELAY \ time delay between #’s
1000 DELAY ! \ initialise time delay
: TASK1 \ —; task to display #’s
ASCII $ EMIT \ Display a dollar ($)
BEGIN \ Start continuous loop
ASCII # EMIT \ Display a hash (#)
DELAY @ WAIT \ Reschedule Delay times

AGAIN \ Back to the start ...

3

0o0oo e8

000 00000 5 000 64180 000 O000000o0oo

Initialising the multitasker
Before any tasks can be activated, the multitasker must be initialised. This is
done with the following code:

INIT-MULTI
MULTI

The word INIT-MULTI initialises all the multitasker’s data structures and
MULTI switches to multitasking. These words need only be executed once
in a multitasking system.

Assigning the example task to a task number

In a multitasking system, tasks are represented by numbers. Therefore, each
task must be assigned to a task number. For this example you type:
ASSIGN TASK1 1 TO-TASK

This assigns the word TASK1 to task number 1. It can be assigned to any task
upto the number of tasks defined in the system (defined by #TASKS in the
control file).

Activating the example task

To activate (run) the example task, type:

1 ACTIVATE

This will activate task number one. Immediately you will see a dollar and a
hash ($#) displayed. If you press <return> a few times, you notice that the

Forth is still running. After a few seconds another hash will appear. This is
the example task working in the background.

Controlling the example task

The example task can be controlled in several ways:
o the rate of generation of hashes can be changed
e it can be halted
e once halted it can be restarted

e 1t can be started from scratch

oooo e9

000 Oo00oooooooo 000 00000 5 000 64180

Changing the rate of hashes

The rate of production of hashes can be changed by changing the variable
DELAY. Try:

2000 DELAY !

This changes the number of schedules that the example tasks makes between
displaying hashes to 2000. Therefore the rate of displaying hashes halves.

Halting the example task

The task is halted by typing the tasks number followed by HALT:
1 HALT

You notice that the hashes are not displayed.

Restarting the halted task

The task is restarted by the word RESTART. Type the task number followed
by RESTART:

1 RESTART

You notice that the hashes are displayed again.

Restarting the task from scratch

To restart the task from scratch, just activate it again:
1 ACTIVATE

You notice the dollar and the hash ($#) are displayed, followed by hashes
(#).

oooo 7o

000 00000 5 000 64180 000 O000000o0oo

Glossary

This glossary contains details of the major words in the multi-tasking sys-
tem. Other words exist, but are only used as fractions of the words below.

?EVENT —

“query-event”
If the current task’s event flag is set, the flag is reset and the event
handler is executed.

ACTIVATE task# —

“activate”
Initialises and starts the given task number. Task 0 is Forth itself
and was activated when Forth started. Note that ACTIVATE causes
the task to start from the very beginning. If the task was halted, and
execution should resume where it left off, use RESTART instead.

CLR-EVENT-RUN —

“clear-event-run”
Clears the event run flag for the current task. This is bit 4 in the task
status byte.

EVENT? —t/f

“event-query”
Returns true if the event triggered bit has been set in the current
task’s status byte.

GET-MESSAGE — message task#
“get-message”
Waits for a message and returns the message and the sending task.

HALT task# —

“halt”
Halts the task whose number is given. Do not halt task 0. Halting a
task prevents it responding to messages or events.

INIT-MULTI —

“Init-mult1”
Initialises the multi-tasker, task 0, and starts the multi-tasker. Just
include this word in COLD to kick the multi-tasker into action.

oooo 71

000 Oo00oooooooo 000 00000 5 000 64180

INIT-TCBS —
“Init-t-c-bees”
The main part of the multi-tasker reset process.

MSG? task# — t/f

“message-query”
Returns true if the task is holding a message, and is therefore not
free to receive another one.

MULTI —

“multi”
Turns the multi-tasker on, by clearing the bit in the TASK# byte in
internal RAM that inhibits the scheduler.

PAUSE —

6‘pause”
Waits for one iteration of the scheduler. Equivalent to:
1 WAIT

RESTART task# —

“restart”

Restarts a task that was halted by HALT or WAIT. Unlike
ACTIVATE, the task resumes where it left off.

SELF — task#

“self”
Returns the task number of the current task. Useful with MSG? in
particular to determine whether or not a message has been received
by the task.

SEND-MESSAGE message task# —

“send-message”
Sends a message to the given task. The message address can be
used on its own, or as a pointer to an extended message.

SINGLE —

“single”
Turns off the multi-tasker by setting the scheduler disable bit in the
TASK# byte in internal RAM.

oooo 72

000 00000 5 000 64180 000 O000000o0oo

STATUS —n

“status”
Returns the task status byte of the current task but with the top bit
(bit 7) masked off. If this value is non-zero, the task has been
awakened for a reason other than for normal running.

TCBS — addr

“t-c-b-st”
A label, NOT a word, that returns the start address in DATA RAM
of the table holding the action words for all the tasks. In some
systems this is implemented as a constant for visibility.

TO-EVENT cfa task# —

“to-event”
Sets the CFA of a Forth word as the action to run when the task’s
event trigger 1s set.

ASSIGN <word> <n> TO-EVENT

TO-TASK cfa task# —

“to-task”
Stores the CFA of the word forming the task action in the task table
entry for the task.

ASSIGN <word> <n> TO-TASK

WAIT n—

“wait”
Suspends the current task for n iterations of the scheduler. Ifn is 0,
the task 1s suspended until a message or event is received.

oooo 73

000 Oo00oooooooo 000 00000 5 000 64180

WAIT-EVENT/MSG —

“wait-event-or-message”
The current task is suspended until it receives a message or an event
trigger. The words MSG? and EVENT? can be used to determine
whether a message or an event trigger terminated the wait. Note
that if an event trigger is received, the event handler will have been
called, and the event run flag (bit 4 in the status byte) will be set.

oooo 74

000 00000 5 000 64180 oooooooooo

Interrupts

This chapter describes how to write interrupt handlers in both Forth and as-
sembler. It details how to set up and control interrupt handlers.

The 64180 interrupt mechanism

When an interrupt occurs and is accepted, the action a 64180 processor takes
is dependent on the interrupt mode that has been set by the user. This can be
done by executing an IM instruction in assember. In mode 2, the processor
branches through a location (a ‘vector’) in memory. The code at the address
1s then executed. The vector table typically starts at address 0000h in mem-
ory, although this is user selectable by writing into the [register. The address
of the vector used is dependent on the source of the interrupt, and this is also
user selectable. The address of the internal interrupts on a 64180 can be se-
lected by writing into the top three bits of the IL register. For more informa-
tion on the interrupts for the processor, refer to the processor’s user guide.

Writing Forth interrupt handlers

A Forth interrupt service routine (ISR) is just like any other Forth word. It
can therefore be tested and debugged like a normal Forth word. Only when
the word is fully tested need it be assigned to an interrupt.

Interrupts using Mode 2

This section describes how to write a high-level interrupt handler for the
64180. Below 1s a formula, which you must copy for each interrupt you wish
to process with a high-level Forth word. It is taken from the file IN-
TERUPT.FTH in the X180\ROM directory, and is an example for the inter-

oooo 7s

oooooooooo 000 00000 5 000 64180

nal timer O interrupt. This uses the same mechanism as mode 2 interrupts on
the Z80

First, write the word which is to be the action of the interrupt, and test it as far
as possible:

VARIABLE COUNTER \ to count ticks
: EXAMPLE-ISR \ — ; interrupt handler
RESET-TIMER \ clear int source

1 COUNTER +! \ inc counter

Now define the following piece of assembler:
DEFER TIMERO-ISR

HEX

L: TIMERO-INT

] TIMERO-ISR RETI [

ASSEMBLER \ this code uses 8 bytes so

L: TIMERO-INTO \ can be used in RST xx vector
AF PUSH BC PUSH \ save status and IP
BC, # TIMERO-INT LD \ point to Forth and run
COMMON-ISR JP \ join common code

FORTH

The first label, TIMERO-INT in this case makes a space to contain the name
of the word to execute for the interrupt. It also contains the name of the word
which returns from a high-level interrupt. Between the square brackets are
the name of the word to execute, TIMERO-ISR in this case, and the name of
the word RETI whose job is to make a return from interrupt.

The second label, TIMERO-INTO in this case, is the interrupt routine which
‘kicks off” the high-level Forth routine. You must copy this into your routine.
Note that TIMERO-INT is referred to by TIMERO-INTO. The label
COMMON-ISR, and the word RETI are both defined in the file IN-
TERUPT.FTH which is part of the kernel system. These words and labels
define the interrupt routine but the vector must still be set. This is performed
with the line

TIMERO-INTO INT-PAGE INT-PAGE-L +4 + !

This sets the address of TIMERO-INTO as the vector for the interrupt. On a
64180 the TIMER 0 vector occupies bytes 4 & 5 of the block of memory se-
lected by the values contained in the I and IL registers. These values are
available as INT-PAGE and INT-PAGE-L respectively. You should consult
the reference books for the processor for more details or more vectors in spe-
cific variants of the processor.

oooo 7e

000 00000 5 000 64180 oooooooooo

Since the TIMERO-ISR word is deferred in the example above, you must as-
sign its action in the word which starts your application running. In the ex-
ample above, the following code performs this task:

: RUN-EXAMPLE \—
ASSIGN EXAMPLE-ISR TO-DO TIMERO-ISR

START-TIMER

3

You should note that it would be quite possible to patch EXAMPLE-ISR
into the TIMERO-INT word directly, instead of going via a deferred word.
This would save a small amount of memory at the expense of not being able
to change the interrupt action on the fly.

The START-TIMER, RESET-TIMER and STOP-TIMER words simply en-
able the interrupts and clear the source by reading and writing the TCR and
TMDRO registers as appropriate. When the target runs, the interrupt will be
enabled, and then the timer overflow example will increment the variable.
This can be seen by examining the value of the variable from time to time.

Interrupts under Modes 0 and 1

The interrupt handler mechanism described previously assume the use of
mode 2 interrupts. However similar mechanisms can be used for mode 0 and
mode 1 interrupts, the only difference being the way that the vector is
patched. Instead of generating the vector address from a number of equates,
you should use the ORG instruction to force assembly at the correct location.
For example

HEX
HERE \ preserve current location
038 ORG \ force assembly at location 38h
ASSEMBLER
L: RST38-ENTRY
MY-INT JP \ Jump to handler
FORTH
ORG \ restore location

would generate code for calling a routine called MY-INT using an RST 38
instruction. This would therefore be suitable for use with mode 0 and mode 1
interrupts. Note that the TIMERO-INTO code presented earlier in the chapter
1s 8 bytes long. This means that this code can be be put into a mode 0 vector
slot directly, without having to make a separate jump.

oooo 77

oooooooooo 000 00000 5 000 64180

Some common problems

There are a few common problems that might cause an interrupt not to work
correctly:

e a stack fault
e the source is not cleared

o the interrupts are not enabled

Stack fault

An interrupt service routine can use the stack while it is executing, but must
clear up the stack before returning from the interrupt. The normal symptom
of a stack fault is that the interrupt handler runs but then the target board
crashes, either immediately or after a length of time.

Source is not cleared

Once an interrupt handler is triggered by an interrupt, the source of the inter-
rupt must be told that the interrupt is being serviced. If this is not done, the
source of the interrupt will carry on generating interrupts. Normally this ap-
pears as the interrupt handler executing once and then the target board ‘loc-
king’.

Interrupts are not enabled

Interrupts need to be enabled with EI before any interrupts will be serviced.
The vectors must be set up before the interrupts are enabled.

Writing assembler interrupt handlers

Writing an interrupt service routine in assembler is straightforward. The
code can be written in the form shown below, which is taken from the serial
line driver in DARTCTCIFTH in the ROM\DRIVERS subdirectory. The
entry point is indicated by the label RX-INT. For more information on how
to write assembler definitions see chapter 6.
ASSEMBLER
L: RX-INT

AF PUSH

A, B-DATAIN RX-CHAR ALD \ read char and stash

oooo 78

000 00000 5 000 64180 oooooooooo

A, #-1LD RX-AVAILALD \ flag char as read
AF POP EI RETI \ all done
FORTH

Setting the interrupt

The interrupt code above can be set to a vector by entering in your source
code,

INT-PAGE 010 + EQU DART-VECTOR
RX-INT DART-VECTOR 4 + ! \ set serial interrupt vector

The DART-VECTOR equate is also used when initialising the UART so that
itknows which addresses have been allocated to it. You will see code similar
to this in the INTERUPT.FTH and DRIVERS\DARTCTCI.FTH files. The
same formula is used for every interrupt in the system.

Controlling the interrupts

Interrupts can be in one of two states, enabled or disabled.

Enabling interrupts

To enable interrupts use EI. Once EI has been executed, all interrupts are en-
abled.

Disabling interrupts

To disable interrupts use DI. Once DI has been executed, all interrupts are
disabled.

Interrupt Handlers in detail

A conventional interrupt handler written in assembler simply saves any reg-
isters and fixed locations it will use, then calls or executes the required rou-
tine, and then restores the previous state of registers and locations, and

oooo 7o

oooooooooo 000 00000 5 000 64180

returns. The Forth interrupt handlers work in the same way, with a few addi-
tions.

Interrupt handlers written entirely in assembler are written in the usual way.
When a Forth VARIABLE is referred to by name inside a code section, its
data address in RAM is returned. Thus variables can be shared between high
level routines and subroutines or assembler interrupt handlers.

The code for the interrupt handler can be found in the file INTERUPT.FTH
in the ROM subdirectory. This source code can be modified and updated as
required. The interrupt handler code can be adapted for single-chip use.

Interrupt Structure

A separate user area is reserved for the interrupt handler, and is shared by all
the high-level interrupt handlers. Consequently high-level Forth interrupts
cannot be nested if user variables are changed, although an interrupt that
does not use the Forth interrupt handler can be nested.

When an interrupt that has a high-level handler occurs, the processor status
1s pushed onto the stack. This includes the Interpretive Pointer and User
Pointer. These pointers are then loaded with the required values for interrupt
processing.

The Interpretive Pointer is set by the interrupt code to point to an area of
memory that contains the CFAs of two words. The first is the CFA of a word
to run the interrupt. The second is the CFA of the return from interrupt word.

1: some-interrupt
] action reti [

Setting an interrupt

The return from interrupt is provided by the second word of the table entry.
This means that the action word need contain no return action, and conse-
quently it may be tested from the keyboard. The file ROM\IN-
TERUPT.FTH contains an example interrupt using one of the timers on the
64180. Since mode 2 interrupts are vectored, the final requirement is to set
the vector itself.

oooo 8o

000 00000 5 000 64180 oooooooooo

Note that interrupt handlers written in assembler do not need to use these
structures at all. They must still, however, set the vector to use as appropri-
ate.

Interrupt Protection

The word SAVE-INT saves the current interrupt status, and disables inter-
rupts, which can then be restored by RESTORE-INT which restores the in-
terrupt mask to the state saved by SAVE-INT. If simple enabling and
disabling of interrupts is required, the words EI and DI respectively perform
these functions. SAVE-INT and RESTORE-INT are particularly neces-
sary for critical sections of code, and for implementing semaphores.

oooo 81

oooooooooo 000 00000 5 000 64180

Glossary

This glossary contains details of the major words in the interrupt system.
Other words exist, but are only used as fractions of the words below. The
source code for all these words may be found in INTERUPT.FTH.

DI —
“d-i”

Disables interrupts.
El —
“e—i”

Enables interrupts.
RESTORE-INT n—

“restore-int”
Restore the interrupt enable state previously saved by SAVE-INT.

SAVE-INT —n

“save-int”
Saves the current state of the interrupt enable on the stack, and
disables interrupts. See RESTORE-INT.

oooo 82

000 00000 5 000 64180 00000000 00000000 Oooooo

Software floating point

Although most applications only require integer arithmetic, some do require
floating point. Therefore software floating point is supplied with the cross-
compiler and the target Forth.

The cross-compiler has a more limited floating point support than the target,
this means that some words are avaliable within colon definitions, but not
outside them.

Entering floating point numbers

Floating point numbers can be entered in two forms, 1.234 and 0.1234e1

Floating point numbers are compiled as literal numbers when in a colon
definition and placed on the cross-compiler’s stack when outside a defini-
tion.

The form of floating point numbers

A floating point number is placed on the Forth stack. It consists of three 16-
bitnumbers. Two for the mantissa and one for the exponent. The mantissa is
normalised.

Creating variables

To create a variable, use FVARIABLE. FVARIABLE works in the same way
as VARIABLE. For example, to create a floating point variable called VAR1
you code:

FVARIABLE VARI1

oooo 83

00000000 O0000000 Ooooog 000 00000 5 000 64180

When VARI is used, it returns the address of the floating point number.

Accessing variables

Two words are used to access floating point variables, F@ and F!. These are
analogous to @ and !.

Creating constants

To create a floating point constant, use FCONSTANT. FCONSTANT is analo-
gous to CONSTANT. For example, to generate a floating point constant
called CON1 with a value of 1.234, you enter:

1.234 FCONSTANT CONI1
When the CON1 i1s executed, it returns 1.234 on the Forth stack.

Using the supplied words

The supplied words split into several groups:
e sines, cosines and tangents
e arc sines, cosines and tangents
e arithmetic functions
e logarithms
e powers
o displaying floating point numbers
e inputting floating point numbers

The following functions only exist as target words so you cannot use them in
calculations in your source code when outside a colon definition.

oooo 84

000 00000 5 000 64180 00000000 00000000 Oooooo

Calculating sines, cosines and tangents

To calculate a sine, cosine and tangent, use FSIN, FCOS and FTAN respec-
tively. They take an angle in either degrees or radians, depending on which
is set at the moment. See Setting degrees or radians.

Calculating arc sines, cosines and tangents.

To calculate the arc sine, cosine and tangent, use FASIN, FACOS and FATAN
respectively. They return an angle in degrees or radians, depending on
which is set. See Setting degrees or radians.

Calculating logarithms

Two words are supplied to calculate logarithms, FLOG and FLN. FLOG cal-
culates a logarithm to base 10 (decimal). FLN calculates a logarithm to base
e. Both take a floating point number in the range from 0 to .

Calculating powers

Three power functions are supplied:
o ¢F
e 10"

o x’

Calculating e

To calculate e*, use FEAX. FEAX takes X as a floating point number.

Calculating 10"

To calculate 10%, use F10~X. F10~X takes x as a floating point number.

Calculating x”

To calculate x”, use FX*Y. FX"Y takes x and y as floating point numbers.

oooo 85

00000000 O0000000 Ooooog 000 00000 5 000 64180

Setting degrees or radians

The angular measurement used in the trigonometric functions can be set to
be either degrees or radians. To set it to degrees, use the word DEGREES. To
set it to radians use the word RADIANS.

Converting between degrees and radians

To convert between degrees and radians use RAD>DEG or DEG>RAD.
RAD>DEG converts an angle from radians to degrees. DEG>RAD converts
an angle from degrees to radians.

Displaying floating point numbers

Two words are available for displaying floating point numbers, F. and E. .
The word F. takes a floating point number off the stack and displays it in the
form xxxx.xxxxx or x.xxxxxEyy depending on the size of the number. The
word E. displays the number in the latter form.

Ooooo 86

000 00000 5 000 64180 00000000 00000000 Oooooo

Glossary

In the following glossary, you will find all the words that you are likely to
need when using software floating point; the words omitted are, in general,
subroutines used by words in the glossary.

N.B. Abbreviation: f.p. = floating point
D>F d—f

“d-to-f”
Converts a 32 bit double integer to a normalized f.p. number.

DEG>RAD f1 —12
“deg-to-rad”
Convert f1 degrees to its corresponding number of radians.
DEGREES —
“degrees”

Switches floating point calculations to be done in degrees.

DINT f—d
“dint”
Leave the integer part of f as a double number on the stack.

DNORM dn—f

“d-norm”
Normalize double number d by n left shifts. Leaves a f.p. number
on the stack.

E. f—
“e—dot”
Print the f.p. number on the stack in exponential form.

F, f—
“f~comma”
Compile the f.p. number on the top of the stack.

F. f—

“f—dot”
Print the top f.p. number on the stack in free format.

oooo 87

00000000 O0000000 Ooooog 000 00000 5 000 64180

F! faddr —
“f-store”
Store the f.p. number f at address addr.

F+ f12—13

“f-plus”
Add together the top two f.p. numbers on the stack and put the f.p.
result on the stack.

F- f1 f2—13

“f-minus”
Subtract the top f.p. number on the stack from the second f.p.
number on the stack, and put the f.p. result on the stack.

F* f12—13

“f-star”
Take the top two f.p. numbers off the stack, multiply them together,
and leave the f.p. result on the stack.

F/ f1f2—13

“f-slash”
Divide the second f.p. number on the stack by the top f.p. number
and leave the f.p. result on the stack.

F< fl1 2 — flag
“f-less-than”
Leave true flag if f1<f2. Otherwise, leave a false flag.

F<0 f— flag
“f-less-than-0"
Leave a true flag if £<0. Otherwise, leave a false flag.

F= f1 2 — flag

“f-equals”
Leave a true flag if the top two f.p. numbers on the stack are equal.
Otherwise leave a false flag.

Fo0= f— flag
“f-0-equals”
Leave atrue flag if the f.p. number on the top of the stack is zero.

oooo 88

000 00000 5 000 64180 00000000 00000000 Oooooo

F> fl1 2 — flag
“f-greater-than”
Leave a true flag if f1>f2. Otherwise, leave a false flag.

F>0 f— flag

“f-greater-than-zero”
Leave a true flag if the f.p. number on the top of the stack is greater
than zero.

F# — f [executing]

“f-hash” — [compiling]
If interpreting, takes text from the input stream and, if possible,
converts it to a f.p. number on the stack. Numbers in integer format
will be converted to floating point. If compiling, the converted
number is compiled.

F#IN —f3]0

“f-hash-in”
Attempts to convert a token from the input stream to a floating
point number. Numbers in integer format will be converted to
floating point. An indicator (0 or 3) is returned in the same way as
an indicator is returned by FNUMBER?.

F@ addr — f
“f-fetch”
Fetch the f.p. number from address addr and put it on the stack.
F10*X f1 — 12
“f-10-to-the-x”

Raise 10 to the power f1 and put the result on the stack.

FABS f—|f]
Cﬂf_abSQB
Returns the modulus of the f.p. number on the top of the stack.
FACOS f1 —12
“f-a-cos”

Leave, on the stack, the angle (in degrees or radians) whose cosine
is f1, such that 0<=f2<=180 ({2 in degrees).

oooo 89

00000000 O0000000 Ooooog 000 00000 5 000 64180

FARRAY fn-1..f0 n — [parent]

“f-array” n — fn [child]
When generating the array, take n f.p. numbers and n, and compile
them into the array. When executing the child word, take n and
place f.p. number n from the array onto the stack. Note that the
numbering in the array goes 0,1,..n-1.

FASIN f1 — 12

“f-a-sine”
Leave, on the stack, the angle (in degrees or radians) whose sine is
f1, such that -90<=f2<=90.

FATAN f1 —12

“f-a-tan”
Leave, on the stack, the angle (in degrees or radians) whose tangent
is f1, such that -90<£2<90.

FCONSTANT f — [parent]
“f-constant” — f[child]
Floating point equivalent of CONSTANT. Use in the form:

<f.p. number on stack> FCONSTANT <name>

FCOS f1 —12
“f—COS”
Take the cosine of f1 (degrees or radians) and put it on the stack.

FDROP f—
G‘f_drop77

Drop the f.p. number on the top of the stack.
FDUP f—ff
“f—dup”

Duplicate the f.p. number on the top of the stack.
FE~X f1 —12
“f-e-to-the-x

Raise e, the exponential number, to the power f1 and put the result
on the stack.

oooo 90

000 00000 5 000 64180 00000000 00000000 Oooooo

FFRAC fl1 2 — 13

“f-frac”
Leave the fractional remainder from the division f1/f2. The
remainder takes the sign of the dividend.

FINT f1 —12
“fint”
Place the f.p. integer value of f1 on the stack.

FLITERAL f—
“f-literal”
When compiling, compile f as a literal. For example,

: ABCD [calculate f] FLITERAL ;
Compilation is suspended for the compile-time calculation of f.
Execution of ABCD leaves f on the stack.

FLN f1 —12
“f-log-base-e”
Take the logarithm of f1 to base e and put the result on the stack.
FLOATS —
“floats”

Switches the action of NUMBER? to be FNUMBER?. This action
can be reversed by INTEGERS. Both FLOATS and INTEGERS are in
the FORTH vocabulary.

FLOG f1 — 12
“f-log-base-10"
Take the logarithm of f1 to base 10 (decimal) and put the result on

the stack.
FMAX f1 2 — max {f1,12}
Géf_max”
Put the greater of the top two f.p. numbers onto the stack.
FMIN f1 2 — min{f1,2}
(Cf_min93

Put the lesser of the top two f.p. numbers onto the stack.

oooo o1

00000000 O0000000 Ooooog 000 00000 5 000 64180

FNEGATE f—-f
“f-negate”
Negate the f.p. number on the top of the stack.

FNUMBER? addr—O0 | nl1 | d2 | f3

“f-number-query”
Converts string at address addr to either a single, double or floating
point number along with 1, 2, or 3 respectively. If a 0 is left on the
stack then FNUMBER? was unable to convert the string.

FOVER f1 2 —f1 12 f1
“f-over”
Floating point equivalent of OVER.

FROT f1 213 —1213fl
“f-rote”
Floating point equivalent of ROT.

FSEPARATE f1f2— 1314

“f-separate”
Leave the signed integer quotient f4 and remainder f3 when f1 is
divided by f2. The remainder has the same sign as the dividend.

FSIGN f— fflag

“f-sign”
Leave the f.p. number and a flag on the stack. Leaves a true flag if f
is negative, else leaves a false flag.

FSIN f1 — 12

“f-sine”
Leave the floating point sine of f1 (degrees or radians) and put it on
the stack.

FSQR f1 —12

CCf_S_q_r’Q
Take the square root of the floating point number on the top of the
stack and put the result onto the stack.

FSWAP f1 2 —12 1
Cﬂf_swap,’
Floating point equivalent of SWAP.

oooo 92

000 00000 5 000 64180 00000000 00000000 Oooooo

FTAN f1 —12

“f—tan”
Take the tangent of f1 (degrees or radians) and put the result on the
stack.

FVARIABLE —

“f-variable”
Floating point equivalent of VARIABLE. Set up an fvariable by
typing:
FVARIABLE <name>

FX”N fln—12

“f-x-to-the-n”

Raise f1 to the power n (n integer), and put result on the stack.

FX*Y f1f2—13
“f-x-to-the-y”
Raise f1 to the power {2 and put the result on the stack.
INTEGERS —
“integers”

Switches the action of NUMBER? to be INTEGER?. This action
reverses that of FLOATS. Both FLOATS and INTEGERS are in the

FORTH vocabulary.
RAD>DEG f1 —12
“rad-to-deg”
Convert f1 radians to degrees, and put result on the stack.
RADIANS —
“radians”

Switches floating point calculations to be done in radians.

S>F n—f
“s-to-t”
Converts a single (16 bit) number to a normalized f.p. number

SINT f—n

“sint”
Takes the single number integer part of f and puts it on the stack.

oooo 93

00000000 O0000000 Ooooog 000 00000 5 000 64180

Blank page

oooo o4

000 00000 5 000 64180 000 Ooooooooooa

ROM PowerForth Utilities

Supplied as source are utilities to:
o compile source code files on your target board
e upload a binary image from your target to your PC

These utilities can be used to generate an EPROM which has all the tools re-
quired to develop an application.

Compiling text files

Source text files can be compiled from the host PC onto the target system.
This saves time in not having to cross compile all the source if a small modi-
fication is made. The utilities assume that each text file is split into pages. A
page is separated from another by an ASCII 12 character. Writing source
code with pages gives you the ability to compile discrete chunks of code. If
you do not have any pages in your source code, the whole file should be
treated as page one.

Note: You must switch XShell to file server mode to use this facility. See
XShell manual.

The required files

To compile text files from your target board, cross compile the files 10-
DEF.FTH and TEXTFILE.FTH.

oooo 95

000 Ooooooooooa 000 00000 5 000 64180

Compiling a specified text file

To compile all or part of a specified text file onto your target, use FROM-
FILE in the form:

start-page end-page FROM-FILE <name>

This compiles the file <NAME> into the target’s dictionary.

Compiling the default text file

An alternative approach is to specify a default filename which is remem-
bered by the target. The file can then be compiled without specifying the text
file’s name. This is normally quicker if you are continuously compiling one
file.

Specifying the default text file
To set the default filename, type:

USE <name>

where <NAME-> is the text file’s name to be set as the default. If no extension
is specified, an extension of .FTH is assumed.

Compiling the default text file

To compile the default file, type:
start-page end-page FROM

This compiles the pages from start-page to end-page onto the target.

Specifying the start and end pages

Words are supplied to enable you to compile parts or all of a file easily. To
compile parts of a file you can use ONWARDS, UPTO and ALONE with either
FROM or FROM-FILE.

Compiling from a specified page to the end of the file

To compile from a start page to the end of the file, use ONWARDS in the
form:

start-page ONWARDS

oooo o6

000 00000 5 000 64180 000 Ooooooooooa

This generates a start and end page which can be used with either FROM-
FILE or FROM. For example,

10 ONWARDS FROM

compiles from page ten to the end of the default text file.

Compiling from the start of the file to a specified page

To compile from the start of a file to a specified page, use UPTO in the form:
end-page UPTO

This generates a start and end page which can be used with either FROM-
FILE or FROM.

For example,

10 UPTO FROM

compiles from the start of the file to page ten of the default text file.

Compiling a single page
To compile a single page, use ALONE in the form:
page# ALONE

This generates a start and end page which can be used with either FROM-
FILE or FROM.

For example,
10 ALONE FROM

compiles page ten of the default text file.

Compiling the whole file

To simplify the compilation of the whole file, use the word ALL:
ALL FROM
ALL FROM-FILE <name>

oooo o7

000 Ooooooooooa 000 00000 5 000 64180

Compiling screen files

Standard Forth screen files can be compiled onto the target system, in the
same way as on a host system.

Note: You must switch XShell to file server mode to use this facility. See
XShell manual.

The required files

To compile screen files from your target board, cross compile the files 10-
DEF.FTH and BLOCKS.FTH.

Compiling a specified screen file

To compile all or part of a specified screen file onto your target, use THRU-
USING in the form:

start-screen end-screen THRU-USING <name>

This compiles the file <NAME> into the target’s dictionary.

Compiling the default screen file

An alternative approach is to specify a default filename which is remem-
bered by the target. The file can then be compiled without specifying the
screen file’s name. This is normally quicker if you are continuously compil-
ing one file.

Specifying the default screen file

To set the default filename, type:
USING <name>

where <NAME> is the screen file’s name to be set as the default. If no exten-
sion is specified, an extension of .SCR is assumed.

oooo o8

000 00000 5 000 64180 000 Ooooooooooa

Compiling the default screen file

To compile the default file, type:

start-screen end-screen THRU

This compiles the screens from start-screen to end-screen onto the target.

Compiling a single screen

A single screen can be loaded from the default screen file or a specified
screen file.

Compiling a single screen from a specified screen file

To compile a single screen, use LOAD-USING 1n the form:
screen# LOAD-USING <name>

This compiles the screen screen# of the file <NAME> onto the target.

Compiling a single screen from the default screen file

To compile a single screen, use LOAD in the form:
screen# LOAD

where screen# is the screen number to load.

Downloading a binary image

A binary image can be downloaded from the target to your host PC. Two
utilities are provided:
e an Intel hex download

e an XMODEM download

For both utilities a suitable communications package will be required (e.g.
ProComm).

oooo 99

000 Ooooooooooa 000 00000 5 000 64180

XMODEM binary image download

Binary images can be downloaded to your PC using the XMODEM proto-
col.

Required files

To use this utility you must cross compile the files BLOCKS.FTH and BIN-
DOWN.FTH.

Using the XMODEM binary download utility

To down-load a binary image from the target system to your PC, use BIN-
DOWN in the form:

addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytes to down-
load starting from addr.

For example,
1200 400 BIN-DOWN

sends the area of memory from 1200 to 1599 to your host PC.

Intel hex download

Memory images can be downloaded to your PC using the Intel hex format.

Required files

To use this utility you must cross compile the files BLOCKS.FTH and
HEX-DOWN.FTH.

Using the hex download utility

To download a hex image from the target system to your PC, use HEX-
DOWN in the form:

addr #bytes HEX-DOWN

where addr is the start address and #bytes is the number of bytes to down-
load starting from addr.

For example,

oooo 100

000 00000 5 000 64180 000 Ooooooooooa

1200 400 HEX-DOWN

sends the area of memory from 1200 to 1599 to your host PC.

ROM PowerForth

ROMPowerForth can be used to generate a stand-alone Forth system. With
these utilities, you can generate an EPROM which contains an interactive
Forth with the ability to develop an application.

Note: A licence is required to distribute open Forth systems. Contact
MPE for more details.

Hardware requirements

To develop an application using ROM PowerForth, your board requires
three areas of which:

e one is always EPROM
e one is always RAM
e one is RAM for development and EPROM for application

EPROM area

The area which is always EPROM, contains the development kernel.

RAM area

The area which is always RAM is used for variables and all changeable data.

RAM/EPROM area

This area is used to develop your application. Therefore, it must be RAM
while developing. Once your application is developed, the application’s im-
age must be saved into battery-backed RAM or EPROM. Therefore, this
area must have the ability to be alterable but also non-volatile.

oooo 101

000 Ooooooooooa 000 00000 5 000 64180

Types of board
The type of board that can be used to develop using ROM PowerForth is re-
stricted to:

e three site boards

e two site boards with battery backed RAM

e two site boards with socket converter

Three site boards

The three areas are provided by three memory sockets:
o EPROM holding development kernel
e RAM which holds the variables and changeable data
e EPROM or RAM which is selectable by a link on the board

Two site boards with battery backed RAM

The three areas are provided by two sockets:
o EPROM holding the development kernel
e battery-backed RAM which is split into two areas

Two site boards with socket converter

On many boards, there is unused space in the EPROM as ROM PowerForth
occupies less than 16k bytes of memory. Therefore, a header board can be
made which converts one socket into two. For example, if the socket nor-
mally takes a27256 EPROM, a board can be made which has a 16k EPROM
with the ROM PowerForth development kernel and 16k bytes of RAM. To
access the RAM, the write line 1s attached to a suitable point on the main
board with a flying lead.

After the application has been developed, the two images are combined back
into a single EPROM.

Making your application turnkey

Once your application has been developed, it needs to be made turnkey so
that it is always available. The application can be made semi-permanent by

compiling into battery-backed RAM in the RAM/EPROM area. Alterna-
tively, it can be copied into an EPROM if the board allows.

oooo 102

000 00000 5 000 64180 000 Ooooooooooa

Configuring a turnkey application

The word SETUP takes the address of the word passed to it and marks this in
the RAM/EPROM header as the address of the word to be run at power-up.
If a value of zero is passed to SETUP, the interactive Forth kernel will be run
at power-up.

For example, the word JOB is to be run at power-up. Therefore you type,
¢JOB SETUP

Discarding the application RAM area

The application can be discarded by typing:
0 ROM!

Changing the application RAM start address

The constant ROM returns the start address of the application RAM area. If
the address of this area is to be changed, the EPROM must be modified. To
do this, the 16-bit value in ROM must be changed.

oooo 103

000 Ooooooooooa 000 00000 5 000 64180

Glossary

$SFROM-FILE first last $addr —

“dollar-from-file”
Compiles a text file given by the counted string $addr. Pages from
first to last will be compiled. e.g.

1020 “” TEST.FTH" $SFROM-FILE
Compiles pages ten to twenty of file TEST.FTH.

SUSING addr§ —
“dollar-using”
Sets the default screen file to the counted string addrS$.

“» TEST.SCR" SUSING
sets the default screen file to TEST.SCR.

ALL — first last
“all”
Used with FROM and FROM-FILE to compile a complete file.

ALL FROM
compiles all of the default text file.

ALONE n — first last

“alone”
Used with FROM and FROM-FILE to compile a single page.

1 ALONE FROM
compiles page one of the default text file

CLS —
“C—I—S”

Clears the display.
EMPTY-BUFFERS —

“empty-buffers”
Marks screen file buffers as empty

FLUSH —
“ﬂuSh”
Flushes the screen file buffer to disk

oooo 104

000 00000 5 000 64180 000 Ooooooooooa

FROM first last —
“from”
Compiles pages first to last of the default text file.

FROM-FILE first last <name>—

“ from-file”
Compiles a range of pages (first to last inclusive) from a specified
text file <name>.

INDEX nl n2 —
“index”
List top lines in range of screens.

L —
6‘1”
Displays the current screen.
LIST blk# —
“list”
Display screen given.
LOAD blk# —
4‘10ad’3
Compile given screen.
LOAD-USING blk# <screen-file> —

“load-using”
Compiles the given screen in the specified screen file.

N -
“n”
Displays the next screen.
ONWARDS first — first last
“onwards”
Used with FROM and FROM-FILE to compile from a specified
page to the end of the file.
P -
Cﬂpﬂ,

Displays the previous screen.

oooo 105

000 Ooooooooooa 000 00000 5 000 64180

QX —
“q-X”
Displays the top line of every screen in the default screen file.

SAVE-BUFFERS —
“save-buffers”
Saves the screen file buffers if they have been modified.

SET-USEFILE $addr —
“set-use-file”
The counted string $addr is set to be the default screen file

THRU blk#from blk#to —

“thru”
Compiles from screens blk#from to blk#to (inclusive) of the
default screen file

THRU-USING blk#from blk#to <screen-file>—

“thru-using”
Compiles from screens blk#from to blk#to (inclusive) of the
specified screen file.

UPDATE —
“update”
Flags the screen file buffer as being modified.

UPTO last — first last

“uptO”
Used with FROM and FROM-FILE to compile from the start of the
file to the specified page.

10 UPTO FROM
compiles from the start of the default text file to page 10.

USE — ;<name>
Géuseﬂ’
Specifies the default text file. If an extension is not included in the

filename, .FTH is assumed.

USE TEST.FTH
sets the default screen file to TEST.FTH.

oooo 10e

000 00000 5 000 64180 000 Ooooooooooa

USING — ; <name>
“uSing”
Specifies the default screen file. If an extension is not included in

the filename, .SCR is assumed.

USING TEST.SCR
sets the default text file to TEST.SCR.

oooo 107

000 Ooooooooooa 000 00000 5 000 64180

Blank Page

Ooooo 108

000 00000 5 000 64180

00000 Oooooooo

Paged targets

Many people develop for 8-bit and 16-bit target processors. One disadvan-
tage of using some 8-bit and 16-bit processors is their limited addressing
range (64KB). To overcome this limitation the MPE cross compiler sup-
ports paged targets. Paging is used when the application’s size is larger than
the available memory. To overcome this, different parts of the application
are loaded into memory when required.

An example memory map for the 64180 is shown in figure 11. The memory

space 1s split into three sections:

o Kernel - The Forth kernel. It is always present. It maps into the

bottom 16k of the 27512 EPROM.

e ROM - The target’s ROM is mapped into 16k chunks of the
27512. This gives three further pages of ROM.

e RAM - The fixed data RAM. This holds all the initialised

FFFF

4000

variables.
Physical Memory Logical Memory
17EFF
32K RAM \
10000 \
168 ROM
Page 3
0C000 RAM Area
16K ROM
ogopp| Fa0e?
16K ROM
Paged ROM
04000 Page 1
16K ROR
Fixed Kernel
ooppo| P20

000000 11 0 0000000 000000 000000000

oooo 109

00000 Oooooooo 000 00000 5 000 64180

Creating a paged target

To create a paged target, you need to define each page’s memory map and
write the page switching word. You may also need to initialise the CBAR
CBR and BBR registers if you are using a 64180.

Initialising a 64180 for paging

In order to use the on board MMU of the 64180 for paging it is necessary to
setup the CBAR, CBR and BBR registers as early as possible in the initiali-
sation sequence. Typically this should be done during startup code, before
the Forth starts. To initialise the above memory map, you should write the
value 084h into the CBAR register, 08h into the CBR register and 00h into
the BBR register in order for the MMU to correctly decode the addresses.
Although the BBR register defaults to 00 on power up, itis good practice,
although not strictly necessary, to initialise it explicitly.

Defining a page
Apage is defined in a similar way to the kernel. Seperate pages for code and
data can be defined. A page is defined by three items:

o the start of the page in addressable space

o the end of the page in addressable space

e aunique identifier for the page.

To define a code page, use CODE-PAGE. To define a data page, use DATA-
PAGE. CODE-PAGE is used in the form:

<start> <end> <page-id> CODE-PAGE <name>
DATA-PAGE is used in the form:
<start> <end> <page-id> DATA-PAGE <name>

where <start> is the start address in the page, <end> is the last address in the
page and <page-id> is the page’s identifier. The <page-id> must uniquely
identify the page, as it is used to indicate which page to switch to.

For example, to define the three pages in figure 11, you code:

$4000 $7FFF 0 CODE-PAGE Pagel
$4000 $7FFF 4 CODE-PAGE Page?2
$4000 $7FFF 8 CODE-PAGE Page3

oooo 1o

000 00000 5 000 64180 00000 Oooooooo

: PAGE@ \ — page-id ; returns current page

BBR P@ \ value of BBR register
: PAGE! \ page-id — ; switch to a new page
BBR P! \ write BBR register

b

\ switch to page and execute word

: PAGE-WORD \ cfa page-id —;
PAGE@ >R \ preserve current page
PAGE! \ switch to new page
EXECUTE \ execute word within page
R> PAGE! \ restore previous page

b

000000 13 0 0000000 0000 000000 o0oo0

The page-id used is a unique identfier which is meaningful to the page
switching word. On the 64180 this value will be placed directly in the BBR
register in order to perform the page switch. Note that since the page-id must
be unique you should not use 0 as the page-id for the KERNEL-RAM area.

Writing the page switching word

A word is required to do the actual hardware page switch. The page switch-
ing word must be called PAGE-WORD and must be compiled in the fixed
kernel part of the target image. When a word in a different page is to be exe-
cuted from a page, the actual execution must be performed via PAGE-
WORD. This is shown in figure 14. The cross compiler will automatically
compile a reference to PAGE-WORD every time an external page is refer-
enced. PAGE-WORD is passed the page-id of the required page and the ad-
dress of the word to be executed within the page. PAGE-WORD must:

e preserve the current page id

o switch the specified page into addressable memory
» execute the required code within the page

e restore the previous page

An example is shown in figure 12. Once tested, this can then be coded in as-
sembler for speed.

oooo m

00000 Oooooooo

000 00000 5 000 64180

Page 1

All pages at same address

Page 2

Page 3

Page 1 routines can call Page x routines via the kernel

Page Table

Page Routines

Kernel of Forth

Always present

000000 14 0 000 0000 000000000 o00oooooo

Compiling code into a page

Compiling your source code is very similar to compiling code into the ker-
nel, but some extra initialisation must be done and some restrictions must be

observed.

Initialising compilation into a page

The majority of Forth can be compiled into a page except for inter-page de-

ferred words.

To interactively debug your paged code, the cross compiler requires it to be
placed in a paged vocabulary. To do this, define a paged vocabulary,

<start> <end> <id> CODE-PAGE <name>
PAGED-VOCABULARY <name>

where <name> is the name of a page.

oooo 12

000 00000 5 000 64180 00000 Oooooooo

Compiling into a page
To compile into a page use:
USE-CODE <name>

where <name> is the name of the page you wish to compile into. Any code
compiled after this instruction will be compiled into the page <name>. You
can switch between compilation pages at any time, so that all your code for
one page does not need to be compiled together.

Restrictions for compiling into a code page

You cannot forward reference a word in a different page.

Finishing compilation of a page

Once your code has been compiled into a page, FINIS-CODE-PAGE must be
executed, in the form:

FINIS-CODE-PAGE
The cross compiler shows a compilation summary for the page.

Note: The label INIT-RAM will be shown as an unresolved reference. This
is correct behaviour as the cross compiler uses this label internally.

Compiling data into a page

Compiling data such as variables and constants into a page is straightfor-
ward but some restrictions must be observed.

Setting the data page

To select the page that data is to be used for, use USE-DATA in the form:
USE-DATA <name>

where <name> is the name of the page defined with DATA-PAGE. Variables
and constants can then be defined.

oooo 13

00000 Oooooooo 000 00000 5 000 64180

Restrictions for compiling into a data page

Data defined in pages other than the kernel page will not have their data ini-
tialised. This must be done at startup by the application.

The KERNEL-RAM ‘s page-id must be set to the KERNEL s page-id.

oooo 14

000 00000 5 000 64180 00000000000 000 00000 oooooooo

Controlling the compiler

While cross-compiling, the cross-compiler needs to be instructed on how to
configure itself. You need to tell the cross compiler:

when to start compiling

when to stop compiling

whether to enable floating point

whether to turn the compiler log on or off
which code and data page to compile into
selectively compile portions of code

These instructions are normally placed in the control file, before any instruc-
tions are compiled.

Starting the cross-compiler

To start cross compiling, use the word CROSS-COMPILE. Any code after
this directive will be cross compiled into the target image instead of com-
piled onto the cross compiler.

Stopping the cross-compiler

To stop the cross compiler cross-compiling, use FINIS. FINIS stops cross
compiling, closes all files and returns to XShell.

oooo 1s

00000000000 000 00000 oooooooo 000 00000 5 000 64180

Enabling floating point

If you want the compiler to be able to handle floating point numbers, you
need to instruct it with the word FLOATS. The default is integer only.

Turning the log on and off

The cross-compiler log can either display dots (when off) or information on
the items compiled (when on). To turn the log on, use LOG. To turn the com-
piler off, use NO-LOG.

Selecting code and data page

In apaged system you need to select which pages code and data are compiled
into. To do thisuse USE-CODE and USE-DATA. They are used in the form:

USE-CODE <name>
USE-DATA <name>

where <name> is the name of the page to compile code into. <name> was
specified when defining the memory map using KERNEL and KERNEL-
RAM.

Conditional compilation

Conditional compilation is used to selectively compile portions of code.
Three words are available to do this, IF(,)ELSE(and)ENDIF. These are
analogous to IF, ELSE and ENDIF. They can be used within Forth words to
selectively compile portions of it, or can be used outside a Forth word to se-
lectively compile whole words.

An example

Two code examples are shown in figures 16 and 17. The examples given
perform conditional compilation inside and outside a colon definition.

oooo 1e

000 00000 5 000 64180 00000000000 000 00000 oooooooo

ONLY FORTH ALSO C-C DEFINITIONS \ Switch vocabularies

CC/C \ Switch to compiler vocabulary
3 CONSTANT 30R4? \ add the word 30R4?

ONLY FORTH ALSO C-C DEFINITIONS \ Restore search order

000000 15 0 000000 00000 00 000 Ooo0ooooo

Conditional compilation outside a colon definition

The example shown in figure 16 compiles one of the PRINT1IOR2‘s. Which
one is compiled is dependant on the value of 10R2?. If it is set to one,
PRINT10R2 displays a one when executed. If it is set to two, PRINT1OR2
displays a two.

Conditional compilation within a colon definition

Using conditional compilation within a colon definition is slightly more
complicated. This is because you need to write a word which places a
number on the cross-compiler’s stack when it’s cross-compiling. An exam-
ple is shown in figure 15, where a constant 30R4? is added to the compiler.
This can then be used in the example in figure 17.

1 EQU 10R2?

10R2? 1=\ Display one or two?
IF(\ If IOR2?7=1, PRINT1 will be compiled
: PRINT10OR2\ — ; Display a one

." 1"

)ENDIF
10R2? 2=
IF(\ If IOR27=2, PRINT2 will be compiled
: PRINT1OR2\ — ; Display a two
."2H
)ENDIF \ End marker for conditional compilation

000000 16 O 00000000000 00000000000 Ooo0oo0oo

oooo 1z

00000000000 000 00000 oooooooo

000 00000 5 000 64180

: PRINT30R4\ — ; Display a three or four

b

30R47 [3 =] \ compiler word
IF(." 3")ENDIF \ Display a three

30R4?[4=]

IF(." 4")ENDIF \ Display a four

000000 17 0 00000000000 00000000000 o000000

oooo 18

000 00000 5 000 64180 00000 00 0 oooooad

Forth on the Target

This chapter describes how a Forth 1s laid out on a target board. It is there-
fore not necessary to read this chapter, but this chapter provides more infor-
mation if you are interested or if you want to perform more advanced
modifications to the cross-compiler or target.

Inside a ROM target Forth

A standalone ROM target Forth communicates with the host via a serial line.
The host needs to be running a dumb terminal emulator. The terminal emu-
lator displays any characters which arrive from the target and sends any
characters typed at the host’s keyboard. The target takes input and makes
output directly from the serial line, not from a keyboard and to a display. To
do this, the deferred words EMIT and KEY have the actions SER-KEY and
SER-EMIT respectively.

The Forth memory map

Atypical Forth system consists of areas as in figure 18. The RAM on the tar-
get system is split into several areas:

e auser area for interrupts
e auser area and stacks for eack task
e aterminal input buffer (TIB) for the forth

The remaining RAM is available for use by the Forth as dictionary space.

RAM Initialisation

The Forth-83 standard does not require variables (created by words VARI-
ABLE or CVARIABLE) to be automatically initialised at start up. In MPE

oooo 1o

00000 0o 0 oooooad 000 00000 5 000 64180

PowerForth variables are initialised to zero within the cross-compiler. The
table of initial values is then copied to the end of the output file when the
cross-compiler terminates.

Two locations in the target, ROM-TABLE and RAM-TABLE, point to the ini-
tial value table (in ROM), and to the memory area (in RAM) it should be
copied to. The first two bytes of the table contain a count of the number of
bytes to be copied. The code that performs this copy can be found in the word
(INIT) in KERNEL.FTH.

The maximum size of the initial value table is set within the cross-compiler
to 512 bytes. To alter the size, alter the parameter for the KERNEL-RAM di-
rective in the control file, and recompile.

RAM can also be initialised when space is allotted by the cross-compiler
words C,(R) or ,(R). It is safest to explicitly initialise all variables and data ar-
eas in COLD or ABORT. This protects the system from errant behaviour after
error recovery or power failure. It is worth remembering that a Mariner
probe was lost because of an uninitialised Fortran variable!

Interrupt user area
Int-init-U0

Taskn return stack

Taskn data stack
Taskn user area

Iaslﬂ return stack
Task1 data stack

Task1 user area
Text input bufferitib)

Init-U0

Init-TIB
Dictionary

000000 18 0 000 00000 000 000000 ood

oooo 120

000 00000 5 000 64180 00000 00 0 oooooad

Register Usage

The 64180 Forth implementation uses direct threaded code for speed. The
assignment of the 64180 registers is as follows:

64180 register Forth Function
register
BC IP Forth interpretive pointer
SP SP Data stack pointer
IY RP Return stack pointer
UP (in DP RAM) UP User Pointer

In addition, the IX register may be used by the NEXT, macro, depending on
which version of the macro you have chosen to use. The HL register points to
the CFA on entry to a CODE definition, so if you wish to make use of this
fact, you will need to preserve this value before using the HL register.

Direct threading

For speed, PowerForth uses Direct Threaded Code as it is a good compro-
mise between speed and space. The routine which threads between the Forth
words is called NEXT, and will be found defined in the files CO-
DEZ80.FTH and CODE180.FTH.

All Forth words except for CODE words contain a JP (absolute jump) in-
struction in the code field. On entry to the code portion of a defining word
the CFA (Code Field Address) will available in the HL register. See the ex-
ample of VARIABLE.

Forth Models

Two different targets are provided in the ROM and CHIP directories. The
ROM directory contains a standalone Forth which can be debugged interac-
tively using a dumb terminal or XShell3. All the facilities you need are pro-
vided by the Forth. Source code can be downloaded to the Forth and
debugged on the target. Interpretation and compilation are provided by the
target Forth.

oooo 121

00000 0o 0 oooooad 000 00000 5 000 64180

The CHIP directory contains a Forth that is tuned for single chip applica-
tions. Unlike the Forth in the ROM directory, the Forth in the CHIP directory
requires the Umbilical Forth message passer in the TARGEND.FTH file for
interpretation and compilation, which is provided by a server on the host PC
(see below). The CHIP directory contains a system that contains a fully in-
teractive Forth kernel in less than 3k bytes.

All directories use the same implementation model, and so code from one
system can be used by another. Thus an application using the CHIP direc-
tory as a basis, can safely use code from the ROM directory.

Inside Umbilical Forth

Umbilical Forth behaves in the same way as a ROM target Forth, but the
mechanism that provides the interaction with the target is totally different.

HOST FORTH

CROSS COMPILER
& SYMBOL TABLE

TARGET EMULATOR

MESSAGE PASSING
SYSTEM

MESSAGE PASSING
SYSTEM

REDUCED TARGET FORTH

000000 19 0 000000000 00000 0000000 ooooooo

oooo 122

000 00000 5 000 64180 00000 00 0 oooooad

When you reset the target and the board signs-on, you are still running the
cross compiler. Umbilical Forth is therefore an extension of the cross com-
piler to provide interactive cross interpretation and cross compilation.

When a word 1s cross compiled, the cross compiler places information in the
symbol table. The symbol table therefore contains the CFA of the word in
the target image. By using a message passing system between the cross-
compiler and the target, the CFA of the word can be passed to the target. The
host can then execute the word on the target, passing parameters to and from
as appropriate. Therefore, the target does not need any headers in the target
image, nor does the target need any of the code to process the headers.

oooo 123

00000 0o 0 oooooad 000 00000 5 000 64180

Blank Page

oooo 124

000 00000 5 000 64180 0000000000 0000 00000000000 ooooa

Optimizing your development cycle

While developing an application, you cycle through a series of steps:
e editing your source code
e cross-compiling to generate a binary image file
e downloading to an EPROM emulator/programmer

e testing and debugging your code

This development cycle is repeated until all development and debugging is
completed. The quicker you can go round this cycle, the quicker your appli-
cation is finished. XShell and the cross compiler help you achieve these
aims.

Speeding up the compilation

Every time a cross compilation is carried out, certain sections of code, which
are never altered, are compiled again and again. This is particularily the case
for the kernel files which generate the Forth image. You can use the partial
compilation feature of the cross compiler to halt the cross compilation at a
strategic position and save the cross compiler’s state. You can then continue
cross-compiling from this saved position. In this way, you can dramatically
reduce the time the application takes to compile.

Note: Partial compilation cannot be used when directly compiling to an
emulator

oooo 125

0000000000 0000 O0000000000 ooooo 000 00000 5 000 64180

Saving the compilation state

To stop and save the cross-compilation at a required place, use SUSPEND.
SUSPEND is used in the form:

SUSPEND <filename>

where <filename> is the name of files the cross compiler will use to save the
state information. The filename 1s a name without an extension.

Restarting from a saved state

To restart from a previously saved cross-compilation state, use RESTART.
RESTART is used in the same form as SUSPEND,

RESTART <filename>

where <filename> is the filename used when saving the compilation state.
RESTART must be used instead of the word CROSS-COMPILE and any mac-
ros must be loaded again.

Note: The image file created by the compiler after a SUSPEND must exist in
the compilation directory.

An example

An example control file can be found in the directory ROM\PARTIAL.

Speeding up the download

The cross compiler has the facility to download the image to the LeBurg
emulator while it is compiling. This speeds up the turn-around of the edit,
compile, download and test cycle by removing the download step. To down-
load directly to a LeBurg emulator, you need to tell the cross compiler:

e what size of EPROM it is generating
o the bus width (e.g. 8 bit, 16 bit)
o which page to put in the emulator

You also need to load the driver TSR for your emulator before running the
cross compiler.

oooo 126

000 00000 5 000 64180 0000000000 0000 00000000000 ooooa

Target bus width width

8 8bit
16 16bit
32 32bit

Table 8 - Available bus widths Table 9 - Available EPROM sizes

Note: This facility cannot be used with partial compilation.

Setting EPROM size and bus width

To set the size of EPROM to use and the bus width of the target board, use
OUTPUT-EMULTOR. This is in the form:

size width OUTPUT-EMULATOR

where size and width can be selected from tables 8 and 9. If you are using a
larger emulator, you may choose from:

€2764 €27128 €27256 €27512 27010 €27020 27040 ¢27080

For example, if your board uses a 27256 and your target has an 8-bit bus
width, code:

€27256 8bit OUTPUT-EMULATOR

This instruction must be placed in your control file before the CROSS-
COMPILE directive.

Setting the page
To send a page to an EPROM emulator, use IN-EMULATOR in the form:
xxxx IN-EMULATOR <name>

where <name> is the name of the page set by KERNEL or CODE-PAGEand
xxxx 1s the base address in the emulator where to place the image.

oooo 127

0000000000 0000 O0000000000 ooooo 000 00000 5 000 64180

Using the emulator driver

To download to the emulator you first need to load an emulator driver. These
are in the directory X180\EMU-TSR. Which TSR you use depends on the
emulator you have. Ifyou have the LePROM, use the file TSR021.COM. If
you have the LeBIG or the LeMEG then use the TSR041.COM.

One of these emulator drivers should be loaded before you enter XShell. Itis
normally convenient to load them from your AUTOEXEC.BAT file.

oooo 128

000 00000 5 000 64180 Oo00000000 oooooooo

Technical glossary

Compiler log When each label, variable, constant or colon defintition is
cross compiled the cross compiler displays a dot or information about the
compiled item.

Control file A file which 1s loaded by the cross-compiler. It contains direc-
tives to the cross-compiler and the names of any additional files to be com-
piled.

Cross compiler A program which generates executable code for a proces-
sor different to which it is running on.

Dictionary A list of words defined in a Forth system

Event Anon-regular occurence. In the multitasker an event is used to trig-
ger a task.

Glossary A list of forth words with their pronunciation, stack effect and a
brief description of their action.

Host The platform the cross compiler runs on. Normally a PC.
Host mode One of XShell’s modes which is a Forth for the PC.

Image file The output of the cross compiler. It has the extension .IMG by
default.

Initialised RAM See RAM table.
Kernel The code required for interactive Forth.

Memory map A description of the start and end of ROM and RAM in
memory

Multitasker A program which allows a processor to run more than one task
by continuously switching between different tasks.

Paged target A system where there is more memory available that can be
addressed at one time. Areas of memory can be switched into an addressable
range, so simulating a larger address space than is physically possible.

oooo 129

000000000 Ooooooooa 000 00000 5 000 64180

RAM table An area of memory in the ROM that is copied to RAM at
startup. It contains any initial values of variables.

ROM target forth A Forth which works on a ROM/RAM system as op-
posed to a RAM system.

ROM/RAM target A target with code executed out of ROM and data kept
in RAM.

Scheduler The part of a multitasker which switches to the next task
Screen file A type of file which Forth source was originally developed in.

Serial line driver The words which interface the target code to the serial
line. These are device dependant whereas the rest of the kernel is generic.

Symbol table Used and generated by the cross-compiler. It contains infor-
mation on each item compiled.

Target The processor or board that the cross compiler is generating code
for.

Target mode One of XShell’s modes which acts as a dumb terminal. It lets
you communicate with your target board.

Task Inamultitasking environment, a task is a stand-alone program which
appears to run simultaneously with other tasks.

Task control block Where information about a task is kept. Itisused by the
scheduler to switch to the next task.

TCB See task control block

UART Universal Asynchronous Receiver/Transmitter - Sends and re-
ceives serial data.

Umbilical Forth A reduced Forth designed for single chip targets. Uses a
message passing system to commicate with the host.

Unresolved references Any words which are used in the source code but
are not defined.

Vocabulary An independently linked subset of the dictionary

oooo 130

000 00000 5 000 64180 0000000 oOoooooooood

Further information

MPE courses

MicroProcessor Engineering run the following courses:

Architectual introduction to Forth

A two day course for those with little or no experience of Forth. It provides
an introduction to the architecture of a Forth system. It shows, by practical
example, how software can be coded, tested and debugged, quickly and effi-
ciently, using Forth’s interactive abilities.

Embedded software for hardware engineers

A three day course for hardware engineers needing to construct real-time
embedded applications using Forth cross-compilers.

Recommended reading

For an introduction to Forth:
“Starting Forth” by Leo Brodie
“Forth: A Text and Reference” by Kelly and Spies

For more experienced Forth programmers:
“Object Oriented Forth” by Dick Pountain
“Scientific Forth” by Julian Noble

oooo 131

0000000 Ooo0oooooooo 000 00000 5 000 64180

Other miscellaneous Forth books:

“Forth Applications in Engineering and Industry” by John Matthews
“Stack Machines: The New Wave” by Philip J Koopman Jr

All of these books can be supplied by MPE.

oooo 132

000 00000 5 000 64180 0000000000 0000000 oooo o4 oo os

Appendix A
Converting targets from v4 to v5

The main differences between v4 and v5 target source code are in the control
file. Once you have installed the new system, you can modify an existing
control file to match your configuration. Therefore, you must:

e define the memory map
o define how an EPROM emulator is used
e define how code is compiled into a page

e add your files into the control file

Defining the memory map

The memory map in version 4 control files are defined as in figure 20. The
equivalent version 5 memory definition is shown in figure 21. The version 5
memory definition is defined by three words: KERNEL, KERNEL-RAM and
MEM-END.

KERNEL is used to define the start and end of ROM. KERNEL-RAM is used
to define the start and end of RAM. MEM-END defines the end of memory
where the stacks and user areas are kept.

Using an EPROM emulator

For the version 5 compiler, you must indicate which image you want to go to
the emulator. In a non-paged system, the image name is the name following
the command KERNEL. Therefore, to send the image ROM180 to an
EPROM emulator starting at address 8000h, you code:

$8000 IN-EMULATOR ROM180
This must be placed before the page is selected by USE-CODE.

oooo 133

0000000000 0000000 0000 04 o0 as 000 00000 5 000 64180

\ Define the amount of RAM that can be initialised
0400 INITIALISED-RAM \ up to 2k bytes RAM can be set \ from a
table in ROM. This

\ equate sets the max. size
00000 ROM-BASE \ ROM starts at 00000 \ will use
ORG later

\ User areas need 0100h bytes/task + 1 page for interrupts;

\ requiring 0900h bytes for a full system with 8 tasks.

\ Place INIT-UO at the bottom of the RAM area.

\ The variable & dictionary follows, and is set by RAM-BASE
08000 EQU INIT-UO \ task area base INIT-UO

taskram + EQU int-init-u0 \ interrupt page base

int-init-u0 intram + equ INIT-TIB \ TIB starts at task+0900
INIT-TIB 0100 + RAM-BASE \ Vars & Dict start at task+0A00
\ MEM-END defines the end of RAM+1

OFFFF MEM-END \ RAM ends at xxxx-1

000000 20 O 0000000 0000000 4 000000 OOo0o0o00ooo

$0000 $7FFF KERNEL ROM180 \ Define kernel ROM
$8000 $FFFF 0 KERNEL-RAM ROM180-DATA \ Define kernel RAM
$FFFF MEM-END \ End of memory

000000 21 0 0000000 0000000 5 000000 0000000000

Selecting the compilation page

With the version 5 cross-compiler you can generate multiple images, and
code can be compiled into any image at any time. To select the page which
code will be compiled into you should write:

USE-CODE <name>

where <name> is the image’s name (i.e. ROM180 in the previous exam-
ples).
In a similar way, the data page may be selected:

USE-DATA <name>

where <name> is the image’s data space (i.e. ROM180-DATA in the previ-
ous examples).

oooo 134

000 00000 5 000 64180 00 0000000 0000000 oooo

Appendix B
An example control file

This appendix leads you through a complete control file. It describes the use
of each command followed by the usage in a typical ROM target control file.
For more information on the syntax of each command see the command’s
glossary entry in the glossary manual.

The first page

The first page is used to introduce the rest of the file. It contains a brief (one
line) description of the file’s purpose followed by any other general informa-
tion.

\ 64180 cross-compiler control file

pto
Copyright (c) 1991-93

MicroProcessor Engineering
133 Hill Lane

Southampton SO1 SAF
England

tel: (+44) 703 631441
fax: (+44) 703 339691
e-mail: mpe@cix.compulink.co.uk

First Release: 29/04/91

Changes: See RELEASE.DOC for full details

oooo 135

00 0000000 O000000 oooo 000 00000 5 000 64180

Cross-compiler search order / loading macros

The cross-compiler’s vocabulary search order is set so that commands can
be found. You should also load any macros at this point

only forth definitions decimal

all from-file nextfast \ load fast version of next,

Configuring for an EPROM emulator

The cross-compiler will download the compiled target code while it is being
generated. To do this the cross-compiler needs to be told:

e the port address of the i/o card
o the type of EPROM to emulate
o the bus width of the emulated EPROM

If an emulator is not in use the following two lines should be commented out.

Hex 0320 Emu-Base \ emulator i/o addr
€27256 8bit Output-Emulator \ define EPROM & Width

Activating floating point
Floating point can be switched on by using the word FLOATS.

Floats \ switch on floating point

Turning on the cross-compiler

The cross-compiler is turned on by the command CROSS-COMPILE. Any
code compiled after this will be cross-compiled into the target image.

\ turn compiler on
CROSS-COMPILE

oooo 136

000 00000 5 000 64180 00 0000000 0000000 oooo

Setting the target search order

The target search order must be set. This tells the compiler to compile code
on top of the target’s Forth vocabulary.

only forth definitions

Displaying the cross-compile log

The cross-compile log can be displayed by using the word LOG. In this state
the cross-compiler shows the type of item compiled and the target address of
each item as it is compiled. This contains useful debug information but, as
more text is displayed on the screen, is slower to compile. To stop the com-
piler from generating a full log, and just generate a dot for each definition,
use NO-LOG.

no-log \ no output log

Defining the target configuration

These flags define whether certain files are loaded, and whether certain ini-
tialisation words are included in COLD. Note that selection of the multi-
tasker is defined by the value set for #TASKS on a later next page.

1 equ romforth? \ true to load romforth extensions
0 equ paged? \ true if target is paged
1 equ softfp? \ true if target needs floating point

oooo 137

00 0000000 O000000 oooo 000 00000 5 000 64180

Defining the memory map

The memory map describes to the compiler where the start and end of ROM
and RAM is. The ROM area is defined by the word KERNEL and the RAM
area by the command KERNEL-RAM. The actual end of RAM is set by the
command MEM-END.

\ Define memory map
$0000 $7fff kernel ROM 180
$8000 $BFFF 0 kernel-ram KERNEL-DATA
$C000 mem-end

Output into EPROM emulator

The cross compiler can send a target image directly to an EPROM emulator,
which removes the time required to download the generated image. The
cross-compiler needs to know what image to download (there can be several
in a paged target) and where in the emulator to start downloading. The fol-
lowing example sets the compiler to download the image ROM180, starting
at address 0000h.

$0000 IN-EMULATOR ROM180 \ Output to emulator

Selecting compilation pages

The cross compiler must be instructed into which page to compile code and
data. For anon-paged system, there is only one code page and one data page,
so this only needs to be done once. For a paged system, different compila-
tion pages can be set throughout the code, so redirecting the code to different

pages.
use-code ROM 180 \ Select code page
use-data KERNEL-DATA \ Select data page

oooo 138

000 00000 5 000 64180 00 0000000 0000000 oooo

Configuring for ROM PowerForth

If the ROM PowerForth utilities are being loaded, the start and end ad-
dresses of the application ROM/RAM area must be defined. For the GNC
uel80 board, the application would be in the top half of memory, in RAM
not yet used by the cross-compiled dictionary.

$C000 equ APPL-ROM \ where linked applications go
$FFFF equ APPL-ROM-END \ end of linked application area

Defining the number of tasks

In a multitasking target the number of tasks need to be set. Each task takes
up 300h bytes of RAM, so a full 8 tasks takes up 6k of RAM. [f RAM usage
needs to be reduced, the number of tasks can be set to the number of tasks
you have.

$0008 Equ #tasks \ number of tasks, at least 1

Defining the user area size

The user area is set by using an equate. This equate is used in a calculation
before the actual user area is allocated. The user area is used to hold task spe-
cific variables such as BASE and SPAN.

$0100 equ User-size \ size of each tasks user area

Setting the stack sizes

The sizes of the data and return stacks must be set. These equates are used in
calculations (see below) before the actual stacks are allocated in RAM.

$0100 equ SP-size \ size of each tasks data stack
$0100 equ RP-size \ size of each tasks return stack

oooo 139

00 0000000 O000000 oooo 000 00000 5 000 64180

Setting the Text Input Buffer size

The terminal input buffer is the temporary buffer that is used by the Forth in-
terpreter.

$0080 equ Tib-len \ tib length

Calculating the memory per task

Each task requires its own:
e data stack
e return stack

e USCTr arca

The previous equates are used to calculate the amount of RAM required for
each task. This value is set to be the equate PER-TASK.

\ Calculate memory map

User-size SP-size + Equ Task-sO \ initial offset of data stack

Task-s0 RP-size + Equ Task-10 \ initial offset of return stack

Task-r0 Equ per-task \ system area size for each task

Calculating the total memory requirement

The total RAM required by the system is given by the equate TASKRAM.
This is the amount of memory required for one task multiplied by the
number of tasks in the system.

#tasks per-task * equ taskram \ space used for task page

Setting RAM for interrupt handlers
An area of RAM is set aside for interrupt handlers exclusive use.

$0100 equ intram \ space used by interrupts

oooo 140

000 00000 5 000 64180 00 0000000 0000000 oooo

IRterrupL user area

Taskn refum stack | Intinit-U0

a5k data stack
askn User area

Task1 return stack
4 &
Taskl user aréa

Text input buffer(tib)

Init-U0

Init-TIB
Dictionary

000000 22 0 0O0O0000000 00 ood

Allocation of RAM

The RAM areas for each task is allocated from the top of memory (given by
EM) downwards (figure 22).

EM \ length name

per-task - dup equ INT-INIT-UO \ base of interrupt area
#tasks per-task * - dup equ INIT-UO \ base of task user area

tib-len - dup equ INIT-TIB \ base of TIB

Setting the stack addresses

The data and return stacks are set by specifying the starting addresses for
them:

INIT-UO EQU INIT-RO \ stacks inside first user area

INIT-TIB EQU INIT-SO

oooo 141

00 0000000 O000000 oooo 000 00000 5 000 64180

Setting the size of the task control block

The size of the task control block is set:

$020 EQU TASK-LEN \ length of task control area
Compiling the kernel
The main source code which makes up the interactive Forth kernel is now
compiled.
decimal all from-file sfr180 \ register equates
decimal all from-file start180 \ system set up
decimal all from-file code180 \ main code defs.
decimal all from-file drivers\ascil80 \ block and disk i/o
decimal all from-file kernel \ forth part 1
decimal all from-file romtools \ nucleus extensions
decimal all from-file interupt \ interrupts

Compiling the multitasker

In order to use the multitasker, you must compile the multitasker source
code. You can use conditional compilation to force this to be compiled
whenever you specify more than one task.

#tasks 1 >
if(

decimal all from-file multil80 \ multitasker
Jendif

oooo 142

000 00000 5 000 64180 00 0000000 0000000 oooo

Compiling the software floating point

The software floating point consists of two files, FPROMHI.FTH and
SOFTFP.FTH.

\ Software floating point
softfp?
if(
decimal all from-file softfp\fpromhi.fth \ primitives
decimal all from-file softfp\softfp.fth \ high-level
Jendif

Compiling the ROM PowerForth utilities

The ROM PowerForth utilities give you the ability to use host disk services
from the target system.

\ the ROMForth files

romforth?

if(
decimal all from-file romforth\link \ linker
decimal all from-file romforth\iodef \ i0 definitions
decimal all from-file romforth\filetran \ source load
decimal all from-file romforth\bin-down \ binary host
decimal all from-file romforth\hex-down \ hex host
decimal all from-file romforth\textfile \ text files
decimal all from-file romforth\blocks \ blocks

Jendif

Defining the target sign-on message

The target sign-on message is defined as an internal word. This makes the
word unavailable for interactive use, which saves space in the target system.

internal
:.cpu \ — ; sign on message

." MPE 64180 ROM PowerForth" ; \ sign on
external

0oooo 143

00 0000000 O000000 oooo 000 00000 5 000 64180

Defining the last word

The last word defined is always FORTH-83. This indicates the end of the ker-
nel.

: FORTH-83 ; \final word

Finishing the cross-compilation

The cross-compiler stops compiling when it reaches the command FINIS. At
this point, the cross-compiler displays the cross-compile summary and
prompts for a key to be pressed.

FINIS

oooo 144

000 00000 5 000 64180 00000 oooooooa

Appendix C
Error Messages

Error messages are kept in the screen file E180.XS3 in the COMPILER di-
rectory. Error numbers start at 0, and each error number refers to a line start-
ing at line 0.
The error messages are listed in different categaries:

o general Forth errors

e system messages

e 64180 assembler errors

e module errors

e source file errors

e DOS errors

o text file errors

General Forth Errors 0..15

These are the basic errors of a Forth system.

Error O - is undefined. The word is not in the dictionary search order speci-
fied, or it was misspelled.

Error 1 - empty stack, the last operation caused a stack underflow. Usually
caused by using the wrong number of parameters to a word.

Error 2 - dictionary full, there is no room for more definitions. This error
should not arise within the cross compiler unless you are extending it.

Error 3 - has incorrect address mode.

Error 4 - is redefined - the word’s name has been used before. This is only a
warning, not a proper error.

Error 5 - is undefined. See error 0

Ooooo 145

00000 oooooooa 000 00000 5 000 64180

Error 7 - full stack, there are too many items on the stack. Usually caused by
a stack fault in a loop.

Error 8 - cannot open USING file. Incorrect file name? Wrong directory?
Error 12 - uninitialised deferred word.
Error 13 - BASE must be DECIMAL.

Error 14 - missing decimal point. Only found when using floating point ex-
tensions.

System messages 16..31

These are error messages caused by mistreating Forth.

Error 17 - compilation only, use in definition, not when executing. Usually
happens when a ; is missing from a previous word.

Error 18 - execution only - not allowed during compilation. Usually bea-
cause a [COMPILE] is missing in front of an immediate word.

Error 19 - conditionals not paired - overlapping control structures.
Error 20 - definition not finished - a control structure needs correction.

Error 21 - in protected dictionary - the word is below the address in FENCE.
Not found in the cross compiler except when modifying the cross compiler,
or in bizarre circumstances with Umbilical Forth.

Error 22 - use only when loading, illegal from the keyboard
Error 23 - block number out of range 0..32767 (0..7FFFh)

Error 24 - reset vocabularies - CONTEXT must be the same as CURRENT
when using FORGET.

Error 25 - do not use when loading, only from the keyboard.

Error 26 - Initialised RAM size exceeded. Often happens when arrays are
defined before variables. To reduce the size of this table, all initialised or
preset RAM should be defined before arrays are used.

Error 27 - Forward references are illegal between CREATE ... DOES and I:
... 3 for the cross compiler.

0oooo 14e

000 00000 5 000 64180 00000 oooooooa

Error 28 - word between CREATE ... DOES or I: ... ; is not in host FORTH
vocabulary

Error 29 - illegal internal value - contact MPE on (+44) 703 631441.

64180 assembler errors 32..47

Error 33 - Invalid addressing mode

Error 34 - IX or IY not allowed for this instruction
Error 35 - Bit count out of range 0..7

Error 36 - Displacement out of range -128..127
Error 37 - Invalid 16-bit register

Error 38 - Invalid interrupt mode

Error 39 - Port number out of range 0..255

Error 40 - Invalid condition code

Error 41 - Condition code error, or code not set
Error 42 - WARNING: undocumented but regular instruction
Error 44 - Invalid source addressing mode

Error 45 - Invalid destination addressing mode

Error 46 - Unconsumed reference. This error is usually caused when op-
codes or addressing mode indicators like (IX) are misspelled. The mis-
spelled word is then seen as a forward reference which has not been used by
any opcode. This check is performed by END-CODE or FORTH and thus
will not be seen until the end of a section of code.

Error 47 - Code error, stack depth changed. This is general catch all error
performed by END-CODE.

oooo 147

00000 oooooooa 000 00000 5 000 64180

Module errors 48..63

Error 49 - public words table full - max 32 (decimal) words/module

Error 50 - module number out of range 0..31 (decimal)

Error 51 - slot already occupied - slot must be empty before entry is made
Error 52 - not enough memory - fit more! - RAM is cheap!

Error 53 - can’t load module file - DOS can’t find it, or can’t read it

Error 54 - can’t free memory - DOS won’t let go - see DOS function 49H
Error 55 - module not present - requested module is not resident

Error 56 - external references table full - max 32 (decimal) words/module

Error 57 - unresolved external reference - use RESOLVE-ALL before exe-
cution

Error 62 - illegal operation in slave module

Error 63 - illegal operation in master module

Source file errors 64..79

These errors are given by the screen file handlers.

Error 65 - no screen file open. Often a result of a previous operation failing to
open or reopen a file.

Error 66 - screen file seek error.
Error 67 - screen file write error.

Error 68 - path not found. Usually because the file or path name has been
misspelled.

Error 69 - starting screen number less than ending screen number.

oooo 148

000 00000 5 000 64180 00000 oooooooa

DOS errors 80..112

Error 81 - invalid function number - DOS doesn’t know what to do
Error 82 - file not found - wrong directory or doesn’t exist

Error 83 - path not found - incorrect spelling? - device not installed?
Error 84 - no handle available - all handles are in use

Error 85 - access denied - e.g. attempt to write to read-only file

Error 86 - invalid handle - file/path not open?

Error 87 - memory control blocks destroyed - whoops!

Error 88 - insufficient memory - 640k/1Mb is not enough

Error 89 - invalid memory block address - DOS did not allocate this segment
Error 90 - invalid environment - previous SET or PATH command bad
Error 91 - invalid format - ask Microsoft what this one means

Error 92 - invalid access code

Error 93 - invalid data

Error 95 - invalid drive specification

Error 96 - attempt to remove current directory

Error 97 - not same device

Error 98 - no more files to be found

Text file errors 112..127

These errors are issued by the text file handler.
Error 113 - cannot allocate memory. Each nested file needs about 9k bytes.

Error 114 - cannot free memory. Usually a symptom of something running
amok.

Error 115 - cannot open file. Usually because of a misspelled name.

Error 116 - cannot close file. Usually a symptom of something running
amok.

oooo 149

00000 oooooooa 000 00000 5 000 64180

Error 117 - cannot seek to byte requested in file. Usually a symptom of
something running amok.

Error 118 - read-path error. Disk cannot be read, normally seen only from
floppy disks, or failing hard discs.

Error 119 - file nesting depth reached - cannot open another file. You have
nested files too deep.

Error 120 - file de-nesting error. Usually a symptom of something running
amok.

Error 121 - start page number greater than last page number in file.

oooo 150

000 00000 5 000 64180 000000000 Oooooooo

Appendix D
Technical support

Technical Support

Technical support is available from MPE during office hours (9am-5pm), or
via access to our conference on the CIX (Compulink Information eXchange)
bulletin board system. MPE has its own technical support conference on the
CIX bulletin board system. You can also obtain technical support via email.
Before calling MPE make sure you have the following by the telephone:

e The serial number of your software (it is on the original disks)

e Your compiler manuals

e A computer, with the software running on it

e Any other relevant information

You should also know the type of processor and the amount of RAM your
machine has installed.

A fax describing the problem, sent before you telephone is often the quickest
way of getting an answer. This is because many problems which at first
glance seem complex often have a very simple solution and an application
note may be available.

MPE Tel: +44 703 631441
MPE Fax: +44 703 339691

CIX (voice): +44 81 390 8446
CIX (data): +44 81 399 1244

Internet: mpe@cix.compulink.co.uk

oooo 131

000000000 ooooooo 000 00000 5 000 64180

Blank page

oooo 152

000 00000 5 000 64180

oooon

A

Application
cross-compiling, 22, 36
running, 23, 37
writing, 36

Assembler
control structures, 46
defining words, 45
instruction list, 52
macros, 48

Assembler words, 43
executing, 44
writing, 44

Autostarting
See Turnkey

B

Binary image
downloading, 99
See image
Intel hex download, 100
XMODEM download, 100

C

Communications
task, 65
Conditional compilation, 41
Control file, 10, 26
creating, 10, 26

Index

example, 135

modifying, 23, 36
Control structures, 46
Cross compile log, 34

redirecting to a file, 18

turning on and off, 17, 34
Cross compiler, 6

loading macros, 136

running, 17, 33

search order, 136

speeding up, 125

starting, 115

stopping, 115

D

Defining words
in assembler, 45
Downloading
speeding up, 126

E

End of memory
setting, 12, 28
EPROM emulator, 7
Base address, 4
installation, 3
installing drivers, 3
LeBurg, 19, 25
sending a page to, 127
setting the size, 127
setting the width, 127

oooo 153

000 00000 5 000 64180

EPROM programmer
downloading, 20

Equate
defining, 40
using, 41

Error messages, 145

Floating point
constants, 84
functions, 84
number format, 83
variables, 83

Forth
registers, 44

Forth syntax, 44

H

Hardware

setting up, 15, 31
Headers

removing, 39

Image
downloading, 19
generated, 19
size, 18, 34

Initialised RAM
See RAM table

Installation, 1
custom, 3
drive, 1

EPROM emulator, 3

path, 2
PC Powerforth, 4
running, 1

oooo 154

selecting items, 3

system requirements, 1

XShell, 4
Assembler, 52
Interrupts, 75

controlling, 79

disabling, 79, 82

enabling, 79, 82

setting, 75, 79

writing, 75, 78

K
Kernel file, 125
L
Labels
global, 46
local, 47
LeBurg
See EPROM emulator
Log

See Cross compile log

M

Macros
creating, 48
using, 48
Memory map, 10, 27
Forth, 119
setting, 11, 27
Multitasker
example, 68
initialising, 61, 69
number of tasks, 61
scheduler, 62
stopping, 62

000 00000 5 000 64180

oooon

See also task
writing, 62

P
Page
compiling into, 112
data, 113

defining, 110
Page switching, 111
Paged target

creating, 110
Pages

selecting, 116
Paging

restrictions, 113-114
Partial compilation, 126

using with emulator, 125
PC PowerForth, 7
PowerForth

See PC PowerForth

R

RAM table
address, 18, 34
length, 34
size, 18
Registers
Forth, 44
ROM PowerForth, 95
hardware requirements, 101
turnkey, 102
types of board, 102
ROM target Forth, 6

Scheduler
See multitasker

Screen files, 98
compiling, 98
default, 98
Serial line
initialising, 14, 30
interrupt driven, 13
interrupt driven drivers, 25
modifying drivers, 13, 29
polled, 13
receiving characters, 14, 30
sending characters, 14, 30
Serial ports
configuring, 16, 32
Single chip
Umbilical Forth, 122
Source code
factorizing, 39
speeding up, 41
Structured programming, 46

Target Forth
running, 20
Target mode
switching to, 20
Task
activating, 69
assigning to a task number, 69
communications, 65
controlling, 64, 69
defining, 68
halting, 70
initialising, 63
See also multitasker
restarting, 70
stack, 119
Text files
compiling, 95
default, 96
pages, 95

oooo 155

ooooo 000 00000 5 000 64180

Text input buffer, 119
TIB

See Text input buffer
Turnkey

generating, 23, 37

U

UART, 13
oft-chip, 29
Umbilical Forth, 7
requirements, 25
using, 41
Unresolved references, 18, 34
User area, 63, 119
User variables
defining, 63

using, 63
v
Vector
setting, 75
X

XShell, 5
configuring, 16, 32
file server, 95
running, 16, 32
setting up, 15, 31

Ooooo 156

