
MPE Forth Cross Com piler

Glos sary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8096/80C196 Cross Com piler

GLOS SARY

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8096/80C196 Tar get

Ver sion: 5.100

Glos sary

Re vi sion: 1.00

Date: 29 March 1993

Pack age No:

For tech ni cal sup port:

Please con tact your sup plier

For fur ther in for ma tion:

Mi cro Proc es sor En gi neer ing Lim ited
133 Hill Lane, South amp ton
SO1 5AF, UK
Tel: 0703 631441
Fax: 0703 339691

MPE 8096/80C196 Cross com piler
Copy right ©

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Mi cro proc es sor En gi neer ing Lim ited
1993

Ac know ledge ments

MPE would like to thank the fol low ing peo ple for all their in volve -
ment in the pro duc tion of this prod uct:

Jon Lee, Ste phen Pelc, Paul Gal li enne

Mi cro proc es sor En gi neer ing Lim ited
133 Hill Lane
South amp ton
SO1 5AF, UK

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Ta ble of con tents

Chap ter 1 - Glos sary No ta tion 1
Glos sary word or der 1
Forth words 1
Stack No ta tion 1
Stack Pa rame ters 2
In put Text 3
Other mark ers 3

Chap ter 2 - Com piler Di rec tives 5

Chap ter 3 - Tar get glos sary 17
Words be fore ‘A’ 17
Words be gin ning with ‘A’ 27
Words be gin ning with ‘B’ 29
Words be gin ning with ‘C’ 31
Words be gin ning with ‘D’ 33
Words be gin ning with ‘E’ 36
Words be gin ning with ‘F’ 38
Words be gin ning with ‘G’ 44
Words be gin ning with ‘H’ 44
Words be gin ning with ‘I’ 45
Words be gin ning with ‘J’ 46
Words be gin ning with ‘K’ 46
Words be gin ning with ‘L’ 46
Words be gin ning with ‘M’ 47
Words be gin ning with ‘N’ 48
Words be gin ning with ‘O’ 49
Words be gin ning with ‘P’ 50
Words be gin ning with ‘Q’ 51
Words be gin ning with ‘R’ 51
Words be gin ning with ‘S’ 53
Words be gin ning with ‘T’ 55
Words be gin ning with ‘U’ 57
Words be gin ning with ‘V’ 58
Words be gin ning with ‘W’ 59
Words be gin ning with ‘X’ 60
Words be gin ning with ‘Y’ 60
Words af ter ‘Z’ 60

i

MPE 80x96 Forth Cross Compiler Table of contents

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Glossary Notation

The docu men ta tion of the glos sa ries uses a meth od ol ogy based on that used for the
Forth- 83 Stan dard docu ment. As this is not a stan dard docu ment, but is sup posed to be a
user man ual, we have taken some lib er ties to make this man ual eas ier to look at.

Glos sary word or der
The glos sary defi ni tions are listed in the fol low ing or der:-

, . : ; ! ? “ ‘ ‘ () [] { } $ + - * / ^ < = > % # & @ \ _ | ~ 0..9 A..Z

Forth words
Forth word names are capi tal ized through out, and are show in bold in the text.

Stack No ta tion
The stack pa rame ters in put to and out put from a defi ni tion are de scribed us ing the no ta -
tion:-

be fore — af ter

where:

‘b efore’ means the stack pa rame ters be fore exe cu tion

and

‘a fter’ means stack pa rame ters af ter exe cu tion

In this no ta tion, the top of the stack is to the right. Words may also be shown in con text
when ap pro pri ate. Un less oth er wise noted, all stack no ta tion de scribes exe cu tion time. If
it ap plies at com pile time, the line is fol lowed by: (com pil ing) .

Page 1

MPE 80x96 Forth Cross Compiler Glossary notation

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Stack Pa rame ters
Un less oth er wise stated all ref er ences to num bers ap ply to 16- bit signed in te gers. The im -
plied range of val ues is shown as {from..to}. The con tent of an ad dress is shown by dou -
ble braces, par ticu lary for the con tents of vari ables, e.g., BASE {2..72}. The fol low ing
are the stack pa rame ter ab bre via tions and types of num bers used through out the glos sary.
These ab bre via tions may be suf fixed with a digit to dif fer en ti ate mul ti ple pa rame ters of
the same type.

Abbrv. type range & field size

flag boo lean 0=false, else=true 16
true boo lean -1 (as a re sult) 16
false boo lean 0 16
b bit {0..1} 1
char char ac ter {0..127} 7
8b 8 bits not ap pli ca ble 8
16b 16 bits not ap pli ca ble 16
n number {-32,768..32,767} 16
+n +ve int {0..32,767} 16
u un signed {0..65,535} 16
w un speci fied

weighted
number (n or u)

{32,768..65,535} 16

addr ad dress {0..65,535} 16
32b 32 bits not ap pli ca ble 32
d dou ble number{-2,147,483,683,648.. 2,147,483,647} 32
+d posi tive dou ble

number
{0..2,147,483,647} 32

ud un signed dou -
ble number

{0..4,294,967,295} 32

wd un speci fied
weighted dou -
ble number (d
or ud)

{-2,147,483,648..4,294,967,295} 32

f float ing point
number

{
sys 0, 1, or more

sys tem de pend -
ent en tries

not ap pli ca ble

Any other sym bol re fers to an ar bi trary signed 16- bit in te ger in the range
{-32,768..32,767}, un less oth er wise noted. Be cause of the use of two’s com ple ment
arith metic, the signed 16- bit number (n) -1 has the same bit rep re sen ta tion as the un -
signed number (u) 65,535. Both of these num bers are within the set of un speci fied
weighted num bers (w). On many oc ca sions where the con text is ob vi ous, in for mal names
are used to make the docu men ta tion eas ier to use.

Page 2

Glossary notation MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

In put Text
<name>
An ar bi trary Forth word ac cepted from the in put stream. This no ta tion re fers to text from
the in put stream, not to val ues on the data stack.

ccc
A se quence of ar bi trary char ac ters ac cepted from the in put stream un til the first oc cur -
rence of the speci fied de lim iter char ac ter. The de lim iter is ac cepted from the in put
stream, but it is not one of the char ac ters ccc and is there fore not oth er wise proc essed.
This no ta tion re fers to text from the in put stream, not to val ues on the data stack. Un less
noted oth er wise, the number of char ac ters ac cepted may be from 0 to 255.

Other mark ers
The fol low ing mark ers may ap pear af ter a word’s stack com ment. These mark ers in di -
cate cer tain fea tures and pe cu li ari ties of the word.

C The word may only be used dur ing com pi la -
tion.

I The word is im me di ate. It will be exe cuted
even dur ing com pi la tion, un less pre ceded by
the word [COM PILE].

Page 3

MPE 80x96 Forth Cross Compiler Glossary notation

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Blank page

Page 4

Glossary notation MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Compiler Directives

This glos sary de tails the cross com piler di rec tives.

;P —
End Page. Causes FROM and FROM-FILE to stop using the current page. Has
the same effect as ;S in screen files.

;P

(—
“open-paren”

The comment in a text file differs from the screen file version. The paranthesis
comment works over multiple lines. The end of comment is marked by a
white-space-delimited closing parenthesis, e.g.

... 2DUP (save adr # for later) INIT ...
 ...
CLOB BER (NOTE:

 use the op er at ing sys tem func tion
 here to shut off ac cess

)
...

)ELSE(— ; I
“paren-else-paren”

The words IF()ELSE()ENDIF permit conditional compilation and
interpretation. They are an analogue of IF ELSE ENDIF and are used in the
forms:

flag
IF(<if flag is true>)EN DIF

flag
IF(<if flag is true>
)ELSE(<if flag is false>
)EN DIF
If the flag is true the words after IF(are interpreted or compiled, but if the flag is
false the words after)ELSE(are interpreted/compiled. The)ELSE(clause is
optional.

)ENDIF — ; I
“paren-endif”

See IF(and)ELSE(.

Page 5

MPE 80x96 Forth Cross Compiler Compiler directives

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ALIAS —
“alias”

A defining word used to create a second symbol name for a word. Used in the
form:

ALIAS name1 name2

ALIAS (EMIT) SEND- BYTE
This feature is useful where a package is written using one word name, and the
required function can be provided by a word of a different name elsewhere in the
system. In the example above the CFA of (EMIT) will be compiled for a
reference to SEND-BYTE.

ALIGN-ODD —
“align-odd”

Used to align CFAs onto odd addresses (so that PFAs are on even ones). The link
fields are still forced to a even address.

ALIGN- ODD

ALL — 1 -1
Used before FROM, DISPLAY, or CONTENTS, ALL will put the first and last
page numbers on the stack so that ALL the pages are specified. e.g.

ALL DIS PLAY MY FILE.FTH

ALLOT-RAM n —
“allot-ram”

Allots space in the current data page area of a ROM/RAM target. This word is not
strictly a compiler directive, but a modification of the normal Forth word
ALLOT. Its function is to allow uninitialised space to be reserved in RAM.

THERE CON STANT POINTER \ pointer to RAM area
 0100 ALLOT- RAM \ re serve space in RAM

ALONE n — n n
“alone”

A modifier used before FROM or FROM-FILE or other text file words to
describe a single page, for example to compile page 5 from the current text file
use:

5 ALONE FROM

BASE-36 —
“base-thirty-six”

Sets the current base to 36 (decimal). This apparently strange operation allows
upper-case characters and digits to be encoded as radix-36 numbers, reducing the
memory required. This technique is inherited from earlier incarnations of the
compiler, where it was often used to encode the processor type as a double
number, e.g.

Page 6

Compiler directives MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

BOUNDING size mask end-gap start-skip —
“bounding”

This word is used in a ROM/RAM system to skip parts of memory that may be
occupied by existing ROMS. Such a situation is sometimes found in domestic
computers, or when modifying systems that use partial memory decoding.

n1 n2 n3 n4 BOUND ING
The first parameter n1 declares the size of the EPROM in bytes.
Parameter n2 is a bit mask identifying which address lines select the EPROM. For
example an 8k EPROM of size 02000 (hex) is controlled by address lines
A15,14,13 and will have a mask value of 0E000 (hex).
Parameter n3 specifies how far before the end of the EPROM the compiler stops
to ask the user whether it should step to the next EPROM. This limit is used to
prevent the last word in an EPROM being compiled across an EPROM boundary.
If the answer is no, the question will be repeated before each word is compiled
until the answer is yes or the EPROM boundary is crossed. When the yes answer
is given, the compiler steps to the start of the next EPROM, and repeats the
question. If the answer is again yes, the complete EPROM is skipped. Note that
specifying a value of say 0100 does not guarantee to reserve 0100 free bytes at the
end of the EPROM, it only specifies at what point the compiler starts asking what
needs to be done.
Parameter n4 specifies how many bytes are skipped at the start of each EPROM.
The example below is for an 8k byte EPROM such that the compiler starts
checking 128 bytes (080h) before the end of the EPROM, and the first 256 bytes
(0100h) are skipped at the start of each EPROM.

HEX 02000 0E000 080 0100 BOUND ING

CODE-PAGE start end page-id — ; <name>
“code-page”

Defines the start and end of a page of ROM in a system. The label <name> is the
page name of the area of memory. The page-id is a unique identifier for the page
and is used by the page switching word PAGE-WORD. The code generated for
the page will be saved with the filename <name> and extension .IMG. For
example,

$4000 $7FFF 2 CODE- PAGE PAGE2
defines an area of memory from 4000h to 7FFFh with page-switching code 2.
The page’s image is saved with the name PAGE2.IMG. See also DATA-PAGE,
KERNEL and KERNEL-RAM.

DATA-PAGE start end page-id — ; <name>
“data-page”

Defines the start and end of a page of RAM in a system. The label <name> is the
page name of the area of memory. The page-id is a unique identifier for the page
and is used by the page switching word PAGE-WORD. For example,

$8000 $BFFF 5 DATA- PAGE PAGE2
defines an area of memory from 8000h to BFFFh with page-switching code 5.
See also CODE-PAGE, KERNEL and KERNEL-RAM.

Page 7

MPE 80x96 Forth Cross Compiler Compiler directives

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

CON: —
“to-con”

Direct the symbol table log output to the screen. The default output device. If
required this directive has to be used before the command CROSS-COMPILE.

CON:

CROSS-COMPILE —
“cross-compile”

This word tells the system to start cross compiling. Until this point the compiler is
a conventional Forth system with an application (the cross compiler) loaded but
not running. At this stage extensions and assembler macros can be loaded. After
CROSS-COMPILE has executed the compiler ‘pulls down the shutters’ to seal
itself off, and then treats all code as target code and compiler directives.

CROSS- COMPILE

EMU-BASE address —
“emu-base”

Sets the base address of the LePROM emulator for the cross compiler. The tsr
emulator drivers must be installed to use this word.

EQU n — ; <name>
“equ”

Creates a compile-time equate of value n. When the equate is referred to in the
target code the value assigned to the equate is used as a literal. An equate only
exists during the run-time of the cross compiler. Equates may be redefined like
macro-assembler set-symbols. Equates may be used wherever numbers may be
used, they are just a means of naming a number.

HEX
0FF80 EQU IO- PORT

EXTERNAL —
“external”

The following words are generated with headers containing up to 31 characters,
provided that the directive NO-HEADS has not been used.

EX TER NAL

FILE: — ; <filename>
“to-file”

Direct the symbol table log output to the file <filename>. If required this directive
has to be used before the command CROSS-COMPILE.

FILE: SYM BOLS.LOG

Page 8

Compiler directives MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

FINIS —
“finis”

This word stops the cross compiler. A cleaning-up operation is performed, final
reports issued, the output file closed, and finally the compiler exits to host/target
mode.

FINIS

 FINIS-CODE-PAGE —
“finis-page”

This word is used to finish off the compilation of a code page, and return to cross
compiling the kernel. This must not be used on the kernel page.

FROM first last —
“from”

Get text input from a range of pages in the current file. The first and last pages to
be used are supplied on the stack. Files can be nested 16 deep; that is files can
include input from other files. FROM is like THRU or THRU-USING with
screen files, e.g.

4 10 FROM

FROM-FILE first last — ; <filename>
“from-file”

Get text input from a range of pages in the file <file-name> typed after
FROM-FILE. The first and last pages to be used are supplied on the stack. Files
can be nested; that is files can include input from other files. FROM-FILE is like
THRU or THRU-USING, e.g.

4 10 FROM- FILE MY FILE.FTH

HEADS? — t/f ; I
“heads-query”

An immediate equate that returns false if the NO-HEADS directive has been
used. The function of this equate is to return a value for condition compilation of
the interpreter and compiler layers if heads are needed, for example:

HEADS?
IF(7 LOAD- USING IN TER AC TIVE)EN DIF

HOST&TARGET —
“host-and-target”

Used after TARGET-ONLY to allow defining words to be handled again. Some
special cases of defining words cannot be handled by the cross compiler, but are
required for target execution. TARGET-ONLY and HOST&TARGET handle
this situation.

HOST&TAR GET

Page 9

MPE 80x96 Forth Cross Compiler Compiler directives

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

 HOST-COMPILATION —
“host-compilation”

Temporarily turns off the cross compiler so that the following code can be
compiled into the cross compiler itself. Cross compilation is restarted by
TARGET-COMPILATION.

HOST- COMPILATION
.......
TARGET- COMPILATION

I: — ; <wordname>
“i-colon”

Not really a directive, rather an auxiliary version of :. I: is used instead of : to
create an immediate word that will exist in, and can be executed by, the cross
compiler in the same way that defining words are handled. The same rules as for
defining words apply to words created by I:.

I: <name>
......
; IM ME DI ATE

Note that IM ME DI ATE only af fects the tar get code, I: is needed to en able the ana logue
to be built into the cross com piler.

IF(n — ; I
“if-paren”

The words IF()ELSE()ENDIF permit conditional compilation and
interpretation. They are an analogue of IF ELSE ENDIF and are used in the
forms:

flag
IF(<if flag is true>)EN DIF

flag
IF(<if flag is true>
)ELSE(<if flag is false>
)EN DIF
If the flag is true the words after IF(are interpreted or compiled, but if the flag is
false the words after)ELSE(are interpreted/compiled. The)ELSE(clause is
optional.

IN-EMULATOR addr — ; <name>
“in-emulator”

The code generated for page <name> is redirected into an EPROM emulator. The
address addr is the start of the image within the emulator. e.g.

$2000 IN- EMULATOR KERN
will send the page KERN to your emulator, starting at offset 2000h.

Page 10

Compiler directives MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

INTERNAL —
“internal”

This directive causes the following words to be generated without headers. The
cross compiler still knows they are there, but they will not be visible to the
interpreter on the target system.

IN TER NAL

IS-FENCE —
“is-fence”

Marks the last word defined as being the last word in the protected dictionary. In a
RAM system, the cross compiler places the NFA of this word at the location
INIT-FENCE. The target start-up code can then access this location to find the
initial value of the variable FENCE.

L: INIT- FENCE 0 , \ re serve space

............

: FORTH- 83 ; IS- FENCE \ fills INIT- FENCE

L: — ; <word-name>
“ell-colon”

Creates a label with the address returned by HERE, i.e. the current location in the
dictionary. Normally only used during interpretation and assembly, but can be
used during compilation if surrounded by [and].

L: DATA- SLOT 0 ,

: <word>
......
[L: INSIDE- WORD]
......
;

KERNEL start end — ; <name>
“kernel”

Defines the start and end of the fixed kernel ROM in a system. <name> is the
page name of the area of memory. The generated image file will have the name
<name> and the extension .IMG. For example,

$0000 $7FFF KER NEL KERN ROM
defines an area of memory from 0h to 7FFFh. The kernel page’s image is saved
with the name KERNROM.IMG. See also DATA-PAGE, CODE-PAGE and
KERNEL-RAM.

KERNEL-RAM start end page-id —; <name>
“kernel-ram”

Defines the start and end of the fixed kernel ROM in a paged system. <name> is
the page name of the area of memory. For example,

$8000 $FFFF 1 KER NEL KERN RAM

Page 11

MPE 80x96 Forth Cross Compiler Compiler directives

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

defines an area of memory from 0h to FFFFh with page-switching code of 2.
See also DATA-PAGE, CODE-PAGE and KERNEL-RAM.

LABEL addr — ; <word-name>
“label”

Used during interpretation to create a label at an arbitrary location to satisfy a
forward reference from a code definition or code fragment.

THERE LA BEL MY- DATA

LOAD n —
“load”

The contents of screen n of the current screen file are compiled, e.g.

10 LOAD

LOAD-USING n — ; <pathname>
“load-using”

The contents of screen n of the given screen file are compiled. If no extension is
given, the compiler will add the extension ‘.SCR’, e.g.

10 LOAD- USING A:\ROM- IO

LOG —
“log”

Generate a full symbol table log.

LOG

MAKE-TURNKEY — ; <name>
“make-turnkey”

Used to make your application a turnkey or autostarting system. The word
<name> is the name of your application that you want to be run at startup. For
example,

MAKE- TURNKEY MY- APP

MEM-END addr —
“mem-end”

Used to define the end of memory in the target system. For a ROM-based system
with ROM at 0000, and RAM from 08000 to 09FFF, the following sequence
would be used:

HEX
0000 7FFF KER NEL Rom- targ
8000 9FFF 0 KERNEL- RAM Rom- data
A000 MEM- END

Page 12

Compiler directives MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

NO-HEADS —
“no-heads”

Disables generation of heads, overriding EXTERNAL and TARGET-WIDTH
completely. This directive can be used when the application is complete to
remove ALL heads from the system without having to go through the source code
removing all occurences of EXTERNAL and TARGET-WIDTH.

NO- HEADS

NO-LOG —
“no-log”

Generate a reduced symbol table log.

NO- LOG

ONWARDS n — n -1
“onwards”

A modifier used before FROM or FROM-FILE or other text file words to use
the text from a specified page to the end, for example to compile page 5 to the end
from the current text file use:

5 ON WARDS FROM

ORG addr —
“org”

A directive used to set the dictionary pointer to the given address. This directive is
particularly useful when positioning code at a specific address. For example, on
the 80C196 the vector table is from 2000h-207Fh. This can be skipped by using
ORG:

HEX
2080 ORG

OUTPUT-EMULATOR eprom-type bus-width —
“output-emulator”

Defines the EPROM type and bus width of the EPROM emulator the compiler
will use. This directive switches all target memory words to use the EPROM
emulator drivers instead of the output file drivers. Predefined constants exist to
define the EPROM type and bus width. The EPROM type is one of:

E2764 E27128 E27256 E27512
and the bus-width is one of:

8BIT 16BIT 32BIT
For example:

E27256 16BIT OUTPUT- EMULATOR
The emulator tsr driver must be installed to use this word.

Page 13

MPE 80x96 Forth Cross Compiler Compiler directives

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PAGED-VOCABULARY <name> —
“paged-vocabulary”

Used to make pages interactive. When a page is defined, a page vocabulary
should be created as well. The vocabulary must be created in the page <name>
i.e.

USE- CODE <name>
PAGED- VOCABULARY <name>

PRN: —
“to-prin”

Direct the cross-compiler log output to the printer. If required this directive has to
be used before the command CROSS-COMPILE.

PRN:

PTO —
“p-t-o”

Please Turn Over. This word causes FROM and FROM-FILE to stop using the
current page and to start on the next. (The same effect as —> in screen files.)

PTO

RESTART — ; <FileName>
“restart”

Continue cross compilation from the position saved under the given file name.
The cross compiler saved position files having been generated using the directive
SUSPEND during an earlier cross compilation.

RE START KER NEL

SUSPEND — ; <FileName>
“suspend”

Stop the present cross compilation, saving cross compiler information to disc
under the given filename, the cross compiler then returning to host/target mode.
Note that the file name should not include an extension, the cross compiler
supplies its own. The directive RESTART is used to resume cross compilation
later.

SUS PEND KER NEL

 TARGET-COMPILATION —
“target-compilation”

Re-enable cross compilation after it has been turned off by
HOST-COMPILATION.

TARGET-WIDTH n—
“target-width”

Sets the maximum number of characters in the name field to be n. A maximum of
31 characters is imposed by the compiler.

Page 14

Compiler directives MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

7 TARGET- WIDTH

THRU n1 n2 —
“through”

The contents of screens n1 to n2 inclusive of the current screen file are compiled,
e.g.

DECI MAL 7 23 THRU
It is good practice to define the number base just before LOAD or THRU as
‘other people’ sometimes forget to restore the base at the end of a screen, or it
might be house policy only to define the base where it matters. In this instance it
does.

THRU-USING n1 n2 — ; <pathname>
“through-using”

The contents of screens n1 to n2 of the given screen file are compiled. If no
extension is given, the compiler will add the extension ‘.SCR’.

USE — ; <text-file-name>
“use”

Set the default text file you wish to USE (like “USING xxx.scr” for screen files).
The file defaults to NUL.FTH.

USE TEXT FILE.FTH

USE-CODE <name> —
“use-code”

Used to select which page the compiled code is generated for. Any code
following USE-CODE will be compiled into the page <name>. This will
continue until the compilation is finished or another USE-CODE is found.

USE-DATA <name> —
“use-data”

Used to select which page the compiled data is generated for. Any data following
USE-DATA will be allocated in the page <name>. This will continue until the
compilation is finished or another USE-DATA is found.

Page 15

MPE 80x96 Forth Cross Compiler Compiler directives

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Blank page

Page 16

Compiler directives MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Target glossary

The words are listed here in AS CII al pha beti cal or der, with the stan dard pro nun cia tion of
the word un der the name. The stack com ments show the exe cu tion point as “—” with the
pa rame ters to the left be ing the in put pa rame ters, and those to the right are the re sults left
(if any) by the word’s exe cu tion. The top of the stack is to the right of the lists. The in di ca -
tor I in di cates that the word is im me di ate.

Note: Not all the words in this glos sary will ex ist in the Um bili cal Forth tar get.

Words be fore ‘A’

! 16b addr —
“store”

A sixteen bit integer is stored at the given address.

!CSP —
“store-c-s-p”

A word used by compiling and structure words. The stack pointer is saved in user
variable CSP.

+d1 — +d2
“sharp”

The remainder of +d1 divided by the value of BASE is converted to an ASCII
character and appended to the output string toward lower memory addresses. +d2
is the quotient and is maintained for further processing. Typically used between
<# and #>.

#> 32b — addr +n
“sharp-greater”

Pictured numeric output conversion is ended dropping 32b. addr is the address of
the resulting output string. +n is the number of characters in the output string. addr
and +n together are suitable for TYPE.

#LITERAL n1..nn n —
“hash-literal”

Takes n words from the stack and compiles them as literals, n1 first nn last. If no
words are to be compiled, n may be zero. This word is used with NUMBER? as
part of a consistent numeric conversion system.

Page 17

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

#S +d — 0 0
“sharp-s”

+d is converted appending each resultant character into the pictured numeric
output string until the quotient (see: #) is zero. A single zero is added to the output
string if the number was initially zero. Typically used between <# and #>.

‘ — compilation-addr
“tick”

Use in the form:

‘ ccccc
Searches the dictionary using the normal search order, returning the compilation
address (cfa) of the word. If the word is not found an error message is given.

“” — addr (executing) ; I
“quotes-quotes” — (compiling)

use in the form:

“” <text>"
Compiles text into the dictionary as a string with a count byte, and when the word
containing “” executes later, the address of the string’s count byte is returned.

“, —
”quotes-comma"

Compiles the string following in the input stream into the dictionary as a counted
string (count byte + text). Use in the form:

“, string”
The space before the string, and the trailing double quotes are not compiled.

(—
“paren”

Used in the form:

(ccc)
The characters ccc, delimited by) (closing parenthesis), are considered
comments. Comments are not otherwise processed. The blank following (is not
part of ccc. (may be freely used while interpreting or compiling. The number of
characters in ccc may be from zero to the number of characters remaining in the
input stream up to the closing parenthesis.

(”) — addr
“paren-quotes”

The run time action of “” compiled by “”. See “”

* w1 w2 — w3
“times”

W3 is the least-significant 16 bits of the arithmetic product of w1 times w2.

Page 18

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

*/ n1 n2 n3 — n4
“times-divide”

n1 is first multiplied by n2 producing an intermediate 32-bit result. n4 is the
quotient of the intermediate 32-bit result divided by the divisor n3. The product of
n1 times n2 is maintained as an intermediate 32-bit result for greater precision
than the otherwise equivalent sequence: n1 n2 * n3 / . An error condition results if
the divisor is zero or if the quotient falls outside the range {-32,768..32,767}.

*/MOD n1 n2 n3 — n4 n5
“times-divide-mod”

n1 is first multiplied by n2 producing an intermediate 32-bit result. n4 is the
remainder and n5 is the quotient of the intermediate 32-bit result divided by the
divisor n3. A 32-bit intermediate product is used as for */ . n4 has the same sign as
n3 or is zero. An error condition results if the divisor is zero or if the quotient falls
outside of the range {-32,768..32767}.

+ w1 w2 — w3
“plus”

w3 is the arithmetic sum of w1 plus w2

+! w1 addr —
“plus-store”

w1 is added to the w value at addr using the convention for +. This sum replaces
the original value at addr.

+LOOP n1 —
“plus-loop” sys — (compiling)

n is added to the loop index. If the new index was incremented across the
boundary between limit-1 and limit the loop is terminated and loop control
parameters are discarded. When the loop is not terminated, execution continues to
just after the corresponding DO. Sys is balanced with corresponding DO. See:
DO.

, 16b —
“comma”

ALLOT space for 16b then store 16b at HERE 2-. This is the basic word used to
compile 16-bit data into the dictionary. It places the data at the end of the
dictionary and adds two to the dictionary pointer. The byte equivalent is called C,

,(R) 16b —
“comma-r”

ALLOT space for 16b in the DATA RAM area then store 16b at THERE 2-. This
is the basic word used to compile 16-bit data into RAM. It places the data at the
end of the portion in use, and adds two to the pointer. The byte equivalent is called
C,(R)

- w1 w2 — w3
“minus”

w3 is the result of subtracting w2 from w1

Page 19

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

—> — I
“arrow”

Continues interpretation/compilation from the next screen. Only valid when
interpreting/compiling from a screen file.

-1 — -1
“minus-one”

A constant

-ROT n1 n2 n3 — n3 n1 n2
“dash-rote”

Saves the top of the stack under the next two items. Equivalent to:

ROT ROT

-TRAILING addr +n1 — addr +n2
“dash-trailing”

The character count +n1 of a text string beginning at addr is adjusted to exclude
trailing spaces. If +n1 is zero, then +n2 is also zero. If the entire string consists of
spaces, then +n2 is zero.

. n —
“dot”

The absolute value of n is displayed in a free field format with a leading minus
sign if n is negative.

." — I
“dot-quotes” — (compiling)

Used in the form:

." ccc"
Later execution will display the characters ccc up to but not including the
delimiting “ (close-quote). The blank following ." is not part of ccc.

.(— I
“dot-paren”

An equivalent of ." to be used when interpreting, or for immediate display from
within compilation, as ." is intended by the standard to be used within a colon
definition to compile a string for later execution. Use in the form:

.(string)

.BYTE n1 —
“dot-byte”

Prints n1 as an unsigned number in a format of two hex digits followed by a space.
The current value of BASE is unaffected.

.NAME addr —
“dot-name”

Given the name field address of a word, its name is displayed.

Page 20

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

.R n1 n2 —
“dot-r”

The number n1 is printed right aligned in a field of width n2 without a trailing
space.

.S —
“dot-s”

The contents of the stack are printed out, leaving the contents of the stack
unchanged.

.WORD n1 —
“dot-word”

The value of n1 is displayed unsigned as four hex digits and a space. The current
value of BASE is unaffected.

/ n1 n2 — n3
“divide”

n3 is the quotient of n1 divided by the divisor n2. An error condition results if the
divisor is zero or if the quotient falls outside the range {-32,768..32767}.

/MOD n1 n2 — n3 n4
“divide-mod”

n3 is the remainder and n4 the quotient of n1 divided by the divisor n2. n3 has the
same sign as n2 or is zero. An error condition results if the divisor is zero or if the
quotient falls outside of the range {-32,768..32,767}.

/STRING addr len n — addr+n len-n
“slash-string”

Steps a distance through a string. Often used by text scanning operators, and is
then followed by SKIP or SCAN. See SKIP SCAN WORD

0 1 2 — n
The numbers 0..2 occur so often that it is more economical to define them as
constants.

0< n — flag
“zero-less”

The flag is true if n is less than zero (negative).

0<> n — flag
“zero-not-equals”

The flag is true if n is non-zero.

0= w — flag
“zero-equals”

flag is true if w is zero.

Page 21

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

0> n — flag
“zero-greater”

flag is true if n is greater then zero.

1+ w1 — w2
“one-plus”

w2 is the result of adding one to w1 according to the operation of +.

1- w1 — w2
“one-minus”

w2 is the result of subtracting one from w1 according to the operation of -.

2! d1 addr —
“two-store”

The double number d1 is stored at addr. Forth stores double precision numbers
with the most significant of the two words on the top of the stack. The word 2!
preserves the memory order so that the number configuration in memory is the
same as on the stack. See 2@.

2+ w1 — w2
“two-plus”

w2 is the result of adding two to w1 according to the operation of +. This
operation is performed so often (like 1+ 1- and 2-) that it is worth having fast
machine code routines.

2- w1 — w2
“two-minus”

w2 is the result of subtracting two from w1 according to the operation of -.

2@ addr — n1
“two-fetch”

The double number at addr is returned to the stack. Forth stores double precision
numbers with the most significant of the two words on the top of the stack. The
double number memory operators preserve the memory order so that the number
configuration in memory is the same as on the stack. See 2!

2* n — 2n
“two-times”

A fast machine code multiply by 2.

2/ n — 2n
“two-slash” or “two-divide”

A fast machine code divide by two. Uses floored division.

2DROP d1 —
“two-drop”

The top two items on the stack are removed.

Page 22

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

2DUP d1 — d1 d1
“two-dup”

The top two items on the stack are duplicated.

2OVER d1 d2 — d1 d2 d1
“two-over”

Copies the second pair of words to the top of the stack.

2SWAP d1 d2 — d2 d1
“two-swap”

The top two pairs of items on the stack are interchanged.

: — sys I
“colon”

A defining word executed in the form:

: <name> ... ;
Create a word definition for <name> in the compilation vocabulary and set
compilation state. The search order is changed so that the first vocabulary in the
search order is replaced by the compilation vocabulary. The compilation
vocabulary is unchanged.
The text from the input stream is subsequently compiled. <name> is called a
“colon definition”. The newly created word definition for <name> cannot be
found in the dictionary until the corresponding ; or ;CODE is successfully
processed.
An error condition exists if a word is not found and cannot be converted to a
number or if, during compilation from mass storage, the input stream is exhausted
before encountering ; or ;CODE. sys is balanced by its corresponding ;.

; — ; I
“semi-colon” sys — (compiling)

Stops the compilation of a colon definition, allows the <name> of this colon
definition to be found in the dictionary, sets interpret state and compiles ;S. sys is
balanced by its corresponding :.

;CODE — ;
“semi-code”

Used in creating a defining word. ;CODE indicates the run-time part of the code is in
assembler. For example:

: Vari able \ — ; [child] — addr
 CRE ATE \
 HERE 2+ , \ save cur rent ad dress
 0 , \ ini tial ise vari able
 ;CODE \
 POP AX PUSH TOS \
 LD TOS AX [] \
 NEXT, \
END- CODE

Page 23

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

;S —
“semi-s”

The word compiled by ; to perform the return from a high level word. Most often
seen as the word at the end of a source screen to stop interpretation. Its action is to
leave the word being executed. May be replaced by EXIT

< n1 n2 — flag
“less-than”

flag is true if n1 is less than n2

<= n1 n2 — flag
“less-than-or-equals”

The flag is true if n1 is less than or equal to n2.

<> n1 n2 — flag
“not-equal”

The flag is true if n1 is not equal to n2.

<# —
“less-sharp”

Initialise pictured numeric output conversion. The words: # #S HOLD SIGN can
be used to specify the conversion of a double number into ASCII text string stored
in right-to-left order. See also #>

<MARK — addr
“back-mark”

Marks the entry point of a backward jump, which will later be resolved by
<RESOLVE.

<RESOLVE addr —
“back-resolve”

Resolves a backward jump whose destination was earlier marked by <MARK

= w1 w2 — flag
“equals”

flag is true if w1 is equal to w2

> n1 n2 — flag
“greater-than”

flag is true if n1 is greater than n2

>= n1 n2 — flag
“greater-than-or-equal”

The flag is true if n1 is greater than or equal to n2.

Page 24

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

>BODY cfa — pfa
“to-body”

Converts a compilation address of a word (in this case, the address of the cfa) to
the parameter field address.

>IN — addr
“to-in”

The address of a variable which contains the present character offset within the
current input stream buffer. See: WORD BLK

>MARK — addr
“forward-mark”

Marks the start of a forward branch which will be later resolved by RESOLVE>

>NAME cfa — nfa
“to-name”

Converts a word’s compilation address to its name field address.

>R 16b —
“to-r”

Transfers 16b to the return stack. The return stack is a handy place to use for
storing data temporarily while other data stack operations take place.

>RESOLVE addr —
“forward-resolve”

Resolves the branch address of a forward branch previously marked by MARK

? addr —
“query”

Displays the contents of the address.

?BRANCH flag —
“query-branch”

Consumes a flag and branches to the address given in-line after ?BRANCH if the
flag is true. See BRANCH

?COMP —
“query-comp”

Causes the error handler to operate if not compiling

?CSP —
“query-c-s-p”

Causes the error handler to operate if the stack is unbalanced after last !CSP

?EVENT
“query-event”

If the current task’s event flag is set, the flag is reset and the event handler is
executed.

Page 25

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

?EXEC —
“query-exec”

Causes the error handler to operate if not interpreting

?LOADING —
“query-loading”

Causes the error handler to operate if not loading

?STACK —
“query-stack”

Causes the error handler to operate if the stack is out of limits.

?DNEGATE d1 n — d2
“query-d-negate”

If n is negative, d1 is negated, otherwise it is left alone.

?DO w1 w2 —
“query-do” — sys (compiling)

Used in the forms:

?DO ... LOOP
?DO ... +LOOP
Begins a loop which terminates based on control parameters. The loop index
begins at w2, and terminates based on the limit w1. See LOOP and +LOOP for
details on how the loop is terminated. The loop will not execute if the index and
limit are the same. For example the words inside the loop formed by:

w DUP ?DO ... LOOP
will not be executed. See DO

?DUP 16b — 16b 16b
“query-dupe” 0 — 0

Duplicate 16b if it is non-zero. This word is very useful when testing error
conditions. Often zero is returned for successful completion, a non-zero value
being an error code.

?ERROR flag n —
“query-error”

If flag is true error message n is displayed. When loading, the error message is
taken n lines from line 0 of screen 4 in the current error file.

?LEAVE flag —
“query-leave”

If the flag is true (non-zero), the current DO ... LOOP structure is terminated
immediately, execution resumed after the LOOP or +LOOP.

?NEGATE n1 n2 — n3
“query-negate”

If n2 is negative, n1 is negated to give n3, otherwise n3 is n1.

Page 26

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

?PAIRS n1 n2 —
“query-pairs”

An error condition is reported if n1 is not equal to n2.

@ addr — 16b
“fetch”

16b is the value at addr

Words be gin ning with ‘A’

ABORT —
“abort”

Clear the stacks and enter the execution state. Return control to the operator via
QUIT, printing an appropriate message. In this implementation ABORT calls
QUIT. A sealed application will usually replace QUIT with a word containing
the endless loop that forms the application.

ABORT" — (compiling)I
“abort-quotes” flag — (executing)

Used in the form:

ABORT" string"
If the flag is true the following string is displayed, and ABORT then executed.

ABS n — |n|
“abs”

Leave the absolute value of n.

ACTIVATE task# —
“activate”

Initialises and starts the given task number. Task 0 is Forth itself and was activated
when Forth started. Note that ACTIVATE causes the task to start from the very
beginning. If the task was halted, and execution should resume where it left off,
use RESTART instead.

AGAIN addr n — (compiling) I
“again” — (execution)

Used in a colon definition in the form:

BE GIN ... AGAIN
At run-time, AGAIN forces execution to resume at the corresponding BEGIN.
There is no effect on the stack. This is an endless loop unless an exit is forced by
other means. At compile time, AGAIN forces the compilation of BRANCH,
followed by the address (addr) of the word after the corresponding BEGIN. The
value n is used for compile time error checking.

Page 27

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ALIGN —
“align”

Forces the parameter field addresses (PFA) to be on even byte boundaries

ALLOT n —
“allot”

Reserves n bytes in the dictionary, from the current location. It adds the signed n to
the current value of DP.

ALLOT-RAM n—
“allot-ram”

Reserves n bytes of RAM from the current RAM pointer given by THERE.

ALSO —
“also”

Room is made for another vocabulary to be added to the start of the vocabulary
search list. Space is made by duplicating the top entry. This duplicate entry will be
overwritten by the new vocabulary when it is executed. If the order is just:

FORTH ROOT
then after executing ALSO it will be:

FORTH FORTH ROOT
and after executing another vocabulary name (say TOOLS) it will become:

TOOLS FORTH ROOT

AND w1 w2 — w3
“and”

Leaves the bitwise logical and of w1 and w2 as w3.

ASCII — char ; I
“ascii” — (compiling)

use in the form:

AS CII A
Used to generate the value of the character entered. The example above will
return the code for the letter A. If ASCII is used in a colon definition the value of
the character is compiled as a literal which is returned when the word is executed.

ASSIGN — cfa (executing) ; I
“assign” — (compiling)

Used to assign the action for a deferred word, interrupt, or timer. Used in the form:

AS SIGN action- word TO- DO word
See TO-DO

Page 28

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Words be gin ning with ‘B’

BASE — addr
“base”

The address of a user variable containing the current numeric conversion radix.
{{2..72}}

BEGIN — addr n (compiling) ; I
“begin”

Used in the forms:

BE GIN ... flag UN TIL
BE GIN ... AGAIN
BE GIN ... flag WHILE ... RE PEAT
BEGIN marks the start of a word sequence for repetitive execution. A BEGIN ...
UNTIL loop will be repeated until flag is true, a BEGIN ... AGAIN loop
executes forever unless otherwise left, and a BEGIN ... WHILE ... REPEAT
loop will be repeated until flag is false. The words after UNTIL or REPEAT will
be executed when either loop is finished.

BINARY —
“binary”

Switches the current number conversion base to two, by setting user variable
BASE to two.

BL — char
“b-l”

A constant that returns the ASCII code for a space character.

BLANK addr count —
“blank”

Fills count bytes starting at addr with space characters.

BLK — addr
“b-l-k”

The address of a user variable containing the number of the mass storage block
being interpreted as the input stream. If the value of BLK is zero the input stream
is taken from the text input buffer. {{0..the number of blocks available -1}} See:
TIB

BLOCK u — addr
“block”

addr is the address of the assigned buffer of the first byte of block u. If the block
occupying that buffer is not block u and has been UPDATEd it is transferred to
mass storage before assigning the buffer. If block u is not already in memory, it is
transferred from mass storage into an assigned block buffer. A block may not be
assigned to more than one buffer. If u is not an available block number, an error
condition exists. Only data within the last buffer referenced by BLOCK or
BUFFER is valid.

Page 29

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

BODY> pfa — cfa
“body-to”

Converts a word’s parameter field address to its compilation address (cfa).

BOUNDS addr len — limit start
“bounds”

Converts an address and length into the end-address+1 and start-address, suitable
for use with DO ... LOOP. BOUNDS is designed specifically for this purpose.

BRANCH —
“branch”

The Forth goto instruction, normally only used by structure words. Branches to an
address given in-line.

BS —
“b-s”

Performs a destructive backspace operation if the variable OUT is non-zero. The
destructive backspace is performed by the phrase:

8 EMIT SPACE 8 EMIT

Words be gin ning with ‘C’

C! 8b addr —
“c-store”

The least-significant 8 bits of 16b are stored into the byte at addr.

C@ addr — 8b
“c-fetch”

8b is the contents of the byte at addr.

C, b —
“c-comma”

Compiles a byte into the next available dictionary location, and advances the
dictionary pointer by one. The basic word for compiling byte wide data into the
dictionary. See ,

C/L — n
“c-slash-l”

Returns the number of characters per line. Conventionally 64 even on 80
character terminals. Don’t ask why.

Page 30

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

CASE — addr n (compiling) ; I
“case”

The word used to mark the start of the CASE OF ENDOF ENDCASE
structure. For more details see the tutorial section of this manual on control
structures.

 CLR-EVENT-RUN —
“clear-event-run”

Clears the event run flag for the current task. This is bit 4 in the task status byte.

CMOVE addr1 addr2 u —
“c-move”

Move u bytes beginning at address addr1 to addr2. The byte at addr2 is moved
first, proceeding towards high memory. If u is zero nothing is moved. See
CMOVE> MOVE

CMOVE> addr1 addr2 u —
“c-move-up”

Move u bytes beginning at address addr1 to addr2. The bytes in high memory are
moved first. If u is zero nothing is moved. This word is provided so that blocks of
memory can be moved if overlapping. See CMOVE MOVE

COLD —
“cold”

Restarts the Forth system as if from scratch. Stacks are reset, the dictionary is
cleared out, and ABORT is executed.

COMPILE —
“compile”

Typically used in the form:

: <name> ... COM PILE <namex> ... ;
When <name> is executed, the compilation address compiled for <namex> is
compiled and not executed. <name> is typically immediate and <namex> is
typically not immediate. Most often used to build new compiling or defining
words.

CONSTANT 16b —
“constant”

A defining word executed in the form:

16b CON STANT <name>
Creates a dictionary entry for <name> so that when <name> is later executed, 16b
will be left on the stack.

COUNT addr1 — addr2 +n
“count”

addr2 is addr1+1 and +n is the length of the counted string at addr1. The byte at
addr1 contains the byte count +n. Range of +n is {0..255}. Forth strings are often
stored as a count byte followed by the text. COUNT is used to convert the string

Page 31

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

address to the address of the text, and the number of characters in that text. For
reasons of portability, do not use COUNT for any other purpose. For example:

“” Hello" COUNT TYPE
is the same as:

." Hello"

CR —
“c-r”

Displays a carriage-return and line-feed or equivalent operation. The user
variable OUT is reset to 0.

CRASH —
“crash”

The default action of a deferred word as assigned by DEFER. On execution it
gives an error message and performs ABORT. See DEFER ABORT.

CREATE — [parent]
“create” — addr [child]

A defining word executed in the form:

CRE ATE <name>
Creates a dictionary entry for <name>. After <name> is created, the next
available dictionary location is the first byte of <name>’s parameter field.
Execution of <name> returns the parameter field address of <name>. CREATE
is also often used within a colon definition:

: cccc CRE ATE compile- time words
 DOES> run- time words ;
When ‘cccc’ is executed CREATE builds a new dictionary header. DOES> is
immediate and compiles code that causes the words from the run-time portion of
DOES> onwards to be executed. The phrase:

cccc nnnn
causes a new word ‘nnnn’ to be created. When ‘nnnn’ executes, DOES> returns
the address of ‘nnnn’s parameter area, and the code following DOES> is then
executed. To illustrate this, we will define VARIABLE and CONSTANT using
CREATE and DOES>. The action is identical to, but slower than, the usual
implementation because the new defining words execute high level code. For
example, compiling interactively on the target, the definitions of CONSTANT
and VARIABLE are:

: VARI ABLE
 CRE ATE 0 , DOES> ;

: CON STANT
 CRE ATE , DOES> @ ;

Page 32

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Words be gin ning with ‘D’

D>F d — f
“d-to-f”

Converts a 32 bit double integer to a normalized f.p. number.

D+ wd1 wd2 — wd3
“d-plus”

wd1 is the arithmetic sum of wd1 plus wd2.

D- d1 d2 — d3
“d-sub”

The result d3 is d1-d2.

D. d1 —
“d-dot”

Print a signed double number in the current base followed by a space.

D.R d1 n —
“d-dot-r”

Print a signed double number in the current base in a field n characters wide. The
output is right aligned with leading zeros suppressed and no trailing space.

DABS d1 — d2
“d-abs”

Take the absolute value of d1 i.e. if d1 is negative, make it positive.

DECIMAL —
“decimal”

Set the input-output numeric conversion base to ten.

DEFER — (parent)
“defer” — (child)

A defining word used in the form:

DE FER <name>
When <name> executes it executes the action assigned to it. The action assigned
by DEFER is that of CRASH, but other actions are assigned by the phrasing:

AS SIGN ac tion TO- DO <name>
e.g:

AS SIGN (EMIT) TO- DO EMIT
will assign the word (EMIT) to be the action of EMIT, which is a deferred word.

Page 33

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

DEFINITIONS —
“definitions”

The vocabulary that words are compiled into (defined by CURRENT) is
changed to be the same as the first vocabulary in the search order (defined by
CONTEXT).

DEG>RAD f1 — f2
“deg-to-rad”

Convert f1 degrees to its corresponding number of radians.

DEPTH — n
“depth”

Returns the current stack depth in cells, that is 1 represents one word on the stack,
2 represents two words, and so on. The returned value does not include n, so 0
represents an empty stack.

DIGIT char n1 — n2 true
“digit” char n1 — false

Converts the character char using base n1. If conversion is successful the result is
returned with the flag, otherwise only the false flag is returned.

DINT f — d
“dint”

Leave the integer part of f as a double number on the stack.

DLITERAL d — ; I
“d-literal”

Compiles a double number into the dictionary as a literal. Unlike its fig-Forth
counterpart, the Forth-83 version is not state-smart. See LITERAL LIT.

DNEGATE d1 — d2
“d-minus”

d2 is the two’s complement of d1.

DNORM d n — f
“d-norm”

Normalize double number d by n left shifts. Leaves a f.p. number on the stack.

DO w1 w2 —
“do” — sys (compiling)

Used in the forms:

DO ... LOOP
DO ... +LOOP
Begins a loop which terminates based on control parameters. The loop index
begins at w2, and terminates based on the limit w1. See LOOP and +LOOP for
details on how the loop is terminated. The loop is always executed at least once.
For example the words inside the loop:

w DUP DO ... LOOP

Page 34

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

are executed 65,536 times. See ?DO

DOES> — addr
“does” — (compiling)

Defines the execution-time action of a word created by high-level defining word.
Used in the form:

: <namex>
 CRE ATE ... DOES> ... ;
and then:

<namex> <name>
DOES> marks the termination of the defining part of the defining word <namex>
and then begins the definition of the execution-time action for words that will
later be defined by <namex>. When <name> is later executed, the address of
<name>’s parameter field is placed on the stack and then the sequence of words
between DOES> and ; are executed.

DROP 16b —
“drop”

16b is removed from the stack.

DUMP addr n —
“dump”

The n bytes in memory starting at address addr are displayed (in hexadecimal).
Very useful when debugging. DUMP also shows the ASCII characters formed by
the memory.

DUP 16b — 16b
“dupe”

Duplicate 16b.

Words be gin ning with ‘E’

E. f —
“e-dot”

Print the f.p. number on the stack in exponential form.

ELSE sys — sys I
“else”

Used in the form:

flag IF ... ELSE ... EN DIF
ELSE executes after the true part following IF and forces execution to continue at
just after ENDIF. See: IF, ENDIF and THEN.

Page 35

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

EMIT 8b —
“emit”

The ASCII character in the low byte is displayed.

EMPTY-BUFFERS —
“empty-buffers”

All the mass storage buffers are marked as unused, regardless of their current
contents or status.

ENDCASE sys — (compiling) ; I
“end-case” n — (executing)

A word used to mark the end of the CASE OF ENDOF ENDCASE
structure. If entered from the default action a word is dropped from the stack. See
?OF OF ENDOF CASE

ENDIF sys — (compiling) ; I
“end-if”

The word used to mark the end of the IF ENDIF or IF ELSE ENDIF
structures. See IF ELSE THEN

ENDOF sys — sys (compiling) ; I
“end-of”

The word used to mark the end of a selection procedure in the CASE OF
ENDOF ENDCASE structure. The code between OF and ENDOF or ?OF
and ENDOF is executed if the test at OF or ?OF is passed. After ENDOF
execution continues immediately after the ENDCASE. See CASE OF ?OF
ENDCASE

ERASE addr n —
“erase”

At address addr, a count of n bytes is zeroed.

ERROR n —
“error”

The standard error handler reports error n. If the system is loading the offending
line will be displayed.

EVENT? — t/f
“event-query”

Returns true if the event triggered bit has been set in the current task’s status byte.

EXECUTE addr —
“execute”

The word definition indicated by addr is executed. The application will most
probably crash if addr is not a compilation address. Useful for executing an action
(cfa) pulled out of a table.

Page 36

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

EXIT —
“exit”

Compiled within a colon definition such that when executed, that colon definition
returns control to the definition that passed control to it by returning control to the
return point on top of the return stack. An error condition exists if the top of the
return stack does not contain a valid return point, and so EXIT will not work
within a DO ... LOOP structure.

EXPECT addr +n —
“expect”

Defined by the standard to receive characters and store each into memory. The
transfer begins at addr proceeding towards higher addresses one byte per
character until either a <CR> is received or until +n characters have been
transferred. No more than +n characters will be stored. The <CR> is not stored in
memory.
All characters actually received and stored into memory will be displayed, with
<CR> displaying as space. The number of characters collected (excluding any
“return”) is stored in the user variable SPAN. Note that because of this the
contents of SPAN interrogated directly from the keyboard may not reflect what
you intended.

Words be gin ning with ‘F’

F, f —
“f-comma”

Compile the f.p. number on the top of the stack.

F. f —
“f-dot”

Print the top f.p. number on the stack in free format.

F! f addr —
“f-store”

Store the f.p. number f at address addr.

F+ f1 f2 — f3
“f-plus”

Add together the top two f.p. numbers on the stack and put the f.p. result on the
stack.

F- f1 f2 — f3
“f-minus”

Subtract the top f.p. number on the stack from the second f.p. number on the stack,
and put the f.p. result on the stack.

Page 37

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

F* f1 f2 — f3
“f-star”

Take the top two f.p. numbers off the stack, multiply them together, and leave the
f.p. result on the stack.

F/ f1 f2 — f3
“f-slash”

Divide the second f.p. number on the stack by the top f.p. number and leave the
f.p. result on the stack.

F< f1 f2 — flag
“f-less-than”

Leave true flag if f1<f2. Otherwise, leave a false flag.

F<0 f — flag
“f-less-than-0"

Leave a true flag if f<0. Otherwise, leave a false flag.

F= f1 f2 — flag
“f-equals”

Leave a true flag if the top two f.p. numbers on the stack are equal. Otherwise
leave a false flag.

F=0 f — flag
“f-0-equals”

Leave a true flag if the f.p. number on the top of the stack is zero.

F> f1 f2 — flag
“f-greater-than”

Leave a true flag if f1<f2. Otherwise, leave a false flag.

F>0 f — flag
“f-greater-than-zero”

Leave a true flag if the f.p. number on the top of the stack is greater than zero.

F# — f [executing]
“f-hash” — [compiling]

If interpreting, takes text from the input stream and, if possible, converts it to a f.p.
number on the stack. Numbers in integer format will be converted to floating
point. If compiling, the converted number is compiled.

F#IN — f 3 | 0
“f-hash-in”

Attempts to convert a token from the input stream to a floating point number.
Numbers in integer format will be converted to floating point. An indicator (0 or
3) is returned in the same way as an indicator is returned by FNUMBER?.

Page 38

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

F@ addr — f
“f-fetch”

Fetch the f.p. number from address addr and put it on the stack.

F10^X f1 — f2
“f-10-to-the-x”

Raise 10 to the power f1 and put the result on the stack.

FABS f — |f|
“f-abs”

Take the modulus of the f.p. number on the top of the stack.

FACOS f1 — f2
“f-a-cos”

Leave, on the stack, the angle (in degrees) whose cosine is f1, such that
0<=f2<=180.

FARRAY fn-1..f0 n — [parent]
“f-array” n — fn [child]

When generating the array, take n f.p. numbers and n, and compile them into the
array. When executing the child word, take n and place f.p. number n from the
array onto the stack. Note that the numbering in the array goes 0,1,..n-1.

FASIN f1 — f2
“f-a-sine”

Leave, on the stack, the angle (in degrees) whose sine is f1, such that
-90<=f2<=90.

FATAN f1 — f2
“f-a-tan”

Leave, on the stack, the angle (in degrees) whose tangent is f1, such that
-90<f2<90.

FCONSTANT f — [parent]
“f-constant” — f [child]

Floating point equivalent of CONSTANT. Use in the form:

<f.p. number on stack> FCON STANT <name>

FCOS f1 — f2
“f-cos”

Take the cosine of f1 (degrees) and put it on the stack.

FDROP f —
“f-drop”

Drop the f.p. number on the top of the stack.

Page 39

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

FDUP f — f f
“f-dup”

Duplicate the f.p. number on the top of the stack.

FE^X f1 — f2
“f-e-to-the-x”

Raise e, the exponential number, to the power f1 and put the result on the stack.

FFRAC f1 f2 — f3
“f-frac”

Leave the fractional remainder from the division f1/f2. The remainder takes the
sign of the dividend.

FILL addr u 8b —
“fill”

u bytes of memory beginning at addr are set to 8b. No action is taken if u is zero.

FIND addr1 — addr2 +/-1
“find” addr1 — addr1 0

A counted string is at addr1. It is a name to be looked up in the dictionary. If the
name cannot be found addr1 and a false flag are returned, so that NUMBER? can
later check to see if the string is a valid number. If the name is found, its
compilation address (cfa) is returned, together with a non-zero flag. If the word is
immediate the flag is 1, otherwise it is -1. The search is through the currently
specified search order.

FINT f1 — f2
“fint”

Place the f.p. integer value of f1 on the stack.

FLITERAL f —
“f-literal”

When compiling, compile f as a literal. For example,

: ABCD [cal cu late f] FLIT ERAL ;
Compilation is suspended for the compile-time calculation of f. Execution of
ABCD leaves f on the stack.

FLN f1 — f2
“f-log-base-e”

Take the logarithm of f1 to base e and put the result on the stack.

FLOATS —
“floats”

Switches the action of NUMBER? to be FNUMBER?. This action can be
reversed by INTEGERS. Both FLOATS and INTEGERS are in the FORTH
vocabulary.

Page 40

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

FLOG f1 — f2
“f-log-base-10"

Take the logarithm of f1 to base 10 and put the result on the stack.

FLUSH —
“flush”

Performs the function of SAVE-BUFFERS then unassigns all block buffers.
This word was originally intended to be useful for mounting or changing mass
storage media but is now used to ensure that data is passed from Forth to the
operating system. The phrase:

US ING xxx
where xxx is an invalid pathname will do this. See SAVE-BUFFERS
EMPTY-BUFFERS

FMAX f1 f2 — max{f1,f2}
“f-max”

Put the greater of the top two f.p. numbers onto the stack.

FMIN f1 f2 — min{f1,f2}
“f-min”

Put the lesser of the top two f.p. numbers onto the stack.

FNEGATE f — -f
“f-negate”

Negate the f.p. number on the top of the stack.

FNUMBER? addr — 0/n 1/d 2/f 3
“f-number-query”

Converts string at address addr to either a single, double or floating point number
(see section 4.2) along with 1, 2, or 3 respectively. If a 0 is left on the stack then
FNUMBER? was unable to convert the string.

FORGET —
“forget”

Used in the form:

FOR GET <name>
If <name> is found in the compilation vocabulary (defined by CURRENT),
delete <name> from the dictionary, and also delete all words added to the
dictionary after <name> regardless of their vocabulary. Failure to find <name is
an error condition. An error condition also exists if the compilation vocabulary is
deleted.

FORTH —
“forth”

The name of the primary vocabulary. Execution replaces the first vocabulary in
the search order with FORTH. FORTH is initially the compilation vocabulary
and the first vocabulary in the search order. New definitions become part of the

Page 41

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

FORTH vocabulary until a different compilation vocabulary is established. See:
VOCABULARY

FOVER f1 f2 — f1 f2 f1
“f-over”

Floating point equivalent of OVER.

FROT f1 f2 f3 — f2 f3 f1
“f-rote”

Floating point equivalent of ROT.

FSEPARATE f1 f2 — f3 f4
“f-separate”

Leave the signed integer quotient f4 and remainder f3 when f1 is divided by f2.
The remainder has the same sign as the dividend.

FSIGN f — f flag
“f-sign”

Leave the f.p. number and a flag on the stack. Leaves a true flag if f is negative,
else leaves a false flag.

FSIN f1 — f2
“f-sine”

Leave the floating point sine of f1 (degrees) and put it on the stack.

FSQR f1 — f2
“f-s-q-r”

Take the square root of the floating point number on the top of the stack and put
the result onto the stack.

FSWAP f1 f2 — f2 f1
“f-swap”

Floating point equivalent of SWAP.

FTAN f1 — f2
“f-tan”

Take the tangent of f1 (degrees) and put the result on the stack.

FVARIABLE —
“f-variable”

Floating point equivalent of VARIABLE. Set up an FVARIABLE by typing:

FVARI ABLE <name>

FX^N f1 n — f2
“f-x-to-the-n”

Raise f1 to the power n (n integer), and put result on the stack.

Page 42

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

FX^Y f1 f2 — f3
“f-x-to-the-y”

Raise f1 to the power f2 and put the result on the stack.

Words be gin ning with ‘G’

GET-MESSAGE — message task#
“get-message”

Waits for a message to be received and returns the message and the sending task.

Words be gin ning with ‘H’

HALT task# —
“halt”

Halts the task whose number is given. Do not halt task 0. Halting a task prevents it
responding to messages or events.

HALT? — flag
“halt-query”

Tests the keyboard using KEY? to see if a key has been pressed. If no key has
been pressed, a zero flag is returned. If a key has been pressed it is read. If the key
is not a space, a true flag is returned. If the key is a space, another key is read. If the
second key is a space, a false flag is returned, otherwise a true flag is returned.
This word is very useful to control output displays, as it pauses on the space bar,
and any other key returns a true flag, usually used to terminate the display.

HERE — addr
“here”

The address of the next available dictionary location.

HEX —
“hex”

Changes the base for numeric conversion to hexadecimal. The contents of BASE
will be changed to decimal 16.

HOLD char —
“hold”

Char is inserted into a pictured numeric output string. Typically used between <#
and #> to embed a character into numeric output.

Page 43

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Words be gin ning with ‘I’

I — w
“i”

w is a copy of the loop index. Unlike older fig-Forth implementations, in Forth-83
I is not a synonym of R@ which should not be used. May only be used in the
forms:

DO ... I ... LOOP
DO ... I ... n +LOOP

IF flag — (executing)
“if” — sys (compiling)

Used in the forms:

flag IF ... ELSE ... EN DIF
flag IF ... EN DIF
If flag is true, the words following IF are executed and the words following ELSE
until just after the ENDIF are skipped. The ELSE part is optional. If flag is false,
words from IF through ELSE, or from IF through ENDIF (when no ELSE is
used), are skipped. See ELSE ENDIF THEN.

IMMEDIATE —
“immediate”

Marks the most recently created dictionary entry as a word which will be
executed when encountered during compilation rather than compiled.

INIT-MULTI —
“init-multi”

Initialises the multi-tasker, task 0 which is the Forth itself, and starts the
multi-tasker. Just include this word in COLD to kick the multi-tasker into action.

INIT-TCBS —
“init-t-c-bees”

The main part of the multi-tasker reset process.

INTEGERS —
“integers”

Switches the action of NUMBER? to be INTEGER?. This action reverses that
of FLOATS. Both FLOATS and INTEGERS are in the FORTH vocabulary.

INTERPRET —
“interpret”

The outer text interpreter which interprets or compiles each word from the input
stream according to the state of the variable STATE. If the word is not in the
dictionary, a number conversion is attempted. If this fails, an error is reported.
Text input is performed by WORD and numeric conversion is performed by
NUMBER?.

Page 44

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Words be gin ning with ‘J’

J — w
“j”

w is the index of the next outer loop. May only be used within a nested DO ...
LOOP or DO ... +LOOP structure in the form, for example:

DO ... DO ... J ... LOOP ... +LOOP

Words be gin ning with ‘K’

KEY — char
“key”

Receives a character from the console/terminal or input stream. All valid
characters can be received. According to the Forth 83 standard, control characters
should not be processed by KEY or the host system for any editing purpose.
Characters received by KEY will not be displayed.

KEY? — flag
“key-query”

Returns a true flag if a character is available for input by KEY.

Words be gin ning with ‘L’

LATEST — addr
“latest”

Returns the address of the most recently defined word in the CURRENT
vocabulary (the one words are being compiled into).

LEAVE — ; I
“leave”

When LEAVE is encountered the loop terminates immediately, and execution
resumes after LOOP or +LOOP. When the loop terminates the loop control
parameters are discarded. May only be used in the forms:

DO ... LEAVE ... +LOOP
LEAVE may appear within other control structures which are nested within the
DO ... LOOP structure. More than one LEAVE may appear within a DO ...
LOOP structure.

LINK>N lfa — cfa
“link-to”

Converts a word’s link field address to its compilation address (cfa).

Page 45

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

LIT — n
“lit”

The primitive compiled by LITERAL to return an in-line value. When a number
such as 33 is encountered while compiling, it is compiled as LIT 33 into the
dictionary, and is returned by LIT when the word executes.

LITERAL 16b — (compiling)I
“literal”

Typically used in the form:

[16b] LIT ERAL
Compiles a system dependent operation so that when later executed, 16b will be
left on the stack. Unlike its fig-Forth counterpart, this word is not state-smart. See
LIT

LOOP sys — (compiling)I
“loop” — (executing)

Increments the DO-LOOP index by one. If the new index crosses the boundary
between limit-1 and limit, the loop is terminated and loop control parameters are
discarded. When the loop is not terminated, execution continues to just after the
corresponding DO.

Words be gin ning with ‘M’

M* n1 n2 — d
“m-star”

Two sixteen bit signed numbers are multiplied together to produce a 32 bit signed
number.

M/MOD d1 n2 — n3 n4
“m-slash-mod”

A signed mixed magnitude operator. NOT the same as the fig-Forth word of the
same name, which is replaced by MU/MOD. The 32 bit d1 is divided by the 16 bit
n2 to produce a 16 bit remainder n3 and a 16 bit quotient n4. Note the use of
floored division.

MAX n1 n2 — n3
“max”

n3 is the greater of n1 and n2 according to the operation of <.

MIN n1 n2 — n3
“min”

n3 is the lesser of n1 and n2 according to the operation of >.

Page 46

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MOD n1 n2 — n3
“mod”

n3 is the remainder after dividing n1 by the divisor n2. The sign of n3 is
determined by the rules of floored division.

MOVE addr1 addr2 count —
“move”

An intelligent version of CMOVE that copies count bytes starting at addr1 to
addr2, such that the destination block is always an image of the source block.
Useful when the ranges may overlap.

MSG? task# — t/f
“message-query”

Returns true if the task is holding a message, and is therefore not free to receive
another one.

MU/MOD ud1 u2 — u3 ud4
“m-u-slash-mod”

An unsigned mixed magnitude operator. Double number ud1 is divided by u2 to
give a remainder u3 and a double quotient ud4. This word is only necessary as the
Forth-83 UM/MOD does not return a double quotient as did its fig-Forth forbear.
Be careful not to confuse UM/MOD (part of the Forth-83 standard) with
MU/MOD (not part of the standard, introduced by F83).

MULTI —
“multi”

Turns the multi-tasker on, by clearing the bit in the TASK# byte in internal RAM
that inhibits the scheduler.

Words be gin ning with ‘N’

N>LINK cfa — lfa
“to-link”

Converts the compilation address of a word (in this case the cfa) to the address of
its name field.

NAME> nfa — cfa
“name-to”

Converts a word’s name field address to its compilation address (cfa).

NEGATE n1 — n2
“minus”

n2 is the two’s complement of n1, i.e., the difference of zero less n1.

Page 47

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

NIP n1 n2 — n2
“nip”

Removes the second item on the stack. Used for cleaning up.

NOOP —
“no-op”

A dummy word that does nothing.

NOT 16b1 — 16b2
“not”

16b2 is the one’s complement of 16b1.

NUMBER? addr — n1..nn n
“number-query”

Performs the function of converting text to binary numbers. The counted string at
addr is converted to a number. If conversion is possible the number of words
generated is left on the top of the stack as well as a number of that size.

No con ver sion — 0
Sin gle number — n 1
Dou ble number — d 2
Soft float ing point — f 3
If a comma is encountered, the variable DPL will contain the number of digits
after the comma, otherwise DPL contains -1. See #LITERAL

Words be gin ning with ‘O’

OF sys — (compiling)I
“of” n1 n2 — (executing & n1=n2)

n1 n2 — n2 (executing & n1n2)
Used to mark the start of a section of code conditionally executed in a CASE ...
OF ... ENDOF ... ENDCASE control structure. If n1 is equal to n2 the code
between OF and ENDOF is executed, and control then passes to immediately
after ENDCASE. Otherwise control passes to immediately after the next
ENDOF, n1 being kept so that another test can be made in front of another OF ...
ENDOF clause.

OFF addr —
“off”

Clears (zeros) the word at the given address. Used for resetting flags, and clearing
counters. See ON

ON addr —
“on”

Sets the word at addr to -1. Used for setting flags.

Page 48

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ONLY —
“only”

Reduces the search order to be just the ROOT vocabulary, which is a short
vocabulary from which all others can be reached.

OR 16b1 16b2 — 16b3
“or”

16b3 is the bit-by-bit inclusive-or of 16b1 with 16b2.

ORDER —
“order”

Displays the order in which vocabularies are searched, starting with the first one
searched (the CONTEXT vocabulary). The vocabulary into which definitions
are built (the CURRENT vocabulary) is also displayed.

OVER 16b1 16b2 — 16b1 16b2 16b1
“over”

Copies the second item on the stack to the top of the stack. Like DUP this word is
useful for getting a copy of a stack item for passing as a parameter to another
word. See DUP

Words be gin ning with ‘P’

PAD — addr
“pad”

The base address of a scratch area used to hold text and string data for
intermediate processing. The address or contents of PAD may change and the
data lost if the address of the next available dictionary location is changed.

PAUSE
“pause”

Waits for one iteration of the scheduler. Equivalent to:

1 WAIT

RESTART task# —
“restart”

Restarts a task that was halted by HALT or WAIT. Unlike ACTIVATE, the task
resumes where it left off.

PICK +n — 16b
“pick”

16b is a copy of the +nth stack value, not counting +n itself, where 0 refers to the
top of the stack.

Page 49

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

0 PICK is equiva lent to DUP
1 PICK is equiva lent to OVER

PLACE addr1 len addr2 —
“place”

Copies an uncounted string addr1/len to a counted string at addr2

PREVIOUS —
“previous”

Reduces the vocabulary search order by deleting the first entry in the list. Used
with ALSO to temporarily add a vocabulary to the search list:

ALSO TOOLS PRE VI OUS

Words be gin ning with ‘Q’

QUERY —
“query”

Input 80 characters of text (or until a carriage-return) from the user’s terminal.
The text is placed at the address contained in TIB and the variable >IN (position
in input line) is set to zero. See EXPECT

QUIT —
“quit”

Clears the return stack, sets interpret state, accepts new input from the current
input data device, and begins text interpretation. No message is displayed.

Words be gin ning with ‘R’

R@ — 16b
“r-fetch”

16b is a copy of the top of the return stack. The return stack is unaffected.

R> — 16b
“r-from” or “from-r”

16b is removed from the return stack and transferred to the data stack.

RAD>DEG f1 — f2
“rad-to-deg”

Convert f1 radians to degrees, and put result on the stack.

Page 50

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

RECURSE — ; I
“recurse”

Compiles the compilation address (cfa) of a word inside the definition of a word.
Normally a word name is not available until its definition is complete, so that a
word can be redefined in terms of its previous definition. If recursion is required,
this mechanism must be overcome, and that function is performed by
RECURSE.

REPEAT sys — (compiling)
“repeat” — (executing)

Used in the form:

BE GIN ... flag WHILE ... RE PEAT
At execution time, REPEAT continues execution to just after the corresponding
BEGIN. See: BEGIN WHILE

RESET-BIT mask addr —
“reset-bit”

A bit masking operation performed on the byte at addr. All the ‘1’ bits in the mask
are reset in the byte. Logically, the equivalent of NOT AND.

RESTART task# —
“restart”

Restarts a task that was halted by HALT or WAIT. Unlike ACTIVATE, the task
resumes where it left off.

RESTORE-INT —
“restore-int”

Restore the interrupt enable state previously saved by SAVE-INT.

ROLL +n —
“roll”

The +nth stack value, not counting +n itself is first removed and then transferred
to the top of the stack, moving the remaining values into the vacated position. If n
is negative no action is taken. n=0 refers to the top of the stack. Note also that this
is a slow operation as data is actually copied.
Frequent use of ROLL is often a sign of bad factorisation of the problem into
separate words.

2 ROLL is equiva lent to ROT
1 ROLL is equiva lent to SWAP
0 ROLL is a null op era tion

ROT n1 n2 n3 — n2 n3 n1
“rote”

The top three stack entries are rotated, bringing the deepest to the top.

Page 51

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

RP! addr —
“r-p-store”

The return stack pointer is set to the given value. The stack can be reset to its
original value by the phrase:

R0 @ RP!
See also RP@ R0 SP@ SP! S0

RP@ — addr
“r-p-fetch”

Returns the current value of the return stack pointer. See also R0 RP! S0 SP!
SP@

Words be gin ning with ‘S’

S>D n — d
“s-to-d”

The signed 16 bit number n is converted to a signed 32 bit number d.

S>F n — f
“s-to-f”

Converts a single (16 bit) number to a normalized f.p. number.

S= addr1 addr2 length — flag
“s-equals”

The two strings at addresses addr1 and addr2, length bytes long, are compared,
and if they are identical a true flag is returned.

SAVE-BUFFERS —
“save-buffers”

The contents of all block buffers marked as UPDATEd are written to their
corresponding mass storage blocks. All buffers are marked as no longer being
modified, but remain assigned.

SAVE-INT —
“save-int”

Saves the current state of the interrupt enable, and disables interrupts. See
RESTORE-INT.

SCAN addr len char — addr’ len’
“scan”

A text scanning primitive. Given the address of some ASCII text, the number of
bytes to go, and the character to look for, the text is scanned for the given
character. The address at which the character was found, and the number of bytes
remaining is returned. If the number of bytes remaining is 0, the character was not
found. See SKIP

Page 52

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

SELF — task#
“self”

Returns the task number of the current task. Useful with MSG? in particular to
determine whether or not a message has been received by the task.

SEND-MESSAGE message task# —
“send-message”

Sends a message to the given task. The message can be used on its own, or as a
pointer to an extended message.

SET-BIT mask addr —
“set-bit”

A byte-wide bit masking operation. All ‘1’ bits in the mask are set in the byte at
addr. Logically equivalent to OR. See RESET-BIT TEST-BIT TOGGLE-BIT

SIGN n —
“sign”

If n is negative, an ASCII “-” (minus sign) is appended to the pictured numeric
output string. Typically used between <# and #>.

SINGLE —
“single”

Turns off the multi-tasker by setting the scheduler disable bit in the TASK# byte
in internal RAM.

SINT f — n
“sint”

Takes the single number integer part of f and puts it on the stack.

SKIP addr len char — addr’ len’
“skip”

As SCAN, but SKIP looks for the first character that is NOT the specified
character. See SCAN

SMUDGE —
“smudge”

Toggles the ‘smudge’ bit of the most recently defined words name field. If the bit
is set the word cannot be found by a normal dictionary search. If an error occurs
during compilation the phrase:

SMUDGE FOR GET <name>
can be used to remove from the dictionary the word in which the error occurred.

SOURCE — addr len
“source”

Returns the address and length of the current input buffer. This will be the text
input buffer or the disc buffer, depending on the value of BLK.

Page 53

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

SP! addr —
“s-p-store”

Sets the parameter stack pointer to the given value.

SP@ — addr
“s-p-fetch”

Returns the current value of the parameter stack pointer.

SPACE —
“space”

Display an ASCII space.

SPACES n —
“spaces”

Display +n ASCII spaces. Nothing is displayed if n is zero or negative.

STATE — addr
“state”

The address of a variable containing the compilation state. A non-zero content
indicates compilation is occurring, but the value itself is system dependent. A
standard program may not modify this variable. Usually only used by
‘state-smart’ words (e.g. ASCII) in application programs to determine whether
Forth is compiling or executing.

STATUS — n
“status”

Returns the task status byte of the current task but with the top bit (bit 7) masked
off. If this value is non-zero, the task has been awakened for a reason other than
for normal running.

SWAP 16b1 16b2 — 16b2 16b1
“swap”

The top two stack entries are exchanged.

Words be gin ning with ‘T’

TCBS — addr
“t-c-b-st”

A label, NOT a word, that returns the start address in DATA RAM of the table
holding the action words for all the tasks. In some systems this is implemented as
a constant for visibility.

Page 54

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

TEST-BIT mask addr — b
“test-bit”

A byte-wide bit-masking operation. b is the result of testing all the bits at addr that
are ‘1’ bits in the mask. Logically equivalent to AND.

THEN sys — (compiling)
“then”

Used in the forms:

flag IF ... ELSE ... THEN
flag IF ... THEN
THEN is the point where execution continues after ELSE, or IF when no ELSE
is present. sys is balanced with its corresponding IF or ELSE. See: IF ELSE
ENDIF

THRU n1 n2 —
“thru”

Screens n1 to n2 inclusive are loaded.

TIB — addr
“t-i-b”

The address of the text input buffer. This buffer is used to hold characters when
the input stream is coming from the current input device.

TO-DO — (compiling)I
“to-do” cfa — (executing)

Sets the action of the defered word by writing the cfa into the parameter field
(body) of a word created by DEFER. Used in the form:

AS SIGN action- word TO- DO word

TO-EVENT cfa task# —
“to-event”

Sets the CFA of a Forth word as the action to run when the task’s event trigger is
set.

AS SIGN <word> <n> TO- EVENT

TO-TASK cfa task# —
“to-task”

Stores the CFA of the word forming the task action in the task table entry for the
task.

AS SIGN <word> <n> TO- TASK

TOGGLE-BIT mask addr —
“toggle-bit”

A byte-wide bit-masking operation. All the ‘1’ bits in the mask are inverted at
addr. Logically equivalent to XOR. See TEST-BIT SET-BIT RESET-BIT
TOGGLE

Page 55

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

TUCK n1 n2 — n2 n1 n2
“tuck”

Saves a copy of the top item on the stack under the second item.

TYPE addr n —
“type”

+n characters are displayed from the character at addr and continuing through
consecutive addresses. Nothing is displayed if n is zero.

Words be gin ning with ‘U’

U. u —
“u-dot”

u is displayed as an unsigned number in a free-field format.

U< u1 u2 — flag
“u-less-than”

The flag is true if u1 is logically less than u2.

U> u1 u2 — flag
“u-greater-than”

The flag is true if u1 is logically greater than u2.

UM* u1 u2 — ud
“u-star”

Two unsigned 16 bit numbers are multiplied together to produce an unsigned 32
bit number.

UM/MOD ud u1 — u2 u3
“u-m-slash-mod”

The 32 bit unsigned number ud is divided by the unsigned 16 bit number u1 to
produce 16 bit unsigned numbers. The remainder is u2 and the quotient is u3.

UNTIL sys — (compiling) I
“until” flag — (executing)

Used in the form:

BE GIN ... flag UN TIL
Marks the end of a BEGIN ... UNTIL loop which will terminate based on the
state of flag. If flag is true, the loop is terminated. If flag is false, execution
continues to just after the corresponding BEGIN. See: BEGIN

UPC char1 — char2
“u-p-c”

If char1 is a lower case letter, it is converted to upper case. See UPPER

Page 56

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

UPDATE —
“update”

The currently valid block buffer is marked as modified. Blocks marked as
modified will subsequently be automatically transferred to mass storage should
its memory buffer be needed for storage of a different block or upon execution of
FLUSH or SAVE-BUFFERS.

UPPER addr len —
“upper”

The string of len bytes starting at addr is converted to upper case using UPC. See
UPC.

USER n —
“user”

A defining word used in the form:

n USER cccc
which defines a user variable whose address is n bytes from the start of the user
area. When the user variable cccc is executed the address of its data area is
returned. User variables usually contain system information which will be
affected by a multi-user or multi-tasking environment. The base address of the
user area is held in the UP register.

Words be gin ning with ‘V’

V-FIND addr1 addr2 — cfa +/-1
“paren-find” addr1 addr2 — addr1 0

A vocabulary defined by addr2 is searched. Each word name is tested against the
string at addr1. If a match is found, the cfa, and a flag are returned. The flag is 1 for
an immediate word, and -1 for a normal word. If no match is found, the string
address and a 0 are returned. The vocabulary address addr2 is the same address as
is set into CONTEXT by executing it.

VARIABLE —
“variable” — addr [child]

A defining word executed in the form:

VARI ABLE <name>
A dictionary entry for <name> is created and two bytes are ALLOTted in its
parameter field. This parameter field is to be used for the contents of the variable.
The contents are initialised to zero. When <name> is later executed, the address
of its parameter field is placed on the stack.

VOCABULARY —
“vocabulary” — [child]

A defining word executed in the form:

Page 57

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

VO CABU LARY <name>
A dictionary entry for <name> is created which specifies a new ordered list of
word definitions. Subsequent execution of <name> replaces the CONTEXT
vocabulary with <name>. When <name> becomes the compilation vocabulary
new definitions will be appended to <name>’s list. See: DEFINITIONS
CONTEXT CURRENT V-FIND

VOCS —
“vocs”

Displays a list of all the vocabularies in the dictionary.

Words be gin ning with ‘W’

WAIT n —
“wait”

Suspends the current task for n iterations of the scheduler. If n is 0, the task is
suspended until a message or event are received.

 WAIT-EVENT/MSG —
“wait-event-or-message”

The current task is suspended until it receives a message or an event trigger. The
words MSG? and EVENT? can be used to determine whether a message or an
event trigger terminated the wait. Note that if an event trigger is received, the
event handler will have been called, and the event run flag (bit 4 in the status byte)
will be set.

WHILE sys — sys (compiling)
“while” flag — (executing)

Used in the form:

BE GIN ... flag WHILE ... RE PEAT
Selects conditional execution based on flag. When flag is true, execution
continues to just after the WHILE through to the REPEAT which then continues
execution back to just after the BEGIN. When flag is false, execution continues
to just after the REPEAT, exiting the control structure. See: BEGIN REPEAT

WITHIN? n1 n2 n3 — flag
“within”

The flag is returned true if n1 is in the range n2..n3 inclusive.

WORD char — addr
“word”

Generates a counted string by non-destructively accepting characters from the
input stream until the delimiting character char is encountered or the input stream
exhausted. Leading delimiters are ignored.

Page 58

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The entire character string is stored in memory beginning at ‘WORD as a
sequence of bytes. The string is followed by a blank which is not included in the
count. The first byte of the string is the number of characters {0..255}. If the string
is longer than 255 characters, the count is unspecified. If the input stream is
already exhausted as WORD is called, then a zero length character string will
result. The address returned is the address at which the string was placed.

WORDS —
“words”

Lists the names of the words in the CONTEXT vocabulary. Pressing the space
bar will halt the listing, which can be restarted by pressing the space bar again.
Any other key will cause the listing to abort.

Words be gin ning with ‘X’

XOR 16b1 16b2 — 16b3
“x-or”

16b3 is the bit-by-bit exclusive-or of 16b1 with 16b2.

Words be gin ning with ‘Y’
None

Words af ter ‘Z’

[— ; I
“left-bracket” — (compiling)

Switches to the interpretation state. The text from the input stream is subsequently
interpreted. For typical use see LITERAL. The use of [and] must be balanced.

[COMPILE] — (compiling) ; I
“bracket-compile”

Used in the form:

[COM PILE] <name>
Forces compilation of the following word <name>. This allows compilation of an
immediate word when it would have otherwise have been executed.

Page 59

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

\ — I
“back-slash”

Defines a comment to the end of the input line. This word can be used with any
input source.

] —
“right-bracket”

Sets compilation state. The text from the input stream is subsequently compiled.
For typical usage see LITERAL. The use of [and] must be balanced. See: [.

Page 60

Target glossary MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Blank page

Page 61

MPE 80x96 Forth Cross Compiler Target glossary

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Word list

!
! 16
!CSP 16, 27
“” 17- 18
“, 17
16, 25
#~ 16- 17, 25, 49, 61
#LIT ERAL 17, 55
#S 17, 25
‘ 17
‘WORD 68
(1, 18
(”) 18
(EMIT) 2, 37
) 18
)ELSE(1-2, 8
)EN DIF 1-2, 8
* 18
*/ 18
*/MOD 18
+! 19
+ 19, 22- 23
+LOOP 19, 28, 38, 51
, 19, 33
,(R) 19
- 19, 22- 23
—~ 12, 19
-1 20
-ROT 20
-TRAI LING 20
. 20
." 20
.(20
.BYTE 21
.NAME 21
.R 21
.S 21
.WORD 21
/ 21
/MOD 21

/STRING 22
0= 22
0| 22
0|~ 22
0~ 22
1+ 22- 23
1- 22- 23
2! 22- 23
2* 23
2+ 23
2- 23
2/ 23
2@ 23
2DROP 23
2DUP 23
2OVER 23
2SWAP 24
: 7, 24
= 25
? 26
?BRANCH 27
?COMP 27
?CSP 27
?DNE GATE 27
?DO 27, 38
?DUP 28
?ER ROR 28
?EVENT 27
?EXEC 27
?LEAVE 28
?LOAD ING 27
?NE GATE 28
?OF 40
?PAIRS 28
?STACK 27
\ 69
] 9, 69- 70
| 25, 53
|# 16- 17, 25, 49, 61
|= 25

Page 63

MPE 80x96 Forth Cross Compiler Glossary word list

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

|~ 25
|MARK 25
|RE SOLVE 25
~ 26, 53
~= 26
~BODY 26
~IN 26, 57
~LINK 26
~MARK 54
~NAME 26
~R 26
~RE SOLVE 26
A
ABORT 29, 34- 35
ABORT" 29
ABS 29
AC TI VATE 29, 57, 59
AGAIN 29, 31
ALIAS 2
ALIGN 2, 30
ALIGN- ODD 2
ALL 2
AL LOT 2, 19, 30, 67
ALLOT- RAM 2, 30
ALONE 3
ALSO 30, 57
AND 30, 59, 63
AS CII 30
AS SIGN 31
B
BASE 16, 21, 31, 49
BASE- 36 3
BE GIN 29, 31, 58, 65, 68
BELL 31
BL 31
BLANK 32
BLK 26, 32, 62
BLOCK 32
BODY~ 32
BOUND ING 3
BOUNDS 32
BRANCH 27, 29, 32
BS 33
BUFFER 32
C
C! 33
C, 19, 33

C,(R) 19
C/L 33
C@ 33
CASE 33, 40, 55
CLR- EVENT- RUN 33
CMOVE 34, 53
CMOVE~ 34
CODE 24
CODE PAGE 9-10
CODE- PAGE 4
COLD 34, 50
COM PILE 34
CON: 4
CON STANT 34- 36, 44
CON TENTS 2
CON TEXT 37, 56, 66- 68
COUNT 34- 35
CR 35
CRASH 35, 37
CRE ATE 35
CROSS- COMPILE 4-6, 12
CSP 16
CUR RENT 37, 46, 51, 56, 67
D
D+ 36
D- 36
D. 36
D.R 36
DABS 36
DATA- PAGE 4, 9-10
DECI MAL 37
DE FER 35, 37, 64
DEFI NI TIONS 37, 67
DEG~RAD 37
DEPTH 37
DIGIT 37
DINT 38
DISP- ERROR 38
DIS PLAY 2
DNE GATE 38
DNORM 38
DO 19, 28, 32, 38, 41, 51- 52
DOES~ 35, 38- 39
DP 30
DPL 55
DROP 39
DUMP 39
DUP 39, 56

Page 64

Glossary word list MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

E
E. 39
ELSE 1, 8, 39- 40, 50, 63
EMIT 37, 39
EMPTY- BUFFERS 40, 46
EMU- BASE 5
END 40
END CASE 33, 40, 55
EN DIF 1, 8, 39- 40, 50, 63
ENDOF 33, 40, 55
EQU 5
ERASE 40
ER ROR 40
EVENT? 40, 67
EXE CUTE 41
EXIT 25, 41
EX PECT 41, 57
EX TER NAL 5, 11
F
F! 42
F# 43
F#IN 43
F* 42
F+ 42
F, 41
F- 42
F. 41
F/ 42
F10^X 43
F= 42
F=0 42
F@ 43
F| 42
F|0 42
F~ 43
F~0 43
FABS 43
FA COS 43
FAR RAY 44
FA SIN 44
FA TAN 44
FCON STANT 44
FCOS 44
FDROP 44
FDUP 44
FE^X 44
FENCE 8

FFRAC 45
FILE: 6
FILL 45
FIND 45
FINIS 6
FINIS- CODE- PAGE 6
FINT 45
FLIT ERAL 45
FLN 45
FLOATS 45, 50
FLOG 46
FLUSH 46, 66
FMAX 46
FMIN 46
FNE GATE 46
FNUM BER? 45- 46
FOR GET 46
FORTH 47, 50
FO VER 47
FROM 1-3, 6, 11- 12
FROM- FILE 1, 3, 6, 11- 12
FROT 47
FSEPER ATE 47
FSIGN 47
FSIN 47
FSQR 47
FSWAP 48
FTAN 48
FVARI ABLE 48
FX^N 48
FX^Y 48
G
GET- MESSAGE 48
H
HALT 48, 57, 59
HALT? 49
HEADS? 7
HERE 9, 19, 49
HEX 49
HOLD 25, 49
HOST&TAR GET 7
HOST- COMPILATION 7, 13
I
I 49
I: 7
IF 1, 8, 39- 40, 50, 63
IF(1-2, 8

Page 65

MPE 80x96 Forth Cross Compiler Glossary word list

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

IM ME DI ATE 7, 50
IN- EMULATOR 8
INIT- FENCE 8
INIT- MULTI 50
INIT- TCBS 50
IN TE GER? 45, 50
IN TE GERS 45, 50
IN TER NAL 8
IN TER PRET 50
IS- FENCE 8
J
J 51
K
KER NEL 4, 9
KERNEL- RAM 4, 9-10
KEY 51
KEY? 49, 51
L
L: 9
LA BEL 10
LAT EST 51
LEAVE 51- 52
LINK~ 52
LIT 38, 52
LIT ERAL 38, 52, 69- 70
LOAD 10, 13
LOAD- USING 10
LOG 10
LOOP 28, 32, 38, 41, 51- 52
M
M* 53
M/MOD 53
MARK 26
MAX 53
MEM- BASE 11
MEM- END 11
MIN 53
MOD 53
MOVE 34, 53
MSG? 53, 61, 67
MU/MOD 53- 54
MULTI 54
N
NAME~ 54
NE GATE 54

NIP 54
NO- HEADS 5, 7, 11
NO- LOG 11
NOOP 54
NOT 55, 59
NUM BER? 17, 45, 50, 55
O
OF 33, 40, 55
OFF 55
ON 55- 56
ONLY 56
ON WARDS 11
OR 56, 61
OR DER 56
ORG 11
OUT 33, 35
OUTPUT- EMULATOR 12
OVER 56
P
P 1
PAD 56
PAGE- WORD 4
PAGED- VOCABULARY 12
PAUSE 56
PICK 57
PLACE 57
PRE VI OUS 57
PRN: 12
PTO 12
Q
QUERY 57
QUIT 29, 58
R
R0 59- 60
R@ 49, 58
R~ 58
RAD~DEG 58
RE CURSE 58
RE PEAT 31, 58, 68
RESET- BIT 59, 61, 64
RE SOLVE~ 26
RE START 12- 13, 57, 59
RESTORE- INT 59- 60
ROLL 59
ROOT 56
ROT 47, 59

Page 66

Glossary word list MPE 80x96 Forth Cross Compiler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

RP! 59- 60
RP@ 59- 60
S
S 1
S0 59- 60
S= 60
S~D 60
S~F 60
SAVE- BUFFERS 46, 60, 66
SAVE- INT 59- 60
SCAN 22, 60- 61
SELF 61
SEND- BYTE 2
SEND- MESSAGE 61
SET- BIT 61, 64
SIGN 25, 61
SIN GLE 61
SINT 61
SKIP 22, 61
SMUDGE 62
SOURCE 62
SP! 59- 60, 62
SP@ 59- 60, 62
SPACE 62
SPACES 62
SPAN 41
STATE 50, 62
STATUS 63
SUS PEND 13
SWAP 48, 63
T
TAB 63
TAB- WIDTH 63
TARGET- COMPILATION 7, 13
TARGET- ONLY 7
TARGET- WIDTH 11, 13
TASK# 61
TEST- BIT 61, 63- 64
THEN 39- 40, 50, 63
THERE 19
THRU 6, 13, 63
THRU- USING 6, 13
TIB 32, 57, 64
TO- DO 31, 64
TO- EVENT 64
TO- TASK 64
TOG GLE 64

TOGGLE- BIT 61, 64
TUCK 64
TYPE 17, 64
U
U. 65
U| 65
U~ 65
UM* 65
UM/MOD 54, 65
UN TIL 31, 65
UPC 65- 66
UP DATE 32, 60, 66
UP PER 65- 66
USE 14
USE- CODE 14
USE- DATA 14
USER 66
US ING 14
V
V- FIND 66- 67
VARI ABLE 35- 36, 66
VO CABU LARY 47, 67
VOCS 67
W
WAIT 57, 59, 67
WAIT- EVENT/MSG 67
WARM 68
WHILE 31, 58, 68
WITHIN? 68
WORD 22, 26, 50, 68
WORDS 68
X
XOR 69

Page 67

MPE 80x96 Forth Cross Compiler Glossary word list

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

