MPE Forth Cross Compiler

8096/80C196 Target

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8096/80C196 Cross Compiler

USER MANUAL

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

8096/80C196 Target

Version: 5.100

User Manud

Revision: 1.00

Date: 29 March 1993

Package No:

For technical support:

Please contact your supplier

For further information:

MicroProcessor Engineering Limited
133 Hill Lane, Southampton

SO1 5AF, UK

Tel: 0703 631441

Fax: 0703 339691

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 8096/80C196 Cross Compiler
Copyright ©

Microprocessor Engineering Limited
1993

Acknowledgements

MPE wouldliketothank thefollowing peoplefor all their involve-
ment in the production of this product:

Jon Lee, Stephen Pelc, Paul Gallienne

Microprocessor Engineering Limited
133 Hill Lane
Southampton
SO1 5AF, UK

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Table of contents

Table of contents

Chapter 1 - Installing the system 1
System requirements 1
Running the installer 1
Selecting the installation drive 1
Selecting the installation path 1
Standard or custom installation? 2
Standard installation 2
Custom installation system 2

Chapter 2 - The MPE Development system 5
XShell - the development environment 5
MPE Forth cross-compiler 5
ROM target Forth 6
Umbilical Forth 6
Leburg EPROM emulator drivers 7
PC PowerForth 7

Chapter 3 - Generating a ROM target Forth 9
Is your board already supported? 9
The control file 9
The memory map 10
Modifying the serial line drivers 12
Setting up the system 14
Cross-compiling 16
Downloading the compiled image 18
Running the target Forth 19
Cross-compiling an application 20

Chapter 4 - Generating an Umbilical Forth target 23
Requirements for Umbilical Forth 23
Isyour board already supported? 23
The control file 24
The memory map 24
Modifying the serial line drivers 26
Setting up the system 28
Cross-compiling 30
The compilation summary 31
Running the target Forth 31
Cross-compiling an application 32

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Table of contents MPE 80x96 Forth Cross Compiler

Chapter 5 - Optimising your target Forth 35
Reducing the size of your image 35
Chapter 6 - 80x96 Cross-assembler 39
Why write in assembler? 39
Creating Forth words in assembler 39
Assembling into memory 40
Creating defining words in assembler 41
Structured programming 41
Creating macros 44
Instruction syntax 45
Glossary 51
Chapter 7 - Multitasker 53
Initialising the multitasker 53
Writing a task 4
Initialising a task 55
Controlling tasks 55
Handling messages 57
Creating events 57
The multitasker’s internals 59
A smple example 59
Glossary 62
Chapter 8 - Interrupts 65
Interrupts on the 80x96 65
Writing Forth interrupt handlers 66
Writing assembler interrupt handlers 67
Controlling the interrupts 67
A simple example 68
Glossary 70
Chapter 9 - Software floating point 71
Entering floating point numbers 71
The form of floating point numbers 71
Creating variables 71
Creating constants 72
Using the supplied words 72
Setting degrees or radians 73
Displaying floating point numbers 74
Glossary 75
Chapter 10 - ROM PowerForth Utilities 81
Compiling text files 81
Compiling screen files 83
Downloading a binary image 84
ROM PowerForth 86
Glossary 89

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

Table of contents

Chapter 11 - Paged targets
Creating a paged target
Compiling code into a page
Compiling datainto a page

Chapter 12 - Controlling the compiler
Starting the cross-compiler
Stopping the cross-compiler
Aligning generated code
Enabling floating point
Setting postfix or prefix assembler
Turning the log on and off
Selecting code and data page
Conditional compilation

Chapter 13 - Forth on the target
Inside Umbilical Forth
The Forth memory map

Chapter 14 - Optimizing your development cycle
Speeding up the compilation
Speeding up the downloading

Chapter 15 - Technical glossary

Chapter 16 - Further information
MPE courses
Recommended reading

Appendix A - Converting targets from v4 to v5
Defining the memory map
Using an EPROM emulator
Selecting the compilation page

Appendix B - An example control file
Thefirst page
Setting the cross-compiler search order
L oading macros
Configuring for an EPROM emulator
Activating the floating point
Turning on the cross-compiler
Setting the targets search order
Setting the assembler type
Setting any alignment peculiarities
Displaying the cross-compile log
Defining the memory map
Output into EPROM emulator
Selecting compilation pages
Configuring for ROM PowerForth

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

93
94
96
96

99
29
29
29
100
100
101
101
101

103
104
105

107
107
108

111

113
113
113

115
115
115
115

117
117
117
118
118
118
118
118
119
119
119
119
120
120
120

http://www.pdffactory.com

Table of contents MPE 80x96 Forth Cross Compiler

Defining the number of tasks 121
Defining the user areasize 121
Setting the stack sizes 121
Setting the Text Input Buffer size 121
Calculating the memory per task 121
Calculating the total memory requirement 122
Setting RAM for interrupt handlers 122
Allocation of RAM 122
Setting task 0's stacks 122
Page 0 Register file allocation. 123
Setting the serial line’s baud rate 123
Defining the special registers 124
Initialising the vector table 124
Compiling the kernel 124
Compiling the software floating point 125
Compiling the ROM PowerForth utilities 125
Defining the target sign-on message 125
Defining the last word 125
Setting the chip configuration byte 126
Finishing the cross-compilation 126
Appendix C - Error Messages 127
Genera Forth Errors 0..15 127
System messages 16..31 128
8096/80C196 assembler errors 32..47 128
Module errors 48..63 129
Sourcefile errors 64..79 130
DOS errors 80..112 130
Text file errors 112..127 131
Appendix D - Technical support 133
Technica Support 133
Index 135

iv

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler List of figures

List of figures

Figure 1 - The development system’s directory structure 6
Figure 2 - Example memory map 11
Figure 3 - The target sign-on 18
Figure 4 - Example turnkey application 21
Figure 5 - Example memory map 25
Figure 6 - The umbilical forth sign-on 31
Figure 7 - Example umbilical turnkey application 33
Figure 8 - Use of ;CODE 41
Figure 9 - Example macro definition 43
Figure 10 - Multitasking example 54
Figure 11 - Example assembler interrupt handler 66
Figure 12 - Example paging mechanism 93
Figure 13 - Page switch code for MPE 196 Powerboard 94
Figure 14 - The page switching mechanism 95
Figure 15 - Conditional compilation example 100
Figure 16 - Adding words to the compiler 100
Figure 17 - Conditional compilation example 101
Figure 18 - Umbilical forth message passing 103
Figure 19 - The forth RAM memory map 104
Figure 20 - Example version 4 memory definition 116

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

List of figures MPE 80x96 Forth Cross Compiler

Figure 21 - Example version 5 memory definition 116

Figure 22 - Allocation of RAM 123

Vi

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler List of tables

Table of contents

Chapter 1 - Installing the system 1
System requirements 1
Running the installer 1
Selecting the installation drive 1
Selecting the installation path 2
Standard or custom installation? 2
Standard installation 3
Custom installation system 3

Chapter 2 - The MPE Development System 5
XShell - the development environment 5
MPE Forth cross compiler 6
ROM target Forth 6
Umbilical Forth 7
Leburg EPROM emulator drivers 7
PC PowerForth plus 7

Chapter 3 - Generating a ROM target Forth 9
Is your board already supported? 9
The control file 9
The memory map 10
Modifying the serial line drivers 13
Setting up the system 16
Cross-compiling 18
Downloading the compiled image 20
Running the target Forth 21
Cross-compiling an application 23

Chapter 4 - Generating an Umbilical Forth target 25
Requirements for Umbilical Forth 25
Isyour board already supported? 26
The control file 26
The memory map 28
Modifying the serial line drivers 30
Setting up the system 32
Cross-compiling 34
The compilation summary 35
Running the target Forth 36
Cross-compiling an application 37

vii

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

List of tables MPE 80x96 Forth Cross Compiler

Chapter 5 - Optimising your target Forth 39
Reducing the size of your image 39
Speeding up your code 41

Chapter 6 - HB8/500 Cross assembler 43
Why write in assembler? 43
Creating Forth words in assembler 43
Assembling into memory 45
Creating defining words in assembler 45
Structured programming 46
Creating macros 48
I nstruction syntax 49
Glossary 53

Chapter 7 - Multitasker 57
Initialising the multitasker 57
Writing a task 58
Initialising a task 59
Controlling tasks 60
Handling messages 61
Creating events 62
The multitasker’s internals 63
A smple example 64
Glossary 67

Chapter 8 - Interrupts 71
Interrupts on the H8/500 71
Writing Forth interrupt handlers 71
Writing assembler interrupt handlers 74
Controlling the interrupts 75
A simple example 75
Glossary 78

Chapter 9 - Software floating point 79
Entering floating point numbers 79
The form of floating point numbers 79
Creating variables 80
Creating constants 80
Using the supplied words 80
Setting degrees or radians 82
Displaying floating point numbers 82
Glossary 83

Chapter 10 - ROM PowerForth Utilities 91
Compiling text files 91
Compiling screen files 93
Downloading abinary image 95
ROM PowerForth 96
Glossary 100

viii

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler List of tables

Chapter 11 - Paged targets 103
Creating a paged target 104
Compiling code into a page 106
Compiling datainto a page 107

Chapter 12 - Controlling the compiler 109
Starting the cross-compiler 109
Stopping the cross-compiler 109
Aligning generated code 110
Enabling floating point 110
Setting postfix or prefix assembler 110
Turning the log on and off 110
Selecting code and data page 110
Conditional compilation 111

Chapter 13 - Forth on the target 113
Inside Umbilical Forth 114
Inside aROM target Forth 115
The Forth memory map 115
H8/500 memory map 115

Chapter 14 - Optimizing your development cycle 117
Speeding up the compilation 117
Speeding up the downloading 118

Chapter 15 - Technical glossary 121

Chapter 16 - Further information 123
MPE courses 123
Recommended reading 123

Chapter A - Appendix A

Converting targets from v4 to v5 125
Defining the memory map 125
Using an EPROM emulator 125
Selecting the compilation page 126

Chapter B - Appendix B

An example control file 127
Thefirst page 127
Setting the cross-compiler search order 127
L oading macros 128
Configuring for an EPROM emulator 128
Activating the floating point 128
Turning on the cross-compiler 128
Setting the targets search order 129
Setting the assembler type 129
Setting any alignment peculiarities 129
Displaying the cross-compile log 129

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

List of tables MPE 80x96 Forth Cross Compiler

Defining the memory map 130
Output into EPROM emulator 130
Selecting compilation pages 130
Defining the number of tasks 131
Defining the user area size 131
Setting the stack sizes 131
Setting the Text Input Buffer size 131
Calculating the memory per task 132
Calculating the total memory requirement 132
Setting RAM for interrupt handlers 132
Allocation of RAM 132
Setting the default pages 133
Setting the base register 133
Compiling the kernel 134
Compiling the software floating point 134
Compiling the ROM PowerForth utilities 134
Defining the target sign-on message 135
Defining the last word 135
Setting the interrupt vectors 135
Finishing the cross-compilation 135
Chapter C - Appendix C
Error Messages 137
Genera Forth Errors 0..15 137
System messages 16..31 138
H8/500 assembler errors 32..47 139
Module errors 48..63 140
Sourcefile errors 64..79 140
DOSerrors 80..112 141
Text file errors 112..127 141

Chapter D - Appendix D
Technical support 143
Technical Support 143

X

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Installing the system

Installing the system

Itisrecommended that you install the M PE 80x196 Forth Devel opment System by using
the supplied installer. The installer helps you through the installation process and will
make sure you have all the files you need.

System requirements

To install and use the development system you need:

IBM PC or compatible with DOS version 3 or higher with 480K bytes of
available memory

A hard disc with at least 1.5Mbytes of free disc space

Running the installer

Theinstaller is supplied on issue disc #1.

To install the development system from drive a;, place the installation disc (disc #1) in
drive a: and type aiinstall at the DOS prompt.

Selecting the installation drive

Theinstaller listsal the available drives on your PC. Drive C: can be selected by press-
ing ENTER. If youwant toinstall on adifferent drive, select adrive using the cursor keys
followed by ENTER. Drives A: and B: are included for installing onto a network.

Selecting the installation path

Theinstallation path isthe path to the directory wherethe systemisto beinstalled. Press
ENTER to use the default path.

Page 1

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Installing the system MPE 80x96 Forth Cross Compiler

Standard or custom installation?

Theinstaller asksyou whether you require astandard or custom installation. Select stan-
dardtoinstall the complete system. Select customto chosewhich partsof the systemyou
want to install. Your choice of standard or custom will normally depend on whether:

you are a new user
you have recently upgraded
you are adding features which you didn’t install previously

A new user

If you are anew user and so are unfamiliar with MPE Forth devel opment systems, you
should install the complete system by selecting standard. This givesyou the ability to
explore what the development system has to offer.

Recent upgrade

If upgrading your development system, select standard. Thisinstalls the whole system
as software versions are incompatible.

Adding to the system

Select customto choosewhichitemstoinstall. If you have previously installed only part
of the development system, but you now want to install more of the system, select cus-
tom.

Standard installation

If you selected the standard installation, the installer installs the compl ete devel opment
system. It prompts for certain information:

PC PowerForth path
The XShell path

It then prompts for the discs it needs.

Custom installation system

If acustom installation has been selected, the installer will prompt for certain informa-
tion:

Theitemsto install

Page 2

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Installing the system

The EPROM emulator driver required
The EPROM emulator base address
The PC Powerforth path

The XShell path

Theitemsto install

Theinstaller needsto know what parts of thedevel opment systemyouwant toinstall. By
selecting Y ESfor anitem, theitemwill beinstalled. The space bar togglesbetween YES
and NO.

The emulator driver

Thedevel opment systemissuppliedwith twodriversfor the LeBurg EPROM emulator:
TSR021
TSR041

If you are going to use the LeProm emulator, select TSR0O21. If you are going to use the
LeMeg or the LeBig emulators, select TSR041. If no EPROM emulator is going to be
used, select thedon't install a driver .

The emulator base address
Theinstall needs to know what PC port address to map the emulator driver.

PowerForth path

PC PowerForthisaForthfor your PC. Typethe path of whereyou want it to beinstalled.
Press return to use the default path.

X Shell path

X Shell isthe cross compiler environment supplied aspart of the development system. It
isrequired to use the cross-compiler. Pressreturn to use the default path.

Page 3

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Installing the system MPE 80x96 Forth Cross Compiler

Blank page

Page 4

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The MPE development system

The MPE Development system

Now that you haveinstalled the MPE devel opment system, you may be wondering what
you havegot. The MPE devel opment systemisto the Forth-83 standard and consi stsof :

XShell - the development environment
the MPE Forth cross compiler with source
source for generating a ROM target Forth
source for generating an Umbilical Forth
driversfor the LeBurg emulators
PowerForth with communication utilities

The installer creates, by default, the directory structure of figure 1. The place where
XShell and PC PowerForth can be found may differ if the default directories where
changed during installation.

XShell - the development environment
The MPE Devel opment System isbased around X Shell. X Shell isthe environment used
to:

Ccross-compile source code

communicate with the target

download the image to an EPROM emulator or programmer

edit your source code

run any DOS tools

X Shell givesyou acomplete environment to generate, compileand execute codefor your
target board. For more detailed information see the XShell manual. Theinstaller places
XShell in the directory X S3.

M PE Forth cross compiler

The cross compiler can generate either a ROM target Forth or an Umbilical Forth from
your source code. The source codefor the crosscompiler issupplied, so that you can ex-
tend the compiler and rebuild it from scratch if required.

Page 5

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The MPE development system MPE 80x96 Forth Cross Compiler

X196 Chip—7—Configs
—Drivers
—Examples

-Rom——Configs
—Drivers
—Partial
—Paging
—Romforth
—Examples

Softfp
~-Compiler—Source Decomp

-Emustsr

-Pforth

- XShell

Figure 1 - The devel opment system's directory structure

The compiler can automate the generation of paged targets and also has a built-in cross-
assembler. The compiler isinthedirectory COMPILER and the sourceisin thedirectory
COMPILER\SOURCE and COMPILER\SOURCE\DECOMP.

ROM target Forth

Source code is supplied for developing a ROM target Forth. The Forth generated has a
multitasker and software floating point.

It also has alarger wordset than an Umbilical Forth target, but islarger at 8K or more. If
you require the multitasker, you must generate aROM target Forth. Theinstaller places
the ROM target source code in the directory ROM. See chapter 3 on how to generate a
ROM target Forth.

Umbilica Forth

Source code is supplied to generate an Umbilical Forth. Umbilical Forth is a signifi-
cantly smaller Forth than the ROM target Forth, so an interactive Forth can be generated
which issmaller than 2K. Umbilical Forth does not have all words defined in the ROM
target Forth, but is useful if ROM spaceis at a premium. The Umbilical Forth source
code inisthe directory CHIP.

Page 6

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The MPE development system

Leburg EPROM emulator drivers

Thecross compiler can directly download code, asit isgenerated, to aLeBurg emulator.
Thisisdone viaoneof two TSR’s:

TSR021.COM - LeProm

TSR041.COM - LeMeg and LeBig

These arein the directory EMU-TSR.

PC PowerForth

PC PowerForth isaForth for your PC. It can be used to prototype code in the host envi-
ronment before porting to your target board. The installer places PC PowerForth in the
directory \PForth.

Supplied with PC PowerForthisXC-COMM. XC-COMM isasuite of additional com-
munication tools that can be used to communicate with atarget. Theinstaller placesthe
communication untility in the directory PForth\XC-COMM.

Page 7

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The MPE development system MPE 80x96 Forth Cross Compiler

Blank page

Page 8

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating a ROM target Forth

Generating a ROM target Forth

This chapter describes how to generate a ROM target Forth for your target board. It
guides you through:

setting up your hardware and software
writing the seria line drivers

modifying the memory map for your board
compiling and running a target Forth

Suppliedwith your crosscompiler are configurationsfor specific boards. 1f you haveone
of these boards, the generating of atarget forthisgreatly simplified. 1f you do not havea
supported board you will have to configure the cross compiler for your board and write
new seria line drivers.

|s your board already supported?

If you have the MPE 196 Powerboard you can use the supplied control files. Thereare
filesfor both the KB and K C variants of the 80196. By using one of thesetheinstallation
of aROM target Forth for your board will be greatly simplified. The control file to use
will depend on the type of board you have. If you have the KB variant use
MPB196KB.CTL asyour control file. If youhavetheKC variant useM PB196KC.CTL.
Thesefiles are in the directory ROM\CONFIGS.

If you do not have thisboard you will haveto modify acontrol fileand seria linedrivers
for your board.

The control file

The control file contains all the details of your board that the cross compiler needs to
know. Thisincludes:

the memory map of your board

whether you wish alog to be displayed

the number of tasksin your system

the clock rate of your board

Page 9

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

Aswell ascontaining configuration information, the control file containscompiler direc-
tives and alist of fileswhich are to be cross compiled.

Once the cross compiler knows these items, it can generate a correct binary image from
your source code. An example control fileis shown in Appendix B.

Creating a control file

To create anew control file, copy an existing one and then modify it to match your board.
Thisisnormally easier than generating onefrom scratch. Examplecontrol filesareinthe
directory ROM\CONFIGS.

The memory map

The memory map describes the addresses where ROM and RAM start and end in your
target system. The memory map is described to the cross compiler in your control file.

The memory map is defined by the:
start of ROM
start of RAM
end of ROM
end of RAM

From thisinformation the cross compiler places any itemsit needsin the correct area of
memory.

Setting the memory map

Thememory map isdescribed in your control file, so once thefile has been created, you
can change the memory map definition to match your board.

The memory map is described in three parts:
the start and end of ROM
the start and end of RAM
the end of memory

Setting the start and end of ROM

The start and end of ROM isdefined by using the compiler directiveKERNEL. KERNEL
isused in the form:

rom-start rom-end KERNEL <name>

where rom-start is the address of the start of ROM, rom-end is the address of the end of
ROM and <name> is the name of the output file. The compiler automatically givesthe

Page 10

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating a ROM target Forth

filename <name> an extension .IMG so <name> must be just a name without an exten-
sion. The numbersrom-start and rom-end are, by default, in decimal, but can be entered
in hex by preceding them by a $.

Thelabel <name> isalso the name of the kernel pagein apaged system. For moreinfor-
mation see chapter 11, Paged targets.

Setting the start and end of RAM

The start and end of RAM is defined by using the compiler directive KERNEL-RAM.
KERNEL-RAM isused in the form:

ram-start ram-end page-id KERNEL-RAM <name>

where ram-start is the address of the start of RAM, ram-end is the address of the end of
RAM, page-idisauniqueidentifier for this areaof memory and <name> isthe namefor
thisareaof memory. The numbersram-start and ram-end are, by default, indecimal, but
can be entered in hex by preceding then by a$.

Thelabel <name>isthe name of the kernel’sdataareain apaged system. Inanon-paged
system <name> is not actually used but must be stated. 1n anon-paged system, page-id
can be set to any number. For moreinformation on paged systems, see chapter 11, Paged
targets.

Setting the end of memory

The compiler needsto know the end of available memory. To set thisuseMEM-END, in
the form:

xXxxx MEM-END

Ram-end FFFF

Ram

Ram-start 8000
Rom-end TFFF

Rom

Rom-start 0000

Figure 2 - Example memory map

Page 11

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

where xxxx is the end of available memory.

Setting the compilation pages

Inanon-paged system, the compiler must beinstructed to compileinto the pages defined
by KERNEL and KERNEL-RAM. Therefore, after the memory map is defined you must
code:

USE-CODE <namel>
USE-DATA <name2>

where <namel> isthe nameof thekernel ROM page defined withK ERNEL and <name2>
isthe kernel RAM page defined with KERNEL-RAM.

An example

If your target board hasamemory map asin figure 2, your control file should be modi-
fied so that it reads,

$0000 $7FFF KERNEL Kern
$8000 $FFFF 1 KERNEL-RAM Kern-data
$FFFF MEM-END

USE-CODE Kern
USE-DATA Kern-data

This indicates two areas of memory with names Kern and Kern-data.

Modifying the serial line drivers

Your target board communicates with the the external world viaaUART. If youareus
ing the onboard UART on the 80196, the supplied serial driver code canbeused. Thisis
in the directory ROM\DRIVERS.

If you are using an off-chip UART you will need to write all the words required to:
Initialise the UART
Send a character
Receive a character
Test if acharacter has been received

All four wordswill normally be Forth CODE definitions. Thisisrequired so that the send
and receive words are as fast as possible. Example seria line drivers in the files
ROM\DRIVERS can be used asatemplate. Aswiththe control fileitisnormally easier
to modify an existing serial line driver file rather than creating your own from scratch.

Page 12

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating a ROM target Forth

Interrupt or polled drivers?

Two types of interrupt driver can be written:
interrupt driven
polled

Interrupt driven

Aninterrupt driven serial line can only be used if the UART generates interrupt signals
when charactersarereceived. Aninterrupt driven driver will allow buffered serial com-
munications to be implemented with least processor overhead.

Polled

A polled driver will continuously poll astatusbit inthe UART to detect when the UART
has either transmitted or received a character.

Initialising the serid line
The word INIT-SER must perform all the UART initialisation required. Thisincludes
setting:

the baud rate

any handshaking required

the number of data bits

the number of stop bits

the parity to be used

It isrecommended that the baud rate isinitially set to 2400 baud until the target board is
working. It can then berai sed to 9600 or above which makesamoreresponsivetarget.

Sending a character to the host

Thetarget code needsto be ableto send acharacter tothehost for display. Therefore, you
need to write aword which:

walits for the transmit line to become available
transmits a character to the host
increment the variable oUT

The method used can be either a polled or interrupt driven driver but must be called
(EMIT). Once (EMIT) iswritten, it must be assigned to the defered word EMIT. The stack
effect of (EMIT) is,

(EMIT) \ char — ; send char to host

Page 13

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

Receiving a character from the host

Thetarget codeneedstheability toreceiveacharacter from XShell. Todothisit needsto:
wait for a character to be received
place the character on the Forth stack

The method used can be polled or interrupt driven but the word must be called (KEY).
Once (KEY) hasbeen written, it must be assigned to the defered word KEY. The stack ef-
fect of (KEY) is:

(KEY) \— char ; wait for char to bereceived

Detecting a received character

The target needs to detect if a character has been received. This can be used as part of
(KEY). (KEY?) needs to:

return true on the Forth stack if a character isavailable (-1)
return false on the Forth stack if a character is not available (0)

Once (KEY?) iswritten, it must be assigned to the defered word KEY. The stack effect of
(KEY?)is:

(KEY?) \—t/f;trueif character received

Setting up the system

Setting up the system involves both hardware and software. The target board, PC,
EPROM emulator/programmer and serial line have to be connected as well as configur-
ing X Shell to run the cross compiler.

Setting up the hardware

To generate an interactive Forth target you need:
an IBM PC or compatible
A serial cable
A target board
An EPROM emulator or programmer

Your PC needsto have at least one serial port for connecting to the target board, so mak-
ing theforth interactive. The serial cable should be connected to COM 1 asthisisthede-
fault port used by X Shell. Other ports can be used by configuring X shell. Seethe X Shell
manual.

Page 14

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating a ROM target Forth

Setting up the software

To compile source code that generates a Forth target, you need to configure the cross
compiler environment, XShell, to run the cross compiler. For detailed information on
configuring XShell, see the X Shell manual.

Running X Shell

If duringinstallation, you allowedtheinstaller to modify your AUTOEXEC.BAT, thento
run Xshell you just need to type X S3. If you didn’t or you haven't rebooted sinceyou in-
stalled the system, then you need to state the full path of XShell. For example, thein-
staller will place XShell in the directory, X196\XSHELL by defauit.

Configuring XShell to use your control file

Before you can cross compile your source code, you must configure X Shell. X Shell re-
guiresthename of the control fileyou areusing. The configuration fileloadstheremain-
ing filessoyou need only toload the configurationfile. To setup the configurationfileas
the file to be loaded,

i) run XShell whilein the ROM directory
i) type Alt-K, Configuration options

iii) press B, setup commands

iv) press E, compiler commands

V) type ALL FROM-FILE followed by the path and name of your configuration file, i.e
ALL FROM-FILE CONFIGS\CONTROL.CTL followed by ENTER

Vi) press the escape key to return to the previous menu
vii) press E, save configuration
viii) Press the escape key to return to the host forth

Your XShell configuration is now set to cross compile your configuration file.

Configuring the serial ports from X Shell

X Shell isused to communicate with thetarget. Youtherefore need to set up X Shell tothe
same serial line settings that you are going to use on the target board.

To do this, type:

i) run XShell whilein the ROM directory

i) type Alt-K, Configuration options

iii) press D, serial line settings

IV) set up your settings by pressing letters a-z
V) press the escape key when finished

vi) type E, save configuration

Page 15

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

vii) press the escape key to return to the host forth

Cross-compiling

Now the hardware and software has been setup, you can now cross compile the source
code to generate an executable image.

Creating an image

To crosscompilethe source code, press F3. X Shell clearsthe display and the cross com-
piler starts compiling. The compiler displays its sign-on message then compiles the
source code.

The cross compilelog

Following the compiler sign-onyou seethe crosscompilelog. Aseachwordiscompiled
the compiler displaysthe word’s address, itstype and its shortened name. The compiled
type of itemis coded as two characters asin table 1.

Turning on and off the log

Instead of having the data displayed for each compiled item, you can chose to only dis-
play adot. Theadvantage of thisisthat the compiler spendslesstime displaying dataand
so the cross compileis quicker. To do this, change the compiler directive in the control
filefromLOGtoNO-LOG. Thelog can beturned on again by replacinglog withno-login
the control file.

Sending thelog to afile
Thecrosscompiler will redirect thelogto afileinstead of thedisplay. Todothis, use:
FILE: <name>

where<name> isthefilenameto generate. Thisdirective must be placed beforethecom-
mand CROSS-COMPILE.

Sending the log to a printer

The cross compiler will send the log to aprinter. To do this, use:
PRN:

before the command CROSS COMPILE.

Page 16

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating a ROM target Forth

The compilation summary

Once the cross compiler hasfinished cross-compiling the source, it displaysinformation
about the compilation. Thisincludes:

any unresolved references
the size of the compiled image
the initialised RAM table address and length

Unresolved references are words which are referenced in the source code but are not de-
fined. These can be spelling mistakes or some of the code is not being compiled.

The size of the compiled image isthe amount of actual code output into thefile. The ac-
tual file size will be the size of the ROM indicated by the memory map.

The RAM tableisthe placein ROM whereavariable'sinitial valueisstored. When the
target board isreset, theinitialisation copiesthistableinto RAM. Theseinitial values of
variables will be modified in RAM when you store into a variable.

The created image

Theimage created by the crosscompiler isastraight binary executable. 1t can be down-
loaded to asuitable EPROM emulator or programmer. Thefile hasthe name given when
defining the memory map using the compiler directive KERNEL. It has the extension
IMG which cannot be changed.

Problems, Problems ...

If during compilation an error occurs, the compiler will stop compilation and display the
line on which the error occurred. The crosscompiler showstheline number and thefile
name where the error occurred as well as the type of error that has occured.

Downloading the compiled image

Once the source code has been compiled the image needs to be downloaded to an
EPROM emulator or programmer.

Downloading to a LeBurg EPROM emulator

The M PE cross compiler supportsthe LeBurg emulator. If you haveal eBurg emulator,
the installer should have setup your X Shell configuration to use it if it isalready in the
DOS path. Inthiscasejust press F4 and the LeBurg software should run. If theinstaller
could not find your L eburg emul ator software, you haveto setup X Shell to run your emu-
lator software. Refer to the X Shell manual.

Page 17

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

Figure 3 - Thetarget sign-on
MPE 809x/80C19x ROM PowerForth v0.00
Downloading to a different emul ator

The binary image can be downloaded to any EPROM emulator aslong as the emulators
software supports binary image files. Refer to the X Shell chapter on how to setup the
XShell configuration and the emul ators software manual for download instructions.

Downloading to an EPROM programmer

The MPE devel opment system supportsthe Sunshine programmer. If theinstaller found
the programmer’ssoftware, thenyour configurationwill besetup already. Torunthe pro-
grammer’ssoftware press F6. To setup X Shell to useaEPROM programmer, refer to the
XShell chapter.

Running the target Forth

Theimage generated by the compiler has been downloaded to the target, it isready to be
reset and the Forth tested.

Switching to target mode

Toreceivecharactersfromthetarget, X Shell must beintarget mode. Thecurrent modeis
displayed on the top banner. If you are not already in target mode, type Alt-T or F5.

Reseting the target board

Once the image has been downloaded, you can reset the target board. You can either use
thereset supplied onthe board or if noresetisontheboard, turn the board’s power off and
on again.

The sign-on

Once the board has been reset, the target should sign-on. You should see the messagein
figure 3. The version number and the number of bytesfree will depend on your system.
You now should have aworking Forth. If the target didn’t show the message, then you
may have a problem with:

Page 18

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating a ROM target Forth

the serial line drivers

the memory map definition

your target board

your EPROM emulator/programmer

Each of these should be checked.

The serial line drivers

If you do not get the sign on message, your transmit word might not beworking correctly.
You can check that you can transmit a character up the serial line, by appending code for
emitting a character up the serial line, onto the end of the initialisation word INI T-SER.
Therefore a character can be transmitted and seen without actually running any Forth.

The memory map definition.

If thememory map for theROM definitioniswrong. Thetarget may notsign-onatall. If
the definition of the RAM memory map iswrong, the target may sign-on but may gener-
ate ‘garbage’.

Your target board

Itisaways necessary to check the obvious. Isthe serial line connected? Has your target
board got power?EPROMSRAM plugged in correctly? Arejumpers set correctly?

Your EPROM emulator/programmer

Check to seeif your emul ator isemulating an EPROM that your target board isexpecting.
If you have the wrong EPROM set, your target will not sign on.

Testing the Forth - an example

Once the forth has signed-on, you need to test that it's working properly. Type WORDS,
thiswill display all the Forth words available.

If this works then typein,

: FORTH-TEST \—; A quick test for forth
S"HELLO"
\

FORTH-TEST
This should display,

HELLO
followed by the ok prompt.

Page 19

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

Cross-compiling an application

Onceyour forthisworking on your target board, you will now want to write and compile
your application.

Writing an application

Supplied with XShell isthe TED editor. Thiscan berun by pressing F2. A different edi-
tor can be used by changing the X Shell configuration. See the XShell chapter.

Modifying the control file

Onceyour application hasbeenwritten, you can add it to thecontrol file. Near the bottom
of the control file, thereisalist of commands in the form:

ALL FROM-FILE <name>
To compile your application files you add them to the end of the list.

Developing your application

AsForth isan interactive language, you can use thisto your advantage by writing small
sectionsof code andtesting asyou go. To help you dothis, the ROM PowerForth utilities
allow you to accessyour sourcefilesonthehost. Your sourcefilescan be compiled from
the target without cross-compiling the whole application. Seethe chapter ROM Power-
Forth for more information.

Running your application

To compile the application you need to:
run the cross compile(press F3)
download to the EPROM emulator/programmer(press F4 or F6)
reset the target

The target board signs-on. You can now test the application.

Generating aturnkey application

Once you have written your application, you will want to make it start when the target
board isreset. Thisis known as aturnkey or autostarting application. Your application
does not necessarily need to be interactive, so the compiler directive NO-HEADS can be
used . Thisremoves al the word headers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the form:
MAKE-TURNKEY <name>

Page 20

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

15345 bytes free
ok
- MY-APP \—:
INIT-SER \Initialise the serial line
BEGIN \ Application never ends...
[Hello"
Figure 4 - Example turnkey application
AGAIN

where <name> isthe name of thewordto run at startup. Theword <name> must be de-
fined before using thisdirective. The exampleinfigure4 generatesasimpleturnkey ap-
plication when cross compiled. If you require the use of serial communications or the
multitasker, you must initialise themin your application. Toinitialise the serial commu-
nications use the word INIT-SER. To initialise the multitasker use INIT-MULTI.

Generating a ROM target Forth

Page 21

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating a ROM target Forth MPE 80x96 Forth Cross Compiler

Blank page

Page 22

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating an Umbilical Forth target

Generating an Umbilical Forth target

Thischapter describeshow to generate an Umbilical Forthtarget for your target board. It
guides you through:

setting up your hardware and software
writing the seria line drivers

modifying the memory map for your board
compiling and running a target Forth

Suppliedwith your crosscompiler are configurationsfor specific boards. 1f you haveone
of these boards, the generating of atarget forthisgreatly simplified. 1f you do not havea
supported board you will have to configure the cross compiler for your board and write
new seria line drivers.

Requirements for Umbilical Forth

To generate an interactive target you require:
aLeBurg EPROM emulator
interrupt driven serial drivers

If you want to define new wordsinteractively, you need to usealL eBurg emulator. When
thecrosscompiler generatescode, it will writetotheemulator. Thisnormally ‘upsets’ the
processor so the processor should be put to sleep while waiting for serial communica
tions. Oncethe UART becomesavailable, the processor will be taken out of sleep mode
and will continue processing.

|s your board already supported?

If you have the MPE 196 Powerboard you can use the supplied control files. There are
filesfor both the KB and K C variants of the 80196. By using one of thesetheinstallation
of aROM target forth for your board will be greatly simplified. The control file to use
will depend on the type of board you have. If you have the KB variant use
CH196KB.CTL asyour control file. If you have the KC variant use CH196KC.CTL.
These files are in the directory CHIP\CONFIGS.

If you do not have this board you will have to create a control file and serial line drivers
for your board.

Page 23

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating an Umbilical Forth target MPE 80x96 Forth Cross Compiler

The control file

The control file contains all the details of your board that the cross compiler needs to
know. Thisincludes:

the memory map of your board
whether you wish alog to be displayed
the clock rate of your boards crystal

As well as containing configuration information, the control file containsalist of files
which areto be cross compiled.

Once the cross compiler knows these items, it can generate a correct binary image from
your source code. An example control fileis shown in at the end of the chapter.

Creating a control file

To create anew control file, copy an existing one and then modify it to match your board.
Thisisnormally easier than generating onefrom scratch. Examplecontrol filesareinthe
directory CHIP\CONFIGS.

The memory map

The memory map describes the addresses where ROM and RAM start and end in your
target system. The memory map is described to the cross compiler in your control file.

The memory map is defined by the:
Start of ROM
Start of RAM
End of ROM
End of RAM

From thisinformation the cross compiler places any itemsit needsin the correct area of
memory.

Setting the memory map

Thememory map isdescribed in your control file, so once thefile has been created, you
can change the memory map definition to match your board.

The memory map is described in three parts:
the start and end of ROM
the start and end of RAM
the end of memory

Page 24

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating an Umbilical Forth target

Setting the start and end of ROM

Thestart and end of ROM isdefined by using thecompiler directiveKERNEL. KERNEL
isused in the form:

rom-start rom-end KERNEL <name>

where rom-start is the address of the start of ROM, rom-end is the address of the end of
ROM and <NAME> isthe name of the output file. The crosscompiler automatically adds
the extension .IMG to <NAME> when saving the file. The numbers rom-start and rom-
end are, by default, in decimal, but can be entered in hex by preceding them by a $.

<NAME> isalso the name of thekernel pagein apaged system. For moreinformation see
Paged targets, chapter 11.

Setting the start and end of RAM

The start and end of RAM is defined by using the compiler directive KERNEL-RAM.
KERNEL-RAM isused in the form:

ram-start ram-end page-id KERNEL-RAM <name>

where ram-start is the address of the start of RAM, ram-end is the address of the end of
RAM, page-idisauniqueidentifier for thisareaof memory and <NAME> isthe namefor
thisareaof memory. The numbersram-start and ram-end are, by default, in decimal, but
can be entered in hex by preceding then by a$.

Thelabel <NAME> isthename of thekernel’sdataareain apaged system. Inanon-paged
system <NAME> is not actually used but must be stated. In anon-paged system, page-id
can be set to any number. For more information on paged systems, see the chapter on
paged targets .

Setting the end of memory

The compiler needsto know the end of available memory. To set thisuseMEM-END, in
the form:

xXxxx MEM-END

where xxxx is the end of available memory.

Setting the compilation pages

Inanon-paged system, the compiler must beinstructed to compileinto the pages defined
by KERNEL and KERNEL-RAM. Therefore, after the memory map is defined you must
code:

USE-CODE <namel>
USE-DATA <name2>

where <namel> isthe nameof thekernel ROM page defined withK ERNEL and <name2>
isthe kernel RAM page defined with KERNEL-RAM.

Page 25

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating an Umbilical Forth target MPE 80x96 Forth Cross Compiler

An example

For example, if your target board has a memory map asin figure 2, your control file
should be modified so that it reads,

$0000 $7FFF KERNEL Kern
$8000 $FFFF 0 KERNEL-RAM Kern-data
$FFFF MEM-END

USE-CODE Kern
USE-DATA Kern-data

This indicates two areas of memory (pages) with names Kern and Kern-data

Modifying the serial line drivers

Your target board communicates with the the external world viaaUART. If youareus
ing the onboard UART on the 80196, the supplied serial driver code canbeused. Thisis
in the directory ROM\DRIVERS.

If you are using an off-chip UART you will need to write all the words required to:
Initialise the UART
Send a character
Receive a character
Test if acharacter has been received

Ram-end FFFF

Ram

Ram-start 8000
Rom-end TFFF

Rom

Rom-start 0000

Figure 5 - Example memory map

Page 26

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating an Umbilical Forth target

All of thefour wordswill normally beforth CODE definitions. Thisisrequired sothat the
send and receive words are as fast as possible. Example serial line driversin the files
CHIP\DRIVERS can be used for atemplate.

Aswith the control fileit isnormally easier to modify an existing serial line driver file
rather than creating your own from scratch. The supplied drivers are in the directory,
CHIP\DRIVERS.

Initialising the serial line
Thewordthat must performall theinitialisationistheword INIT-SER. It must perform all
the UART initialisation required. Thisincludes setting:

the baud rate

any handshaking required

the number of data bits

the number of stop bits

the parity to be used

Itisrecommended that the baud rateisinitialily set to 2400 baud until thetarget boardis
working. It can then berai sed to 9600 or abovewhich givesasmoother feel to thetarget.

Sending a character to the host

Thetarget code needsto be ableto send acharacter tothehost for display. Therefore, you
need to write aword which:

walits for the transmit line to become available
transmits a character to the host.

The transmit word can either poll to detect whether the transmit line is available or ,if
available, an interrupt can be used. Theword must be called (EMIT). The stack effect of
(EMIT) s,

(EMIT) \ char — ; send char to host

Receiving a character from the host

Thetarget codeneedstheability toreceiveacharacter from XShell. Todothisit needsto:
wait for a character to be received
place the character on the forth stack

Thereceive word must beinterrupt driven and theword must be called (KEY). Thestack
effect of (KEY) is.

(KEY) \— char ; wait for char to bereceived

Page 27

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating an Umbilical Forth target MPE 80x96 Forth Cross Compiler

Detecting a received character

The target needs to detect if a character has been received. This can be used as part of
(KEY). (KEY?) needs to:

return true on the forth stack if a character isavailable (-1)
return false on the forth stack if a character is not available (0)
The stack effect of (KEY?) is:
(KEY?) \—t/f;trueif character received

Setting up the system

Setting up the system involves both hardware and software. The target board, PC,
EPROM emulator/programmer and serial line have to be connected as well as configur-
ing X Shell to run the cross compiler.

Setting up the hardware

To generate an interactive Forth target you need:
an IBM PC or compatible
A serid line
A target board
An EPROM emulator or programmer

Your PC needs to have at least one seria line port for connecting to the target board, so
making the forth interactive.

If the Leburg EPROM emulator isbeing used, you will aso need to connect the emulator
to the digital 1/0 card installed in your PC.

Setting up the software

To compile source code that generates Forth target, you need to configure the cross com-
piler environment, X Shell, to run the cross compiler. For more detailed information on
configuring X Shell, see the Xshell manual.

Running X Shell

If duringinstallation, you allowedtheinstaller to modify your AUTOEXEC.BAT, thento
run X Shell you just need totype XS3. If you didn’t, then you need to state thefull path of
Xshell. For example, theinstaller will place XShell in the directory, X196\XSHEL L by
default.

Page 28

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating an Umbilical Forth target

Configuring Xshell to use your control file

Before you can cross compile your source code, you must configure Xshell. Xshell re-
guiresthename of the control fileyou areusing. The configuration fileloadstheremain-
ing filessoyou need only toload the configurationfile. To setup the configurationfileas
the file to be loaded,

i) enter Xshell while in the CHIP directory
i) type Alt-K, Configuration options

iii) press B, setup commands

iv) press E, compiler commands

V) type ALL FROM-FILE followed by the path and name of your configuration file, i.e
ALL FROM-FILE CONFIGS\CONTROL.CTL followed by ENTER

Vi) press the escape key to return to the previous menu
vii) press E, save configuration
viii) Press the escape key to return to the host Forth

Your Xshell configuration is now set to cross compile your configuration file.

Configuring the serial ports from X Shell

Xshell isused to communicate with thetarget. You therefore need to set up Xshell to the
same serial line settings that you are going to use on the target board.

To do this, type:

i) run Xshell while in the CHIP directory

i) type Alt-K, Configuration options

iii) press D, serial line settings

IV) set up your settings by pressing letters a-z
V) press the escape key when finished

vi) type E, save configuration

vii) press the escape key to return to the host forth

Cross-compiling

Now the hardware and software has been setup, you can now cross compile the source
code which isautomatically compiled down to your EPROM emulator.

Page 29

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating an Umbilical Forth target MPE 80x96 Forth Cross Compiler

Creating an image

To cross compilethe source code, press F3. Xshell clearsthe display and the cross com-
piler starts compiling. The compiler displays its sign-on message then compiles the
source code.

The cross compilelog

Following the compiler sign-onyou seethe crosscompilelog. Aseachwordiscompiled
the compiler displays the words address, its type and its shortened name. The compiler
type is coded astwo characters asin table 1.

Turning on and off the log

Instead of having the data displayed for each compiled item, you can chose to only dis-
play adot. Theadvantage of thisisthat the compiler spendslesstime displaying dataand
so the cross compileis quicker. To do this, change the compiler directive in the control
filefromLOGto NO-LOG. Thelogcan beturned on again by replacinglogwithno-login
the control file.

Sending thelog to afile
Thecrosscompiler will redirect thelogto afileinstead of thedisplay. Todothis, use:
FILE: <name>

where<name> isthefilenameto generate. Thisdirective must be placed beforethecom:
mand CROSS COMPILE.

Sending the log to a printer

The cross compiler will send the log to aprinter. To do this, use:
PRN:

before the command CROSS COMPILE.

The compilation summary

Once the cross compiler has finished , it displays information about the compilation.
Thisincludes:

any unresolved references
the size of the compiled image
the RAM table address and length

Page 30

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating an Umbilical Forth target

Umbilical Forth v0.00

Target: 809x\80C19x

Copyright(C) 1992 Microprocessor Eng. Ltd.
BASE now in DECIMAL

ok

Figure 6 - The umbilical forth sign-on

Words that are unresolved references are words which are referenced in the source code
but are not defined. These can be spelling mistakes or some of the codeisnot being com-
piled.

The size of the compiled image is the amount of image downloaded to your emulator.

The RAM table is the place where avariable's initial value is stored. When the target
board is reset, the initialisation copies this table into RAM.

Problems, Problems ...

If during compilation an error occurs, the compiler will stop compilation and display the
line on which the error occurred. The crosscompiler showstheline number and thefile
name where the error occurred as well as the type of error that occured.

Running the target Forth

Theimage generated by the compiler has been downloaded to thetarget, it isready to be
reset and the forth tested.

Reseting the target board

Once the source code has been compiled and automatically downloaded to your LeBurg
emulator you can reset the target board. Follow the instructions given by the cross com-
piler.

The sign-on

You will seethe messagein figure 6. The crosscompiler itself displaysthis message, so
thetarget isnot necessarily up andworking. Totest thetarget board, you needtodefinea
definition. Therefore if you type:

: FORTH-TEST \—; A quick test for forth
S"HELLO"
\

Page 31

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating an Umbilical Forth target MPE 80x96 Forth Cross Compiler

FORTH-TEST

This should display,
HELLO
followed by the ok prompt.

If the you didn’t get this response, then you may have a problem with:
the serial line drivers
the memory map definition
your target board
your serial line
your EPROM emulator/programmer

Each of these should be checked.

Cross-compiling an application

Onceyour forthisworking on your target board, you will now want to write and compile
your application.

Writing an application

Supplied with XShell isthe TED editor. Thiscan berun by pressing F2. A different edi-
tor can be used by changing the X Shell configuration. See the XShell chapter.

Modifying the control file

Onceyour application hasbeenwritten, you can add it to thecontrol file. Near the bottom
of the control file, thereisalist of commands in the form:

al from-file <name>

To compile your application files you add the files to the end of the list.

Running your application

To compile the application you need to:
run the cross compile(press F3)
reset the target

The target board signs-on. You can now test the application.

Page 32

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Generating an Umbilical Forth target

t MY-APP \—;
INIT-SER \Initialise the serial line
BEGIN \ Application never ends...
M Hello" \

AGAIN

MAKE-TURNKEY MY-APP

Figure 7 - Example umbilical turnkey application

Generating aturnkey application

Once you have written your application, you will want to make it start when the target
board isreset. Thisis known as aturnkey or autostarting application. Your application
does not necessarily need to be interactive, so the compiler directive NO-HEADS can be
used . Thisremoves al the word headers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the form:
MAKE-TURNKEY <name>

where <name> isthe name of thewordto run at startup. Theword <name> must be de-
fined before using thisdirective. The exampleinfigure 7 generatesasimpleturnkey ap-
plication when cross compiled. To see the example working, you must switch X Shell
into target mode.

Page 33

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Generating an Umbilical Forth target MPE 80x96 Forth Cross Compiler

Blank page

Page 34

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Optimising your target Forth

Optimising your target Forth

Onceyou haveatarget Forth, you may want to either reduce the size of your imageor in-
crease the execution speed of thecode. Thischapter descibesthefeaturesof theMPE De-
velopment system which helps you with this aim.

Reducing the size of your image
During development you may need to reduce the size of your target image. Normally,
your application has grown too large for your ROM space. Thisisnormally done by:
removing headers
factorising your code
removing excess code
using equates instead of constants
using umbilical forth

Removing headers

To reduce the size of the compiled image, you can instruct the compile to compileall or
some of the code without heads. For each word defined, the cross compiler generates a
header in the target image. A header is the name of the word as a counted string and is
usedwhenthetarget isused inetractively. Therefore, by removing the heads of wordsyou
reduce the interactivity of your system.

Removing all headers

To removethe headsfrom all the code, useNO-HEADS. The compiler will produce code
which will be greatly reduced in size, but cannot be used interactively.

Selectively removing headers

To select anumber of wordsto be made headerless, useINTERNAL and EXTERNAL. IN-
TERNAL instructsthe compiler to stop generating headers, and EXTERNAL instructsit to
generate headers again.

Page 35

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Optimising your target Forth MPE 80x96 Forth Cross Compiler

Factorising your code

When writing in forth, code should be reused as much aspossible. By reusing code, your
target image can bereduced greatly. Thesmaller the proceduresyou use, themoreeasily
they can be reused. In addition, small procedures are easy to test. Consequently code
written with small proceduresis normally morereliable.

Removing excess code

During devel opment, debug and test codeisinserted into the source. Thiscodeiseasly
left and forgotten about. By stripping out thisexcess code you can gain more spacein the
EPROM. A tool like MPE's cross-referencer, XREF, isinvaluablefor thissort of prun-

ing.

Using equates instead of constants

An equate isaconstant that just resides within the cross compiler. It therefore cannot be
referenced when interactively debugging on your target system. The actual value of the
equate is compiled ‘in-line’ instead of refering to a constant. Therefore you save the
space on the target board for each constant (6 bytes + number of charactersin the name)
defined but sacrifice someinteractivity. Thisonly worksif you don’t refer to the equate
many times, as an equate uses 2 more bytes than a constant, every time it isrefered to.

Defining an equate
An equate isdefined in asimilar way to a constant:
xxxx EQU <name>

where xxxx is the value of the equate and <NAME> isits name.

Using an equate
An equate isused in the same way as a constant, by stating its name.

Using umbilical forth

If you require a compact target Forth but without the inconvenience of removing target
headers, you can use Umbilical Forth. Umbilical Forth givesyou aninteractive Forthina
very compact size (Umbilical Forth kernel isabout 2k). Thekernel doesn’tcontainall the
wordsinthe ROM target, so you might haveto writeafew wordsto get your codeto com-
pileor copy some code fromthe ROM target Forth. For more details see the chapterson
Umbilical Forth and Generating an Umbilical Forth target.

Page 36

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Optimising your target Forth

Speeding up your code

The normal way to increase the speed of your code is to code strategic words in assem-
bler. Good candidates for coding are:

inner loops
words with alot of noise words (DUP, SWAP €tc)

Page 37

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Optimising your target Forth MPE 80x96 Forth Cross Compiler

Blank page

Page 38

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler 80x96 Cross assembler

80x96 Cross-assembler

The M PE cross compiler hasabuilt-in cross-assembler. Thisgivesyou theability to de-
finenew forthwordsin assembler aswell asinforth. You can a so assemble codeto any-
where in memory.

Why write in assembler?

Forth iscompact and quick, so why writein assembler? An assembler definitionisnor-
mally quicker than a group of corresponding forth words.

Creating Forth words in assembler

Forth words can easily be defined in assembler. They increase the execution speed of
your code and can sometimes make your code smaller.

Defining assembler words

Forthwordswrittenin assembler follow asimilar formto aword writteninforth. Instead
of acolon you have CODE. Instead of semi-colon you have END-CODE. For example:

CODE <name>
NEXT,
END-CODE

createsaword called <name>. Any assembler code between the CODE and END-CODE
will be assembled into theword. When executed, the command NEXT, will stop the exe-
cution of the assembler and return to the calling word.

Note: If you do not have NEXT, your application will crash.

Writing assembler words

The syntax used for the opcodes have been kept assimilar to the Intel syntax aspossible.
Seethelist at the end of the chapter for a comparison of Intel versus Forth syntax.

Page 39

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80x96 Cross assembler MPE 80x96 Forth Cross Compiler

80x96 register |Forth register | Function

IP IP Forth’s interpretive pointer, equivalent to its program
counter.

SP SP Datastack pointer. The CPU stack pointer pointsto the
next free byte on the stack.

RP RP Return stack pointer

UP UP Thecurrent stack/user page. All user variablesuse UP
to define their base address.

TOS Top of stack. TOSisacachefor thetop of stack item.

AXBXCXDX Scratch registers.

Table 3 - The Forth registers

Preserving the Forth registers

The Forth interpreter and compiler uses some of the target processor’sregisters. These
must be preserved if they are used in the assembler. They can be saved on the stack, in
memory or in other registersand restored at the end of theword. The 80x9x registersthat
are used are shown in table 3. When writing an interrupt handler, the scratch registers
(AX, BX, CX, DX) must also be saved.

Executing an assembler word

A Forthword writtenin assembler isexecuted in the sameway asaword writtenin Forth.
It is executed in the same way as a normal word, by stating its name.

Assembling into memory

Assembler code can be assembled into memory and not in a Forth word. To do thisyou
need to:

turn on the assembler
write your assembler code
turn off the assembler

To turn on the assembler, use the word ASSEMBLER. To switch back to Forth use the
word FORTH. Between the ASSEMBLER and FORTH definitions, any assembler will be
assembled. The assembled code will be placed in the dictionary without a header. The
code can be executed by theuse of labels. Thisisoften used to definelow level interrupts.
See the chapter on Interrupts, for more details on writing low level interrupts.

Page 40

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler 80x96 Cross assembler

: VARIABLE \ — ; — addr [child]
CREATE \ create child header
HERE 2+ \lay RAM address
0, \ lay initialised value in RAM
;CODE \ run-time part in assembler

POPAX \get PFA
PUSH TOS \ save current top of stack

LD TOSAX] \ get valueinto TOS
NEXT, \ return to forth
END-CODE

Figure 8 - Use of ;CODE

Creating defining words in assembl er

The cross compiler allows you to define the run-time(DOES>) part of adefining word in
assembler. To do this use ;CODE in the form:

. <name>
CREATE

:CODE

END-CODE

An exampleis shownin figure 8.

Structured programming

Three facilities are available to give you the advantages of structured programming, in
assembler:

control structures
|abels
local |abels

Control structures

There are assembler equivalentsto the Forth control structures. Theavailable structures
are:

ccIF, ... THEN,
cclF, ... ELSE, ... THEN,
BEGIN, ... cc UNTIL,

Page 41

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80x96 Cross assembler

MPE 80x96 Forth Cross Compiler

Mnemonic |Condition Mnemonic Condition

Cy, carry set LT, less than

NC, no carry GE, greater than or equal
NCY, no carry GT, greater than

E, equal or zero ST, sticky bit set

EQ, equal or zero NST, sticky bit clear

NE, not equal V, overflow flag set

H, higher (unsigned) NV, overflow flag clear
NH, not higher (unsigned) VT, overflow trap set
LE, less than or equal NVT, overflow trap not set

Table 4 - Available condition code

BEGIN, ... CCWHILE, ... REPEAT
BEGIN, ... AGAIN,

where cc is the condition codes in table 4.

Labels

L abels can be used to mark aplacein assembler code. That place can then bereferenced

in other areas of code.

Creating alabel

L abels can be defined by using the commandL:. Itisusedin theform:

I: <name>

where <name> is the name you want to call the label.

Referencing alabel

A label isreferenced by stating its name. For example,

BEQ <name>

will assembleto ‘branch if equal to <name>'.

Local labels

If you need to use label swithin a code definition, you may usethe local 1abels provided.
These are used just as normal labels in the assembler, but some restrictions apply:

there is a maximum of ten labels

Page 42

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler 80x96 Cross assembler

the names are in the form L$n where nisin the rangle 1 to 10
areferenceisvalid until the next occurence of CODE or ;CODE

Creating alocal label
To define alocal 1abel use L$n:, where nis anumber from one to ten. For example:
L$1:

Referencing alocal label
To reference alocal label, typeits name. For example,
BEQLS$1

assembles code for a branch to L$1.

Creating macros

A macroisaword that lays down code ‘in-line’ within an assembler definition. They are
normally used when thereis a repetative use of a series of opcodes.

Defining amacro

A macro isdefined using colon and semi-colon. It must also be defined inthe crosscom-
piler’'svocabulary, ASM-ACCESS. The placeto create amacroisinthe control fileand it
must be defined before the word CROSS-COMPILE. Asan example, themacro NEXT, is

\ switch to the cross-compiler’s ASM-A CCESS vocabulary
ONLY FORTH ALSO C-C ALSO ASSEMBLER
ALSO ASM-ACCESS DEFINITIONS

\ define NEXT,
- NEXT,

LD AX IP[]+
BRAX []

\ switch back to forth vocabulary
ONLY FORTH DEFINITIONS

Figure 9 - Example macro definition

Page 43

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80x96 Cross assembler MPE 80x96 Forth Cross Compiler

showninfigure9. NEXT, isdefined as amacro, so each timeitisused, itscodeislayed
down. This makesit quicker than calling a subroutine.

Using amacro
A macroisused by stating itsname. For example, inaCODE definition, NEXT, isamacro.

Page 44

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler 80x96 Cross assembler

| nstruction syntax

The instructions are shown alphabetically with all their addressing forms.

Instruction list

Conventional Forth

ADD CX,R2 ADD CX R2

ADD AX #055AAH ADD AX # 055AA
ADD TOS,[BX] ADD TOS BX []

ADD CX,[BX]+ ADD CX BX []+
ADD TOS, TOSEXT,24[BX] ADD TOS TOSEXT & 24 BX |[]
ADDB CL,R1 ADDB CL R1

ADDB AH,#55 ADDB AH #55
ADDB TOSL,[BX] ADDB TOS.L BX []
ADDB DL,[DX]+ ADDB DL DX []+
ADDB AL,CL,25[BX] ADDB AL CL & 25BX ,[]
ADDC CX,R2 ADD CX R2

ADDC AX,#055AAH ADDC AX # 055AA
ADDC TOS|[BX] ADDC TOSBX []
ADDC AX,[BX]+ ADDC AX BX []+
ADDC TOS,24[BX] ADDC TOS 24 BX []
ADDCB CL,R1 ADDCB CL R1
ADDB AH,#55 ADDCB AH #55
ADDCB TOSL ,[BX] ADDCB TOS.L BX []
ADDCB TOS.L,[BX]+ ADDCB TOS.L BX []+
ADDCB AL ,25[BX] ADDCB AL 25BX |[]
AND CX,R2 AND CX R2

AND AX #055AAH AND AX # 055AA
AND TOS,[BX] AND TOS BX []

AND AL,BL ,[CX]+ AND AL BL & CX []+
AND TOS, TOSEXT,24[BX] AND TOS TOSEXT & 24 BX |[]
ANDB CL,R1 ANDB CL R1

ANDB AH,#55 ANDB AH #55
ANDB TOSL,[BX] ANDB TOS.L BX []
ANDB DL,[DX]+ ANDB DL DX []+
ANDB AL,CL,25[BX] ANDB AL CL & 25BX ,[]
BMOV LREGWREG BMOQV LREG WREG
BR [AX] BRAX []

CLR AX CLR AX

CLRB TOS.L CLRB TOS.L

CLRC CLRC

Page 45

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80x96 Cross assembler

MPE 80x96 Forth Cross Compiler

CLRVT

CMPCX,R2
CMPAX #055AAH
CMPTOS,[BX]
CMPCX,[BX]+
CMPTOS,24[BX]

CMPB CL,R1
CMPB AH #55
CMPB TOS.L,[BX]
CMPB DL ,[DX]+
CMPB AL ,25[BX]

DECCX
DECB AL
Dl

DIV CX,R2

DIV AX #055AAH
DIV TOS|[BX]
DIV CX,[BX]+
DIV TOS,24[BX]

DIVB CL,R1
DIVB AH #55
DIVB TOS.L,[BX]
DIVB DL,[DX]+
DIVB AL,25[BX]

DIVU CX,R2

DIVU AX #055AAH
DIVU TOS|[BX]
DIVU CX [BX]+
DIVU TOS,24[BX]

DIVUB CL,R1
DIVUB AH #55
DIVUB TOS.L,[BX]
DIVUB DL,[DX]+
DIVUB AL,25[BX]

DJINZ AL,LABEL
DINZW CX,LABEL
El

EXT LREG

EXTB WREG
IDLPD #KEY

Page 46

CMPB CL R1

DIVB CLR1

CLRVT

CMPCX R2
CMPAX # 055AA
CMPTOSBX []
CMPCX BX []+
CMPTOS 24 BX |[]

CMPB AH #55
CMPB TOSL BX []
CMPB DL DX [J+
CMPB AL 25BX |[]

DECCX
DECB AL
DI

DIV CX R2

DIV AX # 055AA
DIV TOSBX []
DIV CX BX []+
DIV TOS 24 BX |[]

DIVB AL #55

DIVU CX R2

IDLPD #KEY

DIVB TOS.L BX []
DIVB DL DX [J+
DIVB AL 25 BX |[]

DIVU AX # 055AA
DIVU TOSBX []
DIVU CX BX []+
DIVU TOS 24 BX []

DIVUB CL R1
DIVUB AL #55
DIVUB TOS.L BX []
DIVUB DL DX [J+
DIVUB AL 25 BX |[]

DJINZ AL LABEL
DINZW CX LABEL
El

EXT LREG

EXTB WREG

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

80x96 Cross assembler

INC AX

INCB CL

JBC AL,5LABEL
JBSBL,7,LABEL
JC LABEL

JE LABEL
JGE LABEL
JGT LABEL
JH LABEL
JLE LABEL
JLT LABEL
JNC LABEL
JNE LABEL
JNH LABEL
JNST LABEL
JNV LABEL
IJNVT LABEL
JST LABEL
JV LABEL
JVT LABEL
LCALL ADDR

LD CX,R2

LD AX,#055AAH
LD TOS,[BX]

LD CX,[BX]+
LD TOS,24[BX]

LDB CL,R1
LDB AH #55
LDB TOSL,[BX]
LDB DL,[DX]+
LDB AL,25[BX]

LDBSE CX,R1
LDBSE AX #55
LDBSE TOS,[BX]
LDBSE DX,[DX]+
LDBSE AX,25[BX]

JNST LABEL

INVT LABEL

LD TOSBX []
LD CX BX [J+

LDB AH #55

INC AX

INCB CL
JBCAL5LABEL
JBSBL 7 LABEL
JC LABEL

JE LABEL

JGE LABEL

JGT LABEL

JH LABEL

JLE LABEL

JLT LABEL

JNC LABEL
IJNE LABEL

JNH LABEL

JNV LABEL

JST LABEL
JV LABEL
JVT LABEL
LCALL ADDR

LD CX R2
LD AX #055AA

LD TOS 24 BX |[]
LDB CL R1

LDB TOS.L BX []
LDB DL DX [J+
LDB AL 25BX ,[]

LDBSE CX R1
LDBSE AX #55
LDBSE TOS BX []
LDBSE DX DX []+
LDBSE AX 25BX []

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Page 47

http://www.pdffactory.com

80x96 Cross assembler

MPE 80x96 Forth Cross Compiler

LDBZE CX,R1
LDBZE AX #55
LDBZE TOS,[BX]
LDBZE DX,[DX]+
LDBZE AX,25[BX]

LIMPADDR

MUL CX,R2
MUL AX, BX #055AAH
MUL TOS,[BX]

MUL CX,DX,[BX]+
MUL TOS,24[BX]

MULB CX,R1
MULB AX #55
MULB TOS,[BX]
MULB AX,CX,[DX]+
MULB AX,25[BX]

MULU CX,R2
MULU AX #055AAH
MULU TOS,[BX]
MULU CX,[BX]+
MULU TOS,24[BX]

MULUB CX,AL,R1
MULUB AX, BX #55
MULUB TOS,[BX]
MULUB DX,[DX]+
MULUB AX,25[BX]

NEG WREG

NEGB BREG

NOP

NORML LREGBREG
NOT WREG

NOTB BREG

OR CX,R2
OR AX #O55AAH
OR TOS,[BX]

OR CX,[BX]+
OR TOS,24[BX]

ORB CL,R1
ORB AH #55
ORB TOS.L,[BX]
ORB DL [DX]+
ORB AL ,25[BX]

Page 48

MULB CX R1

MULU CX R2

OR TOSBX []
OR CX BX [J+

ORB AH # 55

LDBZE CX R1
LDBZE AX #55
LDBZE TOSBX []
LDBZE DX DX [J+
LDBZE AX 25 BX |[]

LIMPADDR

MUL CX R2

MUL AX BX & # 055AA
MUL TOSBX []

MUL CX DX & BX []+
MUL TOS 24 BX ,[]

MULB AX #55

MULB TOSBX []
MULB AX CX & DX []+
MULB AX 25BX ,[]

MULU AX # 055AA
MULU TOSBX]
MULU CX BX []+
MULU TOS 24 BX ,[]

MULUB CX AL & R1
MULUB AX BX & #55
MULUB TOSBX []
MULUB DX DX []+
MULUB AX 25BX ,[]

NEG WREG

NEGB BREG

NOP

NORML LREG BREG
NOT WREG

NOTB BREG

ORCX R2
OR AX # 055AA

OR TOS 24 BX ,[]
ORB CL R1
ORB TOS.L BX []

ORB DL DX []+
ORB AL 25BX ,[]

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

80x96 Cross assembler

POPAX POPAX
POP[BX] POPBX []
POP[CX]+ POPCX []+
POP6[CX] POP6 CX ,[]
POPA POPA

POPF POPF

PUSH BX PUSH BX
PUSH #1234 PUSH # 1234

PUSH [BX] PUSH BX []
PUSH [BX]+ PUSH BX []+

PUSH 4[CX] PUSH 4 CX []

PUSHA PUSHA
PUSHF PUSHF

RET RET

RST RST

SCALL LABEL SCALL LABEL
SETC SETC

SHL WREG#N SHL WREG #N
SHL WREG,BREG SHL WREG BREG
SHLB AL #5 SHLB AL #5

SHLB BL,CL SHLB BL CL

SHLL LREG#10
SHLL LREGAL

SHLL LREG # 10
SHLL LREG AL

SHR AX#9 SHRAX #9
SHR AX,BL SHR AX,BL
SHRA CX #5 SHRA CX #5

SHRA CX AL SHRA CX AL

SHRAB AL #5 SHRAB AL #5
SHRAB BL,CL SHRAB BL CL

SHRAL LREG#10
SHRAL LREGAL

SHRB BREG#6
SHRB DH,AL

SHRL LREG#14
SHRL LREGCL

SIMPLABEL
SKIPAL

SHRB DH,AL

SIMPLABEL

SHRAL LREG # 10
SHRAL LREG AL

SHRB BREG # 6

SHRL LREG # 14
SHRL LREG,CL

SKIPAL

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Page 49

http://www.pdffactory.com

80x96 Cross assembler

MPE 80x96 Forth Cross Compiler

ST AX,BX

ST AX,[BX]
ST AX,[BX]+
ST AX,12[BX]

STB DL ,BL
STB DL,[BX]
STB DL,[BX]+
STB DL 5[BX]

SUB CX,R2
SUB AX #055AAH

SUB TOS,[BX]

SUB CX,[BX]+

SUB TOS, TOSEXT,24[BX]

SUBB CL,R1

SUBB AH #55
SUBB TOSL,[BX]
SUBB DL,[DX]+
SUBB AL,CL,25[BX]

SUBC CX,R2
SUBC AX #055AAH
SUBC TOS,[BX]
SUBC AX,[BX]+
SUBC TOS,24[BX]

SUBCB CL,R1
SUBB AH,#55
SUBCB TOSLL [BX]
SUBCB TOSLL [BX]+
SUBCB AL,25[BX]

TRAP

XOR CX,R2

XOR AX #055AAH
XOR TOS,[BX]
XOR CX,[BX]+
XOR TOS,24[BX]

XORB CL,R1
XORB AH #55
XORB TOS.L,[BX]
XORB DL,[DX]+
XORB AL,25[BX]

Page 50

ST AX BX
ST AX BX []+
ST AX BX []+
ST AX 12BX ,[]

STB DL BL
STB DL BX []

STB DL BX []+

STB DL 5BX ,[]

SUB CX R2
SUB AX # 055AA
SUB TOS BX]
SUB CX BX []+
SUB TOS TOSEXT & 24 BX []

SUBB CL R1
SUBB AH #55
SUBB TOS.L BX []
SUBB DL DX []+
SUBB AL CL & 25BX |[]

SUBC CX R2
SUBC AX # 055AA
SUBC TOSBX []
SUBC AX BX []+
SUBC TOS 24 BX |[]

SUBCB CL R1
SUBCB AH #55
SUBCB TOS.L BX []
SUBCB TOS.L BX [+
SUBCB AL 25BX ,[]

TRAP

XOR CX R2

XOR AX # 055AA
XOR TOSBX []
XOR CX BX []+
XOR TOS 24 BX ,[]

XORB CL R1
XORB AH # 55
XORB TOS.L BX []
XORB DL DX []+
XORB AL 25 BX ,[]

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler 80x96 Cross assembler

Glossary

This glossary detail sthe words provided within the cross-assembl er to control the use of
the assembler.

:CODE — I
“semi-code”
Used in the form:

. <namex> CREATE ;CODE ... END-CODE

Stops compilation, and enablesthe assembler. Thisword isused with CREATE to
produce defining words whose run-time portion is written in code, in the same
way that CREATE ... DOES> is used to create high level defining words .
Thedatastructureisdefined between CREATE and ; CODE and therun-timeaction
is defined between ;CODE and END-CODE. The current value of the data stack
pointer is saved by ;CODE for later use by END-CODE for error checking. When
<namex> executes the address of the data area will be found on the processor
gtack, from which it must be removed.

A verson of VARIABLE for use in a ROM-based system might be:

: VARIABLE \ — ; — addr [child]
CREATE
HERE 2+, 0,(R) \ lay address & O
;CODE \
POPAX \ get PFA
PUSH TOS \
LD TOSAX] \ get addressin RAM
NEXT, \ back to Forth
END-CODE
VARIABLE TEST-VAR
ASSEMBLER —
“assembler”

Starts a section of assembler code and turns on the assembler, but without
generating adictionary header. Thisactionisparticularly useful for generating the
dtart-up code. Examples of this can be found in CD196xx.FTH.

CODE —
“code”’
A defining word used in the form:

CODE <name> ... END-CODE

Creates adictionary entry for <name> to be defined by afollowing sequence of
assembly language words. Wordsthus defined are called code definitions. CODE
gtores the current data stack pointer for later error checking by END-CODE.

Page 51

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

80x96 Cross assembler MPE 80x96 Forth Cross Compiler

END-CODE —

“end-code”’
Terminates a code definition and checks the data stack pointer against the value
stored when ; CODE or CODE is executed. The assembler is disabled. See: CODE
;CODE

FORTH —

“forth”
Terminates a section of assembler code started by the word ASSEMBLER and
turns off the assembler.

ISACTION-OF addr —

“isaction of”
Used to tell the cross compiler that the given addressisto be used astheruntime
action of the word whose name follows. Usualy found in code definitions, but
can also be used for high level definitions. For example:

ASSEMBLER
HERE IS ACTION-OF CONSTANT

ASSEMBLER
HERE 1S-ACTION-OF <high-level-definer>
JSR DODOES

FORTH

| — EXIT]

POSTFIX —

“pogt-fix”
Allowsthe assembler to be used in the old Forth style with the opcodes after the
operands. Provided for the benefit of traditionaists.

PREFIX —

“prefix”
Sets the assembler syntax to be as for conventional assemblers, with opcodes
before the operands. Thisisthe default condition.

Page 52

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The multitasker

Multitasker

The multitasker supplied with the MPE development system can greatly smplify com-
plex tasks by breaking them down into managable chunks. This chapter leads you
through:

initialising the multitasker
writing a task

communicating between tasks
handling events

The multitasker isin the file MULTI96.FTH in the \ROM directory.
Note: The multitasker cannot be used with Umbilical Forth

Initialising the multitasker

The multitasker needs to be initialised before use. At compile time the cross compiler
must be told the total number of tasks that your system requires and at run-time, all the
tasks must be initialised.

Setting the number of tasks
The number of tasksis set in your control file. Itisinthe form:
xxxx EQU #TASKS

wherexxxx is, by default, 8 but can be set toalower number. This reducesthe amount of
memory that is allocated to all the tasks., so leaving more RAM for your application.

Note: The maximum number of tasksis 8.

Starting the multitasker

To start the multitasker, use MULTI. MULTI starts the scheduler so new tasks can be
added.

Page 53

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The multitasker MPE 80x96 Forth Cross Compiler

: TASK1 \ —; An example task
BEGIN \ Start an endless loop
7EMIT \ Produce a beep
1000 WAIT \ Reshedule 1000 times
AGAIN \ Go round again

Figure 10 - Multitasking example

Stopping the multitasker

To stop the multitasker, use SINGLE.

Writing atask

Tasks are very straightforward to write, but the way tasks are scheduled needs to be un-
derstood.

Using the scheduler

The multitasker is software scheduled. This means that each task relinquishes control
back to the scheduler when itsready. This is different from a pre-emptive scheduler
where the scheduler interrupts atask. Two words are supplied so that a task can relin-
quish control back to the scheduler, PAUSE and WAIT.

Using PAUSE

The word PAUSE passes control back to the scheduler which executes all the other tasks
once, then returns back to this task.

Using WAIT
ThewordWAIT suspendsatask for acertain number of schedules. Itisusedintheform:
n WAIT

where nisthe number of schedulesto suspend the task. WhenWAIT isused, it transfers
control to the scheduler. The scheduler does not execute thistask again until all the other
tasks have been executed n times.

An example

An exampletask isshown in figure 10. Thetask isan endlessloop with theword WAIT
embedded init. Whentheword WAIT is executed, the scheduler reschedulesto the next
task. Thescheduler will not run thistask until it hasrun all other tasks 1000 times. Each
time the task is executed, it will emit abeep.

Page 54

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The multitasker

Task dependant variables

Anareaof memory isset asidefor eachtask. Thismemory containsuser variableswhich
contain task specific data. For example, the current baseisnormally auser variable asit
can vary from task to task.

Defining a user variable
A user variable is defined in the form:
n USER <name>

where n is the nth byte in the user area.

Using a user variable

A user variableisused in the sameway asanormal variable. By stating its name, itsad-
dressis placed on the stack, which can then be fetched using @ and stored by !.

Initialising a task

A task needsto be initialised beforeitisrun. Toto thisit needsto be assigned to atask
number. Thetask number can range from zero to the maximum number of tasks stated in
the control file. A task isassigned in the form:

ASSIGN TASK1 N TO-TASK

where TASK 1 isyour task word and n is the task number. For example, to initialise the
task in figure 10, to task 1, you type:

ASSIGN TASK1 1 TO-TASK
Thetask number is used to control the task.

Controlling tasks

Tasks can be controlled in the following ways:
activated
suspend atask for a number of schedules
stop the current task
halt a task
restart atask after its been halted

Page 55

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The multitasker MPE 80x96 Forth Cross Compiler

Starting a task
A task can be started by activating it. To activate atask, use
n ACTIVATE

where n isthe task number.

Stopping a task

A task may be stopped for anumber of cyclesof the scheduler or temporarily suspended.
A task may also stop itself.

Stopping for a number of cycles

To stop atask for a number of cycles, use HALT. HALT isused in the form,
n HALT

where n is the tasks to be stopped.

Temporarily stopping atask

To temporarily stop atask, use SUSPEND. SUSPEND isused in the form,
n SUSPEND

where n is the task to be stopped.

To restart a stopped task, use RESTART. RESTART isused in the form,
n RESTART

where n isthe task to restart.

Stopping the current task
To stop the current task (i.e. stop itself) use STOP. STOPisused inthe form,
STOP

Handling messages

An essential feature of the multitasker isthe ability to send and receive messages between
tasks.

Page 56

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The multitasker

Sending a message

To send a message to another task, use the word SEND-MESSAGE. SEND-MESSAGE is
used in the form:

message task# SEND-MESSAGE

where message is a 16-bit message and task# is the number of the task to send the mes-
sage to. The message can be data, an address or any other type of information but its
meaning must be known to the receiving task.

Recelving a message

To receive a message, use RECEIVE-MESSAGE. RECEIVE-MESSAGE suspends the task
until amessagearrives. Whenamessageisreceived thetask isre-activated and the send-
ing task number and the data is returned.

Creating events

Events are analogous to interrupts. Whereas interrupts happen on hardware signals,
events happen under software control.

Writing an event

Aneventisanormal Forthword. Aneventisassociated to atask sothat whentheeventis
triggered, thetask is activated. Therefore, an event isusually used asinitialisation for a
task.

Initialising an event
Eventsareinitialised in asimiliar way to tasks. They are assigned in the form,
ASSIGN EVENT1 n TO-EVENT

where EVENT1 isyour event handler and n isthe task number of thetask that it isto be
associated with.

Triggering an event

There are two ways of triggering an event:
using SET-EVENT
setting a bit in the status word

Page 57

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The multitasker MPE 80x96 Forth Cross Compiler

Field Contains Size
TCBSP Data stack pointer word
TCBST Task status byte byte
TCBID Task number of message sender byte
TCBMSG M essage code or address word
TCBEVENT | CFA of word run by task’s event handler word
TCBACTION |CFA of main task word word

Table 5 - Multitasker data structure

Bit when set when reset
7 Task isrunning Task is halted
6 M essage pending No messages
5 Event has beentriggered |No events

Table 6 - A task's status word

Using Set-event

SET-EVENT isaword which sets an event flag for atask. Once the event flag is set, the
tasker will execute the event before it switches to thetask. Thetask, is also activated.

Setting a bit in the status word.

A bit can be set in atasks status word which indicatesto the multitasker that an event has
taken place. Thismethod can beused totrigger anevent from ahardwareinterrupt. Refer
to The multitasker internals later in the chapter for details on the status byte.

Clearing an event

To stop an event handler being run, use CLEAR-EVENT.

The multitasker’s internals

A multitasker triesto simulate many processorswith just one processor. It worksby rap-
idly switching between each task. On each task switch it saves the current state of the
processor, and restores the state that the next task needs.

Page 58

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The multitasker

Theforth multitasker is software scheduled. Thismeansthat each task relinquishescon-
trol to the scheduler, which then switchesto the next task. Inthisway lessprocessor state
information needs to be saved.

The schedul er’s data structure

The forth multitasker creates atask control block for each task. Thetask control block
(TCB) is adata structure which contains information relevant to a task (figure). The
status byte (TCBST) containsinformation on the execution of thetask and itsevent (fig-
ure).

A simple example

Thefollowing exampleisasimple demonstration of the multitasker. Itssimpleroleisto
display an hash (#) every so often, but leaving the forground Forth running. To use the
multitasker you must cross-compile the file MULTI96.FTH into your target.

Defining asimple task
The following code defines a smple task called TASK1. It displays a # every 1000

schedules.
VARIABLE DELAY \ time delay between #'s
1000 DELAY ! \initialise time delay
: TASK1 \—; task to display #'s
ASCII $EMIT \ Display adollar (%)
BEGIN \ Start continuous loop
ASCII # EMIT \ Display a hash (#)
DELAY @ WAIT \ Reschedule Delay times

AGAIN \ Back to the start ...

Initialising the multitasker

Before any tasks can be activated, the multitasker must beinitialised. Thisisdone with
the following code:

INIT-MULTI
MULTI

ThewordINIT-MULTI initialisesall the multitasker’sdatastructuresand MULTI switches
to multitasking. These words need only be executed once in a multitasking system.

Page 59

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The multitasker MPE 80x96 Forth Cross Compiler

Assigning the example task to atask number

Inamultitasking system, tasks arerepresented by numbers. Therefore, each task must be
assigned to atask number. For this example you type:

ASSIGN TASK11 TO-TASK

This assigns the word TASK 1 to task number 1. It can be assigned to any task upto the
number of tasks defined in the system (defined by #TASK S in the control file).

Activating the example task
To activate (run) the example task, type:
1 ACTIVATE

Thiswill activate task number one. Immediately youwill seeadollar and ahash ($#) dis-
played. If you press<return>afew times, you noticethat the Forthisstill running. After
a couple of seconds another hash will appear. Thisis the example task working in the
background.

Controlling the example task

The example task can be controlled in several way:
the rate of generation of hashes can be changed
it can be halted
once halted it can be restarted
it can be started from scratch

Changing the rate of hashes
Therate of production of hashescan be changed by changing thevariableDELAY. Try:
2000 DELAY !

This changesthe number of schedulesthat the example tasks makes between displaying
hashes to 2000. Therefore the rate of displaying hashes halves.

Halting the example task

Thetask is halted by typing the tasks number followed by HALT:
1HALT

You notice that the hashes are not displayed.

Restarting the halted task
Thetask isrestarted by theword RESTART. Typethetask number followed by RESTART:

Page 60

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The multitasker

1 RESTART
You notice that the hashes are displayed again.

Restarting the task from scratch

To restart the task from scratch, just activate it again:

1 ACTIVATE

You notice the dollar and the hash ($#) are displayed, followed by hashes (#).

Page 61

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The multitasker MPE 80x96 Forth Cross Compiler

Glossary

This glossary contains details of the magjor words in the interrupt and multi-tasking sys-
tem. Other words exist, but are only used as fractions of the words below.

?EVENT

“query-event”
If the current task’s event flag is s&t, the flag is reset and the event handler is
executed.

ACTIVATE task# —

“activate”

Initialisesand startsthe given task number. Task OisForthitself and wasactivated
when Forth started. Note that ACTIVATE causes the task to start from the very
beginning. If the task was halted, and execution should resume where it | eft off,
use RESTART ingtead.

CLR-EVENT-RUN —
“clear-event-run”
Clearstheevent runflagfor thecurrent task. Thisishit4inthetask statusbyte.

Dl —
13 d—l ”
Disables interrupts.

El —

13 e—l
Enables interrupts.

EVENT? —tf
“event-query”
Returnstrueif theevent triggered bit hasbeen setinthecurrent task’ sstatusbyte.

GET-MESSAGE — message task#

“ get-message”
Returns the task number of the currently executing task (onesdlf).

HALT task# —

13 hal t”
Haltsthe task whose number isgiven. Do not halt task 0. Halting atask preventsit
responding to messages or events.

INIT-MULTI —

“init-multi”
Initialises the multi-tasker, task 0, and starts the multi-tasker. Just include this
word in COLD to kick the multi-tasker into action.

Page 62

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler The multitasker

INIT-TCBS —

“init-t-c-bees’
The main part of the multi-tasker reset process.

MSG? task# — t/f

“message-query”
Returnstrueif the task isholding a message, and is therefore not free to receive
another one.

MULTI —

“multi”

Turnsthe multi-tasker on, by clearing the bit inthe TASK# byteininternal RAM
that inhibits the scheduler.

PAUSE

13 pau%"
Waits for one iteration of the scheduler. Equivaent to:

1WAIT

RESTART task# —

“restart”
Redtarts a task that was halted by HALT or WAIT. Unlike ACTIVATE, the task
resumes where it |eft off.

RESTORE-INT —
“restore-int”
Restore the interrupt enable state previoudly saved by SAVE-INT.

SAVE-INT —

“save-int”
Saves the current state of the interrupt enable, and disables interrupts. See
RESTORE-INT.

SELF — task#

13 gf"
Returns the task number of the current task. Useful with MSG? in particular to
determine whether or not a message has been received by the task.

SEND-MESSAGE message task# —

“send-message”’
Sendsamessageto thegiven task. Themessage address can beused onitsown, or
as apointer to an extended message.

SINGLE —

“single’
Turnsoff themulti-tasker by setting the scheduler disable bitinthe TASK#bytein
internal RAM.

Page 63

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

The multitasker MPE 80x96 Forth Cross Compiler

STATUS —n

“status’
Returnsthetask status byte of the current task but with the top bit (bit 7) masked
off. If thisvalueis non-zero, the task has been awakened for areason other than
for norma running.

TCBS — addr

“t-c-b-o”
A label, NOT aword, that returns the start addressin DATA RAM of the table
holding theaction wordsfor all thetasks. In some systemsthisisimplemented as
aconstant for vishility.

TO-EVENT cfa task#—

“to-event”
Setsthe CFA of aForth word asthe action to run when the task’s event trigger is
et

ASSIGN <word> <n> TO-EVENT

TO-TASK cfa task#t —

“to-task”
Storesthe CFA of the word forming the task action in the task table entry for the
task.

ASSIGN <word> <n> TO-TASK

WAIT n—

13 Wa' t”
Suspends the current task for n iterations of the scheduler. If nis O, the task is
suspended until a message or event are received.

WAIT-EVENT/MSG —

“wait-event-or-message’
The current task is suspended until it receives amessage or an event trigger. The
wordsM SG?and EVENT? can beused to determinewhether amessage or an event
trigger terminated the wait. Note that if an event trigger is received, the event
handler will have been called, and the event run flag (bit 4 in the Status byte) will
be set.

Page 64

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

Interrupts

| nterrupts

Thischapter describes how towriteinterrupt handlersin both Forth and assembler. 1t de-

tails how to setup and control interrupt handlers.

| nterrupts on the 80x96

When aninterrupt occurs on a80x96 family of processors, an addressisfetched fromthe
vector table. The vector table resides from 2000h to 203Fh, oneword for each interrupt
asshownintable 7. The code at the addressisthen executed. For more information on
the interrupts for your processor, refer to your processor’s user guide.

Vector address Deferred word Source

2000h tov-isr timer overflow

2002h ald-isr A/D conversion complete
2004h hsi-isr HSI data available
2006h hso-isr High speed output
2008h hsi.0-isr HSI.0 pin

200Ah timer-isr Software timer

200Eh ext-isr EXTINT

2010h trap-isr Trap

2012h illop-isr Unimplemented opcode
2034h hsi4-isr 4th entry into HSI FIFO
2036h t2c-isr Timer 2 capture

2038h t20-isr Timer 2 overflow
203Ah extl-isr EXTINT1

203Ch hsifull-isr HSI FIFO full

203Eh nmi-isr NMI

Table 7 - 80196 vector table

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Page 65

http://www.pdffactory.com

Interrupts MPE 80x96 Forth Cross Compiler

Writing Forth interrupt handlers

A Forth interrupt serviceroutine (ISR) isjust like any other Forth word. It can therefore
be tested and debugged like a normal Forth word. Only when the word is fully tested
need it be assigned to an interrupt.

Setting an interrupt

Aninterrupt isset by using the defered wordsin table 7. For example, if youwishtorun
your word A/D-READY oncethe A/D hasfinished itsconversion, you need to assign an
actiontothedeferedword A/D-ISR (table 7). Thereforeyour source code shouldread:

ASSIGN A/D-READY TO-DO A/D-ISR

Some common problems

There are afew common problems that might cause an interrupt not to work correctly:
a stack fault
the source isnot cleared
the interrupts are not enabled

Stack fault

Aninterrupt service routine can use the stack whileit is executing, but must clear up the
stack beforereturning fromtheinterrupt. Thenormal symptom of astack fault isthat the

ASSEMBLER
L: ISRN \ entry point for assembler
PUSHF PUSH IP \ save PSW and |P
LD IP# structure \ load new IP
L: NEXT-INT \ save context,restart Forth
PUSH AX PUSH BX \ PLM register set - part 1
PUSH CX PUSH DX \ PLM register set - part 2
\ IPaready done
PUSH UP \ user area pointer
PUSH TOS \ top of data stack reg(s)
PUSH TOSEXT \
LD UP#int-init-u0 \ interrupt user area
\ IPaready set
NEXT,
FORTH
ISRN VECTORN ! \ set vector in table

Figure 11 - Example assembler interrupt handler

Page 66

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Interrupts

interrupt handler runs but then the target board crashes, either immediately or after a
length of time.

Sourceis not cleared

Oncean interrupt handler istriggered by an interrupt, the source of theinterrupt must be
told that theinterrupt isbeing serviced. If thisisnot done, the source of theinterrupt will
carry on generating interrupts. Normally this appears as the interrupt handler executing
once and then the target board ‘locking’.

Interrupts are not enabled

Interrupts need to be enabled with EI before any interruptswill be serviced. The vectors
must be setup or the interrupt handler assigned to the defered word before the interrupts
are enabled.

Writing assembler interrupt handlers

Writing an interrupt service routine in assembler is straightforward. The code can be
written in the form of figure 11. The entry point isindicated by alabel (ISRN in figure
11). For more information on how to write assembler definitions see chapter6.

Setting the interrupt
Theinterrupt in figure 11 can be set to a vector by entering in your source code,
ISRN INT-VECTOR !

where INT-VECTOR is the address of the interrupt vector to be set.

Controlling the interrupts
Interrupts can be in one of two states, enabled or disabled.

Enabling interrupts

To enable interrupts use EI. Once EI has been executed, all interrupts are enabled.

Disabling interrupts

To disable interrupts use DI. Once DI has been executed, all interrupts are disabled.

Page 67

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Interrupts MPE 80x96 Forth Cross Compiler

A simple example

Thefollowing example patchesahighlevel interrupt serviceroutine (1SR) onto the over-
flow interrupt of the 80C196 timer. To try thisexample you must cross-compilethefile
INT196.FTH onto your target.

Thetimer ISR

The example ISR increments a variable which can be fetched in the foreground to detect
that the timer isworking.

Variable Ticks \ timer variable
1 Ticks-ISR \—; Increment variable

1 Ticks +! \ Increment ticks

Patching your | SR onto the timer

Thel SR needsto be patched onto thetimer overflow interrupt. Thisismadesimpleasall
that isrequiredisthat you assign your | SR to bethe action of thedefered word TOV-1SR.

ASSIGN TICKSISR TO-DO TOV-ISR

Oncethisisdone, thetimer isready to go. All thatisrequiredisthetimer needsto beini-
tialised.

Initialising the timer

The timer needs to be initialised to:
enable TOV interrupts
enable TOV in 10C1
enable any interrupts

To do thisaword INIT-TICKSis defined:

- Init-ticks \ — ; initialise the timer overflow
1int_mask! \ enable TOV interrupts
4 10C1 Set-bit \ enable TOV in10C1
el \ enable any interrupts

Thetimer can be initialised by typing INIT-TICKS.
Testing the timer is running

The timer can be tested by checking the variable TICKS:

Page 68

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Interrupts

TICKS?
This displays the current value of TICKS.

Page 69

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Interrupts MPE 80x96 Forth Cross Compiler

Glossary

Thisglossary containsdetail sof themajor wordsintheinterrupt system. Other wordsex-
ist, but areonly used asfractions of the words below. The source codefor all these words
may be found in INT96.FTH.

Dl —
13 d_i ”
Disables interrupts.
El —
13 e_i ”
Enables interrupts.
RESTORE-INT —
“restore-int”
Regtore the interrupt enable state previously saved by SAVE-INT.
SAVE-INT —
“save-int”
Saves the current state of the interrupt enable, and disables interrupts. See
RESTORE-INT.
Page 70

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Software floating point

Software floating point

Although most applications only require integer arithmetic, some do require floating
point. Therefore softwarefloating point is supplied on the cross-compiler and the target
forth.

The cross-compiler has amore limited floating point support than the target, so not all
words exist when used in your source code when outside a colon definition.

Entering floating point numbers

Floating point numbers can be entered in two forms:
1.234
0.1234el

Floating point numbers are compiled as literal numbers when in a colon definition and
placed on the cross-compiler’s stack when outside a definition.

The form of floating point numbers

A floating point number is placed on the Forth stack. 1t consists of three 16-bit numbers.
Two for the mantissa and one for the exponent. The mantissa is normalised.

Creating variables

Tocreateavariable, useFVARIABLE. FVARIABLE worksinthe sameway asVARIABLE.
For example, to create afloating point variable called VARL you code:

FVARIABLE VAR1
When VAR isused, it returns the address of the floating point number.

Accessing variables

Two wordsare used to accessfloating point variables, F@ and F!. Theseare analogousto
@and!.

Page 71

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Software floating point MPE 80x96 Forth Cross Compiler

Creating constants

To create afloating point constant, use FCONSTANT. FCONSTANT is anal ogous to CON-
STANT. For example, to generate afloating point constant called CON1 with a value of
1.234, you enter:

1.234 FCONSTANT CON1
When the CON1 is executed, it returns 1.234 on the Forth stack.

Using the supplied words

The supplied words split into several groups:
sines, cosines and tangents
arc sines, cosines and tangents
arithmetic functions
logarithms
powers
displaying floating point numbers
inputing floating point numbers

Thefollowing functionsonly exist astarget words so you cannot use themin calcul ations
in your source code when outside a colon definition.

Calculating sines, cosines and tangents

To calculateasine, cosine and tangent, useFSIN, FCOSand FTAN respectively. They take
either an anglein degrees or radians, depending on which is set at the moment. See Set-
ting degrees or radians.

Calculating arc sines, cosines and tangents.

To calculatethe arc sine, cosine and tangent, use FASIN, FACOS and FATAN respectively.
They return an angle in degrees or radians, depending on whichis set. See Setting de-
grees or radians.

Calculating logarithms

Two wordsare supplied to cal cul ate logarithms, FLOG and FLN. FLOG calculatesaloga-
rithm to base 10 (decimal). FLN calculates alogarithm to base e. Both take afloating
point number in the range from O to ¥.

Page 72

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Software floating point

Calculating powers

Three power functions are supplied:

X

(S
10
xV

Calculating €*

To calculate €, use FEAX. FE~X takes x as afloating point number.

Calculating 10”

To calculate10”, use F10MX. F10nX takes x as a floating point number.

Calculating x”

To calculate x”, use FX*Y. FX~Y takes x and y as floating point numbers.

Setting degrees or radians

The angular measurement used in the trigomentric functions can be set to be either de-
greesor radians. To setit to degrees, use theword DEGREES. To setit to radiansusethe
word RADIANS.

Converting between degrees and radians

To convert between degreesand radiansuseRAD>DEG Or DEG>RAD. RAD>DEG converts
ananglefromradiansto degrees. DEG>RAD convertsan anglefrom degreestoradians.

Displaying floating point numbers

Two words are available for displaying floating point numbers, F. and E.. The word F.
takes a floating point number off the stack and displays it in the form xxxx.xxxxx or
X.XXXXXEyy depending on the size of thenumber. ThewordE. displaysthenumber inthe
later form.

Page 73

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Software floating point MPE 80x96 Forth Cross Compiler

Glossary

Inthefollowing glossary, youwill find all the wordsthat you are likely to need when us-
ing software floating point; the words omitted are, in general, subroutines used by words
in the glossary.

N.B. Abbreviation: f.p. = floating point
D>F d—f

“d-to-f”
Converts a 32 bit double integer to anormalized f.p. number.

DEG>RAD f1—1f2
“deg-to-rad”
Convert f1 degrees to its corresponding number of radians.
DINT f—d
“dint”

Leave the integer part of f as a double number on the stack.

DNORM dn—f
“d-norm”
Normalize double number d by n left shifts. Leaves af.p. number on the stack.

E. f—
“e-dot”
Print the f.p. number on the stack in exponential form.

F, f—
“f-comma’”
Compile the f.p. number on the top of the stack.

F. f—
“f-dot”
Print the top f.p. number on the stack in free format.
F! f addr —
“f-store”

Storethef.p. number f at address addr.

F+ f1f2—1f3

“f-plus’
Add together the top two f.p. numbers on the stack and put the f.p. result on the
stack.

F- f1f2—1f3

“f-minus’
Subtract thetop f.p. number onthestack fromthesecond f.p. number onthe stack,
and put thef.p. result on the stack.

Page 74

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Software floating point

F* f1f2—f3

13 f_aar))
Takethetop twof.p. numbers off the stack, multiply them together, and leave the
f.p. result on the stack.

F/ f1f2—1f3

13 f_g ﬂ]))
Divide the second f.p. number on the stack by the top f.p. number and leave the
f.p. result on the stack.

F< f1f2—flag
“f-less-than”
Leavetrueflagif f1<f2. Otherwise, leave afaseflag.

F<0 f—flag
“f-less-than-0"
Leave atrueflag if f<0. Otherwise, leave afdse flag.

F= f1f2—flag

“f-equals’
Leave atrue flag if the top two f.p. numbers on the stack are equal. Otherwise
leave afaseflag.

F=0 f—flag
“f-0-equas’
Leave atrueflag if the f.p. number on the top of the stack is zero.
F> f1f2—flag
“f-greater-than”

Leave atrueflag if f1<f2. Otherwise, leave afase flag.

F>0 f—flag
“f-grester-than-zero”
Leave atrueflag if the f.p. number on the top of the stack is grester than zero.

F# — f [executing]

“f-hash” — [compiling]
If interpreting, takestext fromtheinput stream and, if possible, convertsitto af.p.
number on the stack. Numbers in integer format will be converted to floating
point. If compiling, the converted number is compiled.

F#N —f3]|0

“f-hash-in”
Attempts to convert a token from the input stream to a floating point number.
Numbersin integer format will be converted to floating point. An indicator (O or
3) isreturned in the same way as an indicator is returned by FNUMBER?.

Page 75

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Software floating point MPE 80x96 Forth Cross Compiler

F@ addr —f
“f-fetch”
Fetch the f.p. number from address addr and put it on the stack.
F10"M X fl1—f2
“f-10-to-the-x”

Raise 10 to the power f1 and put the result on the stack.

FABS f—If|

“f-abs’
Take the modulus of the f.p. number on the top of the stack.

FACOS fl—f2

“f-a-cos”’
Leave, on the stack, the angle (in degrees) whose cosne is f1, such that
0<=f2<=180.

FARRAY fn-1..f0 n — [parent]

“f-array” n— fn[child]

When generating the array, take n f.p. numbers and n, and compile them into the
array. When executing the child word, take n and place f.p. number n from the
array onto the stack. Note that the numbering in the array goes 0,1,..n-1.

FASIN f1—1f2

“f-a-sine’
Leave, on the stack, the angle (in degrees) whose sne is f1, such that
-90<=f2<=90.

FATAN f1—1f2

“f-atan”
Leave, on the stack, the angle (in degrees) whose tangent is f1, such that
-90<f2<90.

FCONSTANT f — [parent]

“f-constant” — f[child]
Floating point equivalent of CONSTANT. Use in the form:
<f.p. number on stack> FCONSTANT <name>

FCOS fl1—f2
“f-cos’
Take the cosine of f1 (degrees) and put it on the stack.

FDROP f—

“f-drop”
Drop thef.p. number on the top of the stack.

Page 76

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

FDUP f—ff
“f-dup”
Duplicate the f.p. number on the top of the stack.
FEMX fl1—f2
“f-e-to-the-x”

Raise e, theexponential number, tothe power f1 and put theresult onthe stack.

FFRAC f1f2—13
“f-frac”
Leave thefractional remainder from the division f1/f2. The remainder takesthe
sgn of the dividend.
FINT f1—1f2
“fint”
Place thef.p. integer value of 1 on the stack.
FLITERAL f—
“f-litera”
When compiling, compilef asaliterd. For example,
: ABCD [calculatef] FLITERAL ;
Compilation is suspended for the compile-time calculation of f. Execution of
ABCD leavesf on the stack.
FLN f1—1f2
“f-log-base-¢’
Take the logarithm of f1 to base e and put the result on the stack.
FLOATS —
“floats’
Switches the action of NUMBER? to be FNUMBER?. This action can be reversed
by INTEGERS. Both FLOATS and INTEGERS are in the FORTH vocabulary.
FLOG fl—f2
“f-log-base-10"
Take the logarithm of f1 to base 10 and put the result on the stack.
FMAX f1f2 — max{f1,f2}
“f-max”
Put the greater of the top two f.p. numbers onto the stack.
FMIN f1f2— min{f1,f2}
“f-min”
Put the lesser of the top two f.p. numbers onto the stack.
FNEGATE f—-f
“f-negate’

Negate the f.p. number on the top of the stack.

Software floating point

Page 77

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Software floating point MPE 80x96 Forth Cross Compiler

FNUMBER? addr— 0/n1/d 2/f 3

“f-number-query”
Convertsstring at address addr to either asingle, double or floating point number
along with 1, 2, or 3 respectively. If a0 isleft on the stack then FNUMBER? was
unable to convert the string.

FOVER fl1f2—f1f2f1
“f-over”
Floating point equivaent of OVER.

FROT f1f2f3—f213f1
“f-rote”
Floating point equivaent of ROT.

FSEPARATE f1f2—f3f4

“f-separate”
Leave the signed integer quotient f4 and remainder f3 when f1 isdivided by 2.
The remainder has the same sign as the dividend.

FSIGN f—fflag

“f—s‘gn”
Leave thef.p. number and aflag on the stack. Leavesatrueflag if f isnegative,
elseleaves afdseflag.

FSIN fl1—1f2
“f-sne”
Leave the floating point sine of f1 (degrees) and puit it on the stack.

FSOR f1—f2

113 f—S—q—r”
Take the square root of the floating point number on the top of the stack and put
the result onto the stack.

FSWAP f1f2—f2f1
13 f—SNa)”
Floating point equivalent of SWAP.

FTAN f1—f2
13 f—ta‘]”
Take the tangent of f1 (degrees) and put the result on the stack.

FVARIABLE —
“f-variable”
Floating point equivalent of VARIABLE. Set up an fvariable by typing:

FVARIABLE <name>

Page 78

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Software floating point

FXAN fin—f2
“f-x-to-the-n”
Raise f1 to the power n (n integer), and put result on the stack.

FXAY f1f2—1f3
“f-x-to-the-y”
Raise f1 to the power f2 and put the result on the stack.
INTEGERS —
“integers’

Switches the action of NUMBER? to be INTEGER?. This action reverses that of
FLOATS. Both FLOATS and INTEGERS are in the FORTH vocabulary.

RAD>DEG f1—f2
“rad-to-deg”
Convert f1 radians to degrees, and put result on the stack.
SF n—f
“sto-f”

Converts asingle (16 bit) number to a normalized f.p. number
SINT f—n

“gint”
Takes the single number integer part of f and putsit on the stack.

Page 79

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler ROM PowerForth

ROM PowerForth Utilities

Supplied as source are utilities to:
compile source code on your target board
upload a binary image from your target to your PC

These utilities can be used to generate an EPROM which hasall the tools required to de-
velop an application.

Compiling text files

Source text files can be compiled from the target system onto the target system. This
saves time in not having to cross compile the all the source if a small modification is
made. Theutilitiesassumethat eachtext fileissplitinto pages. A pageisseperated from
another by an ASCI1 12 character. Writing source codewith pagesgivesyoutheability to
compile discrete chunks of code. If you do not have any pages in your source code, the
whole file should be treated as page one.

Note: You must switch XShell tofileserver modeto usethisfacility. See X Shell man-
ual.

Therequired files

To compile text files from your target board, cross compile the files IODEF.FTH and
TEXTFILE.FTH.

Compiling a specified text file

To compile all or part of a specified text file onto your target, use FROM-FILE in the
form:

start-page end-page FROM-FIL E <name>

This compilesthe file <NAME> into the targets dictionary.

Page 81

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ROM PowerForth MPE 80x96 Forth Cross Compiler

Compiling the default text file

An alternative approach isto specify adefault filename which isremembered by the tar-
get. Thefile can then be compiled without specifying the text file's name. Thisis nor-
mally quicker if you are continuously compiling onefile.

Specifying the default text file
To set the default filename, type:
USE <name>

where<NAME> isthetext file’' snameto be set asthe default. 1f no extensionisspecified,
an extension of .FTH is assumed.

Compiling the default text file To compile the default file, type:
start-page end-page FROM
This compiles the pages from start-page to end-page onto the target.

Specifying the start and end pages

Words are supplied to enable you to compile partsor all of afileeasily. Tocompile parts
of afile you can use ONWARDS, UPTO and ALONE with either FROM or FROM-FILE.

Compiling from a specified page to the end of thefile

To compile from a start page to the end of the file, use ONWARDS in the form:
start-page ONWARDS

Thisgeneratesastart and end pagewhich can be used with either FROM-FIL E or FROM.
For example,

10 ONWARDS FROM

compiles from page ten to the end of the default text file.

Compiling from the start of the fileto a specified page

To compile from the start of afile to a specified page, use UPTO in the form:

UPTO end-page

Thisgeneratesastart and end pagewhich can be used with either FROM-FIL E or FROM.
For example,

UPTO 10 FROM

compiles from the start of the file to page ten of the default text file.

Page 82

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler ROM PowerForth

Compiling a single page

To compile asingle page, use ALONE in the form:

start-page ALONE

Thisgeneratesastart and end pagewhich can be used with either FROM-FIL E or FROM.
For example,

10 ALONE

compiles page ten of the default text file.

Compiling screen files

Standard Forth screen files can be compiled onto the target system, in the sameway ason
a host system.

Note: You must switch XShell tofileserver modeto usethisfacility. See X Shell man-
ual.

Therequired files

To compile text files from your target board, cross compile the files IODEF.FTH and
BLOCKS.FTH.

Compiling a specified screen file

To compileall or part of aspecified screen file onto your target, use THRU-USING in the
form:

start-screen end-screen THRU-USING <name>

This compilesthe file <NAME> into the targets dictionary.

Compiling the default screen file

An aternative approach isto specify adefault filename which isremembered by the tar-
get. Thefile can then be compiled without specifying the text file's name. Thisis nor-
mally quicker if you are continuously compiling onefile.

Specifying the default screen file
To set the default filename, type:
USING <name>

Page 83

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ROM PowerForth MPE 80x96 Forth Cross Compiler

where<NAME> isthe screen file’'snameto be set asthe default. If no extension is speci-
fied, an extension of .SCR is assumed.

Compiling the default screen file

To compile the default file, type:

start-page end-page FROM

This compiles the pages from start-page to end-page onto the target.

Compiling asingle screen

A single screen can be loaded from the default screen file or a specified screen file.

Compiling a single screen from a specified screen file
To compile asingle page, use LOAD-USING in the form:
screen LOAD-USING <name>

This compiles the screen screen# of the file <NAME> onto the target.

Compiling a single page from the default screen file
To compile asingle page, use LOAD in the form:
screent LOAD

where screentt is the screen number to load.

Downloading a binary image

A binary image can be downloaded from thetarget to your host PC. Two utilitiesare pro-
vided:

an Intel hex download
aXMODEM download

For both utilities a suitable communications package will be required (i.e. ProComm).

XMODEM binary image download
Binary images can be downloaded to your PC using the XMODEM protocol.

Page 84

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler ROM PowerForth

Required files

To use this utility you must cross compile the files BLOCKS.FTH and BIN-
DOWN.FTH.

Using the XMODEM binary download utility

To down-load abinary image from the target system to your PC, use BIN-DOWN inthe
form:

addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytesto down-load starting
from addr.

For example,
1200 400 BIN-DOWN
sends the area of memory from 1200 to 1599 to your host PC.

Intel hex binary image download
Binary images can be downloaded to your PC using the Intel hex format.

Required files

To use this utility you must cross compile the files BLOCKS.FTH and HEX-
DOWN.FTH.

Using the binary download utility

To down-load abinary image from the target system to your PC, use BIN-DOWN inthe
form:

addr #bytes HEX-DOWN

where addr is the start address and #bytes is the number of bytes to down-load starting
from addr.

For example,
1200 400 HEX-DOWN
sends the area of memory from 1200 to 1599 to your host PC.

ROM PowerForth

ROM PowerForth can be used to generate a stand-alone Forth system. With these utili-
ties, you can generate an EPROM which enables you to generate an interactive Forth
with the ability to develop an application.

Page 85

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ROM PowerForth MPE 80x96 Forth Cross Compiler

Note: Alicenceisrequiredtodistributeopen Forth systems. Contact M PE for more
details.

Hardware requirements

To develop an application usingaROM PowerForth, your board requiresan areawhich:
is aways EPROM
isaways RAM
isRAM for development and EPROM for application

EPROM area
The areawhich is always EPROM, contains the development kernel.

RAM area
The areawhich is always RAM is used for variables and all changeable data.

RAM/EPROM area

Thisareaisusedto develop your application. Therefore, it must be RAM whiledevel op-
ing. Once your application is developed, the application’s image must be saved into
battery-backed RAM or EPROM. Therefore, thisarea must have the ability to be alter-
able but also non-volatile.

Types of board

The type of board that can be used to develop using ROM PowerForth is restricted to:
three site boards
two site boards with battery backed RAM
two site boards with socket converter

Three site boards

The three areas are provided by three memory sockets:
EPROM holding development kernel
RAM which holds the variables and changeable data
EPROM or RAM which is selectable by alink on the board

Two site boards with battery backed RAM

The three areas are provided by two sockets:

Page 86

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler ROM PowerForth

EPROM holding the development kernel
battery-backed RAM which is split into two areas

Two site boards with socket converter

On many boards, thereisunused spacein the EPROM asROM PowerForth occupiesless
than 16k bytes of memory. Therefore, a header board can be made which converts one
socket intotwo. For example, if the socket normally takesa27256 EPROM, aboard can
be made which has an 16k EPROM with the ROM PowerForth devel opment kernel and
16k bytesof RAM. ToaccesstheRAM, thewritelineisattached to asuitablepoint onthe
main board with afly lead.

After the application has been devel oped, the two imagesare combined back intoasingle
EPROM.

Making your application turnkey

Once your application has been developed, it needsto be made so that it isalways avail-
able. The application can be made semi-permanent by compiling into battery-backed
RAM inthe RAM/EPROM area. Alternatively, it can be copied into an EPROM if the
board allows.

Configuring aturnkey application

The word SETUP takes the address of the word passed to it and marks this in the
RAM/EPROM header asthe address of theword to berun at power-up. If avalueof zero
is passed to SETUP, the interactive Forth kernel will be run at power-up.

For example, the word JOB isto be run at power-up. Therefore you type,
*JOB SETUP

Discarding the application RAM area
The application can be discarded by typing:
0 ROM !

Changing the application RAM start address

The constant ROM returns the start address of the application RAM area. If the address
of thisareaisto be changed, the EPROM must bemodified. Todothis, the16-bit valuein
ROM must be changed.

Page 87

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ROM PowerForth MPE 80x96 Forth Cross Compiler

Glossary

$FROM-FILE \ first last $addr — ;

“dollar-from-file”
Compilesatext file given by the counted string $addr. Pagesfromfirsttolast will
be compiled.

e.g.1020“” TEST.FTH" $FROM-FILE
Compiles pages ten to twenty of file TEST.FTH.

SUSING \ addr$ —;
“dollar-using”
Sets the default screen file to the counted string addr$.

eg.“” TEST.SCR" $USING
sats the default screen fileto TEST.SCR.

ALL \—firgt last;
Ilall))
Used with FROM and FROM-FILE to compile a complete file.

e.g. ALL FROM
compiles dl of the default text file.

ALONE \n—firg last;
“aone’
Used with FROM and FROM-FILE to compile a single page.

e.g. 1 ALONE FROM
compiles page one of the default text file

CLS \—;
“c-l-s’

Clearsthe display.
EMPTY-BUFFERS \—:
“empty-buffers’

Marks screen file buffers as empty
FLUSH \—;

“flush”

Flushes the screen file buffer to disk
FROM \firstlast —;
“from”

Compiles pagesfirst to last of the default text file.

FROM-FILE \firstlast <name>—;
“ from-file’
Compiles arange of pages (tart to end) from a specified text file <name>.

Page 88

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler ROM PowerForth

INDEX \nln2—;
“index”
List top linesin range of screens.

L \—;

Displays the current screen.

LIST \ blk# — ;
“list”

Display screen given.
LOAD \ blk# — ;
Hload”

Compile given screen
N \—;
HnH

Displays the next screen

ONWARDS \ first — first last ;
“onwards’
Used with FROM and FROM-FIL E to compile from a specified page to the end
of thefile.
P \—;
13 pH
Displays the previous page
QX \—;
13 q—X”
Displays the top line of every screen in the default screen file.
SAVE-BUFFERS \—;
“save-buffers’
Savesthe screen file buffersif they have been modified.
SET-USEFILE \ $addr —
“set-use-file”
The counted string $addr is set to be the default screen file
THRU \ blk#from blk#o — ;
“thru”
Compiles from screens blk#from to blk#to of the default screenfile
UPDATE \—;
“update’

Flags the screen file buffer as being modified.

Page 89

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

ROM PowerForth MPE 80x96 Forth Cross Compiler

UPTO
“upto”

USE
143 u%n

USING
“using’

Page 90

\lagt —firstlast ;

Used with FROM and FROM-FILE to compile from the start of the file to the
Specified page.
e.g. 10 UPTO FROM
compiles from the start of the default text file to page 10.
\ <name> —;
Specifies the default screen file. 1f an extension is not included in the filename,
SCR is assumed.
e.g. USING TEST.SCR
sets the default screen fileto TEST.SCR.
\ —;
Specifiesthedefaulttextfile. If anextensonisnot includedinthefilename, .FTH
is assumed.

e.g. USING TEST.FTH
sats the default text fileto TEST.FTH.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler ROM PowerForth

Blank page

Page 91

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Paged

targets

Paged targets

Many people develop for 8-bit and 16-bit target processors. One disadvantage of using
8-bit and 16-bit processor is their limited addressing range (64KB). To overcome this
limitationthe M PE crosscompiler supports paged targets. Paging isused whentheappli-
cation'ssizeislarger than the available memory. To overcomethis, different parts of the
application are loaded into memory when required.

An example memory map isshown figure 12. This shows a paging system for the MPE
196 Powerboard. The memory space is split into 4 sections:

Kernel - The Forth kernel. Itisaways present. It mapsinto the first 16k of
the 27512 EPROM.

ROM - The targets ROM is mapped into 16k chunks of the 27512. This
gives 4 pages of ROM.

RAM - The targets RAM. In this example, thisis always present.
External - The MPE 196 Powerboards access to the outside world.

FFFF
c000 External
BFFF
RAM
8000
TFFF —
ROM | _—1 Paee® |ocooo-ofe
4000 :::::::::: Page 2 |08000-0BFFF
SFFF Page 1 |04000-07FFF
KERNEL []
0000 Page 0 | 60000-03FFF
27512
EPROM

Figure 12 - Example paging mechanism

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Page 93

http://www.pdffactory.com

Paged targets MPE 80x96 Forth Cross Compiler

Creating a paged target

To create a paged target, you need to define each page’'s memory map and write the page
switching word.

Defining a page
A pageisdefinedinasimilar way to the kernel. Seperate pagesfor code and data can be
defined. A page is defined by three items:

the start of the page in addressable space

the end of the page in addressable space

aunique identifier for the page.

To define acode page, use CODE-PAGE. To define adatapage, use DATA-PAGE. CODE-
PAGE isused in the form:

<start> <end> <page-id> CODE-PAGE
DATA-PAGE is used in the form:
<start> <end> <page-id> DATA-PAGE

where <start> is the start address in the page, <end> is the last address in the page and
<page-id>isthe pagesidentifier. The<page-id>must uniquely identify the page, asitis
used to indicate which page to switch to.

For example, to define the first two pages in figure 12, you code:

$4000 $7FFF 1 CODE-PAGE Pagel
$4000 $7FFF 2 CODE-PAGE Page2

Theother pagesare coded in asimilar way. The page-id used isauniqueidentfier which
is meaningful to the page switching word.

Writing the page switching word

A word is required to do the actual hardware page switch. The page switching word
must be called PAGE-WORD and must be compiled in the fixed kernel part of the target
image. When aword in adifferent pageisto be executed from a page, the actual execu-
tion must be performed viaPAGE-WORD. Thisisshowninfigure 14. The crosscompiler
will automatically compile areferenceto PAGE-WORD everytime an external pageisref-
erenced. PAGE-WORD is passed the page-id of the required page and the address of the
word to be executed within the page. PAGE-WORD must:

preserve the current page id

switch the specified page into addressable memory
execute the required code within the page

restore the previous page

Page 94

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

Paged targets

Page 1

All pages at same address

Page 2

Page 3

Page 1 routines can call Page x routines via the kernel

Page Table

Page Routines

Kemel of Forth

Always present

Figure 14 - The page switching mechanism

An examplefor the MPE 196 Powerboard is shown in figure 13. Once tested, this code
could then be coded in assembler for speed.

Compiling code into a page

Compiling your source code is very similar to compiling code into the kernel, but some

extrainitialisation must be done and some restrictions must be observed.

Initialisating compilation into a page

Themajority of Forth can be compiledinto apageexcept for inter-page defered words.

To interactively debug your paged code, the cross compiler requiresit to be placedina

paged vocabulary. To do this, define a paged vocabulary,

USE-CODE <name>
PAGED-VOCABULARY <name>

where <name> is the name of a page.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Page 95

http://www.pdffactory.com

Paged targets MPE 80x96 Forth Cross Compiler

Compiling into a page
To compile into a page use:
USE-CODE <NAME>

where <name> isthe name of the page you wish to compileinto. Any code compiled af-
ter thisinstruction will be compiledinto the page<name>. You can switch between com-
pilation pagesat any time, so that all your codefor one page does not need to be compiled
together.

Restrictions for compiling into a code page

You cannot forward reference aword in a different page.

Finishing compilation of a page

Once your code has been compiled into a page, FINIS-CODE-PAGE must be executed, in
the form:

FINIS-CODE-PAGE <name>

Where<name> isthe name of the pagetofinish. Thecrosscompiler showsacompilation
summary for the page.

Compiling data into a page

Compiling data such as variables and constants into a page is straightforward but some
restrictions must be observed.

Setting the data page
To select the page that datais to be used for, use USE-DATA in the form:
USE-DATA <name>

where <name> isthe name of the page defined with DATA-PAGE. Variablesand constants
can then be defined.

Restrictions for compiling into a data page

Data defined in pages other than the kernel page will not havetheir datainitialised. This
must be done at startup by the application.

The KERNEL-RAM ‘s page-id must be set to the KERNEL * s page-id.

Page 96

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Paged targets

Blank page

Page 97

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Controlling the cross compiler

Controlling the compiler

While cross-compiling, the cross-compiler needsto beinstructed on how to configure it-
self. You need to tell the cross-compiler:

when to start compiling

when to stop compiling

whether to align code to even/odd bytes
whether to enable floating point

whether to use postfix or prefix assembler
whether to turn the compiler log on or off
which code and data page to compile into
selectively compile portions of code

These instructions are normally placed in the control file, before any instructions are
compiled.

Starting the cross-compiler

To start cross-compiling, use the word CROSS-COMPILE. Any code after thisdirective
will becross-compiledintothetarget imageinstead of compiled onto the cross-compiler.

Stopping the cross-compiler

To stop the cross-compiler cross-compiling, use FINIS. FINI S stops cross-compiling,
closes dl files and returns to X Shell.

Aligning generated code

The 80x96 family processors require CFA’s to be started on odd addresses, so that the
PFA ison an even address. To instruct the compiler to do this use ALIGN-ODD.

Page 99

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Controlling the cross compiler MPE 80x96 Forth Cross Compiler

Figure 15 - Conditional compilation example

1 EQU 10R2?
Enabling floating point

If you want to the compiler to be able to handle floating point numbers, you need to in-
struct it with the word FLOATS. The default isinteger only.

Setting postfix or prefix assembler

Thecross-assembler can either assemble codewhichisin postfix (normal Forth order) or
prefix notation. To assemble postfix code, use POSTFIX. To assemble prefix code, use
PREFIX. You can switch between thesetwo notationsat any timewith PREFIX and POST -
FIX.

Turning the log on and off

The cross-compiler log can either display dots (when off) or information on the items
compiled (whenon). Toturnthelogon, useL OG. Toturnthecompiler off, useNO-LOG.

Figure 16 - Adding words to the compiler

Page 100

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Controlling the cross compiler

10R2? \ Display one or two?
I F(\ If 10R27=1, PRINT1 will be compiled
: PRINT1OR2\ — ; Display aone
M1t
)EL SE(\ If 10R27=2, PRINT2 will be compiled

Figure 17 - Conditional compilation example
: PRINT1O0R2\ — ; Display atwo

Selecting code and data page

Inapaged system you need to select what page code and dataiscompiledinto. Todothis
use USE-CODE and USE-DATA. They are used in the form:

USE-CODE <name>
USE-DATA <name>

where <name> isthe name of the pageto compilecodeinto. <name>wasspecified when
defining the memory map using KERNEL and K ERNAL-DATA.

Conditional compilation

Conditional compilationisused to selectively compile portionsof code. Threewordsare
availabletodothis, IF(,)ELSE(and)ENDIF. Theseare analogoustoIF, EL SE and ENDIF.
They can be used within forth wordsto selectivel;y compile portions of it, or can be used
outside a forth word to selectively compile whole words.

An example

Two code examples are shown in figure 15 and 17. The examples given perform condi-
tional compilation inside and outside a colon definition.

Conditional compilation outside a colon definition

The example shown in figure 15 compiles one of the PRINT10R2's. Which oneiscom-
piled is dependant on the value of 10R2?. If it is set to one, PRINT10R2 displays a one
when executed. If itis set to two, PRINT10R2 displays atwo.

Conditional compilation within a colon definition

Using conditional compilation within a colon definition is slightly more compilcated.
Thisisbecause you need to write aword which placesanumber on the cross-compiler’s
stack when it's cross-compiling. An example is shown in figure 16, where a constant
30R4? is added to the compiler. This can then be used in the examplein figure 17.

Page 101

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Forth on atarget

Forth on the target

This chapter describeshow aForthislaid out on atarget board. It istherefore not neces
sary to read this chapter, but provides more information if you are interested or want to
perform more advanced modifications to the cross-compiler or target.

Inside Umbilical Forth

Umbilical Forth behavesin the sameway asaROM target Forth, but the internal mecha-
nismistotally different. When you reset the target and the board signs-on, you are till

HOST FORTH

CROSS COMPILER
& SYMBOL TABLE

TARGET EMULATOR

MESSAGE PASSING
SYSTEM

MESSAGE PASSING
SYSTEM

REDUCED TARGET FORTH

Figure 18 - Umbilical forth message passing

Page 103

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Page 104 Chapter 13 - Forth on atarget 80x96 cross-compiler

running the cross-compiler. Umbilical Forthistherefore an extension of the basic cross-
compiler.

When aword is cross-compiled, the cross-compiler placesinformation in the symbol ta-
ble. The symbol tabletherefore containsthe CFA of theword inthe target image. By us-
ing amessage passing system between the cross-compiler and the target, the CFA of the
word can be passed to thetarget. Thetarget can then execute theword on thetarget pass
ing parametersto and from as appropriate. Therefore, the target does not need any head-
ersin the target image as you are not communicating with the target directly.

Inside a ROM target Forth

A ROM target Forth communicates with the host up aserial line. The host needsto be
running adumb terminal emulator. Theterminal emulator displaysany characterswhich
arrive from the target and sends characters any characters typed at the host’s keyboard.

Interrupt user area
Int-init-U0

Taskn return stack

Taskn data stack
Taskn user area

Task1 return stack
Task1 data stack

Task1 user area
Text input buffer(tib)

Init-Uo

Init-TIB
Dictionary

Figure 19 - The forth RAM memory map

Page 104

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Forth on atarget

Thetarget takesinput and makes output directly fromthe serial line, not fromakeyboard
andto adisplay. Todothis, thedefered wordsEmMIT and KEY havethe actions SER-KEY
and SER-EMIT respectively.

The Forth memory map

Atypical forth system consists of areasasin figure 22. The RAM on thetarget systemis
split into several areas:

auser areafor interrupts
auser area and stacks for eack task
atext input buffer (TIB) for the forth

Theremaining RAM is available for use by the forth as dictionary space.

Page 105

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Page 106 Chapter 13 - Forth on atarget 80x96 cross-compiler

Blank page

Page 106

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Optimizing your development cycle

Optimizing your development cycle

While developing an application, you cycle through a series of steps:
editing your source code
cross-compiling to generate a binary image file
downloading to an EPROM emulator/programmer
testing and debugging your code

This development cycle is repeated until all development and debugging is completed.
Thequicker you can go round thiscycle, the quicker your applicationisfinished. X Shell
and the cross compiler help you achieve these aims.

Speeding up the compilation

Every time a cross-compilation is carried out, certain sections of code, which are never
altered, are compiled again and again. Thisis particularily the case for the kernel files
which generate the Forth image. You can usethe partial compilation feature of the cross
compiler to halt the cross-compilation at a strategic position and save the cross compil-
er'sstate. You can then continue cross-compiling from this saved position. In thisway,
you can dramatically reduce the time the application takes to compile.

Note: Partial compilation cannot be used when directly compiling to an emulator

Saving the compilation state

To stop and save the cross-compilation at arequired place, use SUSPEND. SUSPEND is
used in the form:

SUSPEND <filename>

where <filename> isthe name of files the cross compiler will use to save the stateinfor-
mation. The filename is a name without an extension.

Restarting from a saved state

To restart from a previously saved cross-compilation state, use RESTART. RESTART is
used in the same form as SUSPEND,

Page 107

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Optimizing your development cycle MPE 80x96 Forth Cross Compiler

Target bus width(bits) |width EPROM type size
8 8hit 2764 e2764
16 16hit 27128 e27128
32 32bit 27256 €27256
Table 8 - Available bus widths Table 9 - Available EPROM sizes

RESTART <filename>

where <filename> is the filename used when saving the compilation state. RESTART
must be used after the word CROSS-COMPILE and any macros must be loaded.

Note: Theoldimagefileisused by the compiler this must exist in the compilation direc-
tory.

An example
An example control file can be found in the directory ROM/PARTIAL.

Speeding up the downloading

Thecrosscompiler hasthefacility to download the compiledimageto the LeBurg emula
tor whileit iscompiling. This speeds up the turn-around of the edit,compile,download
and test cycle by removing the download step. To download directly to alL eBurg emula
tor, you need to tell the cross compiler:

what size of EPROM it is generating for
the bus width (e.g. 8 bit, 16 bit)
which page to put in the emulator

Note: Thisfacility cannot be used with partial compilation.

Setting the size and bus width

To set the size of EPROM to use and the bus width of the target board, use OUTPUT-
EMULTOR. Thisisin the form:

size width OUTPUT-EMULATOR

where size and width can be selected from tables 8 and 9.

For example, if your board uses a 27256 and your target has a 16-bit bus width, code:
€27256 16bit OUTPUT-EMULATOR

Page 108

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Optimizing your development cycle

This instruction must be placed in your control file before the CROSS-COMPILE direc-
tive.

Setting the page
To send a page to an EPROM emulator, use IN-EMULATOR in the form:
xxxx IN-EMULATOR <name>

where <name> isthenameof the page set by KERNEL or CODE-PAGEand xxxXx isthebase
address in the emulator where to place the image.

Page 109

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Optimizing your development cycle MPE 80x96 Forth Cross Compiler

Blank page

Page 110

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Technical glossary

Technical glossary

Compiler log Wheneachlabel, variable, constant or colon defintitioniscross-compiled
the cross-compiler displays adot or information about the compiled item.

Control file A filewhich isloaded by the cross-compiler. It contains directivesto the
cross-compiler and any additional files to be compiled.

Cross-compiler A programwhich generatesexecutable codefor aprocessor different to
which it isrunning on.

Dictionary A list of words defined in a Forth system
Event A non-regular occurence. Inthe multitasker an event is used to trigger a task.

Glossary Alist of forthwords with their pronunciation, stack effect and a brief descrip-
tion of its action.

Host The platform the cross-compiler runs on. Normally a PC.

Host mode One of XShell’s modes which is a Forth for the PC.

Image file The output of the cross-compiler. It has the extension .IMG by default.
Initialised RAM See RAM table.

Kernel The code required to generate an interactive Forth.

Memory map A description of the start and end of ROM and RAM in memory

Multitasker A programwhich allowsa processor to run morethan onetask by continu-
oudy switching between different tasks.

Paged target A systemwherethereis more memory available that can be addressed at
onetime. Areas of memory can be switched into an addressable range, so smulating a
larger address space than is physically possible.

RAM table Anareaof memoryintheROM thatiscopiedto RAM at startup. It contains
any initial values of variables.

ROM target forth A ForthwhichworksonaROM/RAM system asopposed toaRAM
system.

ROM/RAM target A target board with code executed out of ROM and data kept in
RAM.

Scheduler The part of a multitasker which switches to the next task
Screen file A type of file which Forth was originally developed in.

Serial linedriver Thewordswhichinterfacethetarget codetotheseria line. Theseare
device dependant whereas the rest of the kernel is generic.

Page 111

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Technical glossary MPE 80x96 Forth Cross Compiler

Symbol table Used and generated by the cross-compiler. It contains information on
each item compiled.

Target The processor or board that the cross-compiler is generating code for .

Target mode Oneof X Shell’smodeswhich actsasadumbterminal. Itletsyou commu-
nicate with your target board.

Task Inamultitasking environment, atask is a stand-alone program which appearsto
run simultaneously with other tasks.

Task control block Whereinformation about atask iskept. Itisused by thescheduler to
switch to the next task.

TCB Seetask control block
UART Universal AsynchronousReceiver/Transmitter - Sendsand receivesserial data

Umbilical Forth A reduced Forth designed for singlechiptargets. Usesamessage pass-
ing system to commicate with the host.

Unresolved references Any words which are used in the source code but are not de-
fined.

Vocabulary An independantly linked subset of the dictionary

Page 112

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Further information

Further information

M PE courses

MicroProcessor Engineering run the following courses:

Architectual introduction to Forth

A two day coursefor thosewith little or no experience of Forth. It providesan introduc-
tion to the architecture of a Forth system. It shows, by practical example, how software
can be coded, tested and debugged, quickly and efficiently, using Forth’s interactive
abilities.

Embedded software for hardware engineers

A three day course for hardware engineers needing to construct real-time embedded ap-
plications using Forth cross-compilers.

Recommended reading

For an introduction to forth:

Starting Forth by Leo Brodie

Forth: atext and reference by Kelly and Spies
These books can be supplied by MPE.

Page 113

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Further information MPE 80x96 Forth Cross Compiler

Blank page

Page 114

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Converting targets from v4 to v5

Appendix A
Converting targets from v4 to v5

Themaindifferencesbetween v4 and v5 target source code arein the control file. There-
fore, if you want to use your old control file you need to modify the way:

the memory map is defined
an EPROM emulator is used
code is compiled into a page

Defining the memory map

Thememory mapinversion 4 control filesaredefined asinfigure 20. Theequivalent v5
memory definitionisshowninfigure21. The version 5 memory definitionisdefined by
three words: KERNEL , KERNEL-RAM and MEM-END..

KERNEL isused to definethe start and end of ROM. KERNEL-RAM isused to definethe
start and end of RAM. MEM-END isthe same asin version 4.

Using an EPROM emulator

For the version 5 compiler, you must indicate which image you want to go to the emula-
tor. Inanon-paged system, the image name is the name following the command KER-
NEL. Therefore, to send theimage ROM 196 to an EPROM emulator starting at address
2000h, you code:

$2000 IN-EMULATOR ROM 196
This must be placed before the page is selected by USE-CODE.

Selecting the compilation page

With the version 5 cross-compiler you can generate multiple images, and code can be
compiled into any image at any time. To select the page which code will be compiled
into, code:

Page 115

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Converting targets from v4 to v5 MPE 80x96 Forth Cross Compiler

$2000 $7FFF KERNEL ROM196 \ Define kernel ROM
$8000 $9FFF 0 KERNEL-RAM ROM196-DATA \ Define kerned RAM $A000 MEM-
END \ End of usable memory

Figure 21 - Example version 5 memory definition

\ Define the amount of RAM that can beinitiaised
0400 INITIALISED-RAM \ up to 2k bytes RAM can be set
\ from atablein ROM. This
\ equate sets the max. size
\ The ROM for 80x96 systemsis nearly aways at 02x00
02000 ROM-BASE \ ROM starts at 02000
\ will use ORG later

\ User areas need 0100h bytes/task + 1 page for interrupts,

\ requiring 0900h bytes for afull system with 8 tasks.

\ Place INIT-UO at the bottom of the RAM area.

\ The variable & dictionary follows, and is set by RAM-BASE
08000 EQU INIT-UO \ task area base INIT-UO
taskram + EQU int-init-u0 \ interrupt page base

int-init-u0 intram + equ INIT-TIB \ TIB starts at task+0900
INIT-TIB 0100 + RAM-BASE \ Vars & Dict start at task+0A00
\ MEM-END defines the end of RAM+1

OA000 MEM-END \ RAM ends at xxxx-1

Figure 20 - Example version 4 memory definition

USE-CODE <name>
where <name> isthe image's name (i.e. ROM 196 in the previous examples).
In asimilar way, the data page may be selected:
USE-DATA <name>
where<name> istheimage’ sdataspace (i.e. ROM 196-DATA in the previousexamples).

Page 116

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler An example control file

Appendix B
An example contral file

This appendix leads you through a complete control file. It describes the use of each
command followed by the usage in atypical control file. For more information on the
syntax of each command see the command'’s glossary entry in the glossary manual.

Thefirst page

Thefirst pageisusedto introducetherest of thefile. It containsabrief (oneline) descrip-
tion of the files purpose followed by any other general information.

\ MPE 80C196 PowerBoard target control file sfp 04/12/90
pto

Released for use with the MPE Forth Cross Compiler by:
MicroProcessor Engineering

133 Hill Lane

Shirley

Southampton SO1

England

tel: (+44) 703631441 (international)
0703 631441 (domestic)

Setting the cross-compiler search order

The cross-compiler’s vocabulary search order is set so that commands can be found.

only forth definitions decimal

L oading macros

At this stage all macros must be compiled. Macros must be loaded before the command
CROSS-COMPILE. (see below)

Page 117

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

An example control file MPE 80x96 Forth Cross Compiler

al from-file macros \ load assembler macros
\ and register definitions 01Ah..02Bh

Configuring for an EPROM emulator

The cross-compiler will download the compiled target code while it is being generated.
To do this the cross-compiler needs to be told:

the port address of thei/o card
the type of EPROM to emulate
the bus width of the emulated EPROM

If an emulator is not in use the following two lines should be commented out.

Hex 0320 Emu-Base \ emulator i/o addr
€27256 16bit Output-Emulator \ define EPROM & Width

Activating the floating point

Floating point can be switched on by using the word FLOATS.

Floats \ switch on floating point

Turning on the cross-compiler

The cross-compiler isturned on by the command CROSS-COMPILE. Any code compiled
after thiswill be cross-compiled into the target image.

\ turn compiler on
CROSS-COMPILE

Setting the targets search order

Thetarget’s search order must be set. Thistellsthe compiler to compile code ontop the
target’s Forth vocabul ary.

only forth definitions

Page 118

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler An example control file

Setting the assembler type

Theassembler will either assemble codewrittenin postfix (normal Forth) or prefix (stan-
dard) notation. The default is postfix. If codeisto be assembled in prefix notation the
command PREFI X must be stated.

prefix \ assembler opcodes first

Setting any alignment peculiarities

The 80C196 microcontroller has arestriction on thefetching of data. If a16-bit valueis
toberetrieved, it must betakenfrom an even address. Thisrestrictionforcesthecompiler
to place the addressesin the parameter field of a colon definition, on even addresses. To
do this, the code field (3 bytes long) is placed on an odd address.

align-odd \ headers word aligned

Displaying the cross-compile log

The cross-compile log can be displayed by using the word LOG. In this state the cross-
compiler showsthetype of item compiled and thetarget addressof eachitemasitiscom-
piled. This contains useful debug information but, as more text is displayed on the
screen, isslower to compile. Tostop thecompiler from generating afull log, and just gen-
erate adot for each definition, use NO-LOG.

no-log \ no output log

Defining the memory map

Thememory map describesto the compiler wherethe start and end of ROM and RAM is.
The ROM areais defined by the word KERNEL and the RAM area by the command
KERNEL-RAM. The actual end of memory is set by the command MEM-END.

\ memory definitions sfp 10/05/91
hex
$2000 $7FFF KERNEL ROM196 \ Define kernedd ROM
$8000 $9FFF 0 KERNEL-RAM ROM196-DATA \ Define kernd RAM
$A000 MEM-END \ End of usable memory

Page 119

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

An example control file MPE 80x96 Forth Cross Compiler

Output into EPROM emulator

The cross-compiler can send atarget image directly to an EPROM emulator, which re-
moves the time required to download the generated image. The cross-compiler needsto
know what image to download(there can be several in a paged target) and where in the
emulator to start downloading. Thefollowing example setsthe compiler to download the
image ROM 196, starting at address 2000h.

$2000 IN-EMULATOR ROM196 \ Output to emulator

Selecting compilation pages

The cross-compiler must be instructed into which page to compile code and data. For a
non-paged system, thereisonly one code page and onedatapage, so thisonly needsto be
done once. For a paged system, different compilation pages can be set throughout the
code, so redirecting the code to different pages.

use-code ROM 196 \ Select code page
use-data ROM196-DATA \ Select data page

Configuring for ROM PowerForth

If the ROM PowerForth utilities are being loaded, the start and end of the application
RAM/ROM areamust be defined. For the MPE MPB196 board, the application areais
the upper half of the 16k of battery backed RAM.

OA000 equ appl-rom
0C000 equ appl-rom-end

Defining the number of tasks

Inamultitasking target the number of tasksneed to beset. Each task takesup 256bytesof
RAM, so afull 8 tasks takes up 2k of RAM. If RAM usage needs to be reduced, the
number of tasks can be set to the number of tasks you have.

$0008 Equ #tasks \ number of tasks, at least 1
\ each task needs 0100 bytes
\ this spaceis reserved first

Page 120

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler An example control file

Defining the user area size

Theuser areaisset by using an equate. Thisequateisusedinacalculation before the ac-
tual user areaisallocated. The user areais used to hold task specific variables such as
BASE and SPAN.

$0080 Equ User-size \ size of each tasks user area

Setting the stack sizes

Thesizesof thedataand return stacks must be set. Theseequatesareused in calculations
(see below) before the actual stacks are allocated in RAM.

$0040 Equ SP-size \ size of each tasks data stack
$0040 Equ RP-size \ size of each tasks return stack

Setting the Text Input Buffer size

Thetext input buffer is the temporary buffer that is used by the forth interpreter.

$0100 Equ Tib-len \ termind i/p buffer length

Calculating the memory per task

Each task requiresits own:
data stack
return stack

user area
The previous equates are used to calculate the amount of RAM required for each task.
Thisvalueis set to be the equate PER-TASK.

\ Calculate memory map

User-size SP-size+ Equ Task-s0 \initial offset of data stack

Task-s0 RP-size + Equ Task-rO \initial offset of return stack

Task-r0 Equ per-task \ sytem area size for each task

Page 121

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

An example control file MPE 80x96 Forth Cross Compiler

Calculating the total memory requirement

The total RAM required by the system is given by the equate TASKRAM. Thisis the
amount of memory required for onetask multiplied by the number of tasksin the system.

#tasks per-task * Equ taskram \ space used for task pages

Setting RAM for interrupt handlers

An areaof RAM is set aside for interrupt handlers exclusive use.

$0100 Equ intram \ space used by interrupt page

Allocation of RAM

The RAM areasfor each task is allocated from the top of memory (given by EM) down-
wards (figure 22).

EM \ length name
per-task dup equ INT-INIT-UO \ base of interrupt area
#tasksper-task * dup equ INIT-UO \ base of task user area
tib-len - dup equ INIT-TIB \ base of TIB
drop

Setting task 0's stacks

\ Task O, the initial task, hasits stacks in the on-chip RAM for speed.

OFO Equ init-r0 \ top of data stack

0CO Equ init-s0 \ top of return stack

OFE Equ task-init-rO \ top of data stack in task area
0CO Equ task-init-s0 \ top of return stack in task area

Alternate Equates to put stacks in external RAM for main task

Init-u0 Task-r0 + Equ Init-rO \ top of return stack
Init-u0 Task-s0 + Equ Init-sO \ top of data stack

Page 122

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler

Interrupt user area
Int-init-Ug

Taskn return stack

Taskn data stack
Taskn user area

Task1 return stack
Tash1 data stack

Task1 user area
Text input buffer(tib)

Init-Ud

Init-TIB
Dictionary

Figure 22 - Allocation of RAM

Page O Register file allocation.

Registers 0..019h are the Speciad Fuction Registers (SFRs) which are defined in
SFR196.FTH. Registers01A..02Bh are used for the Forth virtual machine and the PLM
register set which is used as scratch space by Forth.

\ Other registers are defined here.

$2C Equ curtask \ pointer to TCB of current task

$2E Equ task# \ current task number

$2F Equ spshadow \ shadow for SP_STAT register
$30 Equ rxchar \ character received

Setting the serial line's baud rate

The baudrate needsto be calculated for the serial linedrivers. Thisisrelated to the proc-
essors clock by the relation:

\ Cdculate baud rate using system clock rate
\

\ Baudreg = xtal/(16* baud) - 1

\

decimal

10,000000 \ clock speed
16 mu/mod rot drop \ divide by 16

9600 \ baud rate
um/mod nip \ divide by baud rate
1- \ subtract one
$8000 or \ XTAL1 clock
Equ sysbaud \ set baud rate

An example control file

Page 123

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

An example control file MPE 80x96 Forth Cross Compiler

Defining the special registers
At this stage the equates that refer to the special function registers are compiled.

al from-file sfr196 \ Specia Function Registers

Initialising the vector table

The 80C196 has its vector table at address 2000h. This area of memory isinitialised to
FFh (RST) and the dictionary pointer moved to the end of the vector table (2080h).

$2000 080 OFF fill \ wipe vector area
$2080 org \ skip vector area

Compiling the kernel

The main source code which makes up the interactive Forth kernel is now compiled.

decimal all from-file startup \ start up code

decimal all from-file cd196kb \ main code defs.
decimal all from-file drivers\sci96p \ On chip UART
decimal dl from-file kernel \ Forth high level kernel
decimal al from-fileint196 \ interrupt handler
decimal all from-file multio6 \ multi-tasker

decimal all from-file romtools \ dump

Compiling the software floating point
The software floating point consists of two files, FFROMHI.FTH and SOFTFPFTH.

\ Software floating point

decimal al from-file softfp\fpromhi.fth \ primitives
decimal al from-file softfp\softfp.fth \ high-level
Page 124

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler An example control file

Compiling the ROM PowerForth utilities

TheROM PowerForth utilities give you the ability to use hard disk servicesfrom the tar-

get system.

\ the ROMForth files

decima all from-file romforth\link \ linker
decima all from-file romforth\iodef \'io definitions
decima all from-file romforth\filetran \ source load
decimal all from-file romforth\bin-down \ binary host
decima all from-file romforth\hex-down \ hex host
decima all from-file romforth\textfile \ text files
decima all from-file romforth\blocks \ blocks

Defining the target sign-on message

Thetarget sign-on messageisdefined asan interna word. Thismakestheword unavail-
able for interactive use, which saves space in the target system.

internal
:.cpu \ —; sign on message

" MPE 80C196 ROM PowerForth" ; \signon
external

Defining the last word

Thelast word defined isalwaysFORTH-83. Thisindicatestheend of theend of thekernel.

: FORTH-83 ; \fina word

Setting the chip configuration byte

The chip configuration byte is set to:
power down feature enabled
16-bit bus width
write strobe mode select=0
address valid strobe=1
internal ready strobe select=3
program lock mode=3

hex

Page 125

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

An example control file MPE 80x96 Forth Cross Compiler

OEB 02018'! \ chip configuration byte
\ maximum three wait states
\ ALE, WRH- & WRL-, 16 hit, no powerdown

Finishing the cross-compilation

The cross-compiler stops compiling when it reaches the command FINIS. At this point,
the cross-compiler displays the cross-compile summary and prompts for a key to be
pressed.

FINIS

Page 126

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Error messages

Appendix C
Error Messages

Error messages are kept in the text file E196.XS3 in the COMPILER directory. Error
numbersstart at 0, and each error number refersto alinestarting at line 0. Thisformat al-
lows the error message file to be maintained using any screen file editor.

The error messages are listed in different categaries:
genera Forth errors

system messages
8096/80C196 assembler errors
module errors

source file errors

DOS errors

text file errors

General Forth Errors 0..15

These are the basic errors of a Forth system.

Error O - isundefined. Theword isnot in the dictionary search order specified, or it was
misspelled.

Error 1 - empty stack, the last operation caused astack underflow. Usually caused by us-
ing the wrong number of parameters to a word.

Error 2 - dictionary full, thereisno room for more definitions. Thiserror should not arise
within the cross compiler unless you are extending it.

Error 3 - hasincorrect address mode.

Error 4 - isredefined - theword’s name hasbeen used before. Thisisonly awarning, not a
proper error.

Error 5 - isundefined. See error O

Error 7 - full stack, there are too many items on the stack. Usually caused by a stack fault
inaloop.

Error 8 - cannot open USING file. Incorrect file name? Wrong directory?
Error 12 - uninitialised deferred word.

Page 127

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Error messages MPE 80x96 Forth Cross Compiler

Error 13 - BASE must be DECIMAL.

Error 14 - missing decimal point. Only found when using floating point extensions.

System messages 16..31
These are error messages caused by mistreating Forth.

Error 17 - compilationonly, usein definition, not when executing. Usually happenswhen
a; ismissing from a previous word.

Error 18 - execution only - not allowed during compilation. Usually beacause a[COM -
PILE] ismissing in front of an immediate word.

Error 19 - conditionals not paired - overlapping control structures.
Error 20 - definition not finished - a control structure needs correction.

Error 21 - in protected dictionary - thewordisbelow theaddressin FENCE. Notfoundin
the cross compiler except when modifying the cross compiler, or in bizarre circum-
stances with Umbilical Forth.

Error 22 - use only when loading, illegal from the keyboard
Error 23 - block number out of range 0..32767 (0..7FFFh)

Error 24 - reset vocabularies- CONTEXT must be the sameas CURRENT when using
FORGET.

Error 25 - do not use when loading, only from the keyboard.

Error 26 - Initialised RAM size exceeded. Often happenswhen arraysare defined before
variables. Toreducethesizeof thistable, all initialised or preset RAM should be defined
before arrays are used.

Error 27 - Forward references are illegal btween CREATE ... DOESand : ...; for the
cross compiler.

Error 28- word between CREATE ... DOESor |: ... ; isnotinhost FORTH vocabulary
Error 29 - illegal internal value - contact MPE on (+44) 703 631441.

8096/80C196 assembler errors 32..47

Error 33 - Index or Indirect register or Word address must be EVEN
Error 34 - Signed short offset or branch not in range -127..+128
Error 35 - Register number not in range 0..255

Error 36 - Unexpected addressing mode error — contact MPE

Page 128

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Error messages

Error 37 - Unexpected forward reference mode error — contact MPE
Error 38 - Register or address must be long aligned

Error 39 - Bit number out of range 0..7

Error 40 - Three operands invalid for thisinstruction

Error 41 - SIMP/SCALL offset out of range -1024..+1023

Error 42 - Shift count out of range 0..7 or 0..15

Error 43 - Invalid addressing mode

Error 44 - Short immediate value not in range 0..255

Error 45 - Expected condition code not set

Error 46 - Unconsumed reference. Thiserror isusually caused when opcodes or address-
ing modeindicatorslike,[] aremisspelled. The misspelled word isthen seenasaforward
reference which has not been used by any opcode. This check is performed by END-
CODE or FORTH and thus will not be seen until the end of a section of code.

Error 47 - Code error, stack depth changed. Thisisagenera catch all error from acheck
performed by END-CODE.

Module errors 48..63

Error 49 - public words table full - max 32 (decimal) words/module

Error 50 - module number out of range 0..31 (decimal)

Error 51 - dot already occupied - slot must be empty before entry is made

Error 52 - not enough memory - fit more! - RAM is cheap!

Error 53 - can't load modulefile - DOS can’t find it, or can’t read it

Error 54 - can't free memory - DOSwon't let go - see DOS function 49H

Error 55 - module not present - requested module is not resident

Error 56 - externa references table full - max 32 (decimal) words/module

Error 57 - unresolved external reference - use RESOLVE-ALL before execution
Error 62 - illegal operation in Slave module

Error 63 - illegal operation in master module

Sourcefile errors 64..79

These errors are given by the screen file handlers.

Page 129

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Error messages MPE 80x96 Forth Cross Compiler

Error 65 - no screen file open. Often aresult of a previousoperation failing to open or re-
open afile.

Error 66 - screen file seek error.
Error 67 - screen file write error.
Error 68 - path not found. Usually because the file or path name has been misspelled.

Error 69 - starting screen number |ess than ending screen number.

DOS errors 80..112

Error 81 - invalid funtion number - DOS doesn’t know what to do
Error 82 - file not found - wrong directory or doesn’t exist

Error 83 - path not found - incorrect spelling? - device not installed?
Error 84 - no handle available - all handlesarein use

Error 85 - access denied - e.g. attempt to write to read-only file

Error 86 - invalid handle - file/path not open?

Error 87 - memory control blocks destroyed - whoops!

Error 88 - insufficient memory - 640k/1Mb is not enough

Error 89 - invalid memory block address - DOS did not allocate this segment
Error 90 - invalid environment - previous SET or PATH command bad
Error 91 - invalid format - ask Microsoft what this one means

Error 92 - invalid access code

Error 93 - invalid data

Error 95 - invalid drive specification

Error 96 - attempt to remove current directory

Error 97 - not same device

Error 98 - no morefiles to be found

Text file errors 112..127

These errors are issued by the text file handler.
Error 113 - cannot allocate memory. Each nested file needs about 9k bytes.

Error 114 - cannot free memory. Usually a symptom of something running amok.

Page 130

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Error messages

Error 115 - cannot open file. Usually because of a misspelled name.
Error 116 - cannot close file. Usually a symptom of something running amok.

Error 117 - cannot seek to byte requested in file. Usually a symptom of something run-
ning amok.

Error 118 - read-path error. Disk cannot beread, normally seen only from floppy disks, or
failing hard discs.

Error 119 - file nesting depth reached - cannot open another file. You have nested filestoo
deep.
Error 120 - file de-nesting error. Usually a symptom of something running amok.

Error 121 - start page number greater than last page number in file.

Page 131

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Error messages MPE 80x96 Forth Cross Compiler

Blank Page

Page 132

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth cross-compiler Technical support

Appendix D
Technical support

Technical Support

Technical supportisavailablefrom MPE during office hours, or viaaccessto our confer-
ence onthe CIX (Compulink Information eX change) bulletin board system. MPE hasits
own technical support conference on the CI X (Compulink Information eX change) bulle-
tin board system. You can also obtain technical support viaemail.

tel: +44 703 631441

fax: +44 703 339691

CIX +44 81 399 5252

| nternet: mpe@cix.compulink.co.uk

Page 133

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

mailto:mpe@cix.com
http://www.pdffactory.com

Technical support MPE 80x96 Forth cross-compiler

Blank page

Page 134

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Index
|ndex
A EPROM emulator, 5
Aligning code, 77 :?:%s; ?:t?é?sg 3
Application installing drivers, 3
cro$-comp|I|ng, 17, 27 LeBurg, 15, 19
running, 17,28 sending a pageto, 84
writing, 27 setting the size, 83
Assembler setting the wicth, 83
condition codes, 35 EPROM programmer
Control structures, 34 downloading, 15
defining words, 34 Equate ’
instruction list, 38 defining, 30
Assembler words, 32 using 3(’)
executing, 33 ’
writing, 32 IIirror Messages, 87
Autostarting
See Turnkey Floating point
C constants, 62
Conditional compilation, 30 %?gggrn? éfriat 62
Control file, 7, 20 variables. 62 ’
creating, 8, 20 ’
modifying, 17, 27 Eorth syntax, 32
supplied, 7, 19
Control structures, 34 Hardware
Cross-compile log, 25 setting up, 12, 24
turning on and off, 26 Headers
Cross-compiler, 4 removing, 29
running, 14, 25 I
speeding up, 82
starting, 77 Image
gopp| ng’ 77 downl Oading, 15
Cross-compiler log generated, 14
turning on and off, 14, 78 size, 14, 26
D Installation, 1
Custom, 2
Downloading Drive, 1
speeding up, 83 EPROM emulator, 3
E on nextwork, 1
Path, 1
End of memory Powerforth. 3
setting, 9, 22 Running, 1
Page 135

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Index

MPE 80x96 Forth Cross Compiler

Selecting items, 3
system requirements, 1
XShell, 3
Interrupts, 58
A/D, 58
controlling, 60
disabling, 60-61
enabling, 60-61
setting, 59-60
timer overflow, 58
writing, 59-60
K

Kerngl file, 82
L

Labels

global, 35

local, 35
Log

See Cross-compile log
M

Macros
creating, 36
using, 36

Memory map, 8, 20
Forth, 81
setting, 8, 20

Multitasker
initialising, 48
number of tasks, 48
scheduler, 49
stopping, 48
writing, 49

P

Page
compiling into a, 76
defining, 74
Page switching, 75
Paged target
creating, 74
Pages
selecting, 78
Partial compilation, 82
using with emulator, 82
PC Powerforth, 6

Page 136

R

RAM table
address, 14, 26
length, 26
Size, 14
Registers
forth, 33
ROM target Forth, 5

S

Serid line
initialising, 11, 22
interrupt driven, 10
interrupt driven drivers, 19
modifying drivers, 10, 22
polled, 10
receiving characters, 11, 23
sending characters, 11, 23
Seria ports
configuring, 13, 25
Single chip
Umbilical Forth, 80
Source code
factorizing, 29
speeding up, 30
Structured programming, 34
T

Target Forth
running, 15
Target mode
switching to, 16
Task
Communications, 51
controlling, 50
initialising, 50
stack, 81
Text input buffer, 81
TIB
See Text input buffer
Turnkey
generating, 18, 28
U

UART, 10
off-chip, 22
Umbilical Forth, 5
reguirements, 19
using, 30

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

MPE 80x96 Forth Cross Compiler Index

Unresolved references, 14, 26
User area, 50, 81
User variables
defining, 50
using, 50
V

Vectors
table, 58

X

XShell, 4
configuring, 12, 24
running, 12, 24
setting up, 12, 24

Page 137

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

