
Forth 7 Cross Compiler
with VFX code generation

Microprocessor Engineering Limited

Copyright c© 1998-2013, 2015, 2016, 2018, 2019, 2020, 2021, 2023 Microprocessor Engineering
Limited

Published by Microprocessor Engineering

MPE VFX Forth Cross Compiler
User manual
Manual revision 7.6
15 July 2023

Software
Software version 7.6

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane
Southampton SO15 5AF
UK

Tel: +44 (0)23 8063 1441
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com

i

Table of Contents

1 Licence terms . 1
1.1 Commercial use . 1
1.2 Distribution of application programs . 1

1.2.1 Distribution of files . 1
1.3 Warranties and support . 2
1.4 Community licence specific terms . 2

1.4.1 Distribution of application programs . 2
1.4.2 Warranties, support, and copyright . 3

1.5 Enterprise licence specific terms . 4
1.5.1 Distribution of application programs . 4
1.5.2 Warranties, support, and copyright . 4

2 Installing the system . 7
2.1 System requirements . 7
2.2 Installation and configuration . 7

2.2.1 Windows . 7
2.2.2 Linux and Mac OS X . 8

2.3 Release notes . 12

3 System components . 13
3.1 MPE Forth cross-compiler . 14
3.2 Standalone target Forth . 14
3.3 Umbilical Forth . 15
3.4 Documentation directory . 15
3.5 Control files . 15
3.6 Compiler versions . 15
3.7 Learning Forth . 16

4 How Forth is documented . 17
4.1 Forth words . 17
4.2 Stack notation . 18
4.3 Input text . 19
4.4 Other markers . 20

5 Configuring with macros . 21
5.1 Text macros . 21
5.2 Directory structures . 22

6 Generating a target Forth kernel . 23
6.1 Is your target already supported? . 23
6.2 The control file . 23
6.3 Memory map . 23

6.3.1 Setting the memory map . 23
6.3.2 Start and end of Flash . 24
6.3.3 Start and end of initialised RAM . 24
6.3.4 Start and end of uninitialised RAM . 24

ii

6.3.5 Setting the compilation areas . 25
6.4 Modifying the serial line drivers . 25

6.4.1 Interrupt driven . 26
6.4.2 Polled . 26
6.4.3 Initialising the serial line . 26
6.4.4 Sending a character to the host . 26
6.4.5 Receiving a character from the host . 26
6.4.6 Generic I/O device table . 27

6.5 Setting up the system . 27
6.5.1 Setting up the hardware . 27
6.5.2 Setting up the software . 28

6.6 Cross-compiling . 28
6.6.1 Creating an image . 28
6.6.2 Log display . 28
6.6.3 Turning the log on and off . 29
6.6.4 Log to file or printer . 29
6.6.5 Compilation summary . 29
6.6.6 The created image . 30
6.6.7 Problems, problems ... 31

6.7 Downloading the compiled image . 31
6.7.1 Downloading to Flash . 31
6.7.2 Downloading to an emulator or programmer . 31

6.8 Running the target Forth . 31
6.8.1 Switching to target mode . 32
6.8.2 Resetting the target board . 32
6.8.3 The sign-on . 32

6.9 Cross-compiling an application . 33
6.9.1 Modifying the control file . 34
6.9.2 Running your application . 34

6.10 Generating a turnkey application . 34
6.10.1 Using MAKE-TURNKEY . 34
6.10.2 Using ATCOLD . 36

6.11 Umbilical Forth . 37
6.11.1 Comms links . 37
6.11.2 Serial line configuration . 39
6.11.3 Memory drivers . 40
6.11.4 Downloading to Flash . 41
6.11.5 Using In-Application-Programming (IAP) . 42
6.11.6 Interactive debugging . 42
6.11.7 Problems, problems . 42

6.12 Serial port problems . 44
6.12.1 Windows USB serial devices . 44
6.12.2 Windows terminal emulators . 44
6.12.3 Mac OS X USB serial devices . 44
6.12.4 Linux USB serial devices . 45

7 Optimising the target Forth . 47
7.1 Reducing the image size . 47
7.2 Removing headers . 47

7.2.1 Removing all headers . 47
7.2.2 Selectively removing headers . 47

7.3 Factoring your code . 47
7.4 Removing excess code . 48
7.5 Using equates instead of constants . 48

iii

7.6 Removing forward references . 49
7.7 Using Umbilical Forth . 49
7.8 Speeding up your code . 49

8 Generic I/O . 51
8.1 About Generic I/O . 51
8.2 Creating a new device . 51
8.3 Selecting a device . 52

9 Multitasker . 53
9.1 Initialising the multitasker . 53

9.1.1 Selecting the multi-tasker . 53
9.1.2 Starting the multitasker . 53
9.1.3 Stopping the multitasker . 53

9.2 Writing a task . 54
9.2.1 Using the scheduler . 54
9.2.2 An example task . 54
9.2.3 Task dependent variables . 54
9.2.4 Controlling tasks . 55

9.3 Message handling . 55
9.4 Event handling . 56

9.4.1 Initialising an event . 56
9.4.2 Triggering an event . 56
9.4.3 Clearing an event . 57

9.5 Critical sections and interrupts . 57
9.6 Semaphores . 57
9.7 Multitasker internals . 58

9.7.1 Scheduler data structure . 59
9.8 Example Task . 59

9.8.1 Defining the task . 60
9.8.2 Initialising the multitasker . 60
9.8.3 Activating the task . 60
9.8.4 Controlling the task . 60

9.9 Troubleshooting tasks . 61
9.10 Single chip tasking . 61
9.11 Glossary . 62
9.12 Converting to the v6.x multitasker . 63

9.12.1 Configuration . 63
9.12.2 Task identifiers and TASK . 63
9.12.3 WAIT and MS . 64
9.12.4 INITIATE and ACTIVATE . 64
9.12.5 ?EVENT . 64

10 Periodic Timers . 65
10.1 Introduction . 65
10.2 The basics of timers . 65
10.3 Considerations when using timers . 66
10.4 Implementation issues . 66
10.5 Timebase glossary . 67

11 Time Delays . 69

iv

12 Heap Memory Allocation . 71
12.1 Heap definition . 71

12.1.1 16 bit targets - HEAP16.FTH . 71
12.1.2 32 bit targets - HEAP32.FTH . 71

12.2 Gotchas . 72
12.3 Glossary . 72
12.4 Diagnostics . 72

13 Software Floating Point . 73
13.1 Introduction . 73
13.2 Source code . 73
13.3 Entering floating-point numbers . 73
13.4 The form of floating-point numbers . 73
13.5 Creating and using variables . 74
13.6 Creating constants . 74
13.7 Using the supplied words . 74

13.7.1 Calculating sines, cosines and tangents . 74
13.7.2 Calculating arc sines, cosines and tangents . 75
13.7.3 Calculating logarithms . 75
13.7.4 Calculating powers . 75

13.8 Degrees or radians . 75
13.9 Displaying floating-point numbers . 75
13.10 Number formats, ANS and Forth200x . 75
13.11 Glossary . 76

13.11.1 Error Strings/Codes . 76
13.11.2 Separators . 77
13.11.3 Basic stack and memory operators . 77
13.11.4 Floating point defining words . 77
13.11.5 Type conversions . 78
13.11.6 Arithmetic . 79
13.11.7 Relational operators . 79
13.11.8 Rounding . 80
13.11.9 Miscellaneous . 80
13.11.10 Floating point output . 80
13.11.11 Floating point input . 82
13.11.12 Trigonmetric functions . 83
13.11.13 Power and logarithmic functions . 83
13.11.14 IEEE format conversion . 84

13.12 Gotchas . 84
13.13 Changes from v6.0 to v6.1 . 85

13.13.1 32 bit targets: software floating point . 85
13.13.2 16 bit targets: software floating point . 85

13.14 High Level primitives . 86

14 ROM PowerForth utilities . 87
14.1 Compiling text files . 87

14.1.1 The required files . 87
14.1.2 Compiling a specified text file . 87

14.2 Downloading a binary image . 87
14.2.1 XMODEM binary image download . 88
14.2.2 Intel hex download . 88

14.3 ROM PowerForth . 88
14.3.1 Hardware requirements . 88

v

14.3.2 Types of board . 89
14.3.3 Making your application turnkey . 89

14.4 AIDE file server protocols . 90
14.5 Glossary . 90

15 Controlling compilation . 91
15.1 Start and Stop compilation . 91
15.2 Defining memory sections and xDATA . 91

15.2.1 Defining sections . 92
15.2.2 Section charateristics . 92
15.2.3 An example . 93
15.2.4 Section tools . 94

15.3 Bank switched systems . 95
15.3.1 Defining banks and pages . 95
15.3.2 Flash layout control . 96
15.3.3 Executing words in another page . 96
15.3.4 Using CDATA pages . 97
15.3.5 IDATA and UDATA pages . 98
15.3.6 Miscellaneous . 99

15.4 Output file formats . 99
15.5 Aligning generated code . 100
15.6 Numbers and 16 bit targets . 100
15.7 Enabling floating-point . 100
15.8 Turning the log on and off . 100
15.9 Conditional compilation . 100

15.9.1 An example . 101
15.9.2 [DEFINED] and [UNDEFINED] . 101
15.9.3 [REQUIRED] . 102

15.10 Library files . 102
15.11 Loading binary data . 102
15.12 Test code . 103
15.13 C header files . 103
15.14 Direct port access . 103
15.15 Split bootloader and application . 104

16 VFX code generator . 107
16.1 Inlining . 107
16.2 Colon definitions . 108
16.3 CODE definitions . 108
16.4 COMPILER directives . 108

17 Debugging tools . 111
17.1 INTERACTIVE mode . 111
17.2 XDASM, DASM, DIS . 111
17.3 LOCATE . 111
17.4 USES . 111
17.5 XREF, XREF-ALL, XREF-UNUSED . 112
17.6 WORDS . 112
17.7 .DWORD, .LWORD .HEX and .DEC . 112
17.8 Lists . 112
17.9 Command line switches . 113

vi

18 Debugging Embedded Systems . 115
18.1 Basic rules . 115
18.2 Make faults visible . 115
18.3 Check tasks . 116
18.4 Recover well . 116
18.5 Talk to the hardware people . 117
18.6 Intepreting crash dumps . 117

18.6.1 ARM Register usage . 118
18.6.2 Interpreting the registers . 118

19 Compilation in detail . 121
19.1 Special compilation behaviour . 121
19.2 Special interpretation behaviour . 121
19.3 Structures . 121
19.4 Allocating memory and variables . 122

19.4.1 CREATE . 123
19.4.2 Commas: , W, C, . 123
19.4.3 ALIGN and ALIGNED . 123
19.4.4 ALLOT . 124
19.4.5 HERE (CHERE IHERE UHERE) . 124
19.4.6 ORG (CORG IORG UORG) . 124
19.4.7 VALUE and VARIABLE . 124
19.4.8 BUFFER: and RESERVE . 125

19.5 Local variables . 126
19.6 Extending the compiler . 126
19.7 Defining words . 127

19.7.1 Automatic handling . 128
19.7.2 Explicit handling . 128

19.8 IMMEDIATE words . 129
19.8.1 Automatic handling . 129
19.8.2 Explicit handling . 130

19.9 Checksums . 130
19.10 Automatic build numbering . 130
19.11 Macros in text strings . 131

20 Target Forth model . 133
20.1 Inside a ROM target Forth . 133
20.2 Forth memory map . 133
20.3 RAM initialisation . 133
20.4 Implementation model . 134
20.5 Forth models . 134
20.6 Inside Umbilical Forth . 135

21 Example control file . 137
21.1 Standard header . 137
21.2 Text macros . 137
21.3 Cross compiler initialisation . 138
21.4 Configure target . 139
21.5 Kernel files . 141
21.6 Application code . 142
21.7 End of compilation . 144

vii

22 Interpreter directives . 147
22.1 ANS and common words . 147
22.2 Specials . 147
22.3 Section handling . 148
22.4 Comma and friends . 151
22.5 Defining words . 152
22.6 Words involving ’ (tick) . 156
22.7 Strings . 156
22.8 Escaped strings . 158
22.9 Memory operators . 159
22.10 Files and Paths . 160
22.11 Vocabulary handling . 161
22.12 Conditional Compilation . 161
22.13 Debugging aids . 162
22.14 Turnkey . 164
22.15 Floating point formats, ANS and Forth200x . 164
22.16 Floating point . 165

22.16.1 Software floating point . 165
22.16.2 Hardware floating point . 165

22.17 Structures . 166
22.18 C isms . 167
22.19 Miscellaneous . 169
22.20 Starting and finishing cross-compilation . 171
22.21 Build numbering . 172
22.22 Checksum generation . 172
22.23 Disassembler . 173
22.24 Library files . 174

23 Converting from earlier versions . 177
23.1 From v6.2 onwards . 177
23.2 Converting from v6.0 . 177

23.2.1 Generic I/O . 177
23.2.2 Multitasker . 177
23.2.3 User variables . 177
23.2.4 Heap . 178

23.3 Upgrading from v5 . 178
23.3.1 Basic v5 conversion . 178
23.3.2 Converting from DTC to VFX compilers . 180
23.3.3 CREATE CDATA IDATA UDATA and sections . 182
23.3.4 COMPILER, INTERPRETER, HOST, TARGET and ASSEMBLER 183
23.3.5 Umbilical Forth . 184
23.3.6 FLOATS and REALS . 184

24 Converting from Forth-83 to ANS . 185
24.1 Choice of word names . 185

24.1.1 INVERT NOT and 0= . 185
24.1.2 EXPECT SPAN and ACCEPT . 185
24.1.3 S" and C" . 185
24.1.4 ASCII CHAR and [CHAR] . 186
24.1.5 FORGET and MARKER . 186

24.2 Division . 186
24.3 CREATE and friends . 186
24.4 >BODY and friends . 187

viii

24.5 FLOATS and REALS . 187
24.6 CATCH and THROW . 187

24.6.1 Description . 188
24.6.2 Sample implementation . 188
24.6.3 Stack rules for CATCH and THROW . 189
24.6.4 Some more features . 190

24.7 POSTPONE . 191
24.8 COMPILE, and , . 191

25 Further information . 193
25.1 MPE courses . 193
25.2 MPE consultancy . 193
25.3 Recommended reading . 194

Index . 195

List of Tables . 201

List of Figures . 203

1

1 Licence terms

The license terms here apply to all MPE cross compilers supplied from December 2019 onwards.
and beyond. Separate sections of this chapter cover both the Community (non-commercial use)
and Enterprise (commercial use) licenses.

Unless otherwise stated, all files supplied are copyright MicroProcessor Engineering Limited.

1.1 Commercial use

Commercial use means that money changes hands, either by the sale of a product or by payment
for a job or employment. If commercial use applies to you, your organisation or employer, you
need an Enterprise licence.

If you sell an application written with an MPE Forth system, that is commercial use.

If you sell a service that uses or was developed with an MPE Forth system, that is commercial
use.

If you are paid to write software with an MPE Forth system, that is commercial use.

If you sell hardware or software but give away software written with an MPE Forth system to
enhance it, that is still commercial use.

If you think that you are a special case, please contact us and we will consider your case.

If you teach a class using an MPE Forth system in a class, that is a special case, and a Community
non-commercial licence is all that is required, both for the teachers and the students, but for
the duration of the class only.

1.2 Distribution of application programs

Providing that the end user has no access to the underlying Forth and its text interpreter
except for engineering and maintenance access only, applications compiled with the Forth 7
cross-compiler may be distributed without royalty. An acknowledgement will be gratefully ap-
preciated. No part of the cross-compiler or the target source code may be further distributed
without written permission from MicroProcessor Engineering.

If you need to ship applications with an open Forth system, or wish to check what constitutes
engineering and maintenance access, please contact MPE. An OEM version of ROM PowerForth
with documentation is available for distribution with your products.

1.2.1 Distribution of files

Unless special license terms say otherwise, this section applies.

MPE source files and all other files including editors, support programs and shared libraries are

2 Forth 7 Cross Compiler

part of the development environment, which may not be distributed without prior permission
in writing from MicroProcessor Engineering. However, the INI parser libraries, mpeparser.dll
or libmpeparser.* may be distributed with your applications - these files are distrubuted under
an MIT license.

The source directories provided with MPE cross compilers and target code may not be dis-
tributed, and remain the intellectual property of MicroProcessor Engineering Ltd.

1.3 Warranties and support

We try to make our products as reliable and bug free as we possibly can. We support our
products. If you find a bug in this product and its associated programs we will do our best to
fix it. Please check first by fax or email to see if the problem has already been fixed. Please send
us enough information including source code on disc or by email to us, so that we can replicate
the problem and then fix it. Please also let us know the serial number of your system and its
version number. We will then send you an update when we have fixed the problem. The level
of technical support that we can offer depends on the Support Policy bought with the product
(Basic, Standard, Professional or Ultimate).

Technical support will only be available on the current version of the product.

Make as many copies as you need for backup and security.

As this copy is sold direct and through dealers and purchasing departments, we cannot keep
track of all our users. Please contact tech-support@mpeforth.com to register your compiler. We
need the compiler type and serial number. This way we will be able to keep you informed of
updates and new extensions, as they become available. If you need technical support from us
we will need these details in order to respond to you. You will find the serial number of the
system on the original issue discs or as part of the download instructions.

1.4 Community licence specific terms

The terms in this section apply to compilers supplied with the Community licence.

Commercial use with the Community licence is not permitted.

All applications written with the Community licence must acknowlege this at sign on and in the
documentation.

You may not use VFX Forth or MPE cross compilers to produce products that compete with
MPE Forth products.

Unless otherwise stated, all files are copyright MicroProcessor Engineering Limited.

1.4.1 Distribution of application programs

There are several ways in which ROM PowerForth applications can be distributed. These are:

• Sealed turnkey application with no access to the interactive Forth.

Chapter 1: Licence terms 3

• Sealed except for engineering and maintenance access by the developer.

• Open Forth interpreter/compiler provided for the end user.

Sealed turnkey applications

Providing that the user can have no access to the underlying Forth and its text interpreter,
turnkey applications written in ROM PowerForth may be distributed without licence. An ac-
knowledgement of the Cross Compiler Community licence is required at start up of the applica-
tion.

Engineering and maintenance access

If the developing organisation wishes to provide what the user sees as a sealed turnkey appli-
cation, but in which an open Forth can be exposed for engineering and maintenance access by
the developer organisation no licence will be charged for. However a license agreement must
be signed with MPE in order to protect MPE’s copyright. An acknowledgement of the ROM
PowerForth Community licence is required at start up of the application.

If the company or person responsible for maintenance is not the developer then the maintenance
company or person must have a licence.

Our objective here is to protect our copyright and to ensure that no undocumented Forth systems
are shipped.

User open Forth interpreter

In order to distribute a system with an open Forth interpreter for the end user, a licence
agreement must be signed with MPE.

Our objective here is to protect our copyright and to ensure that no undocumented Forth systems
are shipped.

1.4.2 Warranties, support, and copyright

We try to make VFX Forth as reliable and bug free as we possibly can. We support our products.
If you find a bug in a cross compiler, its associated programs or in target we will do our best to
fix it. Please send us sample code and a listing of the problem. We will then let you know of an
update when we have fixed the problem. Do however, contact us or your supplier first in case
the problem has already been fixed.

Please note that the level of Technical Support that we can offer for Community licences is
limited to forum support with no guaranteed service level. Technical support is only provided
for the current shipping version.

Make as many copies as you need for backup and security.

As we sell copies of cross compilers through dealers and purchasing departments we cannot keep
track of all our users. If you have not already been in contact with us, please send your details
to

mailto:techsupport@mpeforth.com

4 Forth 7 Cross Compiler

1.5 Enterprise licence specific terms

The terms in this section apply to compilers supplied with commercial use permitted.

If you have a subscription, commercial use is only permitted while the subscription is valid, i.e.
paid for.

You may not use VFX Forth or MPE cross compilers to produce products that compete with
one or more MPE Forth products.

Unless otherwise stated, all files are copyright MicroProcessor Engineering Limited.

1.5.1 Distribution of application programs

There are several ways in which VFX Forth applications can be distributed. These are:

• Sealed turnkey application with no access to the interactive Forth.

• Sealed except for engineering and maintenance access by the developer.

• Open Forth interpreter/compiler provided for the end user.

Sealed turnkey applications

Providing that the user can have no access to the underlying Forth and its text interpreter,
turnkey applications written in VFX Forth may be distributed without royalty. An acknowl-
edgement will be gratefully appreciated.

Engineering and maintenance access

If the developing organisation wishes to provide what the user sees as a sealed turnkey applica-
tion, but in which an open Forth can be exposed for engineering and maintenance access by the
developer organisation no royalty will be charged. However a license agreement must be signed
with MPE in order to protect MPE’s copyright. If the company responsible for maintenance is
not the developer then the maintenance company must have a license.

User open Forth interpreter

In order to distribute a system with an open Forth interpreter for the end user, a license agree-
ment and royalty terms must be agreed with MPE. MPE is able to help you supply selected
portions of the development environment, or to provide end user documentation. The cost of
such licenses will depend on the facilities required.

1.5.2 Warranties, support, and copyright

We try to make VFX Forth as reliable and bug free as we possibly can. We support our products.
If you find a bug in a cross compiler, its associated programs or in target we will do our best
to fix it. Please send us sample code and a listing of the problem. We will then let you know
of an update when we have fixed the problem. Do however, contact us or your supplier first in
case the problem has already been fixed. Please note that the level of Technical Support that
we can offer will depend on the Support Policy purchased. Technical support is only provided
for the current shipping version.

Chapter 1: Licence terms 5

Make as many copies as you need for backup and security.

As we sell copies of cross compilers through dealers and purchasing departments we cannot keep
track of all our users. If you have not already been in contact with us, please send your details
to

mailto:techsupport@mpeforth.com

7

2 Installing the system

The installer helps you through the installation process and will make sure you have all the files
you need.

2.1 System requirements

To install and use the development system you need:

• Mac OS X 10.6 or above, but not 10.15.

• x86 PC with Linux

• Windows 7, 8, or 10 with 1 Gb or more of RAM. The Windows version will probably work
on Windows XP SP3 and Vista, but if it doesn’t we aren’t likely to fix it unless you have a
compelling reason that convinces us to fix it.

• At least 100 Mbytes of free disc space, depending on the amount of CPU specific documen-
tation provided.

2.2 Installation and configuration

This section covers general installation of the cross compiler. The target-specific manual will
detail how to install tools such as JTAG programmers for ARM/Cortex or MSP430 CPUs.

2.2.1 Windows

Installation

The software is usually supplied as a download. The main file is an installer. Run the installer.
The installer will prompt you for all the information it needs, offering defaults. The installer
will also create a new start menu program group for you that contains shortcuts to tools and
help files.

Versions of the installers before v7.6 may ask you for a licence key. When entering the 12 digit
key, remove all punctuation and separators. Just enter 12 decimal digits.

Configuration

Everything you need can be accessed through the Aide shell. Many people find it useful to put
a shortcut to <xCPU>\AIDE\AIDE.EXE on the desktop. Configuration of Aide is discussed in
the Aide manual in the Docs folder.

Aide will have a couple of projects already installed in Aide’s main toolbar. Click the button to
run them.

Port access under Windows XP onwards

Direct port access is no longer supported. Use a USB adater instead. The legacy drivers are
supplied but not supported.

Direct access to I/O ports is required for SPI parallel port drivers, and other target access

8 Forth 7 Cross Compiler

drivers. If you are using Linux or Windows XP or later, direct port I/O requires a driver
that permits this access, otherwise you will trigger an exception with an error message such as
"Cannot run privileged instruction".

The directory COMPILER\XTRA contains NTPORT.EXE, which permits an application to use
any I/O port. Note that this completely bypasses the normal Windows NT I/O port protection
mechanism. If you want something more secure there are several utilities available from the
Internet.

To install NTPORT perform the following procedure. Our thanks go to Graham Gollings of
LMS bv for this description of the process.

Run the NTPORT utility located in your COMPILER\XTRA folder. This puts various files
in the right places, but does not install the driver itself. Loading a driver is performed by the
LOADDRV utility.

Run LOADDRV.EXE from your COMPILER\XTRA folder. In the window "Full pathname of
driver" point to GIVEIO.SYS.

Tick on INSTALL (It should say operation was successful)

Tick on RUN (It should say operation was successful)

Now run TSTIO.exe (and a tune should play). At this point GIVEIO.SYS is running, but the
next time the system is started from cold it will be loaded at system start up but will not run,
as it is configured as manual. We need it to be loaded and running from cold start. In order to
set this up, run REGEDIT. Look to path:

HKEY_LOCAL_MACHINE | SYSTEM | CURRENT CONTROL SET | SERVICES | GIVEIO

Right click on GIVEIO, and change the START REG DWORD from 3 (manual) to 2 (automatic)

To test the installation, run the compiler directly from the COMPILER directory with no
command line. In the console, type the following incantation:� �
ALSO C-C \ add C-C vocabulary to search order

PIO-INIT \ initialise driver access

PIO-TEST \ should play a tune

PREVIOUS \ remove C-C from search order

BYE \ exit from compiler
 	
When using the compiler, you must add the directive NT-ACCESS-PORTS to your control file before
any direct access to hardware is required. A good place to add it is after the CROSS-COMPILE

directive in the section in which the compiler is configured.

2.2.2 Linux and Mac OS X

Chapter 2: Installing the system 9

Installation

The compiler is supplied as a zipped tarball. Unzip this to somewhere sensible for your machine,
e.g. a directory in your home directory.

$ tar -xvvzf xCPU.tar.gz

Inside the compiler’s root directory will be a shell script called InstallMeLin.sh or In-
stallMeOsx.sh. Switch to the compiler’s root directory and run the script:

$ cd <xCPUroot>

$./InstallMeLin.sh

This script copies the required executables and shared libraries, by default to /usr/bin and
/usr/lib. If your distribution requires different destinations, edit the script before running it. If
you use Ubuntu or are not running with administrator privileges you will have to use sudo or
another dark art.

Check the installation by running the compiler from any directory:

$ x<Cpu><ver>

For example the Stamp and Developer versions of the ARM cross compiler are called xArmStamp
and xArmDev respectively.

We apologise for not generating proper installers for Linux, but it’s a huge amount of work to
get it right for all distributions. At present, we would have to generate five packages (deb32,
deb64, rpm32, rpm64 and tarball) for each version of each compiler. Until a sane and affordable
packaging solution is available for Linux, tarballs are what we can do for Linux cross compilers.

Configuration

Cross compilers are not supplied with an editor. If you want to set one, use:

editor-is <editor>

e.g.

editor-is emacs

editor-is /bin/vi

After this, you can launch the editor from the compiler with:

edit <file>

Do not be surprised if launching a GUI-based editor generates error messages on the Forth
console - this appears to be normal Linux behaviour. Kate is a particular offender.

SetLocate tells the host VFX Forth how your editor can be called to go a particular file and
line. Use in the form:

SetLocate <rest of line>

where the text after SetLocate is used to define how parameters are passed to the editor, e.g.
for Emacs, use:

10 Forth 7 Cross Compiler

SetLocate +%l% "%f%"� �
EMACS +%l% "%f%"

--no-wait +%l% "%f%"

Kate --use --line %l% "%f%" &
 	
Thanks to Charles Curley for the additional EMACs information. See
http://www.charlescurley.com. He also notes that you should add the following to
your .emacs file:� �
(if (or (string-equal system-type "gnu/linux")

(string-equal system-type "cygwin"))

(server-start)

(message "emacsserver started."))
 	
It is essential to place the quote marks around the %f% macro if your source paths include
spaces.

Once set up, you can view the source of a word with:

locate <name>

If the editor is not set up locate <name> will tell you where it is.

The configuration information is preserved between sessions in a configuration file, by default
~/.VfxForth.ini.

First run

To compile a project, find a control file (with a .ctl extension). Then write a simple script to
compile it, or run the relevant command from a shell. The following example comes from the
ARM compiler. It compiles code for the MPE USB ARM Stamp hardware in the directory
<xArmxxx>/ARM/Hardware/LPC210x/. The script file is called xusbstamp.sh.

Chapter 2: Installing the system 11� �
#! /bin/bash

Linux shell script to compile the USB Stamp

bindir=/usr/bin

if [-e $bindir/xArmStamp]; then

echo "Using STAMP compiler"

xArmStamp include USBstamp.ctl

exit

fi

if [-e $bindir/xArmDev]; then

echo "Using DEV compiler"

xArmDev include USBstamp.ctl

exit

fi

echo "Compiler not found"

exit 1
 	
Don’t forget to make the script file executable!

$ chmod +x xusbstamp.sh

If your CPU has an Open Source or freely distributable Flash programming tool, it will be
available in the Tools directory.

Common compilation problems

The cross compilers come from a code tree developed under Windows. We simply do not have
the resources to retest every project under Linux and OS X. Common problems that you will
find are usually to do with case-sensitity of file names and the use of ’\’ in path names rather
than ’/’. We are working to fix these problems.

1. Windows file systems are case insensitive. Consequently, when running a project that was
developed on Windows, file names may be invalid under Linux that were acceptable on
Windows.

2. Windows uses the ’\’ or the ’/’ character as the directory separator. Linux only uses ’/’.

3. Some auxiliary files (not Forth source code) may have been processed by Windows tools and
inadvertently acquired CR/LF line endings rather than the Unix LF line ending. Windows
tools are not good about preserving line endings and Linux tools are not good at accepting
line endings other than LF. There are times when we just don’t notice which box we’re
developing on!

4. Files edited on Windows may end up with mangled permissions.

Direct port access

The following notes are for developers working under x86-32 versions of Linux. Under normal
use, direct access to I/O ports is forbidden. However, if you are running with root privilege, you
can use the glibc functions ioperm() and iopl() to enable and disable port access.

code pc@ \ port -- b ; read port

Read a byte from the hardware control port supplied.

code pc! \ b port -- ; write port

12 Forth 7 Cross Compiler

Write the supplied byte to the selected hardware control port.

code pw@ \ port -- w ; read port

Read a 16 bit word from the hardware control port supplied.

code pw! \ w port -- ; write port

Write the supplied 16 bit word to the selected hardware control port.

code pl@ \ port -- x ; read port

Read 32 bits from the hardware control port supplied.

code pl! \ x port -- ; write port

Write the supplied 32 bits to the selected hardware control port.

: +Ports \ port #ports -- ior

Enable access to a range of ports starting at port. Return 0 on success. Port numbers must be
in the range 0..$3FF. You must have root permissions.

: -Ports \ port #ports -- ior

Disable access to a range of ports starting at port. Return 0 on success. Port numbers must be
in the range 0..$3FF. You must have root permissions.

: PlayNote \ hertz ms --

Play a note on the internal PC speaker. Ports $42, $43 and $61 must be enabled first.

: pio-test \ --

A test routine for hardware access. Enables ports $40..$6F and confirms access. If you hear a
familiar tune, all is well! Of course, you must have an old-style PC speaker!

2.3 Release notes

Late changes to the compiler and target code are documented in release note files. These are
called Release.xxx.txt and will be found in the relevant directories. They are of particular value
when upgrading from one version of the compiler to the next. Please read them!

The most important of these are the compiler and target CPU release notes which are kept in
the Docs or Doc directory. They will be called Release.XC7.txt and Release.cpu.txt, where for
example Release.51.txt refers to the 8051 compiler and Release.Cortex.txt refers to the ARM
Cortex compiler.

13

3 System components

Now that you have installed the development system, you may be wondering what you have got.
The development system consists of:

• MPE Forth cross-compiler with source code. Note that VFX compilers are only supplied
with source code after a non-disclosure agreement (NDA) has been signed. The source NDA
is in the supplied package.

• Source code for generating a target Forth that includes a standalone Forth interpreter
useful for debugging with a terminal. Treat the target code as a resource for you to read
and extend.

• Source code for generating an Umbilical Forth that needs the cross-compiler for interactivity
and debugging. An Umbilical Forth is smaller than the standalone Forth. Treat the target
code as a resource for you to read and extend.

• Drivers for CPU or chip specific utilities.

• The AIDE development environment. AIDE is documented in a separate manual.

• Tools directory. This includes file format converters from the memory images generated by
the MPE Forth compilers to Motorola S-record format and Intel Hex format. The OMAKE
make utility is also included.

• Documentation directory. This directory includes much useful documentation, including the
ANS Forth specification for target code reference. There are many CPU specific files taken
from manufacturers web sites. You will find here the Release.xc7.txt and Release.<cpu>.txt
text files which document late changes since this manual was generated. You will also find
PDF files for the latest available version of this manual, XC70man.pdf and the CPU specific
manual.

• Target Code manuals. From v6.2 onwards, target code code is documented using MPEs
DocGen system supplied with VFX Forth. The manual for the common code may be found
in Common\Manual\CommonCode.pdf and the CPU specific code manual may be found
in <cpu>\Manual\<cpu>Code.pdf where <> is replaced by a CPU specific reference.

By default the installer creates the directory structure shown in the figure below. Note that the
AIDE directory is not shown as this can be installed to anywhere on your system. If you have
more than one cross compiler, you only need to use a single copy of AIDE.

14 Forth 7 Cross Compiler

<root> CPU HARDWARE

COMPILER

COMMON ROMFORTH

EXAMPLES

CONFIGS

DRIVERS

...

...

...

DOC

Figure 3.1: Installed directory structure

3.1 MPE Forth cross-compiler

The cross-compiler can generate either a ROM target Forth or an Umbilical Forth from your
source code. The source code for the cross-compiler is supplied so that you can extend the
compiler and rebuild it from scratch if required. Source code for VFX compilers is available
after a non-disclosure agreement has been signed.

The compiler can automate the generation of paged targets and also has a built-in cross-
assembler and disassembler (STC/NCC) targets only. The compiler executable and associated
files are in the directory COMPILER and the source is in the directory COMPILER\SOURCE
if provided.

3.2 Standalone target Forth

A standalone target Forth is supplied as source code with all compilers except the IRTC verions.

The Forth generated can have a multitasker and software floating-point. The standalone Forth
can be debugged through a serial port or other link using a terminal, terminal emulator or
Telnet. This permits on-site debugging without the cross-compiler very easy, and the Forth can
be used for debugging, maintenance, and configuration.

A stand-alone Forth has a bigger wordset than an Umbilical Forth (see below), and consequently
requires more memory. The installer places the target source code in the directories Common
and <cpu>. See the chapter on Generating your Forth kernel for details.

Chapter 3: System components 15

3.3 Umbilical Forth

An Umbilical Forth is one in which the interactivity of Forth is provided by the cross compiler
talking to the target while the target is running. Because all the name searcches are performed
on the host PC,an Umbilical Forth kernel can be much smaller than a standalone Forth, typically
2kb for an 8/16 bit CPU.

Umbilical Forth does not have all words defined in a stand-alone target Forth, but is useful if
code space is at a premium. The Umbilical Forth source code is in the directories Common
and <cpu>. In most cases (except for Harvard architectures such as 8051 and Z8) the code
for Umbilical Forth systems is compatible with the standalone Forth source code, so additional
words required can be taken from the standalone Forth code base.

3.4 Documentation directory

Much of the documentation is available in the DOCS directory. In particular note the ANS-
FORTH directory. If you need it the ANS specification is provided in HTML format in the
DOCS\ANSFORTH directory. Start with

The generic cross compiler and CPU specific manuals are supplied as PDF files. The use of PDF
manuals enables us to update our manuals on a regular basis to incorporate suggestions made
by you, the users.

A number of CPU manuals are also provided in PDF form to avoid you having to download
them.

3.5 Control files

In nearly all cases, the cross compilation process is controlled by a master file that we call
a control file. The control file defines the characteristics of the target hardware and memory
layout and specifies which files to compile. You will find several in the <CPU>\CONFIGS or
<CPU>\Hardware directories. For your job, copy one of the existing files and modify it as
required.

You can make your life much easier, especially when you go on site with a laptop, if you use
the text macro system described in the next chapter to handle the directory structure for your
applcation code and the MPE kernel code.

3.6 Compiler versions

There are three versions of the cross compiler, Developer, Standard and Stamp.

• Developer. The full compiler with all tools, cross compiler source code, stand-alone and
Umbilical target source code, floating point, multitasker(s), timebase system, heap, state
machine compiler, automated test code, NetBoot and SerBoot monitors, PID loops, and
support for bank-switched targets. Compilers for 32 bit targets include the FAT12/16/32
file system (including SD/MMC card drivers), PowerFile file system and the PowerView
embedded GUI.

16 Forth 7 Cross Compiler

• Standard. The same compiler and target as for Developer, but without:

• compiler source code

• PowerNet option

• PowerView

• FAT12/16/32 file system

• NetBoot and SerBoot

• PID loops

• Bank-switched code support

• Stamp. As Standard, but with resticted Flash (code) and RAM sizes and without:

• Cross reference tools

• PowerFile file system

• Floating point

• State Machine compiler

3.7 Learning Forth

If you are unfamiliar with Forth, MPE can supply a range of books and training courses. The
book Programming Forth is supplied as a PDF in the Docs folder. For further details, please con-
tact our office or look at our website (URL at start of manual). See also the Further Information
chapter of this manual.

17

4 How Forth is documented

The Forth words in this manual are documented using a methodology based on that used for
the ANS standard document. As this is not a standards document but a user manual, we have
taken some liberties to make the text easier to read. We are not always as strict with our own
in-house rules as we should be. If you find an error, have a complaint about the documentation
or suggestions for improvement, please send us an email or contact us in some other way.

When you browse the words in the Forth dictinary using WORDS or when reading source code
you may come across some words which are not documented. These words are undocumented
because they are words which are only used in passing as part of other words (factors), or
because these words may change or may not exist in later versions.

"Documentation is like sex: when it is good, it is very, very good; and when it is bad, it is better
than nothing." - Dick Brandon

4.1 Forth words

Word names in the text are capitalised or shown in a bold fixed-point font, e.g. SWAP or SWAP.
Forth program examples are shown in a Courier font thus:� �
: NEW-WORD \ a b -- a b

OVER DROP

;
 	
If you see a word of the form <name> it usually means that name is a placeholder for a name you
will provide.

The notation for the glossary entries in this manual have two major parts:

• The definition line.

• The description.

The definition line varies depending on the definition type. For instance - a normal Forth word
will look like:� �
: and \ n1 n2 -- n3 6.1.0720
 	
The left most column describes the word NAME and type (colon) the center column describes
the stack effect of the word and the far right column (if it exists) will specify either the ANS
language reference number or an MPE reference to distinguish between ANS standard and MPE
extension words.

The stack effect may be followed by an informal comment separated from the stack effect by a
’;’ character.� �
: and \ x1 x2 -- x3 ; bitwise and
 	

18 Forth 7 Cross Compiler

This is a "quick reference" comment.

When you read MPE source code, you will see that most words are written in the style:� �
: foo \ n1 n2 -- n3

\ *G This is the first glossary description line.

\ ** These are following glossary description lines.

...

;
 	
Most MPE manuals are now written using the DocGen literate programming tool available and
documented with all VFX Forths for Windows, Linux and DOS. DocGen extracts documentation
lines (ones that start "\ *X ") from the source code and produces HTML or PDF manuals.

4.2 Stack notation

before -- after

where before means the stack parameters before execution and after means stack parameters
after execution. In this notation, the top of the stack is to the right. Words may also be shown
in context when appropriate. Unless otherwise noted, all stack notations describe the action of
the word at execution time. If it applies at compile time, the stack action is preceded by C: or
followed by (compiling)

An action on the return stack whill be shown

R: before -- after

Similarly, actions on the separate float stack are marked by F: and on an exception stack by E:.
The definition of >R would have the stack notation

x -- ; R: -- x

Defining words such as VARIABLE usually indicate the stack action of the defining word
(VARIABLE) itself and the stack action of the child word. This is indicated by two stack ac-
tions separated by a ’;’ character, where the second action is that of the child word.

: VARIABLE \ -- ; -- addr

In cases where confusion may occur, you may also see the following notation:

: VARIABLE \ -- ; -- addr [child]

Unless otherwise stated all references to numbers apply to native signed integers. These will be
32 bits on 32 bit CPUs and 16 bits on embedded Forths for 8 and 16 bit CPUs. The implied
range of values is shown as {from..to}. Braces show the content of an address, particularly for
the contents of variables, e.g., BASE {2..72}.

The native size of an item on the Forth stack is referred to as a CELL. This is a 32 bit item on a
32 bit Forth, and on a byte-addressed CPU (the vast majority, most DSP chips excluded) this
is a four-byte item. On many CPUs, these must be stored in memory on a four-byte address

Chapter 4: How Forth is documented 19

boundary for hardware or performance reasons. On 16 bit systems this is a two-byte item, and
may also be aligned.

The following are the stack parameter abbreviations and types of numbers used in the documen-
tation for 32 bit systems. On 16 bit systems the generic types will have a 16 bit range. These
abbreviations may be suffixed with a digit to differentiate multiple parameters of the same type.� �
Stack Number Range Field

Abbreviation Type (Decimal) (Bits)

flag boolean 0=false, nz=true 32

true boolean -1 (as a result) 32

false boolean 0 32

char character {0..255} 8

b byte {0..255} 8

w word {0..65535} 16

here word means a 16 bit item, not a Forth word

n number {-2,147,483,648 32

..2,147,483,647

x 32 bits N/A 32

+n +ve int {0..2,147,483,647} 32

u unsigned {0..4,294,967,295} 32

addr address {0..4,294,967,295} 32

a-addr address {0..4,294,967,295} 32

the address is aligned to a CELL boundary

c-addr address {0..4,294,967,295} 32

the address is aligned to a character boundary

32b 32 bits not applicable 32

d signed {-9.2e18..9.2e18} 64

double

+d positive {0..9.2e18} 64

double

ud unsigned {0..1.8e19} 64

double

sys 0, 1, or more system dependent entries

char character {0..255} 8

"text" text read from the input stream
 	
Any other symbol refers to an arbitrary signed 32-bit integer unless otherwise noted. Because
of the use of two’s complement arithmetic, the signed 32-bit number (n) -1 has the same bit
representation as the unsigned number (u) 4,294,967,295. Both of these numbers are within the
set of unspecified weighted numbers. On many occasions where the context is obvious, informal
names are used to make the documentation easier to understand.

4.3 Input text

Some Forth words read text from the input stream (e.g the keyboard or a file). That text is
read from the input stream is indicated by the identifiers "<name>" or "text". This notation
refers to text from the input stream, not to values on the data stack.

Likewise, ccc indicates a sequence of arbitrary characters accepted from the input stream until

20 Forth 7 Cross Compiler

the first occurrence of the specified delimiter character. The delimiter is accepted from the input
stream, but it is not one of the characters ccc and is therefore not otherwise processed. This
notation refers to text from the input stream, not to values on the data stack.

Unless noted otherwise, the number of characters accepted may be from 0 to 255.

4.4 Other markers

The following markers may appear after a word’s stack comment. These markers indicate certain
features and peculiarities of the word.

C The word may only be used during compilation of a colon definition.

I The word is immediate. It will be executed even during compilation, unless special
action is taken, e.g. by preceding it word with the word POSTPONE.

M Affected by multi-tasking

U A user variable.

21

5 Configuring with macros

Both the compiler and the IDE can be configured using text macros, which are mostly used
to define directory, file and path names. The IDE and the cross compiler each have their own
independent sets of macros.

The macro system gives you great flexibility in managing your source code. For example, you
can establish projects in which your source code is held quite separately from the issued MPE
code. When a project is moved from one machine to another, the directory structure may need
to change. With macros this is easy to do by redefining the macros.

5.1 Text macros

Text macros allow a similar function to the role of constructs such as %PATH% in MSDOS
batch files. In particular, the expansion of these macros are performed on file names submitted
to INCLUDE <name>, so something like the following piece of code can be included in a control
file before the CROSS-COMPILE directive:� �
"" C:\MSD\SRC" SETMACRO ROOT

...

INCLUDE %ROOT%\FILEA

INCLUDE %ROOT%\FILEB

INCLUDE %ROOT%\FILEC
 	
When the file name is scanned, the compiler attempts to subsitute text between the % characters.
The % characters are not part of the macro name. Note that C" <text>" SETMACRO <name> can
be placed on the cross compiler command-line and thus you can specify a directory in a short-cut,
batch file or shell script.

The compiler can be used independently of AIDE. Consequently most MPE-supplied control
files are independent of AIDE, and define any required macros at the start of the control file.
The following example is taken from an ARM control file, and shows macros with both relative
(to the current directory) and absolute paths.� �
"" ..\..\..\Common"

setmacro CommonDir \ where common code lives

"" ..\..\..\ARM"

setmacro CpuDir \ where CPU specific code lives

"" ." setmacro HWDir \ where board specific code lives

"" ..\..\..\Examples"

setmacro ExampleDir \ Examples

"" ." setmacro AppDir \ where application code lives

"" C:\buildkit.dev\software\AddOns\PowerNet\Dev"

setmacro IpStack \ where PowerNet lives

...

include %CpuDir%\Drivers\serSTR91xqi \ queued interrupt driver
 	

22 Forth 7 Cross Compiler

5.2 Directory structures

For reference, the directory structure of the cross-compiler is listed below with a description
of each directorys contents. Because the supplied files are mostly source code, we strongly
recommend that you browse the installed system.� �
Directory Contains

<root> Installer files

CPU (e.g. 8051) CPU-specific kernel source files

Configs Example control source files

Drivers Serial and other driver source files

Hardware Board and chip specific code

Manual CPU specific manual and DocGen files

COMPILER Compiler .EXE and error messages files

CPU (e.g. 8051) CPU specific cross compiler source code

CommonVfx Cross compiler common source code

VfxForth Host Forth for the cross compiler

DOC Help files and other documentation

Common Non CPU-specific kernel source files

ROMFORTH Chip-independent ROMFORTH source files

Manual Common code manual and DocGen files

Tests MPE and ANS test harnesses

Examples Chip-independent test and example source

AIDE AIDE executables, data, configuration files
 	
The <root> directory name is selected by the user during installation. Because AIDE’s con-
figuration file contains all the required information to run a given compiler and because all of
the other files are common, several cross-compilers can share the same AIDE directory and
configuration.

23

6 Generating a target Forth kernel

This chapter describes how to generate a target ANS Forth for your target board. Generating
a stand-alone Forth and generating an Umbilical Forth are essentially the the same process, so
the differences for Umbilical Forth are noted at the end of the chapter.

This chapter guides you through:

• setting up your hardware and software

• writing the serial line drivers

• modifying the memory map for your board

• compiling and running a target Forth

6.1 Is your target already supported?

Supplied with the cross-compiler are configurations for a number of boards and terminals. If one
of the supplied control files matches your hardware, use it. By using these files, the installation of
a target Forth for your board will be greatly simplified. If you do not have one of the supported
targets you will have to modify a control file and write serial line drivers for your board. If you
are doing this for the first time, take it slowly and test everything at each stage. We strongly
recommend the investment in a board we already support. These boards are much cheaper than
your wasted time and frustration when becoming familiar with a new package.

6.2 The control file

A control file is the master file for a specific project. It contains the target description, including
the memory map, crystal speeds and UART details. These details include:

• the memory map of your board

• whether you wish a log to be displayed

• the clock rate of your board

• the serial port speed.

As well as containing configuration information, the control file contains compiler directives and
a list of files that are to be cross-compiled. Once the cross-compiler knows these items, it can
generate a correct binary image from your source code. An example control file is shown in the
chapter on Controlling compilation. To create a new control file, copy an existing one and then
modify it to match your target. This is normally easier than generating one from scratch. Exam-
ple control files are in the directory <CPU>\CONFIGS and/or <CPU>\Hardware\<dev/board>.

6.3 Memory map

The memory map describes the addresses where the ROM and RAM areas start and end in your
target system.

6.3.1 Setting the memory map

The memory map is described in your control file, so once the file has been created, you can

24 Forth 7 Cross Compiler

change the memory map definition to match your target. The memory map is described in three
parts:

• the start and end of Flash - where the code is.

• the start and end of initialised RAM

• the start and end of uninitialised RAM

6.3.2 Start and end of Flash

The start and end of ROM (and any other memory area) is defined by using the compiler
directive SECTION in the form:

rom-start rom-end CDATA SECTION <name>

where rom-start is the address of the start of Flash used for code, rom-end is the address
of the end of Flash used for code, and <name> is the name of the output file. The compiler
automatically gives the filename <name> an extension .IMG so <name> must be just a name
without an extension. The numbers rom-start and rom-end are, by default, in decimal, but can
be entered in hex by preceding them with a $ character, e.g

$0100

This area also contains any data defined by CDATA during the cross-compilation. This directive
is discussed in detail elsewhere in the manual. In practice, it just means that what follows is
code.

The first CDATA section defined must be the one entered when the system powers up.

6.3.3 Start and end of initialised RAM

The start and end of the initialised RAM area is defined by using the compiler directive IDATA
SECTION, i.e.

ram-start ram-end IDATA SECTION <name>

where ram-start is the address of the start of RAM, ram-end is the address of the end of RAM
and <name> is the name for this area of memory. The numbers are, by default, in decimal, but
can be entered in hex by preceding them with a ’$’ character.

The initialised RAM area contains any data defined by VARIABLE, VALUE or IDATA during the
cross-compilation. These directives are discussed elsewhere in this manual. If an interactive
Forth is compiled for the target then definitions entered interactively are placed in this section.
The data in IDATA sections is appended to the first CDATA section before the file is saved.

6.3.4 Start and end of uninitialised RAM

The start and end of the uninitialised RAM area are defined by using the compiler directive
UDATA SECTION, used in the form:

ram-start ram-end UDATA SECTION <name>

where ram-start is the address of the start of uninitialised RAM, ram-end is the address of the
end of RAM and <name> is the name for this area of memory. The numbers ram-start and

Chapter 6: Generating a target Forth kernel 25

ram-end are, by default, in decimal, but can be entered in hex by preceding them with a ’$’
character.

The uninitialised RAM area contains data areas allocated by BUFFER: or UDATA during cross-
compilation.

6.3.5 Setting the compilation areas

There must be at least one section of each type CDATA, IDATA and UDATA. Because defining a
section also selects it, it is good practice to name one of each section type and then select the
current CDATA section as the current section type, e.g.� �
$00000 $07FFF CDATA SECTION Kern

$08000 $0FFFF IDATA SECTION KernI

$10000 $1FFFF UDATA SECTION KernU

Kern KernI KernU

CDATA
 	
This indicates three areas of memory with names Kern, KernI and KernU. With this setup, your
kernel will have 32k of ROM and 32K for variables and interactive development, plus 64k of
uninitialised RAM that is not affected at power up.

6.4 Modifying the serial line drivers

Your target board initially communicates with the external world via a UART. Drivers are
supplied for the supported targets. If you are using one of these, the appropriate supplied serial
driver code can be used. This is located in the directory <cpu\>Drivers. Look here first, as new
drivers may have been added since the manual was written.

If you are using a UART for which driver code is not supplied, you will have to write all the
words required to:

• initialise the UART(s) with a word named INIT-SER,

• send a character,

• receive a character,

• test if a character has been received.

All four words are usually Forth CODE definitions if the VFX code generator is not available.
This is required so that the send and receive words are as fast as possible. Example serial line
drivers in the directory <CPU>\Drivers can be used as a template. As with the control file it
is normally easier to modify an existing serial driver file rather than creating your own from
scratch. The four words are then used to create the serial device words used by the device driver.

Two types of serial handler can be written:

• interrupt driven

• polled

26 Forth 7 Cross Compiler

6.4.1 Interrupt driven

An interrupt driven serial line can only be used if the UART generates interrupt signals when
characters are received. An interrupt driven driver will allow buffered serial communications to
be implemented with least processor overhead. Interrupt-driven drivers are a little more difficult
to write than polled drivers.

6.4.2 Polled

A polled driver will continuously poll a status bit in the UART to detect when the UART has
either transmitted or received a character.

6.4.3 Initialising the serial line

The word INIT-SER performs all the UART initialisation. This includes setting:

• the baud rate

• any handshaking required

• the number of data bits

• the number of stop bits

• the parity to be used

By default all MPE code assumes that the serial line uses 8 data bits, no parity, 1 stop bit. A
three wire link (TX, RX, GND) is all that is required.

It is recommended that the baud rate is initially set to 9600 baud until the target board is
working. It can then be raised to make a more responsive target.

6.4.4 Sending a character to the host

The target code needs to be able to send a character to the host for display on the terminal.
Therefore, you need to write a word which:

• waits for the transmit line to become available

• transmits a character to the host

The method used can be either a polled or interrupt driven driver. The stack effect of the word
is:

serEMIT \ char -- ; send char to host

6.4.5 Receiving a character from the host

The target code needs to receive a character from the host. To do this it needs to:

• wait for a character to be received - serKEY?

• place the character on the Forth stack - serKEY

SerKEY? should return true (-1) on the data stack if a character is available, or return false (0)
if a character is not available. The stack effect of serKEY? is:

serKEY? \ -- t/f ; true if character received

Chapter 6: Generating a target Forth kernel 27

The word that receives a character is KEY, and the primitive for a serial line may be called
serKEY. serKEY \ – char ; wait for char to be received

6.4.6 Generic I/O device table

MPE targets developed in the last ten years or so use what we call generic I/O, which allows
KEY, EMIT and friends to be directed at will to any I/O device that follows the rules of generic
I/O. The device can be a UART, a file, an LCD controller, a memory buffer, or a Telnet session
running over TCP/IP. Generic I/O is discussed in detail in a separate chapter.

The primitive words are used to generate equivalents of the words KEY, KEY?, EMIT, TYPE and
CR. Harvard targets have one more word, TYPEC. The words for EMIT, TYPE and CR must not
manipulate the counter OUT as this is taken care of in the Forth kernel.

The first example is taken from a driver for a single-chip ARM.� �
Cdata

create Console0 \ -- addr ; OUT managed by upper driver

’ serkey0 , \ -- char ; receive char

’ serkey?0 , \ -- flag ; check receive char

’ seremit0 , \ -- char ; display char

’ sertype0 , \ caddr len -- ; display string

’ sercr0 , \ -- ; display new line
 	
The next example is taken from an 8051 implementation, showing the table for a Harvard
architecture device.� �
Cdata

create SerConsole \ -- addr ; OUT managed by upper driver

tasking? [if]

’ (mserkey) , \ -- char ; shedule and receive character

[else]

’ (serkey) , \ -- char ; receive char

[then]

’ (serkey?) , \ -- flag ; check receive char

’ (seremit) , \ -- char ; display char

’ (sertype) , \ caddr len -- ; display string

’ (sercr) , \ -- ; display new line

’ (sertypec) , \ caddr len -- ; display string from CDATA space
 	
6.5 Setting up the system

Setting up the system involves both hardware and software. The target hardware, PC,
Flash/EPROM emulator/programmer and serial line have to be connected as well as config-
uring a terminal program to run the cross-compiler.

6.5.1 Setting up the hardware

• A PC,

28 Forth 7 Cross Compiler

• A serial cable,

• A target board,

• A Flash/EPROM programmer, emulator or downloader.

Your PC needs to have at least one serial port for connecting to the target, so making the Forth
interactive. The default serial port for Umbilical Forth is set in the umbilical control file. For
standalone targets, AIDE’s PowerTerm terminal emulator defaults to COM1.

MPE Forth systems only require the serial line to use transmit, receive and ground connections.
The serial drivers in AIDE and the cross compiler use no trickery. They will also work with the
vast majority of USB to RS232 coverters.

6.5.2 Setting up the software

To compile source code that generates a standalone Forth target, configure the cross-compiler
to use the control file you have just selected or created. The easiest way to do this is to modify
the AIDE configuration to add a new tool for your project.

6.6 Cross-compiling

Now that the hardware and software are set up, you can cross-compile the source code to generate
an executable image.

6.6.1 Creating an image

To cross-compile the source, ensure that the cross-compiler macros are set up correctly and point
to your control file. If you cannot be bothered with macros, just use absolute path names in
AIDE. Press the toolbar button to begin compilation. The compiler displays its sign-on message
and compiles the source code.

6.6.2 Log display

Following the compiler sign-on, depending on the compiler settings, you should see the cross-
compile-log. As each word is compiled the compiler displays the word’s address, its type and its
shortened name. The type of item is coded as two characters as in the following table.

Chapter 6: Generating a target Forth kernel 29

Code Compiled type Code Compiled type

VR Variable FV FP variable

CN Constant FC FP constant

LB Label FA FP array

: Colon definition EQ Equate

CD CODE definition CR CREATEd word

DF DEFERred word US User variable

VC Vocabulary

Table 6.1: Log display indicators

The output can be sent to a file or to the printer. Note that having the log on the screen slows
down the compiler, but is useful when you have a compilation errors or debug information to
display. The scroll bars allow the log to be reviewed before the compiler finishes, and portions
of the text can be sent to the printer using the File menu or AIDE’s right-click menu.

6.6.3 Turning the log on and off

Instead of having the data displayed for each compiled item, the log can be turned off. The
advantage of this is that the compiler spends less time displaying data and so cross-compilation
is quicker. To do this, change the compiler directive in the control file from LOG to NO-LOG. The
log can be turned on again by replacing NO-LOG with LOG in the control file.

6.6.4 Log to file or printer

The cross-compiler can redirect the log to a file instead of the display. To do this, use:

FILE: <name>

6.6.5 Compilation summary

Once the cross-compiler has finished cross-compiling source code, it displays information about
the compilation. This includes:

• any unresolved references

• the number of forward references made and the number of unresolved

• (outstanding) forward references

• the size of the compiled image

• the initialised RAM table address and length

• section information

• the compilation time

30 Forth 7 Cross Compiler

Unresolved references are words that are referenced in the source code but are not defined.
These can be due to spelling mistakes or not compiling some of your code.

If there are any unresolved forward references, your target may not work, and the compiler tells
you so.

The size of the compiled image is the amount of actual code output into the file. The actual file
size will be the size of the ROM indicated by the memory map.

The RAM table is the place in ROM where initial data for the initialised RAM section is stored.
When the target board is reset, initialisation code copies this table into the initialised RAM
areas.

6.6.6 The created image

The cross-compiler always creates a straight binary image file with a .IMG extension. It can
be downloaded to a emulator or programmer. The file has the name given when defining the
memory map using the SECTION directive. It has the extension .IMG by default, which can be
changed using the directive setBinExt, e.g.

setBinExt .bin

A range of alternate file formats is also supported, but the required one has to be selected by a
compiler directive. These files are generated in addition to the .IMG file.� �
HEX-I16 \ -- ; Intel Hex used for 8-bit CPUs

HEX-I32 \ -- ; Intel Hex for 32 bit addresses, e.g. ARM

HEX-S19 \ -- ; Motorola S19 - 16 bit addresses

HEX-S28 \ -- ; Motorola S28 - 24 bit address, e.g. 9S12

HEX-S37 \ -- ; Motorola S37 - 32 bit address, e.g. Coldfire

ELF-ARM \ -- ; ELF file for ARM or Cortex

ELF-386 \ -- ; ELF file for 386

ELF-FORMAT \ machine flags -- ; generic ELF file

UF2-FORMAT \ -- ; used by some bootloaders, e.g. Rpi Pico

set-UF2dest \ addr -- ; target address in Flash for UF2 file.

set-UF2family \ familyID -- ; family ID and set flag bit 13

set-UF2-RP2040 \ -- ; set family ID for RP2040
 	
When programming paged Flash, e.g. for a 68HC12/9S12 CPU, programming tools often require
a physical base address in the Flash, rather than the 64k addresses used in the SECTION and
BANK definitions. When a hex file is output, the base address of a section can be overridden
using:

physaddr SetFlashBase

This situation can also arise in CPUs, e.g. some ARMs, for which the Flash address used by
programming tools or in-system loaders does not match the normal run-time address of the
code.

The initial execution address can be set for S28, S37 and ELF formats by:

Chapter 6: Generating a target Forth kernel 31

<addr> SetBoot

6.6.7 Problems, problems ...

If an error occurs during compilation, the compiler will stop and display the line on which the
error occurred. The cross-compiler shows the line number and the file name where the error
occurred as well as the type of error that has occurred.

If you are working with AIDE, you can use the IDE -> Configure option to define your editor
and the editor will then display the offending line after an error.

If you are using the compiler in stand-alone mode, you can set it to call the editor on error. The
Windows and Linux versions have different configuration mechanisms.

6.7 Downloading the compiled image

Once the source code has been compiled the image needs to be downloaded to Flash or EPROM
using a chip-specific utility, Flash/EPROM emulator or programmer.

If the board already has a Forth running on it, the Forth may include the MPE REFLASH utility.
This utility erases the on-chip Flash, tells AIDE’s PowerTerm that a new image file is needed, and
downloads and programs the selected image file using an Xmodem protocol. PowerTerm’s file
server must be enabled. To use the REFLASH utility, just connect to the board using PowerTerm,
and type:

reflash

The source code for REFLASH is provided with the target source code. Consult the target Forth
manual and target source code. REFLASH is present for most ARM, Cortex-M3 and Coldfire
CPU targets, and may be present for other CPUs.

For Coldfire and some other targets, downloading to Flash through a BDM or JTAG unit is
supported. Consult the target-specific manual and target sources.

6.7.1 Downloading to Flash

The Tools directory will contain CPU or chip-specific download tools whenever we have written
them or the owner permits free distribution of them. You can add a short cut on your desktop
or by adding an external tool to AIDE.

6.7.2 Downloading to an emulator or programmer

The binary image can be downloaded to any Flash/EPROM emulator as long as the emulator’s
software supports binary image files or one of the available alternate file formats.

6.8 Running the target Forth

Once the image generated by the compiler has been downloaded to the target, it is ready to be
reset and the Forth tested.

32 Forth 7 Cross Compiler

6.8.1 Switching to target mode

To receive characters from the target, run and configure your terminal program. All versions of
Windows are supplied with terminal emulation programs. The cross-compiler IDE also comes
supplied with its own terminal emulator *\zi{PowerTerm}.

6.8.2 Resetting the target board

Once the image has been downloaded, you can reset the target board. You can either use the
reset supplied on the board or power off and on again.

6.8.3 The sign-on

• the serial line drivers

• the memory map definition

• your target board

• your EPROM emulator/programmer

• Direct port access

Each of these should be checked.

Figure 6.1: Target sign-on

Chapter 6: Generating a target Forth kernel 33

Serial line drivers

If you do not get the sign on message, your transmit word might not be working correctly. You
can check that you can transmit a character up the serial line, by appending code for emitting
a character up the serial line, onto the end of the initialisation word INIT-SER. Therefore a
character can be transmitted and seen early in the initialisation sequence. By default all MPE
code assumes that the serial line uses 8 data bits, no parity, 1 stop bit. A three wire link (TX,
RX, GND) is all that is required.

Memory map definition

If the memory map for the ROM definition is wrong. The target may not sign-on at all. If the
definition of the RAM memory map is wrong, the target may sign-on but may display ‘garbage’.

Target board

• Is the serial line connected?

• Has your target board got power?

• Flash/RAM plugged in correctly?

• Are jumpers set correctly?

• Is it still in download mode?

EPROM/Flash emulator/programmer

Check to see if your emulator is emulating an EPROM/Flash that your target board is expecting.
If you have the wrong type set, your target will not sign on.

Testing the Forth - an example

Once the Forth has signed-on, you need to test that it iss working properly. Type WORDS, this
will display all the Forth words available. If this works then type in:� �
: FORTH-TEST \ -- ; A quick test for forth

." HELLO"

;

FORTH-TEST
 	
This should display:� �
HELLO
 	
followed by the ok prompt.

6.9 Cross-compiling an application

Once your Forth is working on your target board, you will now want to compile your application
code.

34 Forth 7 Cross Compiler

6.9.1 Modifying the control file

Once new code has been written, you can add it to the control file. Near the bottom of the
control file, there is a list of commands in the form:

INCLUDE <name>

To compile your application files you add them to the end of the list, although normally before
the line that reads similar to:

INCLUDE ...\LIBRARY

6.9.2 Running your application

To compile the application you need to:

• run the cross-compiler

• download to the Flash/EPROM emulator/programmer

• apply power and reset the target

The target board signs-on. You can now test your application.

6.10 Generating a turnkey application

Once you have written your application, you will want to make it start when the target board
is reset. This is known as a turnkey or autostarting application.

6.10.1 Using MAKE-TURNKEY

To make an application turnkey, use the directive MAKE-TURNKEY in the form:

MAKE-TURNKEY <name>

where <name> is the name of the word to run at startup. The word <name> must be defined
before using this directive. The example generates a simple turnkey application when cross-
compiled. If you require the use of serial communications, the multitasker, the heap, or leds,
you must initialise them in your application. To initialise the serial communications use the
word INIT-SER. To initialise the multitasker use INIT-MULTI. Note that (INIT) must be called
so that initialised data can be copied into RAM etc.

Chapter 6: Generating a target Forth kernel 35

: RUN
 (INIT) \ Init. system (Mandatory!)
 INIT-SER \ Init. the serial line
 INIT-MULTI \ If multitasking
 INIT-HEAP \ If using the heap
 0 \ counter
 BEGIN
 CR “ Hello world!” dup .

Figure 6.2: Example turnkey application

The word COLD in kernel62.fth is the default action.

36 Forth 7 Cross Compiler� �
: COLD \ --

(init) \ start Forth

init-ser \ initialise serial line

console opvec ! \ default i/o channels

console ipvec !

[SIZEOFHEAP] [if]

init-heap \ initialise memory heap manager

[then]

[paged?] [if]

init-pages \ initialise paging

[then]

[tasking?] [if]

init-multi \ initialise multi-tasker

[then]

[romforth?] [if]

relink \ initialise ROM PowerForth

[then]

[defined] WalkColdChain [if]

WalkColdChain \ execute user specified initialisation

[then]

CR .cpu \ sign on

cr .free \ display free space

cr cr ." ok" \ display prompt

s0 @ sp! \ reset data stack

[32bit? 64bit? or] [if] FlushKeys [then] \ flush UART input

quit \ start text interpreter

;

make-turnkey cold \ Default start-up word.
 	
A few items such as UARTs and the multi-tasker are initialised, and then the bulk of the
initialisation is performed in the cold chain. Words with a null stack effect (--) are added to
the cold chain using AtCold. After that, the Forth interpreter is started.

If your application does not use the Forth interpreter, you can write your own version of COLD
based on the original, but containing the endless loop that is your application. If you have
enough Flash and RAM space, we strongly recommend that you keep the Forth interpreter.
With a suitable comms link such as TCP/IP, you can talk to the running Forth from anywhere
in world. This is much cheaper than going on-site to fix a simple configuration problem.

If your application is not interactive, the compiler directive NO-HEADS can be used to reduce the
size of the application. NO-HEADS removes all word headers, whereas INTERNAL and EXTERNAL

can be sprinkled through your code.

6.10.2 Using ATCOLD

AtCold is usually used in the form:

’ foo AtCold

so that foo (--) is executed at start up. The word must have a null stack effect. See the
target manual for details of the implementation. The cold chain is executed by WalkColdChain.

Chapter 6: Generating a target Forth kernel 37

Although AtCold is mostly used to run initialisation routines, it can be used to run an application
word. This is particularly useful if a back-door is provided so that the application word can
drop out into the Forth interpreter. If you have enough RAM and CPU performance, you may
prefer to write the application as a separate task started by by a word run in the cold chain.

’ StartApp AtCold

This way, the Forth interpreter is run in one task, and the application is run in another.

6.11 Umbilical Forth

An Umbilical Forth system has no interpreter on the target, which saves code space. To provide
the usual Forth interactivity during development, the cross compiler provides the text interpreter
and passes execution addresses to a small message handler in the target.

Target source code

Cross compiler & Symbol table

Target emulator

Message passing system (host)

Message passing system (target)

Target executable code

Figure 6.3: Umbilical Forth structure

Generating an Umbilical Forth system is very much the same as generating a stand-alone Forth,
but is different in terms of the kernel files, communication link, and what happens when the
cross-compiler has finished compilation.

An advantage of Umbilical Forth, especially for 8 bit CPUs, is that all the host tools, includ-
ing compiler, assember and disassembler, are available during interactive debugging without
consuming target resources. The disadvantage is that interactive debugging requires the cross
compiler, target source code and the Umbilical link.

See one of the example control files for details of the files that are compiled.

6.11.1 Comms links

Most Umbilical Forth systems use a UART in the same way as a standalone Forth. However,
in an Umbilical Forth some characters are used as triggers. This link is sometimes called the
"cross target link" or XTL. After compiling the serial driver, you just need to tell the Umbilical

38 Forth 7 Cross Compiler

Forth message passer in Common/targend.fth which driver words to use. The example below is
for an LPC932 (an 8051 derivative).

The cross compiler needs 8 data bits, no parity, 1 stop bit. A three wire link (TX, RX, GND)
is all that is required.� �
include drivers\SerLPC932ui \ serial i/o

Synonym wait-byte (serkey) \ Say which XTL drivers to use

Synonym send-byte (seremit)

Synonym Wait-Byte? (serkey?)

Synonym Init-XTL Init-Ser

include Hardware\LPC932\IAP932 \ IAP Flash routines

include %DIRROMCOM%\targend \ message driver
 	
Umbilical Forth is not restricted to a serial line. We have used I2C, SPI and others for various
CPUs. However, whereas in the past these protocols used to be implemented by bit-banging the
PC parallel port, the parallel port is now disappearing from PCs and is being replaced by USB.
In consequence, many silicon manufacturers provide USB widgets for communicating with and
debugging the silicon.

If the serial link is being seriously stubborn, you can display the serial traffic. When serial
debugging is enabled, characters are displayed as hex bytes. Characters transmitted by the PC
are in the form <xy>, and characters received by the PC are shown in the form [ab].� �

+SERIAL-DEBUG \ -- ; enable serial debugging

-SERIAL-DEBUG \ -- ; disable serial debugging

SERIAL-DEBUG? \ -- flag ; true if debugging
 	
Some Umbilical Forth link drivers are specific to various CPU types and families, and are
described in the target specific manuals. Note that there are two parts to the Umbilical system,
the link driver which handles communications during debugging, and the memory driver (see
below) which handles programming of the CPU code space. New drivers can be installed at any
time, and users wishing to write a new driver can contact MPE for further details. MPE is also
available to develop new drivers for you.

• Atmel 89S8252 SPI link Umbilical link and programming

• 8051 SPI access Umbilical link only

• BDM for 9S12 and CPU32 cores such as the 68332 Umbilical link plus RAM and limited
EPROM/Flash drivers

• JTAG and SWD for ARM and Cortex cores Umbilical link plus RAM and Flash drivers.
The Segger J-Link is fully supported by the ARM/Cortex compilers.

• JTAG for MSP430 cores Umbilical link plus RAM and Flash drivers.

Note that for Windows NT upwards or Linux, direct port I/O is a privileged operation. Under
Windows you must install the file NTPORT.EXE file from the COMPILER\XTRA directory
as described in the installation section of the manual and modify your control file to include the
NT-ACCESS-PORTS directive.

Chapter 6: Generating a target Forth kernel 39

6.11.2 Serial line configuration

The cross compiler needs 8 data bits, no parity, 1 stop bit. A three wire link (TX, RX, GND)
is all that is required. The serial line is usually defined near the end of the control file.� �
umbilical? [if] \ in devlopment mode

make-turnkey run-umbilical \ cold start to Umbilical Forth

C" COM1:" console-speed serial \ define link driver

c" dtr=off rts=off" set-control \ define link state

umbilical-forth \ switch to interactive mode

[else]

make-turnkey cold \ cold start to application

finis \ done with cross compiler

[then]
 	
The words serial and set-control merely save data for when the umbilical link is actually
opened.

: serial \ port$ baud --

Use in the form

c" COM1" #9600 SERIAL

to define the port being used and the baud rate.

: ser-control \ control$ --

Use in the form:

c" dtr=off rts=off" ser-control

to define any additional configuration.

The formats of the device and control strings are operating system specific.

Windows

Under Windows, the control string has the same form as in the MODE command. Type mode
/? in a DOS box for the gory details.� �
MODE COMx

BAUD=b PARITY=p DATA=d STOP=s

to=on|off xon=on|off odsr=on|off

octs=on|off dtr=on|off|hs

rts=on|off|hs|tg idsr=on|off
 	
COMx and BAUD are set by the configuration of SERIAL. If you need to use a COM port whose
number is greater than 9, as is common for USB ports, use the form:

c" \\.\COM14" #115200 SERIAL

By default, the control string is set to:

parity=n data=8 stop=1 dtr=on rts=on

40 Forth 7 Cross Compiler

Mac OS X

The serial ports used to be of the form /dev/ttyS0, but USB serial ports will be seen with two
options, e.g.� �
/dev/cu.usbserial-FTABCDEF

/dev/tty.usbserial-FTABCDEF
 	
Use the /dev/cu.xxxx form. The "cu" stands for "calling unit" when we initiate the call. The
/dev/ttyxxx devices are for modems that require the DCD line. You can see the available devices
by opening a Terminal and typing:

ls /dev/cu*

The control string defaults to:

no parity 8 data 1 stop 1 dtr 1 rts

The full set is� �
no|even|odd parity 7|8 data 1|2 stop

1|0 dtr 1|0 rts

Unix|DOS
 	
Linux

The (real) serial ports used to be of the form /dev/ttyS0. When using USB serial devices, the
name used varies according to your distribution. The most common names appear to be:

/dev/ttyUSBx

/dev/ttyACMx

USB serial ports are discussed in more detail at the end of this chapter.

The control string defaults to:

no parity 8 data 1 stop 1 dtr 1 rts

The full set is� �
no|even|odd parity 7|8 data 1|2 stop

1|0 dtr 1|0 rts

Unix|DOS
 	
6.11.3 Memory drivers

The target Flash has to be programmed with the message-passing Umbilical Forth kernel. For
many CPUs this can be done using a serial bootloader, most of which accept Intel Hex or
Motorola S-record files. For full interactive development, the compiler needs a way to program

Chapter 6: Generating a target Forth kernel 41

new code into the target. Increasingly this is done using In-System Programming (ISP) facilities
provided by the chip, or by using the manufacturer’s debug hardware.

The memory driver architecture of Forth 7 is open. You can use existing drivers as a model. If
you need custom memory drivers, MPE can help you.

Once the Umbilical Forth kernel has been programmed and is running, interactive development
can start.

6.11.4 Downloading to Flash

Once the kernel and application have been compiled into the target, you can start interactive
debugging. There are a few lines at the end of the control file that configure this.� �
umbilical? [if] \ in devlopment mode

make-turnkey run-umbilical \ cold start to Umbilical Forth

C" COM1:" console-speed serial \ define link driver

c" dtr=off rts=off" set-control \ define link state

umbilical-forth \ switch to interactive mode

[else]

make-turnkey cold \ cold start to application

finis \ done with cross compiler

[then]
 	
The words serial and set-control merely save data for when the umbilical link is actually
opened.

When umbilical-forth is run, the compiler will prompt you to power up and reset the target.
Until you respond to this prompt, the link is not active. The image files have been saved to disk,
so you can use an external download tool, e.g. one from the silicon manufacturer, to program
the Flash.

The compiler will ask you if you want to download memory sections to the target. The only one
you usually need to download will be the CDATA section(s).

When the compiler issues the download prompt, the link is not active. At this stage, the image
files have been saved to disk, so you can use a separate download tool, e.g. one from the silicon
manufacturer, to perform the download. If you do this, just answer ’N’ to the download questions
after you have performed the download. Some compilers contain integration with debug tools
so that you can answer ’Y’ to the download question. See the target-specific manual for details.

The Tools directory will contain CPU or chip-specific download tools whenever we have written
them or the owner permits free distribution of them. You can add a short cut by adding an
external tool to AIDE.

Once the binary has been downloaded to the target you may have to reset the target board
again.

42 Forth 7 Cross Compiler

6.11.5 Using In-Application-Programming (IAP)

Some processors allow you to program the internal Flash yourself. Examples of these are the
NXP LPC9xx (8051 core) and LPC2xxx (ARM7 core) families. Umbilical Forth can use these
facilities for updating the flash.

To use these, you must provide the words C!F, W!F and L!F (32 bit targets only). These behave
like the normal Forth store words, but use the IAP Flash routines if the target address is in the
Flash. Your code is responsible for managing sector erase and any required buffering.

When coding the fash routines, you must consider the impact of Flash sector sizes and how
much RAM is needed for sector buffering.

6.11.6 Interactive debugging

Once the source code has been compiled and downloaded to the target you can reset the target
board. Follow the instructions given by the cross-compiler.

After resetting the target, you will see a message displaying information such as the version
number, copyright details etc. The cross-compiler itself displays this message, so the target is
not necessarily up and working. To test the target board, you need to execute a target definition.
If there is not already a target definition, type:� �
: FORTH-TEST \ -- ; A quick test

." HELLO"

;

FORTH-TEST
 	
This should display:� �
HELLO
 	
followed by the T-OK prompt.

If you have not written the Flash drivers yet and your CPU supports execution from RAM, you
should find a section of unused RAM and set the dictionary pointer to that location.

<addr> CORG

6.11.7 Problems, problems

Most of the problems involved in getting an Umbilical Forth to work come from initialisation
problems. By default, the word executed at power up is RUN-UMBILICAL, which only executes
INIT-SER. CPUs with complex peripherals, e.g. ARMs often require more to be done than just
this. The cross compiler sets the port to raw mode, 8 data bits, no parity, 1 stop bit, DTR and
CTS set. A three wire link (TX, RX, GND) is all that is required.

Proper testing of the serial/XTL link saves time. Find the word run-umbilical in Com-
mon\Targend.fth. Just before the word message-passer, insert the following code:

Chapter 6: Generating a target Forth kernel 43� �
begin

[char] A send-byte \ can use your word directly

again
 	
Download this to the target, and use a serial terminal rather than the interactive Forth. When
the target is reset, there should be stream of ’A’s on the terminal. Your EMIT word is working.
To test your version of KEY, replace the code above:� �

begin

wait-byte send-byte

again
 	
Every time you press a key in the terminal, you should see its echo on the terminal. Your version
of KEY is working.

Especially if you are reusing code from the standalone model, you may find that the code relies
on variables being initialised at power up. In this case, your control file must set the equate
init-idata? to non-zero.

1 equ init-idata? \ true if IDATA to be initialised

At target runtime, you must execute INIT-IDATA to perform the copy from Flash to RAM.

Again when reusing code from the standalone model, you may find that the word AtCold is
used to add a word to the start up chain. You can either add the ColdChain mechanism to your
Umbilical target system, or you can explicitly add these words to your start up code. If you
take the second option, you will find that the compiler stops and warns you every time. If you
provide an INTERPRETER version of AtCold (see example below) the warnings will be suppressed.

The following example is taken from a control file for an LPC2106 ARM implementation.� �
1 equ init-idata? \ true if IDATA to be initialised

...

interpreter

: AtCold \ xt --

drop

;

target

...

: runUmb \ --

\ *G Starts Umbilical Forth with additional initialisation.

init-idata initVIC run-umbilical

;

...

make-turnkey runUmb \ cold start to Umbilical Forth
 	

44 Forth 7 Cross Compiler

6.12 Serial port problems

After many decades of using serial devices, one would expect operating systems to deal with
them easily. If only it was true. USB serial devices can be problematic.

6.12.1 Windows USB serial devices

When you plug in a USB serial adapter, Windows often fails to tell you which COM port it has
become. You find this out using the Device Manager, usually from Control Panel -> System ->
Device Manager, then Ports. From a console you can use:

start devmgmt.msc

When you plug in or remove an adapter, the display will change. If installation fails, you can
use View -> Show hidden devices to show unconnected devices and then update or remove the
drivers. From a console use:

set devmgr_show_nonpresent_devices=1

start devmgmt.msc

6.12.2 Windows terminal emulators

HyperTerm is much derided by geeks. It’s very old, and does not appear to have been updated
for use with USB devices. Commonly recommended free alternatives are TeraTerm and PuTTY.
If we only need a single terminal, we use PowerTerm within AIDE.

6.12.3 Mac OS X USB serial devices

When using USB serial devices, the name used varies according to the function. The names are:

/dev/tty.usb??????

/dev/cu.usb?????

You can list them at a Terminal prompt with

ls /dev/tty*

ls /dev/cu*

The /dev/tty* devices are for modems waiting for a call into the OS X machine. It is assumed
that the DCD line is active. Hence these are of little use for the three wire connections (RX,
TX, Gnd) typically used to connect to embedded systems.

The /dev/cu* devices are much better suited for connecting out (calling up) to other systems.

Mac OS X terminal emulators

The ones listed here are just ones recommended by others.

screen - on every Mac. For hardcore Unix buffs.

screen /dev/cu.usbserial 19200

http://hints.macworld.com/article.php?story=20061109133825654

Chapter 6: Generating a target Forth kernel 45

Coolterm - GUI app.

http://freeware.the-meiers.org

goSerial - GUI app.

http://www.furrysoft.de/?page=goserial

The most widely used equivalent to Windows’ HyperTerm appears to be minicom. It isn’t
pretty, but it works and is easy to use.

http://pbxbook.com/other/mac-tty.html#minicom

6.12.4 Linux USB serial devices

When using USB serial devices, the name used varies according to your distribution. The most
common names appear to be:

/dev/ttyUSBx

/dev/ttyACMx

There are several methods of finding USB serial ports. The simplest seems to be to unplug the
device, then reconnect it, then type the following incantation:

dmesg | grep tty

where you must have root access. On many systems, e.g. Ubuntu

sudo dmesg | grep tty

is required. The last few lines should then tell you which USB serial port, e.g. /dev/ttyUSB0

was selected for your device. If the last tells you that the device is now disconnected, it is
probably because of the "brltty bug". Unless you need the Braille TTY access, remove the
package brltty. Repeat:

sudo dmesg | grep tty

to check that device remains connected. Some forums suggest that you may also need to create
the /dev/ttyUSBx entries. Do this with:

sudo mknod /dev/ttyUSB0 c 188 0

sudo mknod /dev/ttyUSB1 c 188 1

sudo mknod /dev/ttyUSB2 c 188 2

Linux serial terminal emulators

The most widely used Linux equivalent to Windows’ HyperTerm appears to be minicom. It
isn’t pretty, but it works and is easy to use. There are plenty of others, including GUI ones, but
minicom is the one we come back to as it is available for nearly all distributions.

47

7 Optimising the target Forth

Once you have a target Forth running, you may want to either reduce the size of your image or
increase the execution speed of the code. This chapter describes those features of Forth 7 that
help you with this aim.

7.1 Reducing the image size

During development you may need to reduce the size of your target image. For example, your
application may have grown too large for your Flash space. Reducing Flash requirements is
usually done by:

• removing headers

• factoring your code

• removing excess code

• using equates instead of constants

• removing forward references

• using Umbilical Forth

7.2 Removing headers

If you have already been using Umbilical Forth, the compiler will not have generated any heads,
so this discussion only applies to a standalone target.

To reduce the size of the compiled image, you can instruct the compiler to compile all or some
of the code without heads. For each word defined, the cross-compiler generates a header in
the target image. A header is the name of the word stored as a counted string and is used
when the target is used interactively. Therefore, by removing the heads of words you reduce the
interactivity of your system.

7.2.1 Removing all headers

To remove the heads from all the code, use NO-HEADS. The compiler will produce code that will
be greatly reduced in size, but cannot be used interactively.

7.2.2 Selectively removing headers

To select a number of words to be made headerless, use INTERNAL and EXTERNAL. INTERNAL

instructs the compiler to stop generating headers, and EXTERNAL instructs it to generate headers
again.

7.3 Factoring your code

Procedures calls in Forth are very cheap, so code reuse of small fragments of code does not have
a great performance penalty. By reusing code, your target image size can be greatly reduced.
The smaller are the procedures you use, the more easily they can be reused. In addition, small
procedures are easy to test. Consequently code written with small procedures is normally more
reliable.

48 Forth 7 Cross Compiler

Factoring code is something of an art form, but is well worth the effort. A client reports
that MPE’s PowerNet TCP/IP stack is half the size of other commercial offerings. When that
translates into one million dollars, the savings are apparent. Note also that having to maintain
half the number of lines of code is a long-term saving for any product, regardless of volume.

7.4 Removing excess code

During development, debug and test code is often inserted into the sources. This code is easily
left in and forgotten about. By stripping out this excess code you can gain more space in the
Flash. The easiest way to do this is to use the XREF system (not available in the Forth Stamp
versions).

The XREF system is turned on by using the word +XREFS in the control file. All code after +XREFS
will be cross referenced. Use XREFS to turn cross referencing off. Use XREF-UNUSED to find which
words are unused. The XREF words:� �
XREF <name>

XREF-UNUSED

XREF-ALL
 	
are always available in Umbilical Forth. For standalone Forths, you can put the compiler into
interactive mode by including INTERACTIVE before FINIS in your control file, or you can include
the XREF words in your source code.

You can also reduce the size of the code by using the library file mechanism (see Controlling
compilation) which enables the compiler to include only those words that have already been
referenced.

7.5 Using equates instead of constants

An equate is a constant that just resides within the cross-compiler. It cannot be referenced
when interactively debugging your target system. The actual value of the equate is compiled
‘in-line’ as a literal instead of referring to a constant. You can often save some space on the
target board for each constant defined but sacrifice some interactivity. This works if you don’t
refer to an equate many times, as several instances of an equate compiled in-line may use more
bytes than the memory required to store a constant and reference it.

The VFX code generators nearly all treat constants as literals. The trade-off between equates
and constants is very architecture dependent.

An equate is defined in a similar way to a constant:

xxxx EQU <name>

where xxxx is the value of the equate and <name> is its name. An equate is used in the same
way as a constant, by stating its name.

Chapter 7: Optimising the target Forth 49� �
$0100 EQU ADDRESS

ADDRESS CELL + EQU ADDRESS2

: SOME-WORD \ --

... ADDRESS ...

... ADDRESS2 ...

;
 	
7.6 Removing forward references

When a forward reference is compiled on a subroutine threaded target, the largest available
target range branch has to be used. For most CPUs, shorter instructions are available if the
destination address is already known. Removing forward references reduces the number of
unknown destinations and reduces code size.

The compiler log tells you how many forward references were made. You can find out which
words were forward referenced using the directive .FORWARDS (--).

7.7 Using Umbilical Forth

If you require a compact target Forth but without the inconvenience of removing target headers,
you can use Umbilical Forth. Umbilical Forth gives you a very compact interactive Forth. The
Umbilical Forth kernel is about 2.5k bytes for 16 bit targets, and 4k bytes for 32 bit targets.
The kernel does not contain all the words in the standalone target, so you may have to write a
few words (or copy them from the standalone kernel) to get your code to compile.

7.8 Speeding up your code

The normal way to increase the speed of your code is to code strategic words in assembler. Good
candidates for coding are inner loops and words containing a lot of stack manipulation (DUP,
SWAP etc.). The VFX optimisers significantly reduce the need to code in assembler. However,
some impact can be made by replacing very small definitions by compiler directives. Every time
the VFX optimiser has to generate a call, it has to generate what we call a canonical Forth
stack. If you replace a short definition by a compiler directive, the optimiser does not call it,
but compiles it as if from source code. Thus:� �
: foo \ addr -- addr

3 cells + @

;
 	
can be replaced by� �
compiler

: foo \ addr -- addr

3 cells + @

;

target
 	
On many target CPUs, especially those with good indexed addressing modes, the resulting code

50 Forth 7 Cross Compiler

is shorter. Compiler directives allow you to retain the code modularity of short Forth definitions
without the calling overhead. In a standalone Forth, a COMPILER word also has no head.

51

8 Generic I/O

8.1 About Generic I/O

Generic I/O allows the Forth words KEY, KEY?, EMIT, TYPE and CR to use any I/O device. The
user variables IPVEC and OPVEC each contain the address of a structure for a device. This
structure contains a list of Forth words used for the words above.

By using different devices for input and output, input can be from a serial channel and output
can be to an LCD screen. The selection can be changed at any time by the application. Because
IPVEC and OPVEC are USER variables, i.e. are specific to each task, different tasks may have
different I/O devices.

The generic I/O structure consists of any array of five (six for Harvard targets) XTs. The XTs
are for the words that perform the following basic functions.� �
cell KEY action

cell KEY? Action

cell EMIT action

cell TYPE action

cell CR action

cell TYPEC action; Harvard CPUs (e.g. 8051) only
 	
The CR and TYPE actions are provided to ease implementations of devices such as LCD output
in which CR does not naturally correspond to 13 EMIT 10 EMIT, and for which TYPE will be much
faster than repeated EMITs. The output functions update the USER variable OUT before calling
the action.

8.2 Creating a new device� �
cdata \ this table goes in CODE space

create SerConsole \ -- addr ; OUT managed by upper driver

’ (serkey) , \ -- char ; schedule, receive char

’ (serkey?) , \ -- flag ; check receive char

’ (seremit) , \ -- char ; display char

’ (sertype) , \ caddr len -- ; display string

’ (sercr) , \ -- ; display new line

’ (sertypec) , \ caddr len -- ; display CDATA

\ for Harvard targets only
 	
Generic I/O handles all use of OUT for the output functions. OUT is manipulated before the
action is performed so that special cases can update OUT themselves.

When the multi-tasker is used, a multi-tasking version of (SERKEY) must be used. Conditional
compilation can be used in the primitive words. The equate Tasking? is set non-zero when
multi-tasking is in use.

52 Forth 7 Cross Compiler

8.3 Selecting a device

To select serial input, the phrase

SerConsole IpVec !

is all that is needed. Similarly, to select serial output

SerConsole OpVec !

is all that is needed.

53

9 Multitasker

The multitasker supplied with Forth 7 greatly simplifies complex tasks by allowing you to break
them down into manageable chunks. This chapter leads you through:

• initialising the multitasker

• writing a task

• communicating between tasks

• handling events

The multitasker is in the file MULTIxx.FTH in the CPU directory, where the ’xx’ denotes the
processor type. Where the CPU (e.g. 8051) uses a different code base for single chip and
expanded operation, the files will be called MULTIxxINT.FTH and MULTIxxEXT.FTH. There
are minor differences between the implementations on different CPU cores. A full glossary can
be found in the CPU specific target code manual.

To compile the multitasker, most control files need the equate Tasking? to be set non-zero, e.g.

1 equ Tasking?

9.1 Initialising the multitasker

The multitasker needs to be initialised before use.

9.1.1 Selecting the multi-tasker

When set non-zero, the equate TASKING? in the control file causes the multitasker to be loaded.
Note that TASKING? also affects other words such as KEY and MS so that calls to the scheduler
are included by words that can block for a significant amount of time, for example when waiting
for human input.

xxxx EQU TASKING?

The configuration of the multitasker is controlled by other equates which control what facilities
are compiled.� �
6 cells equ tcb-size \ for internal consistency check

0 equ event-handler? \ true for event handler

0 equ message-handler? \ true for message handler

0 equ semaphores? \ true for semaphores
 	
9.1.2 Starting the multitasker

Before use the multitasker must be initialised by the word INIT-MULTI, which initialises the
initial task MAIN, and enables the multi-tasker. To start the multitasker, use MULTI, which
starts the scheduler so new tasks can be added.

9.1.3 Stopping the multitasker

To stop the multitasker, use SINGLE.

54 Forth 7 Cross Compiler

9.2 Writing a task

Tasks are very straightforward to write, but the way tasks are scheduled needs to be understood.

9.2.1 Using the scheduler

The multitasker is software scheduled, sometimes called cooperative. This means that each task
relinquishes control back to the scheduler when it is ready to do so. This is different from a
pre-emptive scheduler where the scheduler interrupts a task. The word PAUSE (--) is supplied
so that a task can relinquish control to the scheduler. PAUSE passes control back to the scheduler,
which executes all the other tasks once, and then returns back to the calling task.

9.2.2 An example task

An example task is shown below. The task is an endless loop with the word WAIT (u --)

embedded in it. When WAIT is executed, the scheduler reschedules to the next task. The
scheduler will not run this task until it has run all other tasks 5000 times. Each time the task is
executed, it will emit a beep. Most implementations also include the word MS (ms --) which
waits for the given number of milliseconds, and gives a more repeatable delay time.� �
: WAIT \ n -- ; wait for n iterations

0 ?DO PAUSE LOOP

;

5000 value RATE1 \ -- ; delay counter

: ACT1ON1 \ -- ; An example task

decimal \ might need it somewhere

console opvec ! \ output device

console ipvec ! \ input device

BEGIN \ Start an endless loop

7 EMIT \ Produce a beep

RATE1 WAIT \ Reschedule so many times

AGAIN \ Go round again

;

TASK TASK1 \ name task, get space for it
 	
The task name created by TASK is used as the task identifier by all words that control tasks.

9.2.3 Task dependent variables

An area of RAM is set aside for each task. This memory contains USER variables which contain
task specific data. For example, BASE (holds the current number base) is normally a USER

variable as it can vary from task to task.

A USER variable is defined in the form:

n USER <name>

where n is the nth byte in the user area. From version 6.1 onwards, the word +USER can be used
to add a USER variable of a given size:

<size> +USER <name>

Chapter 9: Multitasker 55

The use of +USER avoids any need to know the offset at which the variable starts. The kernel
code relies on +USER and new application code should use +USER in preference to USER.

A USER variable is used in the same way as a normal variable. By stating its name, its address
is placed on the stack. Data can then be fetched using @ and stored by ! in the usual way.

Local variables are held on the return stack, and so are intrinsically task safe. If heavy use
of local variables is made, the required return stack depth can be large. If you suspect this of
causing problems such as random crashes, increase the value of the EQUate for the return stack
size in the control file.

9.2.4 Controlling tasks

Tasks can be controlled in the following ways:

• activated

• suspended for a number of schedules

• halted

• restarted after its been halted

You can also stop the current task.

To start a task, use the word INITIATE:

’ <action> <task> INITIATE

where ’ <action> gives the xt of the word to be run and <task> is the task identifier.

To temporarily stop a task, use HALT, which is used in the form:

<task> HALT

where <task> is the task to be stopped. To restart a stopped task, use RESTART, used in the
form:

<task> RESTART

where <task> is the task to restart.

To stop the current task (i.e. stop itself) use STOP (--), used in the form:

STOP

9.3 Message handling

A useful feature of the multitasker is the ability to send and receive messages between tasks.
We use a simple mailbox approach in which each message is a single cell of data whose meaning
is entirely up to you. We have seen all the following uses of messages:

• Message numbers

• Pointer to a complex structure

• Xt of Forth word to execute

56 Forth 7 Cross Compiler

To send a message to another task, use SEND-MESSAGE, used in the form:

message task SEND-MESSAGE

where message is a single-cell message and task is the identifier of the task to send the message
to. The message can be data, an address or any other type of information but its meaning must
be known to the receiving task.

To receive a message, use GET-MESSAGE, which suspends the task until a message arrives. When
a message is received the recieving task is restarted and the data is returned.

9.4 Event handling

Events are analogous to interrupts. Whereas interrupts happen on hardware signals, events
happen under software control. Events are used to separate fast real-time processing from
slower handling. For example an analogue-to-digital converter (ADC) may be run from a timer
interrupt. To minimise time spent in the interrupt service routine (ISR), the ISR just puts the
data in a buffer or queue, and sets the event flag in a task that processes the data. The next
time round the scheduler loop in PAUSE, the task will execute the event handler before resuming
its previous action.

An event handler is a normal Forth word with no overall stack effect (--). An event handler
is associated to a task so that when the event is triggered, the task is activated. Therefore, an
event cab used as a trigger for a task.

9.4.1 Initialising an event

Events are initialised in a similar way to tasks. They are assigned in the form,

ASSIGN EVENT1 task TO-EVENT

or

’ EVENT1 task TO-EVENT

where EVENT1 is your event handler and task is the associated task identifier.

9.4.2 Triggering an event

There are two ways of triggering an event.

SET-EVENT (task --) sets an event flag in a task. Once the event flag is set, the tasker will
execute the event before it switches to the task. The task is also activated.

A bit can be set in a task’s status word that indicates to the multitasker that an event has taken
place. This method can be used to trigger an event from a hardware interrupt. Refer to ‘The
multitasker internals’ later in the chapter for details of the status byte.

This mechanism is convenient in interrupt code written in assembler to signal that an interrupt
has taken place, and that consequent processing should start.

Chapter 9: Multitasker 57

9.4.3 Clearing an event

To acknowledge that an event handler has been run, use CLEAR-EVENT.

9.5 Critical sections and interrupts

Sometimes the multitasker has to be inhibited so that other tasks are not run during critical
operations. These would otherwise cause the scheduler to operate, e.g. KEY. This achieved using
the words SINGLE and MULTI.

SINGLE -- ; inhibit tasker

MULTI -- ; restart tasker

When communication between a task and an interrupt routine is required, or if the scheduler
has been converted to be pre-emptive rather than cooperative, great care must be taken. Flags
may be tested by the main task, interrupted and modified by the interrupt routine, and then
written back by the main routine, causing the last interrupt change to be ignored. Six words
are provided for interrupt management, and these are also documented in the interrupt chapter.
There is considerable variation in CPU architectures, and if the words described here are not
present, alternatives will be documented in the CPU specific code manual.

code DI \ --

Globally disable interrupts.

code EI \ --

Globally enable interrupts.

code [I \ -- ; R: -- x

Save the current interrupt status on the return stack and globally disable interrupts. This word
can only be used inside a colon definition and [I and I] must be used in matching pairs in the
same word ... unless you really know what you are doing.
Restore the interrupt status from the return stack. This word can only be used inside a colon
definition and [I and I] must be used in matching pairs.

If the target CPU has a maskable high priority interrupt, e.g. An NMI or ARM’s FIQ, there
may be additional words. See the CPU specific target code manual for the details.

code SAVE-INT \ -- x

OBSOLETE: Return current interrupt state, and disable interrupts. This word is provided for
compatibility with previous versions of the compiler and target code, but shorter and faster code
is likely to be produced using [I and I]. This word will disappear in a future Forth 7.x release.

code RESTORE-INT \ x --

OBSOLETE: Restore the interrupt state returned by SAVE-INT. This word is provided for
compatibility with previous versions of the compiler and target code, but shorter and faster
code is likely to be produced using [I and I]. This word will disappear in a future Forth 7.x
release.

9.6 Semaphores

A SEMAPHORE is a structure used for signalling between tasks and for resource allocation. It has
two fields, a counter (cell) and an owner (taskid, cell). The counter field is used as a count of
the number of times the resource may be used, and the owner field contains the task identifier

58 Forth 7 Cross Compiler

of the task that last gained access. This field can be used for priority arbitration and deadlock
detection/arbitration. An example compiler definition of SEMAPHORE is below.� �
Interpreter

: semaphore \ -- ; -- addr [child]

idata create

1 , 0 , \ count and arbiter fields

;

target
 	
This design of a semaphore can be used either to lock a resource such as a comms channel or
disc drive during access by one task, or as a counted semaphore controlling access to a buffer.
In the second case the counter field contains the number of times the resource can be used.

Semaphores are accessed using SIGNAL and REQUEST. SIGNAL increments the counter field of a
semaphore, indicating either that another item has been allocated to the resource, or that it is
available for use again, 0 indicating in use by a task.� �
: signal \ sem --

\ increment counter, so making it available

[i \ must be interrupt safe

1 over +! cell+ off \ inc. counter, release

i]

;
 	
REQUEST waits until the counter field of a semaphore is non-zero, and then decrements the
counter field by one. This allows the semaphore to be used as a counted semaphore. For
example a character buffer may be used where the semaphore counter shows the number of
available characters. Alternatively the semaphore may be used purely to share resources. The
semaphore is initialised to one. The first task to REQUEST it gains access, and all other tasks
must wait until the accessing task SIGNALs that it has finished with the resource.� �
: request \ sem --

\ Get access to semaphore

begin

[i dup @ 0= \ n.b test and set

while

i] pause \ operations must be

repeat \ non-interruptible

-1 over +! \ got it, decrement counter

self swap cell+ ! \ mark resource as mine

i] \ re-enable interrupts

;
 	
9.7 Multitasker internals

A multitasker tries to simulate many processors with just one. The multitasker works by rapidly

Chapter 9: Multitasker 59

switching between tasks. On each task switch it saves the current state of the processor, and
restores the state that the next task needs.

The Forth multitasker is software scheduled. This means that each task relinquishes control to
the scheduler, which then switches to the next task. In this way less processor state information
needs to be saved than for a preemptive scheduler.

9.7.1 Scheduler data structure

The Forth multitasker creates a task control block for each task. The task control block (TCB)
is a data structure that contains information relevant to a task (see below). The status cell,
TCBST, contains information on the execution of the task and its event (see below). The control
block occupies the start of the USER area.

Field Contents Size Offset

TCB.LINK Pointer to next nexts TCB Cell 0

TCB.SSP Saved task stack pointer Cell 2/4

TCB.STATUS Task status Cell 4/8

TCB.MSRC Task ID of last message sent to this task Cell 6/12

TCB.MESG Message data Cell 8/16

TCB.EVENT XT of word run by tasks event handler Cell 10/20

Table 9.1: Task control block

Bit When set When Reset
0 Task is running Task is halted
1 Message pending but not read No messages
2 Event triggered No events
3 Event handler has been run No events (reset by user)
4.. User defined User defined

Table 9.2: Task status cell

9.8 Example Task

The following example is a simple demonstration of the multitasker. Its role is to display a hash
(#) every so often, leaving the foreground Forth interpreter running. To use the multitasker
you must cross-compile the file MULTI*.FTH into your target. The sample control files have
an EQUate Tasking? which, when non-zero, will compile the multitasker.

60 Forth 7 Cross Compiler

9.8.1 Defining the task

The following code defines a simple task called TASK1. It displays a # every 1000 schedules.� �
VARIABLE DELAY \ time delay between #’s

1000 DELAY ! \ initialise time delay

: ACTION1 \ -- ; task to display #’s

CONSOLE OPVEC ! \ select output device

[CHAR] $ EMIT \ Display a dollar ($)

BEGIN \ Start continuous loop

[CHAR] # EMIT \ Display a hash (#)

DELAY @ 0 \ Reschedule Delay times

?DO PAUSE LOOP

AGAIN \ Back to the start ...

;
 	
9.8.2 Initialising the multitasker

Before any tasks can be activated, the multitasker must be initialised. This is done with the
following code:

INIT-MULTI

The word INIT-MULTI initialises all the multitasker’s data structures and starts multitasking.
This word need only be executed once in a multitasking system.

9.8.3 Activating the task

To activate (run) the example task, type:

TASK TASK1

ASSIGN ACTION1 TASK1 INITIATE

This will set ACTION1 as the action of task TASK1. Immediately you will see a dollar and a hash
($#) displayed. If you press <return> a few times, you see that the Forth interpreter is still
running. After a few seconds another hash will appear. This is the example task working in
the background. The repetition rate of the has symbol will depend on the performance of your
CPU.

9.8.4 Controlling the task

The example task can be controlled in several ways:

• the rate of generation of ashes can be changed

• it can be halted

• once halted it can be restarted

• it can be started from scratch

Changing the variable DELAY will change the rate of production of hashes. Try:

2000 DELAY !

Chapter 9: Multitasker 61

This changes the number of schedules that the example tasks makes between displaying hashes
to 2000. The rate of displaying hashes halves.

Typing the task name followed by HALT halts the task:

TASK1 HALT

You notice that the hashes are not displayed any more.

The task is restarted by the word RESTART. Type the task name followed by RESTART:

TASK1 RESTART

The hashes are displayed again.

To restart the task from scratch, just kill it and start it again:

TASK1 TERMINATE

ASSIGN ACTION1 TASK1 INITIATE

The dollar and the hash ($#) are displayed, followed by hashes (#).

9.9 Troubleshooting tasks

The most common fault is a stack fault. Since a task is an endless loop it is simple to put stack
depth checks in the main loop. A simple task with checking is shown below.� �
: TASK-ACTION

sp@ s0 ! \ store stack base

<initialisation>

BEGIN

<body of task>

depth \ non-zero if anything there

IF

s0 @ sp!

<warn programmer!>

ENDIF

AGAIN

;
 	
When using Umbilical Forth, the multitasker may need to be disabled by SINGLE before compiling
new definitions interactively. If the multitasker is not disabled, the CPU is never put to sleep,
and the act of compiling code through debug hardware may/will crash the running target.

9.10 Single chip tasking

Some of the smaller 8 bit CPUs, e.g. 8051, have a different memory model when used in single
chip mode rather than with external RAM. For these and for CPUs with very limited internal
RAM, there is a small version of the multi-tasker. event handling, messages, or semaphores.
Details of this multitasker are provided in the CPU specific compiler manual.

62 Forth 7 Cross Compiler

9.11 Glossary

This glossary contains details of the major words in the multi-tasking system. Other words
exist, but are only used as fractions of the words below.

: CLR-EVENT-RUN \ --

Clears the event run flag for the current task. This is bit 4 in the task status byte.

code DI \ --

Globally disable interrupts.

code EI \ --

Globally enable interrupts

: EVENT? \ -- t/f

Returns true if the event-triggered bit has been set in the current task’s status byte.

: GET-MESSAGE \ -- message task

Waits for a message and returns the message and the sending task.

: HALT \ task --

Halts the task whose number is given. Do not halt task MAIN. Halting a task prevents it
responding to messages or events.

: INIT-MULTI \ --

Initialises the multi-tasker and starts the multi-tasker. Just include this word in COLD to kick
the multi-tasker into action.

: INITIATE \ xt task --

Initialises and starts the given task . Task MAIN is Forth itself and was activated when Forth
started. Note that INITIATE causes the task to start from the very beginning. If the task was
halted, and execution should resume where it left off, use RESTART instead.

: MS \ ms -

Waits for at least ms milliseconds, the exact time depending on the granularity of the timer.

: MSG? \ task -- t/f

Returns true if the task is holding a message, and is therefore not free to receive another one.

: MULTI \ --

Turns the multi-tasker on,.

code PAUSE \ --

Waits for one iteration of the scheduler.

: RESTART \ task --

Restarts a task that was halted by HALT. Unlike INITATE, the task resumes where it left off.

code RESTORE-INT \ sr --

Obsolete: Restore the interrupt enable state previously saved by SAVE-INT.

code SAVE-INT \ -- sr

Obsolete: Saves the current state of the interrupt enable, and disables interrupts. See
RESTORE-INT.

: SELF \ -- task

Returns the task identifier for the current task. Useful with MSG? in particular to determine
whether or not a message has been received by the task.

: SEND-MESSAGE \ message task --

Chapter 9: Multitasker 63

Sends a message to the given task. The message address can be used on its own, or as a pointer
to an extended message.

: SINGLE \ --

Turns off the multi-tasker.

: STATUS \ -- n

Returns the task status cell of the current task but with the running bit (bit 0) masked off. If
this value is non-zero, the task has been awakened for a reason other than for normal running.

: STOP \ --

Halt the current task until it is RESTARTed or TERMINATEd.

: TERMINATE \ task

Remove a task from the list of active tasks and reschedule.

: TO-EVENT \ cfa task --

Sets the XT of a Forth word as the action to run when the task’s event trigger is set.

ASSIGN <word> <task> TO-EVENT

: WAIT-EVENT/MSG \ --

The current task is suspended until it receives a message or an event trigger. The words MSG?
and EVENT? can be used to determine whether a message or an event trigger terminated the
wait. Note that if an event trigger is received, the event handler will have been called, and the
event run flag (bit 4 in the status byte) will be set.

code [I \ R: -- x

Save the current interrupt status on the return stack and disable interrupts. This word can only
be used inside a colon definition and [I and I] must be used in matching pairs in the same
word.

code I] \ R: ccr --

Restore the interrupt status from the return stack. This word can only be used inside a colon
definition and [I and I] must be used in matching pairs in the same word..

9.12 Converting to the v6.x multitasker

If your application was written before the new multitasker was released in the Forth 6 series,
you are recommended to change to the new version.

9.12.1 Configuration

The new multitasker is configured by a different set of equates. The equate #TASKS was used
to build a table of TCBs at compile time. This equate is replaced by TASKING? which only
indicates that the multitasker is required. 1 equ tasking? \ true if multitasker needed 6 cells
equ tcb-size \ internal consistency check 0 equ event-handler? \ true for event handler 0 equ
message-handler? \ true for message handler 0 equ semaphores? \ true for semaphores

9.12.2 Task identifiers and TASK

The v6.x multitasker uses a linked list of tasks. Tasks are created by the defining word TASK

<name> which allocates the resources needed. Execution of <name> returns the base address of
the tasks USER area, and the task control information occupies the start of the user area. This
address is referred to as a task identifier.

64 Forth 7 Cross Compiler

9.12.3 WAIT and MS

The word WAIT is not present in the v6.1 multitasker. It was mostly used to produce timed
waits, and this function is now provided by the new word MS, which is supplied by the code
in DELAYS.FTH and TIMEBASE.FTH or another timing system. MS waits for the specified
number of milliseconds.

MS \ ms --

9.12.4 INITIATE and ACTIVATE

The word ACTIVATE has been replaced by INITIATE, and DEACTIVATE has been replaced by
TERMINATE.

INITIATE \ xt task --

TERMINATE \ task --

9.12.5 ?EVENT

The word ?EVENT was hardly ever used in application code, and its action is now built into
PAUSE.

65

10 Periodic Timers

10.1 Introduction

This code provides a timer system that allows many timers The Forth words in the user accessible
group documented below are compatible with the code supplied with MPE’s embedded targets,
and with VFX Forth. This code assumes the presence of a global value TICKS which holds a
time value incremented in milliseconds. The timebase is approximate. Granularity and jitter
are affected by the timer ISR and the time taken by your own code to execute. By default, the
ticker is set to run every 1..100 ms, usually defined by the EQUate TICK-MS. The source code is
in the the file TIMEBASE.FTH.

The file DELAYS.FTH should be compiled after TIMEBASE.FTH. The code to start and stop
the timebase system is part of the ticker interrupt system, which is compiled after DELAYS.FTH.
If you need to write a new ticker interrupt handler, there will be examples to start from in the
<CPU>\DRIVERS folder. The required compilation order is this:� �
multitasker (optional)

TIMEBASE.FTH (optional)

DELAYS.FTH

Ticker driver
 	
The timer chain is built using a buffer area, and two chain pointers. Each timer is linked into
either the free timer chain, or into the active timer chain.

All time periods are in milliseconds. Note that on a 32 bit system, these time periods must
be less than 2^31-1 milliseconds, say 596 hours or 24 days, whereas if the code is on a 16 bit
system, time periods must be less than 2^15-1 milliseconds, say 32 seconds.

10.2 The basics of timers

These basic words are defined for applications to use the timer system. Other words are detailed
elswhere in this chapter.� �
START-TIMERS \ -- ; must do this first

STOP-TIMERS \ -- ; closes timers

AFTER \ xt period -- timerid/0 ; runs xt once after period ms

EVERY \ xt period -- timerid/0 ; runs xt every period ms

TSTOP \ timerid -- ; stops the timer

MS \ period -- ; wait for period ms
 	
After the timers have been started, actions can be added. The example below starts a timer
which puts a character on the debug console every two seconds. Note that when using generic
I/O, the output and input devices MUST be specified.

66 Forth 7 Cross Compiler� �
start-timers

: t \ -- ; will run every 2 seconds

console opvec !

[char] * emit

;

’ t 2 seconds every \ returns timer id, use TSTOP to stop it
 	
The item on stack is a timer handle, use TSTOP to halt this timer.

AFTER is very useful for creating timeouts, such as required to determine if something has
happened in time. AFTER returns a timerid. If the action you are protecting happens in time,
just use TSTOP when the action happens, and the timer will never trigger. If the action does not
happen, the timer event will be triggered.

10.3 Considerations when using timers

All timers are executed within a single interrupt, and so all timer action words share a common
user area. This has some impact on timer action words. Since you do not know in which order
timer action words are executed, you must set up any USER variables such as BASE that you use,
either directly or indirectly.

The interrupt that handles all the timers does not set IPVEC and OPVEC to a default value. If you
use I/O words such as EMIT and TYPE within a timer action, you MUST set IPVEC and OPVEC

before using the I/O. For the sake of other timer action routines that may still be using default
I/O, it is polite to save and restore IPVEC and OPVEC in your timer action words.

Do not worry about calling TSTOP with a timerid that has already been executed and removed
from the active timer chain; if TSTOP cannot find the timer, it will ignore the request.

Under some conditions, the execution time of all the timer routines may be longer than the
requested period of the timer. In addition, the timer interrupt may be subject to jitter.

10.4 Implementation issues

The following discussion is relevant if you want to modify this code. Functionally equivalent code
is provided with MPE’s VFX Forth systems. In the Windows environment, timer interrupts are
implemented by callbacks and critical sections.

By default, the word DO-TIMERS is run from within the periodic timer interrupt. If interrupts
are not re-enabled after resetting the timer interrupt, you may have latency issues if a number
of timers is used, or if one of the timer routines takes a considerable time, or if you want to use
KEY or EMIT in the timer action. In this case, it would be better to set up the timer routine to
RESTART a task which calls DO-TIMERS,e.g.

Chapter 10: Periodic Timers 67� �
: TIMER-TASK \ --

<initialise>

BEGIN

DO-TIMERS STOP

AGAIN

;
 	
Such a strategy also permits you to use a fast interrupt, say 1 ms, for the clock, and to trigger the
TIMER-TASK every say 32 ms. Another strategy is to leave DO-TIMERS in the interrupt routine
and for each timer action be to put a different character into a circular buffer (and to restart a
task).� �
16 cqueue: timerQ

: TimerAction \ --

<initialise>

begin

case timerQ cqueue>

[char] A of ... endof

[char] B of ... endof

...

endcase

again

;
 	
Providing that the queue is big enough, no events are lost and event order is preserved. However,
an action that takes 20 seconds may/will delay all subsequent actions.

The best handler structure depends heavily on your application design. You need to consider
things like

• Required interrupt latency

• Required handler latency

• Must handlers use comms?

• Have I enough RAM for a task?

As with all software design, it’s usually a trade-off. The default "all in the interrupt" design is
good enough for many users. For all the rest, adding a task is a good first step.

10.5 Timebase glossary
0 value ticks \ -- addr ; holds timer count

Get current clock value in milliseconds.

#8 constant #timers \ -- n ; maximum number of timers

A constant used at compile time to set the maximum number of timers required. Each timer
requires RAM as defined by the ITIMER structure.

: do-timers \ --

Process all the timers in the chain

: after \ xt period -- timerid/0 ; xt is executed once,

68 Forth 7 Cross Compiler

Starts a timer that executes once after the given period. A timer ID is returned if the timer
could be started, otherwise 0 is returned.

: every \ xt period -- timerid/0 ; periodically

Starts a timer that executes every given period. A timer ID is returned if the timer could be
started, otherwise 0 is returned. The returned timerID can be used by TSTOP to stop the timer.

: tstop \ timerid --

Removes the given timer from the active list.

69

11 Time Delays

The code in Common\Delays.fth allows you to handle time delays specified in milliseconds.
If you use the multitasker or Common\Timebase.fth, Common\Delays.fth should be compiled
after them.

: pause \ -- ; multitasker hook

Allows the sytem multitasker to get a look in. If the multitasker has not been compiled, PAUSE
is defined as a compiler NOOP.

0 value ticks \ -- n

Return current clock value in milliseconds. This value can treated as a 32 bit unsigned value
that will wrap when it overflows. Compiled if not already defined.

: later \ n -- n’

Generates the timebase value for termination in n millseconds time.

: expired \ n -- flag ; true if timed out

Flag is returned true if the timebase value n has timed out. N.B. Calls PAUSE.

: timedout? \ n -- flag ; true if timed out

Flag is returned true if the timebase value n has timed out. TIMEDOUT? does not call PAUSE,
so it can be used in interrupt handlers. In particular, TIMEDOUT? should be used rather than
EXPIRED inside timer action words to reduce timer jitter.

: ms \ n --

Waits for n milliseconds. Uses PAUSE through EXPIRED.

71

12 Heap Memory Allocation

12.1 Heap definition

The heap is allocated from a predefined section of memory. Facilities are provided for user
expansion of the heap to mass storage, although the current code makes no provision for page
management. When the heap is initialised, a free block and an end block are created. The end
block is of zero size, and is used only as a marker. The address returned by ALLOCATE and
RESIZE is the address of the first data byte, as is the address consumed by FREE.

The heap MUST be initialised before use by calling INIT-HEAP. Heap access words return
status=0 for success, and status<>0 for error.

Two equates are required during compilation to allocate a contiguous block of RAM for the
heap.� �

STARTOFHEAP is the start address of the heap

SIZEOFHEAP is the size of the RAM for the heap
 	
There are two versions of this code provided. HEAP32.FTH is provided for 32 bit targets and
is optimised for the VFX code generator. HEAP16.FTH is for 16 bit targets, and is optimised
for code density.

12.1.1 16 bit targets - HEAP16.FTH

The heap is controlled using two cells per block. This information is used in three parts:� �
cell = #bytes, number of bytes in this block

cell = flag, split between a four bit and a 12 bit field
 	
The top four bits of the flag are used to indicate the block type, where $E = End, $F = Free,
$A = Allocated. Others may be added later for type management.

The bottom 12 bits of the flag are currently unused, and should be set to zero.

12.1.2 32 bit targets - HEAP32.FTH

The heap is controlled using a single cell per block. This information is used in two parts:� �
bits 31..24: $EE - End, $FF - Free, $AA - Allocated

bits 23..0: 24 bits for number of data bytes in block.
 	
A consequence of this is that the maximum block size that can be allocated is 16Mb-1 bytes.

If you use a pre-emptive scheduler or need to use the heap routines inside interrupt routines,

72 Forth 7 Cross Compiler

you must define suitable heap lock and unlock routines and set the equate LOCKHEAP? to
non-zero.

LockHeap=0

no heap locking

LockHeap=1

heap locking by turning off interrupts

LockHeap=2

heap locking by semaphore.

12.2 Gotchas

The heap routines must be protected if they are to be used both in normal code and in interrupts.
In this case the code must be modified to be interrupt safe, but this may have a significant impact
on interrupt latency. Examples may be found in HEAP32.FTH.

12.3 Glossary

The glossary does not include all the factors used in the code. If you are interested in the
implementation, please read the sources.

: allocate \ #bytes -- addr status

Attempt to allocate some memory from the heap. Walk the heap looking for a single big enough
block. If the block is larger than than required split it into two blocks. Allocate part or all of
the free block. Status=0 for success.

: free \ address -- status

Attempt to free a heap block. Status=0 for success. If addr is zero, no action is taken and zero
is returned.

: resize \ addr1 size -- addr2 ior

Try to resize an allocated block to a new size, allowing for alignment. If the existing memory
block is not big enough, the data will be copied to a new block, and the returned addr2 will not
be the same as addr1. Status=0 for success.

: init-heap \ -- ; initialise the heap structures

The heap is initialised by creating 2 blocks. Block 1 starts at the beginning and is marked as a
free block. Block 2 Is a null marker at the end of heap space.

12.4 Diagnostics
: size \ addr -- currsize | -1

Return the size of an allocated block or -1 if there’s an error.

: .heap \ -- ; display heap info

Walk the heap displaying block information.

: heapok? \ -- t/f ; check heap

Walk the heap and return TRUE if the heap is "well".

73

13 Software Floating Point

13.1 Introduction

Although most embedded applications only require integer arithmetic, some do require floating-
point. Therefore software floating-point is supplied with the cross-compiler and the target
Forth. The target floating point wordset is not fully ANS compliant, but satisfies the needs of
embedded systems without undue complexity. The Forth data stack and the floating point stack
are the same. The floating point data storage format is not IEEE format, but is optimised for
performance on small controllers. If you need a separate floating point stack or IEEE double
format storage, please contact MPE. Any variations in the implementation will be documented
in the target specific section of the manual.

The cross-compiler has a more limited floating-point support than the target. Some words are
avaliable during compilation of colon definitions, but not while interpreting.

13.2 Source code

The source code is in two sets of files, one for 32 bit Forth targets, the other for 16 bit targets.
The files are:� �

Common\sfp32hi 32 bit primitives

Common\sfp32com 32 bit high level code

Common\sfp16hi 16 bit primitives

Common\sfp16com 16 bit high level code
 	
These files use no assembler definitions. Some targets have code versions of the primitives, and
these will be found in the CPU specific code directory. A significant increase in performance
can be obtained by using the code files.

13.3 Entering floating-point numbers

Floating point number entry is enabled by REALS and disabled by INTEGERS.

Floating-point numbers of the form 0.1234e1 are required (see FNUMBER?) during interpretation
and compilation of source code. Floating-point numbers are compiled as literal numbers when in
a colon definition (compiling) and placed on the stack when outside a definition (interpreting).

The more flexible word >FLOAT accepts numbers in two forms, 1.234 and 0.1234e1. Both words
are documented later in this chapter. See also the section on Gotchas later in this chapter.

Note also that MPE Forths use ’,’ as the double number indicator - it makes life much easier
for Europeans.

13.4 The form of floating-point numbers

A floating-point number is placed on the Forth data stack. In the Forth literature, this is

74 Forth 7 Cross Compiler

referred to as a combined floating point and data stack. For 32 bit targets, a floating point
number consists of two 32-bit numbers, one for the mantissa and one for the exponent. For 16
bit targets, it consists of a 32-bit double mantissa and a single 16-bit exponent. The mantissa
is normalised. The exponent is on the top of the stack. Note that for 16 bit targets, number
conversion is affected by the cross-compiler directives HOST-MATH and TARGET-MATH. HOST-MATH
leaves double numbers and floats in 32-bit form, whereas TARGET-MATH leaves them in 16-bit
form.

13.5 Creating and using variables

To create a variable, use FVARIABLE. FVARIABLE works in the same way as VARIABLE. For
example, to create a floating-point variable called VAR1 you code:

FVARIABLE VAR1

When VAR1 is used, it returns the address of the floating-point number.

Two words are used to access floating-point variables, F@ and F!. These are analogous to @ and
!.

13.6 Creating constants

To create a floating-point constant, use FCONSTANT, which is analogous to CONSTANT. For exam-
ple, to generate a floating-point constant called CON1 with a value of 1.234, you enter:

1.234e0 FCONSTANT CON1

When CON1 is executed, it returns 1.234 on the Forth stack.

13.7 Using the supplied words

The supplied words split into several groups:

• sines, cosines and tangents

• arc sines, cosines and tangents

• arithmetic functions

• logarithms

• powers

• displaying floating-point numbers

• inputting floating-point numbers

The following functions only exist as target words so you cannot use them in calculations in
your source code when outside a colon definition.

13.7.1 Calculating sines, cosines and tangents

To calculate sine, cosine and tangent, use FSIN, FCOS and FTAN respectively. Angles are expressed
in radians.

Chapter 13: Software Floating Point 75

13.7.2 Calculating arc sines, cosines and tangents

To calculate arc sine, cosine and tangent, use FASIN, FACOS

and FATAN respectively. They return an angle in radians.

13.7.3 Calculating logarithms

Two words are supplied to calculate logarithms, FLOG and FLN. FLOG calculates a logarithm to
base 10 (decimal). FLN calculates a logarithm to base e. Both take a floating-point number in
the range from 0 to Einf.

13.7.4 Calculating powers

Three power functions are supplied:

FE^X F10^X X^Y

13.8 Degrees or radians

The angular measurement used in the trigonometric functions are in radians. To convert between
degrees and radians use RAD>DEG or DEG>RAD. RAD>DEG converts an angle from radians to degrees.
DEG>RAD converts an angle from degrees to radians.

13.9 Displaying floating-point numbers

Two words are available for displaying floating-point numbers, F. and E.. The word F. takes
a floating-point number from the stack and displays it in the form xxxx.xxxxx or x.xxxxxEyy
depending on the size of the number. The word E. displays the number in the latter form.

13.10 Number formats, ANS and Forth200x

The ANS Forth standard specifies that floating point numbers must be entered in the form
1.234e5 and must contain a point ’.’ and ’e’ or ’E’, and that double integers are terminated by
a point ’.’.

This situation prevents the use of the standard conversion words in international applications
because of the interchangable use of the ’.’ and ’,’ characters in numbers. Because of this,
the cross-compiler’s host VFX Forth uses two four-byte arrays, FP-CHAR and DP-CHAR, to hold
the characters used as the floating point and double integer indicator characters. By default,
FP-CHAR is initialised to ’.’ and DP-CHAR is initialised to to ’,’ and ’.’. For strict ANS compliance,
you should set them as follows before CROSS-COMPILE is run.

76 Forth 7 Cross Compiler� �
\ ANS standard setting

char . dp-char !

char . fp-char !

: ans-floats \ -- ; for strict ANS compliance

[char] . dp-char !

[char] . fp-char !

;

\ MPE defaults

char , dp-char !

char . dp-char 1+ c!

char . fp-char !

: mpe-floats \ -- ; for existing and most legacy code

[char] , dp-char !

[char] . dp-char 1+ c!

[char] . fp-char !

;

\ Legacy defaults, including ProForth

char , dp-char !

char . fp-char !

: legacy-floats \ -- ; for legacy code

[char] , dp-char !

[char] . fp-char !

;
 	
You can of course set these arrays to hold any values which suit your application’s language
and locale. Note that integer conversion is always attempted before floating point conversion.
This means that if the FP-CHAR and DP-CHAR arrays contain the same character, floating point
numbers must contain ’e’ or ’E’. If the arrays are all different, a number containing the FP-CHAR
will be successfully converted as a floating point number, even if it does not contain ’e’ or ’E’.

13.11 Glossary

13.11.1 Error Strings/Codes

These strings describe the various FP maths errors. The string address is

CREATE FP_FLN_ERR \ -- addr

," Invalid argument to FLN/FLOG"

CREATE FP_FSQR_ERR \ -- addr

," Square root of negative no.!"

CREATE FP_FE^X_ERR \ -- addr

," Overflow in FE^X"

CREATE FP_F10^X_ERR \ -- addr

," Overflow in f10^x"

CREATE FP_EX^Y_ERR \ -- addr

," Result of FX^Y is complex"

CREATE FP_TRIG_ERR \ -- addr

," Overflow in trig. function"

Chapter 13: Software Floating Point 77

13.11.2 Separators

Before July 2010, the floating point separator, ’.’, was fixed. To ease internationalisation, it is
now variable.

variable fp-char \ -- addr

Holds up to four character(s) to be treated as floating point indicators. Set to ’.’ for ANS
compatibility. Note that this should be accessed as a one to four byte array. The first character
is used as the point character for output.

0 equ SepArray? \ -- flag

If the equate is non-zero, fp-char is treated as a four byte array, otherwise as a one byte array.
This is a flag for future expansion.

: isSep? \ char addr -- flag

Return true if char is one of the four bytes at addr. If less than than four bytes are needed, a
zero byte acts as a terminator. Used when SepArray? is true.

: isSep? c@ = ;

A compiler macro used when SepArray? is false.

13.11.3 Basic stack and memory operators

: F! \ r addr --

Stores r at addr

: F@ \ addr -- r

Fetches r from addr.

: F, \ r --

Lays a real number into the dictionary, reserving 8 bytes.

: FDUP \ r -- r r

Floating point equivalent of DUP.

: FOVER \ r1 r2 -- r1 r2 r1

Floating point equivalent of OVER.

: FROT \ r1 r2 r3 -- r2 r3 r1

Floating point equivalent of ROT.

: FPICK \ fu..f0 u -- fu..f0 fu

Floating point equivalent of PICK.

: FROLL \ f1 f2 f3 -- f2 f3 f1

Floating point equivalent of ROLL.

: FSWAP \ r1 r2 -- r2 r1

Floating point equivalent of SWAP.

: FDROP \ r --

Floating point equivalent of DROP.

: FNIP \ r1 r2 -- r2

Floating point equivalent of NIP.

13.11.4 Floating point defining words

: FVARIABLE \ "<spaces>name" -- ; Run: -- f-addr

Use in the form: FVARIABLE <name> to create a variable that will hold a floating point number.

78 Forth 7 Cross Compiler

: FCONSTANT \ r "<spaces>name" -- ; Run: -- r

Use in the form: <float> FCONSTANT <name> to create a constant that returns a floating point
number.

: FARRAY \ "<spaces>name" fn-1..f0 n -- ; Run: i -- ri

Create an initialised array of floating point numbers. Use in the form:

fn-1 .. f1 f0 n FARRAY <name>

to create an array of n floating point numbers. When the array name is executed, the index i is
used to return the address of the i’th 0 zero-based element in the array. For example:

4e0 3e0 2e0 1e0 0e0 5 FARRAY TEST

will set up an array of five elements. Note that the rightmost float (0e0) is element 0. Then i

TEST will return the *\{i}th element. If you create this array in IDATA, restore CDATA afterwards.

: FBUFF \ u "name" -- ; i -- addr

Creates a buffer of u floats in the current memory section. The child action is to return the
address of the ith element (zero-based).

10 fbuff foo

Creates an buffer for ten float elements in.

3 foo

Returns the address of element 3 in the buffer.

The default section is CDATA, and we recommend that you leave it that way! To create a ten
element array in UDATA space, you can use:� �
udata

10 fbuff MyFloats

cdata
 	
13.11.5 Type conversions

: NORM \ n exp -- f

Normalise a single integer and a single exponent to produce a floating point number. INTER-
NAL.

: DNORM \ d exp -- fn ; normalise a 64 bit double

Normalise a double integer and a single exponent to produce a floating point number. INTER-
NAL.

: FSIGN \ fn -- |fn| flag ; true if negative

Return the absolute value of fn and a flag which is true if fn is negative.

: S>F \ n -- fn

Converts a single integer to a float.

: F>S \ fn -- n

Converts a float to a single integer. Note that F>S truncates the number towards zero according
to the ANS specification. If |fn| is greater than maxint, +/-maxint is returned.

: D>F \ d -- fn

Chapter 13: Software Floating Point 79

Converts a double integer to a float.

: F>D \ fn -- d

Converts a float to a double integer. Note that F>D truncates the number towards zero according
to the ANS specification. If |fn| is greater than dmaxint, +/-dmaxint is returned.

: FINT \ f1 -- f2

Chop the number towards zero to produce a floating point representation of an integer.

13.11.6 Arithmetic

: FNEGATE \ r1 -- r2

Floating point negate.

: ?FNEGATE \ fn n -- fn|-fn

If n is negative, negate fn.

: FABS \ fn -- |fn|

Floating point absolute.

: F* \ r1 r2 -- r3

Floating point multiply.

: F/ \ r1 r2 -- r3

Floating point divide.

: F+ \ r1 r2 -- r3

Floating point addition.

: F- \ r1 r2 -- r3

Floating point subtraction.

: FSEPARATE \ f1 f2 -- f3 f4

Leave the signed integer quotient f4 and remainder f3 when f1 is divided by f2. The remainder
has the same sign as the dividend.

: FFRAC \ f1 f2 -- f3

Leave the fractional remainder from the division f1/f2. The remainder takes the sign of the
dividend.

13.11.7 Relational operators

: F0< \ f1 -- flag

Floating point 0<.

: F0> \ f1 -- flag

Floating point 0>.

: F0= \ f1 -- flag

Floating point 0=.

: F0<> \ f1 -- flag

Floating point 0<>.

: F= \ f1 f2 -- flag

Floating point =.

: F< \ r1 r2 -- flag

Floating point <.

: F> \ f1 f2 -- flag

80 Forth 7 Cross Compiler

Floating point >.

: FMAX \ r1 r2 -- r1|r2

Floating point MAX.

: FMIN \ r1 r2 -- r1|r2

Floating point MIN.

13.11.8 Rounding
f# 1.0 fconstant %ONE

Floating point 1.0.

: FLOOR \ r1 -- r2

Floored round towards -infinity.

: FROUND \ r1 -- r2

Round the number to nearest or even.

13.11.9 Miscellaneous
: FALIGNED \ addr -- f-addr

Aligns the address to accept an 8-byte float.

: FALIGN \ --

Aligns the dictionary to accept an 8-byte float.

: FDEPTH \ -- +n

Returns the number of floats on the stack.

: FLOAT+ \ f-addr1 -- f-addr2

Increments addr by 8, the size of a float.

: FLOATS \ n1 -- n2

Returns n2, the size of n1 floats.

13.11.10 Floating point output
1 s>f 10 s>f f/ fconstant %.1

Floating point 0.1.

1 s>f fconstant %1

Floating point 1.0.

10 s>f fconstant %10

Floating point 10.0.

1250000000 34 fconstant %10^10

Floating point 10^10.

1844674407 -33 fconstant %10^-10

Floating point 10^-10.

F# 1.0E256 FCONSTANT %10^256

Floating point 10^256.

F# 1.0E-1 FCONSTANT %10E-1

Floating point 10^-1.

F# 1.0E-10 FCONSTANT %10E-10

Floating point 10^-10.

Chapter 13: Software Floating Point 81

F# 1.0E-256 FCONSTANT %10^-256

Floating point 10^-256.

16 FARRAY POWERS-OF-10E1

An array of 16 powers of ten starting at 10^0 in steps of 1.

17 FARRAY POWERS-OF-10E16

An array of 17 powers of ten starting at 10^0 in steps of 16.

16 FARRAY POWERS-OF-10E-1

An array of 16 powers of ten starting at 10^0 in steps of -1.

17 FARRAY POWERS-OF-10E-16

An array of 17 powers of ten starting at 10^0 in steps of -16.

: RAISE_POWER \ mant exp -- mant’ exp’

Raise the power in preparation for number formatting.

: SINK_FRACTION \ mant exp -- mant’ exp’

Reduce the power in preparation for number formatting.

variable places 8 places ! \ -- addr

Number of digits output after the decimal point.

: ROUND \ f1 -- f2

Rounds least significant eight bits to 0 if higher 2 bits are all 0s or all 1s.

: ?10PWR \ exp[2] -- exp[2] exp[10]

Generate the power of ten corresponding to the power of two. INTERNAL.

: SIGFIGS \ fn n -- d dec_exponent

From fn, generate a double number corresponding to n significant digits and a decimal exponent.
INTERNAL.

: op-prepare \ fn -- d exp sign

From fn, generate a double number corresponding to n significant digits, a decimal exponent
and a sign indicator (nz=negative). INTERNAL.

: .EXP \ exp --

Display the exponent. INTERNAL.

: N# \ d n -- d’

Convert n digits. INTERNAL.

: .FPsign \ flag --

If flag is non-zero, generate a ’-’ otherwise a space. INTERNAL.

: .FPsep \ --

Issue the FP separator, usually ’.’. INTERNAL.

: E. \ n exp --

Print the f.p. number on the stack in exponential form, x.xxxxxEyy.

: REPRESENT \ r c-addr u -- n flag1 flag2

Assume that the floating number is of the form +/-0.xxxxEyy. Place the significand xxxxx at
c-addr with a maximum of u digits. Return n the signed integer version of yy. Return flag1 true
if f is negative, and return flag2 true if the results are valid. In this implementation all errors
are handled by exceptions, and so flag2 is always true.

: F. \ f --

82 Forth 7 Cross Compiler

Print the f.p. number in free format, xxxx.yyyy, if possible. Otherwise display using the
x.xxxxEyy format.

13.11.11 Floating point input

Note that number conversion takes place in PAD.

: FLITERAL \ Comp: r -- ; Run: -- r

Compiles a float as a literal into the current definition. At execution time, a float is returned. For
example, [%PI F2*] FLITERAL will compile 2PI as a floating point literal. Note that FLITERAL
is immediate.

: CONVERT-EXP \ c-addr --

If the character at c-addr is ’D’ convert it to ’E’. INTERNAL.

: CONVERT-FPCHAR \ c-addr --

Convert the f.p. char ’.’ to the double char ’,’ for conversion. INTERNAL.

: ALL-BLANKS? \ c-addr len -- flag

Return true if string is all blanks (spaces). INTERNAL.

: FCHECK \ -- am lm ae le e-flag .-flag

Check the input string at PAD, returning the separated mantissa and exponent flags. The e-flag
is returned true if the string contained an exponent indicator ’E’ and the .-flag is returned true
if a ’.’ was found. INTERNAL.

: MNUM \ c-addr u -- d 2 | 0

Convert the mantissa string to a double number and 2. If conversion fails, just return 0. IN-
TERNAL.

: ENUM \ c-addr u -- n 1 | 0 ; str as above

Convert the exponent string to a single number and 1. If conversion fails, just return 0. IN-
TERNAL.

: *10^X \ float dec_exponent -- float’

Generate float’ = float *10^dec exp. INTERNAL.

: FIXEXP \ dmant exp -- mant’ exp’

Convert a double integer mantissa and a single integer exponent into a floating point number.
INTERNAL.

: FNUMBER? \ addr -- 0/.../mant exp 2

Behaves like the integer version of NUMBER? except that if the number is in F.P. format and BASE

is decimal, a floating point conversion is attempted. If conversion is successful, the floating point
number is left on the float stack and the result code is 2. This word only accepts words with an
’E’ as a floating point indicator, e.g, 1.2345e0. If BASE is not decimal all numbers are treated
as integers. The integer prefixes ’#’,’$’,’0x’ etc. are recognised and cause integer conversion to
be used.

: >FLOAT \ c-addr u -- r true | false

Try to convert the string at c-addr/u to a floating point number. If conversion is successful, flag
is returned true, and a floating number is returned on the float stack, otherwise just flag=0 is
returned. This word accepts several forms, e.g. 1.2345e0, 1.2345, 12345 and converts them to a
float. Note that double numbers (containing a ’,’) cannot be converted. Number conversion is
decimal only, regardless of the current BASE.

: (F#) \ addr -- fn 2 | 0

Chapter 13: Software Floating Point 83

The primitive for F# and F#IN below.

: F#IN \ -- fn 2 | 0

Attempts to convert a token from the input stream to a floating-point number. Numbers in
integer format will be converted to floating-point. An indicator (0 or 2/3) is returned in the
same way as an indicator is returned by FNUMBER?.

: F# \ -- [f] ; or compiles it [state smart]

If interpreting, takes text from the input stream and, if possible converts it to a f.p. number
on the stack. Numbers in integer format will be converted to floating-point. If compiling, the
converted number is compiled.

: REALS \ -- ; allow f.p input

Switch NUMBER? to permit floating point input using FNUMBER?. This action can be reversed by
INTEGERS. Both REALS and INTEGERS are in the FORTH vocabulary.

: INTEGERS \ -- ; no f.p input

Switch NUMBER? to restore integer only input.

13.11.12 Trigonmetric functions

N.B. All angles are in radians.

: DEG>RAD \ n1 -- n2

Convert degrees to radians.

: RAD>DEG \ n1 -- n2

convert radians to degrees.

: FSQR \ f1 -- f2 ; FSQR by Heron’s formula

F2=sqrt(f1) by Heron’s formula.

: FSIN \ f1 -- f2

f2=sin(f1).

: FCOS \ f1 -- f2

f2=cos(f1).

: FTAN \ f1 -- f2

f2=tan(f1).

: FASIN \ f1 -- f2

f2=arcsin(f1).

: FACOS \ f1 -- f2

f2=arccos(f1).

: FATAN \ f1 -- f2

f2=arctan(f1).

13.11.13 Power and logarithmic functions

: FLN \ f1 -- f2

Take the logarithm of f1 to base e and return the result.

: FLOG \ f1 -- f2

Take the logarithm of f1 to base 10 and return the result.

: FE^X \ f1 -- f2

f2=e^f1.

84 Forth 7 Cross Compiler

: F10^X \ f1 -- f2

f2=10^f1

: FX^N \ x-real n-integer -- fx^n

fx^n=x^n where x is a float and n is an integer.

: FX^Y \ x-real y-real -- fn

fn=X^Y where Y and Y are both floats.

13.11.14 IEEE format conversion

: FP>IEEE \ fp -- ieee32

Convert native FP value to IEEE 32 bit format.

: IEEE>FP \ ieee32 -- fp

Convert IEEE 32 bit float to native format.

13.12 Gotchas

The ANS and Forth200x specifications define the format of floating point numbers during text
interpretation as:� �
Convertible string := <significand><exponent>

<significand> := [<sign>]<digits>[.<digits0>]

<exponent> := E[<sign>]<digits0>

<sign> := { + | - }

<digits> := <digit><digits0>

<digits0> := <digit>*

<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }
 	
This format is handled by the word FNUMBER?. The word >FLOAT accepts a more relaxed format.� �
Convertible string := <significand>[<exponent>]

<significand> := [<sign>]{<digits>[.<digits0>] | .<digits> }

<exponent> := <marker><digits0>

<marker> := {<e-form> | <sign-form>}

<e-form> := <e-char>[<sign-form>]

<sign-form> := { + | - }

<e-char> := { D | d | E | e }
 	
This restriction makes it difficult to use the text interpreter during program execution as it
requires floating point numbers to contain ’D’ or ’E’ indicators, which is not profane practice.
A quick kluge to fix this is to change FNUMBER? as below.� �
Replace:

fcheck drop if \ valid f.p. number?

with:

fcheck or if \ valid f.p. number?
 	

Chapter 13: Software Floating Point 85

Note that this change can/will cause problems if number base is not DECIMAL.

13.13 Changes from v6.0 to v6.1

Renamed DINT to F>D for consistency. F>D is the ANS word. The original F>D was just a
synonym. Similarly SINT was renamed to F>S.

The word FLOATS that enabled floating point number conversion has been renamed to REALS to
avoid a name conflict with the ANS word of the same name.

The F-PACK vocabulary has been removed as no one liked it, and it could be considered contrary
to the ANS Forth specification. If you wish to retain the F-PACK vocabulary, add the following
lines before and after the compilation of the floating point code:� �

only forth definitions \ *** added ***

vocabulary f-pack \ *** added ***

also f-pack definition \ *** added ***

include %CommonDir%\Sfp32Hi \ primitives

include %CommonDir%\Sfp32Com \ common high level code

previous definitions \ *** added ***
 	
The code enabling floating point to work in degrees or radians has been commented out for
ANS compatibility. All trig functions now operate in radians. The commented out code may be
uncommented if you need backward compatibility.

13.13.1 32 bit targets: software floating point

Overhauled 32 bit software floating point and incorporated improvements contributed by Hiden
Analytical. These include more complete special case detection, faster high level code, and more
accurate number input and output.

Removed all use of global variables except PLACES to make the floating point code usable in
interrupt routines and in multitasked systems. If the output routines are to be multitasked,
change the definition of PLACES from:

VARIABLE PLACES 8 PLACES !

to:

CELL +USER PLACES

and remember to initialise PLACES before using the floating point output routines.

Many words that are only useful as factors have been made headerless to save target memory
space.

13.13.2 16 bit targets: software floating point

Note that the 16 bit floating point pack is not re-entrant. If you need to use the floating point

86 Forth 7 Cross Compiler

pack in a multitasking system, you should convert the global variables to USER variables. The
word +USER can be used

<size> +USER <name>

to define a USER variable of a given size (normally a CELL) at the next free offset in the USER
area. Only PLACES will need initialisation.

13.14 High Level primitives

The software floating point pack requires several support primitives. High level versions are
provided in SFP16HI.FTH and SFP32HI.FTH for 16 and 32 bit targets. Some targets have
coded versions in the CPU directory and these will provide much better performance. The
support file should be compiled before the common file.

: <<1 \ n -- n<<1

A compiler synonym for 2* or 1 LSHIFT.

: >>1 \ n -- n>>1

A compiler synonym for u2/ or 1 RSHIFT.

: S-> \ n1 carry-in-flag --- n2 carry-out-flag

Perform a right shift, applying the carry in to the m.s. bit and returning the carry out as 1 or
0.

: <-S \ n1 carry-in-flag --- n2 carry-out-flag

Perform a left shift, applying the carry in to the l.s. bit and returning the carry out as 1 or 0.

: d<<1 \ xd -- xd<<1

One bit double left shift.

: d>>1 \ xd -- xd>>1

One bit double right logical shift.

: D>>N \ d n -- d>>n

N bit double right logical shift.

87

14 ROM PowerForth utilities

Supplied as source in the Common\ROMFORTH directory are utilities to:

• compile source code on your target board from AIDE

• upload a binary image from your target to your PC

• download a binary image to your target from your PC

Note that the target source code supplied with cross compiler versions 6.02 onwards is incom-
patible with code supplied for previous versions of the cross compiler.

These utilities can be used to generate an image in Flash that has all the tools required to
develop an application, or can be used during development to transfer modules to and from
your PC. All the code is designed to be used with the MPE development environment, AIDE.
The code will also work with other compatible terminal emulators.

Users who wish to distribute devices or memory images containing the ROM PowerForth utilities
should contact MPE for details of the OEM licence, which includes documentation on disc of
the Forth kernel and the ROM PowerForth utilities.

14.1 Compiling text files

Source text files can be compiled from the host PC onto the target system. This saves time in
not having to cross-compile and download the entire source if a small modification is made. The
utilities permit text file to be split into pages for better layout when printed.

14.1.1 The required files

To compile text files from your target board, cross-compile the files IODEF.FTH and
TEXTFILE.FTH.

14.1.2 Compiling a specified text file

To compile all or part of a specified text file onto your target, use INCLUDE in the form:

INCLUDE <filename>

This compiles the file <filename> into the target’s dictionary. AIDE’s internal file server must
be enabled (in the console window configuration), and will be triggered.

14.2 Downloading a binary image

A binary image can be downloaded from the target to your host PC. Two utilities are provided:

• Intel hex download

• XMODEM download

For both utilities AIDE or a suitable communications package will be required.

88 Forth 7 Cross Compiler

14.2.1 XMODEM binary image download

Binary images can be downloaded to your PC using the XMODEM protocol. To use this utility
you must cross-compile the file XmodemTxRx.fth (called BIN-DOWN.FTH in some targets),
which provides Xmodem transmit and receive functionality in both 128 byte and 1024 byte block
formats. Reduced versions are available in XmodemTxRx128.fth and MinXmodem.fth. For more
details see the common target code manual.

To download a binary image from the target system to your PC, use BIN-DOWN in the form:

addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytes to down-load starting from
addr. For example,

1200 400 BIN-DOWN

sends the area of memory from 1200 to 1599 to your host PC. AIDE’s internal file server must
be enabled (in the console window configuration), and will be triggered.

14.2.2 Intel hex download

Binary images can be downloaded to your PC using the Intel hex format. To use this utility
you must cross-compile the file INTELHEX.FTH.

To download a binary image from the target system to your PC, use HEX-DOWN in the form:

addr #bytes HEX-DOWN

where addr is the start address and #bytes is the number of bytes to down-load starting from
addr. For example,

1200 400 HEX-DOWN

sends the area of memory from 1200 to 1599 to your host PC. In AIDE, turn on console logging
to receive the file. In other packages this may be referred to as file capture.

14.3 ROM PowerForth

ROM PowerForth can be used to generate a stand-alone Forth system. With these utilities, you
can generate a memory area that contains an interactive Forth with the ability to develop an
application.

Note: A licence is required to distribute open Forth systems. Contact MPE for more details.

With current single-chip processors, the use of ROM PowerForth to generate turnkey applica-
tions has become more difficult, as custom compilation and Flash routines are probably needed.
We are always available for this sort of consultancy!

14.3.1 Hardware requirements

To develop an application using ROM PowerForth, your board requires three memory areas,
one of which:

Chapter 14: ROM PowerForth utilities 89

• Is always Flash or EPROM. This area contains the development kernel.

• Is always RAM. This area is used for variables and all changeable data.

• Is RAM for development and Flash/EPROM for application. This area is used to develop
your application. Therefore, it must be RAM while developing. Once the application
is developed, the application’s image must be saved into battery-backed RAM, Flash or
EPROM. Therefore, this area must have the ability to be alterable but also non-volatile.

14.3.2 Types of board

The type of board that can be used to develop using ROM PowerForth is restricted to:

• three site boards

• two site boards with battery backed RAM

• two site boards with socket converter

Three site boards

The three areas are provided by three memory sockets:

• Flash/EPROM holding development kernel

• RAM which holds the variables and changeable data

• Flash/EPROM or RAM which is selectable by a link on the board

Two site boards with battery backed RAM

The three areas are provided by two sockets:

• EPROM holding the development kernel

• battery-backed RAM which is split into two areas

Two site boards with socket converter

On many boards, there is unused space in the Flash/EPROM as ROM PowerForth occupies less
than 32k bytes of memory. A header board can be made which converts one socket into two. For
example, if the socket normally takes a 64kb Flash/EPROM, a board can be made which has
a 32kb Flash/EPROM with the ROM PowerForth development kernel and 32k bytes of RAM.
To access the RAM, the write line is attached to a suitable point on the main board with a fly
lead. After the application has been developed, the two images are combined back into a single
Flash/EPROM.

14.3.3 Making your application turnkey

Once your application has been developed, it needs to be made turnkey so that it is always
available. The application can be made semi-permanent by compiling into battery-backed RAM
in the RAM/Flash/EPROM area. Alternatively, it can be copied into a Flash/EPROM if the
board allows.

The word SETUP takes the address of the word passed to it and marks this in the
RAM/Flash/EPROM header as the address of the word to be run at power-up. If a value of
zero is passed to SETUP, the interactive Forth kernel will be run at power-up.

For example, the word JOB is to be run at power-up. Therefore you type,

90 Forth 7 Cross Compiler

’ JOB SETUP

The application can be discarded by typing:

0 ROM !

The constant ROM returns the start address of the application RAM area. If the address of this
area is to be changed, the Flash/EPROM must be modified. To do this, the 32-bit value in ROM

must be changed.

14.4 AIDE file server protocols

AIDE’s file server must be enabled for automatic file handling.

Details of the protocols used should be obtained from the source code in the ROMFORTH
directory.

14.5 Glossary
: BIN-DOWN \ addr len --

Transmits a target image in XMODEM format to the host. AIDE can receive this file if the file
server facilities are enabled.

: CLS \ --

Clears the display by sending a trigger character (code 3) to the host.

: HEX-DOWN \ addr len --

Transmits a target image in Intel Hex format to the host. The host can receive this file by
enabling logging/capture.

: INCLUDE \ "<name>" -- ; INCLUDE <name>

Compiles from a specified text file <name> on the host AIDE file server. File loading can be
nested.

91

15 Controlling compilation

The cross compiler is an executable program written in Forth and hosted on VFX Forth for the
operating system. When the compiler starts, it behaves as a normal interactive Forth system
with a number of extensions.

At this point, you can compile additional extensions if you need to. These can include memory
drivers, tools to output the compiled image in a special format, and tools to talk to special
debug hardware. In the vast majority of cases, the compiler already includes what you need.

After adding any extensions, the cross-compiler needs to be told about your target.

The whole process is usually controlled from a master file for your project. We call this the
control file. Control files from MPE usually have a .ctl extension, e.g. project.ctl.

You need to tell the cross-compiler:

• when to start cross-compiling

• which code and data pages to compile into

• whether to align code to even/odd bytes

• whether to enable floating-point

• whether to turn the compiler log on or off

• when to compile portions of code selectively

• when to stop cross compiling

These instructions are normally placed in the control file, before any instructions are compiled.

15.1 Start and Stop compilation

To start cross-compiling, use the word CROSS-COMPILE (--). At this point, the compiler "pulls
down the shutters" and enters cross-compilation mode. Apart from compiler directives that are
interpreted, code after this will be compiled into the target image instead of compiled onto the
cross-compiler.

To mark the end of the cross-compilation phase, use FINIS for a standalone application or
UMBILICAL-FORTH to start debugging an Umbilical Forth system. FINIS is used to finish cross-
compilation completely, whereas UMBILICAL-FORTH is used to finish the batch portion of the
compilation and to start the cross target link ready for interactive testing of an Umbilical Forth
target.

15.2 Defining memory sections and xDATA

Regions of memory, known as sections, are defined in the control file by the SECTION directive.
The cross-compiler treats memory as fitting into one of three types of memory; code, initialised
data, and uninitialised data, and maintains a current section for each type.

92 Forth 7 Cross Compiler

15.2.1 Defining sections

The directive SECTION is used in the form:

start end type SECTION <name>

where start is the start address of the section, end is the last address in the section and type is
one of CDATA, IDATA or UDATA, and <name> is the name of the section. By default, the section will
be saved to disc with the filename <name>.IMG. The compiler automatically gives the filename
<name> an extension .IMG so <name> should not include an extension. <Name> will then become
the current section of that type in use. When a section name is executed, it becomes the current
section of its type.

CDATA is used to define areas of memory that contain code, and the usually end up in Flash/ROM.
IDATA is used to define areas of memory that are initialised at start up. When the cross-compiler
finishes (the FINIS or UMBILICAL-FORTH directives), the used portions of all the IDATA sections
are added to the end of the current CDATA section so that the target startup code can copy them
into RAM. UDATA is used to define areas of memory that will not be initialised.

CDATA sections contain code and any data defined by CDATA during the cross-compilation.

IDATA sections contain any data defined by VARIABLE, VALUE or IDATA during the cross-
compilation.

UDATA sections contain data allocated by RESERVE, BUFFER: or UDATA during the cross-
compilation.

CDATA, IDATA and UDATA control which section type the following words apply to:

, ALIGN ALIGNED ALLOT C, CREATE HERE ORG UNUSED W,

After executing CDATA, IDATA or UDATA, the current section of that type is referenced by these
words. After executing a section name, that section becomes the current one of its type, and
that type is applied.

After defining all the memory sections for your target hardware it is good practice to explicitly
select one of each type of section and to set the default memory type, normally CDATA.

Each section has four pointers:

• Start address

• Last adress

• Data pointer (DP) - current location, grows up from the start.

• Buffer pointer (BP) - grows down from the end. See RESERVE.

You define the first two when you declare the section. The third one (DP) is used by all section
types. The fourth (BP) is used by RESERVE for special cases.

15.2.2 Section charateristics

By default, SECTION creates a buffer that is saved to disc when the compiler finishes. Other

Chapter 15: Controlling compilation 93

directives can be used to select a different behaviour. All these directives apply to the current
section.

Unless otherwise specified by ALL-SAVED below, the saved image will be from the start of the
section to the section’s current value of HERE.

: WRITE-IGNORE \ --

Causes writes to the current section to be ignored, and reads always return 0.

: WRITE-INVALID \ --

Causes writes to the current section to generate an error, and reads always return 0.
For example, in a section of EEPROM, stores during cross-compilation would be meaningless,
and can be trapped by using WRITE-INVALID.

$20000 $27FFF UDATA SECTION EEPROM WRITE-INVALID

: ALL-SAVED \ --

Save the whole section, not just the used part from the start. This directive is usually used for
the primary CDATA section of CPUs whose reset vectors are at the top of memory, e.g. FreeScale
9S12s.

: VIA-LINK \ --

This is used by Umbilical Forth to redirect sections to be accessed over the Umbilical link during
the interactive session. For example, a target system may contain three sections: ROM, IRAM and
URAM. The ROM section will already be in Flash or EPROM. When the interactive session starts,
the user can type:� �
IRAM VIA-LINK

URAM VIA-LINK

ROM
 	
So that the RAM areas are accessed across the Umbilical link.

: IN-EMULATOR \ offset --

Causes the section memory to be in a Flash or EPROM emulator. The offset value is the offset
from the start of the Flash at which the section starts. If paged memory is being used, each page
will be in the emulator at a different offset. This means that the target can be reset as soon
as the compilation has finished, without any intervening download process. Umbilical Forth
especially benefits from this.

$00000 $07FFF CDATA SECTION ROM 0 IN-EMULATOR

Although hardware EPROM emulators were common some time ago, the huge variation in Flash
device pin-outs and the increase of on-chip Flash has made them unused, except for people with
deep pockets and true in-circuit emulators (ICE).

15.2.3 An example� �
$00000 $07FFF CDATA SECTION ROM \ Main ROM area

$08000 $0FFFF IDATA SECTION IRAM \ Initialised data

$10000 $1FFFF UDATA SECTION BBRAM \ battery backed RAM

$20000 $27FFF UDATA SECTION EEPROM \ EEPROM

$80000 $803FF UDATA SECTION DPRAM \ dual port RAM

ROM IRAM BBRAM CDATA \ defaults
 	

94 Forth 7 Cross Compiler

This example defines five areas of memory. With this setup, your kernel will have 32kb of ROM
and 32kb for variables and interactive development, 64kb of uninitialised RAM which is not
affected at power up, an EEPROM area, and a dual port RAM.

15.2.4 Section tools
: ORIGIN \ -- addr

Returns start address of the current CDATA section.

: SEC-BASE \ -- addr

Returns start address of current section.

: SEC-TOP \ -- addr

Returns end address of current section.

: SEC-LEN \ -- u

Returns length (size) of current section.

: SEC-END \ -- addr

Returns BP of current section.

: UNUSED \ -- n

Used to find out how much space is left in a section. If UNUSED returns a negative value, it
indicates that the upper location counter, BP, (see RESERVE) is now lower than the normal
location pointer, DP, and that you have a problem.

: RESERVE \ len - addr

Allocates down from top of UDATA section.

: UNUSED \ -- n

Returns the remaining available space in the current section. If this value becomes negative,
you have overrun the available space.

: .SECTIONS \ --

Show section status.

: [SECTIONS \ -- x1 x2 x3 x4

Preserve current, CDATA, IDATA and UDATA sections to be restored by SECTIONS] below. Use in
the form:� �
[SECTIONS <change section>

...

SECTIONS]
 	
: SECTIONS] \ x1 x2 x3 x4 --

Restore current, CDATA, IDATA and UDATA sections.

: ,C \ x --

Lay (comma) cell data into the current CDATA section.

: W,C \ x16 --

Lay (comma) 16 bit data into the current CDATA section.

: C,C \ x8 --

Lay (comma) 8 bit data into the current CDATA section.

: ,I \ x --

Chapter 15: Controlling compilation 95

Lay (comma) cell bit data into the current IDATA section.

: W,I \ x16 --

Lay (comma) 16 bit data into the current IDATA section.

: C,I \ x8 --

Lay (comma) 8 bit data into the current IDATA section.

15.3 Bank switched systems

Bank-switched memory is mostly the preserve of CPUs limited to a 16 bit (64k byte) address
range. Such systems provide additional memory by playing games with I/O ports or memory
mapping hardware which allows parts of the memory map to be replaced under software control.

Today, the only justification for bank-switched hardware is to access a block oriented device
such as a silicon disc or other data store.

Unless you are faced with a stable high-volume product whose hardware is frozen, try to avoid
bank-switched systems. After implementing and observing many such systems, MPE’s conclu-
sion is that software development for bank-switched systems is ugly, slow and error-prone. If you
have any influence on the hardware, make strenuous efforts to replace the CPU with a 32 device
having a linear address range. As of now (2008), there is no cost justification for bank-switched
systems.

That having been said, sometimes you just have to face it and do it!

15.3.1 Defining banks and pages

In bank switched systems BANKs may be defined, to which are attached PAGES. A bank defines
the address range and type of switched memory, and multiple pages are defined within the bank.
There is no limit to the number of separate banks and pages. Each page behaves as a SECTION,
except that only the last referenced page in each bank is active. This allows us to bank switch
both ROM and RAM areas.

Each page must have a unique identifier, restricted only in that zero can not be used as an
identifier by the compiler. Otherwise the selection of page identifiers is entirely free, and can be
chosen to ease the writing of the page handling words (see below).

96 Forth 7 Cross Compiler� �
HEX

0 7FFF CDATA SECTION ROM \ 32k common ROM

8000 BFFF CDATA BANK ROMBANK \ 16k pages of ROM

0001 PAGES BANK0

0002 PAGES BANK1

0003 PAGES BANK2

C000 DFFF IDATA BANK IRAMBANK \ 8k IDATA pages

0101 PAGES IBANK0

0102 PAGES IBANK1

0104 PAGES IBANK2

E000 FFFF UDATA BANK URAMBANK \ 8k UDATA pages

0201 PAGES UBANK0

0202 PAGES UBANK1

0204 PAGES UBANK2

F000 F7FF IDATA SECTION SYSTEMRAM \ 2k non-banked IRAM

F800 FFFF UDATA SECTION STACKRAM \ 2k non-banked URAM
 	
A very common configuration is to have a fixed ROM area to hold the Forth kernel and common
application code, a bank switched ROM area for code expansion, a bank switched RAM area
for data logging, and a non-switched RAM area for system variables and stacks.

In order to configure the system, you must provide two words, PAGE@ and PAGE! which are used
to find the current paging state and to set a new one. These words use the same page identifiers
used by the PAGES directive.

PAGE@ \ -- page-id

PAGE! \ page-id --

15.3.2 Flash layout control

When programming paged Flash, e.g. for a 68HC12/9S12 CPU, programming tools often require
a physical base address in the Flash, rather than the 64k addresses used in the SECTION and
BANK definitions. When a hex file is output, the base address of a section can be overridden
using

physaddr SetFlashBase

immediately after the section is defined, e.g.� �
$8000 $BFFF cdata bank rombank \ 16k bank in 64k address range

$30 pages bank0

$0C0000 SetFlashBase \ where this bank is in the Flash

$31 pages bank1

$0C4000 SetFlashBase \ where this bank is in the Flash

$32 pages bank2

$0C8000 SetFlashBase \ where this bank is in the Flash
 	
15.3.3 Executing words in another page

Execution of a word in another page is performed by the word PAGE-EXECUTE, which performs
page selection and restoration for you. The high level version of this word is in the file PAG-
ING\PAGING.FTH, which you should modify to suit your own hardware.

Chapter 15: Controlling compilation 97

PAGE-EXECUTE \ i*x xt pageid - j*x

When compiling code into pages, the compiler keeps track of the selected page, and if a reference
is made to code in an unselected page, the compiler will generate the necessary page switch and
restore code automatically. You cannot forward reference a word in another page.

15.3.4 Using CDATA pages

CDATA page management

CDATA pages are usually used with processors that do not have a large enough addressing range
for the code that must run on them. There is an overhead in calling a word in another page
because all such calls are made by PAGE-EXECUTE, which has to save and restore the current
code page around the call. As a result, most users partition the code so that inter-page calls do
not produce any significant performance overhead.

Multitasking and interrupts

Because all inter-page calls restore the previous page, the paging mechanism has no impact of
on the multitasker unless PAUSE is used within a page. If any word that calls the scheduler is
used in a page, the multitasker code should be modified to save and restore the page. You can
use the code for PAGE@ and PAGE! as a model.

Similarly if interrupt routines are in pages, the interrupt handlers must restore the previously
active pages.

In many bank switched systems it is better to be safe than sorry and the simplest thing to do is
to save the bank switch system state as part of the scheduler action and in interrupt handlers.

CDATA page vocabularies

The cross compiler treats CDATA pages as memory areas that have vocabularies. When a page
is defined, the compiler creates a vocabulary of the same name as the page in the compiler.

When a page is referred to, the compiler performs the following actions:

• the page becomes the current code page in the bank.

• the vocabulary for the previously selected page in the same bank is removed from the search
order.

• the vocabulary for the newly selected page becomes the top of the search order.

Consequently, you may need to use ALSO and PREVIOUS with page names in order to keep the
Forth kernel in the search order. Assuming that the Forth kernel is all in the ROM section in
the example above, the following code switches between the banks:� �
ONLY FORTH ALSO BANK0 DEFINITIONS \ Use BANK0

BANK1 DEFINITIONS \ change to BANK1

BANK2 DEFINITIONS \ change to BANK2
 	

98 Forth 7 Cross Compiler

Be aware that if you define vocabularies inside a CDATA page, you are responsible for removing
them from the cross compilers search order before changing pages.

Because the cross compiler provides the interactivity for Umbilical Forth, this section also applies
to interactive use of an Umbilical Forth system

Using CDATA pages interactively

This section discusses using vocabularies and pages interactively with a standalone Forth inter-
preter running on the target hardware. It is assumed that the reader understands the use of
vocabularies.

When a banked CDATA page is defined, the compiler reserves two cells for page vocabulary links
and some space in the current UDATA section. Any vocabularies defined in this bank will not be
linked into the normal vocabulary chain, but into a chain anchored in the first cell of the page.
As a result, switching between pages on a standalone target Forth does not affect the normal
search order and the words in pages would be inaccessible even if heads were generated for them.

In order to provide interactive access to paged words, the compiler can be told to construct spe-
cial vocabularies which automatically handle bank switching and the search order. Once all the
memory sections have been defined to the compiler, the directive MAKE-PAGE-VOCS (used when
the kernel is the active code page) causes the compiler to construct special vocabularies in the
kernel. These vocabularies use the run time action of PAGE-VOCABULARY instead of VOCABULARY.
The action of PAGE-VOCABULARY is as follows:

• Make itself the CONTEXT vocabulary

• Restore VOC-LINK to its initial value. This removes the previously selected code page from
the search order.

• Select the required page as the current page in that bank.

• Add the pages own vocabularies (if any) to the VOC-LINK chain.

Note that MAKE-PAGE-VOCS must be used when the kernel page is the active code page. The
data structure of a PAGE-VOCABULARY is the same as that of a normal VOCABULARY except that
two more cells, containing the page identifier and page base address have been added to the
CDATA portion of the vocabulary.

15.3.5 IDATA and UDATA pages

The action of IDATA and UDATA page selection is simply to make them the current page of their
type. You can use these pages to expand the data area available to your application. For
example, some embedded systems use bank switched data pages as mass storage. This is a
typical way to use multi-megabyte memory cards in data loggers built around a processor with
a restricted memory space.

Any routine that changes a current data page should be careful to restore it before calling the
scheduler. As with CDATA pages the simplest thing to do is to save the bank switch system state
as part of the scheduler action and in interrupt handlers.

Chapter 15: Controlling compilation 99

15.3.6 Miscellaneous

N.B. 16 bit targets only: In order to ease development of paged systems, e.g. Freescale 9S12,
some additional directives have been provided to deal with addresses that need to be held in
page:addr form, where the current page’s bank identifier is in the upper 16 bits, and the 16 bit
address is in the lower 16 bits.

: PL: \ -- ; -- page:chere ; PL: <name>

Behaves like L: but returns a page:addr 32 bit address.

: l>hilo \ page:addr -- page addr

Converts a paged address to separate items, addr on top.

: l>lohi \ page:addr -- addr page

Converts a paged address to separate items, page on top.

15.4 Output file formats

Binary image files with a .IMG extension are always produced. You can change the default
extension using the directive setBinExt, e.g.

setBinExt .bin

You can generate additional output formats for CDATA sections. An output format selector for
the additional formats can be placed in the control file. They are:

: NoHex \ --

Do not generate hex files (default).

: HEX-I16 \ --

Intel Hex for 64k bytes maximum as used for 8-bit CPUs. Generates sectionname.hex.

: HEX-I32 \ --

Intel Hex for 32 bit linear addresses, e.g. ARM. Generates sectionname.hex.

: HEX-S19 \ --

Motorola S19 format - 16 bit addresses. Generates sectionname.s19.

: HEX-S28 \ --

Motorola S28 format - 24 bit address range, e.g. 68HC12/9S12. Generates sectionname.s28.

: HEX-S37 \ --

Motorola S37 format - 32 bit address range, e.g. 683xx. Generates sectionname.s37.

: ELF-format \ machine flags --

Select ELF output format using the given e machine and e flags values.

: ReadMemH \ --

Select Verilog ReadMemH format with 32 bit addresseses and data units. Generates section-
name.dat.
The initial execution address can be set for S28 and S37 formats by:

<addr> SetBoot

100 Forth 7 Cross Compiler

15.5 Aligning generated code

Many processors require XTs to start on even addresses, so that instructions start on an even
address. To instruct the compiler to do this, use ALIGN-EVEN. Other processors require XTs to
be 4-byte aligned. In this instance use ALIGN-LONG.

15.6 Numbers and 16 bit targets

This section only applies to 16 bit targets.

Double numbers and floating point numbers are converted to the format used by 16 bit tar-
gets. This means that the interpreted behaviour of double number operators may not give
correct results. This conversion can be disabled and re-enabled by the directives HOST-MATH and
TARGET-MATH. These is useful when calculating such things as baud rate divisors using EQUates
defined in the control file.� �
HOST-MATH

<perform calculation> EQU <equate-name>

TARGET-MATH
 	
15.7 Enabling floating-point

If you want the compiler to be able to handle floating-point numbers, you need to instruct it
with the word REALS. The default is integer only. Floating point can be disabled by INTEGERS.
Note that for 16-bit targets, number formats are affected by the HOST-MATH and TARGET-MATH

switches.

In MPE example control files, there is an EQUate SOFTFP? which should be set non-zero for
compilation of the target floating point code.

1 equ SoftFP?

15.8 Turning the log on and off

The cross-compiler log can either display minimal information (when off) or information on the
items compiled (when on). To turn the log on, use LOG. To turn the log off, use NO-LOG.

It is sometimes useful to sprinkle LOG and NO-LOG in a file when tracing obscure compilation
errors or compile-time stack faults.

15.9 Conditional compilation

Conditional compilation is used to selectively compile portions of code. Four words are available
to do this, [IF], [ELSE], [ENDIF] and [THEN]. These are analogous to IF, ELSE, ENDIF and
THEN. They can be used within Forth words to selectively compile portions of code, or can be
used outside a Forth word to selectively compile whole words.

Chapter 15: Controlling compilation 101

15.9.1 An example

Two code examples are shown below. The examples given perform conditional compilation
inside and outside a colon definition.

Conditional compilation while interpreting

The example shown below compiles one of the PRINT1OR2s. Which one is compiled is dependent
on the value of 1OR2?. If it is set to one, PRINT1OR2 displays a one when executed. If it is set
to two, PRINT1OR2 displays a two.� �
1 EQU 1OR2?

1OR2? 1 = [IF] \ If 1OR2?=1, PRINT1 will be compiled

: PRINT1OR2 \ - ; Display a one

." 1"

;

[ELSE] \ If 1OR2?=2, PRINT2 will be compiled

: PRINT1OR2 \ - ; Display a two

."2"

;

[THEN] \ End marker for conditional compilation
 	
Conditional compilation while compiling

Using conditional compilation within a colon definition is slightly more complicated. This is
because you need to write a word which places a number on the cross-compiler’s stack during
cross-compiling. An example is shown below where an equate 3OR4? is added to the compiler.
This can then be used to control compilation.� �
3 EQU 3OR4? \ add the word 3OR4? As an EQUate

: PRINT3OR4 \ ; Display a three or four

[3OR4? 3 =] [IF] \ EQUate is interpreted

." 3" \ Display a three

[ELSE]

." 4" \ Display a four

[ENDIF]

;
 	
15.9.2 [DEFINED] and [UNDEFINED]

The words [DEFINED] and [UNDEFINED] are used to find out if a particular word has already
been defined, and return a flag. This is particularly useful when you want to keep a common
body of code, yet provide for assembly language versions for slow processors. The following code
allows a high-level version of a word to be defined if no previous version exists.

102 Forth 7 Cross Compiler� �
[UNDEFINED] <FOO> [IF]

: <FOO>

;

[THEN]
 	
15.9.3 [REQUIRED]

This word is used by the library mechanism (see below). [REQUIRED] <name> returns true if
<name> has been referenced but has not yet been defined. <Name> may be a word or a label.� �
[required] foo [if]

: foo ;

[then]
 	
15.10 Library files

When you need to keep code size to a minimum, the cross-compiler can resolve forward references
by scanning library source files repeatedly until no more forward references can be resolved. This
is done by defining a group of files that can be scanned. This should be done as the last action
of the control file, although the compiler will permit scanning of library files anywhere. The log
will show the number of passes made over the library files.� �
LIBRARIES

include <filename1>

include <filename2>

...

END-LIBS
 	
Within each library file, the code is compiled normally, except that the word [REQUIRED] is
used to control conditional compilation of each word in the file.� �
[REQUIRED] <name> [IF]

: <name> ;

[THEN]
 	
The code between [IF] and [THEN] will only be compiled if <name> has been forward referenced,
i.e. it is required.

15.11 Loading binary data

The DATA-FILE directive loads a binary image file into target memory at HERE and reserves
space for it, returning the size of the file. This is useful for adding data such as externally
generated font tables and web pages. The file is loaded into the current section, so make sure
to use CDATA or IDATA as appropriate. Macros in the file name are expanded but no default
extension is assumed. For example:

Chapter 15: Controlling compilation 103� �
cdata create image

data-file %AppDir%\image.bin

cr . ." bytes loaded"
 	
15.12 Test code

The directives TESTING [TEST and TEST] support incorporating test code local to the definition
that the code tests. The DOCGEN/SC extension can be used for safety critical systems to
produce FDA (US Food and Drug Administration) standard documentation directly from the
source code and to extract separate test files.

In order to allow test code to be built into the source code, conditional compilation of test code
is provided, controlled by the word TESTING.

0 TESTING \ test code will NOT be compiled (default)

1 TESTING \ test code will be compiled

Test code should be surrounded by the markers [TEST and TEST].� �
0 TESTING

[TEST

This will all be ignored

TEST]

1 TESTING

[TEST

: foo ;

TEST]
 	
In the first example all the code between [TEST and TEST] will be ignored. In the second case
the code between [TEST and TEST] will be compiled.

15.13 C header files

In order to ease inclusion of the vast number of peripheral registers by name in modern micro-
controllers, you can often cut and paste the definitions from C or assembler header files.

// - comment to end of line

/* comment N.B. white space delimited */

For #DEFINE note that the text up to the end of the line is evaluated once at compile time and
produces an EQUate of that single integer value.

15.14 Direct port access

If you are using Windows NT/2000/XP/Vista or any other version of Windows that treats
direct port I/O as a privileged operation, and you want to drive ports directly, you must install
the driver from the NTPORT.EXE file from the COMPILER\XTRA directory as described in
the installation section of the manual. You must also modify your control file to include the
NT-ACCESS-PORTS directive.

104 Forth 7 Cross Compiler

15.15 Split bootloader and application

To permit applications to be upgraded in the field, there are a number of systems that are
split into a bootloader and and an application. At power up, the bootloader checks for a
valid application and executes it if found. If there is no application or a magic token is used,
the bootloader waits for a new application to be downloaded and flashed. In many cases the
bootloader can replace itself. Such as system requires no connection between the bootloader
and the application apart from some agreement on data layout.

As the complexity and features of the bootloader increase, it becomes larger. In turn, many of
the hardware features used by the bootloader such as USB and TCP/IP, are also used by the
application. Duplicating such ode reduces the code space for applications.

If we make some simple assumptions, much tighter integration of the bootloader and application
can be achieved. In the the system here, the primary assumptions are:

1. If the bootloader changes, a new application matching the new bootloader must be used.

2. Application code can change if the bootloader remains the same.

3. The application is a continuation of the bootloader. The application is linked in if present.

4. Vocabulary/wordlist data in RAM is only in the first IDATA section defined.

The sequence is to cross compile the bootloader and application together. This allows the
application to use any and all words from the bootloader, reducing overall size. Only sections
for the bootloader are defined. the bootloader finishes with BootFinis instead of Finis. The
bootloader’s primary CDATA section is made read-only. The sections needed by the application
are defined and compilation of the application proceeds. RAM needed by the application can
be the same IDATA and UDATA sections as for the bootloader.� �
cross-compile

... \ sections and code for the bootloader

bootfinis

... \ sections and code for the application

appfinis
 	
BootFinis generates initialisation data, saves the files and carries on. AppFinis generates
more initialisation data, saves files and finishes cross compilation. The sequence is such that
the bootloader target code is a separate application independent of the application code. It
is assumed that you have designed the bootloader start up sequence so that it can detect the
presence of a valid application after enough checks, e.g. CRC, that the application matches the
bootloader.

The application start up code responsible for linking in the extended application dictionary and
initialising the extended RAM areas. Example control files and target code are available from
MPE, as is consultancy support.

: BootFinis cc/i \ --

Used in a split bootloader/application system to mark the end of the bootloader portion and
the start of the application code.

: AppFinis cc/i \ --

Chapter 15: Controlling compilation 105

Used in a split bootloader/application system to mark the end of the application code. Used in
these systems instead of finis

: flush-idata cc/i \ --

Used with the bootloader portion of the code. If not already done, flush the primary vocabulary
data to RAM and then copy the used portions of the IDATA sections to the current CDATA

section. This directive is often used when the size of a binary file needs to extended to a certain
alignment. The alignment code then follows after flush-idata. See also lay-idata.� �
cdata flush-idata \ lay IDATA sections NOW

here $1FF + $-0200 and org \ force to 512 byte boundary
 	
: appFlush-idata cc/i \ --

Used with the application portion of the code. As flush-idata above, but for the application
portion of a split bootloader/application system.� �
cdata appflush-idata \ lay IDATA sections NOW

here $1FF + $-0200 and org \ force to 512 byte boundary
 	

107

16 VFX code generator

The VFX code generator is a black box that simply does its job of compiling and optimising your
code, and usually no user intervention is required. Some implementations may have switches for
special cases such as for dealing with loop alignment. These will be documented in the target
specific section of the manual.

On a job using 60MHz LPC2000 ARM, we ran out of serial ports, and needed a few more
running at 9600 baud and below. We wrote a bit-banged UART driver running from a 38400Hz
timer interrupt and implemented two bidirectional serial ports. All the code was written in
high level Forth. Using an additional I/O line to mark interrupt entry and exit, the worst-case
interupt-handling time observed was 1.5 microseconds.

16.1 Inlining

The VFX code generator gives some control over the use of inlining, controlled by the word
INLINING (n --). When the code generator has completed a word, the length of the word is
stored in the symbol table. When the word is to be compiled, its length is compared against
the value passed to INLINING, and if the length is less than the system value, the word is not
referenced but is compiled inline, with the procedure entry and exit code removed. This avoids
pipeline stalls, and is very useful for short definitions.

By default four constants are available for inlining control, although any number will be accepted
by INLINING.� �
NO INLINING \ 0, inlining turned off

NORMAL INLINING \ 12-16, ~10% increase in size

AGGRESSIVE INLINING \ 255, useful when time critical

ABSURD INLINING \ 4096, unlikely to be useful
 	
You can use INLINING anywhere in the code outside a definition. For very small words, a better
technique is usually to define the word as a compiler macro:� �
compiler

: foo ... ;

target
 	
This usually gives the optimiser more opportunities. Compiler macros are discussed in more
detail later in this chapter.

Processors such as ARM and MIPS store the return address in a register. Inlining and the
+LEAFCALLS or ISLEAF directives can interact to produce incorrect code. They have been inter-
locked to cause an error message if both are selected.

The following words are used immediately after a definition to control the inliner.

108 Forth 7 Cross Compiler� �
INLINE \ mark a CODE definition

INLINE-ALWAYS \ will always be inlined

INLINE-NEVER \ will never be inlined
 	
16.2 Colon definitions

Any word that uses words that affect the return stack such as EXIT, or takes items off the return
stack that you didn’t put there in the same word, will automatically be marked as not being
able to be inlined.

Everything that will cause inlining to fail causes inlining of the word to be disabled.

Note that when words are inlined, the effects may not be as expected.� �
: A ; \ inlined

: B A ; \ A inlined, B can be inlined

: C B B ; \ A, B inlined, C can be inlined
 	
If you want to prevent a word ever being inlined, follow it with INLINE-NEVER. This is usally
only necessary after you have done something particularly carnal in nature.

16.3 CODE definitions

By default CODE definitions are not marked for inlining because the assembler cannot detect all
cases which may upset the return stack. If you want to make a code definition available for
inlining, follow it with the word INLINE.

If you want the word to be inlined regardless of the state of INLINING, use INLINE-ALWAYS.

16.4 COMPILER directives

The VFX optimisers significantly reduce the need to code in assembler. However, some impact
can be made by replacing very small definitions with compiler directives. Every time the VFX
optimiser has to generate a call, it has to generate a canonical Forth stack. If you replace a
short definition with a compiler directive, the optimiser does not call it, but compiles it as if
from source code. Thus:� �
: foo \ addr -- addr

3 cells + @

;
 	
can be replaced by

Chapter 16: VFX code generator 109� �
compiler

: foo \ addr -- addr

3 cells + @

;

target
 	
On many target CPUs, especially those with good indexed addressing modes, the resulting
code is shorter. COMPILER directives allow you to retain the code modularity of short Forth
definitions without the calling overhead. You can explore this quite quickly, and the compiler
section reports and file compilation reports will give you a good indication of whether you are
winning. How much gain in code density you will get is often non-obvious, and the only way to
get a feel for it is to play with the compiler.

111

17 Debugging tools

The tools described in this chapter can be used in interactive mode or during batch compilation.

17.1 INTERACTIVE mode

When INTERACTIVE is used after CROSS-COMPILE and before FINIS, the compiler will not exit
after compilation finishes, but will enter an interactive mode in which the symbol table and
image data are preserved. This allows you to use the other debugging tools with a standalone
target compilation.

17.2 XDASM, DASM, DIS

Except for legacy compilers that use Indirect or Direct Threaded Code, Forth 7 compilers include
a disassembler that can be used at any time.� �
XDASM <name>

DASM <name>

DIS <name>
 	
will disassemble the word <name>.

17.3 LOCATE

When the compiler is active use the phrases:� �
LOCATE <name>

LOC <name>
 	
to see the source code of word <name>. If you enter the compiler at the end of compilation, use
the words XLOCATE or XLOC instead.

When running the compiler in AIDE, use the IDE -> Configure menu to define the editor in
which the file is displayed. When running the compiler alone, use its Options -> Set Editor
menu.

17.4 USES

When the compiler is active use the phrase� �
USES <name>
 	
to see the words that use the word <name>. If you enter the compiler at the end of compilation,
use XUSES instead.

112 Forth 7 Cross Compiler

17.5 XREF, XREF-ALL, XREF-UNUSED

The XREF cross reference system is turned on by +XREFS in the control file. All code after +XREFS
will be cross referenced. Use XREFS to turn cross referencing off.

When the compiler is active use the phrase

XREF <name>

to see the words that use the word <name>. If you enter the compiler at the end of compilation
with ESCAPE, use XUSES instead.

XREF-ALL produces a cross refence listing for the whole application. It is of most use when cut
and pasted into a text editor for further processing.

XREF-UNUSED produces a list of the words that have not been referenced in colon definitions.
XREF-UNUSED can be used to produce a minimum-sized application by removing those words
that are unused.

17.6 WORDS

WORDS produces a list of the target words. The following switches control whether or not unre-
solved target words are shown by WORDS and friends:

+SHOW-UNRESOLVED \ --

-SHOW-UNRESOLVED \ -- ; default

17.7 .DWORD, .LWORD .HEX and .DEC

.DWORD, .LWORD and .HEX display an unsigned hexadecimal number:

#123 .DWORD<cr> 0000.007B ok

.DEC displays a value as a signed decimal number:

$55AA .dec<cr> 21930 ok

17.8 Lists

LABELS produces a list of the target labels.

EQUATES produces a list of the target equates.

Using the word ESCAPE in the control file before the final FINIS enters the cross compiler in host
mode so that the debugging tools above can be used. Note that no files are saved. Unless you
are debugging an extension to the cross compiler itself, the use of ESCAPE is now deprecated,
and you should use INTERACTIVE above instead.

HELP lists the compiler directives, and gives some reminders.

COMPILERS lists all the words which are special when compiling.

Chapter 17: Debugging tools 113

INTERPRETERS lists all the words which are special when interpreting.

17.9 Command line switches

These switches can be used on the command line that runs the cross compiler to control its
behaviour.

: /PAUSEOFF \ -- ; run in batch mode

The compiler will terminate immediately after FINIS is used, otherwise it will offer you the
choice of re-entering the compiler.

: /IDE \ -- ; run from IDE host

When run from AIDE, this command tells the cross compiler to use the AIDE tool capture
window as the console window.

: /PAGEOFF \ -- ; inhibit page-throws

Prevents the compiler from putting page throw characters in the log.

: /COLS \ cols -- ; log columns per line

Specifies the number of columns used in the log. By default the cross compiler will generate
three columns, which allows 32 bit numbers to be logged as 8 hexadecimal digits.

: /+PAUSES \ --

Enable pauses in console listings for tools such as */fo{WORDS} and XREF when more than a
certain number of lines have been output. This is the default when the cross compiler is run
with AIDE.

: /-PAUSES \ --

Stop pauses in console for various listing tools.

115

18 Debugging Embedded Systems

The essential debugging tools for embedded systems are two LEDs (preferably different colours)
driven by spare I/O lines. These pins should also be accessible by oscilloscope probes. You can
probably debug anything using two LEDs and an oscilloscope, but it is certainly not the easiest
way to do things.

If you can’t talk to it, and it can’t talk to you, you can’t debug it. The commonest and easiest
way to talk to an embedded system is over an RS232 link. Despite their disappearance from
desktop PCs, real RS232 links are still the dominant way to talk to embedded systems. If your
hardware does not have one, consider emulating a serial line using I2C or SPI. Even a pair
of I/O lines can be programmed to behave like a serial port it’s an interesting programming
exercise in itself. For your PC, USB serial adapters are cheap and reliable these days - just use
the transmit, receive and ground lines.

Now that we can talk to our hardware, we need to choose how to talk to it. Ideally, we have a
Forth on the target hardware and we talk to that. We have to design our application so that
it can be debugged. If there is enough RAM, run the Forth interpreter as a task so that it is
always accessible. If you are using an Umbilical Forth, set it up so that the link runs in its own
task. This way we can use the link as a normal Forth interpreter.

When we can use a Forth interpreter, we are freed from having to insert debug code, recompile,
reprogram the Flash and watch. We can use the Forth interpreter to explore observations of the
fault and the hypotheses we made from the observations. In combination with our two LEDs
and the oscilloscope we can stimulate hardware and make measurements.

18.1 Basic rules

Fix bugs first. The more bugs you have in a system, the more difficult it is to find any of them.
A bug is often left in because the original author could not find it. Years later it will make
your life intolerable by masking the observation of your bug. Bugs have a habit of collecting in
associated groups, often masked by the kluges you put in to get around them.

Crash early and crash often. It is a big temptation to use a lot of defensive programming to cope
with earlier programming mistakes. Inside an operating system, coping with bad programmers
is probably a must. In an embedded system, it just makes bugs harder to find. If your system
faults because it writes to address 0, you will have to find the bug rather than leave it alone.

"The primary duty of an exception handler is to get the error out of the lap of the programmer
and into the surprised face of the user. Provided you keep this cardinal rule in mind, you cant
go far wrong." Verity Stob

When the "surprised face of the user" is part of a bomb disposal machine or an anaesthetic
ventilator you have a different class of responsibility. In turn, you can do a great deal to make
life easier for yourself.

18.2 Make faults visible

You have carefully written an exception handler so that it dumps all the CPU registers and the

116 Forth 7 Cross Compiler

stacks. You have even tested this at the console. Did you check that the output still comes out
on the console when a crash occurs in task using another serial line? Did you make sure that
interrupt driven serial drivers get re-enabled inside an exception handler? Would it be safer
to switch the console driver to polled inside an exception handler? Do you need to change the
watchdog period?

Remember those LEDs? Now is probably a good time to turn on the red one. Maybe even flash
it a few times and wait a bit before recovering the system.

18.3 Check tasks

Some of our colleagues do not test their code as well as we would like. One result is that we
sometimes see stack faults in tasks. After the fault has occurred a system-dependent number of
times, the stack overflows and the system crashes. The crash occurs some indeterminate time
after the bug first occurred. We should make it visible as soon as possible.

If we use a simple house rule, we can systematically protect all our tasks. The house rule is that
there is nothing on the stack at the head of a task’s main loop. The example below is taken
from USB mass storage code. We could also consider using one of our LEDs to check activity.� �
: doSectorRW \ --

consoleIO decimal

ResetUSBdisk

begin

?StackEmpty \ *** check stack

WaitSecCmd 0 -> DriveComplete

case DriveBusy?

SecReadCmd of Disk>USB endof

SecWriteCmd of USB>Disk endof

SenseInvalidOp -> SenseCode

DrvBadCmd -> DriveStatus

endcase

WaitDrvComplete

again

;
 	
The word ?StackEmpty simply checks the stack depth and issues diagnostic messages to the
console. The source code is in Common\DebugTools.fth or Powernet\DebugTools.fth.

18.4 Recover well

After you have taken suitable action fast enough not to compromise safety, you must recover from
the disaster. Recovery in many systems can be as simple as rebooting, but may involve much
more or much less, especially if there are safety implications. Rebooting most microcontrollers
is achieved by setting up the watchdog to perform a hard reset. Oh whoops, the hardware reset
line is input only and is not connected to the Ethernet PHY. Good recovery is often not as
simple as it looks.

Chapter 18: Debugging Embedded Systems 117

18.5 Talk to the hardware people

You cannot have the coloured LEDs unless the hardware people know you need them. This is
fine when you are the hardware people too, but not so fine when you really need that RS232
line and you don’t have a soldering iron on site. What, you do not take a soldering iron and an
oscilloscope with you everywhere?

To talk to dedicated hardware people, you must know enough hardware design to read circuit
diagrams. This probably makes you dangerous in their eyes.

What you are trying to achieve is hardware that can itself be debugged, and contains facilities
so that you can debug your own code.

18.6 Intepreting crash dumps

For CPUs such as ARM and Coldfire which provide separated fault and exception handling,
the target code may provide support for crash dumps. The following discussion is for an ARM
CPU. The ideas are the same for all CPUs.

The example below comes from typing

55 0 !

on the Forth console. The device is an NXP LPC2388 and address zero is Flash to which writes
have not been permitted.� �
55 0 !

DAbort exception at PC = 0000:1C64

=== Registers ===

CPSR = 6000:001F

R0 = 0000:0037 0000:1C60 0000:0021 0000:0021

R4 = 0000:0070 0005:FD8C 4000:0298 0000:000C

R8 = 0000:1C60 0000:0000 0000:0000 4000:FEE0

R12 = 4000:FED4 4000:FDCC 0000:4FAC 0000:1C6C

RSP = 4000:FDCC R0 = 4000:FDE0

--- Return stack high ---

4000:FDDC 0000:51E0 QUIT

4000:FDD8 4000:FED0

4000:FDD4 0000:0000

4000:FDD0 4000:FD94

4000:FDCC 0000:3244 CATCH

--- Return stack low ---

PSP = 4000:FED4 S0 = 4000:FED4

--- Data stack high ---

--- Data stack low ---

rTOS/R10 0000:0000

Restarting system ...
 	

118 Forth 7 Cross Compiler

The exception occurred in the instruction at $1C64. It was a data abort exception, which means
that it was a data load or store at an invalid address.

Assuming that restart is to a Forth console, you can find out where the fault occurred if you
have compiled the file Common\DebugTools.fth or Powernet\DebugTools.fth.

$1C64 ip>nfa .name<Enter> ! ok

The return stack dump shows that CATCH was used, in turn called by QUIT, the text interpreter.

Further interpretation requires some knowledge of the use of the CPU registers.

18.6.1 ARM Register usage

On the ARM the following register usage is the default:� �
r15 pc program counter

r14 link link register

r13 rsp return stack pointer

r12 psp data stack pointer

r11 up user area pointer

r10 tos cached top of stack

r9 lp locals pointer

r0-r8 scratch
 	
The VFX optimiser reserves R0 and R1 for internal operations. CODE definitions must use R10
as TOS with NOS pointed to by R12 as a full descending stack in ARM terminology. R0..R8
are free for use by CODE definitions and need not be preserved or restored. You should assume
that any register can be affected by other words.

18.6.2 Interpreting the registers

Using the ARM example above, we can learn more.� �
DAbort exception at PC = 0000:1C64

=== Registers ===

CPSR = 6000:001F

R0 = 0000:0037 0000:1C60 0000:0021 0000:0021

R4 = 0000:0070 0005:FD8C 4000:0298 0000:000C

R8 = 0000:1C60 0000:0000 0000:0000 4000:FEE0

R12 = 4000:FED4 4000:FDCC 0000:4FAC 0000:1C6C
 	
The exception occurred in the instruction at $1C64. It was a data abort exception, which means
that it was a data load or store at an invalid address.

Chapter 18: Debugging Embedded Systems 119� �
TOS = R10 = 0000:0000

UP = R11 = 4000:FEE0

PSP = R12 = 4000:FED4

RSP = R13 = 4000:FDCC
 	
In general, UP > PSP > RSP. In this case that’s good. TOS=0, which we would expect from
the phrase:

55 0 !

We now switch back to the cross compiler, which you did leave running, didn’t you? Since we
now know that $1C64 is in !, we can disassemble it.� �
dis !

!

(0000:1C60 0100BCE8 ..<h) ldmia r12 ! { r0 }

(0000:1C64 00008AE5 ...e) str r0, [r10, # $00]

(0000:1C68 0004BCE8 ..<h) ldmia r12 ! { r10 }

(0000:1C6C 0EF0A0E1 .p a) mov PC, LR

16 bytes, 4 instructions.

ok
 	
From this, we can see that the offending instruction is

(0000:1C64 00008AE5 ...e) str r0, [r10, # $00]

Since R10 is 0, we now know that it was attempting a write to 0, which is not permitted.

Provided that you keep words small, the register contents at the crash point, with the stack
contents and the disassembly often provide enough information to reconstruct the state of stack
on entry to the word.

121

19 Compilation in detail

This chapter provides more detail on how to get the best out of the compiler. Topics covered
include:

• Special compilation behaviour

• Special interpretation behaviour

• Structures

• Defining words

19.1 Special compilation behaviour

Many ANS standard words are treated as special cases during compilation, either because the
VFX code generator produces optimised code rather than a call to a target word, or because
the word is normally IMMEDIATE and is executed during compilation.

The full list can be seen by typing:

COMPILERS

19.2 Special interpretation behaviour

Some words are only available during interpretation (outside a colon definition), or are treated
specially during interpretation. The special behaviour may be required because:

• the words mimic target behaviour, usually by dealing with target memory,

• they are defining words,

• they are compiler directives,

• because they are made available for execution during interpretation.

The full list can be seen by typing:

INTERPRETERS

19.3 Structures

A named structure is defined using the following template. When the name of a structure is
executed its size is returned.

If you have many fields of the same size, you can define your own field types.

Size FIELD-TYPE <field-type-name>

The template for a structure is:� �
STRUCT <struct-name>

size1 FIELD <field-name1>

size2 FIELD <field-name3>

<field-type-name> <field-name3>

...

END-STRUCT
 	

122 Forth 7 Cross Compiler

The run time action of a <field-name> is to add its offset in the structure to the address on
the top of the stack. A structure can be used as a field within another structure by using the
form:

<struct-name> FIELD <field-name>

The following example shows the construction of a structure defining a rectangle in terms of two
points. The field type INT for a single-cell field is predefined.� �
STRUCT POINT \ -- size

INT .X \ addr - addr

INT .Y \ addr - addr

END-STRUCT

STRUCT RECT \ -- size

POINT FIELD .TOP-LEFT \ addr - addr

POINT FIELD .BOTTOM-RIGHT \ addr - addr

END-STRUCT

RECT BUFFER: NEW-RECT \ -- addr ; in UDATA section

CREATE ANOTHER-RECT \ -- addr

RECT ALLOT \ in current xDATA section
 	
Note that FIELD and its children do not impose any alignment on the offset. If you are running
with a processor that requires alignment, you must impose it yourself if the structure becomes
misaligned, e.g.� �
struct foo

1 field boo \ 1 byte field

aligned \ forces alignment

int poo \ POO is now aligned

end-struct
 	
Before a field is defined, the current size of the structure is on the top of the stack. Apart from
using words such as ALIGNED, you can also perform other arithmetic.

19.4 Allocating memory and variables

This section shows the ANS definitions for each ANS word, and shows how to use them. These
words are affected by the current xDATA setting, and unless otherwise noted refer to the currently
selected data area which is one of CDATA, IDATA and UDATA which select which type of memory
the Forth words below affect:

, ALIGN ALIGNED ALLOT C, CREATE HERE UNUSED W,

As is usual for descriptions taken from a standards document, the prose is turgid and legalese,
but it’s that way for a reason.

Chapter 19: Compilation in detail 123

19.4.1 CREATE

: CREATE \ "<spaces>name" -

Skip leading space delimiters. Parse name delimited by a semantics defined below. If the data-
space pointer is not aligned, reserve enough data space to align it. The new data-space pointer
defines name’s data field. CREATE does not allocate data space in name’s data field.

name Execution: (-- a-addr)

a-addr is the address of name’s data field. The execution semantics of name may be extended
by using DOES>.

The result of this is to create a reference to the current location. Space can now be reserved
using ALLOT or data can be laid down using one of the comma words. The example below
contains a table of bit masks in the CDATA area.� �
CDATA CREATE BITS \ -- addr ; table of bit masks

8 C, \ size of table

$01 C, $02 C, $04 C, $08 C,

$10 C, $20 C, $40 C, $80 C,
 	
BITS was defined with CDATA in effect, so the table is in code space, normally ROM, and is
constant. If we had wanted to change this table, we could replace CDATA with IDATA, and
then the table would be in RAM, but initialised at power up. If we just want to reserve an
uninitialised area, we could use UDATA and ALLOT.� �
UDATA CREATE ABUFFER \ -- addr

<size> ALLOT
 	
Note that it is either invalid or ignored to use the comma words in a UDATA section, or to write
data to them at compile time. You cannot rely on the behaviour of the compiler under these
circumstances.

19.4.2 Commas: , W, C,

These words lay data into the current xDATA section. C, lays a character (a byte in byte-
addressed machines, or a cell in cell-addressed machines), , lays a cell, and W, lays a 16 bit value
in byte-addressed machines. You can use these words as shown in the previous section to lay
initialised data at compile time.

19.4.3 ALIGN and ALIGNED

The ANS specification provides these words to provide portability between systems that have
different data alignment requirements. For example, a i386 does not require 32 bit data to be
on a four byte address boundary. A 68332 requires it on a two byte boundary, and an ARM
requires it on a four byte boundary. ALIGN forces the section to the next cell-aligned address,
and ALIGNED will align an address on the stack.

: ALIGN \ --

If the data-space pointer is not aligned, reserve enough space to align it.

: ALIGNED \ addr - addr

124 Forth 7 Cross Compiler

A-addr is the first aligned address greater than or equal to addr.

19.4.4 ALLOT

ALLOT is used to reserve space in the current section. Note that, when used in IDATA space, the
size of the initialised RAM table added by the compiler at the end of the ROM will be increased.
See RESERVE and BUFFER:.

: ALLOT \ n -

If n is greater than zero, reserve n address units of data space. If n is less than zero, release
|n| address units of data space. If n is zero, leave the data-space pointer unchanged. If the
data-space pointer is aligned and n is a multiple of the size of a cell when ALLOT begins execution,
it will remain aligned when ALLOT finishes execution.
If the data-space pointer is character aligned and n is a multiple of the size of a character when
ALLOT begins execution, it will remain character aligned when ALLOT finishes execution.

19.4.5 HERE (CHERE IHERE UHERE)

These words return the current data space pointer or that of the defined section in the case of
the xHERE words.

: HERE \ -- addr

Addr is the data-space pointer.

19.4.6 ORG (CORG IORG UORG)

ORG and friends set the the relevant data space pointer. In classical Forth, this is the variable
DP, but does not have to be.

: ORG \ addr --

Set the data space pointer of the current section.
This directive is often used with HERE to place pieces of assembler code at specific locations, e.g.
reset and interrupt entry points. If you use this technique, you may have to add the directive
ALL-SAVED to the relevant SECTION declaration.� �
Proc EntryPoint

...

End-Code

CHERE $FF00 CORG \ code at the top of memory

AsmCode

jmp EntryPoint

...

End-Code

CORG \ restore dictionary pointer
 	
19.4.7 VALUE and VARIABLE

VALUE defines an initialised variable (size=cell) whose default action is to return its contents
(value). To write to it, you must precede it with TO (ANS) or -> (MPE}. The address can be
found using ADDR <value>. By definition, the data is in the current IDATA section.

VARIABLE defines a cell-sized variable that always returns its address. In Forth 7, the variable is

Chapter 19: Compilation in detail 125

in IDATA space and is initialised to zero. This prevents errors caused by forgetting to initialise
the variable before use. By legend, this error in a Fortran program was responsible for the loss
of one of the Mars probes.� �
5 VALUE FOO

FOO . addr FOO @ .

6 to FOO FOO .

VARIABLE BAR

5 BAR ! BAR @ .
 	
Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below. Reserve one cell of data space at an aligned address.
Name is referred to as a variable.

name Execution: (-- a-addr)

A-addr is the address of the reserved cell. A program is responsible for initializing the contents
of the reserved cell.

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name

with the execution semantics defined below. Reserve two consecutive cells of data space. Name
is referred to as a two-variable.

name Execution: (-- a-addr)

A-addr is the address of the first (lowest address) cell of two consecutive cells in data space
reserved by 2VARIABLE when it defined name. A program is responsible for initializing the
contents.

: VALUE \ x "<spaces>name" -

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name

with the execution semantics defined below, with an initial value equal to x. Name is referred to
as a value.

name Execution: (-- x)

Place x on the stack. The value of x is that given when name was created, until the phrase x TO

name is executed, causing a new value of x to be associated with name.

19.4.8 BUFFER: and RESERVE

BUFFER: is the equivalent, with one important exception, of the code below:� �
UDATA CREATE ABUFFER \ -- uaddr

<size> ALLOT

<size> BUFFER: ABUFFER \ -- uaddr
 	
The difference is that BUFFER: leaves the currently active section alone, whereas the first example
switches it to UDATA which is a trap for the unwary.

Associated with UDATA sections is second location pointer, which grows down from the top of

126 Forth 7 Cross Compiler

the section, allocating space from the top. This can be very useful when careful use of the IDATA
and UDATA spaces is required, as the gap between the top of the IDATA section and the bottom
of the UDATA section can be made contiguous if the IDATA and UDATA sections are themselves
contiguous.

: RESERVE \ n - addr

RESERVE takes a required size n, drops the location pointer, and returns the base address addr.
RESERVE is mostly used to reserve space for stacks and buffers in the form:

<size> RESERVE EQU <name>

19.5 Local variables

The sequence� �
: <name> { ni1 ni2 ... | lv1 lv2 ... -- o1 o2 }

...

;
 	
defines named inputs, local variables, and outputs. The named inputs are automatically copied
from the data stack on entry. Named inputs and local variables can be referenced by name within
the word during compilation. The output names (after –) are dummies to allow a complete
stack comment to be generated.

• The items between { and | are named inputs.

• The items between | and – are local values/variables.

• The items between – and } are outputs.

Named inputs and locals return their values when referenced, and must be preceded by -> or
TO to perform a store, or by ADDR to return the address. Arrays may be defined in the form:

arr[n]

Any name ending in the ’[’ character will be treated as an array, the expression up to the
terminating ’]’ will be interpreted as the size. Arrays only return their base address, all operators
are ignored. In the example below, a and b are named inputs, a+b and a*b are local variables,
and arr[is a 10 byte array.� �
: foo { a b | a+b a*b arr[10] -- }

a b + -> a+b

a b * -> a*b

cr a+b . a*b .

;
 	
The ANS local variable syntax is also supported, but is not recommended on the grounds of
readability and functionality. If you need it the ANS specification is provided in HTML format
in the DOCS\ANSFORTH directory. Start with DPANS.HTM

19.6 Extending the compiler

The compiler allows the user to extend the compiler itself by controlling where new words are

Chapter 19: Compilation in detail 127

placed. After cross-compilation is started, all new words are placed by default into the target
image. The directives in the table below control where new words are placed.

It is a convenient conceptual model to regard these directives as corresponding to vocabular-
ies called *TARGET, *COMPILER, *INTERPRETER, *ASSEMBLER and *HOST. The table shows the
conceptual search order generated by the directives.

Directive and
corresponding
vocabulary

Action

TARGET

*TARGET

New words are placed in the target image

Conceptual search order: *TARGET

COMPILER

*COMPILER

New words are added to the cross-compilers compile time behaviour.
These words act like IMMEDIATE words in conventional Forth, but are
not available during interpretation. All memory access words refer to
the target.

Conceptual search order: *COMPILER *HOST

INTERPRETER

*INTERPRETER

New words are added to the cross-compilers interpret time behaviour.
These words are not available during compilation. All memory access
words refer to the target. See the next section on defining words for
details of the actions for defining words using CREATE ... DOES> or
CREATE ... ;CODE.
Conceptual search order: *INTERPRETER *HOST

ASSEMBLER

*ASSEMBLER

New words are added to the cross-compilers assembler. This directive
is usually used to add macros to the assembler. Also searches the
INTERPRETER words.
Conceptual search order: *ASSEMBLER *INTERPRETER *HOST

HOST

*HOST

Exposes the underlying host portion of the cross-compiler so that
utility words can be added that will be used later by words defined
using COMPILER INTERPRETER or ASSEMBLER. Use of this mode is at
your own risk. Finish this mode with TARGET.
Conceptual search order: *HOST

Table 19.1: Compiler extension directives

19.7 Defining words

Defining words can be handled in two ways, automatically by the cross-compiler, or explicitly
using the extension mechanism discussed above. The objectives behind the two mechanisms are
different.

The automatic mechanism aims to be transparent, so that code for the cross-compiler can be the
same as that for a hosted Forth. This encourages portability and makes the cross-compiler easier

128 Forth 7 Cross Compiler

to use for the majority of defining words. The automatic mechanism copes with the majority of
defining words.

The explicit mechanism provides very fine control of the host and target environments, but can
be more confusing to use.

19.7.1 Automatic handling

The cross-compiler will automatically build an analogue of the defining word in the hosts con-
ceptual *INTERPRETER vocabulary up to the terminating ;, DOES> or ;CODE. This is triggered by
CREATE. Consequently, any code between the start of the word and CREATE will not have a host
analogue. The words between CREATE and the terminating DOES> or ;CODE must either be in the
*INTERPRETER vocabulary or must be target constants or variables, which allows construction
of linked lists that refer to target variables.

A target version of the defining portion up to DOES> or ;CODE is built if the target words has
heads. The run-time portion of the code is always placed in the target.

Construction of the host analogue is inhibited between the directives TARGET-ONLY and
HOST&TARGET.

Both the defining words below can be handled automatically by the cross-compiler� �
: CON \ n -- ; -- n ; a constant

CREATE

,

DOES>

@

;

VARIABLE LINKIT \ exists in target

: IN-CHAIN \ n -- ; -- n ; constants linked in a chain

CREATE

, \ lay down value

HERE LINKIT @ , LINKIT ! \ link to previous

DOES>

@

;
 	
19.7.2 Explicit handling

Explicit handling uses the compiler directives discussed in a previous section. The explicit
mechanism is particularly useful for more complex words, and where no target version of the
defining word is required, as is often the case when the Umbilical Forth target is being used.

The examples from the automatic handling section are repeated here using the explicit mecha-
nism.

Chapter 19: Compilation in detail 129� �
INTERPRETER

: CON \ n -- ; -- n ; a constant

CREATE

,

DOES>

@

;

VARIABLE LINKIT \ exists in target

: IN-CHAIN \ n -- ; -- n ; constants linked in a chain

CREATE \ only in host

, \ lay down value

HERE LINKIT @ , LINKIT ! \ link to previous

DOES> \ run time in target

@

;

HOST

VARIABLE LINKIT2 \ exists in host

INTERPRETER

: IN-CHAIN2 \ n -- ; -- n ; link variable in host

CREATE \ in host

,

HERE LINKIT2 @(H) , LINKIT2 !(H)

DOES>

@

;

TARGET
 	
As can be see from the examples above, the automatic handling mechanism is simpler, but the
explicit handling mechanism permits finer control over where code is generated, which can be
useful when defining words are required and the absolute minimum of target memory is to be
used.

19.8 IMMEDIATE words

As with defining words, IMMEDIATE words can be handled in two ways. In the first case, I: can
be used to mark that a host analogue is required. In the second case, a host version of the word
is placed in the *COMPILER conceptual vocabulary using the COMPILER directive. The examples
below illustrate the definition of IF, which acts like IF but executes the code after IF if TOS=0.

19.8.1 Automatic handling
� �
I: -IF \ -- ; always produces target version

POSTPONE 0= POSTPONE IF

; IMMEDIATE
 	
The disadvantage of this method is that there will always be a target version, but the only
variation from conventional Forth is the use of I:.

130 Forth 7 Cross Compiler

19.8.2 Explicit handling� �
COMPILER

: -IF \ -- ; only exists in host

0= IF \ references *COMPILERs 0= and IF

;

TARGET
 	
19.9 Checksums

Checksums can be calculated over the current CDATA area. To do this, use the word CHECKSUM.

start end location type CHECKSUM

where start is the first address of the checksum region, end is the last address, and location is
where the checksum is to be placed. The type is a constant identifying what sort of checksum is
required, and may be chosen from the predefined types:

SIMPLE8 SIMPLE16 SIMPLE32 CCITT

CRC16 LRCC16 SDLC CRC32

CRCxModem16 CRCxModem16-0

19.10 Automatic build numbering

The automatic build numbering system allows you to update a build number string every time
that a successful compile takes place. This information is stored in a file in the working directory.
By default it is called BUILD.NO.

The build file consists of one line of text, which can be any mixture of text and numbers. At
every update, all the digits in the text are treated as a single integer which is updated. This
allows you to incorporate text in the form:

MPE PowerForth v6.40 [build 0030]

: BUILDFILE \ "<filename>" -- ; set build file name

Sets the name of the build file, e.g.

BUILDFILE MYBUILD.NO

: MAKE-BUILD \ addr --

Read the build file and copy the text to the target as a counted string. Use this to copy the
string to a pre-allocated buffer.
Read the build file, and lay the text in the target as a counted string, e.g.

CREATE VERSION$ BUILD$,

BUILD$, only allocates the space needed to hold the string.

: UPDATE-BUILD \ --

Update the build number file. Place this just before FINIS so that a successful build updates
the build number.
The following three words can be used during interpretation to compile date and time strings
into the target dictionary (as counted strings) to support build identification.

: DATETIME$, \ --

Chapter 19: Compilation in detail 131

Lay the compilation date and time as a counted string in the dictionary.

: DATE$, \ --

Lay the compilation date as a counted string in the dictionary.

: TIME$, \ --

Lay the compilation time as a counted string in the dictionary.� �
create BuildDate \ -- addr

date$, time$, \ two strings

create DateTime \ -- addr

DateTime$, \ data and time as one string
 	
19.11 Macros in text strings

The word M", is available during interpretation to lay down a counted string which includes
macros delimited in the usual way by the % character, e.g.� �
CREATE DESCRIPTION \ -- addr

M", Reactor type %RTYPE%, boiler %BOILER%"
 	

133

20 Target Forth model

This chapter describes how Forth is laid out on a target board. It is not necessary to read
this chapter, but this chapter provides more information if you are interested or if you want to
perform modifications to the cross-compiler or target.

20.1 Inside a ROM target Forth

A standalone ROM target Forth communicates with the host on a communications link, usually
a serial line. The host needs to be running a terminal emulator, which displays any characters
from the target and sends any characters typed at the host’s keyboard. The target takes input
from and sends output to the serial line, not from a keyboard and to a display. To do this, the
generic I/O words EMIT and KEY use a generic I/O device that accesses the serial line.

20.2 Forth memory map

Apart from the code space itself, there are several important areas of RAM required by any
Forth system. The RAM on the target system is split into several areas:

• USER area and stacks for eack task,

• USER area for high level interrupts,

• Terminal input buffer (TIB) for standalone Forth,

• Serial queues if required.

The remaining RAM is available for use by an interactive Forth as data and dictionary space.

Each task requires separate RAM for the two stacks and the USER area (thread-local storage).
The three regions are contiguous. In some systems the USER area is at the bottom and stacks
are at the top. For CPUs which support nested interrupts, the low region will be whichever
stack is used for interrupt data, usually the CPU return stack.

If you write high-level Forth interrupt handlers, you can reserve RAM for interrupt handler USER
areas and stacks.

Standalone Forths require a terminal input buffer to hold a line of text for processing.

If you are running your comms link at speeds above 38400 baud, you will probably need to use
input queues on the serial lines. Running a serial line at 115200 baud makes development much
more comfortable.

20.3 RAM initialisation

The ANS standard does not require variables (created by words VARIABLE or CVARIABLE) to be
initialised at start up. In MPE PowerForth data created in IDATA space is initialised to zero
within the cross-compiler. The table of initial values is then copied to the end of the output file
when the cross-compiler finishes. The compiler termination report tells you where the table is
located.

134 Forth 7 Cross Compiler

Two locations (defined as labels) in the target, INIT-RAM and RAM-START, point to the initial
value table (in ROM), and to the memory area (in RAM) it should be copied to. The table
consists of a number of entries containing four fields: len, addr, pageid, len data. This repeats
until terminated by an entry with len=0.
Cell: len, a count of the number of bytes to be copied
Cell: addr, the address to which the data should be copied
Cell: pageid, the page id in which the data resides, 0 indicating unpaged memory.
Len bytes: the data to be copied.

The code that performs this copy is in the word (INIT) in COMMON\KERNEL62.FTH.

In addition to using the memory store operators C!, W! and !, RAM may be initialised when
space is allotted using cross-compiler words that use ,, W, or C,. It is safest to explicitly initialise
all variables and data areas in COLD or ABORT. This protects the system from errant behaviour
after error recovery or power failure. It is worth remembering that a Mariner probe was lost
because of an uninitialised Fortran variable!

For Umbilical Forth targets, an EQUate INIT-IDATA? may be present to control whether the
additional start up code to perform initialisation is compiled. This saves code space when
initialisation of IDATA space is not required.

20.4 Implementation model

The Forth implementation on modern CPUs and 32 bit targets uses subroutine threaded code
and the VFX code generator. On entry to and exit from words, the top of the data stack is kept
in a register. Other registers are used for the two stack pointers, the pointer to the USER area,
and a local variable frame pointer. The assignment of the registers is given in the assembler
chapter of the CPU specific manual.

Most targets includes a very simple non-optimising compiler. The VFX code geneator is quite
big (5000 lines of code), and so is reserved for the cross compiler and for Forth systems hosted
by an operating system. If you want to port the VFX code geneator to a target system, please
contact MPE.

Some compilers for older targets will maintain compatibility with Forth 5 and will generate
Direct Threaded Code (DTC).

20.5 Forth models

Two different targets are provided in the COMMON directory. The first is a standalone Forth that
can be debugged interactively using a dumb terminal. The Forth provides all the facilities you
need. Source code can be downloaded to the Forth and debugged on the target. The target
Forth provides interpretation and compilation facilities.

The second is a Forth called Umbilical Forth that is tuned for single chip applications. Unlike
the Standalone Forth, Umbilical Forth requires the Umbilical Forth message passer in the TAR-
GEND.FTH file for interpretation and compilation, which is provided by a server on the host
PC (see below). The Umbilical Forth kernel is typically less than 4k bytes for 32 bit targets,

Chapter 20: Target Forth model 135

or 2k bytes for 16 bit targets. These figures will vary between different processors. One of our
managed to get below 512 bytes on an 8-bit CPU!

All directories use the same implementation model, and so code from one system can be used
by another. Thus an application using Umbilical Forth as a basis can safely use code from the
stand-alone Forth. This does not apply on some processors such as the 8051, where stacks may
be in different address spaces in the stand-alone and Umbilical models. In this case there may
be a separate set of UMB files that match the ROM model. Note that all the Umbilical Forth
message handling source code is in high-level Forth.

20.6 Inside Umbilical Forth

Umbilical Forth interacts with you in the same way as a ROM target Forth, but the mechanism
that provides the interaction with the target is totally different. When you reset the target and
the board signs-on, you are still running the cross-compiler. Umbilical Forth is therefore an
extension of the cross-compiler to provide interactive cross interpretation and cross-compilation.

Target source code

Cross compiler & Symbol table

Target emulator

Message passing system (host)

Message passing system (target)

Target executable code

Figure 20.1: Umbilical Forth structure

When a word is cross-compiled, the cross-compiler places information in the symbol table. The
symbol table therefore contains the XT of the word in the target image. By using a message-
passing system between the cross-compiler and the target, the XT of the word can be passed to
the target. The target can then execute the word on the target passing parameters to and from
as appropriate. Therefore, the target does not need any headers in the target image, nor does
the target need any of the code to process the headers.

137

21 Example control file

The example control file presented here is typical. It is for the MPE ARM Development Kit
hardware. Your control file will be different, but the code is commented to show what is
important.

21.1 Standard header

The header section contains the copyright notices and a description of the target. It also contains
the change history for the system.

\ Builds a PowerNet system for the MPE ARM7 Development Kit.

((

Copyright (c) 2003

MicroProcessor Engineering

133 Hill Lane

Southampton SO15 5AF

England

tel: +44 (0)23 8063 1441

net: mpe@mpeforth.com

tech-support@mpeforth.com

web: www.mpeforth.com

From North America, our telephone and fax numbers are:

011 44 23 8063 1441

The code is set up to run in a 48k section of Flash

$1000000 $100BFFF

The boot code remaps the chip select unit and segment mapper to put:

1Mb Flash at 0100:0000 to 010F:FFFF Segment 1, r/w, not cached

512k RAM at 0000:0000 to 0007:FFFF Segment 2, r/w, cached

2k local SRAM at 0000:0000 to 6000:07FF Cache mode

1k Ethernet at 5000:0000 to 5000:03FF Segment 4, r/w, not cached

The vector table is then copied to address 0.

To do

=====

Change history

==============

))

21.2 Text macros

This section handles defining the directory structure of the kernel and application. You can
modify this if the directories are moved, and you can also use conditional compilation if you
have a different directory structure on your desktop and your laptop.

138 Forth 7 Cross Compiler

only forth definitions

\ ******************************

\ Define the default directories

\ ******************************

"" ..\common" setmacro CommonDir \ where common code lives

"" ." setmacro CpuDir \ where CPU specific code lives

"" .\hardware\MpeArmDevKit"

setmacro HWDir \ board specific code lives

"" c:\buildkit.dev\software\AddOns\PowerNet\v30dev"

setmacro IpStack \ where PowerNet code lives

"" ..\examples\Filesys"

setmacro FileSysDir \ where the File System lives

21.3 Cross compiler initialisation

Until the word CROSS-COMPILE has been run, this is a normal Forth system and the facilities
of the host Forth can be accessed. After this, the system is reconfigured as a cross compiler.
Because of this, extensions such as macros are compiled before CROSS-COMPILE.

This section may include some CPU specific directives. These will be documented in the CPU
specific manual. In this case, the ARM version and alignment are specified.

\ ***

\ Turn on the cross compiler and define CPU and log options

\ ***

include %CpuDir%\macros \ compiler and assembler macros

\ file: PROG.log \ uncomment to send log to a file

CROSS-COMPILE

only forth definitions \ default search order

no-log \ uncomment to suppress output log

rommed \ split ROM/RAM target

interactive \ enter interactive mode at end

+xrefs \ enable cross references

align-long \ code is 32bit aligned

ARM7 \ Core of Sharp’s LH77790

32bit-mode \ running in 32 bit mode

0 equ false

false not equ true

Chapter 21: Example control file 139

21.4 Configure target

The target has to be configured for memory layout, size of stacks and user areas and so on.

\ ****************

\ Configure target

\ ****************

\ What sort of header do we need, default is memory image with no header

0 equ AIF? \ true for ARM AIF format

\ Kernel components

1 equ tasking? \ true if multitasker needed

6 cells equ tcb-size \ for internal consistency check

0 equ event-handler? \ true to include event handler

0 equ message-handler? \ true to include message handler

1 equ semaphores? \ true to include semaphores

1 equ timebase? \ true for TIMEBASE code

0 equ softfp? \ true for software floating point

0 equ FullCase? \ include ?OF END-CASE NEXTCASE extensions

0 equ target-locals? \ true if target local variable sources needed

0 equ romforth? \ true for ROMForth handler

0 equ blocks? \ true if BLOCK needed

$20000 equ sizeofheap \ 0=no heap, nz=size of heap

1 equ heap-diags? \ true to include diagnostic code

0 equ paged? \ true if ROM or RAM is paged/banked

0 equ MPE-SET? \ compatibility with MPE v5 targets

0 equ ENVIRONMENT? \ true if ANS ENVIRONMENT system required

0 equ ColdChain? \ true if cold chain system needed.

\ Clock, serial and ticker rates

#24000000 equ system-speed \ System clock rate in HZ.

#38400 equ console-speed \ Serial port speed in BPS.

#38400 equ console0-speed \ Serial port 0 speed in BPS.

#38400 equ console1-speed \ Serial port 1 speed in BPS.

#38400 equ console2-speed \ Serial port 2 speed in BPS.

2 equ console-port \ Designate serial port for terminal.

#10 equ tick-ms \ TIMEBASE tick in ms

\ version numbers

char 6 equ mpe-rel \ x in Vx.yz

char 1 equ mpe-ver \ y in Vx.yz

char 0 equ usrver \ z in Vx.yz

\ define stack and user area sizes

$0200 equ UP-SIZE \ size of each task’s user area

$0200 equ SP-SIZE \ size of each task’s data stack

$0200 equ RP-SIZE \ size of each task’s return stack

up-size rp-size + sp-size +

equ task-size \ size of TASK data area

UP-SIZE equ INTRAM \ space used by interrupt page

140 Forth 7 Cross Compiler

$0100 equ TIB-LEN \ terminal i/p buffer length

\ define nesting levels for interrupts and SWIs

1 equ #IRQs \ number of IRQ stacks,

\ shared by all IRQs (1 min)

0 equ #SWIs \ number of SWI nestings permitted (0 is ok)

\ *****************

\ default constants

\ *****************

cell equ cell \ size of a cell (16 bits)

0 equ false

-1 equ true

\ ********************

\ Define memory layout

\ ********************

$00000000 equ link-address \ for a binary image

\ - usually starts at zero on the ARM

\ Used by the AIF header

$00000000 $0001FFFF cdata section ADKnet \ 128k program

$01000000 $010FFFFF cdata section PROGf \ 1Mb of Flash

$00020000 $0002FFFF idata section PROGd \ 64k IDATA RAM

$00030000 $0006FFFF udata section PROGu \ 256k UDATA RAM

$00070000 $007FFFFF udata section VideoRAM \ 64k video RAM

\ N.B. Change INITNET.FTH if you change this.

Interpreter

: prog adknet ; \ synonym for common code

target

PROG PROGd PROGu CDATA \ use Code for HERE , and so on

\ **********************************

\ USER area and Multi tasker equates

\ **********************************

\ Assume stacks grow down: user area, sp stack, rp-stack

\ Main User/Task stack for USR/SVC operation

\ The return stack must be the lowest of RSP, PSP and UP

\ in order to permit fast interrupt nesting. In order for

\ the initialisation code in MULTIARM.FTH to work, INIT-U0

\ must be the highest.

rp-size sp-size + equ TASK-U0 \ initial offset of user area

rp-size sp-size + equ TASK-S0 \ initial offset of data stack

rp-size equ TASK-R0 \ initial offset of return stack

task-size reserve equ INIT-T0 \ base of main task area

init-t0 task-u0 + equ INIT-U0 \ base of main user area

Chapter 21: Example control file 141

init-t0 task-s0 + equ INIT-S0 \ top of main data stack

init-t0 task-r0 + equ INIT-R0 \ top of main return stack

task-size #SWIs * reserve drop \ space for SWI nesting

tib-len reserve equ INIT-TIB \ base of TIB

\ IRQ stacks ; nestable up to #IRQs

0 reserve equ IRQ_STACK_TOP \ top of IRQ stacks

task-size #IRQs * reserve \ bottom of IRQ stacks

equ IRQ_STACK_BASE

PROGd

sec-top 1+ equ UNUSED-TOP \ top of memory for UNUSED

PROG

21.5 Kernel files

This section uses the information defined earlier to pull in the required files for the Forth kernel.

\ ************

\ Kernel files

\ ************

include %CpuDir%\sfr790A \ LH77790A Special function registers.

include %CpuDir%\initARM \ Generic startup code (*required*).

include %HwDir%\Boot\InitNet \ Devkit start up code for boot loader

include %CpuDir%\codeARM \ low level kernel definitions

include %CommonDir%\kernel62 \ high level kernel definitions

include %CpuDir%\intARM \ exception handlers

include %CpuDir%\drivers\Ser790i \ Debug Uart - channel 2

include %CommonDir%\devtools \ DUMP .S etc development tools

include %CommonDir%\voctools \ ORDER VOCS etc

include %CommonDir%\methods \ target support for methods

include %CpuDir%\local \ local variables

tasking? [if]

include %CpuDir%\multiARM \ multi-tasker, MUST be before TIMEBASE

[ELSE]

: pause ;

[then]

timebase? [if]

include %CommonDir%\timebase \ time base common code

include %CpuDir%\drivers\Tick790 \ timer tick

[then]

environment? [if]

include %CommonDir%\environ \ ENVIRONMENT?

[then]

142 Forth 7 Cross Compiler

SIZEOFHEAP [if]

include %CommonDir%\heap32 \ memory allocation set

[then]

softfp? [if]

include %CpuDir%\softfp \ floating point

include %CommonDir%\softcom \ common floating point code

[then]

romforth? [if]

include %CommonDir%\RomForth\link \ appl. rom link

include %CommonDir%\RomForth\iodef \ link i/o

include %CommonDir%\RomForth\filetran \ ascii file uploader

include %CommonDir%\RomForth\xmodem \ XMODEM downloader

include %CommonDir%\RomForth\intelhex \ Intel Hex downloader

include %CommonDir%\RomForth\textfile \ XSHELL textfile support

\ include %CommonDir%\RomForth\blocks \ XSHELL blocks support

[then]

mpe-set? [if]

include %CpuDir%\mpe_supp \ MPE v5 compatibility word set

[then]

\ *************

\ End of kernel

\ *************

internal

: .CPU \ -- ; display CPU type

." MPE ARM ANS ROM PowerForth v6.20"

;

external

: ANS-FORTH \ -- ; marker

;

21.6 Application code

The application code example here is MPEs PowerNet TCP/IP stack, which uses its own build
file, but requires configuration through a number of equates and some compiler and interpreter
extensions.

\ *************************

\ Add application code here

\ *************************

interpreter

: const equ ;

\ Define this as CONSTANT to get interactive access to the

\ constants.

Target

Chapter 21: Example control file 143

ProgF

sec-base equ Flashbase

Prog

compiler

: ForceUncached ; \ addr -- addr’

target

interpreter

: ForceUncached ; \ addr -- addr’

target

include %CpuDir%\drivers\29F040B.fth

create EtherAddress \ -- addr

\ Holds the Ethernet MAC address (six bytes). Note that you

\ must obtain these from the IEEE (www.ieee.org) or from other

\ sources.

$00 c, $10 c, $8B c, $F1 c, $44 c, $20 c,

create IpAddress \ -- addr

\ Holds the Ethernet IP address (four bytes).

192 c, 168 c, 1 c, 251 c, \ assign these as required

$50000000 equ EtherBase \ -- addr

0 equ SMC16? \ -- flag ; true for 16 bit access code

0 equ fastCPU? \ -- n ; true for fast CPU

0 equ smcDiags? \ -- flag ; true for Ethernet diagnostics

0 equ eeprom? \ -- flag ; true for attached EEPROM

1 equ sniff? \ -- flag

include %CpuDir%\drivers\smc91c9x.fth

include %HWDir%\hware\Led.fth

: reboot \ --

\ Reboot the CPU (equivalent to a hardware reset). This word

\ is used by NETBOOT.FTH if present.

$07 $FFFFAC30 ! begin again

;

\ These assume that the bottom 128k of Flash is used for the

\ boot code, the middle is unused, and the final 64k is used

\ for data storage.

\ N.B. These constants are affected by the SECTION definitions.

0 equ BootMenu? \ -- n ; nz to compile boot menu

flashbase constant BootFlash \ base address of boot Flash

\ after mapping

$00020000 constant BootLen \ length of boot Flash

$00000000 constant BootRAM \ addr of boot code after mapping

$01020000 constant userflash \ -- addr ; base address of user flash

$0 constant userflashlen \ -- n ; size of user flash

$01070000 constant dataflash \ -- addr ; base address of data flash

$00010000 constant datalen \ -- n ; size of data flash

\ Where applications are copied to from the user flash

144 Forth 7 Cross Compiler

$00010000 constant AppRam \ -- addr ; application area

$00060000 constant Applen \ -- n ; length of application area

1 equ CPU=ARM \ if defined, selects ARM specific code

include %CpuDir%\drivers\netcode \ Network order and CPU dependent

include %CpuDir%\drivers\netboot \ Network boot loader

\ PowerNet configuration and setup

1 equ ethernet? \ nz for Ethernet systems

0 equ slip? \ nz to include SLIP

0 equ tftp? \ nz to include TFTP

1 equ tcp? \ nz for TCP as well as UDP

1 equ telnet? \ nz to include Telnet

1 equ echo? \ nz to include Echo

0 equ snmp? \ nz to include SNMP

1 equ diags? \ nz to include diagnostics (recommended)

include %IpStack%\PowerNet.bld

21.7 End of compilation

All the files have been compiled. All that is required is library file resolution and some sanity
checks.

\ ******************

\ End of compilation

\ ******************

libraries \ to resolve common forward references

include %CpuDir%\libARM

include %CommonDir%\library

end-libs

\ *************

\ Sanity checks

\ *************

decimal

cr ." Required USER size is : " next-user @ .

cr ." Current USER allocation is: " up-size .

Next-user @ up-size > [if]

\ Check that the USER area is large enough.

cr ." *** Increase USER area size UP-SIZE in control file ***

abort

[then]

\ XREF DUP \ where is DUP used

\ XREF-ALL \ full cross reference

\ XREF-UNUSED \ find unused words

\ ********

Chapter 21: Example control file 145

\ All done

\ ********

decimal

FINIS

147

22 Interpreter directives

Many of the ANS standard Forth words are available during interpretation. This includes the
memory words such as @ and !. Unless otherwise specified, all addresses are target addresses,
and a character will be a byte unless the CPU is cell addressed.

22.1 ANS and common words

The majority of the CORE wordset is implemented for use during interpretation. These are not
documented unless they have some special impact during cross-compilation of source code.

USER variables are not available during interpretation.

Words that convert numbers, e.g. S>D behave differently on 16 and 32 bit targets. Because
the cross compiler’s host Forth is a 32 bit Forth, for 16 bit targets only, the number handling
defaults to 16 bits, but can be changed temporarily using HOST-MATH and TARGET-MATH.

: >body cc/i \ xt -- pfa

Only works for children of CREATE.

: >does cc/i \ xt -- runtime

Given an xt, returns the target runtime address. Only works for children of CREATE.

: >in cc/i \ -- addr

Not available because >IN is usually a USER variable.

: base cc/i \ --

BASE is not available because it is a USER variable.

: BASE-36 CC/I \ --

Selects a number base of 36 for packing 0..9, A..Z.

: postpone cc/i \ --

POSTPONE is not available during interpretation.

: state cc/i

STATE is not available because it may be a USER variable.

22.2 Specials

These words are usually only needed when debugging cross-compiler extensions.

: find cc/i \ caddrt -- symh +/-1 | caddrh 0

A compiler debugging tool. Given a counted string in the target, returns a host symbol offset
and +/-1 if found, otherwise returns an address in the host and zero. Don’t ask!

: ’(h) cc/i \ -- xth ; ’(h) <name>

Performs a host ’.

: c@(h) cc/i \ addr -- b

Operates on host memory.

: w@(h) cc/i \ addr -- w

Operates on host memory.

148 Forth 7 Cross Compiler

: @(h) cc/i \ addr -- x

Operates on host memory.

: c!(h) cc/i \ b addr --

Operates on host memory.

: w!(h) cc/i \ w addr --

Operates on host memory.

: !(h) cc/i \ x addr --

Operates on host memory.

22.3 Section handling
: section cc/i \ start end --

Creates a new region of target memory. The end address is the last address in the section.
Usually used in the form:

<start> <end> xDATA SECTION <name>

: bank cc/i \ start end --

Defines a regions of memory which is paged. Usually used in the form:

<start> <end> xDATA BANK <name>

: pages cc/i \ id --

Defines a page in the current BANK. Used in the form:

<id> PAGES <name>

: write-ignore cc/i \ --

Causes writes to the current section to be ignored and reads to return 0. Must be used imme-
diately after a SECTION definition, e.g.

<start> <end> xDATA SECTION <name> WRITE-IGNORE

: ignorable cc/i \ --

Causes the next section to be a WRITE-IGNORE section and reads to return 0. Must be used
immediately before a SECTION definition, e.g.

<start> <end> IGNORABLE UDATA SECTION <name>

IGNORABLE is mostly used to provide a catch-all section for Umbilical Forth operations. This is
usually defined as the first section so that it is searched last. It prevents the host allocating any
memory for the section.

: write-invalid cc/i \ --

Causes writes to the current section to generate an error and reads to return 0. Must be used
immediately after a SECTION definition, e.g.

<start> <end> xDATA SECTION <name> WRITE-INVALID

: write-fail cc/i \ --

Causes writes to the current section to generate an error. Reads return the last data written.
Used when section data is still needed but the section may no longer be written to.

: write-mem cc/i \ --

Causes writes to the current section to be enabled again, reversing the action of write-fail.

: all-saved cc/i \ --

Chapter 22: Interpreter directives 149

Causes the whole of a section to be saved. Usually used immediately after a SECTION definition
for CPUs that boot from the top of memory, e.g.

<start> <end> xDATA SECTION <name> ALL-SAVED

: code/data cc/i \ --

Marks the current section in a Harvard target as shared CODE/DATA. Such sections are oc-
casionally found in targets that map an address range into both CODE and DATA address
spaces.

: single-section-only cc/i \ --

Used for hosted systems to indicate that the current section contains the CDATA, IDATA and
UDATA sections. The current section should be the only section defined.

: single-section? cc/i \ -- flag

Returns true if single-section-only has been used.

: data-file cc/i \ -- size ; DATA-FILE <filename>

Loads a binary image from disk to target memory at HERE and ALLOTs the target memory. The
size of the target data is returned.

: idata cc/i \ --

Switch to the current IDATA section.

: udata cc/i \ --

Switch to the current UDATA section.

: cdata cc/i \ --

Switch to the current CDATA section.

: COrg cc/i \ addr --

Define a new compilation address in the current CDATA section. New data will be laid at this
target address.

: IOrg cc/i \ addr --

Define a new compilation address in the current IDATA section. New data will be laid at this
target address.

: UOrg cc/i \ addr --

Define a new compilation address in the current UDATA section. New data will be laid at this
target address.

: Org cc/i \ addr --

Define a new compilation address in the current section. New data will be laid at this target
address.

: origin cc/i \ -- addr(t)

Returns start address of the current CDATA section.

: sec-base cc/i \ -- addr(t)

Returns start address of the current section.

: sec-top cc/i \ -- addr(t)

Returns end address of the current section.

: sec-len cc/i \ -- len

Returns the length of the current CDATA section.

: sec-end cc/i \ -- addr(t) ; returns BP of current section

Returns the buffer pointer address in the current section. This is the end address less the amount
RESERVEd.

150 Forth 7 Cross Compiler

: reserve cc/i \ n -- addr(t)

Allocates n bytes down from top of the current UDATA section, returning the start address of the
buffer.

: unused cc/i \ -- n

Return the amount of free space (BP-DP) in the current section.

: .section-report cc/i \ --

Displays a report about the memory usage of each section.

: .sections cc/i \ -- ; show section status

Displays a report about the memory usage of each section, and indicate the current section.

: .curr-sections cc/i \ --

Display the current section of each type. The current type is marked with an asterisk.

: flush-idata cc/i \ --

If not already done, flush the primary vocabulary data to RAM and then copy the used portions
of the IDATA sections to the current CDATA section. This directive is often used when the size of
a binary file needs to extended to a certain alignment. The alignment code then follows after
flush-idata. See also lay-idata.� �
cdata flush-idata \ lay IDATA sections NOW

here $1FF + $-0200 and org \ force to 512 byte boundary
 	
: lay-idata cc/i \ --

Add the the used portions of the IDATA sections to the current CDATA section. There are no
interlocks. Each IDATA section is laid down as

len | addr | pageid | len bytes ...

The list is finished by a length of zero.

: appFlush-idata cc/i \ --

As flush-idata above, but for the application portion of a split bootloader/application system.� �
cdata appFlush-idata \ lay IDATA sections NOW

here $1FF + $-0200 and org \ force to 512 byte boundary
 	
: Download-sections cc/i \ --

Download the CDATA memory sections to target Flash. This requires taget CPU-specific down-
loader software (and perhaps hardware) to have been installed. Consult the target-specific
manual for details.

: -download-prompts cc/i \ --

Download-sections will be performed without a prompt.

: +download-prompts cc/i \ --

Download-sections will be performed with a prompt. This is the default condition.

: +SaveCdataOnly cc/i \ --

When the output files are written, only the CDATA sections are written.

: -SaveCdataOnly cc/i \ --

When the output files are written, all section types are written. This is the default.

Chapter 22: Interpreter directives 151

: setBinExt \ -- ; setBinExt .ext

By default, binary output files have the extension ".img". You can change this to another
extension. For example, some Flash programmers require binary files to have ".bin" extensions.

setBinExt .bin

: +NamesWithCRCs \ --

When section files are generated, a four-digit hex CRC is added to the file name, e.g. a section
called Prog may be saved as the file Prog12AB.img.

: -NamesWithCRCs \ --

CRCs are not appended to section file names. This is the default.

: TargetFlashStart \ addr --

Used in a non-Harvard target to indicate that the target can compile into Flash or EEPROM
that starts at the given address, e.g.

$F000 TargetFlashStart

The given value will be the initial value of the target DP and the target RP (if it exists) will be
set to the end of the IDATA section.

22.4 Comma and friends
: ,c cc/i \ x --

Compiles into the current CDATA section.

: w,c cc/i \ w --

Compiles into the current CDATA section.

: c,c cc/i \ b --

Compiles into the current CDATA section.

: ,i cc/i \ x -- ; compiles into IDATA

Compiles into the current IDATA section.

: w,i cc/i \ w -- ; compiles into IDATA

Compiles into the current IDATA section.

: c,i cc/i \ b -- ; compiles into IDATA

Compiles into the current IDATA section.

: ,(r) cc/i \ x --

Compiles into the current IDATA section.

: w,(r) cc/i \ w --

Compiles into the current IDATA section.

: c,(r) cc/i \ b --

Compiles into the current IDATA section.

: align cc/i \ --

Force target alignment in the current section.

: Calign cc/i \ --

Force target alignment in the current CDATA section.

: Ialign cc/i \ --

Force target alignment in the current IDATA section.

: Ualign cc/i \ --

152 Forth 7 Cross Compiler

Force target alignment in the current UDATA section.

: aligned cc/i \ addr -- a-addr ; 3 + -4 and

Given an address pointer this word will return the next ALIGNED address subject to system wide
alignment restrictions. This is a NOOP if alignment is not enabled.

: aligning? cc/i \ -- flag

True if aligning is turned on.

: Here cc/i \ -- addr(t)

Return the dictionary pointer for the current xDATA section.

: Chere cc/i \ -- addr(t)

Return the dictionary pointer for the current CDATA section.

: Ihere cc/i \ -- addr(t)

Return the dictionary pointer for the current IDATA section.

: Uhere cc/i \ -- addr(t)

Return the dictionary pointer for the current UDATA section.

: there cc/i \ -- addr

Return the dictionary pointer for the current IDATA section. OBSOLETE - use IHERE instead.

: Allot cc/i \ #bytes --

Adjust dictionary pointer for the current xDATA section.

: Allot&Erase cc/i \ #bytes --

Adjust dictionary pointer for the current xDATA section, and fill the space with zeros.

: CAllot cc/i \ #bytes --

Adjust dictionary pointer for the current CDATA section.

: IAllot cc/i \ #bytes --

Adjust dictionary pointer for the current IDATA section.

: UAllot cc/i \ #bytes --

Adjust dictionary pointer for the current UDATA section.

: Allot-RAM cc/i \ #bytes --

Adjust dictionary pointer for the current IDATA section. OBSOLETE - use IALLOT instead.

: bin-aligned cc/i \ addr u -- addr’

Force alignment of addr to a u byte boundary where u is a power of two.

: bin-align cc/i \ n --

Force alignment of the current section to a u byte boundary where u is a power of two.

22.5 Defining words
: : cc/i \ --

The cross-compiler’s version of :.

: :noname cc/i \ -- xt

The cross-compiler’s version of :NONAME returns a target xt/address.

: I: CC/I \ --

Behaves like : but also builds a host analogue. Used occasionally for words that are IMMEDIATE
in the target. Mostly superceded by INTERPRETER ... TARGET

: set-compiler cc/i \ xt --

Chapter 22: Interpreter directives 153

Hosted VFX Forth targets only: Set the code generator field of the last word defined.

: COMP: cc/i \ --

Hosted VFX Forth targets only: Set up target code generator field and start a :NONAME definition
to perform compilation actions for the last word defined. Use this only for code generators in
which the result of compiling the word is the same as executing it, e.g. DUP. The code generator
may not parse or have other than a neutral stack effect.

: NDCS: cc/i \ --

Hosted VFX Forth targets only: Set up target code generator field and start a :NONAME definition
to perform compilation actions for the last word defined. Use this for code generators for words
that have different interpretation and compilation actions, e.g. IF or S". Such words may parse
or produce or consume items from the stack.

: AsmCode cc/i \ -- ; replacement for ASSEMBLER

Starts a section of assembler code.

: Code cc/i \ -- sys

Used in the form CODE <name> to start the word <name> that is written in assembler.

: Icode cc/i \ --

Used in the form ICODE <name> to start the word <name> that is written in assembler. The word
will always be inlined.

: End-Code \ sys --

Finish an AsmCode, CODE, or ICODE definition.

: immediate cc/i \ --

Marks the last target definition as IMMEDIATE.

: +FlashCompile \ --

The target compiles with the immediate bit set to 0 for IMMEDIATE words. This is used by
systems that compile directly into Flash which is erased to $FF.

: -FlashCompile \ --

The target compiles with the immediate bit set to 1 for IMMEDIATE words. This is the default
condition and is for systems that compile into RAM or into Flash that is erased to $00. Used
immediately after a definition, and marks a definition as suitable for binary inlining. Used with
CODE definitions mostly, in the form:� �
code foo

...

end-code inline
 	
: inline-always cc/i \ -- ; always inline a CODE defn.

Marks a definition that will always be binary inlined. Use in the form:� �
code foo

...

end-code inline-always
 	
: Label cc/i \ addr -- ; -- addr ; <addr> LABEL <name>

Creates a label in the host, which returns the given target address. In essence, just a name for
an address. Use as:

chere 8 + LABEL <name>

154 Forth 7 Cross Compiler

: L: cc/i \ -- ; -- chere ; L: <name>

Generates a label at the current CDATA address.

L: <name>

: proc cc/i \ "name" --

Define a named section of assembler, often used to start a subroutine used within other assembler
code. When name is referenced, its address is returned. Equivalent to AsmCode L: <name>.� �
proc foo \ returns address when referenced

...

end-code

...

jsr foo

...
 	
: PL: cc/i \ -- ; -- chere ; L: <name>

Only for 16 bit systems. A paged version of L:. When reference, returns a 32 bit value with the
page number in the high 16 bits and the address within the page in the low 16 bits.

: l>hilo cc/i \ p:a16 -- page addr

Only for 16 bit systems. Separates a paged address, e.g. from PL:, into page and address form.

: l>lohi cc/i \ p:a16 -- addr page

Only for 16 bit systems. Separates a paged address, e.g. from PL:, into address and page form.

: equ cc/i \ x -- ; -- x ; x EQU <name>

Creates a host word only. When referred to, the value x is interpreted or compiled as literal
(number). Use in the form:

$FF equ Amask \ interpreted as a literal.

: Constant cc/i \ x -- ; -- n ; x CONSTANT <name>

Creates a target CONSTANT.

: const \ x -- ; -- x ; x CONST <name>

Creates a target EQU or CONSTANT according to the setting below. This allows some code to
be visible CONSTANTs during debugging and smaller headless EQUs in release code. This can
be particularly useful to make I/O addresses from peripheral files visible during debugging by
loading the peripheral definitions file a second time:� �
...

+const-visible \ CONST = CONSTANT

include sfrK60.fth

-const-visible \ CONST = EQU
 	
: -const-visible \ --

CONST is a synonym for EQU (default condition). See CONST above.

: +const-visible \ --

CONST is a synonym for CONSTANT. See CONST above.

: const=equ \ --

CONST is a synonym for EQU (default condition). See CONST above.

: const=constant \ --

Chapter 22: Interpreter directives 155

CONST is a synonym for CONSTANT. See CONST above.

: 2Constant cc/i \ xd --

Creates a target 2CONSTANT.

: Create cc/i \ -- ; -- addr ; imitates host CREATE

Creates a target CREATE. Note that the address returned by the child of CREATE is dependent
on the xDATA setting, normally CDATA. You can create a table in initialised RAM with:� �
idata create foo \ -- addr

1 , 2 , 4 , 8 ,

cdata
 	
: Target-Only cc/i \ -- ; only compile into target

Disable automatic creation of host analogues of CREATE ... DOES> words.

: Host&Target cc/i \ -- ; compile into target and host

Enable automatic creation of host analogues of CREATE ... DOES> words.

: defer cc/i \ -- ; DEFER <name>

Makes a DEFERred word in the target.

: assign cc/i \ -- xt ; ASSIGN <action> TO-DO <deferred-word>

Used in the form

assign <action> to-do <deferredword>

In practice this is a synonym for ’.

: to-do cc/i \ xt -- ; ASSIGN <action> TO-DO <deferred-word>

Used in the form

assign <action> to-do <deferredword>

: action-of cc/i \ -- xt ; ACTION-OF <deferred-word>

Returns the current action of a target DEFERred word.

: User cc/i \ n "name" -- ; -- addr

Creates a new USER variable in the target at offset n of name name. Note that during interpreta-
tion, you cannot get the address of a USER variable as the cross compiler does not (and cannot)
know what this will be.

: Value cc/i \ n "name" -- ; -- n

The cross-compiler’s version of VALUE.

x VALUE <name>

: +ImmVals cc/i \ --

In the target, children of VALUE will be IMMEDIATE and be state-smart. This is the default
condition. Used mostly for embedded systems.

: -ImmVals cc/i \ --

In the target, children of VALUE will not be IMMEDIATE, but will set a compiler called valComp,

in the code generator field of each child. Used by VFX desktop systems.

: Variable cc/i \ -- ;

The cross-compiler’s version of VARIABLE. VARIABLE <name>

: CVariable cc/i \ -- ; -- addr

156 Forth 7 Cross Compiler

The cross-compiler’s version of CVARIABLE, which behaves like VARIABLE but only reserves a
single byte.

: LVariable cc/i \ -- ; -- addr

In 64 bit systems, this creates a 32 bit variable.

: WVariable cc/i \ -- ; -- addr

In 32 bit or 64 bit systems, this creates a 16 bit variable.

: 2Variable cc/i \ -- ; -- addr

The cross-compiler’s version of 2VARIABLE.

: Buffer: cc/i \ #bytes -- ; x Buffer:<name>

Creates a named buffer of size #bytes in UDATA space.

: vocabulary cc/i \ -- ; --

The cross compiler version of VOCABULARY.

: wordlist cc/i \ -- wid(t)

The cross compiler version of WORDLIST.

: set-#wid-threads cc/i \ n --

Sets the number of threads used by WORDLIST. N must be a power of two, e.g. 16, 32, 64 ...

: get-#wid-threads cc/i \ -- n

Returns the number of threads used by WORDLIST.

: set-#voc-threads cc/i \ n --

Sets the number of target threads used by Vocabulary. N must be 1, 2, 4, 8, or 16.

: get-#voc-threads cc/i \ -- n

Returns the number of threads used by Vocabulary.

: asm cc/i \ --

A NOOP for source compatibility with some hosted Forths. OBSOLETE.

: unhook-asm cc/i \ -- ; NOOP for compatibility with regular Forths

A NOOP for source compatibility with some hosted Forths. OBSOLETE.

22.6 Words involving ’ (tick)
: to cc/i \ xt -- ; to <valuechild>

Used to change the contents of a child of VALUE.

: -> cc/i \ xt -- ; -> <valuechild>

A synonym for TO above.

22.7 Strings
: >number cc/i \ ud1 c-addr1 len1 -- ud2 c-addr2 len2

Accumulate digits from string c-addr1/u1 into double number ud1 to produce ud2 until the first
non-convertible character is found. c-addr2/u2 represents the remaining string with c-addr2
pointing the non-convertible character. The number base for conversion is defined by the host’s
BASE.

: PLACE cc/i \ caddr len dest --

Place the string caddr/len as a counted string at dest. For Harvard architectures, dest must be
in an IDATA or UDATA section.

: $, cc/i \ caddr len --

Chapter 22: Interpreter directives 157

Lay the string into the dictionary at HERE, and reserve space for it. The dictionary space is not
aligned.

: c" cc/i \ "text" -- ; -- caddr

Returns the target address of a counted string.

: "" cc/i \ "text" -- ; -- caddr

Returns the target address of a counted string. OBSOLETE, removed, use C" instead.

: S" cc/i \ "text" -- caddr len

Returns the target address and length of a string.

: Z" cc/i \ "text" -- zaddr

Returns the target address and length of a zero-terminated string.

: ," cc/i \ "text" --

Lays a counted string in the current section. Often used to build string tables, e.g.� �
create StringTable \ -- addr

", first string"

", second string"

...

0 c,
 	
Note that some targets may force alignment of these strings. This is CPU specific.

: ", cc/i \ "text" --

A synonym for ,".

: z", cc/i \ --

Lays a zero-terminated string in the current section. Often used to build string tables, e.g.� �
create zStringTable \ -- addr

z", first string"

z", second string"

...

0 c,
 	
Note that some targets may force alignment of these strings. This is CPU specific.

: M", cc/i \ -- ; SFP063

Lays a counted string in the current section. Unlike ", and ," above, any text macros in the
string are expanded before the string is built. Often used to build string tables, e.g.� �
create StringTable \ -- addr

m", On source line %l%"

m", in source file %f%"

...

0 c,
 	
Note that some targets may force alignment of these strings. This is CPU specific.

: compare cc/i \ caddr1 len1 caddr2 len2 -- +1/0/-1

158 Forth 7 Cross Compiler

COMPAREs two strings in target memory.

: scan cc/i \ caddr len char -- caddr’ len’

SCANs in target memory.

: skip cc/i \ caddr len char -- caddr’ len’

SKIPs in target memory.

: -trailing cc/i \ caddr len -- caddr len’

-TRAILING in target memory.

: -leading cc/i \ caddr len -- caddr’ len’

-TRAILING in target memory.

: cmove cc/i \ addr1 addr2 u --

Move data area, first byte first.

: cmove> cc/i \ addr1 addr2 u --

Move data area, last byte first.

: CMOVEC cc/i \ addr1 addr2 u --

Copy code to data. Harvard targets only.

: CMOVE->C cc/i \ addr1 addr2 u --

Copy data to code. Harvard targets only.

: CMOVEC->C cc/i \ addr1 addr2 u --

Copy code to code. Harvard targets only.

: parse cc/i \ char -- caddr len

Parse the next token from the terminal input buffer using <char> as the delimiter. The next
token is returned at IHERE as a c-addr/len string description. Note that PARSE does not skip
leading delimiters.

: parse(h) cc/i \ char -- caddr len

The original host version of *\fo{PARSE) returning a string in host memory.

: parse-name cc/i \ -- addr len

PARSE-NAME replaces BL WORD COUNT in most cases. The returned string is at IHERE.

: parse-name(h) cc/i \ char -- caddr len

The original host version of *\fo{PARSE-NAME) returning a string in host memory.

22.8 Escaped strings

The escaped string parser parses a string up to an unescaped ’"’, translating ’\’ escapes to
characters much as C does. The supported escapes (case sensitive) are:

\a BEL (alert)

\b BS (backspace)

\e ESC (escape, ASCII 27)

\f FF (form feed, ASCII 12)

\l LF (ASCII 10)

\m CR/LF pair - for HTML etc.

\n newline - CRLF for Windows/DOS, LF for Unices

Chapter 22: Interpreter directives 159

\q double-quote

\r CR (ASCII 13)

\t HT (tab, ASCII 9)

\v VT

\z NUL (ASCII 0)

\" "

\[0-7]+ Octal numerical character value, finishes at the first non-octal character

\x[0-9a-f][0-9a-f]

Two digit hex numerical character value

\\ backslash itself

\ before any other character represents that character

: \", cc/i \ "text" --

Lay an escaped string into the dictionary as a counted string. The end of the string is not
aligned.

: Z\", cc/i \ "text" --

Lay an escaped string into the dictionary as a zero terminated string. The end of the string is
not aligned.

: C\" cc/i \ "text" -- caddr

An escaped version of C".

: S\" cc/i \ "text" -- caddr len

An escaped version of S".

22.9 Memory operators
: Cdump cc/i \ addr len -- ; dump CODE space

Harvard targets only.

: @C cc/i \ addr -- x

Fetch cell from code space. Harvard targets only.

: !C cc/i \ x addr --

Store cell into code space. Harvard targets only.

: l@c cc/i \ addr -- w

Fetch 32 bits from code space. 64 bit Harvard targets only.

: l!c cc/i \ w addr --

Store 32 bits into code space. 64 bit Harvard targets only.

: w@c cc/i \ addr -- w

Fetch 16 bits from code space. 32 bit Harvard targets only.

: w!c cc/i \ w addr --

Store 16 bits into code space. 32 bit Harvard targets only.

: C@C cc/i \ addr -- b

Fetch byte from code space. Harvard targets only.

: C!C cc/i \ n addr --

Store byte into code space. Harvard targets only.

160 Forth 7 Cross Compiler

: dump cc/i \ addr(t) len --

DUMP target memory in 8 bit byte format.

: ldump cc/i \ addr(t) len --

DUMP target memory, displaying 32 bit items. This is useful to see values on little-endian targets.
32 bit targets only.

: wdump cc/i \ addr(t) len --

DUMP target memory, displaying 16 bit items. This is useful to see values on little-endian targets.
32 bit targets only.

: fillc cc/i \ addr len char --

FILL CDATA memory. Harvard targets only.

: erasec cc/i \ addr len --

ERASE CDATA memory. Harvard targets only.

: blankc cc/i \ addr len --

BLANK CDATA memory. Harvard targets only.

: fill cc/i \ addr len char --

FILL IDATA or UDATA memory. Harvard targets only.

: erase cc/i \ addr len --

ERASE IDATA or UDATA memory. Harvard targets only.

: blank cc/i \ addr len --

BLANK IDATA or UDATA memory. Harvard targets only.

: fill cc/i \ addr len char --

FILL target memory. Conventional targets only.

: erase cc/i \ addr len --

ERASE target memory. Conventional targets only.

: blank cc/i \ addr len

BLANK target memory. Conventional targets only.

: marker cc/i \ -- ; MARKER <name>

Builds a host MARKER. Versions , and ! for pointers ***

22.10 Files and Paths
: include cc/i \ "<filename>" --

Compile a file.

include <filename>

If the name starts with a ’"’ the file name contains the characters between the first and second
’"’ characters but does not include the ’"’ characters themselves. If you need to include names
that include ’"’ characters, delimit the string with ’(’ and ’)’. In all other cases a space is used
as the delimiting character. Text macros are expanded when the file is opened.

: cwd cc/i \ "<pathname>" --

Change directory. Synonym for CD, avoids HEX conflict.

: dir cc/i \ -- ; dir <dirname>

Display a directory listing.

Chapter 22: Interpreter directives 161

22.11 Vocabulary handling

In this system, words are looked up in the vocabularies and wordlists in the search order.
The first entry is often referred to as the top entry. New words are created in the definitions
vocabulary or wordlist.

: forth cc/i \ --

Selects the primary target vocabulary as the first in the search order.

: only cc/i \ --

Set the minimum search order as the current search order.

: also cc/i \ --

Duplicate the first wordlist in the search order.

: previous cc/i \ --

Drop the current top of the search order.

: definitions cc/i \ --

Set the current top of the search order as the current definitions wordlist.

: words cc/i \ --

Display the names of all definitions in the wordlist at the top of the search order.

: +show-unresolved cc/i \ --

WORDS shows unresolved sysmbols.

: -show-unresolved cc/i \ --

WORDS does not show unresolved sysmbols.

: vocs cc/i \ --

Display all vocabularies by name.

: order cc/i \ --

Display the current search-order. WIDs created with VOCABULARY are displayed by name, others
are displayed as numeric representations of the WID.

: words(h) cc/i \ --

Display the words in the host search order.

: vocs(h) cc/i \ --

List the vocabularies in the underlying host Forth system.

: order(h) cc/i \ --

List the search order in the underlying host Forth system.

22.12 Conditional Compilation

The following words allow the use of [IF] ... [ELSE] ... [THEN] blocks to control which pieces
of code are compiled/executed and which are not. These words behave in the same manner as
compiled definitions of IF ... ELSE ... THEN structures but take immediate effect even outside
definitions.

: [IF] cc/i \ flag --

Marks the start of a conditional compilation clause. If flag is TRUE compile/execute the fol-
lowing code, otherwise ignore all up to the next [ELSE] or [THEN].

: [ELSE] cc/i \ --

162 Forth 7 Cross Compiler

Marks the start of the ELSE clause of a conditional compilation block.

: [THEN] cc/i \ --

Marks the end of a conditional compilation clause.

: [ENDIF] cc/i \ --

Marks the end of a conditional compilation clause.

: [DEFINED] cc/i \ "<name>" -- flag

Look to see if the word exists in the target search order and return flag TRUE if the word exists.

[defined] foo [if] ... [then]

: [UNDEFINED] cc/i \ "<name>" -- flag

The inverse of [DEFINED]. Return TRUE if <name> does not exist.

22.13 Debugging aids
: stack-check cc/i \ --

Generates an error if the stack depth is not empty.

: Escape cc/i \ --

Abandon cross compilation and enter the host Forth.

: whereis cc/i \ -- ; WHEREIS <name>

Display the filename and line number for the source code of the word <name>.

: Locate cc/i \ -- ; LOCATE <name>

Display the source location (file/line) of the word. If configured to do so, the source will displayed
in your editor.
Configuration of LOCATE depends on the operating system, IDE and your preferred editor.

Windows: If using AIDE, set up your editor using AIDE’s menu item:

IDE -> Configure Edit/Locate...

If using the compiler without AIDE, use the compiler menu item

Options -> Set Editor...

Linux: As for the host VFX Forth. Run up the cross compiler. Tell the system the editor and
locate commands. Then exit. The configuration is now saved.

Set your preferred editor, e.g.

editor-is /bin/vi

Tell VFX Forth how your editor can be called to go a particular file and line. Use in the form

SetLocate <rest of line>

where the text after SetLocate is used to define how parameters are passed to the editor, e.g.
for Emacs, use

SetLocate +%l% "%f%" &

The rest of line following SetLocate is used as the editor configuration string. Within the
editor configuration string ’f’ will be replaced by the file name and ’l’ will be replaced by the

Chapter 22: Interpreter directives 163

line number. If you use file names with spaces, you should put quotation marks around the %f%
text macro. Finish the line with " &" to run the editor detached from VFX Forth.

OS/X: TBD.

: Loc cc/i \ -- ; LOC <name>

Synonym for LOCATE.

: xref cc/i \ "<name>" -- ; XUSES <name>

If XREFs are enabled, display the words which use <name>.

: uses cc/i \ "<name>" -- ; USES <name>

If XREFs are enabled, display the words which use <name>. OBSOLETE.

: xref-all cc/i \ -- ; XREF-ALL

Perform an XREF on all target words. The report can be pasted from the screen to an editor for
further processing.

: xref-unused cc/i \ -- ; XREF-UNUSED

List unused target words.

: +xrefs cc/i \ --

Enable cross reference generation.

: -xrefs cc/i \ --

Disable cross reference generation.

: xref-kb cc/i \ kb -- ; set size of XREF table

Set the size of the cross-reference table (default 1Mb) in kilobytes, e.g. 2048 xref-kb request a
2Mb table.

: labels cc/i \ -- ; show label names

List all the target LABELs.

: equates cc/i \ -- ; show equate names

List all the target EQUates.

: Compilers cc/i \ --

List all the words that are special when compiling. This list will include user extensions and
words that have special compilers/optimisers.

: Interpreters cc/i \ --

List all the words that are special when interpreting.

: Help cc/i \ --

Displays a short list of tools.

: .xword cc/i \ u --

Displays u as a 64 bit hex word.

: .xword cc/i \ u --

Displays u as a 64 bit hex word.

: .dword cc/i \ u --

Displays u as a 32 bit hex word.

: .lword cc/i \ u --

Displays u as a 32 bit hex word.

: .word cc/i \ w --

164 Forth 7 Cross Compiler

Displays w as a 16 bit four-digit hex item.

: .byte cc/i \ b --

Displays b as an 8 bit two-digit hex item.

: .hex cc/i \ u --

Displays u as a 32 bit hex word.

: .dec cc/i \ n --

Displays n as a signed decimal number.

: dis(h) cc/i \ --

Disassembles a host word.

: dump(h) cc/i \ addr len --

DUMPs host memory.

22.14 Turnkey
: make-turnkey cc/i \ -- ; MAKE-TURNKEY <name>

Tells the compiler which word to run after target initialisation. The xt of the word is placed at
the target label CLD1.

22.15 Floating point formats, ANS and Forth200x

The ANS Forth standard specifies that floating point numbers must be entered in the form
1.234e5 and must contain a point ’.’ and ’e’ or ’E’, and that double integers are terminated by
a point ’.’.

This situation prevents the use of the standard conversion words in international applications
because of the interchangable use of the ’.’ and ’,’ characters in numbers. Because of this,
the cross-compiler’s host VFX Forth uses two four-byte arrays, FP-CHAR and DP-CHAR, to hold
the characters used as the floating point and double integer indicator characters. By default,
FP-CHAR is initialised to ’.’ and DP-CHAR is initialised to to ’,’ and ’.’. For strict ANS compliance,
you should set them as follows before CROSS-COMPILE is run.

: ans-floats \ --

Sets the entry format to strict ANS compliance.

[char] . dp-char !

[char] . fp-char !

: mpe-floats \ -- ; for existing and most legacy code

Sets the entry format to current MPE practice.

[char] , dp-char !

[char] . dp-char 1+ c!

[char] . fp-char !

: legacy-floats \ -- ; for legacy code

Sets the entry format to legacy MPE behaviour as used by the Forth 5 and Forth 6 compilers.

[char] , dp-char !

[char] . fp-char !

Chapter 22: Interpreter directives 165

You can of course set these arrays to hold any values which suit your application’s language
and locale. Note that integer conversion is always attempted before floating point conversion.
This means that if the FP-CHAR and DP-CHAR arrays contain the same character, floating point
numbers must contain ’e’ or ’E’. If the arrays are all different, a number containing the FP-CHAR
will be successfully converted as a floating point number, even if it does not contain ’e’ or ’E’.

22.16 Floating point
: integers cc/i \ --

Disable floating point conversion.

: reals cc/i \ --

Enable floating point conversion.

22.16.1 Software floating point

The software floating point pack uses different formats for 16 and 32 bit targets. These conversion
words are sensitive to the target cell width.

: s>f cc/i \ n -- f

Convert a signed integer to a float.

: f# cc/i \ -- f ; F# 1.234e5

Treat the following text as a floating point number.

: f/ cc/i \ f1 f2 -- f1/f2

Floating point divide.

: f* cc/i \ f1 f2 -- f1*f2

Floating point multiplication.

: f+ cc/i \ f1 f2 -- f1+f2

Floating point addition.

: f- cc/i \ f1 f2 -- f1-f2

Floating point subtraction.

: fdup cc/i \ f -- f f

Floating point version of DUP.

: f. cc/i \ f --

Display a floating point number.

22.16.2 Hardware floating point

If the target is 32 bit and has an IEEE floating point unit, an IEEE pack is provided on the
host for help with interpretation. Both the host and the target assume the use of a separate
floating point stack as defined in the ANS Forth and the Forth 2012 standards. Look at the
target documentation to see if the target handles 32 and/or 64 bit floats. The host can handle
both.

: s>f cc/i \ n -- ; F: -- f

Convert a signed integer to a float.

: f# cc/i \ F: -- f ; F# 1.234e5

Treat the following text as a floating point number.

166 Forth 7 Cross Compiler

: f/ cc/i \ F: f1 f2 -- f1/f2

Floating point divide.

: f* cc/i \ F: f1 f2 -- f1*f2

Floating point multiplication.

: f+ cc/i \ F: f1 f2 -- f1+f2

Floating point addition.

: f- cc/i \ F: f1 f2 -- f1-f2

Floating point subtraction.

: fdup cc/i \ F: f -- f f

Floating point version of DUP.

: fsqrt cc/i \ F: f1 -- f2

Floating point square root.

: f. cc/i \ F: f --

Display a floating point number.

: sf.hex cc/i \ F: f --

Display a float as a 32 bit hex representation.

: df.hex cc/i \ F: f --

Display a float as a 64 bit hex representation.

: sf, cc/i \ F: f --

Lay a 32 bit floating point number.

: df, cc/i \ F: f --

Lay a 64 bit floating point number.

: f, cc/i \ F: f --

Lay a target native floating point number. The size is set by setFloatSize below.

: fliteral cc/c \ F: f --

Compiles a floating point literal from the top of the floating point stack, for example : foo ... [
123 s>f] fliteral ... ;

: f# cc/c \ --

Used to compile a floating point literal in the form:

: foo ... f# 1.234e0 ... ;

: setFloatSize cc/i \ u --

Set the size (in bytes of memory) of a floating point number.

: setFloatAlignment cc/i \ u --

Set the alignment of floats in memory.

22.17 Structures

The data structure words implement records, fields, and field types

The following syntax is used:

Chapter 22: Interpreter directives 167� �
STRUCT <name> \ -- len

n FIELD <field1>

m FIELD <field2>

...

END-STRUCT
 	
When <name> is executed, it returns the size of the structure.

A field adds its base offset to the given address [that of the record or subrecord]. A record
returns its length, and so can be used as an input to field.� �

len FIELD <name>

n len ARRAY-OF <name>
 	
: STRUCT cc/i \ Comp: "name" -- sym addr 0 ; Run: -- size

Begin definition of a new structure. Use in the form STRUCT <name>. At run time <name> returns
the size of the structure.

: END-STRUCT cc/i \ sym addr size --

Terminate definition of a structure.

: FIELD cc/i \ offset n "<name>" -- offset’ ; addr -- ’addr

Create a new field within a structure definition of size n bytes.

: FIELD-TYPE cc/i \ n -- : Run: addr -- addr+n ; Child: addr -- addr+n

Define a new field type of size n bytes. Use in the form <size> FIELD-TYPE <name>. When
<name> executes used in the form <name> <name2> a field <name2> is created of size n bytes.

cell(t) field-type int \ "<name>" -- ; addr -- addr+cell

Creates a field holding a cell.

cell(t) field-type ptr \ "<name>" -- ; addr -- addr+cell

Creates a field holding a cell that is an address.

22.18 C isms

These words are useful when extracting register definitions from C header files.

: #define cc/i \ <spaces"NAME"> <eol"value-def"> -- ; Exec: -- value

A simple version of C’s #define which creates a CONSTANT. Any text between the definition
name and the end of the line is EVALUATEd when NAME is defined. The result of evaluating this
text must be a single-cell integer, and is used to create an EQUate.

: // cc/i \ --

An implementation of the C++ single line comment.

: /* cc/i \ --

A C comment of the form ’/* ... */’. Note that both ’/*’ and ’*/’ must be whitespace delimited.

: enum cc/i \ --

Process an enum of the form:

enum <name> { a, b, c=10, d };

<name> is ignored. The step size is one.The elements appear as Forth equates or constants,

168 Forth 7 Cross Compiler

switchable in the same way as CONST definitions. The definition may extend over many lines. C
comments may occur after the ’,’ separator, e.g.

JIM = 25, // comment about this line

: enum{ cc/i \ --

Like enum above, process a nameless enum of the form:

enum{ a, b, c=10, d };

: enum2 cc/i \ --

Process an enum of the form:

enum2 <name> { a, b, c=10, d };

<name> is ignored. The step size is two.The elements appear as Forth equates or constants,
switchable in the same way as CONST definitions. The definition may extend over many lines. C
comments may occur after the ’,’ separator, e.g.

JIM = 25, // comment about this line

: enum2{ cc/i \ --

Like enum above, process a nameless enum with a step

enum{ a, b, c=10, d };

: enum4 cc/i \ --

Process an enum with steps of 4 of the form:

enum <name> { a, b, c=16, d };

<name> is ignored. The step size is four. The elements appear as Forth equates or constants,
switchable in the same way as CONST definitions. The definition may extend over many lines. C
comments may occur after the ’,’ separator, e.g.

JIM = 25, // comment about this line

: enum4{ cc/i \ --

Like enum2 above in steps of four, process a nameless enum of the form:

enum{ a, b, c=10, d };

: enum8 cc/i \ --

Process an enum with steps of eight of the form:

enum <name> { a, b, c=48, d };

<name> is ignored. The step size is eight. The elements appear as Forth equates or constants,
switchable in the same way as CONST definitions. The definition may extend over many lines. C
comments may occur after the ’,’ separator, e.g.

JIM = 25, // comment about this line

: enum8{ cc/i \ --

Like enum4 above in steps of eight, process a nameless enum of the form:

enum{ a, b, c=10, d };

: set-enum-sep-c cc/i \ --

Restore the enum item separator to be a comma character.

enum{ a, b, c=10, d }

: set-enum-sep-asm cc/i \ --

Chapter 22: Interpreter directives 169

Change the enum item separator to be a semi-colon character.

enum{ a; b; c=10; d }

This format is used for some assembler SFR definitions, especially the MSP430.

22.19 Miscellaneous
: .sources cc/i \ --

Display a list of source files.

: .lo cc/i \ xxyy -- 00yy

Extracts the bottom 8 bits of an item. 16 bit targets only.

: .hi cc/i \ xxyy -- 00xx

Extracts the top 8 bits of an item. 16 bit targets only.

: ByteRevL cc/i \ a:b:c:d -- d:c:b:a

32 bit byte reversal.

: ByteRevW cc/i \ a:b:c:d -- b:a:d:c

Byte reverse both 16 bit pairs.

: ByteRevWZ cc/i \ a:b:c:d -- 0:0:d:c

Byte reverse low 16 bits and then zero extend.

: ByteRevWS cc/i \ a:b:c:d -- s:s:d:c

Byte reverse low 16 bits and then sign extend.

: synonym cc/i \ -- ; SYNONYM <new> <old>

Creates a new name (in the host only) for a target word. When the new name is referenced, the
old name is used.

: No-Heads cc/i \ --

Marks the following code as having no target heads, regardless of the use of INTERNAL and
EXTERNAL.

: internal cc/i \ --

Marks the following code as having no target heads. See EXTERNAL.

: external cc/i \ --

Marks the following code as having target heads. See INTERNAL.

: Target-Width cc/i \ width --

Sets the maximum number of characters in a target head.

: headerless cc/i \ -- ; for compatibility

Synonym for INTERNAL.

: headers cc/i \ -- ; for compatibility

Synonym for EXTERNAL.

: behead cc/i \ -- ; for compatibility

NOOP for compatibility with old hosted systems.

: Is-Action-Of cc/i \ addr -- ; <addr> is-action-of <name>

Used to set the address of the run-time action of a defining word. Mostly used in minimal kernels
in which several defining words have the same run-time action.

: nt-access-ports cc/i \ --

170 Forth 7 Cross Compiler

Initialise direct port access under Windows NT and derivatives.

: testing cc/i \ n -- ; set testing level, 0=no testing

Set the testing level, default is zero.

: [test cc/i \ --

If TESTING has been set non-zero, the code between [TEST and TEST] will be processed, otherwise
it will be ignored.

: test] cc/i \ -- ; end of [TEST ... TEST] block

Ends a [TEST ... TEST] block.

: .forwards cc/i \ --

Show words that have been forward references.

: XTL? cc/i \ -- flag

Return true (non-zero) if the Umbilical link is active.

: +Listing cc/i \ --

Start listing of source code during compilation.

: -Listing cc/i \ --

Stop listing of source code during compilation.

: Kb cc/i \ n -- nKb ; nKb = n * 1024

Given n, returns n kilobytes (1024).

: Mb cc/i \ n -- nMb ; nMb = n * 1048576

Given n, returns n megabytes (1048576=1024*1024).

: kHz cc/i \ n -- Hz

Multiply by 1000.

: MHz cc/i \ n -- Hz

Multiply by 1,000,000.

: reveal cc/i \ --

Expose the current definition to the dictionary search mechanism in order to make recursive
definitions. In some other Forth systems this word is called RECURSIVE.

: hide cc/i \ --

Hide current definition from dictionary search. Usually used after REVEAL.

: it cc/i \ -- xt

Get XT of last colon definition

: Date$, cc/i \ --

Compile current date as a counted string.

: Time$, cc/i \ --

Compile current time as a counted string.

: DateTime$, cc/i \ --

Compile date and time as a single counted string.

: Log cc/i \ --

Display the compiler word by word log.

: No-Log cc/i \ --

Turn off the compiler word by word log.

Chapter 22: Interpreter directives 171

: Logging? cc/i \ -- flag

Returns true if the log is turned on

: AtCold cc/i \ xt --

Usually used in the form:

’ foo AtCold

so that foo (--) is executed at start up. The word must have a null stack effect. See the
target manual for details of the implementation. Compilation pauses if AtCold is used before
the target version has been defined.

: THROW cc/i \ n --

For custom error handlers.

: abort cc/i \ n --

For custom error handlers.

22.20 Starting and finishing cross-compilation
: cross-compile \ --

To start cross-compiling, use the word CROSS-COMPILE (--). At this point, the compiler "pulls
down the shutters" and enters cross-compilation mode. Apart from compiler directives that are
interpreted, code after this will be compiled into the target image instead of compiled onto the
cross-compiler.

: interactive cc/i \ --

When INTERACTIVE is used after CROSS-COMPILE and before FINIS, the compiler will not exit
after compilation finishes, but will enter an interactive mode in which the symbol table and
image data are preserved. This allows you to use the other debugging tools with a standalone
target compilation.
To mark the end of the cross-compilation phase, use FINIS for a standalone application or
UMBILICAL-FORTH to start debugging an Umbilical Forth system. FINIS is used to finish cross-
compilation completely, whereas UMBILICAL-FORTH is used to finish the batch portion of the
compilation and to start the cross target link ready for interactive testing of an Umbilical Forth
target.

: BootFinis cc/i \ --

Used in a split bootloader/application system to mark the end of the bootloader portion and
the start of the application code.

: AppFinis cc/i \ --

Used in a split bootloader/application system to mark the end of the application code. Used in
these systems instead of finis

: Afterwards \ -- ; afterwards ." hello 1" cr

The following text up to the end of the line is saved and will later be executed when FINIS is
run. AFTERWARDS can be used multiple times and the lines are executed in the order in which
they are declared.

: fcopy \ -- ; fcopy source dest

Copy one file to another. Usually used with Afterwards. The file names and operation status
are displayed.

: fdel \ -- ; fdel dest

Delete a file. Usually used with Afterwards. The file name and operation status are displayed.

: ms \ ms --

172 Forth 7 Cross Compiler

Wait the given number of milliseconds

: bye cc/i \ --

Used in interactive mode to exit the cross compiler. UMBILICAL-FORTH is used to finish the
batch portion of the compilation and to start the cross target link ready for interactive testing
of an Umbilical Forth target.

: BatchMode? cc/i \ -- flag

Return true if the compiler not being run from AIDE or for interactive use. When running
the compiler from batch file or script, use the /PauseOff command-line switch to turn off the
interactive mode.

22.21 Build numbering

The build numbering system allows you to generate a string in the system which can be used
for displaying version information.

The system relies on a file (normally called BUILD.NO) which holds the complete build version
string. The string can consist of any characters, e.g "Version 1.00.0034". The contents of the
file can be placed as a counted string in the dictionary. After successful compilation of your
application, UPDATE-BUILD will update the build number file by treating all the digits in the
build string as a single number to be incremented.

: MAKE-BUILD cc/i \ addr(t) --

Read build file info, copy to target as a counted string.

: BUILD$, cc/i \ --

Read build file info, and lay in the target as a counted string.

: UPDATE-BUILD cc/i \ --

Update the build number file. Place this just before FINIS.

: BUILDFILE cc/i \ "<filename>" --

Set the build file name. Use in the form:

BUILDFILE BUILD.NO

22.22 Checksum generation

Checksums of various types can be generated for your code. More than one checksum can be
generated in different memory areas. To avoid problems with forward references, checksums are
not generated until FINIS has finished patching various labels and has laid the initialised RAM
table.

: CHECKSUM cc/i \ start end addr type --

Set a region to be checksummed when FINIS executes. More than one region can be check-
summed.

Start Start address.

End Last address to be included in the checksum. For 16 and 32 bit operations, this
address must be aligned as required. Note that CRCs are byte operations.

addr Where the checksum is placed.

type Type of checksum from the words below.

Chapter 22: Interpreter directives 173

: SIMPLE8 cc/i \ -- n

Generate an 8 bit checksum by adding bytes.

: SIMPLE16 cc/i \ -- n

Generate an 16 bit checksum by adding byte pairs.

: SIMPLE32 cc/i \ -- n

Generate an 32 bit checksum by adding four-byte units.

: CCITT cc/i \ -- n

Generate a CCITT checksum.

: CRC16 cc/i \ -- n

Generate a CRC16 checksum.

: LRCC16 cc/i \ -- n

Generate an LRCC16 checksum.

: SDLC cc/i \ -- n

Generate an SDLC checksum.

: CRC32 cc/i \ -- n

Generate a 32 bit CRC.

: CRCxModem16 cc/i \ -- n

Generate a 16 bit XModem CRC. The result is stored in native order.

: CRCxModem16-0 cc/i \ -- n

Generate a 16 bit XModem CRC. The result is stored in big-endian order.
CRCxModem16-0 is usually used when you want to force the checksum of a block to zero, e.g.

<start> <end-2> <end-1> CRCxModem16-0 checksum

where <start> is the first address of the block and <end> is the last address in the block. If you
later perform an XModem checksum from <start> to <end> the CRC will be zero.

: CRC32RP2040 cc/i \ -- n

Used to generate a 32 bit little endian CRC32 as used for Raspberry Pi Pico and RP2040 boot
blocks. The last four bytes of the image loaded from flash (which we hope is a valid flash second
stage) are a CRC32 checksum of the first 252 bytes. The parameters of the checksum are:

• Polynomial: 0x04c11db7

• Input reflection: no

• Output reflection: no

• Initial value: 0xffffffff

• Final XOR: 0x00000000

• Checksum value appears as little-endian integer at end of image

Note that for the calculation of the RP2040 boot2 loader, start:start+251 and the CRC is stored
at start+252.

22.23 Disassembler

Compilers generating subroutine threaded or native code include a disassembler.

: xDISASM/al cc/i \ addr len --

174 Forth 7 Cross Compiler

Disassemble the given range.

: xdisasm/ft cc/i \ from to --

Disassemble the given range.

: xdisasm/f cc/i \ addr --

Disassemble from the given address until a return is encountered.

: DISASM/al cc/i \ addr len --

Disassemble the given range.

: disasm/ft cc/i \ from to --

Disassemble the given range.

: disasm/f cc/i \ addr --

Disassemble from the given address until a return is encountered.

: xdasm cc/i \ -- ; XDASM <word>

Disassemble the given word.

: dasm cc/i \ -- ; DASM <word>

Disassemble the given word.

: dis cc/i \ -- ; DIS <word>

Disassemble the given word.

: see cc/i \ -- ; SEE <word>

Disassemble the given word.

22.24 Library files

A library file contains words which are compiled only if required, i.e. they have been used but
not yet defined. Library files are scanned between the directives LIBRARIES and END-LIBS. The
code between LIBRARIES and END-LIBS is repeatedly interpreted until the number of forward
references and unresolved symbols remains constant. For example:� �
libraries

include libfile1.fth

include libfile2

end-libs
 	
#16 cells constant /ipNest \ -- u

Max Staorage size per source nesting

16 constant #ipNests \ -- u

Maximum number of nesting levels.

/ipNest #ipNests * constant #ipnesting \ -- u

Size of storage array

#ipNesting buffer: ipArray[] \ -- addr

Array in which source input positions are saved

ipArray[] value CurrIP[] \ -- addr

Points at next free position.

: n! \ xn..x1 n addr --

Chapter 22: Interpreter directives 175

Save n items at addr including n.

: n@ \ addr --

Retrieve n items saved by N!.

: getIP[] \ addr --

Reload input position from buffer.

: libraries cc/i \ -- 0 #unres #forward ; interpretive loop

Starts repetitive execution of the code up to END-LIBS.

: end-libs cc/i \ pass# #unres #forward -- pass# #unres’ #forward’

Ends the block started by LIBRARIES.

: [required] cc/i \ "<name>" -- true

Returns true if symbol exists and is forward referenced. All words in the library file are usually
defined in the form:� �
[required] foo [if]

: foo ... ;

[then]
 	

177

23 Converting from earlier versions

The v7 compiler does not support the Leburg EPROM emulators.

23.1 From v6.2 onwards

Converting from v6.2 onwards should require no changes to your control files or target code.

AIDE and the host Forth have changed, and the v7 compiler runs much faster. Use the version of
AIDE supplied with the v7 compiler. The latest AIDE requires a slightly different configuration
which is documented in the AIDE manual and release notes. The key part to remember is that
the v7 compiler requires both the -IDE and /IDE command line switches.

23.2 Converting from v6.0

23.2.1 Generic I/O

The v6.0 and v6.1 target versions of KEY, KEY?, TYPE, EMIT and CR were DEFERred. The new
code is not deferred. Instead two new user variables, IPVEC and OPVEC, hold the address of a
vector table which points to the actions of these words. The new system is called Generic I/O
and is documented in a separate chapter of this manual.

Generic I/O makes it much easier to add new I/O devices. Much recent MPE code requires
generic I/O and we strongly recommend that you convert to it.

23.2.2 Multitasker

The multitasker is now list driven rather than table driven. This gives faster context switching.
The major differences are indicated below.

The control file uses the equate TASKING? which is set true or false to control compilation. You
do not have to specify the maximum number of tasks.

A task is defined by the word TASK <name> which allocates the resources for a task, and returns a
taskid at run time. This identifier is the base address of the USER area instead of a task number.

The separate task control blocks (TCBs) are no longer required. Instead, the multitasker is
controlled by several (currently 6) cells at the start of the USER area.

The execution action of a task is no longer held in the TCB. Instead, the word INITIATE (xt

task --) replaces ACTIVATE to start the task. For symmetry, the word DEACTIVATE is replaced
by TERMINATE.

The word START: allows the use of nameless task actions.

23.2.3 User variables

From version 6.1 onwards, the word +USER can be used to add a USER variable of a given size:

178 Forth 7 Cross Compiler

<size> +USER <name>

The use of +USER avoids any need to know the offset at which the variable starts. The kernel
code relies on +USER and new application code should use +USER in preference to USER.

23.2.4 Heap

All targets now come with heap code. There are two versions, HEAP16.FTH and HEAP32.FTH,
which use different control block structures. They are optimised for 16 bit and 32 bit targets
respectively. The application word set is the same.

23.3 Upgrading from v5

The process of converting code from a version 5 MPE Forth Cross Compiler. The simplest case
is for code bases from the 8 and 16 bit v5 targets that have 16 bit Forth implementations. The
stages for these also apply to the 32 bit targets for which there are now VFX code generators,
but some additional work is also required.

23.3.1 Basic v5 conversion

Memory definitions

The v7 compiler uses the SECTION model for memory the control file (.CTL extension). Change
all the lines of the form:

<start> <end+1> ROMBASE <name>

to:

<start> <end> CDATA SECTION <name>

The SECTION model uses different words to return the start and end of a section, so the definition
of equates such as EM will need to be changed. See the new control files in the <cpu>/CONFIGS
directory for examples.

You must define at least one CDATA, IDATA, and UDATA section. The v5 compilers have no
equivalent of a UDATA section, and this can be a dummy definition, but it must exist.

After all the memory definitions have been made, select a default section of each type and put
in CDATA to make CREATE and friends behave like the v5 compilers.

If your processor requires start-up vectors at the end of the kernel code section (e.g. 68HC11),
use the SAVE-ALL directive after the definition of the code section. This forces the compiler to
save the whole section, rather than just from the start to the current end of the code.

Assembler changes

The use of the word ASSEMBLER to denote the start of a piece of assembly code is no longer
supported, and the use of FORTH to end it is now deprecated. Convert all pieces of code that use
these words from the form:

Chapter 23: Converting from earlier versions 179� �
ASSEMBLER

...

FORTH
 	
To:� �
ASMCODE

...

END-CODE
 	
Bank switched systems

The bank switching code has changed, especially in that PAGE-WORD is now called PAGE-EXECUTE,
and the parameter passing may be slightly different. This means that you cannot produce a
byte for byte equivalent system unless PAGE-EXECUTE is headerless.

Conditional compilation

The previous directives IF(,)ELSE(and)ENDIF are now replaced by their ANS equivalents
[IF], [ELSE], [THEN] and the extension [ENDIF] which behaves just like [THEN].

Conditional compilation may be nested.

The words [DEFINED] <name> and [UNDEFINED] <name> can be used to return a flag if the target
word <name> has already been defined.

The word [REQUIRED] <name> returns true if a word has been forward referenced but has not
yet been defined. This is used with the LIBRARIES and END-LIBS directives to allow you to
make files whose contents are only compiled if the words have been referenced but are currently
not defined.

Interpreted calculations

These notes only apply to 16-bit targets.

The v7 compilers all use a 32-bit host Forth, whereas the v5 compilers for 16-bit targets used a
16-bit host Forth. Some calculations performed at compile time, such as baud rate calculations,
relied on truncation of the 16-bit results. By default, the v7 compilers for 16-bit targets treat
numbers in this way. However, the interpreted integer math operators are all 32-bit. If your
calculations rely on truncation of 16-bit results, it is better to redo them using 32-bit arithmetic
and to use the directives HOST-MATHS and TARGET-MATHS around the calculation so that large
literals are not truncated. This often simplifies baud rate calculations where clock frequencies
need a 32-bit value, and were represented as double numbers in the v5 code.

Startup code

The compiler directive MAKE-TURNKEY <name> places the xt of <name> at label CLD1. The startup
code executes this word. The v5 label STRTUP is no longer needed, and the new entry code should
be used in place of the v5 code.

180 Forth 7 Cross Compiler

In addition, the structure of the initialised data table header has changed to permit multiple
IDATA sections and banked RAM.

Testing

Unless you have used some particularly clever defining words, the stages above are all that is
needed to convert direct threaded 16-bit Forths from v5 compilers.

When MPE converts target code from v5, we rename the image files (.IMG extension) as .IMO
files, and then ensure that the new IMG file is byte-for-byte compatible with the old one. The
DOS FC file utility can used to test this:

FC <image>.IMG <image>.IMO /B

We suggest that you copy your working target code directory to a new one, and perform the
conversion until you obtain byte-for-byte equivalence of your application.

23.3.2 Converting from DTC to VFX compilers

The version 5 compilers produce what is termed direct threaded code (DTC), which is a par-
ticular implementation strategy for Forth. The VFX v7 compilers produce subroutine threaded
code (STC) with optimisations. The VFX code generator provides very little change in code
density and sometimes an improvement that depends heavily on coding style. You can expect
a 10:1 improvement in performance with a VFX code generator.

The v7 targets are based on an ANS Forth model, rather than the Forth-83 model used with
the v5 target code. Converting from Forth-83 to ANS is covered in a separate chapter of this
manual.

Strategy

In order to convert an application from DTC to VFX/STC, it is probably easier to start from
the new code base, as this will provide an easier long term upgrade path. The recommended
stages are:

1. Generate a new kernel for your target

2. Build a conversion harness that provides any missing words

3. Apply all the changes discussed for basic v5 conversion

4. Convert all code definitions to the new register model used by v6. See the assembler chapter
in the accompanying processor specific manual for details. This usually involves switching
the data and return stack pointers, and preserving the frame stack pointer if it is used.
Compile and test each file in turn. You will probably need to revisit stage 2.

5. Compile your application as a whole. At this stage, you will probably have to go back round
through stage 2. Repeat this cycle until you get a clean compile.

6. Test your application as a whole.

Some additional considerations are:

• Is the VFX code generator good enough that you can remove many code definitions in favour
of high level Forth definitions, so enhancing maintainability and portability? Mostly, yes.

Chapter 23: Converting from earlier versions 181

• Can coded interrupt routines now be rewritten in high level Forth for maintainability and
portability? Yes, especially if you are changing hardware at the same time.

COMPILE, and ,

The word COMPILE, (xt --) compiles the code that calls a definition. This is the only portable
way to generate a call to a word. Because of the change from DTC to STC and optimised code,
you cannot predict what code will be generated. Any use of the Forth word , (comma) to lay
code rather than data must be replaced by COMPILE,.� �
: MYMAGIC

...

[] FOO , [] BAR ,

...

; IMMEDIATE
 	
should be relaced by� �
: MYMAGIC

...

POSTPONE FOO POSTPONE BAR

...

; IMMEDIATE
 	
or� �
: MYMAGIC

...

[] FOO COMPILE, [] BAR COMPILE,

...

; IMMEDIATE

Vector tables
 	
In direct threaded code, you could lay down the address of a Forth word by turning the compiler
on. Two forms of this could be found:� �
CREATE TABLE

] A B C D [

L: MYLABEL

] FOO [

: BAR

... MYLABEL @ EXECUTE ... ;
 	
This worked because MPEs DTC code uses the address of the Forth word as the execution token
(xt). However, this is not a portable technique, and fails if the xt is not cell sized (e.g. the
MPE 32 bit 8086/186 target uses a 16 bit xt) or generates native code (e.g. CALL FOO). The
recommended portable technique is:

182 Forth 7 Cross Compiler� �
CREATE TABLE

’ A ,

’ B ,

’ C ,

’ D ,

L: MYLABEL

’ FOO ,
 	

or:� �
L: MYLABEL

0 ,

...

’ FOO MYLABEL ! \ Avoids forward reference

: BAR

... MYLABEL @ EXECUTE ...

;
 	
Choice of word names ANS and Forth-83

The ANS Forth committee (in which MPE participated) were careful not to make changes that
break existing code. Thus some words whose function varied according to vendor have had name
changes. The v7 compilers still generate the MPE versions, but also include the ANS versions.
For long term portability of both code and programmers, it is suggested that new code use the
ANS versions. The help documentation includes an ANS draft specification that is technically
identical to the ratified ANS/ISO Forth specification. Note that this is a standards document,
and so is not drafted in the same way as the glossary for a user manual is drafted.

For more details see the chapter on converting Forth-83 code to ANS.

23.3.3 CREATE CDATA IDATA UDATA and sections

When a section name is interpreted, its action is to make that section the current section for
CREATE and words derived from CREATE. CREATE will return the next address in the selected
section. The following words are also affected:

, ALIGN ALIGNED ALLOT C, HERE W, UNUSED

The result is that if you have three sections ROM (CDATA), IRAM (IDATA), and URAM (UDATA)
you must be careful to select the right one before using CREATE. The following sequence has
different effects according to which section is selected:

Chapter 23: Converting from earlier versions 183� �
CREATE FOO

5 , 6 , 7 ,

ROM CREATE FOO \ FOO points into ROM

5 , 6 , 7 , \ table cannot be changed

IRAM CREATE FOO \ FOO points into IRAM

5 , 6 , 7 , \ table is initialised

\ and can be changed

URAM CREATE FOO \ FOO points into URAM

5 , 6 , 7 , \ table is invalid!

\ URAM values exist only at

\ compile time
 	
If you have several sections of a type, and all you wanted to do was to select the current section
of that type, you could use CDATA, IDATA or UDATA instead.

As a result of these ANS changes, the technique used in version 5 compilers for selecting between
ROM and RAM data is neither desirable nor efficient. But it will still work if CDATA has been
selected. You may find it worthwhile to rewrite defining words that used to use HERE, THERE,
ALLOT and ALLOT-RAM. Overall, MPE has found the new notation to be far more flexible, and
it has been well received.

23.3.4 COMPILER, INTERPRETER, HOST, TARGET and
ASSEMBLER

In both version 5 and the version 7 compilers, the use of defining words is mostly handled
automatically by the compiler.

For those cases where it is not handled automatically, or because there are compile time words
which are not desirable or needed in the target code, a new mechanism has been provided for
adding words into the compiler. The actions of these directives are discussed in more detail
elsewhere in the manual. These examples are more informal.

The directive TARGET is used to return to cross compilation into the target, and should be used
to terminate any of the other directives.

The directive INTERPRETER compiles new definitions into the cross interpreter, and uses target
referring versions of words such as @ and !. Use TARGET to return to cross compilation. The
following example can be used to add a defining word (that cannot be handled automatically)
to the system without having a target version. All the code after DOES> is compiled into the
target.� �
INTERPRETER

: SEMAPHORE \ -- ; -- addr [child]

IDATA

CREATE

0 , \ counter

0 , \ task id

CDATA

DOES>

;

TARGET
 	

184 Forth 7 Cross Compiler

The directive COMPILER compiles new definitions into the cross compiler, creating a word which is
only found at compile time, in other words it is IMMEDIATE but is not found during interpretation.� �
COMPILER

: !++ \ n addr addr ; store and step address

TUCK ! CELL +

;

TARGET
 	
The effect of this is to add a new word to the compiler, which can reference all the other compiler
words. This is effectively a macro. Note that any reference inside such a word to structure words
like IF and ENDIF will be taken as references to the compilers versions of IF and ENDIF, and
not to the normal Forth versions.

The directive HOST is used to add words to the underlying Forth system. It is useful when
adding words that may be used as factors of other words, and where any variables may only
exist during compilation.� �
HOST

: FOO ;

TARGET
 	
The directive ASSEMBLER is used to add macros to the cross assembler.� �
ASSEMBLER

: bar ... ;

TARGET
 	
23.3.5 Umbilical Forth

The Umbilical Forth protocol has been extended and modified slightly. The TARGEND.FTH
file used must be the one supplied with the v7 compiler if you want interactive testing. You will
not be able to produce a byte for byte equivalent file from a v7 compiler that will run on your
target with the v7 compiler, but you should be able to test it with the v5 compiler. Recompiling
your code with the old TARGEND.FTH file on the v7 compiler should produce a file identical with
that produced by the v5 compiler, and so you should be able to run the code and interact with
it using the v5 compiler.

The v7 TARGEND.FTH code also has facilities for using the multitasker with Umbilical Forth. This
is controlled by the conditional compilation facilities.

23.3.6 FLOATS and REALS

The word FLOATS used to enable the floating point package conflicts with an ANS word. Its
function is replaced by REALS. The package can be turned off by INTEGERS.

185

24 Converting from Forth-83 to ANS

This chapter is not a complete guide to converting applications to ANS standard Forth. It
summarises some of the changes that are likely to affect your applications. A copy of the ANS

specification is supplied with the cross compiler.

Where Forth-83 words and MPE extensions do not conflict with the ANS standard, they have
been retained in the cross compiler. Compatibility with previous code generated by the MPE
Forth cross compiler v5 (and v4 in most cases) has been retained to the level that v5 code for
the 16 bit DTC targets can be used with only minor changes to produce byte for byte identical
output.

24.1 Choice of word names

The ANS Forth committee (on which MPE acted as observers) were careful not to make changes
that break existing code. Thus some words whose function varied according to vendor have had
name changes. The v7 compilers still generate the old MPE words, but also include the ANS
versions. For long term portability of both code and programmers, it is suggested that new code
use the ANS versions. The help system includes an ANS draft specification that is technically
identical to the ratified ANS/ISO Forth specification. Note that this is a standards document,
and so is not drafted in the same way as the glossary for a user manual is drafted.

24.1.1 INVERT NOT and 0=

Because there was little commonality between Forth systems in the semantics of the word NOT,
it has been excluded from the standard. Some vendors, including MPE, use NOT to mean a
bitwise inversion (logical NOT), and others use it to mean the inversion of a flag (Boolean NOT,
or 0=). The ANS word for a logical bitwise NOT is INVERT.

24.1.2 EXPECT SPAN and ACCEPT

Because the Forth-83 EXPECT does not return the number of bytes actually read, Forth-83
specifies a (USER) variable SPAN to hold this. ANS Forth defines a word ACCEPT which returns
the length, rendering SPAN redundant.

24.1.3 S" and C"

Traditionally, Forth represented strings as a count byte followed by that many characters, in the
same way as Pascal. With the increasing use of zero terminated strings in operating systems,
and the increasing use of two-byte (Unicode) and multi-byte character sets, this description
of strings has become less portable. Consequently the ANS committee accepted the idea that
strings be represented as address and length pairs. For the most part, it is still true that a
character usually means a byte, but in the next revision the ANS standard will be modified to
make internationalisation easier to handle. In the meantime, it is recommended that new code
be written using address/length pairs.

S" <string>" compiles a string that returns an address/length pair at run time, whereas C"

<string>" compiles a string that returns the address of the count byte. The original MPE
definition "" still exists in the cross compiler, but is not recommended for new code.

186 Forth 7 Cross Compiler

24.1.4 ASCII CHAR and [CHAR]

The MPE word ASCII is state smart. When interpreted it returns the literal value of the fol-
lowing ASCII character. When compiled, it compiles the literal. Because state smart words are
increasingly perceived as being capable of causing bugs that are hard to find, the interpretation
behaviour is provided by the ANS word CHAR, and the compile time behaviour is provided by
the ANS word [CHAR].� �
CHAR A CONSTANT FOO

: BAR

... [CHAR] A EMIT ...

;

LSHIFT and RSHIFT
 	
The MPE words <<N and >>N are replaced by LSHIFT and RSHIFT which have the same stack
action:

x1 u -- x2

24.1.5 FORGET and MARKER

The time-honoured word FORGET <name> is now deprecated because of the variation in imple-
mentations and the portability issues raised by it. The ANS standard specifies the defining word
MARKER <name> such that when <name> is executed, the dictionary is restored to its state before
<name> was created by MARKER.� �
MARKER FOO \ create a dictionary marker

...

FOO \ restores state, deleting FOO
 	
24.2 Division

The Forth-83 standard mandated floored division. Whatever its merits, this has incurred a
performance penalty on most CPUs. In ANS Forth the implementer may choose, and MPE has
chosen to return to the usual symmetric division for / and words derived from it.

In order to retain the ability to perform floored division, the word M/MOD has been replaced by
two words, SM/REM (symmetric) and FM/MOD (floored).

24.3 CREATE and friends

Section E.5 of the ANS specification suggests that, for embedded systems, CREATE be made
sensitive to a current memory section. This makes it much easier to control where data is laid
down, and removes the need for words to refer to each section of memory. This proposal caused
much controversy, but some vendors have informally agreed and used a common notation, which
is the basis of the MPE SECTION notation.

When a section name is interpreted, its action is to make that section the current section for

Chapter 24: Converting from Forth-83 to ANS 187

CREATE and words derived from CREATE. CREATE will return the next address in the selected
section, with the following words also being affected:

, ALIGN ALIGNED ALLOT C, HERE W, UNUSED

The result is that if you have three sections ROM (CDATA), IRAM (IDATA), and URAM (UDATA)
you must be careful to select the right one before using CREATE. The following sequence has
different effects according to which section is selected:� �
CREATE FOO

5 , 6 , 7 ,

ROM CREATE FOO \ FOO points into ROM

5 , 6 , 7 , \ table cannot be changed

IRAM CREATE FOO \ FOO points into IRAM

5 , 6 , 7 , \ table is initialised

\ and can be changed

URAM CREATE FOO \ FOO points into URAM

5 , 6 , 7 , \ table is invalid, URAM values

\ exist only at compile time
 	
If you have several sections of a type, and all you wanted to do was to select the current section
of that type, you could use CDATA, IDATA or UDATA instead. Note that the CDATA, IDATA and
UDATA directives are not part of the original proposal in section E.5 of the ANS specification.

As a result of these ANS changes, the technique used in version 5 compilers for selecting between
ROM and RAM data is neither desirable nor efficient. But it will still work if CDATA has been
selected. You may find it worthwhile to rewrite defining words that used to use both HERE,
THERE, ALLOT and ALLOT-RAM. Overall, MPE has found the new notation to be far more flexible,
and it has been well received.

24.4 >BODY and friends

Because of the number of implementation techniques, and because of the impact of embedded
systems, ANS Forth specifies that >BODY is only standard when applied to the children of CREATE,
and to words derived from it.

24.5 FLOATS and REALS

The word FLOATS used in v5 to enable the floating point package conflicts with an ANS word.
Its function is replaced by REALS. The package can be turned off by INTEGERS.

24.6 CATCH and THROW

Before the ANS specification, Forth lacked a portable nested exception handler. The design of
CATCH and THROW is excellent, and MPE recommends that they be used to replace the use of
ABORT and ABORT", which can if necessary be defined in terms of CATCH and THROW.

CATCH and THROW are among the most significant introductions in ANS Forth, and enourmously
improve the functionality reliability of error detection in Forth.

188 Forth 7 Cross Compiler

24.6.1 Description

The following description of the ANS words CATCH and THROW was written by Mitch Bradley:

CATCH is very similar to EXECUTE except that it saves the stack pointers before EXECUTEing the
guarded word, removes the saved pointers afterwards, and returns a flag indicating whether or
not the guarded word completed normally. In the same way that a Forth word cannot legally
play with anything that its caller may have put on the return stack, and also is unaffected by
how its caller uses the return stack, a word guarded by CATCH is oblivious to the fact that CATCH
has put items on the return stack.

Here’s the implementation of CATCH and THROW in a mixture of Forth and pseudo-code:

VARIABLE HANDLER \ Most recent error frame

: CATCH \ cfa -- 0|error-code

<push parameter stack pointer on to return stack>

<push contents of HANDLER on to return stack>

<set HANDLER to current return stack pointer>

EXECUTE

<pop return stack into HANDLER>

<pop & drop saved parameter stack ptr from return stack>

0

;

: THROW \ error-code --

?DUP

IF

<set return stack pointer to contents of HANDLER>

<pop return stack into HANDLER>

<pop saved parameter stack pointer from return stack>

<back into the parameter stack pointer>

<return error-code>

THEN

;

The description as written implies the existence of a parameter stack pointer and a return stack
pointer. That is actually an implementation detail. The parameter stack pointer need not
actually exist; all that is necessary is the ability to restore the parameter stack to a known
depth. That can be done in a completely standard way, using DEPTH, DROP, and DUP. Likewise,
the return stack pointer need not explicitly exist; all that is necessary is the ability to remove
things from the top of the return stack until its depth is the same as a previously-remembered
depth. This can’t be portably implemented in high level, but I neither know of nor can I conceive
of a system without some straightforward way of doing so.

24.6.2 Sample implementation

In most Forth systems, the following code will work:

VARIABLE HANDLER \ Most recent exception handler

: CATCH \ execution-token -- error# | 0

(token) \ Return address already on stack

SP@ >R (token) \ Save data stack pointer

Chapter 24: Converting from Forth-83 to ANS 189

HANDLER @ >R (token) \ Previous handler

RP@ HANDLER ! (token) \ Set current handler to this one

EXECUTE () \ Execute the word passed

R> HANDLER ! () \ Restore previous handler

R> DROP () \ Discard saved stack pointer

0 (0) \ Signify normal completion

;

: THROW \ ?? error#|0 -- ?? error# ;

\ Returns in saved context

?DUP

IF

HANDLER @ RP! (err#) \ Back to saved R. stack context

R> HANDLER ! (err#) \ Restore previous handler

(err#) \ Remember error# on return stack

(err#) \ before changing data stack ptr.

R> SWAP >R (saved-sp) \ err# is on return stack

SP! (token) \ switch stacks back

DROP ()

R> (err#) \ Change stack pointer

THEN

\ This return will return to the caller of catch, because

\ the return stack has been restored to the state that

\ existed when CATCH began execution.

;

Note the following features:

• CATCH and THROW do not restrict the use of the return stack.

• They are neither IMMEDIATE nor "state-smart"; they can be used interactively, compiled
into colon definitions, or POSTPONEd without strangeness.

• They do not introduce any new syntactic control structures (i.e. words that must be lexically
"paired" like IF and THEN).

To handle the case where there is no CATCH to handle a THROW, it is wise to CATCH the main loop
of the application. A different solution, if you don’t want to modify the loop, is to add this line
to THROW:

HANDLER @ 0= ABORT" Uncaught THROW"

24.6.3 Stack rules for CATCH and THROW

Let’s suppose that we have the word FOO that we wish to "guard" with CATCH. FOO’s stack
diagram looks like:� �

FOO \ a b c -- d
 	
Here’s how to CATCH it:

190 Forth 7 Cross Compiler� �
<prepare argument for FOO> (a b c)

[’] FOO CATCH (x1 x2 x3)

IF

<some code to execute if FOO caused a THROW>

ELSE (d)

<some code to execute if FOO completed normally>

THEN
 	
Note that, in the case where CATCH returns non-zero (i.e. a THROW occurred), the stack depth
(denoted by the presence of x1,x2,x3) is the same as before FOO executed, but the actual contents
of those 3 stack items is undefined. N.B. items on the stack UNDERNEATH those 3 items should
not be affected, unless the stack diagram for FOO, showing 3 inputs, does not truly represent the
number of stack items potentially modified by FOO.

In practice, about the only thing that you can do with those "dummy" stack items x1,x2,x3 is
to DROP them. It is important, however, that their number be accurately known, so that you
can know how many items to DROP. CATCH and THROW are completely predictable in this regard;
THROW restores the stack depth to the same depth that existed just prior to the execution of FOO,
and the number of stack items that are potentially garbage is the number of inputs to FOO.

24.6.4 Some more features

THROW can return any non-zero number to the CATCH point. This allows for selective error
handling. A good way to create unique named error codes is with VARIABLEs as they return
unique addresses without having to worry about which number to use, e.g.� �
VARIABLE ERROR1

VARIABLE ERROR2
 	
creates 2 words, each of which returns a different unique number. For selective error handling, it
is convenient to follow CATCH with a CASE statement instead of an IF. Here’s a more complicated
example:� �
BEGIN

[’] FOO CATCH

CASE

0 OF ." Success; continuing" TRUE ENDOF

ERROR1 OF ." Error #1; continuing" TRUE ENDOF

ERROR2 OF ." Error #2; retrying" FALSE ENDOF

(default) ." Propagating error to another level" THROW

ENDCASE (retry?)

UNTIL
 	
Note the use of THROW in the default branch. After CATCH has returned, with either success or
failure, the error handler context that it created on the return stack has been removed, so any
successive THROWs will transfer control to a CATCH handler at a higher level.

The CATCH and THROW scheme appealed to people because it is simpler than most other schemes,
as powerful as any (and more powerful than most), is easy to implement, introduces no new

Chapter 24: Converting from Forth-83 to ANS 191

syntax, has no separate compiling behaviour, and uses the minimum possible number of words
(2).

24.7 POSTPONE

This word was introduced to delay execution of a word without having to know whether the
word is immediate or not. Inside a colon definition such as BAR below� �
: BAR

... POSTPONE FOO ...

;
 	
will cause FOO to execute when BAR executes if FOO is IMMEDIATE, or if FOO is non-IMMEDIATE,
FOO will be compiled when BAR executes. In most cases this is what was required, and the words
COMPILE and [COMPILE] can be eliminated. The advantage of this is that the user does not need
to know whether the target word is IMMEDIATE or not.

24.8 COMPILE, and ,

The word COMPILE, (xt --) compiles the code that calls a definition. This is the only portable
way to generate a call to a word. Because of the change from DTC to STC and optimised code,
you cannot predict what code will be generated. Any use of the Forth word , (comma) to lay
code rather than data must be replaced by COMPILE,.� �
: MYMAGIC

...

[’] FOO , [’] BAR ,

...

; IMMEDIATE
 	
should be relaced by� �
: MYMAGIC

...

POSTPONE FOO POSTPONE BAR

...

; IMMEDIATE
 	
or� �
: MYMAGIC

...

[’] FOO COMPILE, [’] BAR COMPILE,

...

; IMMEDIATE
 	

193

25 Further information

25.1 MPE courses

MicroProcessor Engineering runs the following standard courses, which can be held at MPE or
at your own site:

• Architectual Introduction to Forth (AIF): A three-day course for those with little or no
experience of Forth, but with some programming experience. The AIF course provides an
introduction to the architecture of a Forth system. It shows, by teaching and by practical
example how software can be coded, tested and debugged quickly and efficiently, using
Forth’s interactive abilities.

• Embedded Software for Hardware Engineers (ESHE): A three-day course for hardware
and firmware engineers needing to construct real-time embedded applications using Forth
cross-compilers. Includes multitasking and writing interrupt handlers.

Custom courses are available

• Quick Start Course (QSC): A very hands-on tailored course on your site using your own
hardware, and includes installation of a target Forth on your hardware, approaches to
writing device drivers, designing a framework for your application and whatever else you
need. The course is usually three days long.

• Other custom courses we provide are for Open Boot and Open Firmware. These are derived
from the AIF course above.

25.2 MPE consultancy

MPE is available for consultancy covering all aspects of Forth and real-time software and hard-
ware development. Apart from our Forth experience, MPE staff have considerable knowledge of
embedded hardware design, Windows, Linux and DOS.

Our software orbits the earth, will land on comets, runs construction companies, laundries,
vending machines, payment terminals, access control systems, theatre and concert rigging, anaes-
thetic ventilators, art installations, trains, newspaper presses and bomb disposal machines.

We have done projects ranging from a few days to major international projects covering several
years, continents and many countries. We can operate to fixed price and fixed term contracts.
Projects by MPE cover topics such as:

• Custom compiler developments, including language extensions such as SNMP, and new
CPU implementations,

• Custom hardware design and compiler installations,

• Portable binary system for smart card payment systems,

• Machinery controllers,

• Connecting instrumentation to web sites,

• Virtual memory systems,

• Code porting to new hardware or operating systems.

We also have a range of outside consultants covering but not limited to:

• Communications protocols

194 Forth 7 Cross Compiler

• Windows device drivers

• All aspects of Linux

• Safety critical systems

• Project management (including international)

25.3 Recommended reading

A current list of books on Forth may be found at:

http://www.mpeforth.com/books.htm

For an introduction to Forth, and all available in PDF or HTML:

• "Programming Forth" by Stephen Pelc. About modern Forth systems.

• "Starting Forth" by Leo Brodie. A classic, but very dated.

• "Thinking Forth" by Leo Brodie. A classic.

For more experienced Forth programmers:

• "Object Oriented Forth" by Dick Pountain

• "Scientific Forth" by Julian Noble

Other miscellaneous Forth books:

• "Forth Applications in Engineering and Industry" by John Matthews

• "Stack Machines: The New Wave" by Philip J Koopman Jr

All of these books can be supplied by MPE.

195

Index

!
!(h) . 148
!c . 159

"
"" . 157
", . 157

#
#define . 167
#ipnests . 174
#timers . 67

$
$, . 156

%
%10^-10 . 80
%10^10 . 80

’
’(h) . 147

(
(f#) . 82

*
*10^x . 82

+
+const-visible . 154
+download-prompts . 150
+flashcompile . 153
+immvals . 155
+listing . 170
+nameswithcrcs . 151
+ports . 12
+savecdataonly . 150
+show-unresolved . 161
+xrefs . 163

,
," . 157
,(r) . 151
,c . 94, 151
,i . 94, 151

–
-> . 156
-const-visible . 154
-download-prompts . 150
-flashcompile . 153
-immvals . 155
-leading . 158
-listing . 170
-nameswithcrcs . 151
-ports . 12
-savecdataonly . 150
-show-unresolved . 161
-trailing . 158
-xrefs . 163

.

.byte . 164

.curr-sections . 150

.dec . 164

.dword . 163

.exp . 81

.forwards . 170

.fpsep . 81

.fpsign . 81

.heap . 72

.hex . 164

.hi . 169

.lo . 169

.lword . 163

.section-report . 150

.sections . 94, 150

.sources . 169

.word . 163

.xword . 163

/
/* . 167
/+pauses . 113
/-pauses . 113
// . 167
/cols . 113
/ide . 113
/pageoff . 113
/pauseoff . 113

:
: . 152
:noname . 152

<
<-s . 86
<<1 . 86

196 Forth 7 Cross Compiler

>
>>1 . 86
>body . 147
>does . 147
>float . 82
>in . 147
>number . 156

?
?10pwr . 81
?fnegate . 79

[
[defined] . 162
[else] . 161
[endif] . 162
[i . 57, 63
[if] . 161
[required] . 175
[sections . 94
[test . 170
[then] . 162
[undefined] . 162

@
@(h) . 148
@c . 159

\
\", . 159

1
1.0 . 80
1.0e-1 . 80
1.0e-10 . 80
1.0e-256 . 81
1.0e256 . 80
10 . 80

2
2constant . 155
2variable . 156

A
abort . 171
action-of . 155
after . 67
afterwards . 171
align . 123, 151
aligned . 123, 152
aligning? . 152
all-blanks? . 82
all-saved . 93, 148
allocate . 72
allot . 124, 152
allot&erase . 152
allot-ram . 152
also . 161
ans-floats . 164
appfinis . 104, 171
appflush-idata . 105, 150
asm . 156
asmcode . 153
assign . 155
atcold . 171

B
bank . 148
base . 147
base-36 . 147
batchmode? . 172
behead . 169
bin-align . 152
bin-aligned . 152
bin-down . 90
blank . 160
blankc . 160
bootfinis . 104, 171
buffer: . 156, 174
build$, . 172
buildfile . 130, 172
bye . 172
byterevl . 169
byterevw . 169
byterevws . 169
byterevwz . 169

C
c!(h) . 148
c!c . 159
c" . 157
c,(r) . 151
c,c . 94, 151
c,i . 95, 151
c@(h) . 147
c@c . 159
c\" . 159
calign . 151
callot . 152
ccitt . 173
cdata . 149
cdump . 159
checksum . 172
chere . 152
clr-event-run . 62

Index 197

cls . 90
cmove . 158
cmove->c . 158
cmove> . 158
cmovec . 158
cmovec->c . 158
code . 153
code/data . 149
comp: . 153
compare . 157
compilers . 163
const . 154
const=constant . 154
const=equ . 154
constant . 154, 174
convert-exp . 82
convert-fpchar . 82
corg . 149
crc16 . 173
crc32 . 173
crc32rp2040 . 173
crcxmodem16 . 173
crcxmodem16-0 . 173
create . 123, 155
cross-compile . 171
cvariable . 155
cwd . 160

D
d<<1 . 86
d>>1 . 86
d>>n . 86
d>f . 78
dasm . 174
data-file . 149
date$, . 131, 170
datetime$, . 130, 170
defer . 155
definitions . 161
deg>rad . 83
df, . 166
df.hex . 166
di . 57, 62
dir . 160
dis . 174
dis(h) . 164
disasm/al . 174
disasm/f . 174
disasm/ft . 174
dnorm . 78
do-timers . 67
download-sections . 150
dump . 160
dump(h) . 164

E
e. 81
ei . 57, 62
elf-format . 99
end-code . 153
end-libs . 175
end-struct . 167
enum . 82, 167
enum2 . 168
enum4 . 168
enum8 . 168
equ . 154
equates . 163
erase . 160
erasec . 160
escape . 162
event? . 62
every . 68
expired . 69
external . 169

F
f! . 77
f# . 83, 165, 166
f#in . 83
f* . 79, 165, 166
f+ . 79, 165, 166
f, . 77, 166
f- . 79, 165, 166
f. 81, 165, 166
f/ . 79, 165, 166
f< . 79
f= . 79
f> . 79
f>d . 79
f>s . 78
f@ . 77
f0< . 79
f0<> . 79
f0= . 79
f0> . 79
f10^x . 84
fabs . 79
facos . 83
falign . 80
faligned . 80
farray . 78
fasin . 83
fatan . 83
fbuff . 78
fcheck . 82
fconstant . 78, 80
fcopy . 171
fcos . 83
fdel . 171
fdepth . 80
fdrop . 77
fdup . 77, 165, 166
fe^x . 83
ffrac . 79
field . 167
field-type . 167
fill . 160

198 Forth 7 Cross Compiler

fillc . 160
find . 147
fint . 79
fixexp . 82
fliteral . 82, 166
fln . 83
float+ . 80
floats . 80
flog . 83
floor . 80
flush-idata . 105, 150
fmax . 80
fmin . 80
fnegate . 79
fnip . 77
fnumber? . 82
forth . 161
fover . 77
fp-char . 77
fp>ieee . 84
fpick . 77
free . 72
froll . 77
frot . 77
fround . 80
fseparate . 79
fsign . 78
fsin . 83
fsqr . 83
fsqrt . 166
fswap . 77
ftan . 83
fvariable . 77
fx^n . 84
fx^y . 84

G
get-#voc-threads . 156
get-#wid-threads . 156
get-message . 62
getip[] . 175

H
halt . 62
headerless . 169
headers . 169
heapok? . 72
help . 163
here . 124, 152
hex-down . 90
hex-i16 . 99
hex-i32 . 99
hex-s19 . 99
hex-s28 . 99
hex-s37 . 99
hide . 170
host&target . 155

I
i: . 152
i] . 63
ialign . 151
iallot . 152
icode . 153
idata . 149
ieee>fp . 84
ignorable . 148
ihere . 152
immediate . 153
in-emulator . 93
include . 90, 160
init-heap . 72
init-multi . 62
initiate . 62
inline-always . 153
integers . 83, 165
interactive . 171
internal . 169
interpreters . 163
iorg . 149
is-action-of . 169
issep? . 77
it . 170

K
kb . 170
khz . 170

L
l!c . 159
l: . 154
l>hilo . 99, 154
l>lohi . 99, 154
l@c . 159
label . 153
labels . 163
later . 69
lay-idata . 150
ldump . 160
legacy-floats . 164
libraries . 175
loc . 163
locate . 162
log . 170
logging? . 171
lrcc16 . 173
lvariable . 156

M
m", . 157
make-build . 130, 172
make-turnkey . 164
marker . 160
mb . 170
mhz . 170
mnum . 82
mpe-floats . 164
ms . 62, 69, 171
msg? . 62

Index 199

multi . 62

N
n! . 174
n# . 81
n@ . 175
ndcs: . 153
no-heads . 169
no-log . 170
nohex . 99
norm . 78
nt-access-ports . 169

O
only . 161
op-prepare . 81
order . 161
order(h) . 161
org . 124, 149
origin . 94, 149

P
pages . 148
parse . 158
parse(h) . 158
parse-name . 158
parse-name(h) . 158
pause . 62, 69
pc! . 11
pc@ . 11
pio-test . 12
pl! . 12
pl: . 99, 154
pl@ . 12
place . 156
places . 81
playnote . 12
postpone . 147
powers-of-10e-1 . 81
powers-of-10e-16 . 81
powers-of-10e1 . 81
powers-of-10e16 . 81
previous . 161
proc . 154
pw! . 12
pw@ . 12

R
rad>deg . 83
raise_power . 81
readmemh . 99
reals . 83, 165
represent . 81
reserve . 94, 126, 150
resize . 72
restart . 62
restore-int . 57, 62
reveal . 170
round . 81

S
s" . 157
s-> . 86
s>f . 78, 165
s\" . 159
save-int . 57, 62
scan . 158
sdlc . 173
sec-base . 94, 149
sec-end . 94, 149
sec-len . 94, 149
sec-top . 94, 149
section . 148
sections] . 94
see . 174
self . 62
send-message . 62
separray? . 77
ser-control . 39
serial . 39
set-#voc-threads . 156
set-#wid-threads . 156
set-compiler . 152
set-enum-sep-asm . 168
set-enum-sep-c . 168
setbinext . 151
setfloatalignment . 166
setfloatsize . 166
sf, . 166
sf.hex . 166
sigfigs . 81
simple16 . 173
simple32 . 173
simple8 . 173
single . 63
single-section-only . 149
single-section? . 149
sink_fraction . 81
size . 72
skip . 158
stack-check . 162
state . 147
status . 63
stop . 63
struct . 167
synonym . 169

T
target-only . 155
target-width . 169
targetflashstart . 151
terminate . 63
test] . 170
testing . 170
there . 152
throw . 171
ticks . 67, 69
time$, . 131, 170
timedout? . 69
to . 156
to-do . 155
to-event . 63
tstop . 68

200 Forth 7 Cross Compiler

U
ualign . 151
uallot . 152
udata . 149
uhere . 152
unhook-asm . 156
unused . 94, 150
uorg . 149
update-build . 130, 172
user . 155
uses . 163

V
value . 125, 155, 174
variable . 155
via-link . 93
vocabulary . 156
vocs . 161
vocs(h) . 161

W
w!(h) . 148
w!c . 159
w,(r) . 151
w,c . 94, 151
w,i . 95, 151
w@(h) . 147
w@c . 159

wait-event/msg . 63
wdump . 160
whereis . 162
wordlist . 156
words . 161
words(h) . 161
write-fail . 148
write-ignore . 93, 148
write-invalid . 93, 148
write-mem . 148
wvariable . 156

X
xdasm . 174
xdisasm/al . 173
xdisasm/f . 174
xdisasm/ft . 174
xref . 163
xref-all . 163
xref-kb . 163
xref-unused . 163
xtl? . 170

Z
z" . 157
z", . 157
z\", . 159

201

List of Tables

Table 6.1: Log display indicators . 29
Table 9.1: Task control block . 59
Table 9.2: Task status cell . 59
Table 19.1: Compiler extension directives . 127

203

List of Figures

Figure 3.1: Installed directory structure . 14
Figure 6.1: Target sign-on . 32
Figure 6.2: Example turnkey application . 35
Figure 6.3: Umbilical Forth structure . 37
Figure 20.1: Umbilical Forth structure . 135

	1 Licence terms
	Commercial use
	Distribution of application programs
	Distribution of files

	Warranties and support
	Community licence specific terms
	Distribution of application programs
	Warranties, support, and copyright

	Enterprise licence specific terms
	Distribution of application programs
	Warranties, support, and copyright

	2 Installing the system
	System requirements
	Installation and configuration
	Windows
	Linux and Mac OS X

	Release notes

	3 System components
	MPE Forth cross-compiler
	Standalone target Forth
	Umbilical Forth
	Documentation directory
	Control files
	Compiler versions
	Learning Forth

	4 How Forth is documented
	Forth words
	Stack notation
	Input text
	Other markers

	5 Configuring with macros
	Text macros
	Directory structures

	6 Generating a target Forth kernel
	Is your target already supported?
	The control file
	Memory map
	Setting the memory map
	Start and end of Flash
	Start and end of initialised RAM
	Start and end of uninitialised RAM
	Setting the compilation areas

	Modifying the serial line drivers
	Interrupt driven
	Polled
	Initialising the serial line
	Sending a character to the host
	Receiving a character from the host
	Generic I/O device table

	Setting up the system
	Setting up the hardware
	Setting up the software

	Cross-compiling
	Creating an image
	Log display
	Turning the log on and off
	Log to file or printer
	Compilation summary
	The created image
	Problems, problems ...

	Downloading the compiled image
	Downloading to Flash
	Downloading to an emulator or programmer

	Running the target Forth
	Switching to target mode
	Resetting the target board
	The sign-on

	Cross-compiling an application
	Modifying the control file
	Running your application

	Generating a turnkey application
	Using MAKE-TURNKEY
	Using ATCOLD

	Umbilical Forth
	Comms links
	Serial line configuration
	Memory drivers
	Downloading to Flash
	Using In-Application-Programming (IAP)
	Interactive debugging
	Problems, problems

	Serial port problems
	Windows USB serial devices
	Windows terminal emulators
	Mac OS X USB serial devices
	Linux USB serial devices

	7 Optimising the target Forth
	Reducing the image size
	Removing headers
	Removing all headers
	Selectively removing headers

	Factoring your code
	Removing excess code
	Using equates instead of constants
	Removing forward references
	Using Umbilical Forth
	Speeding up your code

	8 Generic I/O
	About Generic I/O
	Creating a new device
	Selecting a device

	9 Multitasker
	Initialising the multitasker
	Selecting the multi-tasker
	Starting the multitasker
	Stopping the multitasker

	Writing a task
	Using the scheduler
	An example task
	Task dependent variables
	Controlling tasks

	Message handling
	Event handling
	Initialising an event
	Triggering an event
	Clearing an event

	Critical sections and interrupts
	Semaphores
	Multitasker internals
	Scheduler data structure

	Example Task
	Defining the task
	Initialising the multitasker
	Activating the task
	Controlling the task

	Troubleshooting tasks
	Single chip tasking
	Glossary
	Converting to the v6.x multitasker
	Configuration
	Task identifiers and TASK
	WAIT and MS
	INITIATE and ACTIVATE
	?EVENT

	10 Periodic Timers
	Introduction
	The basics of timers
	Considerations when using timers
	Implementation issues
	Timebase glossary

	11 Time Delays
	12 Heap Memory Allocation
	Heap definition
	16 bit targets - HEAP16.FTH
	32 bit targets - HEAP32.FTH

	Gotchas
	Glossary
	Diagnostics

	13 Software Floating Point
	Introduction
	Source code
	Entering floating-point numbers
	The form of floating-point numbers
	Creating and using variables
	Creating constants
	Using the supplied words
	Calculating sines, cosines and tangents
	Calculating arc sines, cosines and tangents
	Calculating logarithms
	Calculating powers

	Degrees or radians
	Displaying floating-point numbers
	Number formats, ANS and Forth200x
	Glossary
	Error Strings/Codes
	Separators
	Basic stack and memory operators
	Floating point defining words
	Type conversions
	Arithmetic
	Relational operators
	Rounding
	Miscellaneous
	Floating point output
	Floating point input
	Trigonmetric functions
	Power and logarithmic functions
	IEEE format conversion

	Gotchas
	Changes from v6.0 to v6.1
	32 bit targets: software floating point
	16 bit targets: software floating point

	High Level primitives

	14 ROM PowerForth utilities
	Compiling text files
	The required files
	Compiling a specified text file

	Downloading a binary image
	XMODEM binary image download
	Intel hex download

	ROM PowerForth
	Hardware requirements
	Types of board
	Making your application turnkey

	AIDE file server protocols
	Glossary

	15 Controlling compilation
	Start and Stop compilation
	Defining memory sections and xDATA
	Defining sections
	Section charateristics
	An example
	Section tools

	Bank switched systems
	Defining banks and pages
	Flash layout control
	Executing words in another page
	Using CDATA pages
	IDATA and UDATA pages
	Miscellaneous

	Output file formats
	Aligning generated code
	Numbers and 16 bit targets
	Enabling floating-point
	Turning the log on and off
	Conditional compilation
	An example
	[DEFINED] and [UNDEFINED]
	[REQUIRED]

	Library files
	Loading binary data
	Test code
	C header files
	Direct port access
	Split bootloader and application

	16 VFX code generator
	Inlining
	Colon definitions
	CODE definitions
	COMPILER directives

	17 Debugging tools
	INTERACTIVE mode
	XDASM, DASM, DIS
	LOCATE
	USES
	XREF, XREF-ALL, XREF-UNUSED
	WORDS
	.DWORD, .LWORD .HEX and .DEC
	Lists
	Command line switches

	18 Debugging Embedded Systems
	Basic rules
	Make faults visible
	Check tasks
	Recover well
	Talk to the hardware people
	Intepreting crash dumps
	ARM Register usage
	Interpreting the registers

	19 Compilation in detail
	Special compilation behaviour
	Special interpretation behaviour
	Structures
	Allocating memory and variables
	CREATE
	Commas: , W, C,
	ALIGN and ALIGNED
	ALLOT
	HERE (CHERE IHERE UHERE)
	ORG (CORG IORG UORG)
	VALUE and VARIABLE
	BUFFER: and RESERVE

	Local variables
	Extending the compiler
	Defining words
	Automatic handling
	Explicit handling

	IMMEDIATE words
	Automatic handling
	Explicit handling

	Checksums
	Automatic build numbering
	Macros in text strings

	20 Target Forth model
	Inside a ROM target Forth
	Forth memory map
	RAM initialisation
	Implementation model
	Forth models
	Inside Umbilical Forth

	21 Example control file
	Standard header
	Text macros
	Cross compiler initialisation
	Configure target
	Kernel files
	Application code
	End of compilation

	22 Interpreter directives
	ANS and common words
	Specials
	Section handling
	Comma and friends
	Defining words
	Words involving ' (tick)
	Strings
	Escaped strings
	Memory operators
	Files and Paths
	Vocabulary handling
	Conditional Compilation
	Debugging aids
	Turnkey
	Floating point formats, ANS and Forth200x
	Floating point
	Software floating point
	Hardware floating point

	Structures
	C isms
	Miscellaneous
	Starting and finishing cross-compilation
	Build numbering
	Checksum generation
	Disassembler
	Library files

	23 Converting from earlier versions
	From v6.2 onwards
	Converting from v6.0
	Generic I/O
	Multitasker
	User variables
	Heap

	Upgrading from v5
	Basic v5 conversion
	Converting from DTC to VFX compilers
	CREATE CDATA IDATA UDATA and sections
	COMPILER, INTERPRETER, HOST, TARGET and ASSEMBLER
	Umbilical Forth
	FLOATS and REALS

	24 Converting from Forth-83 to ANS
	Choice of word names
	INVERT NOT and 0=
	EXPECT SPAN and ACCEPT
	S" and C"
	ASCII CHAR and [CHAR]
	FORGET and MARKER

	Division
	CREATE and friends
	>BODY and friends
	FLOATS and REALS
	CATCH and THROW
	Description
	Sample implementation
	Stack rules for CATCH and THROW
	Some more features

	POSTPONE
	COMPILE, and ,

	25 Further information
	MPE courses
	MPE consultancy
	Recommended reading

	{Index}
	{List of Tables}
	{List of Figures}

