USB Target Code

USB code v3.1, compiler v7.5

Microprocessor Engineering Limited

Copyright (© 2008, 2010, 2011, 2013, 2018 Microprocessor Engineering Limited
Published by Microprocessor Engineering

USB Target Code v3.1
User manual

Manual revision 3.1

12 July 2018

Software
Software version 3.1

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com

Table of Contents

1

Introduction 1
1.1 Setting up for USB development 2
1.2 MSC Class ArivVer. ..ottt e e e e e e ettt et 2
1.3 CDC Class DrIivert e ettt 3
1.4 Composite deviCeS.ttt 3
1.5 USB Vendor IDs. ... o 3
1.6 Compiling the code. e 4
1.7 Testing with operating Systemsuiiiiiiiii e 4

Generic USB definitions 5
2.1 SUPPOTt t0O0LS. . .ottt 5
2.2 Hardware 1S0lation 6
2.3 LAnKked LISt . .o 7

USB composite CDC and MSC configuration............... 9
3.1 Primary Configuration. e 9
3.2 USB DeSCIiPEOTrS . . o oottt 11
3.3 Serial number formatting 12

USB hardware layer for LPCIxxx 13
4.1 Configurationttt 13
4.2 DMA OPETatiONS . ..ottt ettt e e et e 13
4.3 Data and t00lS 14
4.4 Protocol Engine commands.t e 14
4.5 Handling endpoints. 15
4.6 Initialisation 17
4.7 Endpoint interrupt handling......... ... 17
4.8 Development and Gotchas....... ... 17

USB driver for STM32F0x2 parts 19
5.1 Endpoint packet memory and control......... 19
5.2 Handling endpoints. e 20

USB base layer 23

USB EndPoint O......... 27
7.1 Setup OPErationsottt e e 27
T2 Despatch. 27

7.3 USB system initialiSationttt 27

ii USB Target Code v3.1
8 Mass Storage Class (MSC) driver........................... 29
8.1 MSC state machine.t 29
8.2 MO data. .ottt 30
8.3 L0008 . 31
8.4 Disk Read/Write task 31
8.5 CSW OPErationS. . ..ottt ettt e et e e e 33
8.6 The 18 Cases ..o v vttt e 33
8.7 CBW 0Perationsttt e e e 34
8.8 Endpoint despatcher 35
8.8.1 Without DMA ... 35

8.8.2 With DM A .. 35

8.9 EPO SETUP actions.ttt e 36
8.10 Diagnostics and Test code.o e 37

9 Communications Device Class (CDC) driver 39
9.1 Data and buffers ... 39
9.2 CDC Class RTT requestS. ... oouurit ettt e e e 39
9.3 CDC Bulk endpoint handling.......... ..o i 39
9.3.1 Non DMA 0peration.ouu it e e 39

9.3.2 DMA OPETationttt et e e e e e e 40

9.4 CDC Interrupt endpoint. e 41
9.5 Reset and initialisation........ ... 41
9.6 Diagnostics and Test code 41
9.7 Testing with operating systems i i 41
.71 WIIAOWS o oo et e e 41

9.7.2 LUK .« ettt e 42

0.7.3 Mac OF Xt 43

Chapter 1: Introduction 1

1 Introduction

Version 3 of the USB target code has needed a number of detail changes to cope with the addition
of a hardware layer for STM32F0x2 devices. The ST USB engine is very different from those of
the NXP LPC devices, especially in the interrupt handling.

Version 2 of the USB target code has been refactored, and is not directly compatible with the
code in version 1. The major difference is that code dealing with Endpoint 0 has been moved
to a separate file which is compiled after the class drivers. Other changes include refactoring
of the primary USB interrupt to reduce interrupt overhead, provision for DMA-driven systems
(recommended), improved error detection (especially for drives) and additional hardware drivers.

To avoid the need for custom host drivers, several standard USB classes are provided. The
most common of these are the Mass Storage Class (MSC) used by memory sticks, and the
Communications Device Class (CDC) used by USB serial converters which are often referred to
as VCOM (Virtual COM) devices. Examples of both classes are provided.

The USB system presented here is built in four main layers

e USB hardware driver - if you you write a new hardware driver, do not change the interface.
See UsbHwSTM32F0z2.fth for STM32F0x2 devices. See UsbHwLPC2xxx.fth for an example
for NXP LPC2xxx devices and UsbHwLPC1zzz.fth for some LPClxxx devices. Minor
hardware differences are described in the devxxxx.fth files, which handle things like pin
selection, USB clocking, and USB connect and disconnect. Other drivers are provided in
the <CPU>\ Drivers folder.

e Base layer - portable code providing generic facilities for the class drivers. See UsbBase.fth.

e (lass drivers - USB systems, such as memory sticks, use standardised protocols which are
referred to as class drivers. By using class drivers you do not have to provide custom drivers
on the host PC. An example is the Mass Storage Class (MSC) driver in MscDruv.fth.

e Endpoint 0 layer - handles the USB control through endpoint 0, and despatches interrupts
to the handlers for the other endpoints. This code is in UsbEPO.fth.

In addition to these layers, the code contains configuration options in MSCconfig.fth and CDC-
config.fth. You can use these as models for other configurations. A sample composite device is
configured in CdcMscConfig.fth, which also contains code for handling USB serial numbers.

The Mass Storage Class depends on the disk interface used by the FATfiler code. The
standard example is for an LPC2148 (Olimex P2148 hardware) using the SPI driver in
ARM\ Drivers\spiLPC2148hard.fth. You can read, write and format the drive from a host
PC.

The Communications Device Class provides a Generic I/O device which can be used in the
same way as any other device. You can even use it as the Forth console. Under Windows,
no driver is required, but a ".inf" file is required. An example for NXP processors is pro-
vided in Examples\USB\mpevcom.inf. Note that the examples use a sample VID and PID
pair. For distribution of your products, you must obtain a VID (Vendor ID number) from
http://wuw.usb.org.

The code is entirely written in high level Forth for 32 bit systems. The primary tests for hardware

2 USB Target Code v3.1

and class drivers are performed using Windows 7 and Windows XP, service pack 3. Windows
XP Service Pack 3 is required for reliable use of composite devices that rely on Windows XP
services.

1.1 Setting up for USB development

USB is one of those protocols that doesn’t work until almost everything works. You need a pro-
tocol analyser. Just as nobody does anything serious with TCP /TP without learning to use Wire-
shark (was Ethereal), so nobody who is being paid to develop USB systems can do without a USB
analyser. We used a Beagle USB 12 from TotalPhase Systems (http://www.totalphase.com)
and it was worth every penny.

Every silicon vendor provides sample USB sample code. Don’t expect it to be pretty, well
commented or bug-free.

There are a number of books about USB device development. The ones we have used are:
USB Design by example, John Hyde,
USB Mass Storage, Jan Azelson.

Jan Axelson has a number of USB books available. Her website is at http://www.1lvr.com.

1.2 MSC Class driver

Most USB devices are single application. However, most embedded systems use SD or Com-
pactFlash cards for mass storage, and want to use the Mass Storage drive to access the files
on the SD card. To do this requires a FAT file system as well as a USB driver. The majority
of memory sticks use FAT16 or FAT32 file systems. These are provided by the MPE FATfiler
which comes with all Developer editions of MPE Forth cross compilers for 32 bit targets.

Most sample MSC drivers do everything in the interrupt routine, including the drive sector
read/write routines. This causes excessive time in the interrupt routine, preventing your real-
time task from operating properly. To overcome this, we have split the load into a USB interrupt
handler and a task controlled by the interrupt handler. The MSC driver only needs raw sector
read/write routines, which must be interlocked, e.g. by a semaphore, with the other task(s) that
use the sector interface.

Despite all this, we have seen the USB interrupt routine use 80% of the CPU time at peak USB
load on a 60MHz ARM interfacing to a slow (2Mbps) SPI driver for an SD/MMC card. For
good real-time performane, tune your card and USB hardware routines. Use DMA hardware
wherever possible after you have your hardware running reliably. Because of the number of
different hardware systems that we have to support, we at MPE have to consider code portability
a high priority.

When using SDHC cards (4Gb and above), note that these will normally be formatted using
FAT32, for which the FAT table is huge. Windows appears to read the whole FAT table when
a drive is recognised. With USB full-speed devices (12 Mbps), this takes a long time. Start up
and format for FAT16 are much quicker. As an example, the FAT size for a 512Mb FAT16 card

Chapter 1: Introduction 3

is 242 sectors with 16 sectors per cluster, whereas for a 4Gb FAT32 card, the FAT size is 7658
sectors with 8 sectors per cluster.

Windows does not require a .INF file for MSC devices.

1.3 CDC Class Driver

The Communications Device Class (CDC) can be used for a wide range of devices including
modems and FEthernet simulations. The code we supply only supports the ACM subclass, which
is the one used for serial port emulations and modems. Only a limited set of control functions are
implemented beyond providing a stub. If you need them, expand them to suit your requirements.

There are two USB interfaces, a control interface with an interrupt in endpoint, and a data
interface with a bulk in and and bulk out endpoint per COM channel.

The COM channel(s) are implemented as the ends of CQUEUE structures. These queues should
be large enough to hold the number of bytes accumulated during a USB poll interval. The poll
interval is defined in the endpoint descriptor for the control interface. By default, this is set to
1, indicating a poll interval of 1 ms.

Under Windows, a .INF file is required for any USB device that includes a CDC class driver.
The PID and VID (see below) must match those in your USB device descriptors, as must the
manufacturer string.

1.4 Composite devices

The file CdcMscConfig.fth contains a USB configuration for a composite Communications Device
Class (CDC) and Mass Storage Class (MSC) application.

The trick for composite devices is to use an Interface Aggregation Descriptor (IAD) for each
instance of any class with more than one interface, e.g. CDC. Read the source code in CdcM-
scConfig.fth for the gory details!

Running composite devices on Windows without using a custom driver can be problematic.
Vista is fine, but XP SP2 is not. For XP, either upgrade to SP3 or install hotfixes. It seems you
need

e Hotfix KB935892 (which brings usbcegp.sys 5.1.2600.3116)

e Hotfix KB918365 (which brings usbser.sys 5.1.2600.2930)

1.5 USB Vendor IDs

USB devices are identified by a Vendor ID (VID), Product ID (PID) and a serial number. The
primary source of Vendor IDs is http://wuw.usb.org. If you only need a few, it may be possible
to buy a block from a third party, e.g. http://www.voti.nl/shop/catalog.html?USB-PID-10.

According to the USB rules, VIDs are not transferable without written permission. For devel-
opment, MPE uses VID=0D59 with PID=FFF0..FFFF. It is not our intention to use the PID
range FFF8..FFFF.

4 USB Target Code v3.1

1.6 Compiling the code

Edit the file zzzConfig.fth as required. The default is for a Mass Storage Class driver. Depending
on the hardware and its driver, you may have to force DMA buffers into a particular memory
range. The MSC class driver requires sector read and write routines and the FAT filing system.

include %UsbDir’%\UsbDefs \ USB definitions/equates

include %UsbDir’\MscConfig \ configuration file
\ include %UsbDir’\CDCconfig \ USB configuration file
\ include %UsbDir’%\CdcMscConfig \ USB configuration file
include %UsbDir’%\UsbHwLPC2xxx \ USB hardware layer for LPC2xxx
include %UsbDir%\UsbBase \ USB base operations
CDC? [if]
include %UsbDir’%\CdcDrv \ Communications Device Class
[then]
MSC? [if]
include %UsbDir%\MscDrv \ Mass Storage Class
[then]
include %UsbDir’%\UsbEpO \ USB Endpoint O layer

After compiling and flashing the code, power up the target, and type:
startUSBsys

to start the USB and mass storage system. You should then be able to transfer files from the
PC to the target. To see them, return to the Forth target prompt and type:

dir
which will provide a simple directory listing.
1.7 Testing with operating systems

The code here has been tested with Windows 7 and 10, Mac macOS 10.13 High Sierra, Debian
Linux v16.04 for x86_64 Linux and Raspbian Jessie for ARM Linux.

Windows takes a lowest common denominator approach to the standard USB classes in order
to operate with the largest number of devices. It is probably easiest to get a device working
under Windows than any other operating system. However, getting something working under
Windows is no guarantee that your device is standards-compliant or that it will work with other
operating systems.

Linux expects that what is provided operates to specification and will reject non-compliant
devices. However, it is reasonably tolerant of missing features.

Mac OS X is really fussy and makes few concessions. However, there are good USB analysis
programs to help debugging. Composite devices can be difficult to write descriptors for. TAD
support was only introduced in OS X 10.5.6. At least one of our clients detects an OS X host
(first setup packet has wLength=8) and presents different USB descriptors for OS X. Note that
recent Macs may no longer support Full Speed devices (the majority of embedded devices) and
that a USB 2.0 hub is required. If you are powering the device from the hub, a powered hub is
recommended.

Chapter 2: Generic USB definitions 5

2 Generic USB definitions

The file UsbDefs.fth contains generic USB defines and tools used to insulate the hardware drivers
UsbHwzzzz.fth from the core layers in UsbBase.fth and UsbEPQ.fth.

0 equ USBMin? \ -- flag
If your control file sets this equate non-zero, much of the USB code is compiled without headers.

struct /USBSetupPacket \ -- len
USB Default Control Pipe Setup Packet structure.
byte usp.bmRequestType \ bit7=Dir,0=to dev, bit6:5=Type, bit4:0=Recipient
byte usp.bRequest
hword usp.wValue
hword usp.wIndex
hword usp.wLength
end-struct

struct /UsbEpd \ -- len
USB Standard Endpoint Descriptor
BYTE epd.Len
BYTE epd.Type
BYTE epd.Addr
BYTE epd.Attribs
HWORD epd./MaxPacket
BYTE epd.Interval
end-struct

2.1 Support tools
: bitn \'n-—-2"n
Generate bit n from n.

: lew@ \ addr - w
16 bit unaligned little-endian fetch. USB control data is in little-endian form and may be
unaligned.

: lew! \ w addr --
16 bit unaligned little endian store. USB control data is in little-endian form and may be
unaligned.

: lele@ \ addr -- x
32 bit unaligned little-endian fetch.

: lel! \ x addr --
32 bit unaligned little endian store.

: lew@ \ addr - w
16 bit fetch. USB control data is in little-endian form and may be unaligned.

: lew! \ w addr --
16 bit store. USB control data is in little-endian form and may be unaligned.

: lew, \ w -
Lay unaligned little-endian 16 bit data.

6 USB Target Code v3.1

: lel@ \ addr -- x
32 bit unaligned little-endian fetch.

: lel! \ x addr --

32 bit unaligned little endian store.

: lel, \ x —-

Lay unaligned little-endian 32 bit data.

: bew@ \ addr -- w
Unaligned big-endian 16 bit fetch.

: bew! \ w addr --
Unaligned big-endian 16 bit store.

: bew, \ w ——

Lay unaligned big-endian 16 bit data.

: bel@ \ addr -- x
Unaligned big-endian 32 bit fetch.

: bell! \ x addr --
Unaligned big-endian 32 bit store.

: bel, \ x —-

Lay unaligned big-endian 32 bit data.

Strings are laid as little-endian 16 bit Unicode, preceded by a count byte and a string type
marker.

: resetUIFs \ -

Start the USB interface sequence numbering at 0.

: NextUIF: \ "<name>" --
Create an equate with the next USB interface number.

: #UIFs \ ——u
Returns the number of interfaces defined so far.

2.2 Hardware isolation

The five VALUEs below are used to provide status information for the core layer, but are actually
contained here in UsbDefs.fth to avoid forward references and to permit easy reference by the
class drivers. Note that the endpoint status values are bit masks in a hardware independent
form. See EP>mask below.

0 value DevAddr \ - x

Set to $80+u where u is the new device address. Used by low level code to set the USB device
address at a time suitable for the hardware. After setting UsbDevAddr below, DevAddr is reset
to 0.

0 value UsbDevAddr \ - u

USB device address. Set by the host.

0 value UsbConfig \ -- x
USB Configuration set. Non-zero when the USB device has been configured.

0 value UsbEPmask \ - x
Endpoint mask. Bits are set when the endpoint is enabled. Used by the core layer.

Chapter 2: Generic USB definitions 7

0 value UsbEPhalt \ - x
Endpoint halt status. Bits are set when the endpoint is halted/stalled.

0 value Usb#IfSet \ —-n
Number of interfaces set.

: EP>mask \ ep# -- mask
Decode an endpoint number to a bit mask such that if bit 7 is clear (OUT endpoints), the bit
is in the low 16 bits, and if set (IN endpoints) in the upper 16 bits.

2.3 Linked lists

Linked lists are used by the USB driver to avoid forward references to higher level code, especially
various reset actions. Note that the chains are managed at compile time. The linked list uses
facilities provided in Common\ Kernel62.fth.

: ExecChain \ anchor --
Execute the contents of chain with the following structure:
link | xt |

Each word that is run has the stack effect
link -- 1link

Where link is the address of the link field in the structure. Thus, data that follows the xt can
easily be accessed.

create UsbResetChain \ -- addr
Anchors the chain of words executed at device reset.

create UsbFrameChain \ -- addr
Anchors the chain of words executed in the frame interrupt.

: link, \ addr --
Extend chain anchored at addr.

: AtUSBreset \ xt --
Add the word whose xt is given to the USB reset chain.

: AtUSBframe \ xt —-

Add the word whose zt is given to the USB frame interrupt chain. Words in this chain are
mostly used to enable Bulk or Interrupt endpoint NAK interrupts. Careful use of this chain can
significantly reduce USB interrupt handling overhead.

Chapter 3: USB composite CDC and MSC configuration 9

3 USB composite CDC and MSC configuration

The file CdcMscConfig.fth contains a USB configuration for a composite Communications Device
Class (CDC) and Mass Storage Class (MSC) application. For CDC and MSC only applications
see CdcConfig.fth and MscConfig.fth.

Running composite devices on Windows without using a custom driver for Windows can be
problematic. Windows 7, Vista and XP SP3 are fine, but XP SP2 is not. For XP, either
upgrade to SP3 or install hotfixes. It seems you need:

e Hotfix KB935892 (which brings usbeegp.sys 5.1.2600.3116)
e Hotfix KB918365 (which brings usbser.sys 5.1.2600.2930)

We installed SP3 for testing and had to copy the new version of wusbser.sys manually from
SP3.cab. Use Windows search and copy the new version to replace the one in Win-
dows\ System32\ Drivers.

The trick for composite devices is to use an Interface Aggregation Descriptor (IAD) for each
instance of any class with more than one interface, e.g. CDC. Read the source code for the gory
details!

You also need to take care with the start up code for composite devices. USB device start up
consists of three steps.

1. Initialise data buffers, some of which may be in UDATA section, and so will not be initialised
by the default MPE initialisation code. This code should also be part of the USB reset
action for the class or interface.

2. The primary initialisation of the USB hardware and code is performed by InitUSB.

3. Then perform the USB bus connection process using USBconnect.

Your start up code for a composite device then consists of
initA initB ... InitUSB USBConnect

Versions of this stack from November 2010 onwards include in UsbEP0.fth the word startUSBsys
which performs these operations.

3.1 Primary Configuration

Note that interface numbers must be a contiguous set starting at 0.

0 equ dbgUHW? \ -- flag
Set true to get debug information from the USB hardware layer. Some of the debug output
must be done using polled serial drivers.

0 equ dbgCore? \ -- flag
Set true to get debug information from the USB core layer. Some of the debug output must be
done using polled serial drivers.

0 equ UsbPowered? \ -- 0/1 ; bus powered?
Set to one if bus powered.

1 equ UsbDMA? \ -- 0/1 ; uses DMA?

10 USB Target Code v3.1

Set to one if any endpoints other than EP0 use DMA. At the moment we assume that EPO does
not use DMA.

#64 equ /maxpacketO \ -—-u
Maximum size of packets on endpoint 0.

#64 equ /maxpacket \ ——u
Maximum size of packets on endpoints other than 0.

#32 equ #EPs \ —u

Number of endpoints we are are going to deal with. On a 32 bit CPU, there are 32 bits per
word. We need separate bits for IN and OUT, so there’s a practical maximum here of 32, and
USB supports 16 endpoints, each with IN and OUT capability. Endpoint 0 is always IN and
OUT capable.

4 equ #USBifs \ --u
Number of interfaces we can expand to eventually.

0 equ HID? \ -- flag
True if a HID device, e.g. mouse, is to be supported.

1 equ CDC? \ -- flag

True if a communications device class (CDC) is to be supported. The most common of these is
a USB serial port.

1 equ MSC? \ -- flag

True if a mass storage device is to be supported.

0 equ AUDIO? \ -- flag
True if an audio device is to be supported.

resetUIFs
Force the interface numbers to start at zero.

NextUIF: CdcCIf# \ - b

Interface number of the CDC control interface.
NextUIF: CdcDIf# \ - b

Interface number of the CDC data interface.
$81 equ CDCIinEP \ -- ep

Optional Interrupt IN event notification endpoint (CIF).
$85 equ CDCBinEP \ -- ep

CDC Bulk IN endpoint (DIF).

$05 equ CDCBoutEP \ -- ep

CDC Bulk OUT endpoint (DIF).

1 equ dbgCDC? \ -- flag

set non-zero to get debug information from the CDC driver.

CDCIinEP EP>mask equ CDCIinEPMask \ -- mask
Core layer bit mask for the CDC Interrupt IN endpoint. Used to avoid run-time calculation.

CDCBinEP EP>mask equ CDCBinEPMask \ -- mask
Core layer bit mask for the CDC bulk IN endpoint. Used to avoid run-time calculation.

CDCBoutEP EP>mask equ CDCBoutEPMask \ -- mask
Core layer bit mask for the CDC bulk OUT endpoint. Used to avoid run-time calculation.

Chapter 3: USB composite CDC and MSC configuration 11

NextUIF: MscIf# \ - b
Interface number of the mass storage class.
$82 equ MscBinEP \ —— ep
MSC Bulk IN endpoint.

$02 equ MscBoutEP \ -- ep
MSC Bulk OUT endpoint.

0 equ dbgMSC? \ -- flag

set non-zero to get debug information from the MSC driver.

MscBinEP EP>mask equ MscBinEPMask \ -- mask
Core layer bit mask for the MSC bulk IN endpoint. Used to avoid run-time calculation.

MscBoutEP EP>mask equ MscBoutEPMask \ -- mask
Core layer bit mask for the MSC bulk OUT endpoint. Used to avoid run-time calculation.

3.2 USB Descriptors

This section contains the USB descriptors. There is a descriptor for the device, for its configu-
ration, and for various strings. There are various other descriptors, both general and class class
specific. Their use is absurdly badly documented and the actual requirement as to which are
required is often operating system dependent. If it works with Linux, it will (probably) work
with everything else.

Strings are accessed using a "string index". Apart from zero, which has a predefined meaning
to define the language, string indices (1..255) are defined by the application. Here the indices
are the offset in bytes from the start of a string table. If you need more than 255 bytes of string
descriptors, change the index to be the offset into a table of string descriptor addresses.

Create CfgDesc \ -- addr
The configuration descriptor has a primary configuration, three interfaces, and five endpoints.
If there is more than one configuration, additional ones must follow the first one.

create StrDesc \ -- addr
String descriptor and following strings.
e Str0 - identifies the language. This is usually left alone.

e Strl - the USB serial number, usually a 16 character string. In the default code, the first
8 bytes are fixed and the second 8 bytes can be derived from a 32 bit number. Str2 - the
product identification string. Str3 - the manufacturer string.

create DevDescDefault \ —- addr
The device descriptor for Windows and Linux.

create DevDesc0SX \ -- addr
The device descriptor for OSX.

0 value DevDescReqlen \ -- u

Holds request length of first device descriptor after reset. It is used to auto-select the device
descriptor

:noname O to DevDescReqlen ; AtUSBreset
Performed at USB reset.

: DevDesc \ -- addr

12 USB Target Code v3.1

Return the address of the device descriptor. This word uses a kluge to provide operation on
Windows, Linux, and versions of OS X before 10.5.6 which recognises the IAD descriptor.

3.3 Serial number formatting

If the word unit# is defined, it should return a 32 bit unit serial number. This is used by the
USB code to return a serial number to the host. If the word unit# has not been defined, a
default fixed serial number is returned.

#34 buffer: UTFbuf \ -- addr
Holds a string descriptor with up to 16 little-endian Unicode 16-bit characters.

: usbSerialNum \ -- caddr len
Returns the default device USB serial number if unit# is not defined.

: usbSerialNum \ -- caddr len
Returns the default device USB serial number if unit# is not defined.

: USBStre@ \ index -- caddr len
Return the USB string descriptor corresponding to the given string index. By convention the
following order is used:

0 language identifier - do not change
1 serial number

2 product

3 manufacturer

If you configure your products with serial numbers extracted from non-USB strings, e.g. MAC
numbers, modify this word to perform the string extraction as required.

Chapter 4: USB hardware layer for LPClxxx 13

4 USB hardware layer for LPCl1xxx

The file UsbHwLPClxxz.fth contains the USB hardware layer for NXP LPClxxx and some
LPC4xxx devices. The file UsbHwLPC2zxxx.fth is very similar and contains code for NXP
LPC2xxx devices.

DMA operation is supported if the equate usbDMA? is set non-zero in the USB configuration file,
e.g. MscConfig.fth. Use of DMA is strongly recommended. For most real-time applications the
benefit of DMA operation is the considerable reduction of interrupt overhead at the expense of
code size. If even this is unacceptable, consider the following solutions.

e Permit nested interrupts and reduce the priority of the USB interrupt handler.
e Do not use a USB interrupt handler at all. Define a USB task and poll the handler.

4.1 Configuration

: EPaddr \ ep# -- physaddr

Translate the endpoint number to a physical address. Bit 7 of the endpoint number ep# (0..15)
is set if the write buffer is required.

1 equ usbDMA? \ -- flag
Set non-zero if the USB hardware is to use DMA for bulk and isochronous transfers. The
definition in this file is only used if not previously defined. Use of DMA is strongly recommended.

4.2 DMA operations

The USB hardware contains its own DMA controller. Whether this is used is set by the equate
usbDMA? in the USB configuration file. Each endpoint that uses DMA must define at least one
DMA descriptor and its type.

32 cells buffer: UDCA \ -- addr
USB DMA communication area. UDCA is only defined here if it has not already been defined.

create UDCAcfg \ -- addr
A table of device descriptors used to initialise the UDCA.

create EpDmaCfg \ -- addr
A table containing a byte per endpoint. The byte indicates how the endpoint is used with DMA:

0 no DMA
16 Bulk or interrupt endpoint

20 Isochronous endpoint.

DMA use is set at compile time. The following INTERPRETER words are used.

: BulkDD: \ ep# -- ; e.g. $0x or $8x
Creates a bulk DMA Descriptor in the URAMP section, and adds it to the UDCAcfg template.

: IntDD: \ ep# -- ; e.g. $0x or $8x
Creates an interrupt DMA Descriptor in the URAMP section, and adds it to the UDCAcfg template.

: IsoDD: \ ep# -- ; e.g. $0x or $8x
Creates an Isochronous DMA Descriptor in the URAMP section, and adds it to the UDCAcfg
template.

14 USB Target Code v3.1

: resetDD \ physaddr dd --

Reset a device descriptor to No_Packet state. The DMA buffer address, length and max packet
size are all zero. See LPC23xx User Manual, Chapter 13, 15.5.6.

: initEPdma \ physaddr --

Set up the DMA for the given endpoint (0..31) and apply resetDD.

: initUSBdma \ --

Initialise the USB DMA.

: setEPdma \ caddr len ep# --
Set the next transfer for an endpoint ($0x/$8x).

: #EPtrans \ ep# -- len
Return the number of bytes transferred on this endpoint. The return value is only valid after a
transfer is complete.

: enEPdma \ ep# --
Enable endpoint DMA.
: disEPdma \ ep# --

Disable endpoint DMA.

4.3 Data and tools

create “USBdev \ -- addr

Holds the address of the USB device peripheral.
: EpIntSte@ \ —— x

Read the endpoint interrupt status register.

: EpIntClr! \ x ——

Write the endpoint interrupt clear register.

: DevIntSte@ \ - x
Read the device interrupt status register.

: CmdData@ \ - x

Read the command data register.
: EpRe! \ x --

Write the EpRe register.

4.4 Protocol Engine commands

The USB Protocol Engine is triggered by writing to the UsbDevCmdCode register. Commands
are in the form:

00ppcc00

where pp is the command phase and cc is the command code. For more details, read the source
code.

Commands for the LPC2xxx USB controller are 32 bit items of the form $aabb:0500. When
data is also written the 8 bit data is written as a 32 bit item of the form $00bb:0100. When a
data byte is to be read, the read is performed by reissuing the command in the form $aabb:0200,
and waiting for the CDFULL interrupt rather than the CCEMTY interrupt.

Chapter 4: USB hardware layer for LPClxxx 15

: WrCmd \ cmd --
Write cmd to the CmdCode register.

: WrCmdDat \ cmd val --
Write ¢md followed by wval to the CmdCode register.

: RdCmdDat \ cmd —- val
Write a command and read the data.

4.5 Handling endpoints

This section contains an array of endpoint handlers and default actions for other operations
which are hardware dependent.

create EPxts \ -- addr

Holds the xts of the 16 endpoint handler words. The action of each handler must have the stack
effect below:

event —-

: EPhandler \ event u --

Run the endpoint handler associated with endpoint u, where endpoints are numbered 0..15.
Each endpoint handler is passed an event type which allows it to determine what it has to do.
The action of each handler must have the stack effect below.

event —-

: SetEPhandler \ xt ep# —-
Install the endpoint handler for endpoint ep#. Used during interpretation.

0 value UsbDevSt \ - x
USB device Status.

: USBsuspend \ —-
Suspend operations are performed by the hardware. This is a hook for installing actions such
as toggling an LED.

: USBresume \ -

Resume operations are performed by the hardware. This is a hook for installing actions such as
toggling an LED.

: USBconnect \ —-
Connect to the USB bus.

: USBdisconnect \ —-
Disconnect from the USB bus.

: USBWakeUp \ --
Called automatically on USB Remote Wakeup.

: USBSetAddress \ addr --
Set the USB assigned address in the protocol engine.

: WaitEPrlzed \ --
Wait for the EP_RLZED interrupt status and clear it.

: USBConfigure \ cfg -- ; O=unconfigure
Set the SIE configuration state.

: USBConfigEP \ desc --

16 USB Target Code v3.1

Configure USB Endpoint according to Descriptor.

: USBConfig2EP \ desc ep# -- desc

Configure USB Endpoint according to Descriptor and EndPoint.
: USBDirCtrlEP \ dir -- ; O=out

This word is a dummy for this hardware.

: USBEnableEP \ ep# -- ; bit7=dir, bits3:0=num
Enable the endpoint.

: USBDisableEP \ ep# -- ; bit7=dir, bits3:0=num
Disable the endpoint.

: USBResetEP \ ep# -- ; bit7=dir, bits3:0=num

Reset the endpoint.

variable SieModeMask \ -- addr
A shadow variable that holds the last mode mask set.

: setSIEmode \ mask --

Set the USB device mode register in the SIE. A shadow variable is used to hold the current
state.

: +BulkNAKin \ -

Enable NAK interrupts on bulk IN endpoints. All other SIE mode bits are left alone.

: -BulkNAKin \ -
Disable NAK interrupts on bulk IN endpoints. All other STE mode bits are left alone.

: +BulkNAKout \ --
Enable NAK interrupts on bulk OUT endpoints. All other SIE mode bits are left alone.

: -BulkNAKout \ --
Disable NAK interrupts on bulk OUT endpoints. All other SIE mode bits are left alone.

: USBSetStallEP \ ep# -- ; bit7=dir, bits3:0=num
Stall the endpoint. This word must clear the relevant bit in UsbEpHalt.

: USBClrStallEP \ ep# -- ; bit7=dir, bits3:0=num

Clear the endpoint stall. This word must clear the relevant bit in UsbEpHalt, and should ensure
that bulk IN/OUT NAKs cause interrupts.

code portl> \ caddr len port --

Read the port into the the memory block a cell at a time. If caddr is aligned, the data is stored
cell by cell, otherwise it is assembled a byte at a time before being sent to the port.

: USBReadEP \ ep# addr -- #read ; bit7=dir, bits3:0=num

Read endpoint data from endpoint ep# to addr. It will be faster if addr is aligned. Return the
number of bytes read. Note that data is transferred in units of four bytes, so the buffer must be
large enough to accommodate up to three extra bytes.

code >portl \ caddr len port --

Transfer the memory block to the port a cell at a time. If caddr is aligned, the data is fetched
cell by cell, otherwise it is assembled a byte at a time before being sent to the port.

: USBWriteEP \ ep# addr len -- cnt

Write data addr/len to host from endpoint ep#. Return the number of bytes written.

Chapter 4: USB hardware layer for LPClxxx 17

4.6 Initialisation

: hwUSBreset \ ——
Reset the USB device hardware after access has been enabled.

: USBswReset \ --
The action performed for a software reset of the USB, either at reset or in response to a USB
reset.

4.7 Endpoint interrupt handling

: waitCmdData \ -- x
Wait for CDFULL and read the data

: doEPslow \ --
Process an EP_SLOW interrupt.

: doDmaEQOT \ —
Handle DMA End Of Transfer interrupt.

: doDmaNDDReq \ --

Handle DMA New DD request interrupt.

USB Ssytem Errors are AHB bus errors. As yet, the AHB bus configuration registers are
undocumented. Consequently there is no point in trying to handle these errors, and the code
framework to do so is commented out.

: doDmaSysErr \ --
Handle DMA System Error interrupt.

: doUSBint \ disr -- disr’

The primary word called from USBinterrupt below. Processes DEV_STAT, EP_SLOW and
FRAME interrupt sources, ignoring and clearing all others. If DMA is enabled, DMA interrupts
are also processed.

: USBinterrupt \ --
The USB interrupt handler. It calls doUSBint above to permit better factoring.

> USBinterrupt USB_vec# EXC: USB_ISR \ —-- addr
The entry point for the USB interrupt.

: USBintInit \ —-
Initialise USB hardware interrupt handler.

: InitUSB \ ——
Initialise the USB hardware.
: startUSB \ ——

Start the USB system. This word gives more control to devices that have VBUS control. If such
devices are rebooted without power down, they may/will need to perform a USBdisconnect
operation as part of the start up sequence. A disconnect, delay, connect sequence is part of
startUSB.

4.8 Development and Gotchas

Under some conditions, normally after testing a faulty USB device, the Windows USB system
can become faulty. During device development, rebooting your PC will be a common occurrence.

When using console debug messages, note that you must not use serial drivers with queued
output. These use PAUSE which must not be called from an interrupt handler.

Chapter 5: USB driver for STM32F0x2 parts 19

5 USB driver for STM32F0x2 parts

The file UsbHwSTMS32F0z2.fth provides a USB driver for STM32F0x2 devices. Some primi-
tive code was taken from a public-domain source, and updated for correctness and interrupt
operation.

https://github.com/jeelabs/embello/tree/master/explore/1608-forth/suf

5.1 Endpoint packet memory and control

: even \ addr -- addr’
Force input address to be even.

: usb-pma (pos -- addr) _USBSRAM + ;
Convert an offset /position in the packet RAM to an absolute address.

: usb-pma (pos -- addr) _USBSRAM + ;
Convert an offset /position in the packet RAM to an absolute address. Compiler macro.

! ep-reg \ ep n -- addr
Return the address in packet RAM of reg n (0..3) of ep (0..7)
Each endpoint has an 8 byte control area of four buffers for transmit and receive control.

0 equ EPR_ADDR_TX
1 equ EPR_COUNT_TX
2 equ EPR_ADDR_RX
3 equ EPR_COUNT_RX

: ep-addr (ep# -- addr) $OF and cells _USBdev usbEPOR + + ;
Return the address in the peripheral block of the peripheral register for endpoint ep.

\ endpoint status values, both TX and RX
0 equ epDISABLED

1 equ epSTALL

2 equ epNAK

3 equ epVALID

endpoint type, both TX and RX
equ epBULK

equ epCONTROL

equ epISO

equ epINTERRUPT

W N = O -

: rxstat! \epu--
Set stat_rx without toggling/setting any other fields.

: txstat! \ ep u -~
Set stat_tx without toggling/setting any other fields.

: rxclear \ ep —-
Clear the endpoint receive CTR_RX bit.

: txclear \ ep —-
Clear the endpoint transmit CTR_TX bit.

: ep-reset-rx# \ ep --

20

Clear the RX count register.

: ep-reset-tx# \ ep --
Clear the TX count register.

Packet memory is used as shown below. Memory use is inefficient as two 64 byte buffers are

reserved for each endpoint, whether needed or not.

USB Target Code v3.1

(" N
000..03F Endpoint Table

040. .0BF EPO buffers, offset $00 for RX, $40 for TX

0CO. .13F EP1 ...

140. .1BF EP2 ...

1C0..23F EP3 ...

240. .2BF EP4 ...

2C0. .33F EP5 ...

340..3BF EP6 ...

k J
: EPioBufRX \ ep# -- pma

Return offset address of the receive packet memory buffer.

: EPioBufTX \ ep# -- pma
Return offset address of the transmit packet memory buffer

: set-EPtab-n \ ep# --
Set up EP buffer area in the packet memory.

5.2 Handling endpoints

This section contains an array of endpoint handlers and default actions for other operations

which are hardware dependent.
: USBDirCtrlEP \ dir -- ; O=out

This word is a dummy for this hardware.

: USBResetEP \ dir -- ; O=out
This word is a dummy for this hardware.

: USBEnableEP \ dir -- ; O=out
This word is a dummy for this hardware.

create EPxts \ -- addr

Holds the xts of the 16 endpoint handler words. The action of each handler must have the stack

effect below:

event —-

: EPhandler \ event u —-

Run the endpoint handler associated with endpoint u, where endpoints are numbered 0..15.
Each endpoint handler is passed an event type which allows it to determine what it has to do.

The action of each handler must have the stack effect below.

event --

: SetEPhandler \ xt ep# --

Install the endpoint handler for endpoint ep#. Used during interpretation.

0 value UsbDevSt \ - x
USB device Status.

Chapter 5: USB driver for STM32F0x2 parts 21

: USBsuspend \ --
Suspend operations are performed by the hardware. This is a hook for installing actions such
as toggling an LED.

: USBresume \ --
Resume operations are performed by the hardware. This is a hook for installing actions such as
toggling an LED.

: usbHWconnect \ --
Connect pull up on USB DP line.

: usbHWdisconnect \ -
Disconnect pull up on USB DP line.

: USBconnect \ -
Connect to the USB bus.

: USBdisconnect \ --
Disconnect from the USB bus.

: USBWakeUp \ -
Called automatically on USB Remote Wakeup.

: USBSetAddress \ addr --

Set the USB assigned address and enable the device. This should be done during a SOF (frame)
interrupt. Note that USBSetAddress may not actually set the device address, but may just
signal that an action must be taken, e.g. in the next frame interrupt

: USBConfigure \ cfg -- ; O=unconfigure
Set the SIE configuration state.

: cfg-EPnR \ ep# x —-
Configure the USB endpoint register,

: cfglso \ desc ep# -- desc
Configure an isochronous endpoint. UNTESTED.

: cfgBulk \ desc ep# -- desc
Configure a bulk endpoint.

: cfglnt \ desc ep# -- desc
Configure an interrupt endpoint.

: USBConfigEP \ desc --
Configure USB Endpoint register according to Descriptor.

: USBConfig2EP \ desc ep# -- desc
Configure USB Endpoint according to Descriptor and EndPoint.

: USBDisableEP \ ep# -- ; bit7=dir, bits3:0=num
Disable the endpoint.

: USBSetStallEP \ ep# -- ; bit7=dir, bits3:0=num

Stall the endpoint. This word must clear the relevant bit in UsbEpHalt.
: epBulk? \ ep# -- flag

Return true if the endpoint is BULK.

: USBClrStallEP \ ep# -- ; bit7=dir, bits3:0=num

Clear the endpoint stall. This word must clear the relevant bit in UsbEpHalt, and should ensure
that bulk IN/OUT NAKSs cause interrupts.

22 USB Target Code v3.1

.ep0/istr \ -

Display the EP0O endpoint register and the ISTR
.epO-pma \ -

Display the four EPO packet memory registers

: set-EPnR \ x ep ——
Set the USB endpoint register

: USBswReset \ -
The action performed for a software reset of the USB, either at reset or in response to a USB
reset.

: ep-setup \ ep# --
Trigger a SETUP packet handler.
: ep-out \ ep# --
Trigger an OUT packet handler.

: ep-in \ ep# —-
Trigger an IN packet handler.

: usb-ctr \ istr --
Given an interrupt status reading, process the packet.

: usb-poll \ -
Main USB driver polling routine. Factored this way to allow EXITs from the branches.
: USBinterrupt \ --

The USB interrupt handler. It calls usb-poll above to permit better factoring. LED1 is enabled
around the handler to give the user or oscilloscope an idea of overheads.

> USBinterrupt USB_EXTI_18vec# EXC: USB_ISR \ -- addr
The entry point for the USB interrupt.

: usbIntInit \ --
Initialise USB hardware interrupt handler.

: InitUSB \ -
Initialise the USB hardware.

: startUSB \ -

Start the USB system. This word gives more control to devices that have VBUS control. If such
devices are rebooted without power down, they may/will need to perform a USBdisconnect
operation as part of the start up sequence. A disconnect, delay, connect sequence is part of
startUSB.

Chapter 6: USB base layer 23

6 USB base layer

The file UsbBase.fth contains an (almost) hardware independent USB code base. The hardware
layer files, UsbHwzzxx.fth provide a standard interface that isolates hardware from the base layer.
Class drivers such as MscDro.fth should be compiled after the core layer and can reference the
hardware layer. After the class files have been compiled, compile UsbEPO.fth, which contain
the USB control and initialisation.

The five VALUEs below are used to provide status information for the core layer, but are actually
contained in UsbDefs.fth to avoid forward references and to permit easy reference by the class
drivers. Note that the endpoint status values are bit masks in a hardware independent form.
See EP>mask below.

0 value UsbDevAddr \ —u
USB device address

0 value UsbConfig \ - x
USB Configuration set. Non-zero when the USB device has been configured.

0 value UsbEPmask \ -- x
Endpoint mask.

0 value UsbEPhalt \ - x
Endpoint halt status.

0 value Usb#IfSet \ --n

Number of interfaces set.

: EP>mask \ ep# -- mask

Decode an endpoint number to a bit mask such that if bit 7 is clear (OUT endpoints), the bit
is in the low 16 bits, and if set (IN endpoints) in the upper 16 bits.

#USBifs buffer: USBAltSets \ -- addr
Alternate settings array

struct /UsbEPdata \ -- len
USB Endpoint transfer data structure.

UAlign /UsbEPdata buffer: EPOData \ -- addr
Endpoint 0 transfer control structure.

UAlign /USBSetupPacket buffer: SetupPacket \ -- addr
Current setup packet.

UAlign /MaxPacketO buffer: EPOBuf \ -- addr
Packet buffer for endpoint 0 data.

: ReqType \ - b

Return the first byte in the global SetupPacket.

: ReqDir \ —- $80[$00
Return the direction bit of the usp.bmRequestType field in the global SetupPacket.

: ReqTypeBits \ -- %0xx00000
Return the type bits of the usp.bmRequestType field in the global SetupPacket.

: ReqRecipient \ -- %000xxxxx
Return the recipient bits of the usp.bmRequestType field in the global SetupPacket.

24 USB Target Code v3.1

: EPOAddr \ -- addr|0
The address contained in EPOData ep.*Data field.

: /EPOData \ -- len
The size of the data in EPOData as given by the ep.Count field.

: NoEPOData \ -
Reset EPOdata.

: DevResetCore \ --
Reset the core software configuration. This word is part of USB device reset chain.

: UsbSetupStage \ --
USB Request - Setup Stage

: +EPOData \ len —-
Update the EPOData structure by len bytes.

: UsbDatalInStage \ —-
USB Request - Data In Stage. Data is taken from the EPOData global structure.

: doDataln \ caddr len --
Set up the data and do the Dataln stage.

: ?MoreDataln \ --
Performed in the USB frame check and sends more data if required.

: USBDataOutStage \ -

USB Request - Data Out Stage. Data is taken from the EPOData global structure.
: sendZLPin \ ep# --

Send a zero length packet from the given endpoint.
: USBStatusInStage \ --

USB Request - Status In Stage.

: USBStatusOutStage \ -

USB Request - Status Out Stage.

: stall_ i \ -

Stall EPO input.

: stall_o \ -~

Stall EPO output.

: RTDst \ -- flag ; true=success
Get REQUEST_TO_DEVICE status.

: RTIst \ -- flag ; true=success
Get REQUEST_TO_INTERFACE status.

: RTEst \ -- flag ; true=success
Get REQUEST_TO_ENDPOINT status.

: USBGetStatus \ -- flag ; true=success
Get Status USB Request. The data is in the global SetupPacket.

: RTDsetf \ sc -- flag ; sc, true=set; flag, true=success
Set /Clear Device feature.

: RTEsetf \ sc -- flag ; sc, true=set; flag, true=success

Chapter 6: USB base layer 25

Set/Clear Endpoint feature.

: USBSetClrFeature \ sc -- flag ; sc, true=set; flag, true=success
Set/Clear Feature USB Request. The data is in the global SetupPacket.

: maxEPOresp \ len -- len’ ; SFP003
Clip the given length to the wLength value in the setup packet.

: GetCfgDesc \ -- flag ; true=success
Get Configuration descriptor. The data is in the global SetupPacket.

: GetStrDesc \ -- flag

Get String descriptor. The data is in the global SetupPacket. Used when USBStr@ has been
defined and the string index is a small integer. USBStr@ (index -- caddr len) is usually
defined in the configuration file. See CdcMscConfig.fth for an example.

: GetStrDesc \ -- flag
Get String descriptor. The data is in the global SetupPacket. Used when USBStr@ has not been
defined and the string index is the byte offset into the string table.

: GetRTDDesc \ -- flag ; true=success
Get Device Descriptor USB Request. The data is in the global SetupPacket.

: USBGetDescriptor \ -- flag ; true=success
Get Descriptor USB Request. The data is in the global SetupPacket.

: DisableAllEPs \ --
Disable all endpoints except 0.

: SetCfgConfig \ desc -- desc’
Process the base configuration descriptor, returning the next descriptor.

: initEP \ desc ep# mask -- desc
Initialise an endpoint for use.

: termEP \ ep# mask --
Terminate using an endpoint. Only needed if USBSetIface is provided.

: SetEPConfig \ desc -- desc
Process an endpoint descriptor, returning the same descriptor.

: SetConfig \ —-
Set the configuration from the descriptor. The CfgDesc Configuration descriptor (see Descrip-
tors.fth is walked and processed.

: ClrConfig \ —-
Clear the existing configuration.

: USBSetConfig \ -- flag ; true=success
Set Configuration USB Request.

: USBSetIface \ -- flag ; true=success
Set Interface USB Request. The data is in the global SetupPacket. This word is now unused
and is commented out.

Chapter 7: USB EndPoint 0 27

7 USB EndPoint 0

The file UsbBase.fth contains an (almost) hardware independent USB code base. The hardware
layer files, UsbHwzxxxx.fth provide a standard interface that isolates hardware from the base layer.
Class drivers such as MscDro.fth should be compiled after the core layer and can reference the
hardware layer. After the class files have been compiled, compile UsbEPO.fth, which contains
the USB control and initialisation code using endpoint 0.

7.1 Setup operations

: RTD? \ -- flag

Is this a request to the device? If so return true.
: RTI? \ -- flag

Is this a request to the device? If so return true.

: doEPOSuStd \ -
Handle the EPO REQUEST_TYPE_STANDARD setup operations.

: doEPOClassRTI \ --
Handle the class REQUEST_TO_INTERFACE operations.

: doEPOSuClass \ --
Handle the EPO REQUEST_TYPE_CLASS setup operations.

7.2 Despatch

: doEPOsetup \ —-
Perform the EPO SETUP operations.

: doEPOout \ —-
Perform the EP0 OUT (to device) operations.
: doEPOin \ —-

Perform the EPO IN (to host) operations.

: doEPO \ event --
The despatcher for the actions of endpoint 0.

7.3 USB system initialisation

As of November 2010, start up of the USB code is performed by startUSBsys (--), which can
be found in UsbEPO.fth. startUSBsys uses conditional compilation to produce a start up word
that initialises all the required classes. Please use startUSBsys as your USB start up word from
now on.

: StartCDC \ -
Start the USB and CDC systems. Used for CDC only devicess. NOW OBSOLETE - see
startUSBsys below.

: StartMsSC \ --
Initialise MSC and start USB. NOW OBSOLETE - see startUSBsys below.

: StartCompo \ --
Start the USB CDC and MSC systems. Used for composite devices. NOW OBSOLETE - see
startUSBsys below.

28 USB Target Code v3.1

: startUSBsys \ --
Initialise all the selected USB components and then start the USB connection.

Chapter 8: Mass Storage Class (MSC) driver 29

8 Mass Storage Class (MSC) driver

The Mass Storage Class (MSC) driver uses the USB Mass Storage Class Bulk Only Transport
(BOT) specification. This, in turn, simulates a SCSI disc controller and so many SCSI terms
are used here.

The driver relies on user-supplied sector read/write routines. In order to reduce the time spent
in the USB interrupt handler, the sector read/write routines are accessed by a separate task. A
consequence of this is that if the USB and the device’s application share access to the drive, e.g.
through the FAT file system, semaphores must be used for disk access.

Note that the file ZFATfiler %\SDspi.fth of 19 November 2008 or later is required for use with
SD/MMC cards that use the generic SPI driver.

The file system needs these words to access the mass storage:

SecRead (addr sector dev —) Reads a sector from the specified device. THROWs on error. Use

dev=0.

SecWrite (addr sector dev —) Writes a sector to the specified device. THROWs on error. Use
dev=0.

MassInit (—) Initializes mass storage access.

MassTerm (—) Terminates mass storage access.

CDin? (- flag) Return true if card/device ready.

WPin? (- flag) Return true if card/device write protected.

To simplify the code, the raw disc read/write interface treats all read /write errors as fatal, and
THROWs on error. Retries should be accommodated within the sector read/write code.

The code is sensitive to the condition of the equate usbDMA?. We strongly recommend that this
is set non-zero if your hardware supports DMA for USB transfers.

8.1 MSC state machine

The Mass Storage Class (MSC) bulk endpoint actions are controlled by a state machine.

[sm \ -0
Starts the definition of a state machine’s states.

: smState \' n -- n+l
Defines the next state as an EQU and increments the state number.

: sm] \'n--
Finishes the state machine and defines an equate of the number of states.
The MSC bulk endpoint state machine.

[sm
smState smCBW \ wait for a CBW from host, idle state
smState smDOUT \ receive data blocks (sectors) from host
smState smDIN \ transmit data blocks (sectors) to host

smState smCSW \ send CSW to host

30 USB Target Code v3.1

smstate smCIN \ send command response to host
smState smStalled \ both bulk endpoints stalled
sm] #MSCsm \ --n
smCBW value MSCsm# \ -- state
MSC Bulk endpoint state.
.MSCstate \ —-

Display the current state of the MSC state machine.

8.2 MSC data

struct /DataPtr \ -- len
describes the layout of length/addr data pointers.

2variable mscBulkData \ -- addr
The data pointer for the remaining data of the bulk sector transfer. Note that this may be only
part of the transfer, especially for multi-sector disk reads and writes.

variable mscBulkLen \ -- addr
Holds the remaining length of the complete transfer. Before the transfer starts, the data corre-
sponds to the Dx value in the "13 conditions" tests.

variable mscHostLen \ -- addr
Holds the transfer size read from the CBW data block. This corresponds to the Hx value in the
"13 conditions" tests.

: initBulk \ addr len --
Set the data pointers for a bulk transfer.

struct /CBW \ -- len
SCSI Command Block Wrapper (CBW). The CBW fields are little endian for USB, but the
CDB fields are big-endian SCSI data.

struct /CSW \ -- len

SCSI Command Status Wrapper (CSW). Little-endian data for USB.

According to the specs (see the MSC overview), there should only be one CBW outstanding
until the corresponding CSW has been sent. Consequently, we do not need to queue commands,
and only need one set of buffers.

MscBoutEP BulkDD:
Bulk OUT DMA descriptor.

MscBinEP BulkDD:
Bulk IN DMA descriptor.

UAlign /MaxPacket buffer: CBWbuff \ -- addr
Holds a packet expected to be the next CBW. Includes the CDB.
UAlign /MaxPacket buffer: MSCbuff \ -- addr

Holds miscellaneous data in or out that is not sector data.

UAlign /CSW buffer: CSWbuff \ -- addr
Holds the CSW being assembled.

UAlign #512 buffer: USBSecBuff \ -- addr
Single sector buffer.

CBWbuff cbw.CDB constant CDBbuff \ -- addr

Chapter 8: Mass Storage Class (MSC) driver 31

The base address of the CDB in CBWbuff. The first byte contains the operation code.

0 value SenseCode \ -- 00kkccqq
The REQUEST SENSE command returns data in the KEY, ASC and ASQ fields. These are
merged into the low 24 bits of SenseCode.

0x030C00 equ SenseWriteError \ Card fail

0x031100 equ SenseReadError \ Card fail

0x052000 equ SenselnvalidOp \ bad command
0x052400 equ SenselnvalidCDB \ command format bad
0x023A00 equ SenseNotReady \ not ready, no card
0x0BOCO0 equ SenseWriteFail \ USB fail timeout
0x0B1100 equ SenseReadFail \ USB fail timeout

8.3 Tools
: StallMSCin \ —-
Stall the bulk IN endpoint.

: StallMSCout \ --
Stall the bulk OUT endpoint.

: BOTStall \ --

Stall the transaction. Which endpoint to stall is determined by looking at the transfer direction
intended by the host.

: readMSCOut \ caddr -- len

Read the bulk OUT endpoint into a buffer of at least /MaxPacket bytes and return the number
read.

: writeMSCIn \ caddr len --
Write the buffer to the bulk IN endpoint.

8.4 Disk Read/Write task

Disk read and write is controlled by a task. This is done to prevent the USB interrupt taking
too long.

SecRead (addr sector dev —) Reads a sector from the specified device. THROWS on error.
SecWrite (addr sector dev —) Writes a sector to the specified device. THROWs on error.
-1 value USBdisk? \ -- flag ; FVDO09

Returns true if the USB drive should be available to the USB host.

0 value DriveBusy? \ - x
Returns the current drive command and direction.

$100 DirIn or equ SecReadCmd \ -- x
Indicates that sectors are being read.

$100 DirOut or equ SecWriteCmd \ --
Indicates that sectors are being written.

0 value DriveComplete \ -- x
Set non-zero when the USB system has finished a command.

0 value FirstSector \ - u

32 USB Target Code v3.1

First sector to be read/written.

0 value NumSectors \ ——u
Number of sectors to be read/written.

0 value DriveStatus \ - x

Holds the drive action completion status. This is read by the USB interrupt handler to decide
how to terminate the action and is cleared when termination has been handled. Negative values
indicate errors, 0 is success

0 equ DrvOK \ - x
Drive status good.

-128 equ DrvWriteFail \ --
Fatal write error.

-129 equ DrvReadFail
Fatal read error.

-130 equ DrvBadCmd
Invalid drive command.

-131 equ DrvAborted.
Command aborted by USB

-132 equ DrvUSBto
Command aborted by USB timeout.

: setDriveCmd \ x ——
Set the drive command and clear the status.

: Sector<>USB \ -- ior ; O=success, nz=timeout
Send or receive a 512 byte sector data to/from USBSecBuff.

: -BulkData \ --
Acknowledge a sector transfer by zeroing the transfer address and length.

: Disk>USB \ —-
Read the given sectors from the disk.

: USB>Disk \ -

Write the given sectors to the disk.
: DriveIn? \ —- flag
Return true if the drive is in.

: 7MSCdrive \ —-
Wait for drive insertion after removal.

: WaitSecCmd \ —-
Wait for a sector command

: WaitDrvComplete \ -~
Wait for the drive action on the USB side to complete.

Task USBdiskTask \ —- addr
The task control block for the MSC sector transfer task.

0 value USBdiskTask? \ - x
Returns non-zero when the task is running.

Chapter 8: Mass Storage Class (MSC) driver 33

: +USBdiskTask \ --
Start the USB disk task if not already running.
: -USBdiskTask \ --
Stop the USB disk task if not already stopped.

8.5 CSW operations
: NoResidue \ -

Zero the CSWbuff csw.Residue field.
: initCSW \ --

Set up the CSW from the CBW. The residue field is set to the CBW data length field. For
actions that complete immediately, this should be cleared by NoResidue above.

: sendCSW \ —-

Send the CSW as is.

: badRWphase \ —-

Perform the bad R/W setup actions, returning a phase error status (0x02).
: badRWfail \ -

Perform the bad R/W setup actions, returning a fail status (0x01).

8.6 The 13 cases

The USB specifications define the host and device transactions in terms of 13 cases. The
file usbmassbulk_10.pdf contains the gory details and can be downloaded from www.usb.org.
You will probably use that document in conjunction with INF-8070.pdf to be found at
ftp://ftp.seagate.com/sff/INF-8070.PDF.

: mscHostDir@ \ -- $00/$80

Return the Host direction, where $80=IN to host.
: mscHostLen@ \ -- len

Return the host length from the CBW.

: NoMscDevData? \ -- ior ; O=success

Checks cases 1, 4, and 9. On an error (Hx>0), a pipe is stalled and a failure CSW sent. On
success, no action is taken.

: MscDevDataIN-17 \ caddr len -- caddr len’ O | ior ; O=success

Checks cases 2, 5, 6, 7, and 10. On error, appropriate action is performed. On success, no
action is taken. This version is used for short responses less than /MaxPacket, when data is
transmitted for case 5.

: MscDevDataIN-27 \ len —- ior ; O=success

Checks cases 2, 5, 6, 7, and 10. On error, appropriate action is performed. On success, no action
is taken. This version stalls and sends no data for case 5.

: MscDevDataOUT? \ len —- ior ; O=success

Checks cases 3, 8, 11, 12, and 13. On error, appropriate action is performed. On success, no
action is taken.

34 USB Target Code v3.1

8.7 CBW operations

2variable mscRespCIN \ -- addr
Contains a len/addr pair for command responses,

: -RespCIN \ -
Mark no command response data, and switch to a CSW send.

: +RespCIN \ caddr len --
Trigger a command response phase.

: doTUR \ —-
Perform the TEST UNIT READY actions.

#18 equ /SenseData \ -- len
Size of the response to the REQUEST SENSE command.

create SenseTemplate \ -- addr
Holds the 18 byte response to the REQUEST SENSE command. The $FF bytes are filled in
with data from SenseCode.

: doRS \ -
Respond to the REQUEST SENSE command.

#36 equ /IngData \ -- len
Size of returned INQUIRY data.

create IngData \ -- addr
The returned INQUIRY data.

: doINQ \ —-
Return the INQUIRY data.

: doRC10 \ -

Performs the READ CAPACITY (10) command operations.
: initMSCrw \ -

Initialise the read/write data from the CDBbuff

: +DiskRD \ --

Start the disk task read.

: +DiskWR \ -

Start the disk task write.

: doRD10 \ -
Performs the READ (10) command operations.

: doWR10 \ -
Performs the WRITE (10) command operations.

: doVRFY10 \ -
Performs the VERIFY (10) command operations. For the moment this is a dummy that always
succeeds unless no drive is present.

create MS6resp \ -- addr
The MODE SENSE (6) response.

: doMS6 \ —-
Performs the MODE SENSE (6) command operations. Taken from other code - I have no idea!
This command is not needed by Windows, but is required by Linux.

Chapter 8: Mass Storage Class (MSC) driver 35

: doRFC \ --

Performs the READ FORMAT CAPACITY command operations. This command is supposed
to be obsolete or vendor specific, but Windows may want it. See INF-8070.PDF for the details.
NO LONGER REQUIRED.

8.8 Endpoint despatcher

This section contains the handlers for the MSC bulk IN and OUT handlers, plus the actions
required for set up operations performed on endpoint 0.

: +DiskData \u--
Add u bytes to the bulk transfer control variables.

: ?AckSector \ -
If a full sector has been transferred, acknowledge it.

8.8.1 Without DMA
: ReadCBW \ -
Read a CBW from the bulk OUT endpoint and process it.

: TransmitCSW \ --
Transmit the CSW on the bulk IN endpoint, and switch the state machine to wait for the next
CBW.

: readMSCdata \ --
Read the bulk OUT endpoint for a transfer operation

: writeMSCdata \ --
Write the bulk IN endpoint for a transfer operation. Note that this may receive NAK interrupts
as it is a Bulk IN endpoint.

: DiscardMSCout \ --
Read and discard data received on the MSC Bulk OUT endpoint.

: MSCBulkOut \ -
Handle bulk OUT actions to the device. Note that this includes NAK interrupts.

: MSCBulkIn \ --
Handle bulk IN actions to the host. Note that this includes NAK interrupts.

: doEP2 \ event --
The action of endpoint 2.

: MscFrameCheck \ --
Executed in the frame interrupt. No longer needed as it is done by default for non-DMA drivers.

: DevMSCreset \ --
Reset the MSC driver. Performed at start up and as an EPO action.

8.8.2 With DMA
: startReadMSCdata \ -
Prepare the bulk OUT endpoint for a transfer operation

: endReadMSCdata \ -
Handle the bulk OUT endpoint data just received.

: startWriteMSCdata \ —
Write the bulk IN endpoint for a transfer operation.

36 USB Target Code v3.1

: endWriteMSCdata \ -
Update after a bulk IN endpoint data transfer operation.

0 value txCSWdone? \ -- flag
An interlock used to prevent multiple transmissions of the CSW.

: startTransmitCSW \ -
Transmit the CSW on the bulk IN endpoint.

: endTransmitCSW \ -
CSW transmit done, switch the state machine to wait for the next CBW.

: startRespCIN \ --
Start the command response transfer.

: endRespCIN \ —-
Mark the end of the command response stage.

: startReadCBW \ --
prepare for a CBW read.

: endReadCBW \ —
Read a CBW from the bulk OUT endpoint and process it.

: MSCBulkOutNdr \ --
Handle bulk OUT requests (data to the device).

: MSCBulkOutEot \ --
Handle bulk OUT completions (data to the device).

: MSCBulkInNdr \ --
Handle requests for bulk IN actions (data to the host).

: MSCBulkInEOT \ --
Handle completion of bulk IN actions (data to the host).

: doEP2 \ event --
The action of endpoint 2.

: MscFrameCheck \ --

Executed in the frame interrupt. Enables both Bulk endpoints, and seems to be required. We
do not yet know why!

: resetMSCdata \ --

Reset the MSC driver data. Performed at start up and as an EPO action.

: DevMSCreset \ —-
Reset the MSC driver. Performed as an EPO action.

8.9 EPO SETUP actions

: MscReset \ -- flag ; O=failed
Reset the MSC driver. EPO action.

: MSCGetMaxLUN \ -- flag ; O=failed
This device does not distinguish between LUNs. EPO action.

: MSCdoEPOClassRTI \ -
Handle the MSC class REQUEST_TO_INTERFACE operations.

Chapter 8: Mass Storage Class (MSC) driver

8.10 Diagnostics and Test code

: initMSCdata \ —-
Initialise the MSC data and task.

37

Chapter 9: Communications Device Class (CDC) driver 39

9 Communications Device Class (CDC) driver

The Communications Device Class (CDC) driver uses the ACM subclass. Only a limited set of
control functions are implemented beyond providing a stub. If you need them, expand them to
suit your requirements.

There are two USB interfaces, a control interface with an interrupt in endpoint, and a data
interface with a bulk in and and bulk out endpoint per COM channel.

The COM channel(s) are implemented as the ends of CQUEUE structures. These queues should
be large enough to hold the number of bytes accumulated during a USB poll interval. The poll
interval is defined in the endpoint descriptor for the control interface. By default, this is set to
1, indicating a poll interval of 1 ms.

9.1 Data and buffers
-1 value RunCDC? \ —- x
Set non-zero when CDC operation is enabled.

#10 aligned buffer: NotifyBuf \ -- addr
Holds CDC notification data.

7 aligned buffer: LineCodingBuf \ -- addr
Holds current line coding information.

2 buffer: SerialState \ -- addr
Holds serial state.

2 buffer: LineControlState \ —- addr
Holds Line Control State info.

create InitNotifyBuf \ -- addr
Initialisation data for the notify buffer

create InitLineCoding
Initialisation data for the line coding, usbcdcll.pdf 6.2.13 pb7.

9.2 CDC Class RTI requests
: CDCAoEPOClassRTI \ --
Handle the CDC class REQUEST_TO_INTERFACE operations.

9.3 CDC Bulk endpoint handling
variable #LastInO \ -- addr

Holds the number of bytes in the last packet sent to the host. This is used to prevent a Windows
problem that occurs when the last IN packet contains /MaxPacket bytes. In this case a following
zero-length packet is required.

9.3.1 Non DMA operation

Operation without DMA drivers is portable across a wide range of CPUs and USB engines.

/MaxPacket buffer: CdcBulkBuf \ -- addr
Packet buffer for CDC bulk transfers.

40 USB Target Code v3.1

0 value CDCdeferred? \ -- flag
Set true if the serial input buffer is full. The current packet is then retried in the frame interrupt.

: CdcBulkOut \ —-
Handle bulk OUT actions to the device. Note that this includes NAK interrupts.

: CdcBulkIn \ -
Handle bulk IN actions to the host. Note that this may include NAK interrupts.

: doCDCbulkInOut \ event --
The action of endpoints which combine CDC BULK IN and BULK OUT.

: doCDCbulkIn \ event --
The action of an endpoint for CDC BULK IN only.

: doCDCbulkOut \ event --
The action of an endpoint for CDC BULK OUT only.

: CdcFrameCheck \ --
Executed in the frame interrupt.

9.3.2 DMA operation

Because of the variety of DMA engines used for DMA, isolation of a hardware dependent DMA
layer is more complex. As yet, we do not guarantee that the hardware dependent DMA layer is
portable to all CPUs and USB engines.

CDCBoutEP BulkDD:
Bulk OUT DMA descriptor.

CDCBinEP BulkDD:
Bulk IN DMA descriptor.

/MaxPacket buffer: CdcDmaOutBuff \ —-- addr
DMA buffer for data OUT from host.

/MaxPacket buffer: CdcDmaInBuff \ -- addr
DMA buffer for data IN to host.

CDCBoutEP EPaddr equ CDCBoutPhys \ -—-u
Physical address of the CDC Bulk OUT channel.

CDCBinEP EPaddr equ CDCBinPhys \ -- u
Physical address of the CDC Bulk IN channel.

: initCDCbo \ —
Start the next CDC Bulk out DMA transfer.
: initCDCbi \ -

Initialise the CDC Bulk IN DMA transfer.

0 value CDCdeferred? \ -- flag
Set true if the serial input buffer is full. The current packet is then retried in the frame interrupt.

: CdcBulkDmaOut \ --
Handle CDC bulk DMA OUT actions to the device.

: CdcBulkDmaIn \ --s
Handle CDC bulk IN actions to the host.

: doCDCbulkInOut \ event --

Chapter 9: Communications Device Class (CDC) driver 41

The action of endpoints which combine CDC BULK IN and BULK OUT.

: doCDCbulkIn \ event —-—
The action of an endpoint for CDC BULK IN only.

: doCDCbulkQut \ event --
The action of an endpoint for CDC BULK IN only.

: CdcFrameCheck \ --
Executed in the frame interrupt. If there is data to be sent to the host, Bulk NAK IN interrupts
and channel DMA are enabled.

9.4 CDC Interrupt endpoint

: doCDCintIN \ event --
The action of the CDC interrupt endpoint IN.

9.5 Reset and initialisation

: resetCDCdata \ --
Reset the CDC driver data, initialising CDC specific data to start/restart operation. Performed
at start up and as an EPO action.

: DevCDCreset \ --
Reset the CDC driver, initialising the CDC specific data to start/restart operation. Performed
as an EPO action.

: CDCreset \ -- flag ; O=failed
Reset the CDC driver. EPO action.

9.6 Diagnostics and Test code

: UsbCon \ —-
Switch the Forth console to the USB channel.

: DefCon \ --
Switch to the default Forth console, normally on UARTO.

: UsbDisCon \ -
Switch to the default console (usually a serial device) and disconnect the USB from te host.

9.7 Testing with operating systems
9.7.1 Windows

USB serial devices can be determined using:
Control Panel -> System
Hardware -> Device Manager -> Ports

Once a USB serial device has been found, it will usually use the same port number when
reconnected. To use two or more of the same device, they must have different serial numbers.

For testing we use PuTTY or HyperTerm and AIDE’s PowerTerm. HyperTerm is a very old
program written before USB serial ports were available. It does not have sufficient error recovery

42 USB Target Code v3.1

for USB serial ports, and so is not suitable for production use. Despite this, it is available on
all Windows PCs and your clients will use it. PuTTY and TeraTerm are widely recommended
by USB developers.

Under Windows, a .INF file is required for any USB device that includes a CDC class driver.
The PID and VID (see below) must match those in your USB device descriptors, as must the
manufacturer string. Sample .INF files are provided, which you can use as the basis of your
own. Windows 10, 8, 7, Vista, and XP SP3 work well, but XP SP2 is not so robust. For XP,
either upgrade to SP3 or install hotfixes. It seems that you need:

e Hotfix KB935892 (which brings usbcegp.sys 5.1.2600.3116)
e Hotfix KB918365 (which brings usbser.sys 5.1.2600.2930)

We installed SP3 for testing and had to copy the new version of wusbser.sys manually from
SP3.cab. Use Windows search and copy the new version to replace the one in Win-
dows\ System32\ Drivers.

The Windows INF file for many CDC implementations is mpecdc W7.inf. When installing this
on Windows 7 onwards, Windows will probably say that it cannot find a driver automatically.
To overcome this, select manual installation. Make sure the INF file is the only INF file in the
selected driver directory. Windows will then complain that the driver is unsigned. Tell Windows
to carry on regardless and the INF file will install.

9.7.2 Linux

USB serial devices

When using USB serial devices, the name used varies according to your distribution. The most
common names appear to be:

/dev/ttyUSBx
/dev/ttyACMx

There are several methods of finding USB serial ports. The simplest seems to be to unplug the
device, then reconnect it, then type the following incantation:

dmesg | grep tty

where you must have root access. On many systems, e.g. Ubuntu
sudo dmesg | grep tty

is required. The last few lines should then tell you which USB serial port, e.g. /dev/ttyUSBO
was selected for your device. If the last tells you that the device is now disconnected, it is
probably because of the "brltty bug". Unless you need the Braille TTY access, remove the
package britty. Repeat:

sudo dmesg | grep tty

to check that device remains connected. Some forums suggest that you may also need to create
the /dev/ttyUSBzx entries. Do this with:

sudo mknod /dev/ttyUSBO c 188 0O
sudo mknod /dev/ttyUSB1l c 188 1
sudo mknod /dev/ttyUSB2 c 188 2

Chapter 9: Communications Device Class (CDC) driver 43

Linux serial terminal emulators

The most widely used Linux equivalent to Windows’ HyperTerm appears to be minicom. It
isn’t pretty, but it works and is easy to use. There are plenty of others, including GUI ones, but
minicom is the one we come back to as it is available for nearly all distributions.

9.7.3 Mac OS X

For automatic recognition by Mac OS X, bit 0 of the protocol byte in the relevant descriptors
must be set. After enumeration, your USB serial sevices will appear in the forms:

/dev/tty.usbmodem000031FD1
/dev/cu.usbmodem000031FD1

Tty is for "incoming calls" and cu for "outgoing calls". It has to do with behaviour when
opening the port, though you can achieve any behaviour you want on either device by opening
it non-blocking and reconfiguring the tty settings.

To test a serial device, run a terminal

Applications -> Utilities —-> Terminal

Within the terminal run the screen program.
screen /dev/tty.usbmodem000031FD1

From a terminal you can get the documentation:

man screen

Index

Index

BB e 30
HEPS o 10
Heptrans ... 14
#lastinO ..ot e 39
Huifs ... 6
#usbifs.. ... 10
+

FbUlKknakint e 16
+bulknakout ..o 16
Hdiskdata .. .oviii i 35
FAASKREd. .. 34
FALSRWE . ot 34
+eP0data ... 24
+TESPCIn 34
+usbdisktask.........oiiiiiiniiiniiniin... 33
—bulkdata ... 32
—bulknakinoiiiii e 16
—bulknakoutcoiiiiiii 16
—respCin ... 34
—usbdisktask. ... 33
LePO0=PMA . 22
LePO/AStr o 22
MSCSEAte . 30
W e e 30
OB e et 30
Jdataptr 30
/ep0data ... 24
/ingdata ... 34
/maxpacket i 10, 30
/maxpacketO ...l 10, 23
/sensedata..........oiiiiiiiii 34
Jusbepd. 5
/usbepdataottt 23
/usbsetuppacket............ oL 5, 23
>

SPOortl.. ..o 16
?

PaCKSECEOT ..ot e 35
moredatain........... ... i 24

45
(oM. 29
TUSDAEV . o, 14
0
O e 11
A
atusbframe ...t 7
atusbresett 7
AUAIO T . e 10
B
badrwfail 33
badrwphase ... 33
el e 6
DL, e 6
DL . e 6
DeW e 6
DM, vttt e 6
DEW . oo e 6
o e 75+ P 5
botstall ..ot 31
buffer:....... il 13, 23, 39, 40
DULRAG: .« 13, 30, 40
C
CbW.CAD. ot 30
CAC T ittt 10
cdebinep ... 10
CAChOULED ..ot 10
cdcbulkdmain.covuiiiini i 40
CcdcbulkRdmaout . ..ottt s 40
cdcbulRin ...t 40
CACBULROUL . oottt et s 40
cdecifd. .o 10
cdcdeferred?t 40
cdedif#. ..o 10
cdcdoep0classSrti ... 39
cdcframecheck............ i il 40, 41
cdciimep ... 10
CACTESet .ottt 41
cfg-epnr ... 21
cfgbulk. ... 21
cfgdesc....... 11
cfgint. 21
CEgaS0 . 21
clrconfig ... 25
emddata® 14

46

D

AbgCAdCT . .. 10
AbECOTET & 9
ADEMSCT . . 11
dbguhw?............. ... 9
AefCOm. ottt e 41
devaddr. ..o e 6
devedCresSet .. vu it 41
devdescC. ..ot e 11
devdescdefault 11
AeVAESCOSK v vt ie ettt i e 11
devdescreglen..........oviiiiiiiiiiiiiiiia 11
devintst@.ot 14
devmscresetl 35, 36
devresetCore. ... vuii it e 24
disablealleps........ccoviiiiiiiiiiiiiiiiiiiiian. 25
discardmscout..........c.ooiiiiiiiiiiiii 35
disepdmattt 14
AiskOUSD . .i it 32
docdcbulkincoooiiiiiiii 40, 41
docdcbulkinoutiiiiiii 40
docdcbulkout ...ovvvi i 40, 41
docdeintinm. ..ot e 41
dodatainm ..ovvtie e 24
dodmaeott e 17
dodmanddreq........coiiiiiiiii 17
dodmasyserr..............oiiiiiiiii 17
doepO.... ..o 27
doepOclassrti..............oiiiiiiii 27
doepOin. ... 27
doepOout ... 27
doepOsetup..........ooooiiiiiiiiiiiiiiiii 27
AoePOSUCLASS . ot v ettt 27
AoePOSUSTA ...ttt 27
doep2 35, 36
AOEPSLOW .\ vttt 17
doing.....oiiiii 34
AOMSB . oot 34
AorclO. .o 34
dordl0. 34
dorfc. .o e 35
o T o= PP 34
o 1o 7 PP 34
dousbint ... 17
AoVEEYL0 ..o 34
AoWrl0. .o 34
drivebusy?...........l 31
drivecomplete.......... ..o, 31
Arivein? ... e 32
drivestatus.......couiiiiiiii i 32
drvaborted. 32
drvbademd e 32
AL V0K . ottt e 32
drvreadfailouiiiiiiii e 32
drvusbto e 32
drvwritefail.........ooiiiiiiiii i 32

E

endreadCbwW ...t e 36
endreadmscdataoiiiiii i 35
endrespCin..........oiiiiiii 36
endtransmitcswovvi i e, 36

endwritemscdataot 36

USB Target Code v3.1

ENEPAMA. . . v v vttt s 14
ep=addr. 19
P =AML e 22
EP=OUL 22
=5 o o= - 19
ep-reset-Irx#.. 19
ep-reset—tx#.. 20
EP=SELUD . oottt 22
ep>mask...........oiiiiiiiiiii i 7,10, 11, 23
epladdr....... 24
epaddr 13, 40
ePbULKT? . .. 21
epdmacfg o i 13
ephandler............ ool 15, 20
epintclr! ... 14
epintst@ ... 14
epiobufrx 20
epiobuftX 20
EPTE ! e 14
EPXES « 15, 20
OVEIL . .ottt 19
execchain i 7

G

getcfgdesc............ 25
getrtddesc........... ... 25
getstrdesc..................iiilallllllL 25
H

hid? . 10
hwusbreseto 17
I

initbulk 30
initedebi ..o 40
initcdcboo 40
INIECSW. o 33
indtep. .o 25
Initepdmaottt e 14
initlinecodingl 39
initmscdata...........iiiiii i 37
INIEMSCIW .. oot 34
initnotifybuf......... ...l 39
initusb.......o 17, 22
initusbdma......... ... 14
ingdata..........o il 34
intdd: ... 13
isodd:.. ... 13
L

T N 5, 6
de L, o e 6
1010, . 5, 6
Tew! 5
W,y ottt e 5
1eWO . oo 5

Index

MAaXEPOTESP ..ottt 25
MSBTESD. .ottt ettt 34
1= o PP 10
MSCDINeP ..ottt 11
MSCbOULEDot 11
mscbulkdataoovuiiiiin i e 30
MSCOULKIN ..ottt e 35
mscbulkineot o i 36
mscbulkinndr......... ..ot e 36
mscbulkleniiiii it 30
mscbulkout ...t 35
mscbulkouteot...........o i 36
mscbulkoutndr............oiiiiii 36
mscdevdatain-17 i 33
mscdevdatain=—27t 33
mscdevdataout?t 33
mscdoepOclassrti............................... 36
mscframecheck........... oo 35, 36
mscgetmaxlun.......... ... il 36
mschostdir@......... ...t 33
mschostlenoviiiiiiin i 30
mschostlen®@............oiniiiiiiiniininann, 33
MSCLif®. . e 11
11T Yo ol Y= AP 36
MSCTESPCIN ...ttt 34

N

nextuif: 6
noepOdatal 24
nomscdevdata?t e 33
NOYeSidUe . ..ottt 33
NUMSECTOTS « vttt ettt ettt ie e ie i 32
O

Lo P 31

rdemddat 15
readcbW. 35
readmscdata......ooviiiiii e 35
TeAdMSCOUL « . vttt ettt e 31
reqdir..... ...l 23
reqrecipient.............. ..ol 23
TeQEY P . e 23
reqtypebits...... ... 23
resetcdedata. ..ot 41
resetdd. i 14
resetmscdata.......c.oviiiiiii 36
resetuifs......... i i 6, 10
TEA T 27
rtdsetf 24
TEASt .o 24

47
rtesetf 24
7= PP 24
v PP 27
g v T PP 24
FUNCAC T . ottt e 39
TXCL AT . ettt ettt e e 19
rxStat ! . e 19
S
SECtOr<DUSD . .ot 32
SENAC W . o v vttt 33
SeNdzZIPIn ...t 24
SENSECOAR . o\ttt e 31
sensetemplate............... i 34
serialstate........coviiiiiiiiii 39
Set-epnr ... 22
set-eptab-n..................ooooooooonn 20
setcfgeonfig. 25
setconfig............ . 25
setdrivecmd. ..ottt e 32
setepconfig........ 25
setepdma ...t 14
setephandler il 15, 20
setsiemodet e 16
siemodemasKcouiiiiii e 16
SIM oo 29
SIS TAT . vttt e 29
Stall _d ..o 24
StALll 0. et 24
STAllmMSCIN .ottt ettt e 31
StallmsSCoUt ... vii i e 31
SEATECAC .ottt 27
StArtCoOmpPO 27
STATEMSC .. ittt e, 27
startreadcbw.t 36
startreadmscdataol 35
startrespcin.......... ...l 36
starttransmitcsw.........covviiiiiinininn.. 36
Startusb..... ..ot 17, 22
startusbsys........... ... 28
startwritemscdata..............ooiiiiiiiii.., 35
StErAeSC. it e 11
T
teIrmeD. ... 25
transmitcsw. ..ot 35
BRCL AT . oottt 19
EXCSWAONE T .ttt 36
txstat! . e 19
U
udcacfg. ... 13
usb#ifset....... ... i 7, 23
LD E=Y o v 22
USD=PMa. . ..ot 19
USb-POLL ..o 22
USD>AiSK .ot 32
usbclrstallep......oooiiiiiiiiiiiiiiia 16, 21
USDCOM . oottt 41
usbconfig. ... 6, 23
usbconfig2ep........ ...l 16, 21

usbconfigep il 15, 21

48

usbconfigure............ ool 15, 21
usbconnect il i 15, 21
usbdatainstageo 24
usbdataoutstage ..ot 24
usbdevaddr........ ...l 6, 23
usbdevst.........oiiiiii 15, 20
usbdirctrlep..............l 16, 20
usbdisableep.............oiiiiiiiiiiiiiL. 16, 21
usbdiscon........... ool 41
usbdisconnect............. ...l 15, 21
usbdisk? ... 31
usbdisktask................ . i 32
usbdisktask?.........ol 32
usbdma? 9, 13
usbenableepiiiiiiiii 16, 20
usbephalt........oooiiiiiiiiiiiiiii .. 7,23
usbepmask...................iia 6, 23
usbframechain...........ol 7
usbgetdescriptor...............l 25
usbgetstatus............ ool 24
USDAWCONNECT . .ottt 21
usbhwdisconnectoouuuunninnnnnnnn. 21
usbinterrupt ool 17, 22
usbintinit o L i 17, 22
usbmin?. 5
usbpowered? il 9
usbreadep ...l i i 16
usbresetchain.............. o ool 7
usbresetep ... 16, 20

usbresume............ ... o ool 15, 21

USB Target Code v3.1

usbserialnum...............oiiiiiiiiiiiii 12
usbsetaddress...........l 15, 21
usbsetclrfeature............ o il 25
usbsetconfig....... ... il 25
usbsetiface............l 25
usbsetstallep...................oiiii... 16, 21
USbSetUPSTage . . .t 24
usbstatusinstageol 24
usbstatusoutstage................ 24
usSbsStr@. 12
USbSUSPend 15, 21
usbswreset i i 17, 22
USBWAKEUP . . i 15, 21
usbwriteep..... ..o 16
utfbuf. ... 12

waitcmddata 17
waitdrvcompletel 32
waiteprlzed........ ... 15
waitseccmdot 32
e 11T PP 15
wremddat ... e 15
writemscdata............iiiiiii 35
WritemSCin . ..o vii i 31

	Introduction
	Setting up for USB development
	MSC Class driver
	CDC Class Driver
	Composite devices
	USB Vendor IDs
	Compiling the code
	Testing with operating systems

	Generic USB definitions
	Support tools
	Hardware isolation
	Linked lists

	USB composite CDC and MSC configuration
	Primary Configuration
	USB Descriptors
	Serial number formatting

	USB hardware layer for LPC1xxx
	Configuration
	DMA operations
	Data and tools
	Protocol Engine commands
	Handling endpoints
	Initialisation
	Endpoint interrupt handling
	Development and Gotchas

	USB driver for STM32F0x2 parts
	Endpoint packet memory and control
	Handling endpoints

	USB base layer
	USB EndPoint 0
	Setup operations
	Despatch
	USB system initialisation

	Mass Storage Class (MSC) driver
	MSC state machine
	MSC data
	Tools
	Disk Read/Write task
	CSW operations
	The 13 cases
	CBW operations
	Endpoint despatcher
	Without DMA
	With DMA

	EP0 SETUP actions
	Diagnostics and Test code

	Communications Device Class (CDC) driver
	Data and buffers
	CDC Class RTI requests
	CDC Bulk endpoint handling
	Non DMA operation
	DMA operation

	CDC Interrupt endpoint
	Reset and initialisation
	Diagnostics and Test code
	Testing with operating systems
	Windows
	Linux
	Mac OS X

	{Index}

