
Universal Serial Bus
Class Definitions

for
Communication Devices

Version 1.1
January 19, 1999

USB Class Definitions for Communication Devices

Version 1.1 ii January 19, 1999

Scope of this Revision
This version 1.1 of this class specification is intended for product design. Every attempt has been made to ensure a
consistent and implementable specification. Implementations should ensure compliance with this revision.

Revision History
Revision Issue date Comments

1.1 January 19, 1999 Approved by DWG as 1.1

1.09d January 19, 1999 RR91

1.09c December 17, 1998 RR90

1.09b December 14, 1998 RR69-89

1.09a October 21, 1998 RR68

1.0.8a-
1.0.9rc

April 28, 1998 �
October 13, 1998

1.08 releases

1.0 May 8, 1998 Approved by DWG as 1.0

0.9a- 0.9f May 26, 1997 �
October 10, 1997

0.9 releases.

0.8 – 0.8h December 11, 1996 �
May 20, 1997

0.8 releases.

USB Class Definitions for Communication Devices

Version 1.1 iii January 19, 1999

Contributors
Andy Nicholson Microsoft Corporation
Charlie Tai Intel Corporation
Chuck Brabenac Intel Corporation
Dan Moore Diamond Multimedia Systems
Dave Perry Mitel Corporation
Diego Friedel AVM
Ed Endejan 3Com Corporation
Jim Wilson U.S. Robotics
Joe Decuir Microsoft Corporation
John Howard Intel Corporation
Ken Lauffenburger Efficient Networks, Inc.
Kenny Richards Microsoft Corporation
Mats Webjörn Universal Access
Nathan Peacock Northern Telecom
Paul E. Berg Moore Computer Consultants, Inc.
Randy Fehr Northern Telecom
Ron Lewis Rockwell Semiconductors
Paul Chehowski Mitel Corporation
Shelagh Callahan Intel Corporation
Stefan Eder Siemens Semiconductors
Terry Moore Moore Computer Consultants, Inc.

USB Class Definitions for Communication Devices

Version 1.1 iv January 19, 1999

USB Class Definitions for Communication Devices
Copyright © 1996-1999 USB Implementers’ Forum

All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Please send comments via the discussion forum at:
http://www.usb.org/developers/dwg/communications_class_grp/

USB Class Definitions for Communication Devices

Version 1.1 v January 19, 1999

Contents
1. Introduction ... 1

1.1 Scope...1

1.2 Purpose...1

1.3 Related Documents ...1

1.4 Terms and Abbreviations ...4

2. Management Overview..7

3. Functional Characteristics ..8
3.1 Device Organization...8

3.1.1 Communication Device Management ..8

3.2 Device Operation9

3.3 Interface Definitions ...9

3.3.1 Communication Class Interface...9

3.3.2 Data Class Interface... 10

3.3.2.1 Protocol Data Wrapper.. 11
3.4 Endpoint Requirements.. 12

3.4.1 Communication Class Endpoint Requirements .. 12

3.4.2 Data Class Endpoint Requirements... 12

3.5 Device Models 12

3.6 USB POTS Models .. 12

3.6.1 Direct Line Control Model ... 13

3.6.1.1 DL Model ... 13
3.6.1.2 Datapump Model .. 14

3.6.2 Abstract Control Model ... 15

3.6.2.1 Abstract Control Model Serial Emulation... 16
3.6.3 USB Telephone Model.. 17

3.6.3.1 Telephone Control Model.. 17
3.7 USB ISDN Models ... 18

3.7.1 Multi-Channel Model... 18

3.7.1.1 Topology .. 20
3.7.2 USB CAPI Model.. 20

3.7.2.1 CAPI Control Model ... 21
3.8 USB Networking Models .. 22

3.8.1 Common Data Plane Characteristics... 22

3.8.1.1 Segment Delineation ... 23
3.8.1.2 Segment Size .. 24

3.8.2 Ethernet Networking Control Model... 24

3.8.3 ATM Networking Control Model .. 26

4. Class-Specific Codes for Communication Devices .. 28
4.1 Communication Device Class Code.. 28

4.2 Communication Interface Class Code... 28

4.3 Communication Interface Class SubClass Codes.. 28

4.4 Communication Interface Class Control Protocol Codes.. 29

4.5 Data Interface Class Codes.. 29

4.6 Data Interface Class SubClass Codes .. 29

4.7 Data Interface Class Protocol Codes .. 29

5. Descriptors .. 31
5.1 Standard USB Descriptor Definitions .. 31

5.1.1 Device Descriptor ... 31

USB Class Definitions for Communication Devices

Version 1.1 vi January 19, 1999

5.1.2 Configuration Descriptor ... 31

5.1.3 Interface Descriptors .. 31

5.1.4 Endpoint Descriptors .. 32

5.2 Class-Specific Descriptors.. 32

5.2.1 Class-Specific Device Descriptor .. 32

5.2.2 Class-Specific Configuration Descriptor... 32

5.2.3 Functional Descriptors.. 32

5.2.3.1 Header Functional Descriptor .. 34
5.2.3.2 Call Management Functional Descriptor .. 34
5.2.3.3 Abstract Control Management Functional Descriptor ... 35
5.2.3.4 Direct Line Management Functional Descriptor ... 36
5.2.3.5 Telephone Ringer Functional Descriptor .. 37
5.2.3.6 Telephone Operational Modes Functional Descriptor ... 38
5.2.3.7 Telephone Call and Line State Reporting Capabilities Descriptor.. 39
5.2.3.8 Union Functional Descriptor.. 40
5.2.3.9 Country Selection Functional Descriptor.. 41
5.2.3.10 USB Terminal Functional Descriptor... 41
5.2.3.11 Network Channel Terminal Functional Descriptor.. 42
5.2.3.12 Protocol Unit Functional Descriptor... 43
5.2.3.13 Extension Unit Functional Descriptor .. 43
5.2.3.14 Multi-Channel Management Functional Descriptor .. 44
5.2.3.15 CAPI Control Management Functional Descriptor ... 44
5.2.3.16 Ethernet Networking Functional Descriptor ... 45
5.2.3.17 ATM Networking Functional Descriptor.. 47

5.3 Sample Class-Specific Functional Descriptors .. 49

6. Communication Interface Class Messages ... 51
6.1 Overview 51

6.2 Management Element Requests... 51

6.2.1 SendEncapsulatedCommand.. 54

6.2.2 GetEncapsulatedResponse .. 54

6.2.3 SetCommFeature... 54

6.2.4 GetCommFeature... 54

6.2.5 ClearCommFeature.. 55

6.2.6 SetAuxLineState .. 56

6.2.7 SetHookState... 56

6.2.8 PulseSetup .. 56

6.2.9 SendPulse ... 57

6.2.10 SetPulseTime... 57

6.2.11 RingAuxJack .. 57

6.2.12 SetLineCoding.. 57

6.2.13 GetLineCoding ... 58

6.2.14 SetControlLineState ... 58

6.2.15 SendBreak... 59

6.2.16 SetRingerParms... 59

6.2.17 GetRingerParms .. 60

6.2.18 SetOperationParms.. 60

6.2.19 GetOperationParms.. 60

6.2.20 SetLineParms .. 61

6.2.21 GetLineParms .. 62

6.2.22 DialDigits.. 63

6.2.23 SetUnitParameter... 64

6.2.24 GetUnitParameter .. 64

6.2.25 ClearUnitParameter.. 64

USB Class Definitions for Communication Devices

Version 1.1 vii January 19, 1999

6.2.26 GetProfile... 65

6.2.27 SetEthernetMulticastFilters ... 65

6.2.28 SetEthernetPowerManagementPatternFilter.. 65

6.2.29 GetEthernetPowerManagementPatternFilter ... 66

6.2.30 SetEthernetPacketFilter .. 66

6.2.31 GetEthernetStatistic.. 67

6.2.32 SetATMDataFormat.. 69

6.2.33 GetATMDeviceStatistics ... 71

6.2.34 SetATMDefaultVC .. 72

6.2.35 GetATMVCStatistics... 72

6.3 Notification Element Notifications.. 73

6.3.1 NetworkConnection .. 74

6.3.2 ResponseAvailable... 74

6.3.3 AuxJackHookState ... 74

6.3.4 RingDetect ... 74

6.3.5 SerialState ... 75

6.3.6 CallStateChange .. 75

6.3.7 LineStateChange ... 77

6.3.8 ConnectionSpeedChange... 77

Appendix A: Communication Device Class Examples... 79
A.1 Basic Telephone .. 79

A.2 Modem 79

A.3 CAPI Device 79

Appendix B: Sample Configurations .. 80
B.1 Basic Telephony Configurations ... 80

B.2 Modem Configurations ... 80

B.3 CAPI Device Configuration... 81

Appendix C: Multi-channel ISDN B-Channel setup.. 83
C.1 General 83

Appendix D: Multi-Channel Implementation Examples .. 84
D.1 ISDN BRI T/A with two POTS interfaces.. 84

D.2 ISDN BRI T/A with vendor specific protocol (Bonding)... 85

D.3 Passive ISDN Solutions ... 85

Appendix E: Data Class Protocol Definitions ... 88
Definitions... ... 88

E.1 Physical Interface Protocols ... 88

E.1.2 I.430: BASIC USER-NETWORK INTERFACE – LAYER 1... 88

E.2 Framing Protocols.. 92

E.2.1 HDLC Framing.. 92

E.2.2 Transparent framing ... 95

E.3 Data Link Protocols.. 97

E.3.1 Q.921 Management: ISDN USER-NETWORK INTERFACE DATA LINK LAYER
SPECIFICATION FOR CIRCUIT MODE BEARER SERVICES.. 97

E.3.2 Q.921: ISDN USER-NETWORK INTERFACE DATA LINK LAYER SPECIFICATION FOR
CIRCUIT MODE BEARER SERVICES... 99

E.3.3 Q.921 TEI-multiplexor: TERMINAL ENDPOINT IDENTIFIER MULTIPLEXOR FOR ISDN
USER-NETWORK INTERFACE DATA LINK LAYER.. 101

E.4 Network layer Protocols ... 102

E.4.1 Q.931/Euro-ISDN User Side ... 102

USB Class Definitions for Communication Devices

Version 1.1 viii January 19, 1999

E.4.2 V.42bis: Data compression procedures for DCE using error correction procedures..... 109

E.4.3 V.120: V.24 rate adaptation to ISDN ... 110

USB Class Definitions for Communication Devices

Version 1.1 ix January 19, 1999

List of Tables
Table 1: Data Class Protocol Wrapper Layout .. 11

Table 2: Requests � Direct Line Control Model* ..13

Table 3: Notifications � Direct Line Control Model* .. 14

Table 4: Requests � Abstract Control Model*... 16

Table 5: Notifications � Abstract Control Model*... 16

Table 6: Requests � Telephone Control Model*..18

Table 7: Notifications � Telephone Control Model*.. 18

Table 8: Requests � Multi-Channel Model*.. 19

Table 9: Requests � CAPI Control Model*... 21

Table 10: Requests � Ethernet Networking Control Model* .. 25

Table 11: Notifications � Ethernet and ATM Networking Control Models*... 25

Table 12: Requests � ATM Networking Control Model* .. 26

Table 13: Notifications � Ethernet and ATM Networking Control Models*... 27

Table 14: Communication Device Class Code .. 28

Table 15: Communication Interface Class Code ... 28

Table 16: Communication Interface Class SubClass Codes... 28

Table 17: Communication Interface Class Control Protocol Codes.. 29

Table 18: Data Interface Class Code .. 29

Table 19: Data Interface Class Protocol Codes ... 29

Table 20: Communication Device Class Descriptor Requirements .. 31

Table 21: Communication Class Interface Descriptor Requirements.. 31

Table 22: Data Class Interface Descriptor Requirements... 32

Table 23: Functional Descriptor General Format .. 32

Table 24: Type Values for the bDescriptorType Field... 33

Table 25: bDescriptor SubType in Functional Descriptors .. 33

Table 26: Class-Specific Descriptor Header Format.. 34

Table 27: Call Management Functional Descriptor ... 34

Table 28: Abstract Control Management Functional Descriptor .. 35

Table 29: Direct Line Management Functional Descriptor .. 36

Table 30: Telephone Ringer Functional Descriptor ... 37

Table 31: Telephone Operational Modes Functional Descriptor .. 39

Table 32: Telephone Call State Reporting Capabilities Descriptor... 40

Table 33: Union Interface Functional Descriptor .. 40

Table 34: Country Selection Functional Descriptor... 41

Table 35: USB Terminal Functional Descriptor .. 42

Table 36: Network Channel Terminal Functional Descriptor... 42

Table 37: Protocol Unit Functional Descriptor.. 43

Table 38: Extension Unit Functional Descriptor ... 43

Table 39: Multi-Channel Management Functional Descriptor ... 44

Table 40: CAPI Control Management Functional Descriptor .. 45

Table 41: Ethernet Networking Functional Descriptor .. 45

Table 42: Ethernet Statistics Capabilities... 46

Table 43: ATM Networking Functional Descriptor... 47

Table 44: Sample Communication Class Specific Interface Descriptor* .. 49

Table 45: Class-Specific Requests.. 51

Table 46: Class-Specific Request Codes... 53

Table 47: Communication Feature Selector Codes.. 55

USB Class Definitions for Communication Devices

Version 1.1 x January 19, 1999

Table 48: Feature Status Returned for ABSTRACT_STATE Selector ... 55

Table 49: POTS Relay Configuration Values ... 56

Table 50: Line Coding Structure .. 58

Table 51: Control Signal Bitmap Values for SetControlLineState ... 58

Table 52: Ringer Configuration Bitmap Values .. 59

Table 53: Operation Mode Values.. 60

Table 54: Line State Change Value Definitions .. 61

Table 55: Line Status Information Structure ... 62

Table 56: Line State Bitmap .. 62

Table 57: Call State Bitmap... 63

Table 58: Call State Value Definitions ... 63

Table 59: Characters in a Dialing Command .. 63

Table 60: Unit Parameter Structure .. 64

Table 61: Power Management Pattern Filter Structure .. 66

Table 62: Ethernet Packet Filter Bitmap... 67

Table 63: Ethernet Statistics Feature Selector Codes... 68

Table 64: ATM Data Format.. 69

Table 65: ATM Device Statistics Feature Selector Codes.. 71

Table 66: ATM VC Selector Codes.. 72

Table 67: Class-Specific Notifications ... 73

Table 68: Class-Specific Notification Codes... 73

Table 69: UART State Bitmap Values.. 75

Table 70: Call State Change Value Definitions... 76

Table 71: Line State Change Values... 77

Table 72: ConnectionSpeedChange Data Structure ... 78

Table 73: Telephone Configurations .. 80

Table 74: Example Modem Configurations .. 80

Table 75: Example CAPI Device Configurations.. 82

Table 76: Command Type Encoding .. 88

Table 77: I.430 Configuration Parameter List... 88

Table 78: I.430 Command Message Format... 88

Table 79: I.430 Commands.. 89

Table 80: I.430 Activate, Deactivate Command Wrapper.. 89

Table 81: I.430 PhActivateBReq Command Wrapper... 90

Table 82: I.430 PhDeactivateBReq Command Wrapper.. 90

Table 83: I.430 PhDataReq Command Wrapper... 90

Table 84: I.430 MphErrorInd Command Wrapper.. 90

Table 85: I.430 MphInformationInd Command Wrapper.. 91

Table 86: HDLC Configuration Parameter List... 92

Table 87: HDLC Commands ... 94

Table 88: HDLC ControlRes, StatusReq Command Wrapper.. 94

Table 89: HDLC ControlReq Command Wrapper .. 94

Table 90: HDLC StatusInd/Res Command Wrapper ... 94

Table 91: HDLC DataReq/Ind Command Wrapper... 95

Table 92: TRANS Configuration Parameter List .. 95

Table 93: TRANS Commands ... 96

Table 94: TRANS ControlRes, StatusReq Command Wrapper.. 96

Table 95: TRANS ControlReq Command Wrapper .. 96

Table 96: TRANS StatusInd/Res Command Wrapper ... 96

USB Class Definitions for Communication Devices

Version 1.1 xi January 19, 1999

Table 97: TRANS DataReq/Ind Command Wrapper... 97

Table 98: Q.921M Configuration Parameter List .. 97

Table 99: Q.921M Command Message Format... 98

Table 100: Q.921M Commands...98

Table 101: Q.921M DlAssignReq wrapper... 98

Table 102: Q.921M DlAssignInd, DlRemoveInd Command Wrapper... 99

Table 103: Q.921M DlErrorReq, DlErrorCon Command Wrapper.. 99

Table 104: Q.921 Configuration Parameter List.. 99

Table 105: Command Message Format.. 100

Table 106: Q.921 commands... 100

Table 107: Q.921 General Message Structure... 100

Table 108: Q.931/Euro-ISDN Configuration Parameter List... 102

Table 109: Q.931/Euro-ISDN Command Message Format.. 102

Table 110: Q.931/Euro-ISDN Commands.. 104

Table 111: Q.931/Euro-ISDN System Management Commands.. 104

Table 112: Q.931/Euro-ISDN General Command Structure.. 104

Table 113: V.42bis Configuration Parameter List ... 109

USB Class Definitions for Communication Devices

Version 1.1 1 January 19, 1999

1. Introduction

There are three classes that make up the definition for communication devices: the Communication Device Class,
Communication Interface Class and the Data Interface Class. The Communication Device Class is a device level
definition and is used by the host to properly identify a communication device that may present several different types
of interfaces. The Communication Interface Class defines a general-purpose mechanism that can be used to enable all
types of communication services on the Universal Serial Bus (USB). The Data Interface Class defines a general-
purpose mechanism to enable bulk or isochronous transfer on the USB when the data does not meet the requirements
for any other class.

1.1 Scope

Given the broad nature of communication equipment, this specification does not attempt to dictate how all
communication equipment should use the USB. Rather, it defines an architecture that is capable of supporting any
communication device. The current release of the specification focuses on supporting connectivity to
telecommunication services (devices that have traditionally terminated an analog or digital telephone line), and medium
speed networking services (“Always Connected” LAN/WAN media types). The specification currently outlines the
following types of devices:

x Telecommunications devices: analog modems, ISDN terminal adapters, digital telephones, and analog
telephones

x Networking devices: ADSL modems, cable modems, 10BASE-T Ethernet adapters/hubs, and “Ethernet”
cross-over cables.

This specification does not attempt to redefine existing standards for connection and control of communication
services. The Communication Class defines mechanisms for a device and host to identify which existing protocols to
use. Where possible, existing data formats are used and the transport of these formats are merely enabled by the USB
through the definition of the appropriate descriptors, interfaces, and requests. More specifically, this specification
describes a framework of USB interfaces, data structures, and requests under which a wide variety of communication
devices can be defined and implemented.

1.2 Purpose

This specification provides information to guide implementers in using the USB logical structures for communication
devices. This information applies to manufacturers of communication devices and system software developers.

1.3 Related Documents

Universal Serial Bus Specification, version 1.0 and version 1.1 (also referred to as the USB Specification). This
specification is available on the World Wide Web site http://www.usb.org.

Universal Serial Bus Common Class Specification, version 1.0. This specification is available on the World Wide Web
site http://www.usb.org.

ANSI/TIA-602, Serial Asynchronous Automatic Dialing and Control - available at http://www.eia.org.

Bellcore NI-1 (National ISDN 1), Support network terminating services for ISDN service - available at
http://www.bellcore.com.

ITU V.25ter, Serial Asynchronous Automatic Dialing and Control - available at http://www.itu.ch

ITU-T V.42 (03/93), Error correction procedures for DCE using asynchronous to synchronous conversion

USB Class Definitions for Communication Devices

Version 1.1 2 January 19, 1999

ITU-T V.42bis (1990), Data compression procedures for data circuit terminating equipment (DCE) using error
correction procedures

ITU-T I.430 (11/95), Basic user-network interface – layer 1 specification

ITU-T I.431 (03/93), Primary rate user-network interface – layer 1 specification

ITU-T Q.921 (03/93), ISDN user-network interface data link layer specification

ITU-T Q.922 (1992), ISDN data link layer specification for frame mode bearer services

ITU-T Q.931 (03/93), ISDN user-network interface—layer 3 specification for basic Call Control

ITU-T Q.2931 (02/95), B-ISDN DSS2 User Network Interface (UNI) Layer 3 Specification for Basic Call/Connection
Control.

ITU-T X.25 (03/93), Interface between data terminal equipment (DTE) and data circuit-terminating equipment
(DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit

ITU-T X.75 (10/96), Packet switched signaling system between public networks providing data transmission services –
available at http://www.itu.ch .

ITU-T T.30 (07/96), Procedures for document facsimile transmission in the general switched telephone network –
available at http://www.itu.ch .

ITU-T.200, Programmable communication interface for terminal equipment connected to ISDN appendix II

ITU-T V.110 (09/92), Support of data terminal equipment with V-series type interfaces by an integrated services digital
network.

ITU-T V.120 (09/92), Support by an ISDN terminal adapter equipment with V-series type interface with provision for
statistical multiplexing.

CAPi2.0, COMMON-ISDN-API Version 2.0 – available at http://www.capi.org.

ETSI prETS 300 838, integrated service digital network (ISDN); harmonized programmable communication
interface (HPCI) for ISDN

ETSI prETS 300 917, digital cellular telecommunications system (Phase 2+);
GSM application programming Interface (GSM-API) (GSM 07.08 version 5.0.0)

Data Over Cable Service Interface Specifications (DOCSIS) Customer Premises to CPE Interface (CMCI) Interim
Specification, SP-CMCI-I02-980317, March, 1998 – available at http://www.cablemodem.com.

Ethernet Version 2.0, Digital, Intel, Xerox (DIX), 1982.

ISO/IEC 8802-3 (ANSI/IEEE Std 802.3): 1993, Information technology — Local and metropolitan area networks —
Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer
specifications.

ADSL Forum TR-002, ATM over ADSL Recommendations, March 1997.

ANSI T1.413, Network and Customer Installation Interfaces - Asymmetric Digital Subscriber Line (ADSL) Metallic
interface 1995.

ITU-T I.361 - B-ISDN ATM Layer specification, November 95.

ITU-T I.363 – B-ISDN ATM Adaptation Layer (AAL) Specification, March 93

USB Class Definitions for Communication Devices

Version 1.1 3 January 19, 1999

ITU-T I.413 (3/93) - B-ISDN User-Network Interface

ITU-T I.610 - B-ISDN Operation and Maintenance Principles and Functions, March 93.

Detailed examples of typical communication device classes are provided in separate white papers that are not a part of
this specification. The latest copies of the white papers can be found at http://www.usb.org.

USB Class Definitions for Communication Devices

Version 1.1 4 January 19, 1999

1.4 Terms and Abbreviations

802.3 Second generation networking cabling and signaling, commonly known as Ethernet II.(IEEE
802.3)

AAL ATM Adaptation Layer

ADSL Asymmetric Digital Subscriber Line

ASVD Analog Simultaneous Voice and Data, signaling method mixes data and voice.

AT COMMAND SET A telecommunication device control protocol. For details, see TIA-602 or V.25ter.

ATM Asynchronous Transfer Mode

BRI ISDN Basic Rate Interface, consisting of one D channel and two B channels.

BYTE For the purposes of this document, the definition of a byte is 8 bits.

CALL
MANAGEMENT

Refers to a process that is responsible for the setting up and tearing down of calls. This same
process also controls the operational parameters of the call. The term “call,” and therefore
“call management,” describes processes which refer to a higher level of call control, rather
than those processes responsible for the physical connection.

CAPI COMMON-ISDN-API

COMMUNICATION
INTERFACE

Refers to a USB interface that identifies itself as using the Communication Class definition.

DATA INTERFACE Refers to a USB interface that identifies itself as using the Data Class definition.

DCE Data Circuit Terminating Equipment; for example, a modem or ISDN TA.

DEVICE
MANAGEMENT

Refers to requests and responses that control and configure the operational state of the device.
Device management requires the use of a Communication Class interface.

DIX A networking cabling and signaling specification jointly developed by DEC, Intel and Xerox.

DSVD Digital Simultaneous Voice and Data, signaling method mixes data and digitized voice.

DTE Data Terminal Equipment; for example, a PC.

ENTITY Family name for protocol building blocks. See Terminal and Unit below.

ETHERNET FRAME Generic term representing any data frames that may be exchanged over DIX or 802.3
networks.

HEATHERINGTON
ESCAPE SEQUENCE

A reliable technique used in modems to switch between data mode and command mode.
Developed by Dale Heatherington, an employee of Hayes during the early 1980s. This is
covered under United States patent number 4,549,302.

HEC Header Error Control

ISDN Integrated Services Digital Network.

ITU International Telecommunications Union (formerly CCITT).

USB Class Definitions for Communication Devices

Version 1.1 5 January 19, 1999

I.430 ISDN BRI physical interface standard. See ITU-T I.430 above

I.431 ISDN PRI physical interface standard. See ITU-T I.431 above

MANAGEMENT

ELEMENT

Refers to a type of USB pipe that manages the communication device and its interfaces.
Currently, only the Default Pipe is used for this purpose.

MASTER

INTERFACE

A Communication Class interface, which has been designated the master of zero or more
interfaces that implement a complete function in a USB communication device. This interface
will accept management requests for the union.

NI-1 National ISDN 1 is intended to be a set of standards, which every manufacture can conform to
for building switch independent ISDN devices. Future standards, denoted as NI-2 and NI-3,
are currently being developed.

NOTIFICATION

ELEMENT

Refers to a type of USB pipe. Although a notification element is not required to be an
interrupt pipe, a notification element is typically defined in this way.

PDU Protocol Data Unit - A combination of the SDU and the current protocol layer's header and/or
trailer.

POTS Plain Old Telephone Service. See PSTN.

PRI Primary Rate Interface, which consists of one or two D channels and up to 30 B channels.

PSTN Public Switched Telephone Network.

Q.921 ISDN data link layer protocol. See ITU-T Q.921 above

Q.922 ISDN data link layer protocol. See ITU-T Q.922 above

Q.931 ISDN call control protocol. See ITU-T Q.931 above

Q.2931 B-ISDN User Network Interface Layer 3 Specification. See ITU-T Q.2931 above.

SDU Service Data Unit – User data and control information created at the upper protocol layers that
is transferred transparently through a primitive by layer (N+1) to layer (N) and subsequently
to (N-1).

T.30 Protocol for sending faxes over PSTN. See ITU-T T.30 above.

TA Terminal Adapter, which is the equivalent of a modem for ISDN.

TERMINAL Entity that represents a starting/ending point for a protocol stack.

TIA Telecommunications Industry Association.

TIES Time Independent Escape Sequence, which is an alternative method to the Heatherington
Escape Sequence for switching between command mode and data mode on an analog modem.
This was developed by a group of modem manufacturers in 1991.

UNION A relationship between a collection of one or more interfaces that can be considered to form a
functional unit.

UNIT Entity that provides the basic building blocks to describe a protocol stack.

VIDEO PHONE A device which simultaneously sends voice and video with optional data.

USB Class Definitions for Communication Devices

Version 1.1 6 January 19, 1999

V.25TER This is the ITU-T standard for Serial Asynchronous Automatic Dialing and Control, which is
commonly known as the “AT” command set.

V.4 This is the ITU-T standard for general structure of signals of international alphabet number 5
code for data transmission over the public telephone network.

V.42 V.42bis data link layer protocol. See ITU-T V.42 above

V.42BIS Data compression procedures. See ITU-T V.42bis above

V.110 Rate adoption procedures. See ITU-T V.110 above

V.120 Rate adoption procedures. See ITU-T V.120 above

X.25 See ITU-T X.25 above.

X.75 Packet switched signaling layer for PSTN. See ITU-T X.75 above

USB Class Definitions for Communication Devices

Version 1.1 7 January 19, 1999

2. Management Overview
Several types of communication devices can benefit from the USB. This specification provides models for
telecommunication devices, such as telephones, analog modems, ISDN devices and networking devices. It describes:

x Specifications for:

� Communication Device Class

� Communication Interface Class

� Data Interface Class

x Framework for building a communication device:

� Assembling the relevant USB logical structures into configurations.

� Communication Class interface and its usage.

� Data Class interface and its usage.

� Usage of additional class types or vendor specific interfaces.

x Implementation examples of communication devices, such as a basic telephone, and an analog modem.

USB Class Definitions for Communication Devices

Version 1.1 8 January 19, 1999

3. Functional Characteristics
This section describes the functional characteristics of the Communication Device Class, Communication Interface
Class and Data Interface Class, including:

x Device organization:

� Endpoint requirements.

� Constructing interfaces from endpoints.

� Constructing configurations from a variety of interfaces, some of which are defined by other class
specifications.

� Identifying groups of interfaces within configurations that make functional units and assigning a master
interface for each union.

x Device operation

Although this specification defines both the Communication Interface Class and Data Interface Class, they are two
different classes. All communication devices shall have an interface using the Communication Class to manage the
device and optionally specify themselves as communication devices by using the Communication Device Class code.
Additionally, the device has some number of other interfaces used for actual data transmission. The Data Interface
Class identifies data transmission interfaces when the data does not match the structure or usage model for any other
type of class, such as Audio.

3.1 Device Organization

A communication device has three basic responsibilities:

x Device management

x Operational management

x Data transmission

The device shall use a Communication Class interface to perform device management and optionally for call
management. The data streams are defined in terms of the USB class of data that is being transmitted. If there is no
appropriate USB class, then the designer can use the Data Class defined in this specification to model the data streams.

Device management refers to the requests and notifications that control and configure the operational state of the
device, as well as notify the host of events occurring on the device.

Call management refers to a process that is responsible for the setting up and tearing down of calls. This same process
also controls the operational parameters of the call. The term “call,” and therefore “call management,” describes
processes that refer to a higher level of call control than those processes responsible for the physical connection.

Data transmission is accomplished using interfaces in addition to the Communication Class interface. These interfaces
can use any defined USB class or can be vendor-specific.

3.1.1 Communication Device Management

There are two levels of device management for communication devices. The most basic form of device management
results from control transfers made on endpoint 0 as outlined in Chapter 9 of the USB Specification. Device
management is also required at a higher level, which is specific to communication devices. An example would be
configuration of country-specific details for proper configuration of the telephone services.

To allow device management at the communication device level, a Union shall be made between all the interfaces that
make up the functional unit of the device. A functional descriptor is used to define the group of interfaces that make up
a functional unit within a device and is outlined in Section 5.2.3.8, “Union Functional Descriptor,” of this specification.

USB Class Definitions for Communication Devices

Version 1.1 9 January 19, 1999

With the increasing popularity of multi-channel devices, a new class of device may need to expose multiple device
management interfaces for device management at the communication device level. This would allow individual control
of the multiple channels, such as an ISDN device. In this case, the Union would be between the Communication Class
interface providing call control and the various interfaces it was managing at the moment.

3.2 Device Operation

Communication devices present data to the host in a form defined by another class, such as Audio, Data, or HID
Interface. To allow the appropriate class driver to manage that data, the host is presented with one or more interfaces,
as specified for that class. The interfaces required may change according to events that are initiated by the user or the
network during a communication session: for example, the transition from a data only call to a data and voice call.

To allow the host to properly deal with the situation where multiple interfaces are used to create a single function, the
device can optionally identify itself at the device level with the Communication Device Class code. This allows the
host, if needed, to load any special drivers to properly configure the multiple interfaces into a single function in the
host.

Note: In the case where the device does not choose to identify itself at the device level with the Communication
Device Class code, the device shall employ a USB Common Class Feature mechanism that associates multiple
interfaces on the device with a single driver in the host. As of December 15, 1998, this feature was still under
development within the Common Class Working Group.

Static characteristics of the device, such as the physical connections, are described in terms of the USB device,
interface, and endpoint descriptors. The data that moves over the physical interfaces is dynamic in nature, causing the
characteristics of the interfaces to change as the data requirements change. These dynamic changes are defined in terms
of messages transmitted between the device and host over the Communication Class interface. The device can use a
standard or proprietary mechanism to inform its host software when an interface is available and what the format of the
data will be. The host software can also use this same mechanism to retrieve information about data formats for an
interface and select a data format when more than one is available.

3.3 Interface Definitions

Two classes of interfaces are described in this specification: Communication Class interfaces and Data Class interfaces.
The Communication Class interface is a management interface and is required of all communication devices. The Data
Class interface can be used to transport data whose structure and usage is not defined by any other class, such as Audio.
The format of the data moving over this interface can be identified using the associated Communication Class interface.

3.3.1 Communication Class Interface

This interface is used for device management and, optionally, call management. Device management includes the
requests that manage the operational state of the device, the device responses, and event notifications. Call management
includes the requests for setting up and tearing down calls, and the managing of their operational parameters.

The Communication Class defines a Communication Class interface consisting of a management element and
optionally a notification element. The management element configures and controls the device, and consists of
endpoint 0. The notification element transports events to the host, and in most cases, consists of a interrupt endpoint.

Notification elements pass messages via an interrupt or bulk endpoint, using a standardized format. Messages are
formatted as a standardized 8-byte header, followed by a variable-length data field. The header identifies the kind of
notification, and the interface associated with the notification; it also indicates the length of the variable length portion
of the message.

The Communication Class interface shall provide device management by furnishing a management element (endpoint
0); the interface optionally can provide host notification by furnishing a notification element. Only the management
element is required for a complete Communication Class interface. The management element also meets the
requirements for devices as outlined in the USB Specification. Call management is provided in the communication

USB Class Definitions for Communication Devices

Version 1.1 10 January 19, 1999

interface and optionally multiplexed on a data interface. The following configurations describe how the device might
provide call management with and without the use of the Communication Class interface:

x The device does not provide any call management on the Communication Class interface and is made up of
only a management element (endpoint 0). In this case, the Communication Class interface is minimally
represented and only provides device management over a management element (endpoint 0). This
corresponds to the Multi-Channel Control Model, as described in Section 3.7.1, and the CAPI Control Model
as described in Section 3.7.2.

x The device does not provide an internal implementation of call management and only accepts minimum set of
call management commands from the host. In this case, both a management element and a notification
element represent the Communication Class interface. This corresponds to the Direct Line Control Model, as
described in Section 3.6.1 “Direct Line Control Model.”

x The device provides an internal implementation of call management over the Data Class interface but not the
Communication Class interface. In this case, the Communication Class interface is also minimally
represented and only provides device management over a management element (endpoint 0). This
configuration most closely corresponds to the Abstract Control Model in which commands and data are
multiplexed over the Data Class interface. Activation of the command mode from data mode is accomplished
using the Heatherington Escape Sequence or the TIES method. For more information about the Abstract
Control Model, see Section 3.6.2, “Abstract Control Model.”

x The device provides an internal implementation of call management that is accessed by the host over the
Communication Class interface. In this case, the Communication Class interface performs both call and
device management, and consists of a management element (endpoint 0) and a notification element (normally
a interrupt endpoint). The management element will transport both call management and device management
commands. The notification element will transport asynchronous event information from the device to the
host, such as notification of an available response, which then prompts the host to retrieve the response over
the management element. This corresponds to the Abstract Control Model. For more information about the
Abstract Control Model, see Section 3.6.2, “Abstract Control Model.”

3.3.2 Data Class Interface

The Data Class defines a data interface as an interface with a class type of Data Class. Data transmission on a
communication device is not restricted to interfaces using the Data Class. Rather, a data interface is used to transmit
and/or receive data that is not defined by any other class. This data could be:

x Some form of raw data from a communication line.

x Legacy modem data.

x Data using a proprietary format.

At this time, it is the responsibility of the host software and device to communicate with each other over some other
interface (such as a Communication Class interface) to determine the appropriate format to use. As more complicated
communication devices are defined, it may become necessary to define a method of describing the protocol used within
the Data Class interface. The attributes of a Data Class interface are as follows:

x The Interface descriptor uses the Data Class code as its class type. This is the only place that the Data Class
code is to be used.

x The data is always a byte stream. The Data Class does not define the format of the stream, unless a protocol
data wrapper is used.

x If the interface contains isochronous endpoints, on these endpoints, the data is considered synchronous.

x If the interface contains bulk endpoints, on these endpoints, the data is considered asynchronous.

USB Class Definitions for Communication Devices

Version 1.1 11 January 19, 1999

Isochronous pipes are used for data that meets the following criteria:

x Constant bit rate.

x Real-time communication that requires low latency.

In general, isochronous endpoints can be used where raw information (either sampled or direct) from the network is
sent to the host for further processing and interpretation. For example, an inexpensive ISDN TA could use an
isochronous pipe for transport of the raw-sampled bits off a network connection. In this case, the host system would be
responsible for the different network protocol that makes up an ISDN connection. This type of interface shall only be
used in situations in which an Audio Class interface would not provide the necessary definitions or control.

The type and formatting of the media to be used is specified via messaging over the management element of a
Communication Class interface when the host activates an interface or the device requests that an interface be
activated. The bandwidth of the pipe is defined by the Endpoint descriptors and can be changed by selecting an
alternate interface of an appropriate bandwidth.

3.3.2.1 Protocol Data Wrapper

To support embedded high-level protocols in a device, the data and commands between host and device must retain
their order. This ensures that a protocol stack that is designed to run in a real time operating system can be split into
two parts running in separate devices. Therefore, commands and data for a protocol have to be multiplexed onto the
same interface using a wrapper; this wrapper also has the facility to send data to any layer of the stack. Each protocol
specifies how to define protocol-specific commands and data fields going across its upper interface edge.

The host and device agree upon the wrapper feature at the time the protocol of the data is established. It is the
responsibility of the host software and the device to communicate with each other over some other interface (such as a
Communication Class interface) to determine the protocol. The wrapper is not used if there is no protocol established.
It is optional to use the wrapper if the established protocol could use it; it is mandatory to use the wrapper if the
protocol requires it.

To enable the different types of protocol stacks found on communication devices, two general forms have been defined
for the data wrapper header as defined in Table 1. The structure for both forms is the same, the only difference is the
usage of the source protocol ID. If no source protocol is needed or known, then offset 3, bSrcProtocol is set to 00h.
The second form of the data wrapper header allows for both a source and destination protocol for the more structured
protocol stack where both a source and destination protocol are needed.

Both data wrapper forms impose no restrictions on the data format, beyond the general requirement that the data is byte
data. In any case where the source protocol is unneeded or unknown the source protocol ID (bSrcProtocol) of 00h is
used.

Note: Use of a Protocol Data Wrapper on an isochronous pipe is not recommended, because of the possible loss of
data because of the unreliable nature of isochronous pipes.

Table 1: Data Class Protocol Wrapper Layout

Offset Field Size Value Description

0 2 Number Size of wrapper in bytes

2 bDstProtocol 1 Protocol Destination protocol ID.

3 bSrcProtocol 1 Protocol Source protocol ID.

4 BData0 1 Number First data bytes

… … … …

N+3 BDataN-1 1 Number Nth data byte

USB Class Definitions for Communication Devices

Version 1.1 12 January 19, 1999

3.4 Endpoint Requirements

The following sections describe the requirements for endpoints in Communication Class or Data Class interfaces.

3.4.1 Communication Class Endpoint Requirements

The Communication Class interface requires one endpoint, a management element. It optionally can have an additional
endpoint, the notification element. The management element uses the default endpoint for all standard and
Communication Class-specific requests. The notification element normally uses an interrupt endpoint.

3.4.2 Data Class Endpoint Requirements

The type of endpoints belonging to a Data Class interface are restricted to being either isochronous or bulk, and are
expected to exist in pairs of the same type (one In and one Out).

3.5 Device Models

Particular USB communication device configurations are constructed from the interfaces described in previous sections
and those described by other class specifications. All communication devices consist of a Communication Class
interface plus zero or more other data transmission interfaces, adhering to some other USB class requirements or
implemented as vendor-specific interfaces. For example, the following descriptors are appropriate for a
communication device:

x Device descriptor contains the class code of the Communication Device Class, defined in Table 14.
Optionally, the device descriptor contains a class code of 00h, which indicates that the host should look at the
interfaces to determine how to use the device.

x An Interface descriptor with the Communication Class code, which contains a management element and
optionally a notification element.

x Zero or more other interfaces with class codes of various types such as Audio, Data, etc.

The device models outlined in the following sections are divided into several categories. As this specification develops,
other models will be added. The term model describes a type of device and the interfaces that make it up. The term
control model describes the type of Communication Class interface being used and is assigned a SubClass code for that
interface. A control model can be used in several device models in which the method of device control and call
management are similar.

3.6 USB POTS Models

A USB telephony device used on a POTS line has several types of interfaces that could be presented to the host. The
arrangement and use of those different interfaces depends upon the type of POTS telephony device and the basic model
used to build the device.

The difference between the various models of telephony devices can be divided according to the amount of processing
the device performs on the analog signal before presenting it to the host. To help illustrate how the different types of
interfaces could be put together to build a USB POTS telephony device, three example models are presented in the
following sections.

Note: In many cases, a Data Class interface might not be used to present data to the host. Where the USB device is
constructed with minimal intelligence, some analog class-specific interface control codes are required.

USB Class Definitions for Communication Devices

Version 1.1 13 January 19, 1999

3.6.1 Direct Line Control Model

The Direct Line Control Model contains two examples: the Direct Line Model (or DL Model) and the Datapump
Model.

A Communication Class interface of type Direct Line Control Model will consist of a minimum of two pipes; one is
used to implement the management element and the other to implement a notification element. In addition, the device
can use two or more pipes to implement channels over which to carry vendor-specific data.

3.6.1.1 DL Model

The DL Model is the simplest type of connection to a POTS line. At this level, the USB device is only converting the
analog POTS line signal to digital data and presenting it to the USB bus. The modem modulation protocol (e.g. V.34,
V.32bis) is implemented in the host. Instead of using the Data Class, the Audio Class is used to present the digitally
converted data to the host. This type of connection could also be useful for a voice-only device, such as an answering
machine.

Because the DL Model is the simplest, it provides a perfect example of why a device requires the Direct Line Control
Model control codes. The key feature of a DL Model device is low cost, so reducing the processing power requirements
on the USB device is essential. The DL Model uses a Direct Line Control Model SubClass code in the descriptor
definition of its Communication Class interface.

Carrier Modulation (datapump)

Data Compression (V.42bis)

Error Correction (V.42)
 Command
 and
 Control

Audio Class
Interface

POTS Interface (CODEC)

Control

Communication
Class InterfaceUSB Host

USB Device

Data Access Arrangement (DAA)

Figure 1: DL Model

These requests for controlling the interface between the USB device and the POTS line are presented in Table 2. There
are also some additional signals that fall outside the analog phone signal which shall go back to the host as
notifications, which are represented in Table 3. These requests and notifications are transported via the Communication
Class interface for the device.

Table 2: Requests �� Direct Line Control Model*

Request Code Description Req’d/Opt

SET_AUX_LINE_STATE 10h Request to connect or disconnect secondary jack from POTS
circuit or CODEC, depending on hook state.

Optional

SET_HOOK_STATE 11h Select relay setting for on-hook, off-hook, and caller ID. Required

PULSE_SETUP 12h Initiate pulse dialing preparation. Optional

SEND_PULSE 13h Request number of make/break cycles to generate. Optional

SET_PULSE_TIME 14h Setup value for time of make and break periods when pulse
dialing.

Optional

USB Class Definitions for Communication Devices

Version 1.1 14 January 19, 1999

Request Code Description Req’d/Opt

RING_AUX_JACK 15h Request for a ring signal to be generated on secondary phone
jack.

Optional

*These requests are specific to the Communication Class.

The only class-specific request codes that are valid for a Communication Class interface with a Communication Class
SubClass code of Direct Line Control Model are listed in the previous Table 2. The other class-specific requests not
listed in the previous table, such as SEND_ENCAPSULATED_COMMAND, are inappropriate for a Direct Line
Control Model and shall generate a STALL condition if sent to such an interface. For example, hanging up the line
would be accomplished by using SET_HOOK_STATE, rather than by sending “ATH” via
SEND_ENCAPSULATED_COMMAND.

Table 3: Notifications �� Direct Line Control Model*

Notification Code Description Req’d/Opt

AUX_JACK_HOOK_
STATE

08h Indicates hook state of secondary device plugged into the
auxiliary phone jack.

Optional

RING_DETECT 09h Message to notify host that ring voltage was detected on
POTS interface.

Required

* These notifications are specific to the Communication Class.

The only class-specific notification codes, which are valid for a Communication Class interface with a Communication
Class SubClass code of Direct Line Control Model, are listed in the previous table. The other class-specific
notifications not listed in the previous table, such as RESPONSE_AVAILABLE, are inappropriate for a Direct Line
Control Model and shall not be sent by such a device.

3.6.1.2 Datapump Model

The Datapump view of the device is the next logical break and is similar to the DL Model. In the Datapump view, the
USB device handles the carrier modulation instead of the host. Because there are no standard interfaces for Datapumps,
and it would be difficult to generalize the I/O space and registers required, it is assumed a vendor-specific interface is
employed based on the specifics of the Datapump being used.

The POTS line interface requests and notifications required for the Datapump USB device are the same as the DL
Model as described in Table 2 and Table 3, so the Direct Line Control Model SubClass code shall be used.

Data Compression (V.42bis)

Error Correction (V.42)

Command
and

Control

Vendor Defined I/F

Carrier Modulation (datapump)

 Control

Communication
Class InterfaceUSB Host

USB Device

Data Access Arrangement (DAA)

Figure 2: Datapump Model

USB Class Definitions for Communication Devices

Version 1.1 15 January 19, 1999

3.6.2 Abstract Control Model

With an Abstract Control Model, the USB device understands standard V.25ter (AT) commands. The device contains a
Datapump and micro-controller that handles the AT commands and relay controls. The device uses both a Data Class
interface and a Communication Class interface. For an illustration of the use of both interfaces, see Figure 3. The
device can also, at times, make use of other class interfaces; for example a device could use an Audio Class interface
for the audio functions in a speakerphone.

A Communication Class interface of type Abstract Control Model will consist of a minimum of two pipes; one is used
to implement the management element and the other to implement a notification element. In addition, the device can
use two pipes to implement channels over which to carry unspecified data, typically over a Data Class interface.

For POTS line control, an Abstract Control Model shall either support V.25ter commands embedded in the data stream
or V.25ter commands sent down the Communication Class interface. When V.25ter commands are multiplexed in the
data stream, the Heatherington Escape Sequence or the TIES method would define the only supported escape
sequences.

Data Compression (V.42bis)

Error Correction (V.42)

Data Class
Interface

Carrier Modulation (datapump)

 Control

Communication
Class Interface

USB Host

USB Device

Data Access Arrangement (DAA)

Figure 3: Abstract Control Model

Error correction and data compression could be implemented on the host, and not necessarily on the device. This type
of device differs from the Direct Line Control Model, because the data from the USB device is presented to the host via
a native class-defined interface rather than a vendor-specific Datapump interface. Also, V.25ter commands are used to
control the POTS line interface. V.80 defines one way that the host can control the DCE data stream to accomplish this,
but there are also proprietary methods.

3.6.2.1 Abstract Control Model Serial Emulation

The Abstract Control Model can bridge the gap between legacy modem devices and USB devices. To support certain
types of legacy applications, two problems need to be addressed. The first is supporting specific legacy control signals
and state variables which are addressed directly by the various carrier modulation standards. Because of these
dependencies, they are important for developing an analog modem, which presents an Abstract Control Model type
Communication Class interface to the host. To support these requirement additional requests (Table 4) and
notifications (Table 5) have been created.

The second significant item which is needed to bridge the gap between legacy modem designs and the Abstract Control
Model is a means to multiplex call control (AT commands) on the Data Class interface. Legacy modem designs are
limited by only supporting one channel for both "AT" commands and the actual data. To allow this type of
functionality, the device must have a means to specify this limitation to the host.

USB Class Definitions for Communication Devices

Version 1.1 16 January 19, 1999

When describing this type of device, the Communication Class interface would still specify a Abstract Control Model,
but call control would actually occur over the Data Class interface. To describe this particular characteristic, the Call
Management Functional Descriptor (Section 5.2.3.2) would have bit D1 of bmCapabilities set.

For devices that support both modes, call control over the Communication Class interface and call control over a Data
Class interface, and need to switch between them, then the GetCommFeature (Section 6.2.4) request is used to switch
between modes.

Table 4: Requests �� Abstract Control Model*

Request Code Description Req’d/Opt

SEND_ENCAPSULATED_
COMMAND

00h Issues a command in the format of the
supported control protocol.

Required

GET_ENCAPSULATED_
RESPONSE

01h Requests a response in the format of the
supported control protocol.

Required

SET_COMM_FEATURE 02h Controls the settings for a particular
communication feature.

Optional

GET_COMM_FEATURE 03h Returns the current settings for the
communication feature.

Optional

CLEAR_COMM_FEATURE 04h Clears the settings for a particular
communication feature.

Optional

SET_LINE_CODING 20h Configures DTE rate, stop-bits, parity, and
number-of-character bits.

Optional
+

GET_LINE_CODING 21h Requests current DTE rate, stop-bits, parity, and
number-of-character bits.

Optional
+

SET_CONTROL_LINE_STATE 22h RS-232 signal used to tell the DCE device the
DTE device is now present.

Optional

SEND_BREAK 23h Sends special carrier modulation used to specify
RS-232 style break.

Optional

* These requests are specific to the Communication Class.
+ For an analog modem, it is strongly recommended to support these requests.

The only class-specific request codes that are valid for a Communication Class interface with a Communication Class
SubClass code of Abstract Control Model are listed in the previous Table 4. The other class-specific requests not listed
in the previous table, such as SET_HOOK_STATE, are inappropriate for an Abstract Control Model and would
generate a STALL condition if sent to such an interface. For example, hanging up the line would be accomplished by
sending “ATH” via SEND_ENCAPSULATED_COMMAND, rather than by using SET_HOOK_STATE.

Table 5: Notifications �� Abstract Control Model*

Notification Code Description Req’d/Opt

NETWORK_CONNECTION 00h Notification to host of network connection status. Optional
+

RESPONSE_AVAILABLE 01h Notification to host to issue a
GET_ENCAPSULATED_RESPONSE request.

Required

SERIAL_STATE 20h Returns the current state of the carrier detect, DSR,
break, and ring signal.

Optional
+

* These notifications are specific to the Communication Class.
+ For an analog modem, it is strongly recommended to support these requests.

The only class-specific notification codes, which are valid for a Communication Class interface with a Communication
Class SubClass code of Abstract Control Model, are listed in the previous Table 5. The other class-specific
notifications not listed in the previous table, such as RING_DETECT, are inappropriate for an Abstract Control Model
and shall not be sent by such a device.

USB Class Definitions for Communication Devices

Version 1.1 17 January 19, 1999

3.6.3 USB Telephone Model

A USB telephone device has a type of Communication Class interface that will be presented to the host, and it has the
SubClass code of Telephone Control Model. A telephone device will not typically present a Data Class interface.

3.6.3.1 Telephone Control Model

Telephone devices with multiple lines will have a separate Communication Class interface for each physical line
connected to the device. Each individual interface will correspond to a different physical line representing a network
connection to the device.

Functional descriptors will be used to describe the various capabilities of a USB telephone device. These functional
descriptors are defined in Section 5.2.3, “Functional Descriptors.”

A Communication Class interface of SubClass code Telephone Control Model will consist of a minimum of two pipes:
one to implement the management element and the other to implement the notification element. This model describes
the simplest version of a USB telephone device using only a Communication Class interface; other, more complicated
implementations are possible.

To create more complicated implementations of a USB telephone device for example, use an Audio Class interface to
provide the audio capabilities of a telephone and a Human Interface Device Class interface to provide the keypad
capabilities of a telephone.

Line & Call Control

 Control

Communication
Class Interface

USB Host

USB Device

Ringer

Figure 4: Telephone Control Model

The requests for controlling the USB telephone device via its Communication Class interface are presented in Table 6.
Unsolicited messages from the USB telephone device to the host are sent using the notification element messages that
are presented in Table 7. These requests and notifications are transported via the Communication Class interface for the
device.

Table 6: Requests �� Telephone Control Model*

Request Code Description Req’d/Opt

SET_COMM_FEATURE 02h Used to set a unique communication feature, which is
normally specific to a particular device.

Optional

GET_COMM_FEATURE 03h Returns the current settings for the communication feature. Optional

CLEAR_COMM_FEATURE 04h Clears the settings for a particular communication feature. Optional

SET_RINGER_PARMS 30h Configures the ringer for a telephone device. Optional

USB Class Definitions for Communication Devices

Version 1.1 18 January 19, 1999

Request Code Description Req’d/Opt

GET_RINGER_PARMS 31h Gets the current ringer configuration for a telephone device. Required

SET_OPERATION_PARMS 32h Configures the operational mode of the telephone. Optional

GET_OPERATION_PARMS 33h Gets the current operational mode of the telephone. Optional

SET_LINE_PARMS 34h Allows changing the current state of the line associated
with the interface, providing basic call capabilities, such as
dialing and answering calls.

Required

GET_LINE_PARMS 35h Gets current status of the line. Required

DIAL_DIGITS 36h Dials digits on the network connection. Required

* These requests are specific to the Communication Class.

Table 7: Notifications �� Telephone Control Model*

Notification Code Description Req’d/Opt

CALL_STATE_CHANGE 28h Reports a state change on a call. Required

LINE_STATE_CHANGE 29h Reports a state change on a line. Optional

* These notifications are specific to the Communication Class.

3.7 USB ISDN Models

An ISDN network provides several channels that an USB ISDN device may present to a host. They consist of a call
control channel (D-Channel) and some data channels (B-Channels). Depending on functional requirements on the
device, these channels may be presented to the host on separate Data Class interfaces using the Multi-Channel Model,
or multiplexed onto one Data Class interface using the CAPI Model. Common for the two models are that the
Communication Class interface is only used for device management.

3.7.1 Multi-Channel Model

A Multi-Channel communication device is defined as a communication device having a number of channels
multiplexed on the physical network interface, where each channel has independent call control.

The prime characteristic of a Multi-Channel device is its ability to multiplex several channels on a physical network
interface using a MUX protocol stack. Assuming there are n channels (x .. z) on the physical interface, where n is
network and device specific, physical channels are mapped to a standard set of channels (0 .. n-1) by the protocol stack.
The standard channels carrying data with unspecified format are then explicitly mapped to some USB interface (See
Section 5.2.3.11 for more details). The protocol stack may also expose an USB interface for protocol management.

USB Class Definitions for Communication Devices

Version 1.1 19 January 19, 1999

U
S

B

Communication Class Interface

Device control

Data Class
Interface

Protocol stack

Data Class
Interface Protocol stack

Data Class
Interface

M
U

X
 P

ro
to

co
l s

ta
ck

Ch x

Ch z

Ch y

Ch 0

Ch 1

Ch n-1

Data Class
Interface

Protocol stack

Before a channel is presented to USB it is assigned a Class interface. A Data Class interface has to run a protocol stack
on the channel in order to define what data the channel carries. Note: A single protocol is considered a protocol stack
and framing is considered a protocol. A Protocol Data Wrapper should be used if access to any protocols in the
protocol stack is needed. The Multi-Channel model is based on the Open Systems Interconnection (OSI) model which
is a layered architecture to structure data communication. The OSI construct is implemented for example in ISDN
communication and TCP/IP protocols (for Internet access), as well as local area networks.

The basic idea of the OSI model is a hierarchical structure of functions necessary for communication. The OSI model
defines 7 layers for handling communication procedures. These layers communicate on a peer-to-peer basis by using a
fixed protocol. A communication layer n uses the services of layer n-1 to transfer data and information to a peer entity.
Interlayer service access points and connection endpoints provide the means for the transfer of protocol primitives
(data, commands and notifications) between the layers.

Though in theory, the OSI model strictly separates the different layers and assigned functions, in practice functional
units may not be exactly assigned to a definite layer and partly span one or two layers.

A Multi-Channel communication device uses for device management a Communication Class interface with a
Communication Class SubClass code of Multi-Channel. The only class-specific request codes that are valid for this
SubClass code are listed in Table 8. All other class-specific requests not listed in the table are inappropriate for an
Multi-Channel Model and would generate a STALL condition if sent to such an interface.

Table 8: Requests �� Multi-Channel Model*

Request Code Description Req’d/Opt

SET_UNIT_
PARAMETER

37h Used to set a Unit specific parameter Optional

GET_UNIT_
PARAMETER

38h Used to retrieve a Unit specific parameter Required

USB Class Definitions for Communication Devices

Version 1.1 20 January 19, 1999

Request Code Description Req’d/Opt

CLEAR_UNIT_
PARAMETER

39h Used to set a Unit specific parameter to its default state. Optional

* These requests are specific to the Communication Class.

3.7.1.1 Topology

To be able to manipulate the properties of a protocol stacks, its functionality must be divided into addressable Entities.
Two types of such generic Entities are identified and are called Units and Terminals. Protocol stacks are built by
connecting together several of these Entities to form the required topology. These Entities may be connected in a many
to one or one to many fashion in order to “bond” channels or share a channel among many interfaces.

x Units:
Units are Entities that provide the basic building blocks to describe different protocol stacks. There are two kinds
of Units: Protocol and Extension. Protocol Units identify instances of protocols defined in this document.
Extension Units are vendor specific extensions to this set. Each Unit has one or more Child pins used to connect to
its immediate neighboring Unit or Terminal below it on the stack.

x Terminals:
Terminals are Entities that represents a starting/ending point for a protocol stack. It is used to interface between
the ‘outside world’ and Units in the protocol stack and serves as a receptacle for data flowing in and out. There are
two kinds of Terminals: USB and Network Channel Terminals. USB Terminals are those on the top of the
protocol stack. Network Channel Terminals are those on the bottom end of the stack. The USB Terminal has one
or more Child pins used to connect to its immediate neighboring Unit or Terminal below it on the stack. The
Network Channel Terminal, having no Unit or Terminal below it, has no Child pins.

Each Unit and Terminal within a Configuration is assigned a unique identification number, the EntityID, contained in
the bEntityID field of the Unit and Terminal descriptor. The value 0x00 is reserved for undefined ID’s, effectively
restricting the total number of addressable Entities (both Units and Terminals) to 255.

Besides uniquely identifying all addressable Entities, the ID’s are also used to describe the topology of the protocol
stack(s); i.e. the bChild of a Unit or USB Terminal descriptor indicates to which other lower Unit or Terminal this one
is connected.

A protocol stack can be thought of as some number of Units and Terminals connected together, with the upper most
unit exposed as a USB interface and the lower most unit connected to the actual device hardware. By selecting an
interface, either during configuration or by setting an alternate interface, you enable the protocol stack. Taking this
concept further, if you defined an optional alternate interface with no endpoints (must be number zero), this can be used
to relinquish bandwidth (for Isochronous endpoints) and at the same time move a stack into a deactivated state. By
moving from a configured protocol stack interface to an alternate interface, with no endpoints, you deactivate the
protocol stack.

If the default alternate interface zero is used, with no endpoints, the stack will start from a deactivated state and will
need to be activated when needed. When the Unit is activated, its state is reset. When a unit is deactivated it will not
respond to any message sent to it from Entities above or below.

3.7.2 USB CAPI Model

A USB CAPI device has a single type of Communication Class interface that will be presented to the host and it will
have the SubClass code of a CAPI Control Model. A USB CAPI device will present a Data Class interface which is
used to exchange CAPI messages. The CAPI Control Model do not use a notification element. CAPI provides an
abstraction of services which is independent from the underlying network. Multiple lines, if provided by the underlying
network, will be presented through one single interface and controlled and managed via CAPI messages.

USB Class Definitions for Communication Devices

Version 1.1 21 January 19, 1999

The definition of CAPI covers all network relevant details such as call-management and protocol-relevant issues where
appropriate. The management and data information are part of the CAPI messages which are by definition operating
system independent. The USB CAPI Model supports both intelligent and simple CAPI device designs.

3.7.2.1 CAPI Control Model

With a CAPI Control Model, the USB device understands CAPI commands and CAPI messages. The device will make
use of both a Data Class Interface and a Communication Class interface, see Figure 5.

Data Class
Interface

Command
and

 Control

Communication
Class InterfaceUSB Host

USB Device

CAPI

CAPI

D

Basic Rate Interfaces

B1 B2

Figure 5: CAPI Control Model for a Basic-Rate Configuration

The CAPI functionality is divided into two parts as shown in the diagram above. Dividing CAPI into two parts allows
for different CAPI device designs. Intelligent CAPI devices handle the call management according to the underlying
network, for example Q.931 or NI-1 for ISDN, as well as a full set of protocols within the data channels, for example
X.75, V.120, V.110, V.42bis, T.30 etc. on the USB device itself. For these devices the CAPI part within the USB
device is powerful and is usually loaded as firmware on startup on the device. A firmware download to a device is done
through manufacturer specific operations. Simple CAPI devices implement some low layer functionality, usually the
direct network interface only. These devices enable the creation of low-cost solutions and require the host to do the
bulk of the protocol processing. These simple USB devices are also managed and controlled by CAPI messages.

All messages exchanged between the host and CAPI consist of a fixed-length header and a parameter area of variable
length. The message length is stored at the beginning of the fixed-length header thus enabling adaptive drivers to
forward CAPI messages without further knowledge of the internal CAPI message format. The messages carry all
management and data information for the CAPI device. These messages are exchanged via the Data Interface of the
device. The CAPI message stream encapsulates all types of data a connection of the underlying network can carry. If
conversions to other data formats are necessary these can be accomplished within the host and done in software. In
such a way the support of an audio interface is included. This approach enables a integration into the framework of
abstract host interfaces as well as the support of existing CAPI applications.

The CAPI device reports its implemented functionality using a Communication Class specific request, in order to allow
the host to choose an appropriate upper part of the CAPI to run within the host. The request is transported via the
Communication Class interface for the device and presented in Table 9.

Table 9: Requests �� CAPI Control Model*

Request Code Description Req’d/Opt

GET_PROFILE 3Ah Returns the implemented capabilities of the device Required

* These requests are specific to the Communication Class.

USB Class Definitions for Communication Devices

Version 1.1 22 January 19, 1999

The only class specific request which is valid for a Communication Class interface with a Communication Class
SubClass code of the CAPI Control Model is listed in Table 9 above. The other class specific requests not listed in the
above table, such as SEND_ENCAPSULATED_COMMAND, are inappropriate for a CAPI Control Model and shall
generate a STALL condition if sent to such an interface.

3.8 USB Networking Models

A USB Networking device has a type of Communication Class Interface that will be presented to the host for
configuring and managing the networking device. Networking devices are typically “Always Connected”, spending all
of their time with the “link up”. The Communication Class Interface is primarily used to configure and manage the
networking device, not to place calls.

In contrast to a telecommunications device, a networking device will always have at least one associated Data Class
interface to exchange network traffic. In a typical host software stack, the same driver that is responsible for
configuring and managing the network device is also the client that is a source/sink of networking traffic. An example
of such a host resident networking driver is either an ATM or Ethernet driver.

The usage of more than one pair of Communication/Data interfaces will be common for devices that expose more than
one interface to the network. For example, an MCNS DOCSIS cable modem has two 48 bit MAC addresses. Its first
MAC address is used to manage cable modem functions, while the second MAC address is used for subscriber access
to the Internet. For a cable modem implementation where its management functions are migrated to the host, two
different Communication Class and Data Class interfaces will be exposed to the host (one pair for each of the 2 MAC
addresses).

Networking devices are differentiated by their SubClass code, which currently are comprised of the Ethernet
Networking Control Model and ATM Networking Control Model.

3.8.1 Common Data Plane Characteristics

The core Data-In/Data-Out pipe mechanism is the same for all networking device models supported by this
specification, independent of the media type (e.g., Cable, xDSL, Ethernet) or media data type (e.g., ATM cells,
Ethernet frames).

Typical USB-based Networking devices will support bulk transfers as the default configuration to exchange data
between a host and the USB device.

While each data packet of a bulk endpoint is limited to the maximum packet size defined in the associated endpoint
descriptor, it should be noted that a host might request multiple bulk USB protocol packets within a single USB frame.
For maximum throughput, a Networking device must be prepared to transfer multiple bulk packets within a single USB
frame.

Some USB-based Networking device implementations may support isochronous data transfers in addition to (or instead
of) bulk transfers. Isochronous transfers guarantee data throughput and bounded latency, consistent with the needs of
real-time streams (audio, video). Isochronous data errors are reported to receiver, but no data integrity (i.e.,
retransmission) is provided by the USB link.

The Data Class Interface Descriptor protocol code for all Networking Control Models is 00h.

USB provides no inherent flow control mechanism for isochronous pipes, and this specification defines no higher level
mechanism for doing so. Instead, it is assumed that the host software is responsible for doing traffic shaping as
necessary to match any end-to-end negotiation. If the networking device is performing traffic shaping, then either a
bulk endpoint should be used, or the flow control methods should be provided using vendor-specific methods.

The Data Class interface of a networking device shall have a minimum of two interface settings. The first setting (the
default interface setting) includes no endpoints and therefore no networking traffic is exchanged whenever the default
interface setting is selected. One or more additional interface settings are used for normal operation, and therefore each

USB Class Definitions for Communication Devices

Version 1.1 23 January 19, 1999

includes a pair of endpoints (one IN, and one OUT) to exchange network traffic. Select an alternate interface setting to
initialize the network aspects of the device and to enable the exchange of network traffic.

To recover the network aspects of a device to known states, select the default interface setting (with no endpoints) and
then select the appropriate alternate interface setting. This action will flush device buffers, clear any filters or statistics
counters and will cause NETWORK_CONNECTION and CONNECTION_SPEED_CHANGE notifications to be sent
to the host. The effect of a "reset" on the device physical layer is media dependent and beyond the scope of this
specification.

Segment
Del ineat ion

U S B
System

Sof tware

USB Host
Control ler

U S B
Interface
Fi rmware

U S B
Device

Control ler

Segment del ineat ion

MAC Layer
Network

Driver

Network ing MAC Frames/Cel ls

Host
System Network ing

Device

Device
M A C

USB dev ice
f i rmware

USB Dr iver

Segment
Del ineat ion

Figure 6 - USB Network Device Example

3.8.1.1 Segment Delineation

For almost any type of USB attached networking device, a mechanism is needed where both the networking device and
the Host can delineate the beginning and ending of a segment within the data stream delivered by an endpoint. The
meaning and cause of segment end is media dependent. Below are some examples:

x The end of an Ethernet frame

x The end of an AAL5 ATM SDU

x The end of an AAL5 ATM PDU

USB Class Definitions for Communication Devices

Version 1.1 24 January 19, 1999

x The arrival of a high priority ATM cell

This positive delineation is done using a USB short packet mechanism. When a segment spans N USB packets, the
first packet through packet N-1 shall be the maximum packet size defined for the USB endpoint. If the Nth packet is
less than maximum packet size the USB transfer of this short packet will identify the end of the segment. If the Nth
packet is exactly maximum packet size, it shall be followed by a zero-length packet (which is a short packet) to assure
the end of segment is properly identified.

When transmitting data to the networking device, it is assumed that the client of the host USB driver takes the
appropriate actions to cause a short packet to be sent to the networking device. For segments with lengths that are an
even multiple of the pipe’s “max packet size”, the ability to write a buffer of zero length is required to generate this
short packet.

3.8.1.2 Segment Size

The host and the attached network device must negotiate to establish the maximum segment size. The upper limit for
this is usually a function of the buffering capacity of the attached device, but there may be other factors involved as
well.

For networking devices that exchange Ethernet frames, the size of a segment is also negotiable. Typical Ethernet
frames are 1514 bytes or less in length (not including the CRC), but this could be longer (e.g., 802.1Q VLAN tagging).

An ATM oriented device moving cells is a different matter. In the case of AAL5 SDU exchanges, the segment size
could be up to 64K bytes in length, and is a function of device buffering capacity and the results of end-to-end
negotiation with Q.2931.

3.8.2 Ethernet Networking Control Model

The Ethernet Networking Control Model is used for exchanging Ethernet framed data between the device and host. A
Communication Class interface is used to configure and manage various Ethernet functions, where an "Ethernet
Networking Control Model" SubClass code is indicated in the descriptor definition of its Communication Class
interface.

A Data Class interface is used to exchange Ethernet encapsulated frames sent over USB. These frames shall include
everything from the Ethernet destination address (DA) up to the end of the data field. The CRC checksum must not be
included for either send or receive data. It is the responsibility of the device hardware to generate and check CRC as
required for the specific media. Receive frames that have a bad checksum must not be forwarded to the host. This
implies that the device must be able to buffer at least one complete Ethernet frame.

Media Access Control

Data Class
Interface

Physical (PHY)

Control

Communication
Class Interface

USB Host

USB Device

Host MAC layer networking driver

Figure 7: Ethernet Networking Model

USB Class Definitions for Communication Devices

Version 1.1 25 January 19, 1999

Although a typical USB Networking device stays in an “always connected” state, some Networking device
management requests are required to properly initialize both the device and the host networking stack. There also may
be occasional changes of device configuration or state, e.g., adding multicast filters.

The only class-specific request codes that are valid for a Communication Class interface with a Communication Class
SubClass code of Ethernet Networking Control Model are listed in Table 10.

Table 10: Requests �� Ethernet Networking Control Model*

Request Code Description Req’d/Opt

SEND_ENCAPSULATED_
COMMAND

00h Issues a command in the format of the supported control
protocol. The intent of this mechanism is to support
networking devices (e.g., host-based cable modems)
that require an additional vendor-defined interface for
media specific hardware configuration and
management.

Optional

GET_ENCAPSULATED_
RESPONSE

01h Requests a response in the format of the supported
control protocol.

Optional

SET_ETHERNET_
MULTICAST_FILTERS

40h As applications are loaded and unloaded on the host,
the networking transport will instruct the device’s MAC
driver to change settings of the Networking device’s
multicast filters.

Optional

SET_ETHERNET_
POWER_MANAGEMENT_
PATTERN_FILTER

41h Some hosts are able to conserve energy and stay quiet
in a “sleeping” state while not being used. USB
Networking devices may provide special pattern filtering
hardware that enables it to wake up the attached host
on demand when something is attempting to contact the
host (e.g., an incoming web browser connection).
Primitives are needed in management plane to negotiate
the setting of these special filters

Optional **

GET_ETHERNET_
POWER_MANAGEMENT_
PATTERN_FILTER

42h Retrieves the status of the above power management
pattern filter setting

Optional **

SET_ETHERNET_
PACKET_FILTER

43h Sets device filter for running a network analyzer
application on the host machine

Required

GET_ETHERNET_
STATISTIC

44h Retrieves Ethernet device statistics such as frames
transmitted, frames received, and bad frames received.

Optional

* These requests are specific to the Communication Class.
** If the SET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER command is supported, then the
GET_ETHERNET_POWER_MANAGEMENT_PATTERN_FILTER request must be supported as well.

The only class-specific notification codes, which are valid for a Communication Class interface with a Communication
Class SubClass code of Ethernet Networking, are listed in the following table.

Table 11: Notifications �� Ethernet and ATM Networking Control Models*

Notification Code Description Req’d/Opt

NETWORK_CONNECTION 00h Reports whether or not the physical layer (modem,
Ethernet PHY, etc.) link is up.

Required

RESPONSE_AVAILABLE 01h Notification to host to issue a
GET_ENCAPSULATED_RESPONSE request.

Optional

CONNECTION_SPEED_
CHANGE

2Ah Reports a change in upstream or downstream speed of
the networking device connection.

Required

* These notifications are specific to the Communication Class.

USB Class Definitions for Communication Devices

Version 1.1 26 January 19, 1999

3.8.3 ATM Networking Control Model

An ATM USB device is used to move ATM cells or AAL5 SDUs to and from the host. The segmentation and re-
assembly (SAR) function in the ATM adaptation layer may be implemented on the host, and not necessarily on the
device.

A Communication Class interface is used to configure and manage various ATM functions, where an "ATM
Networking Control Model" SubClass code is indicated in the descriptor definition of its Communication Class
interface. This Communication Class interface consists of a minimum of two pipes; one is used to implement the
management element and the other to implement a notification element. A Data Class interface is used to exchange
ATM cells or AAL5 SDUs sent over USB. The host may perform traffic shaping on an aggregated basis according to
the upstream speed reported via the Communication Class interface.

Data Class
Interface

ATM Data Plane Control

Communication
Class Interface

USB Host

USB Device

Host ATM networking driver

Figure 8: ATM Networking Model

These requests for controlling the interface between the USB ATM device are presented in the following table. There
are also some additional signals that shall go back to the host as notifications, which are represented in Table 13. These
requests and notifications are transported via the Communication Class interface for the device.

Table 12: Requests �� ATM Networking Control Model*

Request Code Description Req’d/Opt

SEND_ENCAPSULATED_
COMMAND

00h Issues a command in the format of the supported control
protocol. The intent of this mechanism is to support
networking devices (e.g., host-based cable modems)
that require an additional vendor-defined interface for
media specific hardware configuration and
management.

Optional

GET_ENCAPSULATED_
RESPONSE

01h Requests a response in the format of the supported
control protocol.

Optional

SET_ATM_DATA_ FORMAT 50h Chooses which ATM data format will be exchanged
between the host and the ATM Networking device.

Required

GET_ATM_DEVICE_
STATISTICS

51h Retrieves global statistics from the ATM Networking
device.

Required

SET_ATM_DEFAULT_VC 52h Pre-selects the VPI/VCI value for subsequent
GetATMVCStatistics requests

Optional

GET_ATM_VC_
STATISTICS

53h Retrieves statistics from the ATM Networking device for
a particular VPI/VCI.

Optional

* These requests are specific to the Communication Class.

The only class specific request codes that are valid for a Communication Class interface with a SubClass code of ATM
Networking Control Model are listed in the previous table. The other class specific requests not listed in the previous

USB Class Definitions for Communication Devices

Version 1.1 27 January 19, 1999

table are inappropriate for an ATM Networking Control Model and must generate a STALL condition if sent to such an
interface.

Table 13: Notifications �� Ethernet and ATM Networking Control Models*

Notification Code Description Req’d/Opt

NETWORK_CONNECTION 00h Reports whether or not the physical layer (modem,
Ethernet PHY, etc.) link is up.

Required

RESPONSE_AVAILABLE 01h Notification to host to issue a
GET_ENCAPSULATED_RESPONSE request.

Optional

CONNECTION_SPEED_
CHANGE

2Ah Reports a change in upstream or downstream speed of the
networking device connection.

Required

* These notifications are specific to the Communication Class.

The only class specific notification codes, which are valid for a Communication Class interface with a SubClass code
of ATM Networking Control Model, are listed in the previous table. The other class specific notifications not listed in
the previous table are inappropriate for a ATM Networking Control Model and shall not be sent by a device.

USB Class Definitions for Communication Devices

Version 1.1 28 January 19, 1999

4. Class-Specific Codes for Communication Devices
This section lists the codes for the Communication Device Class, Communication Interface Class and Data Interface
Class, including subclasses and protocols. These values are used in the bDeviceClass, bInterfaceClass,
bInterfaceSubClass, and bInterfaceProtocol fields of the standard device descriptors as defined in chapter 9 of the USB
Specification.

4.1 Communication Device Class Code

The following table defines the Communication Device Class code:

Table 14: Communication Device Class Code

Code Class

02h Communication Device Class

4.2 Communication Interface Class Code

The following table defines the Communication Class code:

Table 15: Communication Interface Class Code

Code Class

02h Communication Interface Class

4.3 Communication Interface Class SubClass Codes

The following table defines the SubClass codes for the Communication Interface Class:

Table 16: Communication Interface Class SubClass Codes

Code SubClass

00h RESERVED

01h Direct Line Control Model

02h Abstract Control Model

03h Telephone Control Model

04h Multi-Channel Control Model

05h CAPI Control Model

06h Ethernet Networking Control Model

07h ATM Networking Control Model

08h-7Fh RESERVED (future use)

80h-FEh RESERVED (vendor specific)

The Datapump Model, as described in Section 3.6.1.2, “Datapump Model,” is not listed in Communication Class
SubClass codes, because a device of that type will use a Direct Line Control Model for POTS line control and a
vendor-specific interface.

USB Class Definitions for Communication Devices

Version 1.1 29 January 19, 1999

4.4 Communication Interface Class Control Protocol Codes

A communication control protocol is used by the USB host to control communication functions in the device or on the
network. This specification defines code values for certain standard control protocols. It also reserves codes for
additional standard or vendor-specific control protocols. If the Communication Class control model does not require a
specific protocol, the value of 00h should be used.

Table 17: Communication Interface Class Control Protocol Codes

Protocol code Reference
document

Description

00h USB Specification No class specific protocol required

01h V.25ter Common AT commands (also known as “Hayes™ compatible”)

02h-FEh RESERVED (future use)

FFh USB Specification Vendor-specific

4.5 Data Interface Class Codes

The following table defines the Data Interface Class code:

Table 18: Data Interface Class Code

Code Class

0Ah Data Interface Class

4.6 Data Interface Class SubClass Codes

At this time this field is un-used for Data Class interfaces and should have a value of 00h.

4.7 Data Interface Class Protocol Codes

The following table defines the Protocol codes for the Data Interface Class:

Table 19: Data Interface Class Protocol Codes

Protocol Code Reference
Document

Description

00h USB
specification

No class specific protocol required

01h – 2Fh None RESERVED (future use)

30h I.430 Physical interface protocol for ISDN BRI

31h ISO/IEC 3309-
1993

HDLC

32h None Transparent

33h – 4Fh None RESERVED (future use)

50h Q.921M Management protocol for Q.921 data link protocol

51h Q.921 Data link protocol for Q.931

52h Q921TM TEI-multiplexor for Q.921 data link protocol

USB Class Definitions for Communication Devices

Version 1.1 30 January 19, 1999

Protocol Code Reference
Document

Description

53h – 8Fh None RESERVED (future use)

90h V.42bis Data compression procedures

91h Q.931/Euro-
ISDN

Euro-ISDN protocol control

92h V.120 V.24 rate adaptation to ISDN

93h CAPI2.0 CAPI Commands

94h - FCh None RESERVED (future use)

FDh None Host based driver.
Note: This protocol code should only be used in messages between
host and device to identify the host driver portion of a protocol stack.

FEh CDC
specification

The protocol(s) are described using a Protocol Unit Functional
Descriptors on Communication Class Interface.

FFh USB
specification

Vendor-specific

In certain types of USB communication devices, no protocol will need to be specified in the Data Class interface
descriptor. In these cases the value of 00h should be used.

USB Class Definitions for Communication Devices

Version 1.1 31 January 19, 1999

5. Descriptors

5.1 Standard USB Descriptor Definitions

This section defines requirements for the standard USB descriptors for the Communication Device Class,
Communication Interface Class and Data Interface Class.

5.1.1 Device Descriptor

Communication device functionality resides at the interface level, with the exception being the definition of the
Communication Device Class code. The device code is used solely to identify the device as a communication device
and as such, multiple interfaces might be used to form USB functions. This is important to the host for configuration of
the drivers to properly enumerate the device. All communication devices will have at least one Communication Class
interface that will function as the device master interface. The following tables define the values to properly build a
device descriptor and the accompanying interface descriptors.

Table 20: Communication Device Class Descriptor Requirements

Offset Field Size Value Description

4 bDeviceClass 1 02h Communication Device Class code as defined in
Table 14.

5 bDeviceSubClass 1 00h Communication Device Subclass code, unused at
this time.

6 bDeviceProtocol 1 00h Communication Device Protocol code, unused at this
time.

5.1.2 Configuration Descriptor

The Communication Device Class uses the standard configuration descriptor defined in chapter 9 of the USB
Specification.

5.1.3 Interface Descriptors

The Communication Interface Class uses the standard Interface descriptor as defined in chapter 9 of the USB
Specification. The fields defined in the following table shall be used as specified. The use of the remaining fields of the
Communication Interface Class descriptor remains unchanged.

Table 21: Communication Class Interface Descriptor Requirements

Offset Field Size Value Description

5 bInterfaceClass 1 Class Communication Interface Class code, as defined
in Table 15.

6 bInterfaceSubClass 1 SubClass Communication Interface Class SubClass code,
as defined in Table 16.

7 bInterfaceProtocol 1 Protocol Communication Interface Class Protocol code,
which applies to the subclass, as specified in the
previous field, is defined in Table 17.

USB Class Definitions for Communication Devices

Version 1.1 32 January 19, 1999

The Data Interface Class also uses the standard Interface descriptor as defined in chapter 9 of the USB Specification.
The fields defined in the following table shall be used as specified. The use of the remaining fields of the Data Interface
Class descriptor remains unchanged.

Table 22: Data Class Interface Descriptor Requirements

Offset Field Size Value Description

5 bInterfaceClass 1 0Ah Data Interface Class code, as defined in Table
18.

6 bInterfaceSubClass 1 00h Data Class SubClass code.

7 bInterfaceProtocol 1 Protocol Data Class Protocol code, which applies to the
subclass, as specified in the previous field, is
defined in Table 19.

5.1.4 Endpoint Descriptors

The Communication Interface Class and Data Interface Class use the standard Endpoint descriptor, as defined in
chapter 9 of the USB Specification.

5.2 Class-Specific Descriptors

This section describes class-specific descriptors for the Communication Interface Class and Data Interface Class. A
class-specific descriptor exists only at the Interface level. Each class-specific descriptor is defined as a concatenation of
all of the functional descriptors for the Interface. The first functional descriptor returned by the device for the interface
shall be a header functional descriptor.

5.2.1 Class-Specific Device Descriptor

This descriptor contains information applying to the entire communication device. The Communication Device Class
does not currently use any class-specific descriptor information at the Device level.

5.2.2 Class-Specific Configuration Descriptor

The Communication Device Class currently does not use any class-specific descriptor information at the Configuration
level.

5.2.3 Functional Descriptors

Functional descriptors describe the content of the class-specific information within an Interface descriptor. Functional
descriptors all start with a common header descriptor, which allows host software to easily parse the contents of class-
specific descriptors. Each class-specific descriptor consists of one or more functional descriptors. Although the
Communication Class currently defines class specific descriptor information, the Data Class does not.

Table 23: Functional Descriptor General Format

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this descriptor.

USB Class Definitions for Communication Devices

Version 1.1 33 January 19, 1999

Offset Field Size Value Description

1 bDescriptorType 1 Constant CS_INTERFACE, as defined in Table 24.

2 bDescriptorSubtype 1 Constant Identifier (ID) of functional descriptor. For a list
of the supported values, see Table 25.

3 (function specific data0) 1 Misc. First function specific data byte. These fields
will vary depending on the functional descriptor
being represented.

… … … … …

N+2 (functional specific data N-1) 1 Misc. Nth function specific data byte. These fields
will vary depending on the functional descriptor
being represented.

The bDescriptorType values are the same ones defined in the USB Device Class Definition for Audio Devices
Specification. They were derived by using the DEVICE, CONFIGURATION, STRING, INTERFACE, and
ENDPOINT constants defined in chapter 9 of the USB Specification and by setting the class-specific bit defined within
the Common Class Specification to generate corresponding class-specific constants.

Table 24: Type Values for the bDescriptorType Field

Descriptor type Value

CS_INTERFACE 24h

CS_ENDPOINT 25h

Table 25: bDescriptor SubType in Functional Descriptors

Descriptor
subtype

Comm IF
descriptor

Data IF
descriptor

Functional description

00h Yes Yes Header Functional Descriptor,
which marks the beginning of
the concatenated set of
functional descriptors for the
interface.

01h Yes No Call Management Functional
Descriptor.

02h Yes No Abstract Control Management
Functional Descriptor.

03h Yes No Direct Line Management
Functional Descriptor.

04h Yes No Telephone Ringer Functional
Descriptor.

05h Yes No Telephone Call and Line State
Reporting Capabilities
Functional Descriptor.

06h Yes No Union Functional descriptor

07h Yes No Country Selection Functional
Descriptor

08h Yes No Telephone Operational Modes
Functional Descriptor

09h Yes No USB Terminal Functional
Descriptor

USB Class Definitions for Communication Devices

Version 1.1 34 January 19, 1999

Descriptor
subtype

Comm IF
descriptor

Data IF
descriptor

Functional description

0Ah Yes No Network Channel Terminal
Descriptor

0Bh Yes No Protocol Unit Functional
Descriptor

0Ch Yes No Extension Unit Functional
Descriptor

0Dh Yes No Multi-Channel Management
Functional Descriptor

0Eh Yes No CAPI Control Management
Functional Descriptor

0Fh Yes No Ethernet Networking Functional
Descriptor

10h Yes No ATM Networking Functional
Descriptor

11h-FFh N/A N/A RESERVED (future use)

5.2.3.1 Header Functional Descriptor

The class-specific descriptor shall start with a header that is defined in Table 23. The bcdCDC field identifies the
release of the USB Class Definitions for Communication Devices Specification (this specification) with which this
interface and its descriptors comply.

Table 26: Class-Specific Descriptor Header Format

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this descriptor in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type.

2 bDescriptorSubtype 1 Constant Header functional descriptor subtype as
defined in Table 25.

3 bcdCDC 2 Number USB Class Definitions for Communication
Devices Specification release number in
binary-coded decimal.

5.2.3.2 Call Management Functional Descriptor

The Call Management functional descriptor describes the processing of calls for the Communication Class interface. It
can only occur within the class-specific portion of an Interface descriptor.

Table 27: Call Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Call Management functional descriptor
subtype, as defined in Table 25.

USB Class Definitions for Communication Devices

Version 1.1 35 January 19, 1999

Offset Field Size Value Description

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports:

D7..D2: RESERVED (Reset to zero)

D1: 0 - Device sends/receives call
management information only over
the Communication Class
interface.
1 - Device can send/receive call
management information over a
Data Class interface.

D0: 0 - Device does not handle call
management itself.
1 - Device handles call
management itself.

The previous bits, in combination, identify
which call management scenario is used. If bit
D0 is reset to 0, then the value of bit D1 is
ignored. In this case, bit D1 is reset to zero for
future compatibility.

4 bDataInterface 1 Number Interface number of Data Class interface
optionally used for call management. *

* Zero based index of the interface in this configuration.(bInterfaceNum)

5.2.3.3 Abstract Control Management Functional Descriptor

The Abstract Control Management functional descriptor describes the commands supported by the Communication
Class interface, as defined in Section 3.6.2, with the SubClass code of Abstract Control Model. It can only occur
within the class-specific portion of an Interface descriptor.

Table 28: Abstract Control Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Abstract Control Management functional
descriptor subtype as defined in Table 25.

USB Class Definitions for Communication Devices

Version 1.1 36 January 19, 1999

Offset Field Size Value Description

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports. (A bit value of zero means that the
request is not supported.)

D7..D4: RESERVED (Reset to zero)

D3: 1 - Device supports the notification
Network_Connection.

D2: 1 - Device supports the request
Send_Break

D1: 1 - Device supports the request
combination of Set_Line_Coding,
Set_Control_Line_State,
Get_Line_Coding, and the
notification Serial_State.

D0: 1 - Device supports the request
combination of
Set_Comm_Feature,
Clear_Comm_Feature, and
Get_Comm_Feature.

The previous bits, in combination, identify
which requests/notifications are supported by
a Communication Class interface with the
SubClass code of Abstract Control Model.

5.2.3.4 Direct Line Management Functional Descriptor

The Direct Line Management functional descriptor describes the commands supported by the Communication Class
interface, as defined in Section 3.6.1, with the SubClass code of Direct Line Control Model. It can only occur within
the class-specific portion of an Interface descriptor.

Table 29: Direct Line Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Direct Line Management functional descriptor
subtype, as defined in Table 25.

USB Class Definitions for Communication Devices

Version 1.1 37 January 19, 1999

Offset Field Size Value Description

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports. (A value of zero means that the
request or notification is not supported.)

D7..D3: RESERVED (Reset to zero)

D2: 1 - Device requires extra
Pulse_Setup request during pulse
dialing sequence to disengage
holding circuit. (see Section 6.2.8)

D1: 1 - Device supports the request
combination of
Set_Aux_Line_State,
Ring_Aux_Jack, and notification
Aux_Jack_Hook_State.

D0: 1 - Device supports the request
combination of Pulse_Setup,
Send_Pulse, and
Set_Pulse_Time.

The previous bits, in combination, identify
which requests/notifications are supported by
a Communication Class interface with the
SubClass code of DL Control Modem.

5.2.3.5 Telephone Ringer Functional Descriptor

The Telephone Ringer functional descriptor describes the ringer capabilities supported by the Communication Class
interface, as defined in Section 3.6.3.1, with the SubClass code of Telephone Control. It can only occur within the
class-specific portion of an Interface descriptor.

For a multiple line phone device, where separate Communication Class interfaces would exist for each line supported
by the phone, typically one interface would be designated via a Union functional descriptor to be the controlling
interface for the device. If only one ringer existed for all the lines, the Telephone Ringer Functional descriptor would
only be needed for the descriptor of this controlling interface.

Table 30: Telephone Ringer Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Ringer functional descriptor
subtype as defined in Table 25.

USB Class Definitions for Communication Devices

Version 1.1 38 January 19, 1999

Offset Field Size Value Description

3 bRingerVolSteps 1 Number Number of discrete steps in volume supported
by the ringer, values are:

0: 256 discrete volume steps.

1: 1 discrete volume step (i.e., fixed
volume). Value 0 will be ringer off
setting and Value 1 to 255 will
result in the same ringer volume
level.

2: 2 discrete volume steps
Value 0 will be ringer off setting
and Values 1 to 127 will result in
the first volume level setting.
Values 128 to 255 will result in the
2nd volume level setting

3: 3 discrete volume steps.
Value 0 will be ringer off setting
and Values 1 to 84 will result in
the first volume level setting.
Value 85 to 170 will result in the
2nd volume level setting. Value
171 to 255 will result in the 3rd

volume level setting.

As a general rule, the range of volume settings
is broken up into a number of equal steps, the
number of steps defined by the
bRingerVolSteps value.

A general formula for defining ranges, based
on X=bRingerVolSteps and values [1 to Y]
defining the first volume range is:

Y = (256/X) - 1,
where X<>0
and X<=128

Second volume range is:

[(Y+1) to (Y+Y)]

Note: that the maximum value in the last range
must always be 255

4 bNumRingerPatterns 1 Number Number of ringer patterns supported, values of
1 to 255 with a value of 0 being reserved for
future use.

5.2.3.6 Telephone Operational Modes Functional Descriptor

The Telephone Operational Modes functional descriptor describes the operational modes supported by the
Communication Class interface, as defined in Section 3.6.3.1, with the SubClass code of Telephone Control. It can
only occur within the class-specific portion of an Interface descriptor. The modes supported are Simple, Standalone,
and Computer Centric. See Section 6.2.18, “SetOperationParms” for a definition of the various operational modes and
Table 53 for the definition of the operational mode values.

For a multiple line phone device, where separate Communication Class interfaces would exist for each line supported
by the phone, typically one interface would be designated via a Union functional descriptor to be the controlling
interface for the device. In this case, the Telephone Operational Modes descriptor would only be needed for the
descriptor of this controlling interface.

USB Class Definitions for Communication Devices

Version 1.1 39 January 19, 1999

Table 31: Telephone Operational Modes Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Operational Modes functional
descriptor subtype as defined in Table 25.

3 bmCapabilities 1 Bitmap This configuration supports the following
operational modes:

D7..D3: RESERVED (Reset to zero)

D2: 0 - Does not support Computer
Centric mode.
1 - Supports Computer Centric
mode.

D1: 0 - Does not support Standalone
mode.
1 - Supports Standalone mode.

D0: 0 - Does not support Simple
mode.
1 - Supports Simple mode.

5.2.3.7 Telephone Call and Line State Reporting Capabilities Descriptor

The Telephone Call and Line State Reporting Capabilities functional descriptor describes the abilities of a telephone
device to report optional call and line states. All telephone devices, as a minimum, shall be capable of reporting the
following call states:

x Idle

x Dialtone

x Dialing

x Connected

x Ringing

x Answered

Call state reports that are optional and will be described by this descriptor are states such as:

x Interrupted dialtone

x Ringback

x Busy

x Fast busy (also known as equipment busy or reorder tone)

x Caller ID

x Distinctive ringing decoding

Line state reports are optional and will be described by this descriptor.

The Telephone Call State Reporting Capabilities functional descriptor can exist in the class-specific portion of a
Communication Class interface, as defined in Section 3.6.3.1, with the SubClass code of Telephone Control. For a
multiple line phone device, where separate Communication Class interfaces would exist for the each line supported by
the phone, typically one interface would be designated via a Union functional descriptor, to be the controlling interface

USB Class Definitions for Communication Devices

Version 1.1 40 January 19, 1999

for the device. In this case, the Telephone Call State Reporting Capabilities Functional descriptor would only be needed
for the descriptor of this controlling interface, if each of the Communication Class interfaces supported the same call
state reporting capabilities.

Table 32: Telephone Call State Reporting Capabilities Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Telephone Call State Reporting Capabilities
descriptor subtype, as defined in Table 25.

3 bmCapabilities 4 Bitmap Call and line state reporting capabilities of the
device when the following bits are set:

D31-D6: RESERVED (Reset to zero)

D5: 0 – Does not support line state
change notification.
1 – Does support line state change
notification.

D4: 0 – Cannot report dual tone multi-
frequency (DTMF) digits input
remotely over the telephone line.
1 – Can report DTMF digits input
remotely over the telephone line.

D3: 0 – Reports only incoming ringing.
1 – Reports incoming distinctive
ringing patterns.

D2: 0 – Does not report caller ID.
1 – Reports caller ID information.

D1: 0 – Reports only dialing state.
1 – Reports ringback, busy, and fast
busy states.

D0: 0 – Reports only dialtone (does not
differentiate between normal and
interrupted dialtone).
1 – Reports interrupted dialtone in
addition to normal dialtone.

5.2.3.8 Union Functional Descriptor

The Union functional descriptor describes the relationship between a group of interfaces that can be considered to form
a functional unit. It can only occur within the class-specific portion of an Interface descriptor. One of the interfaces in
the group is designated as a master or controlling interface for the group, and certain class-specific messages can be
sent to this interface to act upon the group as a whole. Similarly, notifications for the entire group can be sent from this
interface but apply to the entire group of interfaces. Interfaces in this group can include Communication, Data, or any
other valid USB interface class (including, but not limited to, Audio, HID, and Monitor).

Table 33: Union Interface Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

USB Class Definitions for Communication Devices

Version 1.1 41 January 19, 1999

Offset Field Size Value Description

2 bDescriptorSubtype 1 Constant Union functional descriptor SubType as
defined in Table 25.

3 bMasterInterface 1 Constant The interface number of the Communication or
Data Class interface, designated as the master
or controlling interface for the union.*

4 bSlaveInterface0 1 Number Interface number of first slave or associated
interface in the union. *

… … … …

N+3 bSlaveInterfaceN-1 1 Number Interface number of N-1 slave or associated
interface in the union. *

* Zero based index of the interface in this configuration (bInterfaceNum).

5.2.3.9 Country Selection Functional Descriptor

The Country Selection functional descriptor identifies the countries in which the communication device is qualified to
operate. The parameters of the network connection often vary from one country to another, especially in Europe. Also
legal requirements impose certain restrictions on devices because of different regulations by the governing body of the
network to which the device must adhere. This descriptor can only occur within the class-specific portion of an
Interface descriptor and should only be provided to a master Communication Class interface of a union. The country
codes used in the Country Selection Functional Descriptor are not the same as the country codes used in dialing
international telephone calls. Implementers should refer to the ISO 3166 specification for more information.

Table 34: Country Selection Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Country Selection functional descriptor
Subtype as defined in Table 25.

3 iCountryCodeRelDate 1 Index Index of a string giving the release date for the
implemented ISO 3166 Country Codes.

Date shall be presented as ddmmyyyy
with dd=day, mm=month, and yyyy=year.

4 wCountryCode0 2 Number Country code in hexadecimal format as
defined in ISO 3166, release date as specified
in offset 3 for the first supported country.

… … … …

2N+2 wCountryCodeN-1 2 Number Country code in hexadecimal format as
defined in ISO 3166, release date as specified
in offset 3 for Nth country supported.

5.2.3.10 USB Terminal Functional Descriptor

The USB Terminal Functional Descriptor provides a means to indicate a relationship between a Unit and an USB
Interface. It also defines parameters specific to the interface between the device and the host. It can only occur within
the class-specific portion of an Interface descriptor.

USB Class Definitions for Communication Devices

Version 1.1 42 January 19, 1999

Table 35: USB Terminal Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant USB Terminal Functional Descriptor Subtype as
defined in Table 25.

3 bEntityId 1 Constant Constant uniquely identifying the Terminal

4 bInInterfaceNo 1 Number The input interface number of the associated
USB interface.

5 bOutInterfaceNo 1 Number The output interface number of the associated
USB interface.

6 bmOptions 1 Bitmap D7..D1: RESERVED (Reset to zero)

D0: Protocol wrapper usage
0 - No wrapper used
1 - Wrapper used

7 bChildId0 1 Constant First ID of lower Terminal or Unit to which this
Terminal is connected.

… … … …

6+N bChildIdN-1 1 Constant Nth ID of lower Terminal or Unit to which this
Terminal is connected.

5.2.3.11 Network Channel Terminal Functional Descriptor

The Network Channel Terminal Functional descriptor provides a means to indicate a relationship between a Unit and a
Network Channel. It can only occur within the class-specific portion of an Interface descriptor.

Table 36: Network Channel Terminal Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Network Channel Terminal Functional Descriptor
Subtype as defined in Table 25.

3 bEntityId 1 Constant Constant uniquely identifying the Terminal

4 iName 1 Index Index of string descriptor, describing the name of
the Network Channel Terminal.

5 bChannelIndex 1 Number The channel index of the associated network
channel according to indexing rules below.

6 bPhysicalInterface 1 Constant Type of physical interface:
0 – None
1 – ISDN
2 to 200 – RESERVED (future use)
201 to 255 - Vendor specific

USB Class Definitions for Communication Devices

Version 1.1 43 January 19, 1999

Channel Indexing Rule
A zero-based value identifying the index in the array of concurrent channels multiplexed on the physical interface. For
an ISDN physical interface the bChannelIndex starts with zero for the D-channel, one for B1 and so forth.

5.2.3.12 Protocol Unit Functional Descriptor

A communication protocol stack is a combination of communication functions (protocols) into a layered structure.
Each layer in the stack presents some abstract function for the layer above according to some layer-interface-standard,
making it possible to replace a function with another as long as it conforms to the standard. Each layer may have a set
of protocol parameters, defined in Appendix E, to configure it for proper operation in the actual environment and the
parameters may be retrieved and/or modified. The Unit state is initially reset. See Section 6.2.23 “SetUnitParameter”,
Section 6.2.24 “GetUnitParameter”, and Section 6.2.25 “ClearUnitParameter” for details.

A Protocol Unit Functional Descriptor identifies with bEntityId a specific protocol instance of bProtocol in a stack. It
can only occur within the class-specific portion of an Interface descriptor.

Table 37: Protocol Unit Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Protocol Unit Functional Descriptor Subtype as
defined in Table 25.

3 bEntityId 1 Constant Constant uniquely identifying the Unit

4 bProtocol 1 Protocol Protocol code as defined in Table 19

5 bChildId0 1 Constant First ID of lower Terminal or Unit to which this
Terminal is connected.

… … … …

4+N bChildIdN-1 1 Constant Nth ID of lower Terminal or Unit to which this
Terminal is connected.

5.2.3.13 Extension Unit Functional Descriptor

The Extension Unit Functional Descriptor provides minimal information about the Extension Unit for a generic driver
at least to notice the presence of vendor-specific components within the protocol stack. The bExtensionCode field may
contain a vendor-specific code that further identifies the Extension Unit. If it is not used, it should be set to zero. The
Unit may have a set of vendor specific parameters to configure it for proper operation in the actual environment and the
parameters may be retrieved and/or modified. The Unit state is initially reset. Set Section 6.2.23 “SetUnitParameter”,
Section 6.2.24 “GetUnitParameter”, and Section 6.2.25 “ClearUnitParameter” for details.

The descriptor can only occur within the class-specific portion of an Interface descriptor.

Table 38: Extension Unit Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Extension Unit Functional Descriptor Subtype as
defined in Table 25

USB Class Definitions for Communication Devices

Version 1.1 44 January 19, 1999

Offset Field Size Value Description

3 bEntityId 1 Constant Constant uniquely identifying the Unit

4 bExtensionCode 1 Number Vendor specific code identifying the Extension
Unit.

5 iName 1 Index Index of string descriptor, describing the name of
the Extension Unit.

6 bChildId0 1 Constant First ID of lower Terminal or Unit to which this
Terminal is connected.

… … … …

5+N bChildIdN-1 1 Constant Nth ID of lower Terminal or Unit to which this
Terminal is connected.

5.2.3.14 Multi-Channel Management Functional Descriptor

The Multi-Channel Management functional descriptor describes the commands supported by the Communication Class
interface, as defined in Section 3.6.1, with the SubClass code of Multi-Channel. It can only occur within the class-
specific portion of an Interface descriptor.

Table 39: Multi-Channel Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Multi-Channel Management functional
descriptor subtype, as defined in Table 25

3 bmCapabilities 1 Bitmap The capabilities that this configuration
supports. (A value of zero means that the
request or notification is not supported.)

D7..D3: RESERVED (Reset to zero)

D2: 1 – Device supports the request
Set_Unit_Parameter.

D1: 1 – Device supports the request
Clear_Unit_Parameter.

D0: 1 – Device stores Unit parameters
in non-volatile memory.

The previous bits identify which requests are
supported by a Communication Class interface
with the SubClass code of Multi-Channel
Control Model.

5.2.3.15 CAPI Control Management Functional Descriptor

The CAPI control management functional descriptor describes the commands supported by the CAPI Control Model
over the Data Class interface with the protocol code of CAPI control. It can only occur within the class specific portion
of Communication Class Interface descriptor.

USB Class Definitions for Communication Devices

Version 1.1 45 January 19, 1999

Table 40: CAPI Control Management Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant CAPI Control Management Functional
Descriptor Subtype as defined in Table 25

3 bmCapabilities 1 Bitmap Which capabilities are supported by this
configuration.

D7..D1: RESERVED (reset to zero).

D0: 1 – device is an Intelligent CAPI
device
0 – device is a Simple CAPI
device

The above bits, in combination, identify which
requests/notifications are supported by a
Communication Class interface with the
protocol code of CAPI Control.

5.2.3.16 Ethernet Networking Functional Descriptor

The Ethernet Networking functional descriptor describes the operational modes supported by the Communication Class
interface, as defined in Section 3.8.2, with the SubClass code of Ethernet Networking Control. It can only occur within
the class-specific portion of an Interface descriptor.

Table 41: Ethernet Networking Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant Ethernet Networking functional descriptor
subtype as defined in Table 25.

3 iMACAddress 1 Index Index of string descriptor. The string
descriptor holds the 48bit Ethernet MAC
address. The Unicode representation of the
MAC address is as follows: the first Unicode
character represents the high order nibble of
the first byte of the MAC address in network
byte order. The next character represents the
next 4 bits and so on. The Unicode character
is chosen from the set of values 30h through
39h and 41h through 46h (0-9 and A-F).
iMACAddress can not be zero and the
Unicode representation must be 12 characters
long. For example, the MAC Address
0123456789ABh is represented as the
Unicode string "0123456789AB".

USB Class Definitions for Communication Devices

Version 1.1 46 January 19, 1999

Offset Field Size Value Description

4 bmEthernetStatistics 4 Bitmap Indicates which Ethernet statistics functions
the device collects. If a bit is set to 0, the host
network driver is expected to keep count for
the corresponding statistic (if able).

See Table 42 for a detailed listing of possible
Ethernet statistics. Support for any of these
statistics is optional. If none of these bits are
set, the device does not support the
GetEthernetStatistic request.

8 wMaxSegmentSize 2 Number The maximum segment size that the Ethernet
device is capable of supporting. This is
typically 1514 bytes, but could be extended
(e.g., 802.1d VLAN)

10 wNumberMCFilters 2 Bitmap Contains the number of multicast filters that
can be configured by the host.

D15: 0 - The device performs perfect
multicast address filtering (no
hashing).
1- The device uses imperfect
multicast address filtering
(hashing). Here, the host software
driver must perform further
qualification itself to achieve
perfect filtering.

D14..0: Indicates the number of multicast
address filters supported by the
device (0 to 32767). If the host
finds the number of filters
supported by the device to be
inadequate, it may choose to set
the device's Ethernet Packet Filter
to forward all multicast frames to
the host, performing all multicast
filtering in software instead.
If this value is 0, the device does
not support the
SetEthernetMulticastFilters
request.

12 bNumberPowerFilters 1 Number Contains the number of pattern filters that are
available for causing wake-up of the host.

Table 42: Ethernet Statistics Capabilities

Offset Field Description

D0 XMIT_OK Frames transmitted without errors

D1 RVC_OK Frames received without errors

D2 XMIT_ERROR Frames not transmitted, or transmitted with errors

D3 RCV_ERROR Frames received with errors that are not delivered to the USB host.

D4 RCV_NO_BUFFER Frame missed, no buffers

D5 DIRECTED_BYTES_XMIT Directed bytes transmitted without errors

D6 DIRECTED_FRAMES_XMIT Directed frames transmitted without errors

D7 MULTICAST_BYTES_XMIT Multicast bytes transmitted without errors

D8 MULTICAST_FRAMES_XMIT Multicast frames transmitted without errors

USB Class Definitions for Communication Devices

Version 1.1 47 January 19, 1999

Offset Field Description

D9 BROADCAST_BYTES_XMIT Broadcast bytes transmitted without errors

D10 BROADCAST_FRAMES_XMIT Broadcast frames transmitted without errors

D11 DIRECTED_BYTES_RCV Directed bytes received without errors

D12 DIRECTED_FRAMES_RCV Directed frames received without errors

D13 MULTICAST_BYTES_RCV Multicast bytes received without errors

D14 MULTICAST_FRAMES_RCV Multicast frames received without errors

D15 BROADCAST_BYTES_RCV Broadcast bytes received without errors

D16 BROADCAST_FRAMES_RCV Broadcast frames received without errors

D17 RCV_CRC_ERROR Frames received with circular redundancy check (CRC) or frame
check sequence (FCS) error

D18 TRANSMIT_QUEUE_LENGTH Length of transmit queue

D19 RCV_ERROR_ALIGNMENT Frames received with alignment error

D20 XMIT_ONE_COLLISION Frames transmitted with one collision

D21 XMIT_MORE_COLLISIONS Frames transmitted with more than one collision

D22 XMIT_DEFERRED Frames transmitted after deferral

D23 XMIT_MAX_COLLISIONS Frames not transmitted due to collisions

D24 RCV_OVERRUN Frames not received due to overrun

D25 XMIT_UNDERRUN Frames not transmitted due to underrun

D26 XMIT_HEARTBEAT_FAILURE Frames transmitted with heartbeat failure

D27 XMIT_TIMES_CRS_LOST Times carrier sense signal lost during transmission

D28 XMIT_LATE_COLLISIONS Late collisions detected

D29-D31 RESERVED Must be set to zero

5.2.3.17 ATM Networking Functional Descriptor

The ATM Networking functional descriptor describes the operational modes supported by the Communication Class
interface, as defined in Section 3.8.3, with the SubClass code of ATM Networking Control. It can only occur within
the class-specific portion of an Interface descriptor.

Table 43: ATM Networking Functional Descriptor

Offset Field Size Value Description

0 bFunctionLength 1 Number Size of this functional descriptor, in bytes.

1 bDescriptorType 1 Constant CS_INTERFACE

2 bDescriptorSubtype 1 Constant ATM Networking functional descriptor subtype
as defined in Table 25.

USB Class Definitions for Communication Devices

Version 1.1 48 January 19, 1999

Offset Field Size Value Description

3 iEndSystemIdentifier 1 Index Index of string descriptor. The string
descriptor holds the End System Identifier.
The first 6 bytes are the unique hardware ID
(like a MAC address), and the 7th byte is the
end system selector byte. The Unicode
representation of End System Identifier is as
follows: the first Unicode character represents
the high order nibble of the first byte of the
Identifier in network byte order. The next
character represents the next 4 bits, and so
on. The Unicode character is chosen from the
set of values 30h through 39h and 41h through
46h (0-9 and A-F). iEndSystemIdentifier can
not be zero and the Unicode representation
must be 14 characters long. For example, the
End System Identifier 0123456789ABCDh is
represented as the Unicode string
"0123456789ABCD".

4 bmDataCapabilities 1 Bitmap The ATM data types the device supports:

D7..D4: RESERVED (Reset to zero)

D3: Type 3 -- AAL5 SDU

D2: Type 2 -- ATM header template +
concatenated ATM cell payloads

D1: Type 1 -- Concatenated ATM cells

D0: RESERVED (Reset to zero)

NOTE: Support for the Type 1 Data Format
is mandatory.

5 bmATMDeviceStatistics 1 Bitmap Indicates which optional statistics functions the
device collects. If set to 0, the host network
driver is expected to keep count. D3 and D4
are only applicable to type 3 devices. If neither
D3 nor D4 are set, the type 3 device does not
support the SetATMDefaultVC and
GetATMVCStatistics requests.

D7..D5: RESERVED (Reset to zero)

D4: Device counts upstream cells sent
on a per VC basis
(VC_US_CELLS_ SENT)

D3: Device counts downstream cells
received on a per VC basis
(VC_DS_CELLS_ RECEIVED)

D2: Device counts cells with HEC error
detected and corrected
(DS_CELLS_HEC_ERROR_
CORRECTED)

D1: Device counts upstream cells sent
(US_CELLS_SENT)

D0: Device counts downstream cells
received
(DS_CELLS_RECEIVED)

6 wType2MaxSegmentSize 2 Number The maximum segment size that the Type 2
device is capable of supporting

8 wType3MaxSegmentSize 2 Number The maximum segment size that the Type 3
device is capable of supporting

USB Class Definitions for Communication Devices

Version 1.1 49 January 19, 1999

Offset Field Size Value Description

10 wMaxVC 2 Number The maximum number of simultaneous virtual
circuits the device is capable of supporting
(Type 3 only)

The wType2MaxSegmentSize and wType3MaxSegmentSize indicate the maximum number of bytes of data in a network
segment (i.e., between 2 USB short packets) a device would send to the host via USB for Type 2 and Type 3 devices,
respectively. It is expected that a device supporting both Type 2 and Type 3 ATM data formats (as stipulated in the
bmDataCapabilities field) may employ different buffer management strategies for different ATM data formats, thus
may indicate a different maximum segment size for each type. The host driver should allocate buffers accordingly that
are large enough to hold the incoming data to prevent any overflow or partial cell/SDU problems. These two fields
also serve to inform the host the device buffer capability, and expect the host to transfer network segments no longer
than that specified here. Note that this information does not preclude a device or a host to do cut-through forwarding
(i.e., start forwarding the portion of the network segment received so far) before receiving a complete network segment.

This maximum segment size does not apply to Type 1 devices, which by definition forward a stream of cells in both
directions, and have no concept of network segment size. However, as an implementation note, the host driver should
allocate its buffers to contain an integral number of 53-byte cells to prevent partial cells.

5.3 Sample Class-Specific Functional Descriptors

Table 44 presents an example of the Communication Class Functional Descriptors for a simple Abstract Control Model
device.

Table 44: Sample Communication Class Specific Interface Descriptor*

Offset Field Size Value Description

0 bFunctionLength 1 05h Size of this functional descriptor, in bytes.

1 bDescriptorType 1 24h CS_INTERFACE

2 bDescriptorSubtype 1 00h Header. This is defined in Table 25, which
defines this as a header.

3 bcdCDC 2 0110h USB Class Definitions for Communication
Devices Specification release number in
binary-coded decimal.

5 bFunctionLength 1 04h Size of this functional descriptor, in bytes.

6 bDescriptorType 1 24h CS_INTERFACE

7 bDescriptorSubtype 1 02h Abstract Control Management functional
descriptor subtype as defined in Table 25.

8 bmCapabilities 1 0Fh This field contains the value 0Fh, because the
device supports all the corresponding
commands for the Abstract Control Model
interface.

9 bFunctionLength 1 05h Size of this functional descriptor, in bytes

10 bDescriptorType 1 24h CS_INTERFACE

11 bDescriptorSubtype 1 06h Union Descriptor Functional Descriptor
subtype as defined in Table 25.

12 bMasterInterface 1 00h Interface number of the control
(Communication Class) interface

13 bSlaveInterface0 1 01h Interface number of the slave (Data Class)
interface

USB Class Definitions for Communication Devices

Version 1.1 50 January 19, 1999

Offset Field Size Value Description

14 bFunctionLength 1 05h Size of this functional descriptor, in bytes

15 bDescriptorType 1 24h CS_INTERFACE

16 bDescriptorSubtype 1 01h Call Management Functional Descriptor
subtype as defined in Table 25.

17 bmCapabilities 1 03h Indicate that the device handles call
management itself (bit D0 is set), and will
process commands multiplexed over the data
interface in addition to commands sent using
SEND_ENCAPSULATED_COMMAND (bit D1
is set).

18 bDataInterface 1 01h Indicates that multiplexed commands are
handled via data interface 01h (same value as
used in the UNION Functional Descriptor)

* This descriptor is specific to the Communication Class.

USB Class Definitions for Communication Devices

Version 1.1 51 January 19, 1999

6. Communication Interface Class Messages

6.1 Overview

The Communication Interface Class supports the standard requests defined in chapter 9 of the USB Specification. In
addition, the Communication Interface Class has some class-specific requests and notifications. These are used for
device and call management.

6.2 Management Element Requests

The Communication Interface Class supports the following class-specific requests. This section describes the requests
that are specific to the Communication Interface Class. These requests are sent over the management element and can
apply to different device views as defined by the Communication Class interface codes.

Table 45: Class-Specific Requests

bmRequestType bRequest wValue wIndex wLength Data

00100001B SEND_ENCAPSULATED
_COMMAND

Zero Interface Amount of
data, in bytes,
associated
with this
recipient.

Control
protocol-based
command

10100001B GET_ENCAPSULATED
_RESPONSE

Zero Interface Amount of
data, in bytes,
associated
with this
recipient.

Protocol-
dependent
data response

00100001B SET_COMM_FEATURE Feature
Selector

Interface Length of
State Data

State

10100001B GET_COMM_FEATURE Feature
Selector

Interface Length of
Status Data

Status

00100001B CLEAR_COMM_
FEATURE

Feature
Selector

Interface Zero None

00100001B SET_AUX_LINE_STATE 0 –Disconnect
1 – Connect

Interface Zero None

00100001B SET_HOOK_STATE Relay Config. Interface Zero None

00100001B PULSE_SETUP Enable/
Disable

Interface Zero None

00100001B SEND_PULSE Cycles Interface Zero None

00100001B SET_PULSE_TIME Timing Interface Zero None

00100001B RING_AUX_JACK Number of
Rings

Interface Zero None

00100001B SET_LINE_CODING Zero Interface Size of
properties

Line Coding
Structure

10100001B GET_LINE_CODING Zero Interface Size of
Structure

Line Coding
Structure

00100001B SET_CONTROL_LINE
_STATE

Control Signal
Bitmap

Interface Zero None

00100001B SEND_BREAK Duration of
Break

Interface Zero None

USB Class Definitions for Communication Devices

Version 1.1 52 January 19, 1999

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_RINGER_PARMS Zero Interface 4 Ringer
Configuration
bitmap

10100001B GET_RINGER_PARMS Zero Interface 4 Ringer
Configuration
bitmap

00100001B SET_OPERATION_
PARMS

Operation
Mode

Interface Zero None

10100001B GET_OPERATION_
PARMS

Zero Interface 2 Operation
mode

00100001B SET_LINE_PARMS Lines State
Change

Interface Length of Data None/Data

10100001B GET_LINE_PARMS Zero Interface Size of
Structure

Line Status
Information
structure

00100001B DIAL_DIGITS Zero Interface Length of Dial
String

Dialing string

00100001B SET_UNIT_
PARAMETER

Unit Parameter
Structure

Interface Length of Unit
Parameter

Unit Parameter

10100001B GET_UNIT_
PARAMETER

Unit Parameter
Structure

Interface Length of Unit
Parameter

Unit Parameter

00100001B CLEAR_UNIT_
PARAMETER

Unit Parameter
Structure

Interface Zero None

10100001B GET_PROFILE Zero Interface 64 Profile
Information

00100001B SET_ETHERNET_
MULTICAST_FILTERS

Number of
filters (N)

Interface N * 6 N 48 bit
Multicast
addresses

00100001B SET_ETHERNET_
POWER_
MANAGEMENT_
PATTERN_FILTER

Filter number Interface Size of
structure

Power
management
pattern filter
structure

10100001B GET_ETHERNET_
POWER_
MANAGEMENT_
PATTERN_FILTER

Filter number Interface 2 Pattern active
boolean

00100001B SET_ETHERNET_
PACKET_FILTER

Packet Filter
Bitmap

Interface Zero None

10100001B GET_ETHERNET_
STATISTIC

Feature
Selector

Interface 4 32 bit
unsigned
integer

00100001B SET_ATM_DATA_
FORMAT

Data Format Interface Zero None

10100001B GET_ATM_DEVICE_
STATISTICS

Feature
Selector

Interface 4 32 bit
unsigned
integer

00100001B SET_ATM_DEFAULT_
VC

Zero Interface 3 1-byte VPI
followed by 2-
byte VCI value

10100001B GET_ATM_VC_
STATISTICS

Feature
Selector

Interface 4 32 bit
unsigned
integer

USB Class Definitions for Communication Devices

Version 1.1 53 January 19, 1999

Table 46: Class-Specific Request Codes

Request Value

SEND_ENCAPSULATED_COMMAND 00h

GET_ENCAPSULATED_RESPONSE 01h

SET_COMM_FEATURE 02h

GET_COMM_FEATURE 03h

CLEAR_COMM_FEATURE 04h

RESERVED (future use) 05h-0Fh

SET_AUX_LINE_STATE 10h

SET_HOOK_STATE 11h

PULSE_SETUP 12h

SEND_PULSE 13h

SET_PULSE_TIME 14h

RING_AUX_JACK 15h

RESERVED (future use) 16h-1Fh

SET_LINE_CODING 20h

GET_LINE_CODING 21h

SET_CONTROL_LINE_STATE 22h

SEND_BREAK 23h

RESERVED (future use) 24h-2Fh

SET_RINGER_PARMS 30h

GET_RINGER_PARMS 31h

SET_OPERATION_PARMS 32h

GET_OPERATION_PARMS 33h

SET_LINE_PARMS 34h

GET_LINE_PARMS 35h

DIAL_DIGITS 36h

SET_UNIT_PARAMETER 37h

GET_UNIT_PARAMETER 38h

CLEAR_UNIT_PARAMETER 39h

GET_PROFILE 3Ah

RESERVED (future use) 3Bh-3Fh

SET_ETHERNET_MULTICAST_FILTERS 40h

SET_ETHERNET_POWER_MANAGEMENT_PATTERN
FILTER

41h

GET_ETHERNET_POWER_MANAGEMENT_PATTERN
FILTER

42h

SET_ETHERNET_PACKET_FILTER 43h

GET_ETHERNET_STATISTIC 44h

RESERVED (future use) 45h-4Fh

USB Class Definitions for Communication Devices

Version 1.1 54 January 19, 1999

Request Value

SET_ATM_DATA_FORMAT 50h

GET_ATM_DEVICE_STATISTICS 51h

SET_ATM_DEFAULT_VC 52h

GET_ATM_VC_STATISTICS 53h

RESERVED (future use) 54h-FFh

6.2.1 SendEncapsulatedCommand

This request is used to issue a command in the format of the supported control protocol of the Communication Class
interface.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SEND_ENCAPSULATED
_COMMAND

Zero Interface Amount of
data, in bytes,
associated
with this
recipient.

Control
protocol-based
command

6.2.2 GetEncapsulatedResponse

This request is used to request a response in the format of the supported control protocol of the Communication Class
interface.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_
ENCAPSULATED_
RESPONSE

Zero Interface Amount of
data, in bytes,
associated
with this
recipient.

Protocol
dependent
data

6.2.3 SetCommFeature

This request controls the settings for a particular communication feature of a particular target

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_COMM_FEATURE Feature
Selector

Interface Length of
State Data

State

For more information about the defined list of feature selectors per target, see Section 6.2.4, “GetCommFeature.”

6.2.4 GetCommFeature

This request returns the current settings for the communication feature as selected

USB Class Definitions for Communication Devices

Version 1.1 55 January 19, 1999

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_COMM_FEATURE Feature
Selector

Interface Length of
Status Data

Status

Table 47: Communication Feature Selector Codes

Feature selector Code Targets Length
of Data

Description

RESERVED 00h None None Reserved for future use

ABSTRACT_STATE 01h Interface 2 Two bytes of data describing multiplexed state
and idle state for this Abstract Model
communications device. This selector is only
valid for Abstract Control Model.

COUNTRY_SETTING 02h Interface 2 Country code in hexadecimal format as
defined in ISO 3166, release date as specified
in offset 3 of the Country Selection Functional
Descriptor. This selector is only valid for
devices that provide a Country Selection
Functional Descriptor, and the value supplied
shall appear as supported country in the
Country Selection Functional Descriptor

For the ABSTRACT_STATE selector, the following two bytes of data are defined:

Table 48: Feature Status Returned for ABSTRACT_STATE Selector

Bit position Description

D15..D2 RESERVED (Reset to zero)

D1 Data Multiplexed State

1: Enables the multiplexing of call management commands on a Data
Class.

0: Disables multiplexing.

D0 Idle Setting

1: All of the endpoints in this interface will not accept data from the
host or offer data to the host. This allows the host call management
software to synchronize the call management element with other
media stream interfaces and endpoints, particularly those
associated with a different host entity (such as a voice stream
configured as a USB Audio Class device).

0: The endpoints in this interface will continue to accept/offer data.

6.2.5 ClearCommFeature

This request controls the settings for a particular communication feature of a particular target, setting the selected
feature to its default state. The validity of the feature selectors depends upon the target type of the request.

bmRequestType bRequest wValue wIndex wLength Data

00100001B CLEAR_
COMM_FEATURE

Feature
Selector

Interface Zero None

USB Class Definitions for Communication Devices

Version 1.1 56 January 19, 1999

For more information about for the defined list of feature selectors per target, see Section 6.2.4, “GetCommFeature.”

6.2.6 SetAuxLineState

This request is used to connect or disconnect a secondary jack to POTS circuit or CODEC, depending on hook state.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_AUX_LINE_STATE 0 - Disconnect
1 - Connect

Interface Zero None

State selector values in the wValue field are used to instruct the device to connect or disconnect the secondary phone
jack from the POTS circuit or CODEC, depending on hook state. Device will acknowledge the status change.

6.2.7 SetHookState

This request is used to set the necessary POTS line relay code for on-hook, off-hook, and caller ID states.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_HOOK_STATE Relay Config. Interface Zero None

The wValue will instruct the device to configure the necessary relays for going off-hook, on-hook, or into a snooping
state for receiving caller ID data.

Table 49: POTS Relay Configuration Values

Code Value

ON_HOOK 0000h

OFF_HOOK 0001h

SNOOPING 0002h

6.2.8 PulseSetup

This request is used to prepare for a pulse-dialing cycle.

bmRequestType bRequest wValue wIndex wLength Data

00100001B PULSE_SETUP Enable/
Disable

Interface Zero None

If wValue field contains the value FFFFh, the request is being sent to disengage the holding circuit after the dialing
sequence has been completed. Any other value in the wValue field is meant to prepare the device for a pulse-dialing
cycle.

USB Class Definitions for Communication Devices

Version 1.1 57 January 19, 1999

Not all devices require a PulseSetup request to disengage the holding circuit after a pulse dialing cycle. The extra
request in the dialing cycle is generally required for devices designed to be usable in multiple countries. The device
indicates whether the extra request is required or not by setting bit D2 of Direct Line Management Functional
Descriptor, in Section 5.2.3.4.

6.2.9 SendPulse

This request is used to generate a specified number of make/break pulse cycles.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SEND_PULSE Cycles Interface Zero None

The wValue field contains the number of make/break pulse cycles to generate.

6.2.10 SetPulseTime

This request sets the timing of the make and break periods for pulse dialing.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_PULSE_TIME Timing Interface Zero None

The wValue field specifies the break time period in the high byte and the make time period in the low byte. The time
periods are specified in milliseconds.

6.2.11 RingAuxJack

This request is used to generate a ring signal on a secondary phone jack.

bmRequestType bRequest wValue wIndex wLength Data

00100001B RING_AUX_JACK Number of
Rings

Interface Zero None

The wValue field contains the number of ring signals to generate on a secondary phone jack of the device.

6.2.12 SetLineCoding

This request allows the host to specify typical asynchronous line-character formatting properties, which may be
required by some applications. This request applies to asynchronous byte stream data class interfaces and endpoints; it
also applies to data transfers both from the host to the device and from the device to the host.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_LINE_CODING Zero Interface Size of
Structure

Line Coding
Structure

USB Class Definitions for Communication Devices

Version 1.1 58 January 19, 1999

For the definition of valid properties, see Table 50, Section 6.2.13, “GetLineCoding.”

6.2.13 GetLineCoding

This request allows the host to find out the currently configured line coding.

bmRequestType bRequest wValue wIndex Wlength Data

10100001B GET_LINE_CODING Zero Interface Size of
Structure

Line Coding
Structure

The line coding properties are defined in the following table:

Table 50: Line Coding Structure

Offset Field Size Value Description

0 dwDTERate 4 Number Data terminal rate, in bits per second.

4 bCharFormat 1 Number Stop bits
0 - 1 Stop bit
1 - 1.5 Stop bits
2 - 2 Stop bits

5 bParityType 1 Number Parity
0 - None
1 - Odd
2 - Even
3 - Mark
4 - Space

6 bDataBits 1 Number Data bits (5, 6, 7, 8 or 16).

6.2.14 SetControlLineState

This request generates RS-232/V.24 style control signals.

bmRequestType bRequest wValue wIndex WLength Data

00100001B SET_CONTROL_LINE
_STATE

Control Signal
Bitmap

Interface Zero None

Table 51: Control Signal Bitmap Values for SetControlLineState

Bit position Description

D15..D2 RESERVED (Reset to zero)

D1 Carrier control for half duplex modems. This signal corresponds to V.24 signal
105 and RS-232 signal RTS.

0 - Deactivate carrier
1 - Activate carrier

The device ignores the value of this bit when operating in full duplex mode.

USB Class Definitions for Communication Devices

Version 1.1 59 January 19, 1999

Bit position Description

D0 Indicates to DCE if DTE is present or not. This signal corresponds to V.24
signal 108/2 and RS-232 signal DTR.

0 - Not Present
1 - Present

6.2.15 SendBreak

This request sends special carrier modulation that generates an RS-232 style break.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SEND_BREAK Duration of
Break

Interface Zero None

The wValue field contains the length of time, in milliseconds, of the break signal. If wValue contains a value of FFFFh,
then the device will send a break until another SendBreak request is received with the wValue of 0000h.

6.2.16 SetRingerParms

This request configures the ringer for the communication device, either on a global basis (master interface of the
union), or on a per-line basis for multiple line devices.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_RINGER_PARMS Zero Interface 4 Ringer
Configuration
bitmap

The command sets up the ringer characteristics for the communication device or for the line. The Ringer Configuration
bitmap is defined in the following table:

Table 52: Ringer Configuration Bitmap Values

Bit position Description

D31 0=A ringer does not exist.
1=A ringer exists.

When using the GetRingerParms request to return the Ringer Configuration
bitmap, a value of zero for this bit means a ringer does not exist for the
addressed element (i.e. device or line).

D30..D16 RESERVED (Reset to zero)

D15..D8 Ringer Volume Setting
0 - Ringer Volume Off
255 - Maximum Ringer Volume

D7..D0 Ringer Pattern Type Selection
This corresponds to an internal ringer pattern or sound supported within the
device, which could be a distinctive ringing type pattern or a sound effect type
ring like a chirping sound, siren sound, etc.

USB Class Definitions for Communication Devices

Version 1.1 60 January 19, 1999

6.2.17 GetRingerParms

This request returns the ringer capabilities of the device and the current status of the device’s ringer, including its
enabled state and current selection.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_RINGER_PARMS Zero Interface 4 Ringer
Configuration
bitmap

This command is typically sent to the master interface of the union. If the ringer for each line can be configured
independently, then sending the command to the interface representing a line gets the ringer information for that line.
For a description of the returned Ringer Configuration bitmap values, see Table 52.

6.2.18 SetOperationParms

Sets the operational mode for the device, between a simple mode, standalone mode and a host centric mode. Standalone
mode means no control from the host; host centric mode means all control is performed from the host.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_OPERATION_
PARMS

Operation
Mode

Interface Zero None

The wValue field is used to specify the mode of operation to be used. Current supported modes of operation are defined
in the following table:

Table 53: Operation Mode Values

Operation mode Description

0 Simple Mode
Communication device operates in standalone fashion, and sends no
status information to the host and accepts only SetOperationMode
commands from host. The device is capable of independent operation..

1 Standalone Mode
Communication device operates in standalone fashion, but sends
complete status information to the host and will accept any command from
the host.

2 Host Centric Mode
Communication device is completely controlled by computer but will not
perform any communication functions without host control.

In the case of dialing on a phone device, mode 0 would correspond to operating as a typical phone, where the phone
would dial out the digits over the phone line. Mode 1 would be the same, except each of the digits dialed by the phone
would be reported to the host. In mode 2, the phone would simply report which digits were pushed on the phone
keypad to the host, and the host would be responsible for dialing the digits over the phone line.

6.2.19 GetOperationParms

This request gets the current operational mode for the device.

USB Class Definitions for Communication Devices

Version 1.1 61 January 19, 1999

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_OPERATION_
PARMS

Zero Interface 2 Operation
mode

The returned operation mode value describes the current operational mode of the device, as specified in Table 53.

6.2.20 SetLineParms

This request is used to change the state of the line, corresponding to the interface or master interface of a union to
which the command was sent.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_LINE_PARMS Line State
Change

Interface Length of Data Data

Some of the commands will require extra data, which will be provided in a packet transmitted during the Data phase.
Current line state change values supported are defined in the following table:

Table 54: Line State Change Value Definitions

Line State
change value

Description

0000h Drop the active call on the line.

0001h Start a new call on the line.

0002h Apply ringing to the line.

0003h Remove ringing from the line.

0004h Switch to a specific call on the line. Data is used to pass a 1-byte call
index that identifies the call.

USB Class Definitions for Communication Devices

Version 1.1 62 January 19, 1999

6.2.21 GetLineParms

This request is used to report the state of the line that corresponds to the interface or master interface of a union to
which the command was sent.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_LINE_PARMS Zero Interface Size of
Structure

Line Status
Information
Structure

This command is issued to the interface or master interface of a union representing a specific line. The returned Line
Status Information structure is defined in the following table:

Table 55: Line Status Information Structure

Offset Field Size Value Description

0 wLength 2 Number Size of this structure, in
bytes.

2 dwRingerBitmap 4 Bitmap Ringer Configuration bitmap
for this line. For the format of
this field, see Table 52.

6 dwLineState 4 Bitmap Defines current state of the
line.

10 dwCallState0 4 Bitmap Defines current state of first
call on the line.

… … … …

6 + N*4 dwCallStateN-1 4 Bitmap Defines current state of call N
on the line.

The Line State bitmap format provided within the line status information is defined in the following table:

Table 56: Line State Bitmap

Bit position Description

D31 Active flag
0 - No activity on the line.
1 - Line is active (i.e. not idle).

D30..D8 RESERVED (Reset to zero)

D7..D0 Index of active call on this line.
Equals 255 if no call exists on the line.

The Call State bitmap format provided within the line status information is defined in the following table:

USB Class Definitions for Communication Devices

Version 1.1 63 January 19, 1999

Table 57: Call State Bitmap

Bit position Description

D31 Active flag
0 - No active call.
1 - Call is active (i.e., not idle).

D30..D16 RESERVED (Reset to zero)

D15..D8 Call state change value. (For definitions of call state change values, see
Table 70.)

D7..D0 Call state value. (For definitions of call state values, see Table 58.)

Table 58: Call State Value Definitions

Call state value Description

00h Call is idle.

01h Typical dial tone.

02h Interrupted dial tone.

03h Dialing is in progress.

04h Ringback. Call state additional data, D15..D8, contains extra information,
as defined in Table 70.

05h Connected. Call state additional data, D15..D8, contains extra information,
as defined in Table 70.

06h Incoming call. Call state additional data, D15..D8, contains extra
information, as defined in Table 70.

6.2.22 DialDigits

This request dials the DTMF digits over the specified line.

bmRequestType bRequest wValue wIndex wLength Data

00100001B DIAL_ DIGITS Zero Interface Length of
Dialing String

Dialing string

The data packet consists of a dialing command, with only the following characters in V.4 supported as being part of the
command:

Table 59: Characters in a Dialing Command

Characters Action

0-9 Dial the specified digit.

* # Dial the specified DTMF key.

P p Use pulse dialing for dialing all subsequent digits.

T t Use tone dialing for dialing all subsequent digits.

! Insert a hook switch flash into the dialing string.

USB Class Definitions for Communication Devices

Version 1.1 64 January 19, 1999

Characters Action

, (Comma) Pause the dialing for a fixed period of time defined by the device
(usually 2 seconds).

; (Semicolon) Indicates that more digits will be provided later.

W w Wait for dial tone or interrupted dial tone before continuing to dial digits.

D d Hold tone on. All subsequent dialing tones are left on until hold tone off is
received.

U u Hold tone off. All held dialing tones are turned off.

6.2.23 SetUnitParameter

This request sets the value of a parameter belonging to a Unit identified by Unit Parameter Structure, see Table 60.
The timing of when the new parameter takes effect depends on the protocol or vendor specific function.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_UNIT
_PARAMETER

Unit Parameter
Structure

Interface Length of Unit
Parameter

Unit Parameter

Table 60: Unit Parameter Structure

Offset Field Size Value Description

0 bEntityId 1 Number Unit Id

1 bParameterIndex 1 Number A zero based value indicating Unit
parameter index.

6.2.24 GetUnitParameter

This request returns the current value of a parameter belonging to a Unit pointed out by Unit Parameter Structure, see
Table 60.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_UNIT
_PARAMETER

Unit Parameter
Structure

Interface Length of Unit
Parameter

Unit Parameter

6.2.25 ClearUnitParameter

This request restores the default value of a parameter belonging to a Unit identified by Unit Parameter Structure, see
Table 60. The timing of when the new parameter takes effect depends on the protocol or vendor specific function.

bmRequestType bRequest wValue wIndex wLength Data

00100001B CLEAR_UNIT
_PARAMETER

Unit Parameter
Structure

Interface Zero None

USB Class Definitions for Communication Devices

Version 1.1 65 January 19, 1999

6.2.26 GetProfile

This request returns the profile information as defined by CAPI 2.0. The profile describes the implemented capabilities
of the device.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_PROFILE Zero Interface 64 Profile
Information
according to
CAPI 2.0
chapter 8

6.2.27 SetEthernetMulticastFilters

This request sets the Ethernet device multicast filters as specified in the sequential list of 48 bit Ethernet multicast
addresses.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_ETHERNET_
MULTICAST_FILTER

Number of
filters (N)

Interface N * 6 A list of N 48
bit Multicast
addresses, in
network byte
order

If the host wishes to change a single multicast filter in the device, it must reprogram the entire list of filters using this
request. This sequential programming method for the entire multicast list is well-suited for devices that use hashing
techniques.

Although the Data field for this request might be quite large, devices with limited buffering capacity may use NAKs as
necessary to process (e.g., hash) a small number of multicast addresses at a time.

6.2.28 SetEthernetPowerManagementPatternFilter

This request sets up the specified Ethernet power management pattern filter as described in the data structure.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_ETHERNET_
POWER_
MANAGEMENT_
PATTERN_FILTER

Filter number Interface Size of
structure

Power
management
pattern filter
structure

Some hosts are able to conserve energy and stay quiet in a “sleeping” state while not being used. USB Networking
devices may provide special pattern filtering hardware that enables it to wake up the attached host on demand when
something is attempting to contact the host (e.g., an incoming web browser connection).

NOTE: To enable remote wake up, additional steps must be completed that are described in the USB Specification.

If the host simply wishes to clear (remove) any previous setting for the specified pattern filter, the value of wLength is
set to Zero and no Data field (pattern filter structure) follows.

USB Class Definitions for Communication Devices

Version 1.1 66 January 19, 1999

If the specified pattern is not able to fit into the device, any pattern previously loaded is considered destroyed, and the
device must set a value of FALSE (0x0000) into the associated status that will be read by the
GetEthernetPowerManagementPatternFilter request.

Table 61: Power Management Pattern Filter Structure

Field Size Value Description

MaskSize 2 Number Contains the size (in bytes) of the Mask.

Mask MaskSize Bitmask Each byte of Mask contains 8 masking bits, where each one of
them represents whether or not the associated byte of the
Pattern should be compared with what is seen on the media by
the networking device.

The least significant bit (D0) of the first Mask byte is associated
with the first byte of the pattern, which starts at the Destination
Address (DA) of the Ethernet frame. If the last byte of Mask
contains trailing zeros in its highest order bits, the associated
bytes in the Pattern field are not sent in this request.

Pattern Specified by
Mask

Number This is a string of bytes to perform pattern matching on, starting
from offset 0 of the Ethernet frame (the Destination Address).

6.2.29 GetEthernetPowerManagementPatternFilter

This request retrieves the status of the specified Ethernet power management pattern filter from the device. If the
device has an active pattern set for the specified filter, a TRUE (0x0001) will be returned. If a FALSE (0x0000) is
returned, either no pattern has yet been set for the specified filter, or the prior attempt by the host software to set this
filter was not successful (i.e., was not able to fit).

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_ETHERNET_
POWER_
MANAGEMENT_
PATTERN_FILTER

Filter number Interface 2 Pattern active
boolean

6.2.30 SetEthernetPacketFilter

This request is used to configure device Ethernet packet filter settings. The Packet Filter is the inclusive OR of the
bitmap shown in Table 62. Though network adapters for faster buses (e.g., PCI) may offer other hardware filters, the
medium speed networking devices (< 10Mbit/s) attached via USB are only required to support promiscuous and all
multicast modes. The host networking software driver is responsible for performing additional filtering as required.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_ETHERNET_
PACKET_FILTER

Packet Filter
Bitmap

Interface Zero None

Note that for some device types, the ability to run in promiscuous mode may be severely restricted or prohibited. For
example, DOCSIS cable modems are only permitted to forward certain frames to its attached host. Even if forwarding
of all frames were allowed, the raw cable modem downstream rate available on the RF interface can be many times the
maximum USB throughput.

USB Class Definitions for Communication Devices

Version 1.1 67 January 19, 1999

Table 62: Ethernet Packet Filter Bitmap

Bit position Description

D15..D5 RESERVED (Reset to zero)

D4 PACKET_TYPE_MULTICAST

1: All multicast packets enumerated in the device's multicast address
list are forwarded up to the host. (required)

0: Disabled. The ability to disable forwarding of these multicast
packets is optional. ***

D3 PACKET_TYPE_BROADCAST

1: All broadcast packets received by the networking device are
forwarded up to the host. (required)

0: Disabled. The ability to disable forwarding of broadcast packets is
optional. ***

D2 PACKET_TYPE_DIRECTED

1: Directed packets received containing a destination address equal
to the MAC address of the networking device are forwarded up to
the host (required)

0: Disabled. The ability to disable forwarding of directed packets is
optional. ***

D1 PACKET_TYPE_ALL_MULTICAST

1: ALL multicast frames received by the networking device are
forwarded up to the host, not just the ones enumerated in the
device's multicast address list (required)

0: Disabled.

D0 PACKET_TYPE_PROMISCUOUS:

1: ALL frames received by the networking device are forwarded up to
the host (required)

0: Disabled.

*** Support for inhibiting (Dx = 0) the forwarding of "ordinary" directed, multicast and broadcast packets to the host is
optional. Since there are no associated descriptors for the device to designate which filters are supported by a particular
device, the host must blindly set these bits as desired, filtering out these undesired packets in host software should they
appear.

6.2.31 GetEthernetStatistic

This request is used to retrieve a statistic based on the feature selector. The value returned indicates the number of
matching frames with the specified statistic that have occurred since the device has been powered on or reset. This
number is a 32 bit unsigned integer, which is incremented at each occurrence, and will be wrapped to 0 if reaching the
maximum value.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_ETHERNET_
STATISTIC

Feature
Selector

Interface 4 32 bit
unsigned
integer

USB Class Definitions for Communication Devices

Version 1.1 68 January 19, 1999

Table 63: Ethernet Statistics Feature Selector Codes

Feature selector Code Targets Length
of Data

Description

RESERVED 00h None None Reserved for future use

XMIT_OK 01h Interface 4 Frames transmitted without errors

RCV_OK 02h Interface 4 Frames received without errors

XMIT_ERROR 03h Interface 4 Frames not transmitted, or transmitted
with errors

RCV_ERROR 04h Interface 4 Frames received with errors

RCV_NO_BUFFER 05h Interface 4 Frames missed, no buffers

DIRECTED_BYTES_XMIT 06h Interface 4 Directed bytes transmitted without
errors

DIRECTED_FRAMES_XMIT 07h Interface 4 Directed frames transmitted without
errors

MULTICAST_BYTES_XMIT 08h Interface 4 Multicast bytes transmitted without
errors

MULTICAST_FRAMES_
XMIT

09h Interface 4 Multicast frames transmitted without
errors

BROADCAST_BYTES_XMIT 0Ah Interface 4 Broadcast bytes transmitted without
errors

BROADCAST_FRAMES_
XMIT

0Bh Interface 4 Broadcast frames transmitted without
errors

DIRECTED_BYTES_RCV 0Ch Interface 4 Directed bytes received without errors

DIRECTED_FRAMES_RCV 0Dh Interface 4 Directed frames received without errors

MULTICAST_BYTES_RCV 0Eh Interface 4 Multicast bytes received without errors

MULTICAST_FRAMES_
RCV

0Fh Interface 4 Multicast frames received without errors

BROADCAST_BYTES_RCV 10h Interface 4 Broadcast bytes received without errors

BROADCAST_FRAMES_
RCV

11h Interface 4 Broadcast frames received without
errors

RCV_CRC_ERROR 12h Interface 4 Frames received with circular
redundancy check (CRC) or frame
check sequence (FCS) error

TRANSMIT_QUEUE_
LENGTH

13h Interface 4 Length of transmit queue

RCV_ERROR_ALIGNMENT 14h Interface 4 Frames received with alignment error

XMIT_ONE_COLLISION 15h Interface 4 Frames transmitted with one collision

XMIT_MORE_COLLISIONS 16h Interface 4 Frames transmitted with more than one
collision

XMIT_DEFERRED 17h Interface 4 Frames transmitted after deferral

XMIT_MAX_COLLISIONS 18h Interface 4 Frames not transmitted due to collisions

RCV_OVERRUN 19h Interface 4 Frames not received due to overrun

XMIT_UNDERRUN 1Ah Interface 4 Frames not transmitted due to underrun

XMIT_HEARTBEAT_
FAILURE

1Bh Interface 4 Frames transmitted with heartbeat
failure

USB Class Definitions for Communication Devices

Version 1.1 69 January 19, 1999

Feature selector Code Targets Length
of Data

Description

XMIT_TIMES_CRS_LOST 1Ch Interface 4 Times carrier sense signal lost during
transmission

XMIT_LATE_COLLISIONS 1Dh Interface 4 Late collisions detected

Refer to the ISO/IEC 8802-3 (ANSI/IEEE Std 802.3) specification for additional information on the meaning of each of
these statistics.

6.2.32 SetATMDataFormat

This request is used to set the data format selected by the host in the wValue field.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_ATM_DATA_
FORMAT

Data Format Interface Zero None

Table 64: ATM Data Format

wValue Description

1 Type 1 format: concatenated ATM cells

2 Type 2 format: ATM header template + concatenated ATM cell payloads

3 Type 3 format: AAL 5 SDU

The ATM Networking Control Model data format selected specifies how much processing is done in the USB device,
versus how much is done in the host. Specifically, the Type 3 data format requires that ATM segmentation and re-
assembly (SAR) functions be implemented in the USB device, while Type 1 and Type 2 data formats enable different
functional partitioning, and migrate the SAR function to the host. As you move from Type 1 to Type 3, the amount of
processing performed in the USB device increases. Support of Type 1 Data Format is mandatory to ensure minimal
interoperability. If supported by the device, it is recommended that Type 3 Data Format be chosen by the host
whenever possible.

Type 1 Data Format

Type 1 ATM oriented USB devices (e.g., ADSL modems or IEEE 802.14 cable modems) do the least amount of
processing on the incoming data and are therefore the simplest types of such devices. The main function of the USB
device is to pass the ATM cells from the WAN link to the host, and vice versa. The data format consists of a number
of concatenated 53 byte ATM cells. The HEC field in the ATM cell header exists only as a placeholder when
transferred over USB, and will be generated and verified by the ATM-oriented device for upstream and downstream
traffic, respectively.

For Type 1 devices, all ATM and AAL functions are performed by the host, e.g. AAL layer encapsulation, ATM SAR,
and traffic shaping (for upstream direction only). Various AAL types, Operation Administration and Maintenance
(OAM) cells, and Resource Management (RM) cells are enabled, if supported by the host.

Type 2 Data Format

The Type 2 ATM-oriented USB device improves USB bus bandwidth efficiency by removing duplicate ATM cell
headers prior to transfer over USB. This data format consists of a 4-byte ATM cell header template (excluding the

USB Class Definitions for Communication Devices

Version 1.1 70 January 19, 1999

HEC field) followed by a number of 48-byte ATM cell payloads. As with Type 1 devices, the AAL encapsulation,
SAR and traffic shaping are all performed by the host.

The Type 2 device needs to assemble cells based on the header template before transmitting them over the WAN link.
All the AAL types are supported. OAM cells for flow management are enabled, as are RM cells for the ABR service.
A unique requirement for this type of device is that all cell payloads must share the same cell header template. To
accomplish this, extra processing rules need to be applied in the host and USB device as follows:

x The 48-octet cell payloads shall be contiguous without additional intervening cell headers, all destined to the same
VC, and have the same payload type.

x For AAL5 VCs, the ATM-user-to-ATM-user indication bit in the payload type is used to delimit the AAL5 CPCS
PDU. This bit shall be set if the last cell in this segment (i.e., data between 2 consecutive USB short packets)
completes an AAL5 CPCS PDU. Note that in this case no other cells can be appended in the same segment after
an AAL 5 CPCS PDU has been completed. The device at the other end of the USB bus has to set the ATM-user-
to-ATM-user indication bit in the payload type only for the last cell in this segment, but not for any preceding
cells, before forwarding them.

x The ATM cell header template transferred between the USB device and host can not include the 8-bit
HEC field.

Also, the USB device will have to perform the following functions:

x Generate and insert a HEC field for upstream traffic.

x Verify and remove the HEC field from the downstream traffic.

x Discard cells with HEC errors from the downstream traffic.

For Type 1 and Type 2 ATM oriented USB devices, any number of ATM cells or payloads could be concatenated in an
USB buffer as long as it adheres to the rules stipulated above. The general guideline to flush the buffer and send it via
USB is when:

x The maximum segment size (wType2MaxSegmentSize) is reached (for Type 2 only), or

x Encounter the end of an AAL5 PDU, or

x The timer expires (so you don’t hold the cells too long if there are no immediate incoming cells), or

x One or more cells from a low-latency VC are received. NOTE: If a grouping of low latency VC cells are received
(e.g., a 20ms audio frame), it is recommended that devices not “flush” (generate a USB short packet) after every
ATM cell in this instance to improve link efficiency and reduce host overhead. The methods for accomplishing
this are beyond the scope of this document

Type 3 Data Format

Type 3 ATM oriented devices will process the AAL5 SDUs (e.g., Q.2931, ILMI and other SDU’s like PPP packets in
data VCs) as they arrive from the host, before sending them to the WAN link. This is accomplished by adding AAL5
encapsulation (including the appropriate padding and the CRC generation) to form the AAL5 PDU. The AAL5 PDU
formed then goes through the SAR function before being transmitted over the WAN link.

For the ATM cells arriving from the WAN link, the device will reassemble them into AAL5 PDUs, validate the AAL5
CRC (discard the AAL5 PDU if incorrect), strip off the AAL5 encapsulation and transfer AAL5 SDU to the host.

This data format consists of the first 4 bytes of an ATM cell header (excluding the HEC field) followed by a single
AAL5 SDU. The VPI/VCI value in the cell header indicates which VC this AAL5 SDU belongs to and the first bit of
the PTI field shall be set to 0 for AAL5 SDUs. OAM and RM cells can be supported by sending those cells with the
corresponding PTI bits set in the cell header.

USB Class Definitions for Communication Devices

Version 1.1 71 January 19, 1999

6.2.33 GetATMDeviceStatistics

This request is used to retrieve the device statistics based on the feature selector.

BmRequestType bRequest wValue wIndex wLength Data

10100001B GET_ATM_DEVICE_
STATISTICS

Feature
Selector

Interface 4 32 bit
unsigned
integer

In Table 65, the terms UPSTREAM(US) and DOWNSTREAM(DS) refer to the direction of the data flow across the
connection between the device and the network.

The value returned indicates the number of cells matching the specified statistic that have occurred since the device has
been powered on or reset, or since the SET_INTERFACE request has been received (see Section 3.8.1 for more
details). This number is a 32 bit unsigned integer, which is incremented at each occurrence and will be wrapped to zero
upon reaching the maximum value.

Table 65: ATM Device Statistics Feature Selector Codes

Feature selector Code Targets Length
of Data

Description

RESERVED 00h None None Reserved for future use

US_CELLS_SENT 01h Interface 4 The number of cells that have been sent
upstream to the WAN link by the ATM layer.
Support for this statistic by device hardware is
optional.

DS_
CELLS_RECEIVED

02h Interface 4 The number of cells that have been received
downstream from the WAN link by the ATM
layer. Support for this statistic by device
hardware is optional.

DS_CELLS_USB_
CONGESTION

03h Interface 4 The number of cells that have been received
downstream from the WAN link by the ATM
layer and discarded due to congestion on the
USB link. Support for the feature code by the
device is MANDATORY.

DS_CELLS_AAL5_
CRC_ERROR

04h Interface 4 The number of cells that have been received
downstream from the WAN link by the ATM
layer and discarded due to AAL5 CRC errors.
Support for this feature code by Type 3
devices is MANDATORY.

DS_CELLS_HEC_
ERROR

05h Interface 4 The number of cells that have been received
downstream from the WAN link and discarded
due to HEC errors in the cell header. Support
for this statistic by device hardware is
MANDATORY.

DS_CELLS_HEC_
ERROR_CORRECTED

06h Interface 4 The number of cells that have been received
downstream from the WAN link and have
been detected with HEC errors in the cell
header and successfully corrected. Support
for this statistic by device hardware is
optional.

USB Class Definitions for Communication Devices

Version 1.1 72 January 19, 1999

6.2.34 SetATMDefaultVC

This request is used to pre-select the VPI/VCI value for subsequent GetATMVCStatistics requests. This request only
applies to type 3 devices.

bmRequestType bRequest wValue wIndex wLength Data

00100001B SET_ATM_DEFAULT_VC Zero Interface 3 1-byte VPI
followed by 2-
byte VCI value

6.2.35 GetATMVCStatistics

This request is used to retrieve the ATM device statistics based on the feature selector for a pre-selected VPI/VCI as
stipulated in latest preceding SetATMDefaultVC request. This request only applies to type 3 devices.

bmRequestType bRequest wValue wIndex wLength Data

10100001B GET_ATM_VC_
STATISTICS

Feature
Selector

Interface 4 32 bit
unsigned
integer

Table 66: ATM VC Selector Codes

Feature selector Code Targets Length
of Data

Description

RESERVED 00h None None Reserved for future use

VC_US_CELLS_SENT 01h Interface 4 The number of cells that have been sent
upstream to the WAN link for the specified
VPI/VCI since the device has been powered
on or reset. This number is a 32 bit unsigned
integer, which is incremented each time a cell
is sent, and will be wrapped to 0 if reaching
the maximum value. Support for this statistic
by the device is optional.

VC_DS_
CELLS_RECEIVED

02h Interface 4 The number of cells that have been received
downstream from the WAN link for the
specified VPI/VCI since the device has been
powered on or reset. This number is a 32 bit
unsigned integer, which is incremented each
time a cell is received, and will be wrapped to
0 if reaching the maximum value. Support for
this statistic by the device is optional.

USB Class Definitions for Communication Devices

Version 1.1 73 January 19, 1999

6.3 Notification Element Notifications

This section defines the Communication Interface Class notifications that the device uses to notify the host of interface,
or endpoint events.

Table 67: Class-Specific Notifications

bmRequestType bNotification wValue wIndex wLength Data

10100001B NETWORK_
CONNECTION

0 – Disconnect
1 – Connected

Interface Zero None

10100001B RESPONSE_AVAILABLE Zero Interface Zero None

10100001B AUX_JACK_HOOK_
STATE

0 – On hook
1 – Off hook

Interface Zero None

10100001B RING_DETECT Zero Interface Zero None

10100001B SERIAL_STATE Zero Interface 2 UART State
bitmap

10100001B CALL_STATE_CHANGE Call Index and
Call State
Change Value

Interface Length of Data Variable-length
structure
containing
additional
information for
call state
change.

10100001B LINE_STATE_CHANGE Value Interface Length of Data Variable length
Line State
structure.

10100001B CONNECTION_SPEED_
CHANGE

Zero Interface 8 Connection
Speed Change
Data Structure

Table 68: Class-Specific Notification Codes

Notification Value

NETWORK_CONNECTION 00h

RESPONSE_AVAILABLE 01h

RESERVED (future use) 02h-07h

AUX_JACK_HOOK_STATE 08h

RING_DETECT 09h

RESERVED (future use) 0Ah-1Fh

SERIAL_STATE 20h

RESERVED (future use) 21h-27h

CALL_STATE_CHANGE 28h

LINE_STATE_CHANGE 29h

CONNECTION_SPEED_CHANGE 2Ah

RESERVED (future use) 2Bh-FFh

USB Class Definitions for Communication Devices

Version 1.1 74 January 19, 1999

6.3.1 NetworkConnection

This notification allows the device to notify the host about network connection status.

bmRequestType bNotification wValue wIndex wLength Data

10100001B NETWORK_
CONNECTION

0 - Disconnect
1 - Connected

Interface Zero None

6.3.2 ResponseAvailable

This notification allows the device to notify the host that a response is available. This response can be retrieved with a
subsequent GetEncapsulatedResponse request.

bmRequestType bNotification wValue wIndex wLength Data

10100001B RESPONSE_AVAILABLE Zero Interface Zero None

6.3.3 AuxJackHookState

This notification indicates the loop has changed on the auxiliary phone interface of the USB device. The secondary or
downstream device, which is connected to the auxiliary phone interface, has changed hook states.

bmRequestType bNotification wValue wIndex wLength Data

10100001B AUX_JACK_
HOOK_STATE

0 – On hook
1 – Off hook

Interface Zero None

On devices that provide separate control of the auxiliary or downstream phone interface, this notification provides a
means of announcing hook state changes of devices plugged into that interface. When the USB device has separate
control of this phone interface, it is helpful to know when the secondary device, which is plugged into the auxiliary
phone interface, switches between the on-hook/off-hook states.

The wValue field returns whether loop current was detected or not detected. Notification is only sent when the state
changes.

6.3.4 RingDetect

This notification indicates ring voltage on the POTS line interface of the USB device.

bmRequestType bNotification wValue wIndex wLength Data

10100001B RING_DETECT Zero Interface Zero None

USB Class Definitions for Communication Devices

Version 1.1 75 January 19, 1999

6.3.5 SerialState

This notification sends asynchronous notification of UART status.

bmRequestType bNotification wValue wIndex wLength Data

10100001B SERIAL_STATE Zero Interface 2 UART State
bitmap

The Data field is a bitmapped value that contains the current state of carrier detect, transmission carrier, break, ring
signal, and device overrun error. These signals are typically found on a UART and are used for communication status
reporting. A state is considered enabled if its respective bit is set to 1.

SerialState is used like a real interrupt status register. Once a notification has been sent, the device will reset and re-
evaluate the different signals. For the consistent signals like carrier detect or transmission carrier, this will mean
another notification will not be generated until there is a state change. For the irregular signals like break, the incoming
ring signal, or the overrun error state, this will reset their values to zero and again will not send another notification
until their state changes.

Table 69: UART State Bitmap Values

Bits Field Description

D15..D7 RESERVED (future use)

D6 bOverRun Received data has been discarded due to overrun in
the device.

D5 bParity A parity error has occurred.

D4 bFraming A framing error has occurred.

D3 bRingSignal State of ring signal detection of the device.

D2 bBreak State of break detection mechanism of the device.

D1 bTxCarrier State of transmission carrier. This signal
corresponds to V.24 signal 106 and RS-232 signal
DSR.

D0 bRxCarrier State of receiver carrier detection mechanism of
device. This signal corresponds to V.24 signal 109
and RS-232 signal DCD.

6.3.6 CallStateChange

This notification identifies that a change has occurred to the state of a call on the line corresponding to the interface or
union for the line.

bmRequestType bNotification wValue wIndex wLength Data

10100001B CALL_STATE_CHANGE Call Index and
Call State
Change Value.

Interface Length of Data Variable length
structure
containing
additional
information for
call state
change.

USB Class Definitions for Communication Devices

Version 1.1 76 January 19, 1999

The high-order byte D15-D8 of the wValue field will contain the call index, and the low-order byte D7-D0 will contain
the call state change value. Not all devices may be capable of reporting all changes of the call state, which should not
cause any problems to the higher-level software. All extra data associated with a call state change (i.e., Caller ID data)
is returned within the data field. Currently, defined call state values are listed in the following table:

Table 70: Call State Change Value Definitions

Call state change Description

00h RESERVED

01h Call has become idle.

02h Dialing.

03h Ringback, with an extra byte of data provided to describe the type of
ringback signaling

0 = normal
1 = busy
2 = fast busy
3-254 = reserved for future use
255=unknown ringback type

04h Connected, with an extra byte of data provided to describe the type of
connection

0 = voice connection
1 = answering machine connection
2 = fax machine connection
3 = data modem connection
4-254 = reserved for future use
255 = unknown connection type

05h Incoming Call, with the following extra bytes of data (minimum of 4 extra
bytes):

Extra data byte 0 - Indicates the ringing pattern present as:
0 = ringing pattern 1 (default or normal pattern)
1 = ringing pattern 2
2 = ringing pattern 3
3 – ringing pattern 4
4-255 = reserved for future use

Extra data byte 1 - Size of the string (next n bytes) which contains the
time (in displayable format) of the incoming call as delivered via
Caller ID. The string is not null terminated and is encoded
using one character per byte. It is not a UNICODE string. If
time is not available then a size of 0 is required as a place
setter.

Next data byte following number - Size of string (next n bytes) which
contains the phone number of calling party as delivered via
Caller ID. The string is not null terminated and is encoded
using one character per byte. It is not a UNICODE string. If no
number is available then a size of 0 is required as a place-
setter.

Next data byte following name - Size of string (next n bytes) which
contains the name of the calling party as delivered via Caller ID.
The string is not null terminated and is encoded using one
character per byte. It is not a UNICODE string. If no name is
available then a size of 0 is required as a place-setter.

USB Class Definitions for Communication Devices

Version 1.1 77 January 19, 1999

6.3.7 LineStateChange

This notification identifies that a change has occurred to the state of the line corresponding to the interface or master
interface of a union sending the notification message.

bmRequestType bNotification wValue wIndex wLength Data

10100001B LINE_STATE_CHANGE Value Interface Length of Data Variable
Length Line
State
structure.

Some line state changes may provide extra information, and this information would be provided in the attached extra
Line State data structure. Current line state change information are defined in the following table:

Table 71: Line State Change Values

Line State change Description

0000h Line has become idle.

0001h Line connected to hold
position.

0002h Hook-switch has gone off
hook.

0003h Hook-switch has gone on
hook.

6.3.8 ConnectionSpeedChange

This notification allows the device to inform the host-networking driver that a change in either the upstream or the
downstream bit rate of the connection has occurred.

bmRequestType bNotification wValue wIndex wLength Data

10100001B CONNECTION_SPEED_
CHANGE

Zero Interface 8 Connection
Speed Change
Data Structure

The data phase for this notification contains a data structure with two 32 bit unsigned integers. The two values are the
upstream bit rate, followed immediately by the downstream bit rate. (Table 72)

To assure that the host networking driver can always report the correct link speed, the device must send this notification
immediately after every NETWORK_CONNECTION notification is sent. This normally occurs when the physical
layer makes or loses a connection, but additionally appears implicitly after the device is reset (see discussion in Section
3.8.1 Common Data Plane Characteristics).

USB Class Definitions for Communication Devices

Version 1.1 78 January 19, 1999

Table 72: ConnectionSpeedChange Data Structure

Offset Field Size Value Description

0 USBitRate 4 Number Contains the upstream bit rate, in bits per second

4 DSBitRate 4 Number Contains the downstream bit rate, in bits per second.

USB Class Definitions for Communication Devices

Version 1.1 79 January 19, 1999

Appendix A: Communication Device Class Examples
This appendix highlights some examples of typical communication device classes. Detailed examples are provided in
separate white papers that are not a part of this specification. The latest copies of the white papers can be found at
http://www.usb.org.

A.1 Basic Telephone
A basic telephone is defined as the household/desktop type phone common to most users. This phone has a handset,
keypad, and a 2-wire connection to a local telephone company. In this example, a USB port is added for connecting the
phone to the host.

By connecting the phone to a host via the USB, the following functions can be supported:

1. Host monitoring of incoming and outgoing calls.

2. Host-originated dialing of a call.

3. Host recording and playback of voice over the phone line.

This example is not intended to define the computer telephony application features or user interface. The example
demonstrates how the USB Communication Interface Class protocol can be used to identify, control, and monitor a
telephony device.

A.2 Modem
For compatibility with legacy computer software and to facilitate the development of generic drivers, a USB modem
should conform to the ANSI/TIA-602 standard. For common extended functions, the following standards are
recommended:

x Modem identification: ITU V.25ter +G commands

x Data modems: ITU V.25ter (modulation, error control, data compression)

x Data modems: ITU V.80 In-band DCE control and synchronous data modes for asynchronous DTE

x Fax modems: ITU T.31 or T.32 +F commands (or TIA equivalents)

x Voice modems: TIA IS-101 +V commands

x General wireless modems: PCCA STD-101 +W commands (TIA 678)

x Analog cellular modems: PCCA STD-101 Annex I (TIA 678 Annex C)

x Digital cellular modems: TIA IS-707, TIA IS-135 or GSM 7.07 +C commands.

x Text phone modems: V.25ter, +MV18 commands.

For a complete list of standard modem command sets, see the ITU Supplement to V.25ter.

Note: A USB modem may provide means to accommodate common functions performed on a 16550 UART. For more
information, see Section 3.6.2.1, “Abstract Control Model Serial Emulation.”

A.3 CAPI Device
For compatibility with existing CAPI software, and to facilitate the development of generic adaptive drivers, a USB
CAPI Device has to conform to the CAPI 2.0 specification.

USB Class Definitions for Communication Devices

Version 1.1 80 January 19, 1999

Appendix B: Sample Configurations

B.1 Basic Telephony Configurations
This section defines three examples of telephony configurations: a basic telephone, a telephone with keypad, and a
combination telephone with analog modem. The minimum requirement for this type of device is a configuration with a
single Communication Class interface. If you wish to support a standard telephone keypad, you would require an
additional Human Interface Device Class interface to support the keypad. The most basic audio-capable telephone is
constructed by adding an Audio interface for audio transmission and reception. A more advanced configuration could
optionally have local Audio interfaces connected to the handset and microphone/speaker, and one Data interface. In this
case, the Data interface could be the raw linear data as sampled from the network. The responsibility for demodulation
and interpretation of this data would lie within the host at the application level (i.e., processor-based modem).

Table 73: Telephone Configurations

Example
configuration

Interface
(class code)

Reference
section

Description

Basic telephone Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Telephone with
keypad

HID Class HID 1.0 I/O for a keypad interface.

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Audio Class Audio 1.0 I/O for uncompressed audio.

Audio/data
telephone

Data Class 3.3.2 Demodulated modem data.

A communication device that supports audio type media streams over its interfaces can use the selected Audio interface
to indicate which voice or audio coding formats it supports (for example, IS-101 for voice modems).

B.2 Modem Configurations
This section defines three examples of modem configurations: legacy modem, DSVD modem, and multimedia modem.
The first configuration covers legacy modems for data, fax, and voice. The second configuration covers SVD modems,
such as ASVD (ITU V.61) and DSVD (ITU V.70). The third configuration covers multimedia modems that would be
used in ITU H.324 situation.

Table 74: Example Modem Configurations

Example
configuration

Interface
(class code)

Reference
section

Description

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.Legacy modem

Data Class 3.3.2 Demodulated modem data.

USB Class Definitions for Communication Devices

Version 1.1 81 January 19, 1999

Table 74: Example Modem Configurations

Example
configuration

Interface
(class code)

Reference
section

Description

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Data Class 3.3.2 Demodulated modem data.
SVD modem

Audio Class Audio 1.0 I/O for uncompressed audio.

Communication Class 3.3.1 Device management and call management.
Consisting of a management element and a
notification element.

Data Class 3.3.2 Demodulated modem data.

Audio Class Audio 1.0 I/O for uncompressed audio.

Multimedia
modem

Image Class TBD I/O for video (for example, H.263).

Most of today’s modem type devices — single-media or multimedia — contain various types of media processing
resources such as compression engines (for example, V.42bis) or audio/video CODECs. Given the projections of
increased processing power for future host systems and the availability of appropriate media transport to and from the
host (i.e., the USB), it is likely that various models of media processing will emerge that do not rely solely on the
device for these resources. In this case, where media processing resources are located arbitrarily within the system (for
example, V.42bis on the host and V.34 on the device), interface choices for media types could vary. For example, if a
device developer chose to include an MPEG2 CODEC in a device, a bi-directional isochronous interface may be more
appropriate for transport of the video stream. Conversely, if the CODEC is not in the USB device, a bi-directional bulk
interface would be more appropriate.

The processing required for some types of media streams is asymmetrical in nature. For example, MPEG2
decompression is trivial by today’s standards, although compression requires substantial processing resources. In light
of this fact, it may be appropriate to configure an interface with the appropriate asymmetry. Continuing the MPEG
example, a device that relies on host-based decompression and device-based compression would choose an interface
that consists of an isochronous endpoint for video in the host-to-device direction and a bulk endpoint for the device-to-
host direction.

An example of the bandwidth implications of device in contrast with host-based media stream processing is outlined in
the following list. USB bandwidth is expressed in bytes per millisecond (B/ms). For example, typical performance of
V.42bis is 3-4:1 on data streams, 33.6 kb/s V.34 data could unpack to 16.8 B/ms.

Similar bandwidth issues are relevant to audio and video, but they will be handled by the video or audio interfaces
rather than Communication Class interfaces.

x G.723 voice CODEC (5.5 - 6.5 Kb/s) could be unpacked to 11 kHz audio by the modem (22 B/ms).

x H.263 compressed video is in the 2.5 B/ms range; but if H.263 is decompressed, a typical bandwidth is
approximately 96 B/ms.

B.3 CAPI Device Configuration
This section describes two examples of configurations of CAPI Devices. The first configuration covers the intelligent
CAPI Device which implements the whole CAPI functionality on the device including call management (Q.931, NI-1,
5ESS, GSM, etc.) and the variety of the supported B channel protocols such as X.75, X.25, T.30, V.42bis, X.31, V.110,
V.120 etc. The second configuration covers the simple CAPI Device which implements CAPI conform access to the
Layer 1.

USB Class Definitions for Communication Devices

Version 1.1 82 January 19, 1999

Table 75: Example CAPI Device Configurations

Example
Configuration

Interface
(Class Code)

Reference
Section

Description

Communication Class 3.3.1 Device Management consisting of a
Management ElementIntelligent CAPI

Device
Data Class 3.3.2 CAPI Messages

Communication Class 3.3.1 Device Management consisting of a
Management ElementSimple CAPI

Device
Data Class 3.3.2 CAPI Messages for simple CAPI Devices

USB Class Definitions for Communication Devices

Version 1.1 83 January 19, 1999

Appendix C: Multi-channel ISDN B-Channel setup

C.1 General
The basic idea is that call control to/from the host is performed through some sort of protocol state machine. This state
machine will be specific for each protocol due to the problems in finding one generic that will suit all possible protocol
derivatives that are in use, i.e. for ISDN layer 3 there are for example Q.931 (ITU), DSS1 (Europe), 1TR6 (Germany),
VN4 (France), DMS100 Custom (USA), 5ESS Custom (USA), NI-1 (USA), NTT (Japan) and NS2 (USA). The call
control protocol is accessed through a Data Class Interface. This is to enable a flexible interface with as few restrictions
as possible on the protocol.

Each channel (2B+D) on the physical interface is represented by an interface with appropriate Interface Descriptors and
Terminal/Unit Functional Descriptors if needed. The interface connected to the D-channel may then run a call control
protocol stack starting with I.430 and some Framing, Data link and Network protocols (HDLC,Q.921 and Q.931).

For each interface there exists a number of alternate settings. By incorporating an alternate setting with bNumEndpoints
= 00h for each interface involved in data transfer, a device offers to the host the option to temporarily relinquish USB
bandwidth. If such setting is implemented, it must be as a default alternate setting (alternate setting zero).

USB Class Definitions for Communication Devices

Version 1.1 84 January 19, 1999

Appendix D: Multi-Channel Implementation Examples

D.1 ISDN BRI T/A with two POTS interfaces

Management
EP

Shared
int EP

Ifc 4:
Data class

Bulk
Two EP

Network
Terminal
B2-ch

Ifc 3:
Data class

Bulk
Two EP

Network
Terminal
B1-ch

Protocol
Unit
H D L C

Protocol
Unit
H D L C

Network
Terminal
B2-ch

Ifc 5:
Audio class
AudioStreaming

Isoch
One EP

Network
Terminal
B1-ch

Extension Unit
POTS 2 call
control

Protocol
Unit
Q .931

Extension Unit
POTS 1 call
control

Protocol
Unit
Q .921

Protocol
Unit
Q .931

Protocol
Unit
Q .921

Ifc 2:
Data class

Bulk
Two EP USB

Terminal

Protocol
Unit
Q .931

Protocol
Unit
Q .921

Network
Terminal
D-ch

Extension
Unit
TEI -mux

Protocol
Unit
I .430

Protocol
Unit
H D L C

USB
Terminal

USB
Terminal

USB
Terminal

Isoch
One EP

Ifc 6:
Audio class
AudioStreaming

Ifc 7:
Audio class
AudioStreaming

Isoch
One EP USB

Terminal

Isoch
One EP

Ifc 8:
Audio class
AudioStreaming

Device
management

Device
management

Ifc 0:
Comm class

Ifc 1:
Audio class
AudioControl

USB Class Definitions for Communication Devices

Version 1.1 85 January 19, 1999

D.2 ISDN BRI T/A with vendor specific protocol (Bonding)

Ifc 0:
Comm class

Device
managementManagement

EP
Ifc 1:
Audio class
AudioControl

Device
management Network

Terminal
D-ch

Protocol
Unit
I .430

Protocol
Unit
H D L C

Ifc 2:
Data class

Bulk
Two EP USB

Terminal

Protocol
Unit
Q .931

Protocol
Unit
Q .921

Bulk
Two EP

Network
Terminal
B1-ch

Protocol
Unit
H D L C

Bulk
Two EP

Network
Terminal
B2-ch

Protocol
Unit
H D L C

Bulk
Two EP

Network
Terminal
B2-ch

Extension
Unit
Bond ing

Network
Terminal
B1-ch

Shared
int EP

Network
Terminal
B2-ch

Ifc 6:
Audio class
AudioStreaming

Isoch
One EP

Network
Terminal
B1-ch

Ifc 8:
Audio class
AudioStreaming

Ifc 3:
Data class

Ifc 4:
Data class

Ifc 5:
Data class

USB
Terminal

USB
Terminal

USB
Terminal

USB
Terminal

USB
Terminal

Ifc 7:
Audio class
AudioStreaming

Isoch
One EP

Ifc 9:
Audio class
AudioStreaming

Isoch
One EP

Isoch
One EP

D.3 Passive ISDN Solutions

The multi-channel model allows for different device implementations depending on the system requirements. Many of
the ISDN devices described in this section utilize capabilities such as synchronized isochronous data transfers and
shared endpoints as defined in the Universal Serial Bus Common Class Specification. Devices may also support a
subset of the interfaces and alternate settings shown sections D.1 and D.2. This allows the realization of device designs

USB Class Definitions for Communication Devices

Version 1.1 86 January 19, 1999

that are characterized by fewer requirements on the device’s ISDN and USB portions, thus reducing the number and
complexity of required components (e.g. number of interfaces and endpoints). This is necessary as an ISDN terminal
may support only pure data applications (data class), pure voice applications (audio class) or both. Such designs use
isochronous transfer instead of bulk in order to minimize buffer size, and locate the D-channel protocol stack in the
host.

For example a USB ISDN device that follows the ISDN model provides multiplexing and framing functions for the D-
and B-channels on the ISDN BRI physical interface. The channel data is transferred frame-interpreted (HDLC frames)
for the D-channel and unmodified (transparent data) or optionally frame-interpreted for the B-channels (B1 and B2).

In the examples provided (Figure 9 through Figure 11), the D-channel control and data frame transfers are realized by
using a data class interface. In order to fulfill the strict ISDN timing requirements for PTT approval, data is transferred
isochronously via shared endpoints (as in Figure 9 and Figure 10) together with B-channel data. Alternatively, it is
handled via a separate endpoint pair (as in Figure 11). Due to the timing requirements for D-channel collision
resolution on the S-bus it is required to have the HDLC formatting done at the USB device, i.e. transparent framing
cannot be used.

The examples further illustrate the different potential methods for handling the B-channels. Each B-channel utilizes a
pair of Audio Class interfaces (isochronous pipes) when transferring voice data (as in Figure 11), and a Data Class
interface when transferring raw un-interpreted frame data (Figure 10). The optional implementation of frame
interpretation is not needed for the B-channel if the host provides the means for HDLC data encoding/decoding and
error handling. Depending on the system requirements, another implementation may use an Audio Class and Data Class
interface for the B-channels (as in Figure 9). Shared or separate endpoints can also be used for the B-channels.

Sync Information for channel B1 or channel B2 can be handled via an isochronous endpoint, or for B1 and B2 together
via a shared isochronous endpoint. This endpoint can be omitted if no explicit sync info is required, e.g. when implicit
feed forward information is contained in the IN datastream.

The Multi-Channel model allows different device implementations depending on the system requirements.

 Management EP
 I fc 0 : Comm Class

 I fc 1: Audio Class
 Audio Contro l

 Dev ice
 Management
 Dev ice
 Management

 I fc 2: Data Class
 D-channel contro l /data

 USB Termina l
Protocol Uni t
H D L C

 Ifc 3: Data Class

 I fc 4: Audio Class
 Audio St reaming

 I fc 5: Audio Class
 Audio St reaming

Network Termina l
D -Channe l

 USB Termina l
 Network Termina l
 B1-Channe l

 USB Termina l
 Protocol Uni t
 Transparent

 Network Termina l
 B1-Channe l

 I fc 6: Data Class

 I fc 7: Audio Class
 Audio St reaming

 I fc 8: Audio Class
 Audio St reaming

 USB Termina l
 Network Termina l
 B2-Channe l

 USB Termina l
 Protocol Uni t
 Transparent

 Network Termina l
 B2-Channe l

 Iso
 Shared In EP

 Iso
 Shared Out EP

 Iso
 Shared EP

B-Channel Sync (opt iona l)

Figure 9: Passive ISDN Example 1

USB Class Definitions for Communication Devices

Version 1.1 87 January 19, 1999

 Management EP I fc 0 : Comm Class
 Dev ice
 Management

 I fc 1: Data Class
 D-channel contro l /data

 USB Termina l
 Protocol Uni t
 H D L C

 Ifc 2: Data Class

 Network Termina l
 D-Channe l

 USB Termina l
 Protocol Uni t
 Transparent

 Network Termina l
 B1-Channe l

 I fc 3: Data Class USB Termina l
 Protocol Uni t
 Transparent

 Network Termina l
 B2-Channe l

 Iso
 Shared In EP

 Iso
 Shared Out EP

 Iso
 Shared EP

B-Channel Sync (opt iona l)

Figure 10: Passive ISDN Example 2

 Management EP
 I fc 0 : Comm Class

 I fc 1: Audio Class
 Audio Contro l

 Dev ice
 Management
 Dev ice
 Management

 I fc 2: Data Class
 D-channel contro l /data

 USB Termina l
 Protocol Uni t
 H D L C

 I fc 3: Audio Class
 Audio St reaming

 I fc 4: Audio Class
 Audio St reaming

 Network Termina l
 D-Channe l

 USB Termina l
 Network Termina l
 B1-Channe l

 I fc 5: Audio Class
 Audio St reaming

 I fc 6: Audio Class
 Audio St reaming

 USB Termina l
 Network Termina l
 B2-Channe l

 Iso
 Shared In EP

 Iso
 Shared Out EP

 Iso
 Shared EP

B-Channel Sync (opt iona l)

 Iso
 Shared In EP

 Iso
 Shared Out EP

Figure 11: Passive ISDN Example 3

USB Class Definitions for Communication Devices

Version 1.1 88 January 19, 1999

Appendix E: Data Class Protocol Definitions

Definitions
x A REQuest is a command from a higher protocol level to a lower.

x A CONfirm is an answer from a lower protocol level to a higher on a Request.

x An INDication is a command from a lower protocol level to a higher.

x A RESponse is an answer from a higher protocol level to a lower on an Indication.

Table 76: Command Type Encoding

Command type Value

REQ XXXXXX00b

CON XXXXXX11b

IND XXXXXX01b

RES XXXXXX10b

E.1 Physical Interface Protocols

E.1.2 I.430: BASIC USER-NETWORK INTERFACE – LAYER 1
Protocol code: According to Table 19.

Description: This is a protocol running on an ISDN BRI device with an S0-interface. It provides de-multiplexing
of two B-channels and a D-channel. The protocol covers both user and network side of a
connection.

Table 77: I.430 Configuration Parameter List

bParameterIndex Field Size Value Description

0 bmOptions 1 Bitmap D7..D2: RESERVED (Reset to zero)

D1: D-channel transmit priority class
0 - Class 1
1 - Class 2

D0: 0 – User side
1 – Network side

Note : The parameter list is read by the protocol on activation of the Protocol Unit.

Table 78: I.430 Command Message Format

Command Corresponding ITU I.430
Primitive

ITU I.430 Message Reference

I430_PH_DATA_REQ PH-DATA request 2.3 Primitives between layer 1 and
the other entities, Note 1

I430_PH_ACTIVATE_REQ PH-ACTIVATE request 6.2.1.3 Activate primitives

USB Class Definitions for Communication Devices

Version 1.1 89 January 19, 1999

Command Corresponding ITU I.430
Primitive

ITU I.430 Message Reference

I430_PH_ACTIVATE_IND PH-ACTIVATE indication 6.2.1.3 Activate primitives

I430_PH_ACTIVATE_B_REQ N.A. Note 2

I430_PH_DEACTIVATE_IND PH-DEACTIVATE indication 6.2.1.4 Deactivate primitives, Note 4

I430_PH_DEACTIVATE_B_REQ N.A. Note 3

I430_MPH_ERROR_IND MPH-ERROR indication 6.2.1.5 Management primitives

I430_MPH_ACTIVATE_IND MPH-ACTIVATE indication 6.2.1.3 Activate primitives

I430_MPH_DEACTIVATE_REQ MPH-DEACTIVATE request 6.2.1.4 Deactivate primitives

I430_MPH_DEACTIVATE_IND MPH-DEACTIVATE indication 6.2.1.4 Deactivate primitives

I430_MPH_INFORMATION_IND MPH-INFORMATION indication 6.2.1.5 Management primitives

Commands according to I.430 ”Table E.1 I.430 Primitives associated with layer 1”.
Note 1: PH-DATA request does not have a data field since this function is performed by other protocols such as

HDLC. Therefore PH-DATA is excluded from the command list since it doesn’t have any function.
Note 2: This primitive is an USB extension to enable a specific B-channel.
Note 3: This primitive is an USB extension to disable a specific B-channel.
Note 4: This primitive will deactivate the physical layer connection (including all B-channels).

Table 79: I.430 Commands

bCommand Value Request Indication Confirm Response

I430_PH_DATA_xxx 000000NNb X - - -

I430_PH_ACTIVATE_xxx 000001NNb X X - -

I430_PH_DEACTIVATE_xxx 000010NNb - X - -

I430_PH_ACTIVATE_B_xxx 000011NNb X - - -

I430_PH_DEACTIVATE_B_xxx 000100NNb X - - -

I430_MPH_ERROR_xxx 000101NNb - X - -

I430_MPH_ACTIVATE_xxx 000110NNb - X - -

I430_MPH_DEACTIVATE_xxx 000111NNb X X - -

I430_MPH_INFORMATION_xxx 001000NNb - X - -

NOTE 1: ‘NN’ in Value encoded according to Table 76
NOTE 2: X : Exists

 - : Does not exist

Table 80: I.430 Activate, Deactivate Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number I430_PH_ACTIVATE_REQ,
I430_PH_ACTIVATE_IND,
I430_PH_DEACTIVATE_IND,
I430_MPH_ACTIVATE_IND,
I430_MPH_DEACTIVATE_REQ,
I430_MPH_DEACTIVATE_IND command as
defined in Table 79

USB Class Definitions for Communication Devices

Version 1.1 90 January 19, 1999

Table 81: I.430 PhActivateBReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number I430_PH_ACTIVATE_B_REQ command as
defined in Table 79

1 bChannel 1 Number Index of B-channel to activate
0 – RESERVED
1 – B1-channel
2 – B2-channel
3 to FFh – RESERVED

Table 82: I.430 PhDeactivateBReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number I430_PH_DEACTIVATE_B_REQ command as
defined in Table 79

1 bChannel 1 Number Index of B-channel to deactivate
0 – RESERVED
1 – B1-channel
2 – B2-channel
3 to FFh - RESERVED

Table 83: I.430 PhDataReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number I430_PH_DATA_REQ command as defined in
Table 79

1 bPriority 1 Number D-channel transmit data priority class
0 – Priority class 1
1 – Priority class 2
2 to FFh – RESERVED

Table 84: I.430 MphErrorInd Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number I430_PH_ERROR_IND command as defined
in Table 79

1 bInfo 1 Number Error codes
0 = Error, RX info 0
1 = Error, RX info 2
2 = Error, lost framing
3 = Recover from error, RX info 0
4 = Recover from error, RX info 2
5 = Recover from error, RX info 4
6 = FFh RESERVED

Note: See I.430 "TABLE 5/I.430", "TABLE 6/I.430", "TABLE C.1/I.430", "TABLE C.2/I.430" for more details

USB Class Definitions for Communication Devices

Version 1.1 91 January 19, 1999

Table 85: I.430 MphInformationInd Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number I430_PH_INFORMATION_IND command as
defined in Table 79

1 bInfo 1 Number 0 : Physical layer disconnected
1 : Physical layer connected
2 .. FFh: RESERVED (future use)

Note: Layer 2 is not aware if the information transfer capability is temporariliy interrupted

Information
transfer not

available

Information
transfer

available
(Note)

Activation
requested

I430_PH_ACTIVATE_REQ

I430_PH_DEACTIVATE_ IND

I430_PH_ACTIVATE_IND
I430_PH_DEACTIVATE_ IND

I430_PH_ACTIVATE_IND,
I430_PH_ACTIVATE_B_REQ,

I430_PH_DEACTIVATE_B_REQ,
I430_PH_DATA_REQ

I430_PH_ACTIVATE_IND

 I430_PH_DEACTIVATE_IND

Figure 12: I.430 Layer 1 and Layer 2

USB Class Definitions for Communication Devices

Version 1.1 92 January 19, 1999

Information
transfer not

available

Information
transfer
available

(Note)

Information
transfer

interrupted

I430_MPH_DEACTIVATE_REQ

I430_MPH_ERROR_IND
I430_MPH_ACTIVATE_IND

I430_MPH_DEACTIVATE_REQ

I430_MPH_ACTIVATE_IND

I430_MPH_ACTIVATE_IND

I430_MPH_DEACTIVATE_IND

Figure 13: Layer 1 - Management Network Side

Any state

I430_MPH_ACTIVATE_IND,
I430_MPH_DEACTIVATE_IND,

I430_MPH_INFO_IND,
I430_MPH_ERROR_IND

Figure 14: Layer 1 - Management User Side

E.2 Framing Protocols

E.2.1 HDLC Framing
Protocol code: According to Table 19.

Description: The HDLC framing protocol provides functions for creating and extracting HDLC frames on a
serial synchronous data stream. See ISO/IEC 3309-1993 for further details.

Table 86: HDLC Configuration Parameter List

bParameterIndex Field Size Value Description

0 wBufferLength 2 Number Max number of bytes in a buffer excluding
FCS

USB Class Definitions for Communication Devices

Version 1.1 93 January 19, 1999

bParameterIndex Field Size Value Description

1 bmConfig 2 Bitmap D15: RESERVED (Reset to zero)

D14: TX and RX data handling
0 – TX data is transmitted to the
line. RX data is sent to the host.
1 - TX data is transmitted to the
line and looped back to RX. RX
data from the line is ignored.

D13: TX frame handling after
transmission
0 – Discard frame
1 – Return frame to host (for the
sending protocol)

D12..D11: Address filtering mode
00 – None
01 – 8 bit address
10 – 16 bit address
11 – RESERVED

D10..D7: Min number of flags between
frames (0 – 15) in TX direction

D6: Idle
0 – Flags
1 – Mark

D5: Generate FCS on TX data
0 – Generate FCS
1 – Do not generate FCS

D4..D3: Check FCS on RX data
00 – Verify FCS
01 – Verify FCS and remove
invalid frame
10 – Ignore FCS
11 – RESERVED

D2..D1: Frame check sequence (FCS) on
TX and RX data
00 – None
01 – CRC16
10 – CRC32
11 – RESERVED

D0: Data encoding
0 – NRZ
1 – NRZI

2 wAddr
Comparator0

2 Number First address comparator.

 8 bit address
 D7..D0: Address
 D15..D8: RESERVED (Reset to zero)

 16 bit address
 D15..D0: Address

… … … …

1+N wAddr
ComparatorN-1

2 Number Nth address comparator.

 8 bit address
 D7..D0 Address
 D15..D8: RESERVED (Reset to

zero)

 16 bit address
 D15..D0: Address

Note: The parameter list is read by the protocol on activation of Protocol Unit.

USB Class Definitions for Communication Devices

Version 1.1 94 January 19, 1999

Table 87: HDLC Commands

bCommand Value Request Indication Confirm Response

HDLC_CONTROL_xxx 000000NNb X - - X

HDLC_STATUS_xxx 000001NNb X X - X

HDLC_DATA_xxx 000010NNb X X - -

NOTE 1: ‘NN’ in Value encoded according to Table 76
NOTE 2: X : Exists

 - : Does not exist

Table 88: HDLC ControlRes, StatusReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number HDLC_CONTROL_RES or
HDLC_STATUS_REQ command as defined in
Table 87

Note: The device should return a HDLC_STATUS_RES on reception of HDLC_STATUS_REQ

Table 89: HDLC ControlReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number HDLC_CONTROL_REQ command as defined
in Table 87

1 bmControl 1 Bitmap D7..D3: RESERVED (Reset to zero)

D2: Receiver abort
0 – No action
1 – Abort ongoing RX and abort
pending RX buffers

D1: FCS generation
0 – Generate correct FCS
1 – Generate bad FCS

D0: Transmitter abort
0 – No action
1 – Abort ongoing TX and discard
pending buffers ahead of this
command

Note: The device should return a HDLC_CONTROL_RES on reception of HDLC_CONTROL_REQ

Table 90: HDLC StatusInd/Res Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number HDLC_STATUS_IND or
HDLC_STATUS_RES command as defined in
Table 87

USB Class Definitions for Communication Devices

Version 1.1 95 January 19, 1999

Offset Field Size Value Description

1 bmStatus 1 Bitmap D7..D5: RESERVED (Reset to zero)

D4: Source of receive data
0 – Normal RX data
1 – Return of TX data

D3..D2: Frame length status
00 – OK
01 – Too short frame
10 – Too long frame
11 – Frame length is not an
integer multiple of 8 bits

D1: FCS status
0 – OK
1 – Error

D0: Received frames discarded due to
overrun
0 – No
1 – Yes

Note: The HDLC_STATUS_IND should immediately precede the HDLC_DATA_IND to which it applies. It is
optional to send a HDLC_STATUS_IND if received data is without errors.

Table 91: HDLC DataReq/Ind Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number HDLC_DATA_REQ or HDLC_DATA_IND
command as defined in Table 87

1 bProtocolData0 1 Number First byte with protocol data. FCS excluded.

… … … …

0+N bProtocolDataN-1 1 Number Nth byte with protocol data. FCS excluded.

E.2.2 Transparent framing
Protocol code: According to Table 19.

Description: This protocol provides no framing on a synchronous bitstream.

Table 92: TRANS Configuration Parameter List

bParameterIndex Field Size Value Description

0 bmConfig 1 Bitmap D7..D2: RESERVED (Reset to zero)

 D1: TX and RX data handling
0 – TX data is transmitted to the line.
RX data is sent to the host.
1 - TX data is transmitted to the line
and looped back to RX. RX data
from the line is ignored.

D0: Data encoding
0 – NRZ
1 – NRZI

1 bmConfigCapabil
ities

1 Bitmap
(read only)

D7..D1: RESERVED (Reset to zero)

D0: NRZI encoding option
0 – NRZI not available
1 – NRZI available

USB Class Definitions for Communication Devices

Version 1.1 96 January 19, 1999

Note : The parameter list is read by the protocol on activation of Protocol Unit.

Table 93: TRANS Commands

bCommand Value Request Indication Confirm Response

TRANS_CONTROL_xxx 000000NNb X - - X

TRANS_STATUS_xxx 000001NNb X X - X

TRANS_DATA_xxx 000010NNb X X - -

NOTE 1: ‘NN’ in Value encoded according to Table 76
NOTE 2: X : Exists

 - : Does not exist

Table 94: TRANS ControlRes, StatusReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number TRANS_CONTROL_RES or
TRANS_STATUS_REQ command as defined
in Table 93

Note: The device should return a TRANS_STATUS_RES on reception of TRANS_STATUS_REQ

Table 95: TRANS ControlReq Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number TRANS_CONTROL_REQ command as
defined in Table 93

1 bmControl 1 Bitmap D7..D3 : RESERVED (Reset to zero)

D2: Transmitter data underrun option
0 – Transmit continuous idle mark
whenever the transmit buffer is
underrun.
1 – Repeatedly transmit the last
buffer received from the host
whenever the transmit buffer is
underrun (for tones, etc)

D1: Receiver abort
0 – No action
1 – Abort ongoing RX and abort
pending RX buffers.

D0: Transmitter abort
0 – No action
1 – Abort ongoing TX and discard
pending buffers ahead of this one

Note: The device should return a TRANS_CONTROL_RES on reception of TRANS_CONTROL_REQ

Table 96: TRANS StatusInd/Res Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number TRANS_STATUS_IND or
TRANS_STATUS_RES command as defined
in Table 93

USB Class Definitions for Communication Devices

Version 1.1 97 January 19, 1999

Offset Field Size Value Description

1 bmStatus 1 Bitmap D7 .. D2 : RESERVED (Reset to zero)

D1: Transmitter underrun
0 – No transmitter underrun has
occurred
1 – Transmitter underrun has
occurred

D0: Receive overrun
0 – No received data discarded
due to overrun
1 – Received data discarded due
to overrun

Note: The TRANS_STATUS_IND should immediately precede the TRANS_DATA_IND to which it applies. It is
optional to send a TRANS_STATUS_IND if received data is without errors.

Table 97: TRANS DataReq/Ind Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number TRANS_DATA_REQ or TRANS_DATA_IND
command as defined in Table 93

1 bProtocolData0 1 Number First byte with protocol data

0+N bProtocolDataN-1 1 Number Nth byte with protocol data

E.3 Data Link Protocols

E.3.1 Q.921 Management: ISDN USER-NETWORK INTERFACE DATA LINK
LAYER SPECIFICATION FOR CIRCUIT MODE BEARER SERVICES
Protocol code: According to Table 19.

Description: Management procedure defined by Q.921 handles TEI negotiation and distribution of received
messages. This protocol will reside below all Q.921 data link procedures, as opposed to the
definition by ITU-T where the management entity resides above all data link procedures (ref
FIGURE 9/Q.921). All command-names (Q921M_DL_xxx) are therefore reversed in order to
maintain the definition of Request, Indication, Response and Confirm, but are in all other aspects
identical to ITU-T specification. The protocol covers both user and network side of a connection.

Table 98: Q.921M Configuration Parameter List

bParameterIndex Field Size Value Description

0 bmOptions 1 Bitmap D7..D1: RESERVED (Reset to zero)

D0 : 0 – User side
1 – Network side

1 bT201 1 Number Maximum time between retransmission of the
TEI identity check message

2 bN202 1 Number Maximum number of transmissions of the TEI
identity request message

3 bT202 1 Number Minimum time between the transmission of TEI
identity request messages

USB Class Definitions for Communication Devices

Version 1.1 98 January 19, 1999

bParameterIndex Field Size Value Description

4 bmTEI 1 Bitmap D7 .. D1: Non-automatic TEI value

D0: 0 – Use non-automatic TEI value
1 – Use automatic TEI value

Note 1: Parameters 1 – 3 according to Q.921 ”5.9 List of system parameters ”
Note 2: The parameter list is read by the protocol on activation of Protocol Unit.

Table 99: Q.921M Command Message Format

Command Corresponding ITU Q.921 data
link layer primitive

ITU Q.921 message
reference

Q921M_DL_ASSIGN_REQ MDL Assign indication 4.1.1.5 MDL-ASSIGN

Q921M_DL_ASSIGN_IND MDL Assign request 4.1.1.5 MDL-ASSIGN

Q921M_DL_REMOVE_IND MDL Remove request 4.1.1.6 MDL-REMOVE

Q921M_DL_ERROR_REQ MDL Error indication 4.1.1.7 MDL-ERROR

Q921M_DL_ERROR_CON MDL Error response 4.1.1.7 MDL-ERROR

Q921M_DL_DATA_REQ Data request 4.1.1.3 DL-DATA

Q921M_DL_DATA_IND Data request 4.1.1.3 DL-DATA

Q921M_DL_UNIT_DATA_REQ UData request 4.1.1.4 DL-UNIT-DATA

Q921M_DL_UNIT_DATA_IND UData request 4.1.1.4 DL-UNIT-DATA

Note: Commands according to Q.921 ”TABLE 6/Q.921 Primitives associated with this recommendation”

Table 100: Q.921M Commands

Command Value Request Indication Response Confirm

Q921M_DL_ASSIGN_xxx 000000NNb X X - -

Q921M_DL_REMOVE_xxx 000001NNb - X - -

Q921M_DL_ERROR_xxx 000010NNb X - - X

Q921M_DL_DATA_xxx 000011NNb X X - -

Q921M_DL_UNIT_DATA_xxx 000100NNb X X - -

NOTE 1: ‘NN’ in Value encoded according to Table 76
NOTE 2: X : Exists

 - : Does not exist

The Q921M_DL_DATA_xxx and Q921M_DL_UNIT_DATA_xxx follow the message structure according to Table
107.

Table 101: Q.921M DlAssignReq wrapper

Offset Field Size Value Description

0 bCommand 1 Number Q921M_DL_ASSIGN _REQ command as
defined Table 100

USB Class Definitions for Communication Devices

Version 1.1 99 January 19, 1999

Table 102: Q.921M DlAssignInd, DlRemoveInd Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number Q921M_DL_ASSIGN _IND,
Q921M_DL_REMOVE _IND command as
defined Table 100

1 bTei 1 Number TEI value

Table 103: Q.921M DlErrorReq, DlErrorCon Command Wrapper

Offset Field Size Value Description

0 bCommand 1 Number Q921M_DL_ERROR_IND,
Q921M_DL_ERROR_CON command as
defined in Table 100

1 bError 1 Number Error code according to Q.921 "TABLE
II.1/Q.921 Management Entity Actions for
MDL-Error-Indications" where A=1, B=2, …

E.3.2 Q.921: ISDN USER-NETWORK INTERFACE DATA LINK LAYER
SPECIFICATION FOR CIRCUIT MODE BEARER SERVICES
Protocol code: According to Table 19.

Description: Q.921 is the link access procedure used by Q.931.. The protocol covers both user and network side
of a connection.

Table 104: Q.921 Configuration Parameter List

bParameterIndex Field Size Value Description

0 bmOptions 1 Bitmap D7..D1 RESERVED (Reset to zero)

D0 0 – User side
1 – Network side

1 bT200 1 Number Maximum time until an acknowledgment. must
be received after the transmission of an I-
frame

2 bN200 1 Number Maximum number of retransmissions of a
frame

3 bN201 1 Number Maximum number of bytes in an information
field

4 bK 1 Number Maximum number of outstanding I-frames

5 bT203 1 Number Maximum time allowed without frames being
exchanged

6 bSAPI 1 Number SAPI value according Table 2 of Q.921

Note 1: Parameters at offset 1 – 5 according to Q.921 "5.9 List of system parameters ”
Note 2 : The parameter list is read by the protocol on activation of Protocol Unit

USB Class Definitions for Communication Devices

Version 1.1 100 January 19, 1999

Table 105: Command Message Format

Command Corresponding ITU Q.921 data
link layer primitive

ITU Q.921 message reference

Q921_DL_ESTABLISH_REQ Establish request 4.1.1.1 DL-ESTABLISH

Q921_DL_ESTABLISH_IND Establish indication 4.1.1.1 DL-ESTABLISH

Q921_DL_ESTABLISH_CON Establish confirm 4.1.1.1 DL-ESTABLISH

Q921_DL_RELEASE_REQ Release request 4.1.1.2 DL-RELEASE

Q921_DL_RELEASE_IND Release indication 4.1.1.2 DL-RELEASE

Q921_DL_RELEASE_CON Release confirm 4.1.1.2 DL-RELEASE

Q921_DL_DATA_REQ Data request 4.1.1.3 DL-DATA

Q921_DL_DATA_IND Data indication 4.1.1.3 DL-DATA

Q921_DL_UNIT DATA_REQ Udata request 4.1.1.4 DL-UNIT DATA

Q921_DL_UNIT DATA_IND Udata indication 4.1.1.4 DL-UNIT DATA

Note: Commands according to Q.921 "TABLE 6of Q.921 Primitives associated with this recommendation”

Table 106: Q.921 commands

Command Value Request Indication Response Confirm

Q921_DL_ESTABLISH_xx 000000NNb X X - X

Q921_DL_RELEASE_xxx 000001NNb X X - X

Q921_DL_DATA_xxx 000010NNb X X - -

Q921_DL_UNIT DATA_xxx 000011NNb X X - -

NOTE 1: ‘NN’ in Value encoded according to Table 76
NOTE 2: X : Exists

 - : Does not exist

Table 107: Q.921 General Message Structure

Offset Field Size Value Description

0 bCommand 1 Number Command according to Table 100 and Table
106

1 bMessageData0 1 Parameter First byte with optional parameter data
associated with the message

0+N bMessageDataN-1 1 Parameter Nth byte with optional parameter data
associated with the message

USB Class Definitions for Communication Devices

Version 1.1 101 January 19, 1999

Data l ink
connection

released

Link
connection
established

Awaiting
establish

Wait ing
release

Q 9 2 1 _ D L _ E S T A B L I S H _ C O N

Q921_DL_ESTABL ISH_REQ

Q
92

1_
D

L_
E

S
T

A
B

LI
S

H
_I

N
D

/C
O

N

Q
921_D

L_R
E

LE
A

S
E

_IN
D

Q 9 2 1 _ D L _ R E L E A S E _ R E Q

Q 9 2 1 _ D L _ R E L E A S E _ C O NQ921_DL_RELEASE_ IND

Q
921_D

L_E
S

T
A

B
LIS

H
_IN

D
,

Q
921_D

L_U
N

IT
_D

A
T

A
_R

E
Q

/IN
D

Q921_DL_ESTABL ISH_REQ

Q921_DL_RELEASE_ IND,
Q921_DL_UNIT_DATA_REQ/ IND

Q
921_D

L_E
S

T
A

B
LIS

H
_IN

D
/C

O
N

,
Q

921_D
L_R

E
LE

A
S

E
_IN

D
,

Q
921_D

L_U
N

IT
_D

A
T

A
_R

E
Q

/IN
D

Q921_DL_ESTABLISH_IND/CON,
Q921_DL_UNIT_DATA_REQ/ IND

Q921_DL_DATA_REQ/ IND

Figure 15: State Transition Diagram for Q.921

E.3.3 Q.921 TEI-multiplexor: TERMINAL ENDPOINT IDENTIFIER
MULTIPLEXOR FOR ISDN USER-NETWORK INTERFACE DATA LINK
LAYER
Protocol code: According to Table 19.

Description: TEI-multiplexor protocol is used to connect multiple instances of Q.921 to a D-channel in a device.
The TEI-mux protocol distributes incoming messages to all connected Q.921 protocols for sending
outgoing messages down the stack to the D-channel. This protocol has no configurable parameters,
and it covers both user and network side of a connection.

USB Class Definitions for Communication Devices

Version 1.1 102 January 19, 1999

E.4 Network layer Protocols

E.4.1 Q.931/Euro-ISDN User Side
Protocol code: According to Table 19.

Description: Call control protocol of the Q.931/Euro-ISDN userside is the ISDN connection. The protocol
implements the interface described by Primitives to/from call control in Q.931 Annex A “User side
and network side SDL diagrams”.

NOTE: Extensions for symmetric call operation are not supported.

Most commands use a general command structure as defined in Table 112 that corresponds to the
message format defined in Q.931 chapter 4.1. The ones that don’t are explicitly defined within this
document.

Table 108: Q.931/Euro-ISDN Configuration Parameter List

bParameterIndex Field Size Value Description

0 bT301 1 Number See Note 1

1 bT302 1 Number See Note 1

2 bT303 1 Number See Note 1

3 bT304 1 Number See Note 1

4 bT305 1 Number See Note 1

5 bT308 1 Number See Note 1

6 bT309 1 Number See Note 1

7 bT310 1 Number See Note 1

8 bT313 1 Number See Note 1

9 bT314 1 Number See Note 1

10 bT316 1 Number See Note 1

11 bT317 1 Number See Note 1

12 bT318 1 Number See Note 1

13 bT319 1 Number See Note 1

14 bT321 1 Number See Note 1

15 bT322 1 Number See Note 1

Note 1 : Parameters according to Q.931 TABLE 9-2 "Timers in the user side”.
Note 2 : The parameter list is read by the protocol on activation of Protocol Unit.

Table 109: Q.931/Euro-ISDN Command Message Format

Command Corresponding ITU Q.931 call
control primitive

ITU Q.931 message format
reference

Q931_ALERT_REQ Alerting request 3.1.1 Alerting

Q931_ALERT_IND Alerting indication 3.1.1 Alerting

Q931_DISC_REQ Disc request 3.1.5 Disconnect

Q931_DISC_IND Disc indication 3.1.5 Disconnect

Q931_ERROR_IND Error indication 3.1.5 Disconnect /Note 1

USB Class Definitions for Communication Devices

Version 1.1 103 January 19, 1999

Command Corresponding ITU Q.931 call
control primitive

ITU Q.931 message format
reference

Q931_GET_STATISTICS_REQ N.A. N.A.

Q931_GET_STATISTICS_CON N.A. N.A.

Q931_INFO_REQ Info request 3.1.6 Information

Q931_INFO_IND Info indication 3.1.6 Information

Q931_LINK_FAIL_IND Link fail indication 3.1.5 Disconnect /Note 1

Q931_MORE_REQ More info request 3.1.15 Setup acknowledge

Q931_MORE_IND More info indication 3.1.15 Setup acknowledge

Q931_NOTIFY_REQ Notify request 3.1.7 Notify

Q931_NOTIFY_IND Notify indication 3.1.7 Notify

Q931_PROCEED_REQ Proceeding request 3.1.2 Call proceeding

Q931_PROCEED_IND Proceeding indication 3.1.2 Call proceeding

Q931_PROGRESS_REQ Progress request 3.1.8 Progress

Q931_PROGRESS_IND Progress indication 3.1.8 Progress

Q931_REJECT_REQ Reject request 3.1.10 Release complete

Q931_REJECT_IND Reject indication 3.1.10 Release complete

Q931_RELEASE_REQ Release request 3.1.9 Release

Q931_RELEASE_IND Release indication 3.1.9 Release

Q931_RELEASE_CON Release confirm 3.1.9 Release

Q.931_RESTART_REQ Management restart request 3.4.1 Restart

Q.931_RESTART_CON Management restart acknowledge 3.4.2 Restart acknowledge

Q931_RESUME_REQ Resume request 3.1.11 Resume

Q931_RESUME_CON Resume confirm (ok) 3.1.12 Resume acknowledge

Q931_RESUME_CON Resume confirm (error) 3.1.12 Resume reject

Q931_SETUP_REQ Setup request 3.1.14 Setup

Q931_SETUP_IND Setup indication 3.1.14 Setup

Q931_SETUP_RES Setup response 3.1.3 Connect

Q931_SETUP_CON Setup confirm (ok) 3.1.3 Connect

Q931_SETUP_CON Setup confirm (error) 3.1.5 Disconnect /Note 1

Q931_COMPLETE_IND Setup complete indication (ok) 3.1.4 Connect acknowledge

Q931_COMPLETE_IND Setup complete indication (error) 3.1.5 Disconnect /Note 1

Q931_STATUS_IND Status indication 3.1.16 Status

Q931_SUSPEND_REQ Suspend request 3.1.18 Suspend

Q931_SUSPEND_CON Suspend confirm (ok) 3.1.19 Suspend acknowledge

Q931_SUSPEND_CON Suspend confirm (error) 3.1.20 Suspend reject

Q931_TIMEOUT_IND Timeout indication 3.1.5 Disconnect /Note 1

Q931_USERINFO_REQ N.A. 3.3.13 User information

Q931_USERINFO_IND N.A. 3.3.13 User information

Note 1: Only mandatory fields are used

USB Class Definitions for Communication Devices

Version 1.1 104 January 19, 1999

Table 110: Q.931/Euro-ISDN Commands

bMessageType Value Request Indication Confirm Response

Q931_ALERT_xxx 000000NNb X X - -

Q931_COMPLETE_xxx 000001NNb - X - -

Q931_DISC_xxx 000010NNb X X - -

Q931_ERROR_xxx 000011NNb - X - -

Q931_INFO_xxx 000100NNb X X - -

Q931_LINK_FAIL_xxx 000101NNb - X - -

Q931_MORE_xxx 000110NNb X X - -

Q931_NOTIFY_xxx 000111NNb X X - -

Q931_PROCEED_xxx 001000NNb X X - -

Q931_PROGRESS_xxx 001001NNb X X - -

Q931_REJECT_xxx 001010NNb X X - -

Q931_RELEASE_xxx 001011NNb X X X -

Q931_RESUME_xxx 001100NNb X - X -

Q931_SETUP_xxx 001101NNb X X X X

Q931_SUSPEND_xxx 001110NNb X - X -

Q931_STATUS_xxx 001111NNb - X - -

Q931_TIMEOUT_xxx 010000NNb - X - -

Q931_USERINFO_xxx 010001NNb X X - -

Note 1: ‘NN’ in Value encoded according to Table 76
Note 2: X : Exists

 - : Does not exist

Table 111: Q.931/Euro-ISDN System Management Commands

bCommand Value Request Indication Confirm Response

Q931_RESTART_xxx 100000NNb X - X -

Note 1: ‘NN’ in Value encoded according to Table 76
Note 2: X : Exists

 - : Does not exist

Table 112: Q.931/Euro-ISDN General Command Structure

Offset Field Size Value Reference

0 bCommand 1 Number Command according to Table 110

1 iCallReference 2 to N Info element Q.931 Chapter 4.3

1+N iInformationElement Size of
info

element

Info element Optional information element according to
command.

USB Class Definitions for Communication Devices

Version 1.1 105 January 19, 1999

0
Null

1
Call initiatedQ931_SETUP_REQ

6
Call present Q931_SETUP_IND

17
Resume
request

Q931_RESUME_REQ

Figure 16: Q.931 Handling of Null State

USB Class Definitions for Communication Devices

Version 1.1 106 January 19, 1999

3
Outgoing call

proceeding

2
Overlap
sending

1
Call initiated

Q931_MORE_IND

Q931_PROCEED_IND

Q931_PROCEED_IND

4
Call delivered

Q931_ALERT_IND

Q931_SETUP_CON

Q931_REJECT_IND
Q931_SETUP_CON

(error)

Q931_ALERT_IND

Q931_SETUP_CON
(timeout error)

Q931_RELEASE_REQ

Q931_SETUP_CON
(error)

Q931_RELEASE_REQ

11
Disconnect

request

19
Release
request

11
Disconnect

request

19
Release
request

10
Active

0
Null

Q931_SETUP_CON

Q931_INFO_REQ,
Q931_PROGRESS_IND,

Q931_ERROR_IND

Q931_USERINFO_REQ
Q931_USERINFO_IND

Q931_SETUP_CON

Q931_PROGRESS_IND

Figure 17: Q.931 Handling of Outgoing-Call States

USB Class Definitions for Communication Devices

Version 1.1 107 January 19, 1999

6
Call present

9
Incoming call

proceeding

Q931_PROCEED_REQ

Q931_COMPLETE_IN
D

Q931_ALERT_REQ

Q931_SETUP_RES

Q931_REJECT_REQ

Q931_ALERT_REQ

7
Call received

Q931_SETUP_RES

8
Connect
request

Q931_SETUP_RES

Q931_MORE_REQ

Q931_COMPLETE_IN
D

(error)

Q931_PROCEED_REQQ931_ALERT_REQ
Q931_SETUP_RES

10
Active

12
Disconnect
indication

25
Overlap

receiving

8
Connect
request

7
Call received

9
Incoming call

proceeding

25
Overlap

receiving

0
Null

Q931_PROGRESS_REQ

Q931_INFO_IND
Q931_TIMEOUT_IND

Q931_PROGRESS_REQ
Q931_ERROR_IND

Q931_USERINFO_REQ
Q931_USERINFO_IND

Figure 18: Q.931 Handling of Incoming Call-Setup States

USB Class Definitions for Communication Devices

Version 1.1 108 January 19, 1999

10
Active

Q931_SUSPEND_REQ

15
Suspend
request

11
Disc request

0
Null

Q931_RELEASE_CON,
Q931_RELEASE_CON (error) ,

Q931_STATUS_IND (error)

12
Disc

indication

19
Release
requestQ931_RELEASE_REQ

19
Release
request

0
Null

Q931_RELEASE_CON,
Q931_RELEASE_CON (error) ,

Q931_STATUS_IND (error)

15
Suspend
request

10
ActiveQ931_SUSPEND_CON

(error)

12
Disconnect
indication Q931_DISC_IND

0
Null

Q931_RELEASE_IND,
Q931_SUSPEND_CON

17
Resume
request

Q931_RESUME_CON
(error)

0
Null

10
Active

Q931_RESUME_CON

19
Release
request

Q931_RESUME_CON
(timeout error)

NOTE: Transition due to change of
state (to 19, Release request) in
device without host beeing informed

Q931_NOTIFY_REQ
Q931_NOTIFY_IND

Figure 19: Q.931 Handling of Specific States

USB Class Definitions for Communication Devices

Version 1.1 109 January 19, 1999

Any state
except

0,1,6,17,19

Any state
except

0,1,6,17,19,
25

Any state
0

NullQ931_LINK_FAIL_IND,
Q931_RELEASE_ IND

Any state
except

0,11,12,
17,19

Q931_DISC_REQ
12

Disc
indication

Q931_DISC_IND

Any state
except

0,19

Q931_STATUS_ IND
(error)

0
Null

Q931_STATUS_ IND

Any state

Q931_ INFO_IND

Q 9 3 1 _ U S E R I N F O _ R E Q
Q931_USERINFO_IND

Q931_ INFO_REQ

11
Disconnect

request

11
Disconnect

request

Figure 20: Q.931 Handling of Generic States

E.4.2 V.42bis : Data compression procedures for DCE using error
correction procedures
Protocol code: According to Table 19.

Description: V.42bis is a data compression protocol

Table 113: V.42bis Configuration Parameter List

bParameterIndex Field Size Value Description

0 bP0 1 Number V.42bis data compression request

USB Class Definitions for Communication Devices

Version 1.1 110 January 19, 1999

bParameterIndex Field Size Value Description

1 wP1 2 Number Number of code words

2 bP2 1 Number Maximum string size

Note 1: Parameters according to V.42bis ”10 Parameters”
Note 2: The parameter list is read by the protocol on activation of Protocol Unit

E.4.3 V.120: V.24 rate adaptation to ISDN
Protocol code: According to Table 19.

Description: V.120 is a Rate adaptation protocol. The protocol has no configurable parameters

