FAT filing system

v2.3

Brad Eckert, Stephen Pelc

Copyright (©) 2007, 2008, 2009, 2010, 2013 Microprocessor Engineering Limited
Published by Microprocessor Engineering

FAT filing system
User manual
Manual revision 2.3
16 March 2013

Software
Software version 2.3

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com

Table of Contents

1 FAT file system introduction 1
1.1 Design 0bJectives 1
1.2 Capabilitieso 1
1.3 ReStTICHIONS . ..ot e 2
1.4 Build files . ..o 2
1.5 Configuration OptionS. 2

2 FAT file system core............ i 5
2.1 Buffers, globals and tools 5
2.2 SeCtor OPETALIONS . .« o\ttt ettt e e 7
2.3 FAT type Specific TOULIIES . ..o vttt e e e e e 7
2.4 FAT File system initialisation......... ... 9
2.5 DATECHOTIES . . .ttt et e e 9
2.6 FAT Chains.t e e e e e 12
2.7 File/Path name handling........... .. . 12
2.8 Current Working Directoryo e 13
2.9 Directory Mmanagementttt e 13
2.10 Handles and File support. 14
211 File Read . ..o e 16
2,12 File WIite oot 16
2.13 Protection tools 18
2.14 User API, mostly ANS Forth...... ... 18
2.15 Generic I/O file deviceo 20
2.16 Drive detailso e 21
207 Test COAR . v 21

3 Simple Directory listing 23
3.1 Directory Listing e 23
3.2 File size diSplay . ..ot 23
3.3 File date and time. ... e 23
3.4 Display operations. e 23

4 deleting directories............, 25

5 VFX Forth for Windows build file.......................... 27
5.1 Configurationot 27
D2 FHleS 27

6 VFX Forth harness............. 29
6.1 Sector handling 29
6.2 T00IS. . ottt 29
6.3 Alignment checking. i 30
6.4 Embedded systems compatibility 30

6.5 Unaligned mMemOTy GCCESS. . ..o ututt ettt ettt e 30

ii FAT filing system
7 Disk read/write for VFX Forth for Windows.............. 31
7.1 Windows details.o 31
7.2 Sector read/write Interface 31
8 Forth 7 cross-compiler harness.............................. 33
8.1 Sector handling 33
8.2 00lS. . o 33
8.3 Alignment checking. 34
8.4 Unaligned mMemOTy GCCESS. . ..o uttt ettt et e e 34
8.5 Portability Words.o e 35
9 Generic SPI driver for SD cards............................ 37
9.1 Configuration 38
9.2 SD/MMOC fUnCtIOnS . . .« .vtee et 38
9.3 Sector read and WIite. ottt 39
9.4 CSD handlingttt e 40
9.5 FAT file system AP o 40
9.6 Test Code ... 41

Chapter 1: FAT file system introduction 1

1 FAT file system introduction

The file FatCore.fth contains the core FAT filing system. before you compile this file you must
provide some configuration information, a prortability harness for your Forth kernel, and a sector
read/write interface for your disk system. Some example interfaces are provided in the issue
code.

To build the code, there are example build files, including amongst others:

FatVixW.bld
Builds a demonstration system on VFX Forth for Windows. This can be used with
any drive formatted with a FAT file system.

SSP2148.bld
Builds code for an Olimex LPC-P2148 board using the SSP (SPI1) driver from the

ARM cross compiler.

mci23xx.bld
Builds code for an NXP device using the MCI controller (4 bit SD card) on
LP(C23xx/24xx and some LPC17xx devices.

qspi52259.bld
Builds code for the QSPI device on Coldfire MCF522xx devices.

STM32F4eval.bld
Builds code for an STM32F4xx on the ST STM3240G-EVAL board.

STM32F4disco.bld
Builds code for an STM32F4xx on the STM32F4 Discovery board.

The Docs folder includes useful documentation about FAT file systems, including fatgen103.pdf
from Microsoft.

Some useful links:
http://www.seas.ucla.edu/classes/mkampe/cs111.sq05/docs/dos.html

1.1 Design objectives

This is a filing system for embedded systems, in particular for use with SD/SDHC/MMC and
other Flash cards. You must provide the sector read and write routines.

Because the filing system is designed for use with removable media, it is assumed that they will
be formatted on a PC.

RAM usage is more important than performance, although the use of the LRU sector cache
considerably improves performance with both hard and floppy drives, as well as with slow Flash
drives.

1.2 Capabilities

e FATI112, FAT16 and FAT32 are all supported.

Directories and subdirectories are supported.

The ANS Forth File wordset is supported.

e Can be used with any media type having a sector read and write interface.

2 FAT filing system

1.3 Restrictions

e A 32 bit host Forth is assumed.

e Sectors must be 512 bytes in length. As a result, 2Gb standard capacity SD cards may not
work, but SDHC cards will work.

e Sector numbers are 32 bit unsigned numbers. This restricts drive size to 2048Gb (2Th)
before considering restrictions in the FAT32 data.

e Only one drive is supported, although future expansion is provided for.
e File size is internally held as a 32 bit number, and is thus restricted to 4Gb per file.

e The file system is not thread safe. Enable the interlock (e.g. a semaphore) to the ANS file
layer if you need thread safe operation.

e Directory deletion must be performed file by file, unless you use the extension in DelDirs.fth.

e File names must be in the old DOS 8.3 format. Long file names are not supported, but
drives with long file names can be handled using the short alias.

e Drive formatting is not supported.

e The file system must be explicitly initialised at each power up and insertion of a card/drive.
1.4 Build files

Each supported configuration has a build file with a .bld extension. The build file contains
equates describing the maximum number of open files, number of sector buffers and some CPU
characteristics. The build file than loads a the required files, e.g. for an STM32F4 board:

-

include J%FFDir%\XC6harn \ harness

include %FFDir}\Drivers\sdioSTM32F4xx \ STM32F4 SDIO (1-bit DMA)
include %FFDir\FatCore \ core file system code
include %FFDir’\PlainDir \ simple directory listing
include %FFDir’\DelDirs \ directory and disk deletion
=

Note the use of text macros to define the directory containing the file system code.

The file sdioSTM32F4zz.fth is the CPU specific driver. Where there are hardware differences,
e.g. for the card detect pin, write protectpin, power control or pin assignments, there may also
be a file describing the hardware. This is often called *\i{hwxxxxxx.fth) and may be compiled
before the build file.

1.5 Configuration options
The following equates control compilation of some features. The defaults here are used if the

equates have not previously been defined, e.g.in your control file.

1 equ FATopen? \ -- flag
Set non-zero to compile the FAT code with all heads present.

1 equ FATtext? \ -- flag
Set non-zero to compile the FAT code for READ-LINE and WRITE-LINE.

1 equ FATio? \ -- flag
Set non-zero to compile the FAT code with a file generic I/O device.

1 equ FATspace? \ -- flag

Chapter 1: FAT file system introduction

Set non-zero to compile the FAT code for used space.

0 equ FATtest? \ -- flag
Set non-zero to compile the FAT code with test code.

Chapter 2: FAT file system core 5

2 FAT file system core

The file FatCore.fth contains the bulk of the file system code.

2.1 Buffers, globals and tools

File reads and writes use sector cache buffers for file I/O. One buffer gives the lowest performance,
since accessing more than one sector causes disk thrashing. WRITE-FILE accesses the FAT table
and the data sectors of the disk so there should be at least two sector buffers for each file
being actively written. READ-LINE tends to like more than two buffers - six are recommended,
especially with slow drives.

#64 equ MAX_PATH \ -- len
The maximum size of a pathname including the file name.

#buffers bytes/sec * buffer: bufs \ -- addr
Sector cache.

#buffers cells buffer: csects \ -- addr
Holds sector numbers of the currently buffered sectors.

#buffers cells buffer: ctr#s \ -- addr ; SFPOOQ7
Holds transaction numbers of the currently buffered sectors. The lowest number identifies the
oldest sector.

#buffers buffer: wrpendings \ -- addr
Holds the write-pending flags for the currently buffered sectors.

#buffers buffer: pdrives \ -- addr
Holds the physical devices for the currently buffered sectors.

variable buff# \ -- addr
Holds the next available sector buffer number (0, 1, ..).

variable tr# \ -- addr ; SFP007
Holds the current transaction number.

cvariable cdrive \ -- addr

Holds the current drive number, which must be 0 for the moment.

The following variables hold the disk characteristics. These will be changed at a later date to
support multiple drives by providing a structure per drive.

variable SectorsPerTrack \ -- addr
Holds the number of sectors per track for the raw disk.

variable NumHeads \ -- addr
Holds the number of heads for the raw disk.

variable rootentries \ -- addr
Number of 32-byte directory entries in the root directory.

variable rootdsecs \ -- addr
Number of sectors in the root directory.

variable rootsector \ —-- addr
Sector of root directory.

variable sec/cluster \ -- addr

6 FAT filing system

Sectors per cluster.

variable clusshift \ —-- addr
Equivalent shift count for sectors per cluster.

variable reservedsec \ -- addr
Reserved sectors: 1 for FAT12/16, usually 32 for FAT32.

variable totalsec \ —-- addr
Total number of sectors.

variable FATsize \ -- addr
FAT size in sectors.

variable basesector \ -- addr
Start sector of the current partition, currently 0

variable dcurs \ -- addr
Holds the display cursor position. This is an aid for later directory listing tools.

2variable savedDirEnt \ -- addr

Directory sectory and entry saved when a file/directory is found.
The following words manipulate the data above.

: initSecCache \ -—-
Clear the sector cache buffers.

: buf \ -- addr
return the address of the current/next sector cache buffer.

: csect \ --— addr
Return the address holding the current sector number.

: ctr# \ -- addr
Return the address holding the current transaction number.

: writePend \ -- addr
Return the address of the current sector write-pending flags (bytes).

: pdrive \ -- addr

Return the address of the device number (byte) in the cache line.
: bumpBuff# \ —-

Step the current sector to the next sector cache buffer.

: wmark \ -
Mark the current sector cache buffer as modified, so that it will be written back.

: RootDirSectors \ --n
Number of sectors for the root directory.

: StartSector \ —-n
Return the sector number of the first data sector.

1 c>s \ nclus -- nsec

Convert a number of clusters to the corresponding number of sectors. The EQU FastShift?
determines whether this word is implemented as a multiply by sec/cluster or a shift by
clusshift.

1 s>c \ nsec -- nclus

Chapter 2: FAT file system core 7

Convert a number of sectors to the corresponding number of clusters. The EQU FastShift? de-
termines whether this word is implemented as a divide by sec/cluster or a shift by clusshift.

: cluster>sec \ cluster -- sector
Converts a cluster number to a physical sector.

: sec>cluster \ sector -- cluster
Converts a physical sector to a cluster number.

: b>c \ bytes -- clusters
Returns the number of clusters needed to hold a number of bytes.

: b>cn \ bytes -- nclus noff
Convert a number of sectors to a number of complete clusters and the sector offset (0..noff)
within the following partially filled cluster.

1 ¢>b \ clusters -- bytes
Converts clusters to a byte count.

: CountofClusters \ ——n

Number of clusters available for data. According to Microsoft, the FAT type (12/16/32) depends
solely on this number of clusters, and not on the ASCII string in sector 0.

: nodir \ -

Reset the directory display cursor.

2.2 Sector operations
: wflush \ -
If the current sector cache buffer is marked as modified, write it back.

: flushall \ -
Write all marked sector cache buffers back.

: seeksector \ sector -- found? ; look for a current sector
Return true if the given sector is already cached.

: setCtr# \ -
Update the global transaction number and set the current sector’s transaction number from it.

: oldest \ -
Set buff# to the oldest cached sector.

: readsector \ sector --
Ensure sector is in the cache buffers.

2.3 FAT type specific routines
Several routines are vectored according to the FAT implementation on the drive. These routines

use a table of xts to hold the action required for FAT12, FAT16 and FAT32. The variable
FATtype holds the offset in bytes used to index the table.

Note that this code assumes a 32 bit Forth implementation.

variable FATtype \ -- addr
Holds the offset (0/4/8) in the FAT function tables.
: FATexec \ 77 table -- 77

From the function table, executes the function indexed from FATtype.

1 *%3/2 (n--n) dup 2/ + ;
Signed multiply by 3/2. For FAT12 operations.

FAT filing system

1 %x2/3 (n--n) $AAAAAAAA um* nip ;

Unsigned multiply by 2/3. For FAT12 operations.

create /fats \ -- addr
Vector table for /FAT below.

: /fat \ #bytes -- #entries

Given a memory size in bytes, returns the number of complete FAT entries in it.

create FAToffsets \ —- addr
Vector table for FAToffset below.

: FAToffset \ cluster -- offset sector
Get sector number and offset for the given FAT entry.

: FAT@32 \ cluster -- n
Return the 28 bit FAT32 entry for the given cluster.

: FATQ16 \ cluster -- n
Return the 16 bit FAT16 entry for the given cluster.

: fat@12bndry \ offset sector —-- w

Read a 16 bit FAT12 entry that crosses a sector boundary.

is the sector number of the first sector.

: FAT@12 \ cluster -- n
Return the 12 bit FAT12 entry for the given cluster.

create FAT@s \ —-- addr
Vector table for FAT®.

: FAT® \ cluster -— n
Return the FAT entry for the given cluster.

: FAT!32 \ n cluster --
Set the FAT32 entry for the given cluster.

: FAT!16 \ n cluster --
Set the FAT16 entry for the given cluster.

: fat!12bndry \ w offset sector --
Write a 16 bit FAT12 entry that crosses a sector boundary:.
is the sector number of the first sector.

: wmergel?2 \ n cluster nr -- nw

Offset is Bytes/Sector-1 and sector

. Offset is Bytes/Sector-1 and sector

Merge two FAT12 entries before writing. N is the new entry, nr is the entry from the disc, and
cluster is the entry number to which the value nw will be written.

: FAT!'12 \ n cluster --
Set the FAT12 entry for the given cluster.

create FAT!s \ -- addr
Vector table for FATQ.

: FAT! \ n cluster --
Set the FAT entry for the given cluster.

create |cls \ -- addr

Chapter 2: FAT file system core 9

Table holding last-cluster markers for each FAT type.

|cl \ - n
Last-cluster marker.

2.4 FAT File system initialisation

variable bptr \ -- addr
Stream pointer into the current sector cache buffer.

variable bperror \ -- addr
If set non-zero, an error exists in the BPB.

: newb \ --

Reset the input stream.

: skipb \ -

Step to the next stream byte.

: getb \ -- byte

Get stream byte and step to next.

1 getw \ -- word

Get 16 bit stream item and step past it. The item is read in little-endian format.
1 getl \ -- long

Get 32 bit stream item and step past it. The item is read in little-endian format.

: wantb \ byte --
Read the next stream byte and if it is not the given byte, set bperror to 1.

: wantw \ word --
Read the next stream word and if it is not the given word, set bperror to 1.

: lengthen \w-——u
Read the next 32 bit item. If w is non-zero, discard the new item and return w, otherwise return
the new item.

: bp_init \ -
Initialise the system, read the drive characteristics and set up for file operations.

2.5 Directories

Fach sector of a directory contains 16 entries indexed by DIRENTRY. The sector number
DIRSECTOR is a 32-bit value addressing up to 2Tbytes. The root directory is a contiguous
run of ROOTDSECS sectors starting at the sector in ROOTSECTOR. Subdirectories use a chain in the
FAT table just like files. So, the root directory has a fixed number of possible directory entries.
DIRCLUSTER is 0 when the root directory is selected.

For most drives, cluster 0 and cluster 1 are occupied by two copies of the FAT. Cluster 2 is
usually the start of the root directory. For FAT12 and FAT16, the root directory is of fixed size.

: dt \ x acc n bits -- acc’ x
Shift accumulator left by bits, add in n, and bring the next item z to the top. Ugh! Convert
the current date and time into the packed 32 bit format for directory entries:

yyyyyyymmmmddddd : hhhhhmmmmmmsssss

variable dircluster \ -- addr

10 FAT filing system

Holds first cluster of the current directory, or 0 for the root directory.

variable dirsector \ -- addr
Holds current sector number of directory.

variable direntry \ -- addr
Holds current entry number.

: dir[] \ offset -- addr
Index into the current directory entry. Ensures that the entry is in the sector cache.

: secmask \ -- sector mask

Return the sector and the mask for testing the current directory sector.
: firstsec? \ -- flag

Return true if we are at the first sector of a cluster.

: lastsec? \ -- flag

Return true if we are at the last sector of a cluster.

: attrib? \ mask -- flag

Test file attribute bits, returning non-zero if any bits in the mask are set. The attributes are a
bit mask

e bit 0, $01 - read only
e bit 1, $02 - hidden
e bit 2, $04 - system
e bit 3, $08 - volume ID
e bit 4, $10 - directory
e bit 5, $20 - archive
e $0F - long file name
: dir? \ - Db
Return the first byte of the directory entry.
: dirsmudged? \ -- flag
Return true if the current directory entry is "smudged".
: dirsmudge \ -
Mark the current directory entry as "smudged".

: get-es \ -- entry sector
Return the current directory entry and sector.

: set-es \ entry sector --
Set the current directory entry and sector.

: dircluster@ \ -- clus
Return the current directory cluster.

: dircluster! \ clus --

Sect the current directory cluster, and hence start sector.
: DirValid? \ -- flag

Are we at a valid directory entry for display?

: sbackward \ --
Go to the previous directory cluster, use 1- for root.

Chapter 2: FAT file system core

: sforward \ -
Go to the next directory cluster, use FAT for subfolders, 1+ for root

: sector07? \ -- flag
Are we at the first sector of a directory?

: dsecup \ —-
Step to the next directory sector.

: dsecdn \ -
Step to the previous directory sector.

: entbump \ offset -- n
Go to next/prev entry, where offset = +/-1

: dir++ \ —-

Go to the next directory sector/entry.

: dir-- \ —-

Go to the previous directory sector/entry.

: noend? \ clus -- notlast?
Return true if the cluster number is not an end-chain-marker.

: OKprev \ -- flag
True if the directory pointer is not at the very beginning of the directory.

: OKnext \ -- flag ; okay to go forward?
True if the directory pointer is not at the very end of the directory.

: dirnext \ -- flag

Jump to the next valid directory entry. Return non-zero if the next entry is valid.

: todir \ —-

Skip to first valid entry.

: dirprev \ -- flag

Jump to previous valid directory entry.

#13 buffer: npad \ -- addr
Temporary buffer for building 8.3 filenames.

: padc \ char --
Add one character to npad.

: pad$ \ caddr len --
Add string to npad.

: dfname \ -- caddr len
Return the main part of the file name with trailing spaces removed.

: dfext \ -- caddr len
Return the extension part of the file name with trailing spaces removed.

: dfullname \ -- caddr len
Return filename with extension.

: parent? \ -- flag
Return true if the current directory entry is a parent directory, i.e. "..".

: cluster0O \ --n

11

12 FAT filing system

Get the first cluster number of the data for this entry.

: setClusO \ u dirent --
Set the cluster number into the given directory entry.

: cluster0Q! \'n --
Set the first cluster number of the data for this entry.

: folder? \ -- flag
Is the current entry a directory /folder?

: dsize \ ——n
The file size in bytes of the file for the current directory entry.

: dirsect0 \ -- sect
Return the starting sector of the current directory.

: dirhome \ —-
Select the first entry in the current directory.

2.6 FAT chains

: freechain \ clusO --
Writes zeros to a chain in the FAT table.

: _freesecs \ --
Frees the chain of the current file.

: _delete \ —
Deletes the current file.

: getcluster \ clus -- clus’
Gets the next free cluster number after this one and marks it as the last.

: chain+ \ cl -- cl’
Appends a cluster to the end of the chain.

: shrink \ clusO --
Shrinks a FAT chain and marks the last cluster.

: expand \ clusO n —-
Expands a FAT chain and marks the last cluster.

2.7 File/Path name handling

File names are checked against allowable characters. Dot (.) is allowable once to separate
filename and ext fields. The widths of these fields may not exceed 8 and 3 characters respectively.

create goodchars \ -- addr
An array of packed bit flags: 1=allowed: 0..7, 8..9, ...127

: goodch \ char -- flag
Check if the character is allowable in a file/path name.

: goodstr \ caddr len limit -- flag
Check that string has only allowable chars and is not too long.

: name.ext \ au--al ul a2 u2
Separate filename string into name and extension strings.

: goodname \ caddr len -- flag

Chapter 2: FAT file system core 13

Are filename and extension (could be in a path) valid?

A filename that contains one or more slashes (either ’/” or’ \’) is assumed to be a file path
ending in a filename. When one of these is encountered, the path string is stripped off and used
it to set the file path. The current directory is not changed. If all of your files are in the same
directory, you can use CWD and friends to set the current directory. Begin with a slash to start
at the root directory.

: /parse \ addr len -- addr’ len’ al ul
Pick the file name off left end of path. The string al/ul contains the next directory element

2.8 Current Working Directory

The current file path is tracked by a path string. The file tree is navigated by selecting the
cluster for the subdirectory and adding its name to the path. A ".." folder name trims the path
name to go back a level. This path string is for display use.

Because this is not a fully thread-safe file system and only has a single "working directory" for
all tasks/threads, you will need to be careful with external access systems such as HTTP, FTP
and USB.

pathmax buffer: pathbuf \ -- addr
Path name buffer.

: nopath \ —-

Empty the path name buffer.

: path \ -- caddr len
Return the current path string.

: bpath \ b --

Bump the pathname string length.

: pc+ \ char --

Add char to the path string.

2 /7 \ -- flag

Return true if the last+1 character is ’/’.
: trimp \ —-
Trim path to just before the last '/’ character.

: addp \ caddr len --
Add string to path, separated by a ’/’ character.

2.9 Directory management
: dirstart \ cluster --

Starts referencing a new directory at the given cluster.

: rootdir \ --
Start at the root directory.

: dirnest \ -
Start at the folder pointed to by the current directory entry.

: sel-folder \ -
Select the current directory entry as a folder.

14 FAT filing system

: _test-file \ caddr len attr -- found?

Search in the current directory for an existing filename matching none of the given* attribute
bits. Return non-zero if found. If found, the directory sector and entry are saved in savedDirEnt
and the directory pointers address the found filename entry. The attribute bits settings are:

e bit 0, $01 - read only
e bit 1, $02 - hidden

e bit 2, $04 - system

e bit 3, $08 - volume ID
e bit 4, $10 - directory

e bit 5, $20 - archive

e $0F - long file name

: test-file \ caddr len -- found?

Search for a file that is neither a directory nor a volume ID. Upon exit when found, the directory
pointers address the found file.

: cd+ \ caddr len -- ior
Open new directory. CD+ changes the directory up or down a level.

: $cwd \ addr len -- ior
Open a subdirectory given a file path. Ior=0 if okay.

: setdir \ addr len -- addr’ len’ ior
Select a subdirectory given a file path, stripping off the filename.

: wipeclus \ clus --
Fill a cluster with zeros, THROW on error.

1 getdir \ -- ior
Finds the first directory entry that may be overwritten.

2.10 Handles and File support

File support is ANS standard, after the stream model used by mainstream computing. File
status is held in array of records:

-
8-bit filemode 3=R/W, 1=R/0, 2=W/0
bit 2 = 1 = updated
bit 1 = 1 = writable
bit 0 = 1 = readable
8-bit device reserved for file device/drive
8-bit directory entry directory index (0..15) for this file
8-bit reserved
32-bit directory sector directory index for this file
32-bit position file position for up to 4GB files
32-bit start cluster FAT location
32-bit current sector active sector
32-bit file size length in bytes
N

The following data types are used:

fam "File Access Method", describes read/write permission etc.

Chapter 2: FAT file system core 15

ior "IO Result", A return result from most 10 calls, this value is 0 for success or non-
zero as an error-code.

fileid "File Identifier", a handle for a file

1 constant R/0 \ -- fam
Get ReadOnly fam. This must be bit 0 to match DOS.

2 constant W/0 \ -- fam
Get WriteOnly fam.

3 constant R/W \ -- fam

Get ReadWrite fam.

: bin \ fam -- fam’

Modify a file-access method to include BINARY.

The corresponding FAT attribute bits at byte 11 in each directory entry are:

#define ATTR_READ_ONLY 0x01
#define ATTR_HIDDEN 0x02
#define ATTR_SYSTEM 0x04
#define ATTR_VOLUME_ID 0x08
#define ATTR_DIRECTORY 0x10
#define ATTR_ARCHIVE 0x20
top two bits are always zero
#define ATTR_LONG_NAME OxOF \ continuation entry of long file name

- J

6 cells constant bytes/handle \ -- len
Number of bytes needed for each handle. Must be an integer number of cells for portability.

#files bytes/handle * buffer: filehandles \ -- addr
Array of file handle records.

cell +user handle \ -- addr

Holds file handle during some operations.

: +handle[] \ n —-- addr

Given a handle, return the address in the handle record array. Why not just use the address as
the handle?

\ H.FAM must be first.

: h.fam (-— addr) O +handle[] ; \ r/o, w/o, r/w, etc.

: h.dev (-- addr) 1 +handle[] ; \ device of this file, O.
: h.dire (-- addr) 2 +handle[] ; \ directory entry 0..15

: h.dirs (-- addr) cell +handle[] ; \ directory sector

: h.pos (-- addr) [2 cells] literal +handle[] ; \ file position

: h.clusO (-- addr) [3 cells] literal +handle[] ; \ starting cluster

: h.sect (-—addr) [4 cells] literal +handle[] ; \ current sector

: h.len (-- addr) [5 cells] literal +handle[] ; \ file length

: closeall \ —-

Wipes out the file structure to ensure files are closed.

: h.clus! \ cluster --
Set the current file sector.

()

.15

16 FAT filing system

: h:dir \ -
Points the directory pointers at the file addressed by current handle.

: after/before \ -- after before
Get the number of bytes before and after the current sector position.

: _resize \ len --
Given a file size in bytes, allocate clusters in FAT for the file.

: nexthan \ -- fileid ior
Find available file handle, and make it the current handle.
(repo-file) \ u -- ior
Repositions the current file. Must not be past the end. Unprotected.
: repo-file \ u -- ior
Repositions the current file. Must not be past the end. protected.
[dir \ —— ; R: —— ix*x
Saves current directory information on the return stack for later restoration by DIR]. This word
depends on the return address being a single cell on the Forth return stack.
: dir] \ —— ; R: ixx —-
Restores directory information previously saved on the return stack by [DIR. This word depends
on the return address being a single cell on the Forth return stack.

2.11 File Read

: samesect? \ -- flag
Checks if the next read or write is in a new sector.

: sameclus? \ —- cluster same?
Checks if the next sector is in the same cluster.

: bumppos \ n -- overflow
Bump file position, check for wrap to next sector.

: bumpsec \ len --
Bump file position and maybe sector /cluster.

: read-l1sec \ addr len -- addr’ len’ n
Read from current sector.

. _read-file \ baddr blen -- len ior

File read primitive.

2.12 File write

: timestamp \ —-
Adds the time and date to the current directory entry.

: copytime \ —-
Copy the creation date.

: archive+ \ -
Sets the current directory entry’s archive bit.

: filestamp \ -
Stamps the directory entry addressed by the current handle.

: stamp \ —-

Chapter 2: FAT file system core 17

Mark the file as stamp-pending.

: newchain \ —
Begin a new chain.

: nextwsec \ —-
Find next writable sector in file.

: write-lsec \au--a w
Write 512 bytes or less to file.

create crlf \ -- addr
Holds a CR/LF pair for WRITE-LINE below.

: name>dir \ caddr len dirent --
Copy the given file name into the given directory entry.

: prepdir \ caddr len clusO attribs --
Set up a new directory entry using the given name, cluster and attributes. Note that attribs is
in DOS form, not in the form used by h.fam.

: _newfold \ addr len cluster --
add a new folder entry to the current folder, and step to the next directory entry.

-~

. es \ --
Set the current handle’s entry and sector fields.

: 7open_err \ abc flag err# —— a b ¢ | —— -1 err# [exits caller]

If flag is false/0, just the first three parameters are returned. If flag is true, the first three
parameters are discarded and -1 and the error number are returned and exit is from the caller.
Provided to reduce code space and dependent on the return address being on the Forth return
address. The caller must not use local variables.

: _open-file \ caddr len fam -- fileid ior
File open primitive. Performs no directory restoration. This word will not open a directory.

: _create-file \ caddr len fam -- fileid ior
Create a file on disk, returning a 0 ior for success and a file id. If the file already exists, it is
truncated to zero length. Performs no directory restoration.

: _mkdir \ c-addr u -- ior

C-addr/u is an 8.3 directory name with no directory separators. MKDIR creates a new directory
of that name in the current directory. Directory removal is not properly supported without
the code in DelDirs.fth. You can use DELETE-FILE to remove an empty directory; but if the
directory is not emptied the disk will be corrupted. Performs no directory restoration.

: _mkDirEx \ c-addr u -- ior
As -mkdir, but supports full pathnames.

(read-file) \ caddr len fileid -- #read ior
Read data from a file. The number of characters actually read is returned as #read, and ior is
returned 0 for a successful read. Unprotected.

(write-file) \ caddr len fileid -- ior
Write a block of memory to a file. Unprotected.

(close-file) \ fileid -- ior
Close an open file. Unprotected.

(read-line) \ caddr ul fileid -- u2 flag ior

18 FAT filing system

Read an line of text from a file into a buffer, without EOL. Unprotected.

(delete-file) \ caddr len -- ior
Delete a named file from disk, and return ior=0 on success. Unprotected.

(rename-file) \ caddrl lenl caddr2 len2 -- ior
Rename a named file on the disk, and return ior=0 on success. Unprotected.

(initFATfs) \ -- ior
Initialize the FAT file system. Unprotected.

(termFATfs) \ —-
Shut down the FAT file system. Unprotected.

2.13 Protection tools

Semaphore FileSem \ —-
Interlocks the file system for multitasking.

: +FileLock \ —-
Wait until the file system is available and lock access

: -FileLock \ --
Unlock access to the file system.

2.14 User API, mostly ANS Forth

The API layer is made safe for multitasking systems by a semaphore. Because the underlying
hardware driver may THROW, e.g. for a fatal read/write error, these words include a CATCH.

: open-file \ caddr len fam -- fileid ior
Open an existing file on disk. This word will not open a directory.

: create-file \ caddr len fam -- fileid ior
Create a file on disk, returning a 0 ior for success and a file id. If the file already exists, it is
truncated to zero length.

: read-file \ caddr len fileid -- #read ior
Read data from a file. The number of characters actually read is returned as #read, and ior is
returned 0 for a successful read.

: write-file \ caddr len fileid -- ior
Write a block of memory to a file.

: close-file \ fileid -- ior
Close an open file.

: write-line \ caddr len fileid -- ior
Write data followed by CR/LF pair. IOR=0 for success.

: read-line \ caddr ul fileid -- u2 flag ior

Read an line of text from a file into a buffer, without EOL. The EOL marker may be either
CR/LF (DOS) or LF (Unix). Read the next line from the file specified by fileid into memory
at the address caddr. At most ul characters are read. Up to two line-terminating characters
may be read into memory at the end of the line, but are not included in the count 2. The line
buffer provided by caddr should be at least ui+2 characters long.

If the operation succeeds, flag is true and ior is zero. If a line terminator was received before
ul characters were read, then u2 is the number of characters, not including the line terminator,
actually read (0 <= u2 <= ul). When ul = u2, the line terminator has yet to be reached.

Chapter 2: FAT file system core 19

If the operation is initiated when the value returned by FILE-POSITION is equal to the value
returned by FILE-SIZE for the file identified by fileid, flag is false, ior is zero, and w2 is zero. If
ior is non-zero, an exception occurred during the operation and ior is the I/O result code.

An ambiguous condition exists if the operation is initiated when the value returned by
FILE-POSITION is greater than the value returned by FILE-SIZE for the file identified by fileid,
or if the requested operation attempts to read portions of the file not written.

At the conclusion of the operation, FILE-POSITION returns the next file position after the last
character read.

: resize-file \ len-ud fileid -- ior
Set the size of the file to ud, an unsigned double number. After using RESIZE-FILE, the result
returned by FILE-POSITION may be invalid.

: reposition-file \ len-ud fileid -- ior
Set file position, and return ior=0 on success. See the ANS Forth document.

: file-position \ fileid -- len-ud ior

Return file position, and return ior=0 on success.

: file-size \ fileid -- len-ud ior

Get size in bytes of an open file as a double number, and return ior=0 on success.

: delete-file \ caddr len -- ior
Delete a named file from disk, and return ior=0 on success.

: FileExist? \ c-addr u -- flag
Look to see if a specified file exists, returning TRUE if the file exists.

: file-status \ caddr len -- x ior

Return the status of the file identified by the character string c-addr/len. If the file exists, ior is
zero; otherwise ior is the implementation-defined I/O result code. X contains implementation-
defined information about the file (always zero for FATfiler).

: rename-file \ caddrl lenl caddr2 len2 -- ior
Rename the file named by the character string cZaddr/len to the name in the character string
caddr2/len2. Ior is zero on success.

: mkdir \ c-addr u -- ior

C-addr/u is an 8.3 directory name with no directory separators. MKDIR creates a new directory
of that name in the current directory. Directory removal is not supported unless the code
in DelDirs.fth is compiled. You can use DELETE-FILE to remove a directory but this is not
recommended unless you know that the directory is empty. Otherwise, you may end up with
lost chains.

: mkDirEx \ c-addr u -- ior

As mkdir but accepts directory separators. Directories can be created outside the current
directory. Directory removal is not supported unless the code in DelDirs.fth is compiled. You
can use DELETE-FILE to remove a directory but this is not recommended unless you know that
the directory is empty. Otherwise, you may end up with lost chains.

: cwd \ "<dir>" -- ; CWD <dirname>
An equivalent to the DOS CD or Unix cwd command.

: pwd \ -- ; PWD

20 FAT filing system

Displays the current working directory name. Because this is not a fully thread-safe file system
and only has a single "working directory" for all tasks/threads, you will need to be careful with
external access systems such as HT'TP, FTP and USB.

: SyncDrive \ —-

Force all updated sectors to the disk and empty the sector cache. This operation is necessary
when directories are modified by a separate task, e.g. when USB makes direct sector read /write
accesses.

: initFATfs \ -- ior
Initialize the FAT file system.

: termFATfs \ -
Shut down the FAT file system.

2.15 Generic I/0 file device

This device allows files to be used with KEY, EMIT and friends. To avoid having to create a device
for each file, one device is built that takes the file id/handle from the USER variable MyFID.

The application programmer is responsible for opening the file, setting the user variable and
closing the file.

cell +user MyFID \ -- addr

User variable holding the file handle (0..n-1) in the low 16 bits. The four bytes are used as
follows:

0/1 file handle

2 character buffer for file read/write
3 flags

3.0 reserved

3.1 set if EOF

3.2 set after file error

KEY? always returns true. After an EOF or file error, KEY always returns an LF character. This
prevents words such as ACCEPT blocking on error.

: FileKey? \ -- flag

Returns true. Does not call PAUSE.

: FileKey \ -- char
The file version of KEY. Executes PAUSE if LF is returned.

: FileType \ caddr len --
The file equivalent of TYPE. After any file error, the string is discarded.

: FileEmit \ char --
The file equivalent of EMIT. Uses FileType.

: FileCr \ char --
The file equivalent of CR. Uses FileType and calls PAUSE.

create FileCon \ -- addr ; OUT managed by upper driver
Generic I/O device for files.

Chapter 2: FAT file system core 21

: FileAccept \ c-addr +nl -- +n2 ; read up to LEN chars into ADDR
As ACCEPT with no echoing or flow control.

: FileEOF? \ -- flag

Return true if the file is at EOF.

: FileErr? \ -- flag

Return true if the file has returned an error.

: 7SetFID \ fileid ior -- ior

Set MyFID according to the results of a file open or create.

: OpenFileCon \ caddr len -- ior

Open the given file path in read-only mode as the current task’s file input device. The path is
given by caddr/len and the mode by fam. The I/O pointers IPVEC and OPVEC are not set.

: CreateFileCon \ caddr len -- ior
Create the given file path in read/write mode as the current task’s file output device. The path
is given by caddr/len and the mode by fam. The I/O pointers IPVEC and OPVEC are not set.

: CloseFileCon \ --
Close the file handle in MyFID.

2.16 Drive details

FATspace? [if]

The code below will be compiled if the equate is non-zero.
.FATtype \ --

Display FAT type.
.Drive \ --

Display drive details. InitFATfs must have been successfully run.

: TotalClusters \ -——- n
Returns the

2.17 Test code
FATtest? [if]
The code below will be compiled if the equate is non-zero.

#512 buffer: SBscr \ -- addr
Scratch sector buffer.

-1 value hFile \ --
File handle for tests.

1 go \ —-
Start up the file system.

: testline \ n -- caddr len
A line of text to output.

: testw \ #lines "<filename>" --
Test file writing, use in the form:
#lines testw file.ext

: testr \ "<filename>" --
Test file reading with read-1line. Use in the form:

22

testr file.ext

¢ 7eol \ caddr len -- caddr’ len’
Strip the Ist character from the line if it is CR or LF.

: rdLnCc \ caddr len -- len’ ; O=eof

Read a line from the file on a character by character basis.
character.

: testcr \ "<filename>" --

Test file reading character by character. Use in the form:
testcr file.ext

0 value <s> \ - u
Last sector dumped.

: secdump \u--

Display the contents of the given sector.
: ns \ -

Dump next sector.

: ps A

Dump previous sector.

: ss A

Dump same sector again.

FAT filing system

The line terminator is a line feed

Chapter 3: Simple Directory listing 23

3 Simple Directory listing

3.1 Directory listing

The directory listing is designed to fit on a small screen so it usually lists just filenames and
not very many at that. The cursor position is marked using a method different from that used
to mark highlighting. For example, a different background shade for highlights and foreground
shade for the cursor.

3.2 File size display

Display size in bytes, Kbytes or Mbytes. Sized to fit in a 6-char field. K and M units are 2710
and 2720 scale.

: #n \'nu -~
Display n as u digits.

D H# \'n—-
Display n as two or more digits.
: 10°n \'n-- 10"n
Generate 107n.

: _size \ u scale ¢ -- int O
Show size split in int and frac parts.

(size) \ u -- addr len
Convert file size using 6 chars or less

.size (u--) (size) type ;
Display file size.

3.3 File date and time

! unp \ u bits -- field w’
Unpack the low bits bits of u as field with the shifted accumulator w’.

.filedate \u--
Prints a 16-bit date in yyyy.mm.dd format.

.filetime \u--
Prints a 16-bit time in hh:mm:ss format.

: d-date (--) 24 dir[] ualEw@ .filedate ;
Display file date.

: d-time (--) 22 dir[] ualEw@ .filetime ;
Display file time.

3.4 Display operations
: >pos \ +n —-
Place cursor on current line to column n if possible.

: d-name (==) dfullname type ;
Display filename.

: d-size \ -

24

Display file size or "folder".

: zcurs \ -
Zero cursor position.

variable dirmode \ -- addr
Set non-zero to get detailed directory listing.

variable +Dirs \ -- addr
Set non-zero to display directories in listings.

: _dirline \ row -- row
Display filename on one line.

dir \ live? -- #lines

Display short list of file names.

: dirfine \ -
Display detailed listing for one entry.

: delete \ —-

Deletes the highlighted file and repaints the directory.

: dir -
Standard directory listing.

FAT filing system

Chapter 4: deleting directories 25

4 deleting directories

The code in DelDirs.fth allows you to delete directories recursively. By deleting from the root
directory, the whole disk can be erased.

: entValid? \ —- flag

Are we at a valid directory entry? In terms of DOS attributes, we only reject smudged entries
and volume labels.

: entNext \ -- flag
Step to the next valid directory entry. Return zero at the end of the directory, otherwise non-
Z€ro.

: toEnt \ --

Skip to first valid entry.

: thisDir? \ -- flag
Return true if name is ’.’

: delFileEnt \ —-
Delete the current directory entry, which must be for a file.

: delDirEnt A
Delete the current directory entry, which must be for a directory.

: delEntry \ —-
Delete the current directory entry.

: delCurrDir \ --
Delete all the files and directories in the current directory.

: delDisk \ —-
Delete all the files on the disk

: _$rmd \ caddr len -- ior
Delete a directory and its contents. Unprotected.

: $rmd \ caddr len -- ior
Delete a directory and its contents. Protected.

: cd+ \ caddr len -- ior
Open new directory. CD+ changes the directory up or down a level.

Chapter 5: VFX Forth for Windows build file 27

5 VFX Forth for Windows build file

5.1 Configuration

16 constant dirlines \ -=—n
Number of lines on a DIR display screen.

80 constant pathmax \ --n
Length of path string.

10 constant #files \ -=-n
Maximum number of open files.

6 constant #buffers \ - n
Number of sector buffers.

512 constant bytes/sec \ -- n
Number of bytes in a sector - nearly always 512, but Microsoft documents say that it can be
different. Some operations will fail if this is not a power of two.

bytes/sec 1- constant secsizemask \ -- mask
Bit mask used for some positioning operations. Relies on bytes/sec being a power of two.

9 constant secshift \ - u
Number of bits to shift to scale by the sector size. Nearly always 9 as 2°9=512.

1 constant FastShift? \ -- n
If non-zero, the conversion between clusters and sectors is performed by a shift rather than a
multiply or divide. Set this according to the capabilities of your CPU.

5.2 Files

include VFXharn \ VFX Forth for Windows harness
include Drivers\WinDriver \ Windows raw disk read/write
include FatCore \ core file system code

include PlainDir \ simple directory listing

Chapter 6: VFX Forth harness 29

6 VFX Forth harness

The harness files permit you to optimise the FAT file system for speed or code size.

6.1 Sector handling

How you code these will depend on the host CPU and Forth implementation.

: secs>bytes \ u -- #byes
Multiply a sector number by the number of bytes per sector. Optimise this for performance.

: bytes>secs \ #bytes -- #secs
Divide a number of bytes by the number of bytes per sector, returning the number of complete
sectors. Optimise this for performance.

: bytes>offsecs \ #bytes -- offset #secs
Divide a number of bytes by the number of bytes per sector, returning the offset in a sector and
the number of complete sectors. Optimise this for performance.

6.2 Tools

These tools should be compiled as required.

: buffer: \ u--; -— addr
Reserve u bytes of uninitialised read/write data.

: scan \ addr len char -- addr’ len’
Find char in string.

1 upc \ char -- char’
Convert char to upper case.
: FOR \--;n--; R ——-n’

Starts a loop that is executed one or more times. At runtime, the loop is entered with the loop
count on the stack. In the body of the loop the loop index is on the return stack and counts
down from n-1 to zero. Use in the form:

(--n) FOR ... NEXT (--)

: NEXT \ - ; Rt n — ; —— [n]
Terminates a [m ... m] structure, discarding the loop index.
: ucompare \ al ul a2 u2 -- notsame?

Case insensitive string compare. Returns zero for a match.

: ucmove \ src dest len —-
As CMOVE but characters are converted to upper case.

¢ N++ \ nl x —— ni1+l x

Increment nl.

: byte-split \ w -- lo hi
Split a 16 bit item into its low and high bytes.

: byte-join \ lo hi —- w
Convert two bytes into a 16 bit item.

: word-split \ x -- wlo whi

30 FAT filing system

Split a 32 bit item into its low and high 16 bit items.
: word-join \ wlo whi -- x

Convert two 16 bit items into a 32 bit item.

: qlog2 \ n -- log2[n]

Given n, a power of two, return its power.

: @C @ ;

Fetch cell from code space (e.g. for tables).

6.3 Alignment checking

Some CPUs require aligned memory accesses. The code here checks alignment at run-time.

6.4 Embedded systems compatibility

Embedded systems may have words TARGET and HOST that may be ignored.
[undefined] target [if]

: target ;

: host ;

[then]

: cvariable variable ; \ -- ; -- addr
In embedded systems, CVARIABLE can be used to reduce RAM use.

6.5 Unaligned memory access

Systems that require aligned accesses for 16 and 32 bit values must provide unaligned access
words. Similarly, big-endian CPUs must provide little-endian access as all the FAT data structure
items are little-endian items.

Chapter 7: Disk read/write for VFX Forth for Windows 31

7 Disk read/write for VFX Forth for Windows

The file WinDriver.fth is the VFX Forth for Windows driver layer for testing the FAT file system
with floppy drive A or a Flash drive.

For demonstration on a host PC, this simple harness connects to a floppy or USB drive on
any Windows 2000/XP PC. You can set the drive letter using SetDrive below. Your C: drive
won’t work if it is formatted for NTFS. Also, drives with multiple partitions are currently not
supported.

The file system needs these words to access the mass storage:
SecRead (addr sector dev —) Reads a sector from the specified device. THROWS on error.

Seclirite addr sector dev —) Writes a sector to the specified device. THROWs on error.

—) Initializes mass storage access.

(
MassInit (
(

MassTerm) Terminates mass storage access.

To simplify the code, the raw read/write interface treats all read/write errors as fatal, and
THROWs on error. Retries should be accommodated within the sector read/write code.

7.1 Windows details

From Microsoft’s documentation on how to read raw data from a disk: To open a logical drive,
direct access is of the form

A\ A\X:
where X: is a hard-drive partition letter, floppy disk drive, or CD-ROM drive.

You can open a physical or logical drive using the CreateFile() application programming in-
terface (API) with these device names provided that you have the appropriate access rights
to the drive (that is, you must be an administrator). You must use both the CreateFile()

FILE_.SHARE_READ and FILE_.SHARE_WRITE flags to gain access to the drive.

Once the logical or physical drive has been opened, you can then perform direct I/O to the
data on the entire drive. When performing direct disk I/O, you must seek, read, and write
in multiples of sector sizes of the device and on sector boundaries. Call DeviceloControl()
using IOCTL_DISK_GET_DRIVE_GEOMETRY to get the bytes per sector, number of sectors,
sectors per track, and so forth, so that you can compute the size of the buffer that you will need.

For this implementation, sectors are 512-byte, sector numbers starting from 0. Addresses are
RAM source/dest, and ior is nonzero if an error occurs.

7.2 Sector read/write interface

This section depends on the target on which the FAT file system is being hosted. Recode this
for your hardware or host operating system.

: CHS \ LBA -- Sector Head Cylinder

32 FAT filing system

Calculates the address on the drive of the given sector. By default, this word is commented out
as it is usually only required by old IDE drives.

Sector = (LBA mod SectorsPerTrack)+1
Cylinder = (LBA/SectorsPerTrack)/NumHeads
Head (LBA/SectorsPerTrack) mod NumHeads

1 constant devices
Number of physical mass storage devices supported.

create Drive$ \ -- addr
Holds a counted string holding the drive name string. The drive letter is the fifth character.

: SetDrive \ char --

Select the required drive (0..n). Must be done before OpenDrive below is run. The default is
A’

-1 value hDrive \ -- handle

Handle returned by Windows for the current raw drive. Set to -1 when closed.

: openDrive \ —-
Open the raw drive.

: closeDrive \ —-
Close the raw drive.

: selDrive \ dev —-
Devices are numbered 0..n. In this case an error occurs if the device is non-zero.

. brw \ sector addr -- addr len handle

Given a sector number and a buffer address, return the address sector length and the raw disc
handle.

: SecRead \ addr sector dev --
Read a sector from the specified device. An err_RawRead THROW occurs on error.

: SecWrite \ addr sector dev --
Write a sector to the specified device. A err_RawWrite THROW occurs on error.

: MassInit \ -
Initialize the mass storage manager. This is done at startup.

: MassTerm \ --
Shut down the mass storage manager. This is done at program exit.

Chapter 8: Forth 7 cross-compiler harness 33

8 Forth 7 cross-compiler harness

The harness files permit you to optimise the FAT file system for speed or code size.
8.1 Sector handling

How you code these will depend on the host CPU and Forth implementation.

: secs>bytes \ u -- #byes
Multiply a sector number by the number of bytes per sector. Optimise this for performance.

: bytes>secs \ #bytes -- #secs
Divide a number of bytes by the number of bytes per sector, returning the number of complete
sectors. Optimise this for performance.

: bytes>offsecs \ #bytes -- offset #secs
Divide a number of bytes by the number of bytes per sector, returning the offset in a sector and
the number of complete sectors. Optimise this for performance.

8.2 Tools

These tools should be compiled as required.

: FOR \-—-;n--; R: ——-n’

Starts a loop that is executed one or more times. At runtime, the loop is entered with the loop
count on the stack. In the body of the loop the loop index is on the return stack and counts
down from n-1 to zero. Use in the form:

(--n) FOR ... NEXT (--)

: NEXT \ - ;R:n--; -—— [n]

Terminates a [m ... m] structure, discarding the loop index.
: ucompare \ al ul a2 u2 -- notsame?

Case insensitive string compare. Returns zero for a match.

: ucmove \ src dest len --
As CMOVE but characters are converted to upper case.

¢ N++ \ n1 x -- ni1+1 x
Increment nl.

: byte-split \ w -- lo hi
Split a 16 bit item into its low and high bytes.

: byte-join \ lo hi - w
Convert two bytes into a 16 bit item.

: word-split \ x -- wlo whi
Split a 32 bit item into its low and high 16 bit items.

: word-join \ wlo whi -- x
Convert two 16 bit items into a 32 bit item.

: qlog2 \ n -- log2[n]

Given n, a power of two, return its power.

Error codes. Note that the Forth200x specification allows iors to be thrown, so these numbers
should be unique.

34

#100 dup equ err_FATfiler
dup equ err_FATread 3 +
dup equ err_FATwrite
dup equ err_NoHandles
dup equ err_RootFull
dup equ err_FATparams
dup equ err_FileSize
dup equ err_FileNotFound

dup equ err_BadDir

dup equ err_DirNotFound

dup equ err_w/o 1+
dup equ err_r/o 1+

dup equ err_BadPathName
dup equ err_BadFileName

dup equ err_DirFull

dup equ err_NotDir

dup equ err_BadPos

dup equ err_NoDrive
drop

: time&date

00011 1980

PP A A A A BT A A L L A A

b

FAT filing system

base of all FAT file system error codes
base read error - 3 available, H/W specific
write error - 3 available, H/W specific
not enough free file handles

no room left in the root directory
error in FAT parameters

file size longer than 32-bit

file was not found

not a valid directory

directory was not found

14 = attempt to read W/0 file

attempt to write R/0 file or device
invalid created pathname

invalid created filename

full directory

invalid directory name

Reposition beyond end of file

Drive not present, e.g. card removed

If TIME&DATE is not available, a dummy value is returned.

8.3 Alignment checking

Some CPUs require aligned memory accesses. The code here checks alignment at run-time.

0 [if] \ Do or do not test for unaligned memory access:

: Q@
dup 3 and if

.rs 1 abort" Unaligned 32-bit read"

endif
e ;

2! dup 3 and if .rs 1 abort" Unaligned 32-bit write" endif ! ;
: W@ dup 1 and if .rs 1 abort" Unaligned 16-bit read" endif w@ ;
: W!' dup 1 and if .rs 1 abort" Unaligned 16-bit write" endif w! ;

[then]

8.4 Unaligned memory access

Systems that require aligned accesses for 16 and 32 bit values must provide unaligned access
words. Similarly, big-endian CPUs must provide little-endian access as all the FAT data structure

items are little-endian items.

: ualLEw®@ \ caddr -- w
Unaligned 16 bit little-endian fetch.

: ualLE®@ \ caddr -- x
Unaligned 32 bit little-endian fetch.

: uaLEw! \ w caddr --
Unaligned 16 bit little-endian store.

Chapter 8: Forth 7 cross-compiler harness

: uaLE! \ w caddr --
Unaligned 32 bit little-endian store.

8.5 Portability words

These words provide some portability for different CPU architectures.

: QP e ; \ addr -- x
32 bit fetch from code space.

: WeP w@ \ addr - w

16 bit fetch from code space.

:c@p c@ ; \ addr - b

8 bit fetch from code space.

: @C e ; \ addr -- x

Fetch 32 bits from code space (e.g. for tables).

: WeC wo \ addr - w
Fetch 16 bits from code space (e.g. for tables).

: c@C cO ; \ addr -- b
Fetch 8 bits from code space (e.g. for tables).

35

Chapter 9: Generic SPI driver for SD cards

9 Generic SPI driver for SD cards

37

The file SDspi.fth contains a generic driver for SD and MMC cards in SPI mode. The low level

SPI interface should provide the following words:

()
MMCon (- Drives CS low.

MMCoff (- Drives CS high.

spiFlush (--) Flush SPI receive queue (if any).

spi! (c--) Write SPI, discard received byte.

spi@ (--c) Write $FF byte, return received byte.

spiwr (a--a’) Reads next byte and writes it to SPI

spird (a--a”) Reads SPI and writes to next byte.

initSDspi (--) Initialise SPI for SD/MMC use.

spiSlow (- Set SPI clock to low speed

spiFast (--) Set SPI clock to high speed

- J

SPIRD and SPIWR are expected to be fast. Their semantics were chosen to minimize threading

overhead for target Forths that use threaded code.

Please note the following restrictions.

e Sector size must be 512 bytes. This will not be changed by MPE, so 2Gb standard capacity
cards may not be supported, but SDHC cards (usually 4Gb and up) are supported.

e If the card contains a partition table, only the first partition is accessible.

For further details of SD and MMC cards see

http://www.sdcard.org/about/memory_card/pls/

http://wolverine.caltech.edu/referenc/SDMMCv52. pdf

The standard SD/MMC card pinout is as follows.

(N
SD mode SPI mode

Pin Name Type Description Name Type Description

1 CD/DAT3 I/0/PP Card detect / data 3 Cs I Chip select (loy

2 CMD PP Command/Response line DI I Data input

3 Vssi S Supply voltage (gnd) VSS S Supply voltage

4 vdd S Power supply VDD S Power supply

5 CLK I Clock SCLK I Clock

6 Vss2 S Supply voltage VSS2 S Supply voltage

7 DATO I/0/PP data line O 0 0/PP Data output

8 DAT1 I/0/PP data line 1 RSV

9 DAT2 I/0/PP data line 2 RSV

- J

where the pins are numbered on the connector as below:

38 FAT filing system

912345678
* k k k k *x k

9.1 Configuration

1 equ MciSem? \ -- x

Set this non-zero to use a an exclusive access semaphore in the sector read/write routines
SecRead and SecWrite. MciSem? can be defined before this file and will override this copy. This
semaphore will be needed if the disc can be accessed by other sources such as USB.

9.2 SD/MMUC functions

The SD error/throw codes are defined in terms of the err_FATread and err_FATwrite codes
from XC6harn.fth.

err_FATread equ sd_read_fail \ SD card failure codes
err_FATread 1+ equ sd_cmd_fail \ command hung
err_FATwrite equ sd_write_fail \ write error
err_FATwrite 1+ equ sd_reset_fail \ failure to reset

1000 equ sd_timeout \ -- ms

Timeout in milliseconds. Slower targets may want a smaller SD_TIMEQUT value, especially those
whose SPI interface takes more than a millisecond per transfer. This usually only comes into
play when using a bit-banged interface.

: SD_idle \ cnt —-

Send idle (0xFF) a specified number of times.

: SD_sendArg \ arg32 --

Send arg32 in big-endian format.

: SD_prep \ -

Prepare to send an SD command.

: SD_NB \ -- res8|-1

Wait until the card is not busy or times out, returning -1 for no response or the 8-bit response.
In SPI mode, all commands generate at least one byte of response.

: SD_send \ arg32 cmd6 -- result8 ; -1=timeout, other = result
Sends a command and tests for time-out, returning -1 for no response or the 8-bit response. In
SPI mode, all commands generate at least one byte of response. The line is left with CS active.

: +spi@ \ x -- x<<8+b
Shift x 8 bits left, read the next SPI byte in a response and merge it.

: SD_ReadResp32 \ -- x32
Read four bytes in big-endian format.

: SD_sync \ --
Get the card into a known state.

0 value SD2card? \ -- flag
Returns true when the card follows SD v2 specification.

0 value HCcard?
Returns true when the card is a High Capacity (SDHC) card.

: tryCMDO \ -- ior

Chapter 9: Generic SPI driver for SD cards 39

Try 10 times at 100 ms intervals to reset the card, returning 0 for success.

: CMD8 \ —-b
Send command 8 for range 2.7-3.6 volts, and return 0 for a good response, a non-zero response
byte for a bad command, or -1 for bad response data.

: CheckInit \ sd2? -- ijor
Initialise the card. The parameter sd2 is -1 for an SD2 card or 0 for a SD1 card. lor is returned
0 for success. N.B. This operation may take several seconds.

: SD_reset \ -
Reset the card, and perform the initialisation sequence. On failure, an sd_reset_fail throw
occurs.

: SD_cmd \ arg32 cmd --
A more robust version of SD_send.

: SD_readstatus \ -- status
Read the SD card status register.

: SD_wait \ xt -- timeout?
Wait for condition specified by xt, which has the stack effect (—— flag) where flag is returned
non-zero to finish the operation before timeout.

; equ SD_writedone? \ -- xt
Gives the xt of a :NONAME word used with SD_wait while writing a data block.

; equ SD_readready? \ -- xt
Gives the xt of a :NONAME word used with SD_wait before reading a data block.

: SD_waitread \ --
Wait until ready to read.

: SD_readcsd \ addr --
Read the CSD - 16 bytes.

9.3 Sector read and write

The basic sector read and write routines use the simple API above. If your SPI unit supports
DMA operation, you can use it for the 512 byte block transfers by providing the words

sdWriteBlk \ asrc --
sdReadBlk \ adest --

These routines write and read the 512 bytes of data to and from the SPI bus.

: SD_addr \ blockno -- sdaddr
Convert a sector number to an SD card address.

: SD_writeblock \ asrc blockno --
Write a 512-byte block from address asrc to block blockno.

: SD_writeblock \ asrc blockno --
Write a 512-byte block from address asrc to block blockno.

: SD_readblock \ adest blockno --
Read a 512-byte block to address adest from block blockno.

: SD_readblock \ adest blockno --
Read a 512-byte block to address adest from block blockno.

40 FAT filing system

9.4 CSD handling

The card CSD is read during initialisation into CSDbuff. You can assume that the card supports
a minimum block size of 512 bytes. The size information is contained in the following byte offsets
in CSDbuff.

-
05 ----rrrr Minimum read block size = 2°r bytes
06 --————- ss

07 ssssssss s = 12-bit size

08 ss—————-

09 -—----- mm Size multiplier = 27 (m+2)

10 m-------

-

The number of 512-byte blocks in the SD card is s * 27 (m+2+r-9). Formatting involves writing
a new boot record and clearing the FAT table. Searching for bad sectors is recommended but a
brute force search will take a long time. Other data in the CSD includes write-protect status and
access times. Card formatting is not yet supported as it is assumed that cards will be formatted
on a PC.

: GetBit \ caddr u -- 0/1
Get bit number u from a bit array. Bit 0 is the top bit of the first byte. Bit 15 is the bottom
bit of the second byte.

: GetBits \ caddr start len -- x
Get len bits starting at bit start from the bitmap starting at caddr.

0 value #Sectors
Number of sectors on the card.

#16 buffer: CSDbuff \ -- addr
Buffer to read CSD.
: CheckCSD \ —

Extract the CSD information, particularly the card capacity in sectors.
9.5 FAT file system API

The file system needs these words to access the mass storage:
SecRead (addr sector dev —) Reads a sector from the specified device. THROWs on error.

SecWrite addr sector dev —) Writes a sector to the specified device. THROWs on error.

MassInit (—) Initializes mass storage access.

MassTerm (—) Terminates mass storage access.

To simplify the code, the raw read/write interface treats all read/write errors as fatal, and
THROWs on error. Retries should be accommodated within the sector read/write code.

Semaphore SecSem \ -- addr
Exclusive access semaphore for sector read/write routines.

: SecRead \ addr sector dev --
Reads a sector from the specified device. THROWS on error.

: SecWrite \ addr sector dev --

Chapter 9: Generic SPI driver for SD cards 41

Writes a sector to the specified device. THROWs on error.

: MassInit \ --
Initialize the mass storage manager. This is done when a new card is detected.

: MassTerm \ -
Shut down the mass storage manager. This is done when a card is removed.

9.6 Test code
.sector \ u-—-

Read and dump a sector.

0 [if]
To compile the test code, change the conditional compilation in the file from 0 [if] to 1 [if].

: ParseCSD \ *csd --
Parse the CSD structure and display the contents.
.CSD \ —-

Read and display the CSD contents.

Index

Index

#

B 23
#oufferso e 27
s =Y P 27
5 TP 23
BSECtOTS oot 40
BCWA . o 14
Brmd . .. 25
(close—file) ...t 17
(delete—file)oviiiiiiiine i, 18
(Anitfatfs) ..o 18
(read—-file) ... 17
(read-1ime) ...ttt 17
(rename-file)coiiiiiniiiiiiineennnnnn. 18
(repo—file) ..ovii i 16
(S1Z@) ot 23
(termfatfs) ...t 18
(write—file)o 17
3k
KD B 8
$3 D 8
+
FAE TS ittt 24
FE11e10CK it e 18
+handlel[]o 15
FSPiQ. .. 38
FUSET .ottt 15, 20
—fileloCK . 18
CSA it 41
Arave . . o e 21
fattype oo 21
filedate ..o 23
filetime .ot 23
LSECEOT . ot 41
SdZB ettt 23
L e 13
JEat 8

43

JPATSE . oot 13
<
K it 22
>
DPOS ¢t 23
?
=Y 2 22
POPEN_ETT .ottt it 17
Psetfid. .. 21
BC . ettt e 30, 35
O et 35
IS T 16
[if] o 21, 41
CBrmd . . 25
_create-file..........o it 17
delete. ... e 12
LAAT e 24
_dirline ... 24
_freesecs ... 12
MRAIT . oo 17
MRAITEX ottt e 17
newfold 17
_open-file......... . 17
_read-file...... .. 16
TSI Z . ittt 16
SiZe it e 23
_test=file ... 14
L CL 9
L CLS e 8

addp ... 13
after/before............. i 16
archivet ... e 16

44

B> . 7
b Cn. . 7
basesector i 6
bin ... 15
bp_init....... ... 9
bpath.... ... o i i 13
bperror..... ... 9
bptr .. 9
DLW . 32
buf .. 6
buff# ... 5
buffer: 5, 13, 29
bumpbuff# 6
bUmMPPOS. ... 16
bumpsec. ... 16
byte-join.... ..o 29, 33
byte-split ... 29, 33
bytes/handle. ...l 15
bytes/sec.. ...l 5, 27
bytes>offsecs............. ...l 29, 33
bytes>secs ... 29, 33

o < 7
o= 6
COC .t e 35
COD 35
CAF et e 14, 25
o ol =S 5
CeLLS .t e 5
Chaimt. .. e 12
CheckeCSd ..o ii i 40
checkinit ...t 39
ChS o e 31
close-file....... i e 18
Closeall ...t e 15
CloSedrive ...ttt e 32
ClosefileCon . .vuuui i e 21
clusshift o 6
ClUSEeI>S@C .ottt 7
clusterOo 11
clusterO! 12
o3 11T £ 7P 39
COMSTANT « .ttt e 15
copytime 16
countofclustersiiiiiiiii i 7
create-file........ .. 18
createfileCon........ouiiiiiiii i 21
o o I PP 17
csdbuff. 40
o7 T=Y o v 6
o3 v o - PP 6
CVAriable ..ttt e 30
oo P 19

FAT filing system

A=SiZ@ . ittt e 23
A=time. ..o 23
ACUTS ..ottt 6
delcurrdiroviiiiii e 25
deldirent ...t e 25
deldisK. ... e 25
delentry ...t 25
delete. ..o e 24
delete—file......oouviiiiiiin ittt 19
delfileentcouiiiiniiiiiiiiiiin., 25
AeVICES . ottt e 32
AfeXt .. e 11
dfname. ... e 11
dfullnameoviiiiii 11
o T 24
Lo BT PP 11
Air== i 11
Ao T e 10
Air (] .o 10
Air] 16
Aircluster ... e 9
dircluster! 10
dircluster@...........coiiiiiiiiiii . 10
direntry 10
dirfine....... ..ot 24
dirhome.ottt e 12
Airlines ..ottt 27
Airmode. .. .ovtit i 24
dirnest. . ..o e 13
AirneXt . et 11
QITPIreV. .ttt 11
dirsectO ... 12
AirsSector . oot 10
dirsmudge 10
dirsmudged? 10
dirstarto e 13
Adirvalid? ... 10
drived 32
ASeCAn. ...t e 11
ASECUP. ..ttt 11
ASIZ@ . ettt 12
L P 9

entbump........ ..o i 11
ENtNeX . . e e 25
entvalid? ... 25
= L S 39
B8 L 17
EXPANA . ..t 12

fastshift? e 27
fat ! e 8
fat !l 2. e 8
fat!12bndry......... ... 8
> 2 I L 8
Fat !B 8
fat S . e 8
Fat0 .. e 8
fat@l2. . e 8

Index

Fat@16 . .. 8
Fat@32. . . e 8
FatOS ..o 8
fateXeC. . i 7
Fati0 T . 2
fatoffsetot e 8
fatoffsets ..ot 8
fatopen? 2
fatsize. . ..o 6
fatspace? ... 2
fattest? . o 3
fattext? oo 2
fattype. 7
file-position..........ooiiiiiiiiiiiiiiiiii 19
file-size ... e 19
file-status.......coviiiiii i 19
fileaccept ...t 21
FileCom. .ot 20
filecr. ... e 20
fileemit 20
fileeof ? oo 21
fileerr? (i e 21
fileexistl . it e 19
filekey. .o 20
filekey? oo 20
filesem. . ..ot 18
filestamp ... 16
filetype v 20
FirstsSec? .o 10
flushall 7
Folder T . . 12
for .. 29, 33
freechainc.oiiiiiiiii i, 12

get-es....... 10
getb. ... 9
getbit..... 40
getbits. ... 40
getcluster......... il 12
getdir... 14
getl ..o 9
BetW . . 9
B0 ettt e e e e 21
GOOdCh. ... 12
goodchars ...t 12
GOOANAMEttt 12
BOOASTT . .\ttt 12

h.clus!. . 15
Bidir .o 16
hccard?. ... e 38
hdrive.o 32
hfile ... oo 21

initfatfs 20
initseccache........ ..o 6

45
L
1astsSeCT i 10
lengthen ... 9
M
massinit........ ... il 32, 41
MASSEEIM. ..ottt ittt 32, 41
max_path 5
MCISEM?. ..o 38
mRAIr. ... 19
MRAITEX. .ottt 19
N
Dbt et 29, 33
NAME.EXT .ottt 12
name>dir 17
NEWD .ot 9
newchainoiiiiiiiiiiiiiiii 17
TLEXE « ittt 29, 33
nexthan........... il 16
NEXTWSEC oottt ettt e e e e e 17
NOALT .« ottt 7
NOENAT . .. 11
nopath...... ..o 13
NPAA . oottt 11
4 1= 22
numheadsuuniiiiii e 5
O
o) < 415 AN 11
o) 4 o3 11
OLldesSt ..t 7
open-file.......... 18
OPENATiVe ..\t 32
openfilecon.................. L 21
P
Padd 11
PAAC . ot 11
Parent?. ... 11
PATSECSA .\ttt 41
path...... 13
pathmax.............. ool 27
PCH 13
pdrive... 6
prepdir....... ... 17
PO et 22
PWA L 19
Q
QLog2 .. 30, 33
R
T/ 0 15
/W e 15
TALINCC . o ettt ettt et 22

46

read-filet 18
read-line i 18
TeAdSECTOT . ot ittt 7
rename-file 19
repo-file....... ... i 16
reposition-file i, 19
TESETVEASEC . ottt ettt et e 6
resize-file....... ... 19
oY) v'e I T ol 13
rootdirsectors.t 6
TOOEASECS oottt e e 5
rootentries 5
TOOLSECEOT vttt 5
S

S et e 6
SAMECLUS T Lottt e 16
SAMESECT T ottt e 16
saveddirent 6
sbackward ..ot 10
SDSCT . e 21
<02 + KPP 29
SA_addr. ..o 39
SA_Cmd. ..o e 39
SA_ddle. .. o 38
SA M. . e 38
SA_Prep. .. .ot 38
SA_readbloCKu.iiii e 39
sd_readcsdoiiii e 39
sd_readresp32......... ... il 38
sd_readstatus...........ciiiiiii i 39
SA_TESet « vttt 39
SA_SeNA. .ottt e 38
sd_sendarg...........oiiiiiiiiiii 38
SA_SYNC........ 38
sd_timeout 38
SA_ WALt . it 39
sd_waitread.........oiiiiiiii i 39
SAd_wWritebloCK. ... 39
SA2CarA T ..ot 38
sec/cluster . .o 5
SeCOClUSteT ..ot 7
SeCAUMP. . ..ottt 22
SECMASK . ot ittt e 10
secread.......iiiiii 32, 40
secs>bytes ... 29, 33
SECSEIM. « vttt ettt e e 40
secshift 27
SECTLOTO T Lot e 11
sectorspertracko, 5
SECWIAte. ..ottt 32, 40
SEEKSECLOT .\ttt 7
sel-folder.......cuiiiiiiiiii i 13
SelArive ...t e 32
S =S . it 10
SELCLUSO ..ot 12
SetCtr. . e 7
SEEAAT . .t 14

FAT filing system

sforwardot 11
Sshrink. e 12
SKRIPD . 9
== PP 22
stamp.........oii 16
Startsectort 6
SYNCAIrive ... 20

T

termfatfs 20
test—fileo e 14
7 =3 o3 ol 22
testline 21
=Y PP 21
S W . ot et e 21
thisdir? ... e 25
time&date 34
timestampo 16
o T T P 11
oY= 4 PP 25
totalclusters.ovuiiiiii i e 21
TOtalsSeC it e 6
B o PP 5
EXIMp. ..o 13
tryemdO. ... 38

uale!l ... 35
uale@. ... 34
Ualew! ... 34
UALeWO. . ..o 34
UCHOVE . e e ettt et ettt e e e et e 29, 33
UCOMPATE . o vt vttteeeeeeeeeeeeeeeeeeaaaaaae... 29, 33
L0 23
UPC .+ vttt ettt s 29

W/ O et 15
WOC . et e 35
WOD ..o 35
WaANED . . e 9
L= v 9
WELUSh . .o 7
wipeclus 14
WAL K . oottt et e 6
wmergel2 8
word-joim.......... ...l 30, 33
word-split ool 29, 33
Write—18eC .. it i 17
write—file..... ..ot 18
Write—linettt 18
writepend ool 6
y/

o3V & o= TP 24

	FAT file system introduction
	Design objectives
	Capabilities
	Restrictions
	Build files
	Configuration options

	FAT file system core
	Buffers, globals and tools
	Sector operations
	FAT type specific routines
	FAT File system initialisation
	Directories
	FAT chains
	File/Path name handling
	Current Working Directory
	Directory management
	Handles and File support
	File Read
	File write
	Protection tools
	User API, mostly ANS Forth
	Generic I/O file device
	Drive details
	Test code

	Simple Directory listing
	Directory listing
	File size display
	File date and time
	Display operations

	deleting directories
	VFX Forth for Windows build file
	Configuration
	Files

	VFX Forth harness
	Sector handling
	Tools
	Alignment checking
	Embedded systems compatibility
	Unaligned memory access

	Disk read/write for VFX Forth for Windows
	Windows details
	Sector read/write interface

	Forth 7 cross-compiler harness
	Sector handling
	Tools
	Alignment checking
	Unaligned memory access
	Portability words

	Generic SPI driver for SD cards
	Configuration
	SD/MMC functions
	Sector read and write
	CSD handling
	FAT file system API
	Test code

	{Index}

