Cortex Lite Target Code

v2.0

Microprocessor Engineering Limited

Copyright (© 2003-2007, 2009, 2013, 2014, 2015 Microprocessor Engineering Limited
Published by Microprocessor Engineering

Cortex Lite Target Code v2.0
User manual

Manual revision 2.0

28 December 2015

Software
Software version 2.0

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com

Table of Contents

1 Lite version licence terms..................................... 1
1.1 Compiler 1
1.2 Distribution of application programs........... ...ttt 1
1.3 Warranties and SUPPOTt.t 1

2 Introduction 3
2.1 Supported Doards 3

2.1.1 STM32F072B Discovery boardc.ouiuiiiiii i, 3
2.1.2 STM32F4 Discovery board........ ... 3
2.1.3 Freescale Freedom FRDM-KL25Z board......... ... i, 4
2.1.4 L CIILAE N 28 . oottt e 4
2.1.5 Infineon XMO2GOttt 4
2.1.6 STM32F031K6 Nucleo-32 boardo 5
2.1.7 STP LPC8I2 board.ttt e e e e e et 5
2.2 Producing the kernel 6
2.3 About the Kernel 6
2.4 GOLChaS . . 7
2.4.1 Flash problems 7
2.4.2 Flash kernel is non-standard i 7
2.4.3 Building tables with CREATE e 7
2.5 Technical sUppOTt oo e 7

3 Control file for STM32F072 Discovery board 9
3.1 Define direCtory MaCTOS.ttt ettt e e e e e e 9
3.2 Turn on the cross cOmMPIler e 9
3.3 Configure target. 10

3.3.1 STM32F0 variant definitions.o i eaeeen 10
3.3.2 MEMOTY IAD « v vttt e ettt et e e 11
3.3.3 Stack and uSer area SIZeS 11
3.3.4 Serial and ticker rates ... 12
3.3.5 Software selection 12
3.4 Kernel flles. ..ot e 13
3.5 End of Kernel. e 13
3.6 Application code e 14
3.7 Finishing up ... 14

4 Cortex start up for STM32F072 15

5 Cortex code definitions L 17
0.1 N O S . e 17
5.2 RegISTEr USAZEottt 17
5.3 Logical and relational operators i 17
D.4 Comntrol oW 19
5.5 Basic arithmetic. i 19
5.6 Multiplication e 20
ST D) 7 13 o NP 20

5.8 Scaling - multiply then divide........ 21

ii Cortex Lite Target Code v2.0
5.9 Stack manipulation. 21
5.10 String and memory OPEratorS.ttt 22
5.11 Miscellaneous Words.ttt e 24
5.12 Portability helpers 24
5.13 Code buffer in RAM e 25
5.14 Supporting compilation on the target........... ... i 25
5.15 Defining words and runtime SUppOrtoouiuieii e 25
5.16 Structure compilation e 27
5.17 Branch constructors.oo i 28
5.18 Main compilers. 28
5.19 More miscellaneous WOrdsooiiieet it e 29
5.19.1 Non-minimal Systems. 29
6 High level kernel - kernel72lite.fth. 31
6.1 User variableso 31
6.2 System data. 31
6.2.1 CONSEANTS . .ottt e 31
6.2.2 System variables and data 32
6.3 Vectored I/O handling............ooioioiiii e 32
6.3.1 Introduction. 32
6.3.2 Building a vector table 32
6.3.3 Generic I/O WOrds.o 32
6.4 Laying data in MmemoOryttt e 33
6.5 Dictionary managementttt 34
6.6 String compilation. 34
6.7 ANS words CATCH and THROW e 34
0.7.1 EXamPle USe. .ottt 35
6.7.2 GOtChaS . ..o 36
6.7.3 USEr WOTAS . .. e ettt 36
6.8 Formatted and unformatted 1/0........... .. i 36
6.8.1 Setting number bases.o 36
6.8.2 NUMETIC OULPUL - . ..ttt e e e e e e 36
6.8.3 NUmeric iNpUb.o ottt 37
6.9 String input and output 37
6.10 Source Input control. 38
6.11 Text SCANMINE . ..ottt ettt e 38
6.12 MiSCEllAaNEOUSttt ittt ettt e e 38
6.13 Wordlist control. e 38
6.14 Control SErUCtUTES.ottt et e 39
6.14.1 CASE Statementt 40
6.15 Target interpreter and compiler............. . e 40
6.16 SEATTUD COE . o vttt ettt et ettt e e e e 42
6.16.1 Cold Chaill 42
6.16.2 The COLD SEQUENCE\ttt ettt et e e 42
6.17 Kernel error Codes. 42

7 Debugtools............ 45

8 Compile source code from AIDE............................ 47

9 Minimal Umbilical code definitions......................... 49
9.1 RegiSter USage. ..o 49
9.2 Flow of control. e 49
9.3 Stack operations and maths 49
9.4 Multiplication e 50
0.0 DAV S oM . Lt 50
9.6 Miscellaneous math 51
LS TR v 0= 51
9.8 Return address manipulationscco i 51
9.9 Umbilical versions of defining words i i 52
9.10 Display Wordsot e 52
9.11 Multitasker hook 52
9.12 MiSCEllaneous . . .« o .v ettt 53

10 ARM Cortex specific library code......................... 55
10.1 I/O initialiSationoouu e 55
10.2 interrupt enable and disable........ ... 55
10.3 MISCEIlAMEOUS . . oottt ettt e 55

11 Device drivers............... i 57
11.1 STM32 GPIO Utilitiesottt e e e e e e e 57

11.1.1 Defining I/O pinsoooei i 57
11.1.2 GPIO PIN ACCESS - v vee ettt et e e e e e e e e 57
11.1.3 IO pin configuration.o e 58
11.1.4 Test code for STM32F072 Discovery board........... ..., 59
11.2 XMCIxxx GPIO utilitieso e 59
11.2.1 Defining I/O PIns .. ooui e 59
11.2.2 GPIO PIN ACCESS - v v ettt ettt e e e e e e e e e 59
11.2.3 IO pin configuration.ot 59
11.2.4 Test code for XMC2Go board ... 60
11.3 STM32F0 polled serial driver....... ..ot 60
11.3.1 Baud rate generationttt 60
11.3.2 Shared code...... ... 61
11.3.3 US AR T L .o e e 61
11.3.4 US AR T 2 .o 61
11,35 US AR T S . 62
11.3.6 Inmitialisation ... 63
11.4 System Ticker. 63
11.5 Rebooting the CPU e e 64

12 L3GD20 MEMS GYIO ... 65

12.1 Test and Demo code 65

Chapter 1: Lite version licence terms 1

1 Lite version licence terms

1.1 Compiler

You may not redistribute any portion of the compiler or Lite system distribution without written
permission from MicroProcessor Engineering Ltd (MPE). The distribution should be downloaded
as a whole from the MPE web site.

The compiler is licensed for non-commercial uses only. For example, you may not sell a product
that contains code generated with the Lite compiler. If your job or payment depends on use of
the Lite compiler, that is a commercial use.

If you think that you are a special case, e.g. you want to use the compiler in a school, college
or university class, just ask us.

If you are not a special case, use the Lite compiler for evaluation and then buy a Stamp, Standard
or Professional version of the compiler to acquire many more facilities and a commercial-use
licence.

1.2 Distribution of application programs

Applications compiled with the MPE Lite compiler may be distributed free-of-charge. The MPE
sign-on message must be preserved and a link to the MPE website must be provided. No part
of the cross-compiler or the target source code may be further distributed except as detailed
above.

1.3 Warranties and support

We try to make our products as reliable and bug free as we possibly can. We support our
products. If you find a bug in this product and its associated programs we will do our best
to fix it. Please check first by email to tech-support@mpeforth.com to see if the problem has
already been fixed. Please send us enough information including source code on disc or by email
to us, so that we can replicate the problem and then fix it. Please let us know the version/build
number of your system.

Technical support will only be available on the current version of the product.

Chapter 2: Introduction 3

2 Introduction

This manual documents the MPE Forth Lite kernel for ARM Cortex processors. The Lite kernel
is not the same as the PowerForth kernel supplied with the Professional, Standard and Stamp
compilers. The Lite kernel is smaller and compiles directly to Flash, which has required changes
to the kernel. These changes are discussed later.

2.1 Supported boards

Supported boards are the ST STM32F072B Discovery, ST STM32F4 Discovery (with the
STM32F407 chip), the Freescale Freedom KL25Z, the NXP LPC1114FN28, and the Infineon
XMC2Go. Preliminary releases for other boards may also be included.

The following discuss getting a cross-compiled binary image into the boards.

2.1.1 STM32F072B Discovery board

The MPE Forth kernel uses the hardware USART1 for serial communications to talk to the
Forth kernel on the board. We use an FTDI USB to 3v3 TTL serial cable for this:

http://www.ftdichip.com/Products/Cables/RPi.htm

Connect the cable to the Discovery board:
e Black - Gnd,
e Yellow - PA9 - PC Rx, STM32 USART1 Tk,
e Orange - PA10 - PC Tx, STM32 USART1 Rx.

Set your terminal emulator, e.g. PowerTerm in AIDE, to 115200 baud, 8 data bits, no parity.
Power the board using the central (ST Link v2) USB connector.

After cross compiling the control file Cortez/Hardware/STM32F072Bdisco/liteSTM32F072sa.ctl
the image file will be Cortex/Hardware/STM32F072Bdisco/liteSTM32F072sa.hex

To program the Flash on the Discovery board for the first time, use the STM32 ST-LINK utility.
See:

http://www.st.com/web/en/catalog/tools/PF258168

2.1.2 STM32F4 Discovery board
http://www.ftdichip.com/Products/Cables/RPi.htm

Connect the cable to the Discovery board:
e Black - Gnd,
e Yellow - PDS8 - PC Rx, STM32F4 USART3 Tk,
e Orange - PD9 - PC Tx, STM32F4 USART3 Rx.

Set your terminal emulator, e.g. PowerTerm in AIDE, to 115200 baud, 8 data bits, no parity.

4 Cortex Lite Target Code v2.0

Power the board using the ST Link v2 USB connector.

After cross compiling the control file Cortez/Hardware/STMS32F,07disco/liteSTM32F407discoSA.ctl
the image file will be Cortex/Hardware/STM32F07disco/liteSTM32F072.hex.

To program the Flash on the Discovery board for the first time, use the STM32 ST-LINK utility.
See:

http://www.st.com/web/en/catalog/tools/PF258168

2.1.3 Freescale Freedom FRDM-KL25Z board

The Forth uses UARTO on the FRDM-KL25Z board connected to the on-board serial to USB
adapter. The board presents itself as a USB memory stick and a comms port. To use these,
download the latest OpenSDA firmware drivers from

http://www.pemicro.com/opensda/

and install them. After installation on Windows, you will see the memory stick as a drive, and
a new comms port will be available to AIDE.

When you put a new binary file into the new drive, the board’s second processor checks the file
and Flashes it into the target. The compiler uses this facility. It is automated by adding the
following two lines before FINIS in the control file:

afterwards fdel F:\FRDMKL25Zsa.bin
afterwards fcopy FRDMKL25Zsa.bin F:\FRDMKL25Zsa.bin

Change the drive letter as required.

After cross compiling the control file Cortex/Hardware/KinetisKL20/liteFRDMKLZ25Zsa.ctl
copy the binary file Cortex/Hardware/KinetisKL20/FRDMKL25Zsa.bin to the Flash drive. The
board will reboot and the new Forth file will be running. By default, the Forth Lite kernel con-
tinuously changes the colour of the tri-colour LED.

The terminal emulator should be set to 115200 baud. After the file has been copied to the Flash
drive, it is programmed into the target. When the target reboots, the Forth prompt appears.

2.1.4 LPC1114FN28

This chip is a Cortex-MO0 in a DIP28 package with 32 kb of Flash and 4 kb of RAM. The chip
runs at 48 MHz from the internal oscllator. Comms are handled by UARTO at 115200 baud,
connected to RXD (PI01.6) and TXD (PIO1.7).

Providing that your hardware has buttons for both the reset pin and the boot pin, you can use
FlashMagic to program the Flash. See:

http://www.flashmagictool.com/

2.1.5 Infineon XMC2Go

This tiny board includes an XMC1100-0064 CPU with 64k of Flash and 16 kb RAM, plus an

Chapter 2: Introduction 5

on-board J-Link device with a virtual COM port. The MPE cross compiler supports the J-Link
directly and programs the Flash at the end of compilation.

You must install the Segger J-Link tools from

https://www.segger.com/jlink-software.html

and then copy the file JLinkARM.dll into the directory containing the cross compiler. You must
use the Segger tools of version 5.02h or later.

2.1.6 STM32F031K6 Nucleo-32 board

The MPE Forth kernel uses the hardware USART1 for serial communications to talk to the
Forth kernel on the board through the on-board ST-Link v2.1 which provides a USB virtual
serial port.

Set your terminal emulator, e.g. PowerTerm in AIDE, to 115200 baud, 8 data bits, no parity.
Power the board using the central (ST Link v2.1) USB connector.

After cross compiling the control file Cortez/Hardware/Nucleo-F031K6/liteSTM32F031 NucleoSA.ctl
the image file will be Cortex/Hardware/Nucleo-F031K6/LITESTM32F031SA . hex

To program the Flash on the Discovery board for the first time, use the STM32 ST-LINK utility.
See:

http://www.st.com/web/en/catalog/tools/PF258168
2.1.7 STP LPC812 board

This is a minimalist board with 16 kb of Flash. It is used with the FlashMagic utility in a
conventional cross-compile, download to Flash, and then test cycle. It is possible to squeeze
the Flash programming code onto the board, but that does not leave enough space for a real
application.

The board’s UARTO is connected to an FTDI serial to USB converter. The kernel runs the
UART at 115200 baud. Most versions of Windows include a driver for the FTDI adapters.

After cross compiling the control file Cortex/Hardware/LPC81z/liteSTP812sa.ctl the image file
will be Cortex/Hardware/LPC81x/liteSTP812sa.hex

To program the Flash on board, move the jumper by the reset button so that both pins are
covered. Press the reset button and then use use the FlashMagic utility. See:

http://www.flashmagictool.com/

After the Flash has been programmed, move the jumper so that one pin is uncovered; it is
convenient to leave the jumper on the other pin. The press the reset button to start the Forth
application.

6 Cortex Lite Target Code v2.0

2.2 Producing the kernel

The Forth kernel is built using a cross compiler running in the AIDE environment. AIDE
contains three primary windows: compiler, terminal emulator and text editor. The compilation
results can be seen in the compiler window. During compilation, the compilation results can be
seen in the compiler/tool window. The process below is very similar for all boards except for
the use of vendor-specific tools.

To compile the standalone Forth kernel, find the button for your board, e.g. "STM32F072 Lite
SA",in AIDE’s main toolbar and click it. After successful compilation, program the Flash with
the file LITESTM32F0725A.hex using the STM32 ST-LINK utility. See:

http://www.st.com/web/en/catalog/tools/PF258168
Other boards will have other utilities to Flash the board.

After programming the board, the new kernel will be running. To talk to the kernel, use AIDE’s
PowerTerm terminal emulator. The kernel talks to PowerTerm through the FTDI cable. Finding
this UART can require a little botheration. There are two ways to do this.

1. Go to Windows Control Panel -> System -> Device Manager -> Ports. One of the entries
will be something like: USB Serial Port (COM14). COM14 will be the UART you will use.

2. Go to AIDE’s PowerTerm configuration dialog. Select the drop down list in the COM
Port# group. It will list all the available COM ports by COM number and name. The one
you want includes: COMxx USB Serial Port.

Now select the required port in the PowerTerm configuration dialog and ensure that it is set to
115200 baud, 8 data bits, 1 stop bit, no parity and file server is enabled. Save the configuration
and press OK. Start the PowerTerm connection and you should be talking to the kernel.

Once you have the Forth kernel running on the target, you can use Forth’s internal flash utility
to flash a newly compiled Forth image. Type:

REFLASH

The Flash will be erased, and AIDE will present you with a file dialog box. Find the file
LITESTMS32F0725A.img (not the .hex file)), select it and the file will be downloaded and
flashed. If everything goes wrong, just start again with the Flash utility.

2.3 About the kernel

The Forth kernel you have made and installed is a cut-down version of the full PowerForth
kernel. It has extensions so that code is compiled directly into Flash memory. When you want
to add code, you can compile it directly on the Forth kernel by using the phrase

include <filename>

on the target Forth command line. AIDE will then try to deliver the file to the kernel. If the
file cannot be found, AIDE will let you change the default directory (the commonest problem)
or correct the spelling.

To start over just type EMPTY, the application region of the Flash will be cleaned, and the CPU

Chapter 2: Introduction 7

will be rebooted. To reuse your compiled code at the next reboot or power up, use the word
COMMIT. If you just want to preserve the code, use:

0 COMMIT

If you want the Forth to run a word, say APP, use:
> APP COMMIT

To support compilation to Flash, the kernel uses a compilation buffer (usually 512 bytes) in
RAM. The use of this buffer is mostly transparent to the user.

2.4 Gotchas
2.4.1 Flash problems

If you forget to use COMMIT and EMPTY appropriately, the Flash may not be correctly erased and
application compilation may fail. Try to use EMPTY and if that fails, reinstall a new kernel.

2.4.2 Flash kernel is non-standard

The Lite kernel is not completely to the ANS and Forth-2012 standards.

A particular change is that the Forth word IMMEDIATE is not present. Instead, precede the
the word with IMM and will be immediate. This change is a result of the particulars of Flash
implementations and their controllers.

2.4.3 Building tables with CREATE

The word CREATE switches on compilation to the RAM buffer. When you just need to build a
table, you must remember to turn the buffer off to flush the contents to Flash.

create MyTable \ -- addr
5, 6, 7, 8, \ lay down data
-BuffComp \ flush buffer to Flash

2.5 Technical support

Technical support for the Lite compilers is done in our spare time. If you have problems, send
us an email to

tech-support@mpeforth.com

Chapter 3: Control file for STM32F072 Discovery board 9

3 Control file for STM32F072 Discovery board

Every Forth project has a control file, which is similar to the project file in other languages.
The control file tells the cross compiler all about the target. Not all of it is documented here,
but it is all commented in the source code.

The control file CortexLite/Hardware/STMS32F072Bdisco/liteSTM32F072sa.ctl produces a
standalone Forth for the STM32F072B Discovery board. The control files for other boards are
very similar in structure, and different in the details of the CPU and board specific options.
Read the specific code for your CPU and board.

The serial port is connected to USART1 on pins PA9 (Tx -> PC Rx) and PA10 (Rx -> PC Tx).
You cannot use the easy GPIO code for UART initialisation unless the GPIO ports are clocked
and taken out of reset in the start up code.

When you modify this file for your own hardware do not forget to update the GPIO pin assign-
ments and alternate function selections.

To Flash the board, you can use the low-cost ST-LINK/V2 JTAG unit, or use the one integrated
into the ST Discovery boards. The ST-LINK Utility software is a free download from the ST
website www.st. com.

3.1 Define directory macros

The MPE cross compilers contain a useful text macro system. Macros allow easy porting of
control files when projects are moved from their default locations. Each directory macro defines
where a particular set of files are located.

c" " setmacro AppDir \ application files

c" . setmacro HwDir \ Board hardware files
c" LA\ setmacro CpuDir \ CPU specific files
c" ..\..\Examples" setmacro ExampleDir \ example files

3.2 Turn on the cross compiler

include %CpuDirj,/Macros \ macros needed by the cross-compiler
CROSS-COMPILE \ Turn host Forth into a cross-compiler
only forth definitions \ default search order
no-log \ uncomment to suppress output log
rommed \ split ROM/RAM target
interactive \ enter interactive mode at end
+xrefs \ enable cross references
align-long \ code is 32bit aligned
Cortex-MO \ Thumb2 processor type and register usage
-LongCalls \ no calls outside 25 bit range
+FlashCompile \ target compiles to Flash

10 Cortex Lite Target Code v2.0

Hex-I32 \ also produce Intel Hex-32 obj format
+SaveCdatalnly \ no data area image files
0 equ false

-1 equ true

3.3 Configure target

3.3.1 STM32F0 variant definitions

$0800:0000 equ FlashBase \ -- addr
Start address of Flash. The bottom 2kb (the vector area) is mirrored at $0000:0000 for booting.

#128 kb equ /Flash \ -- len
Size of Flash.
2 kb equ /FlashPage \ -- len

Size of a Flash Page.

1 equ KeepPages \ —-u
Set this non-zero for the number of pages at the end of Flash that are reserved for configuration
data. Often set to 1 or 2 by systems that use PowerNet.

FlashBase /Flash + /FlashPage KeepPages * - equ CfgFlash \ -- len
Base address of the configuration Flash area.

$1FFF:C800 equ /InfoBase \ -- addr
Base address of system memory information block.
#12 kb equ /SysMem \ -- len
Size of system memory block.

$1FFF:F800 equ OptionBytes \ —- addr
Base address of option bytes

#16 equ /OptionBytes \ -- len
Number of option bytes

#64 cells equ /ExcVecs \ -- len

Size of the exception/interrupt vector table. There are 16 slots reserved by ARM.

The system clocks are generated from PLLs. How to set them up is non-obvious and is mostly
documented by the ST demonstration code in the file system_stm32f0z2.c. If you are not going
to use an existing setup, copy and rename one of the existing startSTM32FOxz.fth files.

8 MHz equ xtal-speed \ -- hz

Master oscillator crystal clock rate in HZ. This is the HSI internal oscillator which has better
than +/-1% accuracy and is more accurate than the internal 48 MHz oscillator.

48 MHz equ system-speed \ —-- hz
Requested CPU clock speed in HZ. Note that you must calculate the PLL values.

1 equ AHBdiv \ —-u
Division ratio of the AHB clock from the system clock. This may not be more than 48 MHz.

1 equ APBdiv \ - u
Division ratio of the APB clock from the system clock. This may not be more than 48 MHz.

Chapter 3: Control file for STM32F072 Discovery board 11

system-speed AHBdiv / equ AHB-speed \ -- hz
AHB bus speed.

system-speed APBdiv / equ APB-speed \ -- hz
APB bus speed.

3.3.2 Memory map

If you are using the Reflash code in the ReProg folder, note that the Flash reprogramming code
uses RAM from $2000:0000..$2000:0FFF and its mirrors. Ensure that your stacks are outside
this region.

The Flash memory starts at $0800:0000. The bottom 2 kb (the vector area) is mirrored at
$0000:0000. The top 4 kb (two pages) is used to save autostart and application linkage infor-
mation.

$0800:0000 $0800:BFFF cdata section 1iteSTM32F072sa \ code

$2000:0000 $2000:0FFF udata section PROGu \ 4k UDATA RAM
$2000:1000 $2000:3FFF idata section PROGd \ 12k IDATA RAM
interpreter
: prog liteSTM32F072sa \ synonym
target
PROG PROGd PROGu CDATA \ use Code for HERE , and so on

$0801:F000 equ INFOSTART \ kernel status is saved here.

$0801:F800 equ APPSTART \ application data is saved here.
$0801:FFFF equ INFOEND \ end of kernel/application status data.
$2000:0000 equ RAMSTART \ start of RAM

$2000:4000 equ RAMEND \ end of RAM

$0800:0000 equ FLASHSTART \ start of Main Flash

$0810:0000 equ FLASHEND \ end of possible main Flash

$0800:C000 equ APPFLASHSTART \ start of application flash

$0801:F000 equ APPFLASHEND \ end of application flash

APPFLASHEND APPFLASHSTART - equ /APPFLASH \ size of application flash

APPFLASHSTART TargetFlashStart \ sets HERE at kernel start up

3.3.3 Stack and user area sizes

$0F0 equ UP-SIZE \ size of each task’s user area
$0F0 equ SP-SIZE \ size of each task’s data stack
$0100 equ RP-SIZE \ size of each task’s return stack
up-size rp-size + sp-size +
equ task-size \ size of TASK data area
\ define the number of cells of guard space at the top of the data stack
#2 equ sp-guard \ can underflow the data stack by this amount
$0100 equ TIB-LEN \ terminal i/p buffer length

\ define nesting levels for interrupts and SWIs.

12 Cortex Lite Target Code v2.0

2 equ #IRQs \ number of IRQ stacks,
\ shared by all IRQs (1 min)
0 equ #SVCs \ number of SVC nestings permitted

\ 0 is ok if SVCs are unused

3.3.4 Serial and ticker rates

1 equ useUSART17? \ --n
Set non-zero to compile code for USART1, device Consolel.

#115200 equ consolel-speed
Consolel speed in BPS.

0 equ useUSART2? \ --n
Set non-zero to compile code for USART?2, device Console2.

#115200 equ console2-speed
Console2 speed in BPS.

0 equ useUSART37? \ --n
Set non-zero to compile code for USART3, device Console3.

115200 equ console3-speed
Console3 speed in BPS.

0 equ useUSART47? \ -=-n
Set non-zero to compile code for USART4, device Console4.

115200 equ console4-speed
Console4 speed in BPS.

1 equ console-port \ -- n ; Designate serial port for terminal (O..n).
Ports 1..4 are the on-chip UARTSs. The internal USB device is port 10, and bit-banged ports
are defined from 20 onwards.

#1 equ tick-ms \ -- ms
Timebase tick in ms.

3.3.5 Software selection

With 128 kb of Flash we can select a comfortable set of software and still have plenty of space
for application code.

nz to make a minimal kermnel.
nz to use cold chain mechanism
true if multitasker needed
for internal consistency check
true for TIMEBASE code
true for software floating point
true to include 70F END-CASE NEXTCASE extensions
true if target local variable sources needed
true for ROMForth handler
true if BLOCK needed
O=no heap, nz=size of heap
true to include diagnostic code
true if ROM or RAM is paged/banked

0 equ Tiny?
1 equ ColdChain?
1 equ tasking?
6 cells equ tcb-size
0 equ timebase?
0 equ softfp?
0 equ FullCase?
0 equ target-locals?
0 equ romforth?
0 equ blocks?
$0000 equ sizeofheap
1 equ heap-diags?
0 equ paged?

P A A A L A A A

Chapter 3: Control file for STM32F072 Discovery board

3.4 Kernel files

include %CpuDir?’/CMOdef
include %CpuDir’%/sfrSTM32F072
include %CpuDir’/StackDef

PROGd sec-top 1+ equ UNUSED-TOP PROG
include %HwDir’%/startSTM32F072

1: crcslot
0,

1: crcstart
include %CpuDir%/CodeMOlite
include %CpuDir%/Drivers/FlashSTM32
include Y%CpuDir/,/kernel72lite
include %CpuDir’/Drivers/rebootSTM32
include Y%CpuDir’%/IntCortex
include %CpuDir%/FaultCortex

__

: selio-serl

~ s s

P

13

Cortex generic equates and SFRs
STM32F072 special function registers
Reserve default task and stacks

top of memory for UNUSED

start up code

the kernel CRC

low level kernel definitions
Flash programming code

high level kernel definitions
reboot using watchdog

interrupt handlers for NVIC

fault exception handlers for NVIC

Example to perform clock and pin selection for USART1 on PA9/10. You cannot use the easy
GPIO code for this unless the GPIO ports are clocked and taken out of reset in the start up

code.

include
include %CpuDir/Dump
include
include
> start-clock AtCold

tasking? [if]

include %CpuDir?%/MultiCMOlite
[then]

3.5 End of kernel

\

\

%CpuDir),/Drivers/serSTM32F0xxp \ polled serial driver

DUMP .S etc development tools

%CpuDir’%/Drivers/gpioSTM32FOxx \ easy pin access
%CpuDir%/Drivers/SysTickDisco072

multitasker

After the main kernel has been built, some version data is laid down for use by the sign-on code.

buildfile 1iteSTM32F072sa.no
1: version$

build$,
1: BuildDate$

DateTime$,

internal
.banner \ —-
CT . " skokskokokokokokokok ok kok ok skok ok ok ok ok ok ok ok ok 1!

.CPU
.banner

\ -- ; display CPU type

14 Cortex Lite Target Code v2.0

cr ." MPE Forth Lite for STM32F072"

cr version$ $. space BuildDate$ $.

cr ." Copyright (C) 2014 MicroProcessor Engineering Ltd."
.banner

external

3.6 Application code

This code is not essential, but makes life very much easier.

include %HwDir’%/ReProg/ReFlash \ ReFlash utility
include %CpuDir%/include \ include from AIDE
include %CpuDir’%/Drivers/spiSTM32FOhard \ SPI2 driver
include %CpuDir’/Examples/13gd20 \ L3GD20 MEMS driver

RAMEND constant RP-END \ end of available RAM

3.7 Finishing up

libraries \ to resolve common forward references
include %CpuDir’%/LibMOM1
include %CpuDir7/LIBRARY

end-libs

decimal

\ Add a kernel checksum
crcstart here crcslot crc32 checksum
/DefStart 128 > [if]

. (DEFSTART area too big) abort
[then]

update-build \ update build number file

FINIS \ all done

Chapter 4: Cortex start up for STM32F072 15

4 Cortex start up for STM32F072

1: ExcVecs \ -- addr ; start of vector table

The exception vector table is /ExcVecs bytes long. The equate is defined in the control file.
Note that this table table must be correctly aligned as described in the Cortex-M3 Technical
Reference Manual (ARM DDI0337, rev E page 8-21). If placed at 0 or the start of Flash, you’ll
usually be fine.

: SetExcVec \ addr exc# —-

Set the given exception vector number to the given address. Note that for vectors other than 0,
the Thumb bit is forced to 1.

: predivé \u--x
Convert a divider value to a 4 bit pattern as used for HPRE.

: prediv3 \u--x
Convert a divider value to a 3 bit pattern as used for PPRE.

: pllmull \u--x

Convert a multiplier value to the 4 bit pattern as used for PLLMUL.

We set up for 48 MHz CPU speed from the HSI oscillator. The HSI oscillator is more accurate
than the HSI48, so the HSI is better for UART use.

equ initCFGRval \ -- x
Bit settings for the RCC_CFGR register.
equ initCFGR2val \ - x

Bit settings for the RCC_CFGR2 register.
The number of wait states required by the Flash depends on the operating frequency.

system-speed 1- 24 MHz / equ FLWS \ ——u
The number of Flash wait states required.

bit4 (PRFTBE) FLWS or equ initACRval \ -- x
Initial value written to the FLASH_ACR register

: setClocks \ —
Enable the clocks, set the bus dividers, and enable the PLLs as required. the PLL IS used to
generate the main 48 MHz clock. By default, the AHB and APB busses are run at SYSCLK

: StartCortex \ -- ; never exits
Set up the Forth registers and start Forth. Other primary hardware initialisation can also be

performed here. All the GPIO blocks are enabled.

Chapter 5: Cortex code definitions 17

5 Cortex code definitions

The file Cortex/CodeMOlite.fth contains primitives for the standalone Lite Forth kernel.

5.1 Notes

Some words and code routines are marked in the documentation as INTERNAL. These are factors
used by other words and do not have dictionary entries in the standalone Forth. They are only
accessible to users of the VFX Forth ARM Cross Compiler. This also applies to definitions of
the form:

n EQU <name>
PROC <name>

L: <name>

5.2 Register usage

For Cortex-M0/M1 the following register usage is the default:

(N
rilb pc program counter
ri4 link link register; bitO=1=Thumb, usually set
rl3 rsp return stack pointer
ril2 -=
ril up user area pointer
r10 -=
r9 1p locals pointer
r8 -=
r7 tos cached top of stack
r6 psp data stack pointer
L r0-r5 scratch

The VFX optimiser reserves RO and R1 for internal operations. CODE definitions must use R7 as
TOS with NOS pointed to by R6 as a full descending stack in ARM terminology. R0..R5, R12
are free for use by CODE definitions and need not be preserved or restored. You should assume
that any register can be affected by other words.

0 equ Tiny? \ -- flag

If this equate is not already set, a non-minimal kernel is built.

5.3 Logical and relational operators
: AND \ x1 x2 -- x3

Perform a logical AND between the top two stack items and retain the result in top of stack.

: OR \ x1 x2 -- x3
Perform a logical OR between the top two stack items and retain the result in top of stack.

: XOR \ x1 x2 -- x3
Perform a logical XOR. between the top two stack items and retain the result in top of stack.

: INVERT \ x - x’
Perform a bitwise inversion.

18 Cortex Lite Target Code v2.0

: 0= \ x -- flag

Compare the top stack item with 0 and return TRUE if equals.

1 0> \ x —- flag

Compare the top stack item with 0 and return TRUE if not-equal. Not compiled if the flag
TINY? is set.

: 0> \ x -- flag

Return TRUE if the top of stack is greater-than-zero. Not compiled if the flag TINY? is set.
: 0< \ x —- flag

Return TRUE if the top of stack is less-than-zero.

T o= \ x1 x2 -- flag

Return TRUE if the two topmost stack items are equal.

D <> \ x1 x2 -- flag

Return TRUE if the two topmost stack items are different.

: < \ nl n2 -- flag

Return TRUE if nl is less than n2.

: > \ nl n2 -- flag

Return TRUE if nl is greater than n2.

1 <= \ nl n2 -- flag

Return TRUE if nl is less than or equal to n2. Not compiled if the flag TINY? is set.
D o>= \ x1 x2 -- flag

Return TRUE if nl is greater than or equal to n2. Not compiled if the flag TINY? is set.
: U> \ u2 u2 -- flag

An UNSIGNED version of >.

: U< \ ul u2 -- flag

An UNSIGNED version of <.

: DO< \ d -- flag

Returns true if signed double d is less than zero. Not compiled if the flag TINY? is set.

: DO= \ xd -- flag
Returns true if xd is 0. Not compiled if the flag TINY? is set.

CODE D= \ xdl xd2 -- flag
Return TRUE if the two double numbers are equal. Not compiled if the flag TINY? is set.

CODE MIN \ n1 n2 -- n1|n2
Given two data stack items preserve only the smaller.

CODE MAX \ n1 n2 -- n1|n2
Given two data stack items preserve only the larger.

: within \ nllul n2|u2 n3|u3 -- flag
Return true for n2 <= nl < n8. This word uses unsigned arithmetic, so that signed compares
are treated as existing on a number circle.

code 1lshift \ x1 u-—- x2
Logically shift X1 by U bits left.
code rshift \ x1 u - x2

Logically shift X1 by U bits right.

Chapter 5: Cortex code definitions 19

code arshift \ x1 u - x2
Arithmetic shift right X1 by U bits.

5.4 Control flow

CODE EXECUTE \ xt --
Execute the code described by the XT. This is a Forth equivalent of an assembler JSR/CALL
instruction.

CODE LEAVE A

Remove the current DO ... LOOP parameters and jump to the end of the DO ... LOOP structure.
CODE ?7LEAVE \ flag --

If flag is non-zero, remove the current DO ... LOOP parameters and jump to the end of the DO

... LOOP structure.

CODE I \ - n

Return the current index of the inner-most DO ... LOOP.

CODE J \ - n

Return the current index of the second DO ... LOOP. Not compiled if the flag TINY? is set.
CODE UNLOOP \ -- ; R: loop-sys --

Remove the DO ... LOOP control parameters from the return stack.

5.5 Basic arithmetic
: S>D \'n--d
Convert a single number to a double one.
CODE M+ \ diludl n -- d2|ud2
Add double d1 to sign extended single n to form double d2. Not compiled if the flag TINY? is
set.
: 1+ \ nilul -- n2|u2
Add one to top-of stack.
1- \ nilul -- n2|u2
Subtract one from top-of stack.

CODE + \ nllul n2|u2 -- n3|u3
Add two single precision integer numbers.

CODE - \ nilul n2fu2 -- n3|u3
Subtract two integers. N3|u3=nl|ul-n2|u2.

CODE NEGATE \ nl -- n2
Negate an integer.

CODE D+ \ d1 42 -- d3
Add two double precision integers.

CODE D- \ di d2 -- d3
Subtract two double precision integers. D3=D1-D2. Not compiled if the flag TINY? is set.

CODE DNEGATE \ di -- -d1
Negate a double number.

CODE 7NEGATE \ nl flag -- nl|n2
If flag is negative, then negate nl.

20 Cortex Lite Target Code v2.0

CODE ABS \'n--u
If n is negative, return its positive equivalent (absolute value).
CODE DABS \d-- ud

If d is negative, return its positive equivalent (absolute value).

CODE D2x \ xd1l -- xd2
Multiply the given double number by two. Not compiled if the flag TINY? is set.

CODE D2/ \ xdl -- xd2
Divide the given double number by two. Not compiled if the flag TINY? is set.

5.6 Multiplication
Dok \ nl n2 -- n3
Standard signed multiply. N3 = nl * n2.

code UMx \ ul u2 -- ud

Perform unsigned-multiply between two numbers and return double result.

D om* \ nl n2 --d

Signed multiply yielding double result. Not compiled if the flag TINY? is set.

5.7 Division

code um/mod \ udl u2 -- urem uquot

Full 64 by 32 unsigned division subroutine. ARM Cortex-M0/M1 provides no division instruc-
tions, so this is a software loop performing repeated trial subtraction.

: sm/rem \ d n -- rem quot ; symmetric division

Perform a signed division of double number d by single number n and return remainder and
quotient using symmetric (normal) division.

: /mod \ nl n2 -- rem quot

Signed symmetric division of N1 by N2 single-precision returning remainder and quotient. Sym-
metric.

:/ \ n1 n2 -- n3

Standard signed division operator. n3 = nl/n2. Symmetric.

: MOD \ nl n2 -- n3

Return remainder of division of N1 by N2. n3 = nl mod n2.

: MU/MOD \ d n -- rem d#quot

Perform an unsigned divide of a double by a single, returning a single remainder and a double
quotient.

: fm/mod \ d n -- rem quot

Perform a signed division of double number d by single number n and return remainder and
quotient using floored division. See the ANS Forth specification for more details of floored
division. Not compiled if the flag TINY? is set.

u/ \ ul u2 -- u3

Unsigned division operator. u3 = ul/u2. Not compiled if the flag TINY? is set.

: M/ \ d n1 -- n2

Signed divide of a double by a single integer. Not compiled if the flag TINY? is set.

Chapter 5: Cortex code definitions 21

5.8 Scaling - multiply then divide

These operations perform a multiply followed by a divide. The intermediate result is in an
extended form. The point of these operations is to avoid loss of precision.

: */MOD \ nl n2 n3 -- n4 n4
Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
remainder and quotient. Not compiled if the flag TINY? is set.

. V4 \ nl n2 n3 -- n4
Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
quotient. Not compiled if the flag TINY? is set.

5.9 Stack manipulation

: NIP \ x1 x2 -- x2
Dispose of the second item on the data stack.

: TUCK \ x1 x2 -- x2 x1 x2
Insert a copy of the top data stack item underneath the current second item. Not compiled if
the flag TINY? is set.

: PICK \xu .. xOu -— xu .. x0O xu

Get a copy of the Nth data stack item and place on top of stack. 0 PICK is equivalent to
\fo{DUP}.

CODE ROLL \ xu xu-1 .. x0 u -- xu-1 .. x0 xu

Rotate the order of the top N stack items by one place such that the current top of stack becomes
the second item and the Nth item becomes TOS. See also ROT. Not compiled if the flag TINY?
is set.

: ROT \ x1 x2 x3 -- x2 x3 x1
ROTate the positions of the top three stack items such that the current top of stack becomes
the second item.

: -ROT \ x1 x2 x3 -- x3 x1 x2
The inverse of ROT. Not compiled if the flag TINY? is set.

CODE >R \x - ; R: —x
Push the current top item of the data stack onto the top of the return stack.

CODE R> \ —-—x; R: x —
Pop the top item from the return stack to the data stack.

CODE R@ \ - x ;R: x--x
Copy the top item from the return stack to the data stack.

CODE 2>R \ x1 x2 —— ; R: -- x1 x2
Transfer the two top data stack items to the return stack. Not compiled if the flag TINY? is set.

CODE 2R> \ —— x1 x2 ; R: x1 x2 —-
Transfer the top two return stack items to the data stack. Not compiled if the flag TINY? is set.

CODE 2R@ \ - x1 x2 ; R: x1 x2 -- x1 x2
Copy the top two return stack items to the data stack. Not compiled if the flag TINY? is set.

: SWAP \ x1 x2 —- x2 x1
Exchange the top two data stack items.

: DUP \ x - xx

22 Cortex Lite Target Code v2.0

DUPIicate the top stack item.

: OVER \ x1 x2 —- x1 x2 x1
Copy NOS to a new top-of-stack item.

: DROP \ x --
Lose the top data stack item and promote NOS to TOS.

: 2DUP \ x1 x2 —— x1 x2 x1 %2
DUPlicate the top cell-pair on the data stack. Not compiled if the flag TINY? is set.

: 20VER \ x1 x2 x3 x4 —- x1 x2 x3 x4 x1 %2
As OVER but works with cell-pairs rather than single-cell items. Not compiled if the flag TINY?
is set.

: 2DROP \ x1 x2 ——)

Discard the top two data stack items. Not compiled if the flag TINY? is set.

: 2SWAP \ x1 x2 x3 x4 —— x3 x4 x1 x2

Exchange the top two cell-pairs on the data stack. Not compiled if the flag TINY? is set.

: 7DUP \ x —— | x

DUPIicate the top stack item only if it non-zero.

CODE SP@ \ - x

Get the current address value of the data-stack pointer. Not compiled if the flag TINY? is set.
CODE SP! \ x —-

Set the current address value of the data-stack pointer. Not compiled if the flag TINY? is set.

CODE RP@ \ - x
Get the current address value of the return-stack pointer. Not compiled if the flag TINY? is set.

CODE RP! \ x —-

Set the current address value of the return-stack pointer. Not compiled if the flag TINY? is set.
: DEPTH \ ??? —— +n

Return the number of items on the data stack.

5.10 String and memory operators

: COUNT \ c-addrl -- c-addr2’ u
Given the address of a counted string in memory this word will return the address of the first
character and the length in characters of the string.

: /STRING \ c-addrl ul n -- c-addr2 u2
Modify a string address and length to remove the first N characters from the string.

CODE SKIP \ c-addrl ul char -- c-addr2 u2
Modify the string description by skipping over leading occurrences of ’char’.

CODE SCAN \ c-addrl ul char -- c-addr2 u2
Look for first occurrence of char in the string and return a new string. C-addr2/u2 describes
the string with char as the first character.

CODE S= \ c-addrl c-addr2 u -- flag
Compare two same-length strings/memory blocks, returning TRUE if they are identical.

: compare \ c-addrl ul c-addr2 u2 -- n 17.6.1.0935
Compare two strings. The return result is 0 for a match or can be -ve/+ve indicating string
differences. If the two strings are identical, n is zero. If the two strings are identical up to the

Chapter 5: Cortex code definitions 23

length of the shorter string, n is minus-one (-1) if ul is less than u2 and one (1) otherwise. If
the two strings are not identical up to the length of the shorter string, n is minus-one (-1) if
the first non-matching character in the string specified by c-addrl ul has a lesser numeric value
than the corresponding character in the string specified by c-addr2 u2 and one (1) otherwise.
Not compiled if the flag TINY? is set.

: SEARCH (c-addrl ul c-addr2 u2 -- c-addr3 u3 flag)

Search the string c-addrl/ul for the string c-addr2/u2. If a match is found return c-addr3/u3,
the address of the start of the match and the number of characters remaining in c-addrl/ul,
plus flag f set to true. If no match was found return c-addrl/ul and f=0. Not compiled if the
flag TINY? is set.

code cmove \ asrc adest len -—-
Copy len bytes of memory forwards from asrc to adest.

CODE CMOVE> \ c-addrl c-addr2 u --
As CMOVE but working in the opposite direction, copying the last character in the string first.

: MOVE \ addrl addr2 u -- ; intelligent move

An intelligent memory move, chooses between CMOVE and CMOVE> at runtime to avoid memory
overlap problems. Note that as Forth Lite characters are 8 bit, there is an implicit connection
between a byte and a character.

: upc \ char -- char’ ; force upper case

Convert char to upper case.

: upper \ c-addr len --
Convert the ASCII string described to upper-case. This operation happens in place.

: PLACE \ c-addrl u c-addr2 --
Place the string c-addrl/u as a counted string at c-addr2.

CODE FILL \ c-addr u char —--
Fill LEN bytes of memory starting at ADDR, with the byte information specified as CHAR.

: Erase \ addr n --
Fill U bytes of memory from A-ADDR with 0. Not compiled if the flag TINY? is set.

1 0 \ a-addr -- x

Fetch and return the CELL at memory ADDR.

: We \ a-addr - w

Fetch and 0 extend the word (16 bit) at memory ADDR.

: Ce \ c-addr -- char

Fetch and 0 extend the character at memory ADDR, and return.
! \ x a-addr --

Store the CELL quantity X at memory A-ADDR.

D W! \ w a-addr --

Store the word (16 bit) quantity w at memory ADDR.

: C! \ char c-addr --

Store the character CHAR at memory C-ADDR.

: ON \ a-addr --

leen the address of a CELL this will set its contents to TRUE (-1). Not compiled if the flag
TINY? is set.

24 Cortex Lite Target Code v2.0

: OFF \ a-addr --
Given the address of a CELL this will set its contents to FALSE (0). Not compiled if the flag
TINY? is set.

: INCR \ a-addr --

Increment the data cell at a-addr by one. Not compiled if the flag TINY? is set.
: DECR \ a-addr --

Decrement the data cell at a-addr by one. Not compiled if the flag TINY? is set.
Do+ \ nlu a-addr --

Add N to the CELL at memory address ADDR.

CODE 2@ \ a-addr -- x1 x2

Fetch and return the two CELLS from memory ADDR and ADDR+sizeof(CELL). The cell at
the lower address is on the top of the stack.

CODE 2! \ x1 x2 a-addr --
Store the two CELLS x1 and x2 at memory ADDR. X2 is stored at ADDR and X1 is stored at
ADDR+CELL.

5.11 Miscellaneous words
: NOOP \ -
A NOOP, null instruction.

: NAME> \ nfa -- cfa
Move a pointer from an NFA to the XT.

: >NAME \ cfa -- nfa

Move a pointer from an XT back to the NFA or name-pointer. If the original pointer was not
an XT or if the definition in question has no name header in the dictionary the returned pointer
will be useless. Care should be taken when manipulating or scanning the Forth dictionary in
this way.

: SEARCH-WORDLIST \ c-addr u wid -- Olxt 1lxt -1

Search the given wordlist for a definition. If the definition is not found then 0 is returned,
otherwise the XT of the definition is returned along with a non-zero code. A -ve code indicates
a "normal" definition and a +ve code indicates an IMMEDIATE word.

CODE DIGIT \ char n —- O|n true
If the ASCII value CHAR can be treated as a digit for a number within the radix N then return
the digit and a TRUE flag, otherwise return FALSE.

5.12 Portability helpers

Using these words will make code easier to port between 16, 32 and 64 bit targets.

CODE CELL+ \ a-addrl -- a-addr2
Add the size of a CELL to the top-of stack. Not compiled if the flag TINY? is set.

CODE CELLS \ nl -- n2
Return the size in address units of N1 cells in memory. Not compiled if the flag TINY? is set.

CODE CELL- \ a-addrl -- a-addr2
Decrement an address by the size of a cell. Not compiled if the flag TINY? is set.

CODE CELL \ - n
Return the size in address units of one CELL. Not compiled if the flag TINY? is set.

Chapter 5: Cortex code definitions 25

5.13 Code buffer in RAM

Many ARM chips cannot program their own Flash on a byte by byte basis. Some chips will only
program a single 32 bit word set to $SFFFF:FFFF. Others will only program a minimum of 64
bytes. To avoid unpleasantness and compromises, code is compiled into RAM and then copied
to Flash. In most cases, this is all hidden from the programmer, but in some cases you do need
to be aware of what is happening. The actual implementation is chip specific and is contained
in the Flash driver file for the chip.

A few words are common to all implementations. For further details see the relevant Flash
driver source code.

: +BuffComp \ —-

Start compiling into the RAM buffer. HERE still points into Flash. This word is already used
inside words such as : and VARIABLE.

: —BuffComp \ -

Stop compiling into the RAM buffer and program the RAM buffer to Flash. This word is already
inside ; and VARIABLE.

: c@c \ addr -- b

8 bit fetch from Flash or the RAM buffer if active
: wlc \ addr - w

16 bit fetch from Flash or the RAM buffer if active
: Qc \ addr -- x

32 bit fetch from Flash or the RAM buffer if active
: clc \ b addr --

8 bit store to Flash or the RAM buffer if active

: wlc \ w addr --
16 bit store to Flash or the RAM buffer if active

lc \ b addr --
32 bit store to Flash or the RAM buffer if active

5.14 Supporting compilation on the target

Compilation on the target is supported for compilation into Flash. The target’s compiler is
simplistic and gives neither the code size nor the performance of cross-compiled code. The
support words are compiled without heads.

CODE LIT \ - x

Code which when CALLED at runtime will return an inline cell value. The call must be at a
four byte boundary. INTERNAL.

CODE (") \ -- a-addr ; return address of string, skip over it

Return the address of a counted string that is inline after the CALLING word, and adjust the
CALLING word’s return address to step over the inline string. The adjusted return address will
be at a four byte boundary. See the definition of (.") for an example.

5.15 Defining words and runtime support
: aligned \ addr -- addr’

26 Cortex Lite Target Code v2.0

Given an address pointer this word will return the next ALIGNED address subject to system
wide alignment restrictions.

: compile, \ xt --
Compile the word specified by xt into the current definition.

: >BODY \ xt -- a-addr

Move a pointer from a CFA or "XT" to the definition’s data area. >BODY should only be used
with children of CREATE. If FOOBAR is defined with CREATE foobar, then the phrase ’> FOOBAR
>BODY would give the same result as executing FOOBAR.

(;CODE) \ -=- ; R: a-addr --
Performed at compile time by ;CODE and DOES>. Patch the last word defined (by CREATE) to
have the run time actions that follow immediately after (;CODE). INTERNAL.

: Imm \ -
Used before a definition to indicate that it is IMMEDIATE, which means that it will execute
whenever encountered regardless of whether the Forth system is compiling or interpreting.

Do \ C: "<spaces>name" -- colon-sys ; Exec: i*x -- j*x ; R: -- nest-sys
Start a new definition called name.

:NONAME \ C: -- colon-sys ; Exec: i*x -- i*x ; R: -- nest-sys
Begin a new code definition which does not have a name. After the definition is complete the
semi-colon operator returns the XT of newly compiled code on the stack.

: DOES> \ C: colon-sysl -- colon-sys2 ; Run: -- ; R: mnest-sys --
Start definition of the runtime-action of a child of a defining word. See the section about defining
words in Programming Forth. You should not use RECURSE after DOES>.

: CREATE \ --

Create a new definition in the dictionary, turning on compiling into the code buffer in RAM.
When the new definition is executed it will return the address of the definition’s data area. If
you use CREATE to create a data table, be sure to turn off compilation into the code buffer
when the table is complete, e.g.

create foo 5, 6, 7, 8, -BuffComp

: <BUILDS \ -

A synonym for CREATE. May be removed in a future release. Only kept for short-term compat-
ibility with the MSP430 Lite editions. Not compiled if the flag TINY? is set.

: CONSTANT \ x "<spaces>name" -- ; Exec: -- x

Create a new CONSTANT called name which has the value "x". When NAME executes the value
*\i{x) is returned.

: EQU \ x "<spaces>name" -- ; Exec: -- x

A synonym for CONSTANT above to ease interactive debugging of target drivers that are normally
cross-compiled. Create a new CONSTANT called name which has the value "x". When NAME
executes the value *\i{x) is returned.

: 2CONSTANT \ Comp: x1 x2 "<spaces>name" -- ; Run: -- x1 x2
A two-cell equivalent of CONSTANT. Not compiled if the flag TINY? is set.

: VARIABLE \ "<spaces>name" -- ; Exec: -- a-addr

Create a new variable called name. When name is executed the address of the data-cell is returned
for use with @ and ! operators. The RAM is not initialised. Note that the state of a user-defined
VARIABLE is not preserved across power-down and restart.

Chapter 5: Cortex code definitions 27

: USER \ u "<spaces>name" -- ; Exec: -- addr ; SFP009

Create a new USER variable called name. The u parameter specifies the index into the user-area
table at which to place the* data. USER variables are located in a separate area of memory for
each task or interrupt. Use in the form:

$400 USER TaskData

:ou#t \ "<name>"-- u

An INTERPRETER word that returns the index of the USER variable whose name follows, e.g.
u# SO

: CRASH \ —- ; used as action of DEFER
The default action of a DEFERed word, which is NOOP,

: DEFER \ Comp: "<spaces>name" -- ; Run: i*x —- j*x
Creates a new DEFERed word. No default action is assigned. User-defined DEFERed words must
be initialised by the application before use.

> <action> IS <deferredword>

or (when compiled)

[’] <action> IS <deferredword>

Note that the state of a user-defined DEFERred word is not preserved across power-down and
restart.

CODE VAL! \ n —— ; store value address in-line
Store n at the inline address following this word. INTERNAL.

CODE VALG@ \ -—— n ; read value data address in-line
Read n from the inline address following this word. INTERNAL.
: VALUE \n--; -— n ; n VALUE <name>

Creates a variable of initial value n that returns its contents when referenced. To store to a
child of VALUE use "n to <child>". Application programs must explicity re-initialise children
of VALUE.

: to \ --
store operator for use with VALUEs.

5.16 Structure compilation
These words define high level branches. They are used by the structure words such as IF and
AGAIN.

: >mark \ -- addr
Mark the start of a forward branch. HIGH LEVEL CONSTRUCTS ONLY. INTERNAL.

: >resolve \ addr --
Resolve absolute target of forward branch. HIGH LEVEL CONSTRUCTS ONLY. INTERNAL.
: <mark \ --— addr

Mark the start (destination) of a backward branch. HIGH LEVEL CONSTRUCTS ONLY.
INTERNAL.

: <resolve \ addr --
Resolve a backward branch to addr. HIGH LEVEL CONSTRUCTS ONLY. INTERNAL.

28 Cortex Lite Target Code v2.0

synonym >c_res_branch >resolve \ addr -- ; fix up forward referenced branch
See >RESOLVE. INTERNAL.

synonym c_mrk_branch< <mark \ -- addr ; mark destination of backward branch
See <MARK. INTERNAL.

5.17 Branch constructors

Used when compiling code on the target.

: c_branch< \ addr --
Lay the code for an unconditional backward branch. INTERNAL.
: c_7branch< \ addr --

Lay the code for a conditional backward branch.

: c_branch> \ -- addr
Lay the code for a forward referenced unconditional branch. INTERNAL.

: c_7branch> \ -- addr
Lay the code for a forward referenced conditional branch. INTERNAL.

5.18 Main compilers

:oc_lit \ lit --

Compile the code for a literal of value lit. INTERNAL.

: c_drop \ —-

Compile the code for DROP. INTERNAL. Not compiled if the flag TINY? is set.

1 c_exit \ —-

Compile the code for EXIT. INTERNAL.

: c_do \ C: -- do-sys ; Run: nllul n2|u2 -- ; R: -- loop-sys
Compile the code for DO. INTERNAL.

: ¢_7D0 \ C: -- do-sys ; Run: nl|ul n2|u2 -- ; R: -- | loop-sys
Compile the code for ?D0. INTERNAL.

: c_L0OOoP \ C: do-sys -- ; Run: -- ; R: loop-sysl -- | loop-sys2
Compile the code for LOOP. INTERNAL.

: c_+L0OOP \ C: do-sys -- ; Run: -- ; R: loop-sysl -- | loop-sys2
Compile the code for +L0O0P. INTERNAL.

variable NextCaseTarg \ -- addr
Holds the entry point of the current CASE structure. INTERNAL. Not compiled if the flag TINY?
is set.

: c_case \ -- addr
Compile the code for CASE. INTERNAL. Not compiled if the flag TINY? is set.

: c_OF \ C: -- of-sys ; Run: x1 x2 -- | x1
Compile the code for OF. INTERNAL. Not compiled if the flag TINY? is set.

: c_ENDOF \ C: case-sysl of-sys -- case-sys2 ; Run: --
Compile the code for ENDOF. INTERNAL. Not compiled if the flag TINY? is set.

: FIX-EXITS \ nl..nn —-

Chapter 5: Cortex code definitions 29

Compile the code to resolve the forward branches at the end of a CASE structure. INTERNAL.
Not compiled if the flag TINY? is set.

: c_ENDCASE \ C: case-sys -- ; Run: x --

Compile the code for ENDCASE. INTERNAL. Not compiled if the flag TINY? is set.

: c_70F \ C: -- of-sys ; Run: flag --

Compile the code for 70F. INTERNAL. Not compiled if the flag TINY? is set.

5.19 More miscellaneous words
defer pause \ -- ; multitasker hook

Allows the sytem multitasker to get a look in. If the multitasker has not been compiled, PAUSE
is set to NOOP.

code di \ --
Disable interrupts.

code ei \ —-
Enable interrupts.
code [I \ R: -—- x1 x2

Preserve interrupt /exception status on the return stack, and disable interrupts/exceptions except
reset, NMI and HardFault. The state is restored by I].

code I] \ R: x1 x2 --
Restore interrupt status saved by [I from the return stack.

: setMask \ value mask addr -- ; cell operation
Clear the mask bits at addr and set (or) the bits defined by value.

5.19.1 Non-minimal systems

The following words are only compiled if the equate Tiny? is set to zero.

: init-io \ addr --
Copy the contents of the I/O set up table to an I/O device. Each element of the table is of the
form addr (cell) followed by data (cell). The table is terminated by an address of 0.

: bor! \ mask addr --
Set mask bits in the byte at addr.

: bbic! \ mask addr --
Clear mask bits in the byte at addr.

: btoggle! \ mask addr --
Toggle the mask bits in the byte at addr.

: btst \ mask addr -- x
Return non-zero if the mask bits in the byte at addr are non-zero.

: or! \ mask addr --
Set mask bits in the cell at addr.

: bic! \ mask addr --
Clear mask bits in the cell at addr.

: toggle! \ mask addr --
Toggle the mask bits in the cell at addr.

30 Cortex Lite Target Code v2.0

: tst \ mask addr -- x
Return non-zero if the mask bits in the cell at addr are non-zero.

: cset \ mask addr --
Set mask bits in the cell at addr.

: cclr \ mask addr --
Clear mask bits in the byte at addr.

: ctoggle \ mask addr --
Toggle the mask bits in the byte at addr.

1 cget \ mask addr -- flag
Return non-zero if the mask bits in the byte at addr are non-zero.

Chapter 6: High level kernel - kernel72lite.fth. 31

6 High level kernel - kernel72lite.fth.

The Forth kernel words documented here are entirely written in high-level Forth. The kernel is
reduced in size to match available code size in small devices.

6.1 User variables
variable next-user \ —- addr
Next valid offset for a USER variable created by +USER.

: +user \ size --

Used in the cross compiler to create a USER variable size bytes long at the next available offset
and updates that offset.

tcb-size +user SELF \ task identifier and TCB

When multitasking is installed, the task control block for a task occupies TCB-SIZE bytes at the
start of the user area. Thus the user area pointer also acts as a pointer to the task control block.
Not compiled if the flag Tasking? is not set.

cell +user SO \ base of data stack

Holds the initial setting of the data stack pointer. N.B. SO, RO, #TIB and ’TIB must be defined
in that order.

cell +user RO \ base of return stack
Holds the initial setting of the return stack pointer.

cell +user #TIB \ number of chars currently in TIB
Holds the number of characters currently in TIB.

cell +user ’TIB \ address of TIB
Holds the address of TIB, the terminal input buffer.

cell +user >IN \ offset into TIB
Holds the current character position being processed in the input stream.

cell +user OUT \ number of chars displayed on current line
Holds the number of chars displayed on current output line. Reset by CR.

cell +user DPL \ position of double number character id

Holds the number of characters after the double number indicator character. DPL is initialised
to -1, which indicates a single number, and is incremented for each character after the separator.

cell +user OPVEC \ output vector
Holds the address of the I/O vector for the current output device.

cell +user IPVEC \ input vector
Holds the address of the I/O vector for the current input device.

#80 chars dup +user PAD
A temporary string scratch buffer.

6.2 System data

6.2.1 Constants

$20 constant BL \ -- char
A blank space character.

32 Cortex Lite Target Code v2.0

6.2.2 System variables and data

Note that DP and RP must be declared in that order.

variable DP \ -- addr
Flash dictionary pointer.

variable RP \ -- addr
RAM dictionary pointer.

variable xDP DP xDP ! \ -- addr
Holds the address of the current dictionary pointer, DP or RP.

6.3 Vectored I/O handling
6.3.1 Introduction

The standard console Forth 1/O words (KEY?, KEY, EMIT, TYPE and CR) can be used with any
I/O device by placing the address of a table of xts in the USER variables IPVEC and OPVEC.
IPVEC (input vector) controls the actions of KEY? and KEY, and OPVEC(output vector) controls
the actions of EMIT, TYPE and CR. Adding a new device is matter of writing the five primitives,
building the table, and storing the address of the table in the pointers IPVEC and OPVEC to make
the new device active. Any initialisation must be performed before the device is made active.

Note that for the output words (EMIT, TYPE and CR) the USER variable OUT is handled in the
kernel before the funtion in the table is called.

6.3.2 Building a vector table

The example below is taken from an ARM implementation.

()
create Consolel \ -- addr
> serkeyli , \ -- char
> serkey?1i , \ -- flag
> seremitl , \ char --
> sertypel , \ c-addr len --
> serCR1 , \ -
Consolel opvec ! Consolel ipvec !
- J

6.3.3 Generic I/0O words

: key \ -- char ; receive char
Wait until the current input device receives a character and return it.

: KEY? \ -- flag ; check receive char
Return true if a character is available at the current input device.

: EMIT \ -- char ; display char
Display char on the current I/O device. OUT is incremented before executing the vector function.

: TYPE \ caddr len -- ; display string
Display /write the string on the current output device. Len is added to OUT before executing the
vector function.

Chapter 6: High level kernel - kernel72lite.fth. 33

: CR \ -- ; display new line
Perform the equivalent of a CR/LF pair on the current output device. OUT is zeroed. before
executing the vector function.

: SPACE \ -
Output a blank space (ASCII 32) character.
: SPACES \'n —-

Output n spaces, where n > 0. If n < 0, no action is taken.

6.4 Laying data in memory

These words are used to control and place data in memory. Note that the Forth system compiles
headers and code into Flash memory.

: HERE \ -- addr

Return the current dictionary pointer which is the first address-unit of free space within the
System.

: ORG \ addr --

Set the current dictionary pointer.

: ALLOT \'n --

Allocate N address-units of data space from the current value of HERE and move the pointer.
: RHERE \ -- addr
Return the current RAM dictionary pointer.
: RALLOT \'n --
Allocate n bytes of RAM from RHERE and move the pointer.
: RALIGN \ --
Force RHERE to be cell aligned.
: ROM \ -
HERE, ORG, ALLOT, , and friends, are set to use the Flash dictionary pointer. This is the default.
: RAM \ --
HERE, ORG and ALLOT are set to use the RAM dictionary pointer. Use in the form:
RAM ... ROM
: aligned \ addr -- addr’

Given an address pointer this word will return the next ALIGNED address subject to system wide
alignment restrictions.

: ALIGN \ -
ALIGN dictionary pointer using the same rules as ALIGNED.
, \ x --

Place the CELL value X into the dictionary at HERE and increment the pointer.
Tow, \ x —-

Place the 16 bit value X into the dictionary at HERE and increment the pointer.
: C, \ b —-

Place an 8 bit byte into the dictionary at HERE and increment the pointer.

34 Cortex Lite Target Code v2.0

6.5 Dictionary management

The Forth header is laid out as below. The start and end of the header are aligned at cell
boundaries.

Link | Count | <name>

Cell | Byte | n Bytes

Link Also called LFA. This field contains the address of the of the next count byte in the
same thread of the wordlist.

Count/Ctrl
The bottom five bits contain the length (0..31) of the name in bytes. The top three
bits are used as follows:

Bit 7 Always set
Bit 6 Immediate bit (O=immediate)
Bit 5 Reserved

<name> A string of ASCII characters which make up the name of the word..

: FIND \ c-addr -- c-addr Olxt 1l|xt -1

Perform the SEARCH-WORDLIST operation on all wordlists within the current search order. This
definition takes a counted string rather than a c-addr/u pair. The counted string is returned as
well as the 0 on failure.

.NAME \ nfa --
Display a definition’s name given an NFA.

6.6 String compilation

c" \ -- c-addr
The run-time action for C" which returns the address of and steps over a counted string. IN-
TERNAL.

(s \ -- c-addr u
The run-time action for S" which returns the address and length of and steps over a string.
INTERNAL.

(ABORT") \ i*x x1 —— | i*x
The run time action of ABORT". INTERNAL.
." \ —-

r.[’he run-time action of .". INTERNAL.
6.7 ANS words CATCH and THROW

CATCH and THROW form the basis of all Forth error handling. The following description of CATCH
and THROW originates with Mitch Bradley and is taken from an ANS Forth standard draft.

CATCH and THROW provide a reliable mechanism for handling exceptions, without having to prop-
agate exception flags through multiple levels of word nesting. It is similar in spirit to the "non-
local return" mechanisms of many other languages, such as C’s setjmp() and longjmp(), and

Chapter 6: High level kernel - kernel72lite.fth. 35

LISP’s CATCH and THROW. In the Forth context, THROW may be described as a "multi-level
EXIT", with CATCH marking a location to which a THROW may return.

Several similar Forth "multi-level EXIT" exception-handling schemes have been described and
used in past years. It is not possible to implement such a scheme using only standard words
(other than CATCH and THROW), because there is no portable way to "unwind" the return stack
to a predetermined place.

THROW also provides a convenient implementation technique for the standard words ABORT and
ABORT", allowing an application to define, through the use of CATCH, the behavior in the event
of a system abort.

6.7.1 Example use

If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had
returned it. In that case, the stack depth is the same as it was just before CATCH began execution.
The values of the i*x stack arguments could have been modified arbitrarily during the execution
of xt. In general, nothing useful may be done with those stack items, but since their number is
known (because the stack depth is deterministic), the application may DROP them to return to
a predictable stack state.

Typical use:

-
: could-fail \ -- char
KEY DUP [CHAR] Q =
IF 1 THROW THEN

: do-it V\ab--c
2DROP could-fail

:otry-it \ -
1 2 [’] do-it CATCH IF
(-- x1 x2) 2DROP ." There was an exception" CR
ELSE
." The character was " EMIT CR
THEN

: retry-it \ -
BEGIN
1 2 [’] do-it CATCH
WHILE
(-- x1 x2) 2DROP ." Exception, keep trying" CR
REPEAT (char)
." The character was " EMIT CR

36 Cortex Lite Target Code v2.0

6.7.2 Gotchas

If a THROW is performed without a CATCH in place, the system will/may crash. As the current
exception frame is pointed to by the USER variable HANDLER, each task and interrupt handler
will need a CATCH if THROW is used inside it.

You can no longer use ABORT as a way of resetting the data stack and calling QUIT. ABORT is
now defined as -1 THROW.

6.7.3 User words

: CATCH \ i*x xt -- j*x Oli*x n

Execute the code at XT with an exception frame protecting it. CATCH returns a 0 if no error
has occurred, otherwise it returns the throw-code passed to the last THROW.

: THROW \ k*x n -- k*x|i*x n

Throw a non-zero exception code n back to the last CATCH call. If n is 0, no action is taken
except to DROP n.

: 7throw \ flag throw-code -- ; SFP017

Perform a THROW of value throw-code if flag is non-zero, otherwise do nothing except discard flag
and throw-code.

: ABORT" \ Comp: "ccc<quote>" -- ; Run: i*x x1 -- | i*x ; R: j*x —-- | j*x
If x1 is non-zero at run-time, store the address of the following counted string in USER variable

> ABORTTEXT, and perform -2 THROW. The text interpreter in QUIT will (if reached) display the
text.

6.8 Formatted and unformatted i/o

6.8.1 Setting number bases
: HEX \ -
Change current radix to base 16.

: DECIMAL \ -
Change current radix to base 10.

: BIN \ —-
Change current radix to base 2.

6.8.2 Numeric output

: HOLD \ char --

Insert the ASCII 'char’ value into the pictured numeric output string currently being assembled.
D # \ udl -- ud2

Given a double number on the stack this will add the next digit to the pictured numeric output

buffer and return the next double number to work with. PLEASE NOTE that the numeric
output string is built from right (1.s. digit) to left (m.s. digit).

: #S \ udl -- ud2
Keep performing # until all digits are generated.

: <# \ --
Begin definition of a new numeric output string buffer.

: #> \ xd -- c-addr u

Chapter 6: High level kernel - kernel72lite.fth. 37

Terminate defnition of a numeric output string. Return the address and length of the ASCII
string.
: D.R \dn --

Output the double number ’d’ using current radix, right justified to 'n’ characters. Padding is
inserted using spaces on the left side.

: D. \ d --

Output the double number 'd” without padding.

D \'n--

Output the cell signed value 'n’ without justification.
: U. \u --

As with . but treat as unsigned. Not compiled if the flag TINY? is set.

: U.R \un -—-
As with D.R but uses a single-unsigned cell value. Not compiled if the flag TINY? is set.

.R \ nl n2 --
As D.R but uses a single-signed cell value. Not compiled if the flag TINY? is set.

6.8.3 Numeric input

: +DIGIT \ d1 n -- d2 ; accumulates digit into double accumulator
Multiply d1 by the current radix and add n to it. INTERNAL.
: >NUMBER \ udl c-addrl ul -- ud2 c-addr2 u2 ; convert all until non-digits

Accumulate digits from string c-addrl/u2 into double number udl to produce ud2 until the
first non-convertible character is found. c-addr2/u2 represents the remaining string with c-
addr2 pointing the non-convertible character. The number base for conversion is defined by the
contents of USER variable BASE. >NUMBER is case insensitive.

(INTEGER?) \ c-addr u -- d/n/- 2/1/0
The guts of INTEGER? but without the base override handling. See INTEGER? INTERNAL.

: Check-Prefix \ addr len —- addr’ len’

If any BASE override prefices or suffices are used in the input string, set BASE accordingly and
return the string without the override characters. INTERNAL.

: integer? \ $addr - n 1 | d2 | 0

Attempt to convert the counted string at ’addr’ to an integer. The return result is either 0
for failed, 1 for a single-cell return result followed by that cell, or 2 for a double return. The
ASCII number string supplied can also contain implicit radix over-rides. A leading $ enforces
hexadecimal, a leading # enforces decimal and a leading % enforces binary.

defer number? \ $addr --n 1 | d2 | 0

Attempt to convert the counted string at ’addr’ to an integer. The return result is either 0
for failed, 1 for a single-cell return result followed by that cell, or 2 for a double return. The
ASCII number string supplied can also contain implicit radix over-rides. A leading $ enforces
hexadecimal, a leading # enforces decimal and a leading % enforces binary. By default, this
word is set to integer?.

6.9 String input and output
: BS \ -- ; destructive backspace

Perform a destructive backspace by issuing ASCII characters 8, 20h, 8. If OUT is non-zero at the
start, it is decremented by one regardless of the actions of the device driver. INTERNAL.

38 Cortex Lite Target Code v2.0

: 7BS \ pos -- pos’ step ; perform BS if pos non-zero
If pos is non-zero and ECHOING is set, perform BS and return the size of the step, 0 or -1.
INTERNAL.

: SAVE-CH \ char addr -- ; save as required
Save char at addr, and output the character if ECHOING is set. INTERNAL.

" \ "ccc<quote>" --
Output the text upto the closing double-quotes character. Use . (<text>) when interpreting.

N \ c-addr -- ; display counted string
Output a counted-string to the output device.

: ACCEPT \ c-addr +nl -- +n2 ; read up to LEN chars into ADDR

Read a string of maximum size nl characters to the buffer at c-addr, returning n2 the number
of characters actually read. Input may be terminated by CR. The action may be input device
specific. If ECHOING is non-zero, characters are echoed. If XON/XOFF is non-zero, an XON
character is sent at the start and an XOFF character is sent at the the end.

6.10 Source input control

: SOURCE \ -- c-addr u
Returns the address and length of the current terminal input buffer. INTERNAL

: QUERY \ —— ; fetch line into TIB
Reset the input source specification to the console and accept a line of text into the input buffer.

: REFILL \ -- flag ; refill input source

Attempt to refill the terminal input buffer from the current source. This may be a file or the
console. An attempt to refill when the input source is a string will fail. The return result is a
flag indicating success with TRUE and failure with FALSE. A failure to refill when the input
source is a text file indicates the end of file condition. Not compiled if the flag TINY? is set.

6.11 Text scanning

: PARSE \ char "ccc<char>" -- c-addr u

Parse the next token from the terminal input buffer using <char> as the delimiter. The next
token is returned as a c-addr/u string description. Note that PARSE does not skip leading
delimiters. If you need to skip leading delimiters, use PARSE-WORD instead.

: PARSE-WORD \ char -- c-addr u ; find token, skip leading chars

An alternative to WORD below. The return is a c-addr/u pair rather than a counted string and
no copy has occured, i.e. the contents of HERE are unaffected. Because no intermediate global
buffers are used PARSE-WORD is more reliable than WORD for text scanning in multi-threaded
applications. INTERNAL.

: WORD \ char "<chars>ccc<char>" -- c-addr
Similar behaviour to the ANS word PARSE but the returned string is described as a counted
string.

6.12 Miscellaneous

: WORDS \ -
Display the names of all definitions in the wordlist at the top of the search-order.

6.13 Wordlist control

here is-action-of vocabulary \ -
The runtime action of a VOCABULARY.

Chapter 6: High level kernel - kernel72lite.fth. 39

6.14 Control structures

: 7PAIRS \ x1 x2 —-
If x1<>x2, issue and error. Used for on-target compile-time error checking. INTERNAL.

1CSP \ x —-
Save the stack pointer in CSP. Used for on-target compile-time error checking. INTERNAL.
: 7?CSP \ —-

Issue an error if the stack pointer is not the same as the value previously stored in CSP. Used
for on-target compile-time error checking. INTERNAL.

: 7COMP \ -

Error if not in compile state. INTERNAL.

: PEXEC \ -

Error if not interpreting. INTERNAL.

: DO \ C: -- do-sys ; Run: nl|ul n2|u2 -- ; R: -- loop-sys
Begin a DO ... LOOP construct. Takes the end-value and start-value from the data-stack.
: 7D0 \ C: -- do-sys ; Run: nl|ul n2{/u2 -- ; R: -- | loop-sys

Compile a DO which will only begin loop execution if the loop parameters are not the same.
Thus 0 0 7D0O ... LOOP will not execute the contents of the loop.

: LOOP \ C: do-sys -- ; Run: -- ; R: loop-sysl -- | loop-sys2
The closing statement of a DO ... LOOP construct. Increments the index and terminates when
the index crosses the limit.

: +L00P \ C: do-sys -- ; Run: n -- ; R: loop-sysl -- | loop-sys2
As with LOOP except that you specify the increment on the data-stack.
: BEGIN \ C: —— dest ; Run: —-
Mark the start of structures of the form:
BEGIN ... UNTIL/AGAIN
BEGIN ... WHILE ... REPEAT
: AGAIN \ C: dest -- ; Run: --

The end of a BEGIN ... AGAIN construct which specifies an infinite loop.)

: UNTIL \ C: dest -— ; Run: x —-
Compile code into definition which will jump back to the matching BEGIN if the supplied condi-
tion flag is Zero/FALSE.

: WHILE \ C: dest -- orig dest ; Run: x --
Separate the condition test from the loop code in a BEGIN ... WHILE ... REPEAT block.

: REPEAT \ C: orig dest -- ; Run: --
Loop back to the conditional dest code in a BEGIN ... WHILE ... REPEAT construct.)

: IF \ C: -- orig ; Run: x --
Mark the start of an IF ... [ELSE] ... THEN conditional block.

: THEN \ C: orig -- ; Run: --
Mark the end of an IF ... THEN or IF ... ELSE ... THEN conditional construct.

: ELSE \ C: origl -- orig2 ; Run: --
Begin the failure condition code for an IF.

: RECURSE \ Comp: --

40 Cortex Lite Target Code v2.0

Compile a recursive call to the colon definition containing RECURSE itself. Do not use RECURSE
between DOES> and ;. Used in the form:

: foo ... recurse ... ;

to compile a reference to FOO from inside FOO.

6.14.1 CASE statement

The CASE statement words are only compiled if the flag Tiny? is not set. Tiny? is only set for
minimal targets such as for LPC81x chips.

: CASE \ C: -- case-sys ; Run: --

Begin a CASE ... ENDCASE construct. Similar to C’s switch.

: OF \ C: -- of-sys ; Run: x1 x2 -- | x1

Begin conditional block for CASE, executed when the switch value is equal to the X2 value placed
in TOS.

: 70F \ C: -- of-sys ; Run: flag --

Begln conditional block for CASE, executed when the flag is true.

: ENDOF \ C: case-sysl of-sys -- case-sys2 ; Run: --

Mark the end of an OF conditional block within a CASE construct. Compile a jump past the
ENDCASE marker at the end of the construct.

: ENDCASE \ C: case-sys -- ; Run: x --

Terminate a CASE ... ENDCASE construct. DROPs the switch value from the stack.

6.15 Target interpreter and compiler

: ?STACK \ —-
Error if stack pointer out of range. INTERNAL.

: 7UNDEF \ x —-
Word not defined error if x=0. INTERNAL.
: POSTPONE \ Comp: "<spaces>name" --

Compile a reference to another word. POSTPONE can handle compilation of IMMEDIATE words
which would otherwise be executed during compilation.

: S \ Comp: "ccc<quote>" -- ; Run: -- c-addr u
Describe a string. Text is taken up to the next double-quote character. The address and length
of the string are returned.

: c" \ Comp: "ccc<quote>" -- ; Run: -- c-addr
As 8" except the address of a counted string is returned.

: LITERAL \ Comp: x -- ; Run: -- x
Compile a literal into the current definition. Usually used in the form [<expression] LITERAL
inside a colon definition. Note that LITERAL is IMMEDIATE.

: CHAR \ "<spaces>name" -- char
Return the first character of the next token in the input stream. Usually used to avoid magic
numbers in the source code.

[CHAR] \ Comp: "<spaces>name" -- ; Run: -- char
Compile the first character of the next token in the input stream as a literal. Usually used to
avoid magic numbers in the source code.

Chapter 6: High level kernel - kernel72lite.fth. 41

[\ --
Switch compiler into interpreter state.
] A

Switch compiler into compilation state.

’ \ "<spaces>name" -- xt
Flnd the xt of the next word in the input stream. An error occurs if the xt cannot be found.

L] \ Comp: "<spaces>name" -- ; Run: -- xt
Find the xt of the next word in the input stream, and compile it as a literal. An error occurs if
the xt cannot be found.

[COMPILE] \ "<spaces>name" --
Compile the next word in the input stream. [COMPILE] ignores the IMMEDIATE state of the word.
[COMPILE] is mostly superceded by POSTPONE. Not compiled if the flag TINY? is set.

(\ "ccc<paren>" --
Begin an inline comment. All text upto the closing bracket is ignored.

A\ \ "ccc<eol>" --
Begin a single-line comment. All text up to the end of the line is ignored.
((N (Cael)

Block comment operator. Any source following this is ignored upto and including the terminator,
"))’, which must be white space separated. Not compiled if the flag TINY? is set.

", \ "ccc<quote>" --
Parse text up to the closing quote and compile into the dictionary at HERE as a counted string.
The end of the string is aligned.

(T0-DO) \ -=— ; R: xt -- a-addr’
The run-time action of IS. It is followed by the data addres of the DEFERred word at which the
xt is stored. INTERNAL.

: IS \ "<spaces>name" --
The second part of the ASSIGN xxx TO-DO yyy construct. This word will assign the given XT to
be the action of a DEFERed word which is named in the input stream.

¢ exit \ R: nest-sys -- ; exit current definition
Compile code into the current definition to cause a definition to terminate. This is the Forth
equivalent to inserting an RTS/RET instruction in the middle of an assembler subroutine.

; \ C: colon-sys -- ; Run: -- ; R: nest-sys --
Complete the definition of a new ’colon’ word or :NONAME code block.

: INTERPRET \ -
Process the current input line as if it is text entered at the keyboard.

: EVALUATE \ i*x c-addr u -- j*x ; interpret the string
Process the supplied string as though it had been entered via the interpreter. Not compiled if
the flag TINY? is set.

.throw \ throw# --
Display the throw code. Values of 0 and -1 are ignored.
: QUIT \ —— ; R: i*x —-
Empty the return stack, store 0 in SOURCE-ID, and enter interpretation state. QUIT repeatedly

ACCEPTs a line of input and INTERPRETSs it, with a prompt if interpreting and ECHOING is on.
Note that any task that uses QUIT must initialise >TIB, BASE, IPVEC, and OPVEC.

42 Cortex Lite Target Code v2.0

6.16 Startup code
6.16.1 Cold chain

If enabled by the non-zero equate COLDCHAIN? the cold start code in COLD will walk a list and
execute the xts contained in it. The xts must have no stack effect (==) and are added to the
list by the phrase:

’ <wordname> AtCold

The list is executed in the order in which it was defined so that the last word added is executed
last. This was done for compatibility with VFX Forth, which also contains a shutdown chain,
in which the last word added is executed first.

If the equate COLDCHAIN? is not defined in the control file, a default value of 0 will be defined.

1: ColdChainFirst \ -- addr
Dummy first entry in ColdChain.

variable ColdChain \ -- addr
Holds the address of the last entry in the cold chain.

: AtCold \ xt —-

Specifiy a new XT to execute when COLD is run. Note that the last word added is executed last.
ATCOLD can be executed interpretively during cross-compilation. The cold chain is built in the
current CDATA section.

: WalkColdChain \ —- MPE. 0000
Execute all words added to the cold chain. Note that the first word added is executed first.

6.16.2 The COLD sequence

At power up, the target executes COLD or the word specified by MAKE-TURNKEY <name>, or the
word specified as the action of an application compiled by the target.

(INIT) \ -
Performs the high level Forth startup. See the source code for more details. INTERNAL.

.FREE \ -
Return the free dictionary space.

: Commit \ xt|0 —-

Preserve the compiled image. If xt is non-zero, that word will be executed when the application
starts.

: Empty \ —-

Wipe the application and perform a cold restart.

: COLD \ -

The first high level word executed by default. This word is set to be the word executed at power

up, but this may be overridden by a later use of MAKE-TURNKEY <name> in the cross-compiled
code. See the source code for more details of COLD.

6.17 Kernel error codes

-1 ABORT

Chapter 6: High level kernel - kernel72lite.fth. 43

-121

-403
-501

ABORT™"

Stack underflow

Undefined word.

Attempt to interpret a compile only definition.

Control structure mismatch - unbalanced control structure.

Attempt to remove with MARKER or FORGET below FENCE in protected dic-
tionary.

Attempt to compile an interpret only definition.

Error if not LOADing from a block.

Chapter 7: Debug tools

7 Debug tools

Some simple debug tools can be found in dump.fth.

: dump \ addr len --
Display the given block of memory in hex and ASCII.

: pdump \ addr len --

Display the given block of memory as hex 32 bit words. Not on LPC812.
: .S \ i*x —- ixx

Display the stack contents

45

Chapter 8: Compile source code from AIDE 47

8 Compile source code from AIDE

The file include.fth provides support for compiling a source file from the AIDE server.

variable disk-error \ -- addr
Receives transfer error status from the host.

: end-load \ -- ; switch back to keyboard input
This word is automatically performed at the end of a download to tidy up the comms.

: include \ "<filename>" —-- ; load file from host
Compile a file across the serial line from the AIDE file server. Use in the form:

include <filename>

The filename extension must be supplied.

0 value ShowLines? \ -- flag
Set this non-zero to display source lines during compilation.

: include \ "<filename>" -- ; load file from host
Compile a file across the serial line from the AIDE file server. Use in the form:

include <filename>

The filename extension must be supplied.

Chapter 9: Minimal Umbilical code definitions 49

9 Minimal Umbilical code definitions

The file Cortex/MinMOM1.fth contains the minimum code definitions required to support Um-
bilical Forth for Cortex-M0/M1 variants. If additional words are required, they may be copied
to a new file from Cortex/CodeMOM1I.fth or from Common/Kernel62.fth.

9.1 Register usage

For Cortex-M0/M1 the following register usage is the default:

-
rilb pc program counter
ri4 link link register; bitO=1=Thumb, usually set
rl3 rsp return stack pointer
ri2 --
ri1 up user area pointer
r10 -=
r9 1p locals pointer
r8 --
r7 tos cached top of stack
r6 psp data stack pointer
r0-rb scratch
-

The VFX optimiser reserves RO and R1 for internal operations. CODE definitions must use R7 as
TOS with NOS pointed to by R6 as a full descending stack in ARM terminology. R0..R5, R12
are free for use by CODE definitions and need not be preserved or restored. You should assume
that any register can be affected by other words.

9.2 Flow of control

CODE (DO0) \ limit index --

The run time action of DO compiled on the target. The branch target address is in-line and must
have the T bit set. INTERNAL.

CODE (7D0) \ limit index --

The run time action of ?DO compiled on the target. The branch target address is in-line and
must have the T bit set. INTERNAL.

CODE EXECUTE \ xt --
Execute the code described by the XT. This is a Forth equivalent to an assembler JSR/CALL
instruction.

9.3 Stack operations and maths

: NOOP ; \ -
A NOOP, null instruction.
: DROP \ x —-

Lose the top data stack item and promote NOS to TOS.

CODE WITHIN? \ nl n2 n3 -- flag
Return TRUE if N1 is within the range N2..N3. This word uses signed arithmetic.

CODE WITHIN \ n1|ul n2|u2 n3|u3 -- flag

50 Cortex Lite Target Code v2.0

The ANS version of WITHIN?. This word uses unsigned arithmetic, so that signed compares
are treated as existing on a number circle.

9.4 Multiplication
code UMx \ ul u2 -- ud

Perform unsigned-multiply between two numbers and return double result.
S \ nl n2 -- n3

Standard signed multiply. N3 = nl * n2.

Domk \ nl n2 - d

Signed multiply yielding double result.

9.5 Division

ARM Cortex-MO0 provides no division instructions.

macro: udiv64_step \ --

Cross compiler macro to perform one step of the unsigned 64 bit by 32 bit division
code um/mod \ udl u2 -- urem uquot
Full 64 by 32 unsigned division subroutine. This routine uses a loop for code size.

: fm/mod \ d n -- rem quot ; floored division

Perform a signed division of double number d by single number n and return remainder and
quotient using floored division. See the ANS Forth specification for more details of floored
division.

: sm/rem \ d n -- rem quot ; symmetric division

Perform a signed division of double number d by single number n and return remainder and
quotient using symmetric (normal) division.

: /mod \ nl n2 -- rem quot

Signed symmetric division of N1 by N2 single-precision returning remainder and quotient. Sym-
metric.

2/ \ nl n2 -- n3
Standard signed division operator. n3 = nl/n2. Symmetric.

:u/ \ ul u2 -- u3

Unsigned division operator. u3 = ul/u2.

: MOD \ nl n2 -- n3
Return remainder of division of N1 by N2. n3 = nl mod n2.
: */MOD \ nl n2 n3 -- n4 n4

Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
remainder and quotient. The point of this operation is to avoid loss of precision.

: %/ \ n1 n2 n3 -- n4

Multiply nl by n2 to give a double precision result, and then divide it by n3 returning the
quotient. The point of this operation is to avoid loss of precision.

: M/ \ d nl -- n2
Signed divide of a double by a single integer.

Chapter 9: Minimal Umbilical code definitions 51

9.6 Miscellaneous math
CODE D+ \ d1 d2 -- d3
Add two double precision integers.

CODE D- \ dl d2 -- d3
Subtract two double precision integers. D3=D1-D2.

CODE DNEGATE \ d1 -- -d1
Negate a double number.

CODE 7NEGATE \ nl flag -- nl|n2
If flag is negative, then negate nl.

CODE 7DNEGATE \ d1 flag -- di|d2
If flag is negative, then negate d1.

CODE ABS \'n--u
If n is negative, return its positive equivalent (absolute value).

CODE DABS \d-- ud
If d is negative, return its positive equivalent (absolute value).

CODE ROLL \ xu xu-1 .. x0 u —— xu-1 .. x0 xu
Rotate the order of the top N stack items by one place such that the current top of stack becomes
the second item and the Nth item becomes TOS. See also ROT.

9.7 Strings

code cmove \ asrc adest len --
Copy len bytes of memory forwards from asrc to adest.

CODE CMOVE> \ c-addrl c-addr2 u --
As CMOVE but working in the opposite direction, copying the last character in the string first.

CODE FILL \ c-addr u char --
Fill LEN bytes of memory starting at ADDR with the byte information specified as CHAR.

: erase \ c-addr u -- ; wipe memory
Set U bytes of memory starting at C-ADDR with zeros.

CODE S= \ c-addrl c-addr2 u -- flag
Compare two same-length strings/memory blocks, returning TRUE if they are identical.

CODE (") \ -- a-addr ; return address of string, skip over it
Return the address of a counted string that is inline after the CALLING word, and adjust the
CALLING word’s return address to step over the inline string. The adjusted return address will
be at a four byte boundary. See the definition of (.") for an example.

«cm \ -- c-addr
The run time action compiled by C".

(s \ -- c-addr u
The run time action compiled by S".

9.8 Return address manipulations
CODE >RR \x — ; R: —x
Push the current top item of the data stack onto the top of the return stack as a return address

CODE RR> \ - x ; R: x —-

52 Cortex Lite Target Code v2.0

Pop the caller’s return address from the return stack.

CODE RR@ \ - x ;R: x--x
Copy the top item from the return stack to the data stack.

9.9 Umbilical versions of defining words
here is-action-of constant

The runtime code for a CONSTANT.

here is—action-of variable
The runtime action for a VARIABLE.

here is-action-of value
The runtime action of a VALUE.

here is-action-of user

The runtime action of a USER variable.

Doud \ "<name>"-- u

An INTERPRETER word that returns the index of the USER variable whose name follows, e.g.
u# S0

: CRASH \ -- ; used as action of DEFER
The default action of a DEFERed word. A NOOP.

here is-action-of DEFER \ Comp: "<spaces>name" -- ; Run: i*x -- j*x
The runtime action of a DEFERred word.

9.10 Display words

: SPACE \ -
Output a blank space (ASCII 32) character.
: SPACES \'n -—-

Output 'n’ spaces, where 'n’ > 0. If 'n’ < 0, no action is taken.
.nibble \'n -~
Convert a nibble to a hex ASCII digit and display it.
.BYTE \ b --
Display the byte b as a 2 digit hex number.
.WORD \w -
Display w as a 4 digit unsigned hexadecimal number.
.dword \ x —-

Display x as an 8 digit unsigned hexadecimal number.

.lword \ x —-

A synonym for .DWORD above.

9.11 Multitasker hook

defer pause \ -- ; multitasker hook

Allows the sytem multitasker to get a look in. If the multitasker has not been compiled, PAUSE
is set to NOOP.

Chapter 9: Minimal Umbilical code definitions 53

9.12 Miscellaneous

: setMask \ value mask addr -- ; cell operation
Clear the mask bits at addr and set (or) the bits defined by value.

: init-io \ addr --
Copy the contents of the I/O set up table to an I/O device. Each element of the table is of the
form addr (cell) followed by data (cell). The table is terminated by an address of 0.

Chapter 10: ARM Cortex specific library code 55

10 ARM Cortex specific library code

The code in Cortex/LibCortez.fth is conditionally compiled by the following code fragment to
be found at the end of many control files.

libraries \ to resolve common forward references
include Y%CpuDir’/LibCortex
include %CommonDir%/library

end-libs

Each definition in a library file is surrounded by a phrase of the form:

[required] <name> [if] : <name> ... ; [then]

The phrase [REQUIRED] <name> returns true if <name> has been forward referenced and is still
unresolved. The code between LIBRARIES and END-LIBS is repeatedly processed until no further
references are resolved.

10.1 I/0O initialisation

: init-io \ addr --

Copy the contents of the I/O set up table to an I/O device. Each element of the table is of the
form addr (cell) followed by data (cell). The table is terminated by an address of 0. A table of
a single 0 address performs no action.

10.2 interrupt enable and disable
code di \ —-

Disable interrupts.

code ei \ -
Enable interrupts.

code [I \ R: —— x1 x2
Preserve interrupt/exception status on the return stack, and disable interrupts/exceptions except
reset, NMI and HardFault. The state is restored by I].

code I] \ R: x1 x2 —-
Restore interrupt status saved by [I from the return stack.

10.3 Miscellaneous
: @OFF \ addr -- x
Read cell at addr, and set it to 0.

: Qon \ addr -- val
Fetch contents of cell at addr and set it to -1.

Chapter 11: Device drivers 57

11 Device drivers

This chapter documents a number of simple device drivers that can be added to the system,
either by cross-compilation or by direct compilation onto the target.

11.1 STM32 GPIO utilities

The code in CortexLite\ Drivers\ gpioSTMS32.fth provides utility words for accessing GPIO pins
on a bit by bit basis for the STM32 CPUs. The code is written for ease of use rather than
performance.

11.1.1 Defining I/O pins

FIO/GPIO acess is defined using a bit number. Bits 0..31 form P0.0 to P0.31, bits 32..63 form
P1.0 to P1.31 and so on. Although ST name their ports from A, here we number them from 0.
Note also that ST usually only provide 16 I/O bits per port. Later we define constants for the
port numbers.

$0400 equ /Port \ --u
Separation in memory between GPIO port base addresses.
: PIO: \ port# bit# -- ; -- struct
Define a port I/O bit by name. For example

3 12 pio: LED1 \ PD.12

PD 12 pio: LED1 \ PD.12

defines an I/O bit on GPIOD, bit 12 as LED1. At run time, the I/O bit structure is returned.

Define the ports as constants. So that we can use names rather than numbers, e.g.
PD 12 pio: LED1 \ PD.12

constant PA
constant PB
constant PC
constant PD
constant PE
constant PF

g WD~ O

11.1.2 GPIO pin access

: setPin \ struct --

Set the pin high.

: clrPin \ struct --

Set the pin low.

: getPin \ struct -- 0/1
Read the pin state.

58 Cortex Lite Target Code v2.0

11.1.3 IO pin configuration

: isPinMode \ mode struct --
Sets the GPIO mode for a pin. Use with the constants below.

Pins can be in one of four modes, 0..3.

0 constant InputMode \ -- mode#
The pin is an input.

1 constant OutputMode \ -- mode#
The pin is an output.

2 constant AFmode \ -- mode#
The pin is for one of the alternate function modes.

3 constant AnalogMode \ -- mode#
The pin is an analogue pin.
: isInput \ struct --

Set the pin to GPIO mode and input.

: isOutput \ struct --
Set the pin as an output.

: isFunction \ af# struct --
Set the pin to be used with one of the alternate functions.

: isAnalog \ struct --

Set the pin as an analog pin.

: isPin0D \ 0/1 struct --

Enable (nz) or disable (0) the open drain driver.

: isPinPuPd \ mode struct --
Sets the pull up/down for a pin.

: NotPulled \ struct --
No pull up or pull down.

: PulledUp \ struct --
Enable the pin pull up resistor.

: PulledDown \ struct --
Enable the pin pull down resistor.

: isPinSpeed \ mode struct --
Sets the output speed for a pin according to the constants below.

0 constant LowSpeed \ -- mask
The default is 2MHz, low speed.

1 constant MediumSpeed \ -- mask
10 MHz, medium speed.

3 constant HighSpeed \ -- mask
50 MHz, fast speed.

: initGPIO \ -
Enable clocks to all GPIO ports and take them out of reset. performed in the cold chain. No
longer performed because GPIOs are initialised in the start up code.

Chapter 11: Device drivers 59

11.1.4 Test code for STM32F072 Discovery board

pa 8 pio: PAB8 \ -- struct

Structure for pin PA8, which can be used as the oscillator output MCO.
: init-mco \ --

Initialise PA8 as the MCO output.

11.2 XMClxxx GPIO utilities

The code in CortexLite\ Drivers\gpioXMC1lxxx.fth provides utility words for accessing GPIO
pins on a bit by bit basis for Infineon XMC CPUs. The code is written for ease of use rather
than performance.

11.2.1 Defining I/0O pins

FIO/GPIO acess is defined using a bit number. Bits 0..31 form P0.0 to P0.31, bits 32..63 form
P1.0 to P1.31 and so on. Although ST name their ports from A, here we number them from 0.
Note also that ST usually only provide 16 1/O bits per port. Later we define constants for the
port numbers.
$0100 equ /Port \ —-u
Separation in memory between GPIO port base addresses.
: PIO: \ port# bit# -- ; -- struct
Define a port I/O bit by name. For example

1 12 pio: LED1 \ P1.12

P1 12 pio: LED1 \ P1.12

defines an I/O bit on PORT1, bit 12 as LED1. At run time, the I/O bit structure is returned.

Define the ports as constants. So that we can use names rather than numbers, e.g.
PD 12 pio: LED1 \ PD.12

0 constant PO
1 constant P1
2 constant P2

11.2.2 GPIO pin access
: setPin \ struct --
Set the pin high.

: clrPin \ struct --
Set the pin low.

: getPin \ struct -- 0/1
Read the pin state.

11.2.3 10 pin configuration
: isPinMode \ mode struct --

Sets the GPIO mode for a pin. Use with the constants below.
Pins can be in one of eight modes or alternate functions. Some modifiers can be applied.

60 Cortex Lite Target Code v2.0

%00000 constant DirectIN \ direct input

%00100 constant InvertIN \ inverted input

: +PD (x == x>) %00001 or ; \ with pull down (i/p)

: +PU (x -- x’) %00010 or ; \ with pull down (i/p)

: +PS (x -- x>) %00011 or ; \ with sample on OUT (i/p)

%10000 constant ModeQUT \ output with direct input
%$10001 constant AF1 \ alternate functions
%10010 constant AF2

%10011 constant AF3

%10100 constant AF4

%$10101 constant AF5

%10110 constant AF6

%10111 constant AF7

: +PP (x —— x7) \ select push pull

: +0D (x -- x’) %01000 or ; \ select open drain

: isInput \ struct --

Set the pin to be an input (DirectIN).
: isOutput \ struct --

Set the pin as an output (ModeOUT).

11.2.4 Test code for XMC2Go board
P1 0 pio: LED1 \ -- struct

Structure for pin 1.0 connected as LED1.

P1 1 pio: LED2 \ -- struct

Structure for pin 1.1 connected as LED2.

11.3 STM32F0 polled serial driver
The serial driver Cortex/Drivers/serSTM32F0xxp.fth provides polled serial drivers for the on-

chip USARTSs. The supplied driver implements USART1 on PA9/10 and USART3 on PD8 (Tx)
and PD9 (Rx).

When you copy this file for your own hardware do not forget update the GPIO pin assignments
and alternate function selections.

11.3.1 Baud rate generation

The baud rate routines use 16 times sampling and the fractional baud rate generator.

divisor = ————————————-
16 * baudrate

We then treat the divisor as an integer and four bit fraction, effectively scaling it by 16 again.

Chapter 11: Device drivers 61

pclkx
BRRval = -—-—-----
baudrate

: genBRRval \ baud clock -- divisor

Generate the required BRR value.
11.3.2 Shared code

: +FaultConsole \ --
For use in fault exception handlers, the multi-tasker must be turned off and EMIT and friends
must run in polled mode.

11.3.3 USART1

USART1 is on the APB bus, so the baud rate is calculated using that bus clock.

consolel-speed APB-speed genBRRval equ /usiBRR \ -- u
Baud rate divisor for USART1.

: selio-serl A
Example to perform clock and pin selection for USART1 on PA9/10. Provide your own version,
e.g. in the control file.

: init-serl \ -
Initialise USART1 for polled operation. Pin selection is performed by selio-ser1.

: serkey?1 \ -- flag
KEY? for USART1.

: serkeyl \ -- char
KEY for USART1I.

: seremitl \ char --
EMIT for USART1.

: serTypel \ c-addr len --
TYPE for USART1.
: sercrl \ --
CR for USART1.
create Consolel \ -- addr ; OUT managed by upper driver
Device structure for USART1
> serkeyl , \ -- char ; receive char
> serkey?l , \ -- flag ; check receive char
> seremitl , \ -- char ; display char
> sertypel , \ caddr len -- ; display string
> sercrl , \ -- ; display new line

consolel constant console
Device structure for console on USART1.

11.3.4 USART?2

USART?2 is on the APB bus, so the baud rate is calculated using that bus clock.
console2-speed APB-speed genBRRval equ /us2BRR \ -- u

62 Cortex Lite Target Code v2.0

Baud rate divisor for USART?2.

: selio-ser2 \ —

Example to perform clock and pin selection for USART2 on PA2/3. You cannot use the easy
GPIO code for this unless the GPIO ports are clocked and taken out of reset in the start up
code.

: init-ser?2 \ --

Initialise USART?2 for polled operation. Pin selection is performed by selio-ser2.

: serkey?2 \ —- flag

KEY? for USART2.

: serkey?2 \ -- char
KEY for USART?2.

: seremit?2 \ char --

EMIT for USART?2.

: serType2 \ c-addr len --
TYPE for USART?2.

: sercr?2 \ -

CR for USART1.

create Console2 \ -- addr ; OUT managed by upper driver
Device structure for USART?2
> serkey2 , \ -- char ; receive char
’ serkey?2 , \ -- flag ; check receive char
’ seremit?2 , \ -- char ; display char
> sertype2 , \ caddr len -- ; display string
> sercr2 , \ -- ; display new line

console2 constant console
Device structure for console on USART1.

11.3.5 USART3

USARTS3 is on the APB1 bus, so the baud rate is calculated using that bus clock. This code is
only compiled if the equate useUSART3 is non-zero}.

console3-speed APBl-speed genBRRval equ /us3BRR \ -- u
Baud rate divisor for USARTS3.

: selio-ser3 \ --

Example to perform clock and pin selection for USART3 using GPIO pins PD8/9.
: init-ser3 \ -

Initialise USARTS for polled operation on GPIO pins PD8/9.

: serkey?3 \ -- flag
KEY? for USARTS3.

: serkey3 \ -- char
KEY for USARTS3.

: seremit3 \ char —-
EMIT for USARTS.

Chapter 11: Device drivers 63

: serType3 \ c-addr len --
TYPE for USARTS.

: sercr3 \ —-

CR for USARTS3.

create Console3 \ -- addr ; OUT managed by upper driver
Device structure for USARTS3.
’ serkey3d , \ -- char ; receive char
> serkey?3 , \ -- flag ; check receive char
’ seremit3 , \ -- char ; display char
> sertype3d , \ caddr len -- ; display string
> sercr3 , \ -- ; display new line

console3 constant console
Device structure if console is on USART3.

11.3.6 Initialisation
: init-ser \ ——
Initialise primary serial ports.

11.4 System Ticker

The source code discussed in this section may be found in the file Drivers/SysTickDisco072.fth.

The system ticker uses the Cortex-MO0 SysTick timer. Although the SysTick timer is common
to all Cortex-MO devices, there is no guarantee that they have the same clocking arrangements.
Consequently there are different drivers for different implementations.

The STM32 implementation is fed with the system clock and has an option to divide it by &,
controlled by bit 2 of the SysTick Control and Status Register (ARM DDI 0337, Rev E, page
8-8).

e Bit2=0: SysTick clock is HCLK/S.

e Bit2=1: SysTick clock is HCLK.

This code always uses HCLK/8.

variable LedActive \ -- flag
If LedActive contains non-zero, the ticker is used to produce a rotating pattern on the four

LEDs.

: ticks \ -- ms

Returns a 32 bit number of milliseconds that eventually wraps.
PC 6 pio: LDU \ -- struct

Red/Upper LED.

PC 9 pio: LDR \ -- struct
Green/Right LED.

PC 7 pio: LDD \ -- struct
Blue/Down LED.

64

PC 8 pio: LDL \ -- struct
Orange/Left LED.

: SysTicker A
Ticker ISR action.

> SysTicker SysTickvec# EXC:

Setting the high level ISR.

: start-clock \ --

Cortex Lite Target Code v2.0

SysTickISR \ -- addr

Initialise the system ticker to run with a period of tick-ms milliseconds.

: stop-clock \ —-
Stop the sytem ticker.

: later \n--n’

Generates the timebase value for termination in n millseconds time.

: timedout? \ n -- flag ; true if timed out
Flag is returned true if the timebase value n has timed out. TIMEDOUT? does not call PAUSE.

: ms \'n -
Walits for n milliseconds.

11.5 Rebooting the CPU

The word REBOOT permits the system to be reset by disabling all interrupts and activating the

watchdog.

: reboot \ —

Reboots the CPU by activating the watchdog.

Chapter 12: L3GD20 MEMS Gyro 65

12 L3GD20 MEMS Gyro

The STM32F072B Discovery board includes an L3GD20 3-axis MEMS gyro. The ST documen-
tation is a bit sparse. We use the SPI2 peripheral to talk to the gyro. The MEMS code is in
the file Examples\13gd20.fth and the SPI driver is in the file spiSTMS32F0hard.fth.

PC 1 pio: MEMS_INT1 \ -- struct
MEMS INT1 connected here.

PC 2 pio: MEMS_INT2
MEMS INT?2 connected here.

: L3GD20_Writel \ b reg --
Write one byte to the given register.

: L3GD20_Readl \ reg —- b
Read one byte from the given register.

: L3GD20_ReadN \ caddr len reg --
Read len bytes to caddr starting from the given register.

: setMaskL3 \ value mask reg --
Clear the mask bits in reg. Write value into the mask bits in the given L3GD20 register.

: borL3 \ mask reg --
Set the bits in mask in the given register.

: bbicL3 \ mask reg --
Clear the bits in mask in the given register.

: L3GD20_RebootCmd \ ——
Reboot memory content of L3GD20.

: L3GD20_GetDataStatus \ -- b
Get status for L3GD20 data.

: L3GD20_EXTI_Config \ --
Configure the INT1 MEMS Interrupt line and GPIO in EXTI mode. The GPIO and SPI blocks
are already enabled.

: L3GD20_INT_Config \ -
Configure L3GD20 interrupts.

: init-L3GD20 \ --
Initialise L3GD20.

: L3GD20_INT1InterruptCmd \ flag --
Enable or disable INT1 interrupt.

: L3GD20_INT2InterruptCmd \ --
Enable or disable INT2 interrupt.

12.1 Test and Demo code
D otr A
Display the L3GD20 identification register.

6 buffer: AxisData \ —- addr
Buffer for axis data.

66 Cortex Lite Target Code v2.0

: ReadAxes \ —-

Read the axes into the AxisData buffer. The data consists of three 16 bit signed values for the
X, Y and Z axes.

.Axes \ —-
Display the axis data.

: ReadTest \ -
Display the axis data until a key is pressed.

PA 0 pio: UserButton \ -- struct
Pin definition for the User/Wake button on PAO.

: LedsOff \ --
Turn off the four LEDs.
: Xval \ ——n

Return the X value from the last reading of the axes.

: Yval \ ——n
Return the Y value from the last reading of the axes.

: Zval \ —-n
Return the Z value from the last reading of the axes.

: onlyLED \ struct
Turn on the given LED only and wait 250 ms.

: DemoMEMS \ —-
Demo for the MEMS sensor.

Index

Index

!

PPt 23
o 25
D 39
n

L AP 41
B 36
B 36
S 36
e 38
9

L 41
G 15, 41
() 25, 51
(e 41
Gt) 34
(5€0d€) .ot 26
(2A0) t ottt e 49
(ADOTt") et 34
(CM) o 34, 51
(A0 vttt 49
(G) 42
(integer?) ... 37
(8™) o 34, 51
(B0=d0) .ot 41
*

K 20, 50
K 21,5
*K/MOA ..ot 21, 50
+

o 19
e 24
+buffcomp ... 25
HAigit. .. oo 37
+faultconsole. e 61
F100D 39
0 =T = P 31

67

9
e e 33
e e 19
“buffcomp ... 25
e 1 PP 21
.. 37
A 38
AR St vttt e e 66
byte.. ..o 52
AWOTXd . ..ottt e 52
i o =Y YA PP 42
IWOTd. ot e 52
TIAME . o v et ettt e e e e e 34
nibble. 52
5 o 37
= 45
TRrOW. o e 41
o 52
/2Pt 20, 50
JElash. 10
/infobase 10
/MO .o 20, 50
/optiombytes............oiiiiiiiii i 10
JPOTE o 57, 59
/string.. ... 22
.. 26
TIOMAME . & v vttt et ettt e et e e e et 26

’
S PP 41

<

e e 18
e 36
o 18
> 18
KbUilds. ..o e 26
LS 1= o P 27
KEESOLVE .ottt e 27

68
>
D 18
D 18
>DOAY 26
>c_res_branch. ... 28
D £ <P 27
SIAME .« . vttt ettt e e e e e 24
SAUMDET . . ottt e e 37
DL e e e 21
>TES0LVE oottt 27
D 51
?
DS e e 38
e 1 PP 39
o1 < 39
Pdnegate ... 51
PO et e 39
PAUD . 22
PR C o ettt e e e e 39
P AV . .ttt e 19
Tnegate 19, 51
POL 40
PPAITS. .. 39
P8t ACK . i e e 40
P OW . oot 36
undef ... 40
O et e 23
B ottt 25
Qoff .. e 55
LT o P 55
Lo 41
D2 41
[char]o 40
[compile] ..ot 41
[d 29, 55
T 41
A 41
0
O et 60, 66
0% et 18
OG> 18
e e 18
O e 18
1
L e 60, 65
L 19

Cortex Lite Target Code v2.0

I 15, 19
2

2 65
2 24
D2 o 21
20 . 24
2constant ... 26
2AT0P - -ttt 22
2dUD + vt 22
20V . ottt 22
2T 21
2T0 . 21
2BWAD -« e 22
6

B 63
7

4 P 63
8

B 59, 64
9

D 63
abort" ... 36
DS L 20, 51
accept....... . 38
afmode........ ... 58
AGAII . 39
ahbdiv....... 10, 11
E= T = P 33
aligned............. .. i, 25, 33
allot ..o 33
analogmodeiiiiiiiii 58
AN . 17
apb-speed 61
apbl-speed............. ... i 62
apbdiv............ooo o 10, 11
arshift...... 19
atcold. ... 42
axisdatal 65
B

bbic! ... 29
bbicl3.. ... 65
begin... ... 39
bic! o 29
bin .. 36
DL 31
bor ! 29
borl3. . 65
DS 37

btoggle! ... 29

Index

Cl o 23
Cl G it 25
e 40
Gy et e e e e 33
CO 23
COC o ottt e 25
C_tlOo0P. ot 28
C_?branche 28
C_Pbranch> 28
LT o Lo P 28
C 0 o e 29
c_branch< i 28
c_branch>o e 28
Lo o1 == 28
oZ o Lo TS 28
CATOD . 28
C_eNACASE . it ittt 29
c_endof 28
C XAttt 28
Clat e 28
C_LO0D . 28
c_mrk_branch<.......... ...t 28
O 28
o= Y= =Y PP 40
CABC . e 36
o o2 I P 30
Cell . 24
CeLld . i 24
Cell— 24
CELLS . ittt 24
CgeL .. i 30
CRaT . 40
CheCk—prefiX.....c.oovuiiiiiiiiiniiii i 37
Clrpin ... 57, 59
CIMOVE ettt ettt et et e e e e 23, 51
CIMOVED . ettt et e ettt e e e e 23, 51
COLd . 42
coldchaim . ..o 42
coldchainfirstcoiiiiiiiniineinannn. 42
COMMAT . ottt et et e et 42
COMPATE. ¢t ettt eeeet ettt ettt 22
compile, ... 26
CONSO0Le=POTL ...ttt 12
consolel ... 61
consolel-speedl 12
COMSO0Le2 ..ttt e 62
console2-speediiiii 12
COMSO0Le3 .ttt e 63
console3-speediiiiiiiii 12
consoled-speedl 12
constant ..., 26, 61, 62, 63
COUME o ottt ettt it ittt e e 22
o3 ol PP 33
crash........ ..o il 27, 52
o o =Y 1 7 S 26
o7 7= A 30
ctoggle. 30

69
D
At 19, 51
[R 19, 51
< I PP 37
o P 37
T e e 18
AOK ot 18
AO= o e 18
2% et e e 20
A2/ o 20
dabs .o 20, 51
decimal.ot e 36
[1Y o3 P 24
defer. ... 27
AEMOMEIMS . . vttt ettt et et ie e ie e iie e 66
depth.ot 22
Qi 29, 55
QAGAT e oo 24
o =Y. G- an ol ol 47
dnegate........ooiiiiiiiii 19, 51
QO i e 39
OS> ottt 26
AP 32
ATOD « v 22,49
AUmp 45
AUD ..o 21, 31
E
=3 29, 55
ElSE i e 39
EMAT . 32
MDY o 42
end-10ad e 47
ENACASE . . ottt 40
eNAOL . e 40
OQU Lot 10, 26
ELASE .ttt ettt 23, 51
evaluate 41
3o 2 =Y o1 15
EXECULEttt 19, 49
EXAT ot 41
F
FALL oo 23, 51
find . ..o 34
fix-exits ... 28
flashbasec.o i 10
fm/MOd .o 20, 50
G
genbrrval 61
getpin.......... .. 57, 59
H
here . . e 33
e . e 36
highspeed.............l 58

70

I 19
5 29, 55
e PN 39
N 26
include......... ... il 47
B 4L ol 24
init-d0 ... 29, 53, 55
init-13gd20 ... 65
Init-mCo ... 59
init-ser ... 63
init-serl 61
init-ser2....... ... i 62
init-ser3 62
initcfgr2val 15
initcfgrval ... 15
initgpio ... 58
inputmode 58
integer? ... 37
interpret ... i 41
invert..... ... 17
S 41
is—action-of il 38, 52
isanalog ... 58
isfunction......... i 58
isinput............ 58, 60
isoutput......cooviiiiii 58, 60
ispinmode...........l 58, 59
ispinod......... i 58
ispinpupd ...l 58
ispinspeed...... ... 58

keeppages ... 10
Rey .. 32
Rey 32

13gd20_exti_config................l 65
13gd20_getdatastatus........................... 65
13gd20_int_config.............ol 65
13gd20_intlinterruptcmd....................... 65
13gd20_int2interruptcmd....................... 65
13gd20_readl....... ...t 65
13gd20_readn............ooiiiiiii i 65
13gd20_rebootcmdl 65
13gd20_writel...... 65
later . oo e 64
1AV . ot 19
ledactive ..o e 63
ledsoff. ... o 66
Lat e 25
literal.ot e 40
100D it 39
lowspeed ... 58
Ishift. .ot 18

Cortex Lite Target Code v2.0

115 PP 20, 50
P 19
M/ o 20, 50
THAX + et et e te e e e e e e e e 18
mediumspeed............. i 58
1SS o P 18
11T o 20, 50
OV .+ v ettt et ettt e ettt et et 23
1T S 64
MU/MOQ . oottt et 20

DAME> . .ottt e 24
NEEAtE . 19
next-user...................... i 31
nextcasetarg................... il 28
D e 21
TLOOPD « e ettt ettt e e 24, 49
notpulled...............l 58
NUMbET?. 37
@)

Of 40
of f 24
03 o 23
onlyled.ot 66
optionbytes..........l 10
O ettt 17
OF o 29
o3 o N 33
outputmode 58
Lo = o 22

PATSE . ottt 38
PATSE-WOLA ..\ttt 38
PAUSE ... 29, 52
PAUMP . . oottt et 45
PiCK. . 21
Pio: 57, 59
Place..... ..ol 23
Plimull............. 15
POStPONE 40
prediv3............. 15
predivéd.. ... 15
Pulleddown 58
pulledupcoiiiiiiii 58
QUETY « vttt 38
QUIT . 41

T e 21
T . 21
raligh. ... 33
Tallot. . oo e 33

Index

FEAAAKES « v ittt e ettt 66
readtest 66
TEDOOT . ittt 64
=Y o3 b T = 39
refill. . .. e 38
Tepeat. 39
There e 33
TOLL Lo 21, 51
e) 33
o X v 21
o 32
o T 22
TPO .. 22
P 51
o (P 52
rshift. e 18

S e 40
BT et e 22,51
S A it e 19
SAVE=Ch. ..ot 38
=Yo7« KPS 22
SEATC . .ttt e 23
search-wordlistccoiiiiiiiniinnnnn... 24
selio-serl il 13, 61
Selio=Ser2 62
SELli0=Ser3 i 62
T3 ol o ot PP 61
7= ol o 2/ PP 62
ST CT S . it e 63
seremitl e 61
SereMIt ..ottt 62
Seremitd 62
serkey?l ... 61
Serkey?2 ... 62
Serkey?3 ... 62
serkeyl............. 61
Serkey2............ . 62
serkey3. 62
sertypel 61
SEILYPe2 ..ot 62
Sertyped 63
SEECLOCKS v 15
SELEXCVEC . vttt e 15
setmask........ooiiiiiiii 29, 53
setmasklld 65
SetPin. ... 57, 59
ShoWlinesS T ...t e 47
SKRIP . 22
SIM/TOM ..\ttt ettt 20, 50
SOUL C . vttt ettt ettt et e e 38
S 22
BP0 . 22
BPACE .\ttt 33, 52
SPACES & 33, 52
Start=CloCK ...\ iii it e 64
StArtCOrteX .ottt e 15
stop—clock ... 64
SWAD « + e ettt et e e e e 21

71
T
Bhen . e 39
oW . ottt e 36
LGRS . .ot 12
O S et e 63
timedout? ... i 64
ANy . 17
B0 e 27
toggle! 29
s P 65
= 30
UG . et e 21
702 > 1= PO 32
U
U e 27, 52
L AP 37
LT PP 37
U e 20, 50
0 18
U ottt e e e 18
udivB64_step... ..ot 50
UMK oottt e e e e e 20, 50
UM/MOA .+« v v ettt e et e 20, 50
UNLOOP . ettt 19
Until. .. o 39
UPC .+ vttt ettt s 23
L o) 2= o 23
RD =T PP 27
USeUSArtl? .. 12
USEUSAT T 2T oottt ittt 12
USEUSAT T3 oottt e 12
USEUSAT AT oottt e 12
A%
VAL e 27
VALl . ottt 27
VAU . ottt e 27
variable 26
W
Wl e 23
WG e 25
Wy ettt e e e e e e e e e 33
WO L e 23
WOC . ot 25
walkcoldchain........... ..., 42
While . . o e 39
within...... ... o ool 18, 49
Within?. ... 49
L P 38
WO S o et e ettt et e e e 38
X
AP « ot 32
B 17
VAL et 66

72

Cortex Lite Target Code v2.0

	Lite version licence terms
	Compiler
	Distribution of application programs
	Warranties and support

	Introduction
	Supported boards
	STM32F072B Discovery board
	STM32F4 Discovery board
	Freescale Freedom FRDM-KL25Z board
	LPC1114FN28
	Infineon XMC2Go
	STM32F031K6 Nucleo-32 board
	STP LPC812 board

	Producing the kernel
	About the kernel
	Gotchas
	Flash problems
	Flash kernel is non-standard
	Building tables with CREATE

	Technical support

	Control file for STM32F072 Discovery board
	Define directory macros
	Turn on the cross compiler
	Configure target
	STM32F0 variant definitions
	Memory map
	Stack and user area sizes
	Serial and ticker rates
	Software selection

	Kernel files
	End of kernel
	Application code
	Finishing up

	Cortex start up for STM32F072
	Cortex code definitions
	Notes
	Register usage
	Logical and relational operators
	Control flow
	Basic arithmetic
	Multiplication
	Division
	Scaling - multiply then divide
	Stack manipulation
	String and memory operators
	Miscellaneous words
	Portability helpers
	Code buffer in RAM
	Supporting compilation on the target
	Defining words and runtime support
	Structure compilation
	Branch constructors
	Main compilers
	More miscellaneous words
	Non-minimal systems

	High level kernel - kernel72lite.fth.
	User variables
	System data
	Constants
	System variables and data

	Vectored I/O handling
	Introduction
	Building a vector table
	Generic I/O words

	Laying data in memory
	Dictionary management
	String compilation
	ANS words CATCH and THROW
	Example use
	Gotchas
	User words

	Formatted and unformatted i/o
	Setting number bases
	Numeric output
	Numeric input

	String input and output
	Source input control
	Text scanning
	Miscellaneous
	Wordlist control
	Control structures
	CASE statement

	Target interpreter and compiler
	Startup code
	Cold chain
	The COLD sequence

	Kernel error codes

	Debug tools
	Compile source code from AIDE
	Minimal Umbilical code definitions
	Register usage
	Flow of control
	Stack operations and maths
	Multiplication
	Division
	Miscellaneous math
	Strings
	Return address manipulations
	Umbilical versions of defining words
	Display words
	Multitasker hook
	Miscellaneous

	ARM Cortex specific library code
	I/O initialisation
	interrupt enable and disable
	Miscellaneous

	Device drivers
	STM32 GPIO utilities
	Defining I/O pins
	GPIO pin access
	IO pin configuration
	Test code for STM32F072 Discovery board

	XMC1xxx GPIO utilities
	Defining I/O pins
	GPIO pin access
	IO pin configuration
	Test code for XMC2Go board

	STM32F0 polled serial driver
	Baud rate generation
	Shared code
	USART1
	USART2
	USART3
	Initialisation

	System Ticker
	Rebooting the CPU

	L3GD20 MEMS Gyro
	Test and Demo code

	{Index}

