
MPE Forth 5 for RTX2000

Glos sary

.

Forth 5 for RTX2000

GLOS SARY

RTX2000/1A/10 Tar get

Ver sion: 5.100

User Man ual

Re vi sion: 1.02

Date: 17 Feb ru ary 1994

Pack age No:

For tech ni cal sup port:

Please con tact your sup plier

For fur ther in for ma tion:

Mi cro Proc es sor En gi neer ing Lim ited
133 Hill Lane, South amp ton
SO1 5AF, UK
Tel: 0703 631441
Fax: 0703 339691
Email: mpe@cix.com pul ink.co.uk

MPE Forth 5 for RTX2000
Copy right ©
Mi cro proc es sor En gi neer ing Lim ited
1993-4

Ac know ledge ments

MPE would like to thank the fol low ing peo ple for all their in volve -
ment in the pro duc tion of this prod uct:

Jon Lee, Ste phen Pelc, Paul Gal li enne, Gary El lis

Mi cro proc es sor En gi neer ing Lim ited
133 Hill Lane
South amp ton
SO1 5AF, UK

.

Ta ble of con tents

Chap ter 1 - Glos sary No ta tion 1
Glos sary word or der 1
Forth words 1
Stack No ta tion 1
Stack Pa rame ters 2
In put Text 3
Other mark ers 4

Chap ter 2 - Com piler Di rec tives 5

Chap ter 3 - Tar get glos sary 21
Words be fore ‘A’ 21
Words be gin ning with ‘A’ 34
Words be gin ning with ‘B’ 37
Words be gin ning with ‘C’ 39
Words be gin ning with ‘D’ 42
Words be gin ning with ‘E’ 45
Words be gin ning with ‘F’ 48
Words be gin ning with ‘G’ 55
Words be gin ning with ‘H’ 55
Words be gin ning with ‘I’ 56
Words be gin ning with ‘J’ 58
Words be gin ning with ‘K’ 58
Words be gin ning with ‘L’ 58
Words be gin ning with ‘M’ 60
Words be gin ning with ‘N’ 61
Words be gin ning with ‘O’ 62
Words be gin ning with ‘P’ 64
Words be gin ning with ‘Q’ 65
Words be gin ning with ‘R’ 65
Words be gin ning with ‘S’ 67
Words be gin ning with ‘T’ 71
Words be gin ning with ‘U’ 72
Words be gin ning with ‘V’ 74

i

MPE Forth 5 for RTX2000 Table of contents

Words be gin ning with ‘W’ 75
Words be gin ning with ‘X’ 76
Words be gin ning with ‘Y’ 77
Words be gin ning with ‘Z’ 77
Words af ter ‘Z’ 77

Word list 79

ii

Table of contents MPE Forth 5 for RTX2000

Glossary Notation

The docu men ta tion of the glos sa ries uses a meth od ol ogy based on that used
for the Forth- 83 Stan dard docu ment. As this is not a stan dard docu ment, but
is sup posed to be a user man ual, we have taken some lib er ties to make this
man ual eas ier to look at.

Glos sary word or der
The glos sary defi ni tions are listed in the fol low ing or der:-

, . : ; ! ? “ ‘ ‘ () [] { } $ + - * / ^ < = > % # & @ \ _ | ~ 0..9 A..Z

Forth words
Forth word names are capi tal ized through out, and are shown in bold in the
text.

Stack No ta tion
The stack pa rame ters in put to and out put from a defi ni tion are de scribed us -
ing the no ta tion:-

be fore — af ter

where:

‘b efore’ means the stack pa rame ters be fore exe cu tion

and

‘a fter’ means stack pa rame ters af ter exe cu tion

Page 1

MPE Forth 5 for RTX2000 Glossary notation

In this no ta tion, the top of the stack is to the right. Words may also be shown
in con text when ap pro pri ate. Un less oth er wise noted, all stack no ta tion de -
scribes exe cu tion time. If it ap plies at com pile time, the line is fol lowed by:
(com pil ing) .

Stack Pa rame ters
Un less oth er wise stated all ref er ences to num bers ap ply to 16- bit signed in -
te gers. The im plied range of val ues is shown as {from..to}. The con tent of an
ad dress is shown by dou ble braces, par ticu lary for the con tents of vari ables,
e.g., BASE {2..72}. The fol low ing are the stack pa rame ter ab bre via tions
and types of num bers used through out the glos sary. These ab bre via tions
may be suf fixed with a digit to dif fer en ti ate mul ti ple pa rame ters of the same
type.

Abbrv. type range & field size

flag boo lean 0=false, else=true 16
true boo lean -1 (as a re sult) 16
false boo lean 0 16
b bit {0..1} 1
char char ac ter {0..127} 7
8b 8 bits not ap pli ca ble 8
16b 16 bits not ap pli ca ble 16
n number {-32,768..32,767} 16
+n +ve int {0..32,767} 16
u un signed {0..65,535} 16
w un speci fied

weighted
number (n or
u)

{32,768..65,535} 16

addr ad dress {0..65,535} 16
32b 32 bits not ap pli ca ble 32
d dou ble

number
{-2,147,483,683,648.. 2,147,483,647}
32

+d posi tive dou -
ble number

{0..2,147,483,647} 32

Page 2

Glossary notation MPE Forth 5 for RTX2000

ud un signed
dou ble
number

{0..4,294,967,295} 32

wd un speci fied
weighted
dou ble
number (d or
ud)

{-2,147,483,648..4,294,967,295} 32

f float ing point
number

{
sys 0, 1, or more

sys tem de -
pend ent en -
tries

not ap pli ca ble

Any other sym bol re fers to an ar bi trary signed 16- bit in te ger in the range
{-32,768..32,767}, un less oth er wise noted. Be cause of the use of two’s
com ple ment arith metic, the signed 16- bit number (n) -1 has the same bit rep -
re sen ta tion as the un signed number (u) 65,535. Both of these num bers are
within the set of un speci fied weighted num bers (w). On many oc ca sions
where the con text is ob vi ous, in for mal names are used to make the docu -
men ta tion eas ier to use.

In put Text
<name>
An ar bi trary Forth word ac cepted from the in put stream. This no ta tion re fers
to text from the in put stream, not to val ues on the data stack.

ccc
A se quence of ar bi trary char ac ters ac cepted from the in put stream un til the
first oc cur rence of the speci fied de lim iter char ac ter. The de lim iter is ac -
cepted from the in put stream, but it is not one of the char ac ters ccc and is
there fore not oth er wise proc essed. This no ta tion re fers to text from the in put
stream, not to val ues on the data stack. Un less noted oth er wise, the number
of char ac ters ac cepted may be from 0 to 255.

Page 3

MPE Forth 5 for RTX2000 Glossary notation

Other mark ers
The fol low ing mark ers may ap pear af ter a word’s stack com ment. These
mark ers in di cate cer tain fea tures and pe cu li ari ties of the word.

C The word may only be used dur ing com -
pi la tion.

I The word is im me di ate. It will be exe -
cuted even dur ing com pi la tion, un less
pre ceded by the word [COM PILE].

Page 4

Glossary notation MPE Forth 5 for RTX2000

Compiler Directives

This glos sary de tails the cross com piler di rec tives.

[\\] —
“bracket-stop-opt”

Used during compilation to break the optimisation sequence at this
point. Opcodes either side of [\\] will not be merged. See
NO-OPTIMIZE OPTIMIZE

;P —
End Page. Causes FROM and FROM-FILE to stop using the
current page. Has the same effect as ;S in screen files.

;P

(— ;I
“open-paren”

The comment in a text file differs from the screen file version. The
paranthesis comment works over multiple lines. The end of
comment is marked by a white-space-delimited closing
parenthesis, e.g.

... 2DUP (save adr # for later) INIT ...
 ...
CLOB BER (NOTE:

 use the op er at ing sys tem func tion
 here to shut off ac cess

)
...

Page 5

MPE Forth 5 for RTX2000 Compiler glossary

)ELSE(— ; I
“paren-else-paren”

The words IF()ELSE()ENDIF permit conditional compilation
and interpretation. They are an analogue of IF ELSE ENDIF and
are used in the forms:

flag
IF(<if flag is true>)EN DIF

flag
IF(<if flag is true>
)ELSE(<if flag is false>
)EN DIF
If the flag is true the words after IF(are interpreted or compiled, but
if the flag is false the words after)ELSE(are interpreted/compiled.
The)ELSE(clause is optional.

)ENDIF — ; I
“paren-endif”

See IF(and)ELSE(.

ALIAS —
“alias”

A defining word used to create a second symbol name for a word.
Used in the form:

ALIAS name1 name2

ALIAS (EMIT) SEND- BYTE
This feature is useful where a package is written using one word
name, and the required function can be provided by a word of a
different name elsewhere in the system. In the example above the
CFA of (EMIT) will be compiled for a reference to SEND-BYTE.

ALIGN-ODD —
“align-odd”

Used to align CFAs onto odd addresses (so that PFAs are on even
ones). The link fields are still forced to a even address.

ALIGN- ODD

ALL — 1 -1
“all”

Used before FROM, DISPLAY, or CONTENTS, ALL will put
the first and last page numbers on the stack so that ALL the pages
are specified. e.g.

Page 6

Compiler glossary MPE Forth 5 for RTX2000

ALL DIS PLAY MY FILE.FTH

ALLOT n —
“allot”

Allots space in the current code page area of a ROM/RAM target.

CRE ATE AREA \ — addr ; re turns pointer to ROM area
 0100 AL LOT \ re serve space in ROM
55 AREA !C \ which can be filled in later
66 AREA 2+ !C \ Note the use of !C

ALLOT-RAM n —
“allot-ram”

Allots space in the current data page area of a ROM/RAM target.
Its function is to allow uninitialised space to be reserved in RAM.

THERE CON STANT POINTER \ pointer to RAM area
 0100 ALLOT- RAM \ re serve space in RAM

ALONE n — n n
“alone”

A modifier used before FROM or FROM-FILE or other text file
words to describe a single page, for example to compile page 5
from the current text file use:

5 ALONE FROM

BASE-36 —
“base-thirty-six”

Sets the current base to 36 (decimal). This apparently strange
operation allows upper-case characters and digits to be encoded as
radix-36 numbers, reducing the memory required. This technique
is inherited from earlier incarnations of the compiler, where it was
often used to encode the processor type as a double number.

BOUNDING size mask end-gap start-skip —
“bounding”

This word is used in a ROM/RAM system to skip parts of memory
that may be occupied by existing ROMS. Such a situation is
sometimes found in domestic computers, or when modifying
systems that use partial memory decoding.

n1 n2 n3 n4 BOUND ING
The first parameter n1 declares the size of the EPROM in bytes.

Page 7

MPE Forth 5 for RTX2000 Compiler glossary

Parameter n2 is a bit mask identifying which address lines select
the EPROM. For example an 8k EPROM of size 02000 (hex) is
controlled by address lines A15,14,13 and will have a mask value
of 0E000 (hex).
Parameter n3 specifies how far before the end of the EPROM the
compiler stops to ask the user whether it should step to the next
EPROM. This limit is used to prevent the last word in an EPROM
being compiled across an EPROM boundary. If the answer is no,
the question will be repeated before each word is compiled until the
answer is yes or the EPROM boundary is crossed. When the yes
answer is given, the compiler steps to the start of the next EPROM,
and repeats the question. If the answer is again yes, the complete
EPROM is skipped. Note that specifying a value of say 0100 does
not guarantee to reserve 0100 free bytes at the end of the EPROM,
it only specifies at what point the compiler starts asking what needs
to be done.
Parameter n4 specifies how many bytes are skipped at the start of
each EPROM.
The example below is for an 8k byte EPROM such that the
compiler starts checking 128 bytes (080h) before the end of the
EPROM, and the first 256 bytes (0100h) are skipped at the start of
each EPROM.

HEX 02000 0E000 080 0100 BOUND ING

CODE-PAGE start end page-id — ; <name>
“code-page”

Defines the start and end of a page of ROM in a system. The label
<name> is the page name of the area of memory. The page-id is a
unique identifier for the page and is used by the page switching
word PAGE-WORD. The code generated for the page will be
saved with the filename <name> and extension .IMG. For
example,

$4000 $7FFF 2 CODE- PAGE PAGE2
defines an area of memory from 4000h to 7FFFh with
page-switching code 2. The page’s image is saved with the name
PAGE2.IMG. See also DATA-PAGE, KERNEL and
KERNEL-RAM.

Page 8

Compiler glossary MPE Forth 5 for RTX2000

DATA-PAGE start end page-id — ; <name>
“data-page”

Defines the start and end of a page of RAM in a system. The label
<name> is the page name of the area of memory. The page-id is a
unique identifier for the page and is used by the page switching
word PAGE-WORD. For example,

$8000 $BFFF 5 DATA- PAGE PAGE5
defines an area of memory from 8000h to BFFFh with
page-switching code 5. See also CODE-PAGE, KERNEL and
KERNEL-RAM.

CON: —
“to-con”

Direct the symbol table log output to the screen. The default output
device. If required this directive has to be used before the command
CROSS-COMPILE.

CON:

CROSS-COMPILE —
“cross-compile”

This word tells the system to start cross compiling. Until this point
the compiler is a conventional Forth system with an application
(the cross compiler) loaded but not running. At this stage
extensions and assembler macros can be loaded. After
CROSS-COMPILE has executed the compiler ‘pulls down the
shutters’ to seal itself off, and then treats all code as target code and
compiler directives.

CROSS- COMPILE

EMU-BASE address —
“emu-base”

Sets the base address of the LePROM emulator for the cross
compiler. The tsr emulator drivers must be installed to use this
word.

EQU n — ; <name>
“equ”

Creates a compile-time equate of value n. When the equate is
referred to in the target code the value assigned to the equate is used
as a literal. An equate only exists during the run-time of the cross
compiler. Equates may be redefined like macro-assembler

Page 9

MPE Forth 5 for RTX2000 Compiler glossary

set-symbols. Equates may be used wherever numbers may be used,
they are just a means of naming a number.

HEX
0FF80 EQU IO- PORT

EXTERNAL —
“external”

The following words are generated with headers containing up to
31 characters, provided that the directive NO-HEADS has not
been used.

EX TER NAL

FILE: — ; <filename>
“to-file”

Direct the symbol table log output to the file <filename>. If
required this directive has to be used before the command
CROSS-COMPILE.

FILE: SYM BOLS.LOG

FINIS —
“finis”

This word stops the cross compiler. A cleaning-up operation is
performed, final reports issued, the output file or EPROM emulator
closed, and finally the compiler exits to host/target mode.

FINIS

FINIS-CODE-PAGE —
“finis-page”

This word is used to finish off the compilation of a code page, and
return to cross compiling the kernel. This must not be used on the
kernel page.

FROM first last —
“from”

Get text input from a range of pages in the current file. The first and
last pages to be used are supplied on the stack. Files can be nested
16 deep; that is files can include input from other files. FROM is
like THRU or THRU-USING with screen files, e.g.

4 10 FROM

Page 10

Compiler glossary MPE Forth 5 for RTX2000

FROM-FILE first last — ; <filename>
“from-file”

Get text input from a range of pages in the file <file-name> typed
after FROM-FILE. The first and last pages to be used are supplied
on the stack. Files can be nested; that is files can include input from
other files. FROM-FILE is like THRU or THRU-USING, e.g.

4 10 FROM- FILE MY FILE.FTH

HEADS? — t/f ; I
“heads-query”

An immediate equate that returns false if the NO-HEADS
directive has been used. The function of this equate is to return a
value for conditional compilation of the interpreter and compiler
layers if heads are needed, for example:

HEADS?
IF(7 LOAD- USING IN TER AC TIVE)EN DIF

HOST&TARGET —
“host-and-target”

Used after TARGET-ONLY to allow defining words to be
handled again. Some special cases of defining words cannot be
handled by the cross compiler, but are required for target execution.
TARGET-ONLY and HOST&TARGET handle this situation.

HOST&TAR GET

HOST-COMPILATION—
“host-compilation”

Temporarily turns off the cross compiler so that the following code
can be compiled into the cross compiler itself. Cross compilation is
restarted by TARGET-COMPILATION.

I: — ; <wordname>
“i-colon”

Not really a directive, rather an auxiliary version of :. I: is used
instead of : to create an immediate word that will exist in, and can
be executed by, the cross compiler in the same way that defining
words are handled. The same rules as for defining words apply to
words created by I:.

I: <name>
......
; IM ME DI ATE

Page 11

MPE Forth 5 for RTX2000 Compiler glossary

Note that IMMEDIATE only affects the target code, I: is needed
to enable the analogue to be built into the cross compiler.

IF(n — ; I
“if-paren”

The words IF()ELSE()ENDIF permit conditional compilation
and interpretation. They are an analogue of IF ELSE ENDIF and
are used in the forms:

flag
IF(<if flag is true>)EN DIF

flag
IF(<if flag is true>
)ELSE(<if flag is false>
)EN DIF
If the flag is true the words after IF(are interpreted or compiled, but
if the flag is false the words after)ELSE(are interpreted/compiled.
The)ELSE(clause is optional.

IN-EMULATOR addr — ; <name>
“in-emulator”

The code generated for page <name> is redirected into an EPROM
emulator. The address addr is the start of the image within the
emulator. e.g.

$2000 IN- EMULATOR KERN
will send the page KERN to your emulator, starting at offset 2000h.
This directive must be used befor the first use of

USE- CODE KERN

INTERNAL —
“internal”

This directive causes the following words to be generated without
headers. The cross compiler still knows they are there, but they will
not be visible to the interpreter on the target system.

IN TER NAL

IS-FENCE —
“is-fence”

Marks the last word defined as being the last word in the protected
dictionary. In a RAM system, the cross compiler places the NFA of
this word at the location INIT-FENCE. The target start-up code

Page 12

Compiler glossary MPE Forth 5 for RTX2000

can then access this location to find the initial value of the variable
FENCE.

L: INIT- FENCE 0 , \ re serve space

............

: FORTH- 83 ; IS- FENCE \ fills INIT- FENCE

L: — ; <word-name>
“ell-colon”

Creates a label with the address returned by HERE, i.e. the current
location in the dictionary. Normally only used during interpretation
and assembly, but can be used during compilation if surrounded by
[and].

L: DATA- SLOT 0 ,

: <word>
......
[L: INSIDE- WORD]
......
;

KERNEL start end — ; <name>
“kernel”

Defines the start and end of the fixed kernel ROM in a system.
<name> is the page name of the area of memory. The generated
image file will have the name <name> and the extension .IMG. For
example,

$0000 $7FFF KER NEL KERN ROM
defines an area of memory from 0h to 7FFFh. The kernel page’s
image is saved with the name KERNROM.IMG. See also
DATA-PAGE, CODE-PAGE and KERNEL-RAM.

KERNEL-RAM start end page-id —; <name>
“kernel-ram”

Defines the start and end of the fixed kernel RAM in a paged
system. <name> is the page name of the area of memory. For
example,

$8000 $FFFF 0 KERNEL- RAM KERN RAM
defines an area of memory from 0h to FFFFh with page-switching
code of 0. See also KERNEL, DATA-PAGE CODE-PAGE

Page 13

MPE Forth 5 for RTX2000 Compiler glossary

LABEL addr — ; <word-name>
“label”

Used during interpretation to create a label at an arbitrary location
to satisfy a forward reference from a code definition or code
fragment.

THERE LA BEL MY- DATA

LOAD n —
“load”

The contents of screen n of the current screen file are compiled, e.g.

10 LOAD

LOAD-USING n — ; <pathname>
“load-using”

The contents of screen n of the given screen file are compiled. If no
extension is given, the compiler will add the extension ‘.SCR’, e.g.

10 LOAD- USING A:\ROM- IO

LOG —
“log”

Generate a full symbol table log.

LOG

MAKE-TURNKEY — ; <name>
“make-turnkey”

Used to make your application a turnkey or autostarting system.
The word <name> is the name of your application that you want to
be run at startup. For example,

MAKE- TURNKEY MY- APP

MEM-END addr —
“mem-end”

Used to define the end of memory in the target system. For a
ROM-based system with ROM at 0000, and RAM from 08000 to
09FFF, the following sequence would be used:

HEX
0000 7FFF KER NEL Rom- targ
8000 9FFF 0 KERNEL- RAM Rom- data
A000 MEM- END

Page 14

Compiler glossary MPE Forth 5 for RTX2000

NO-HEADS —
“no-heads”

Disables generation of heads, overriding EXTERNAL and
TARGET-WIDTH completely. This directive can be used when
the application is complete to remove ALL heads from the system
without having to go through the source code removing all
occurences of EXTERNAL and TARGET-WIDTH.

NO- HEADS

NO-LOG —
“no-log”

Generate a reduced symbol table log.

NO- LOG

NO-OPTIMIZE —
“no-optimise”

This directive disables the opcode optimiser, which can merge
several opcodes into one, so producing smaller and faster code. The
default state is OPTIMIZE. The usual reason to turn the optimiser
off is in order to build a table of opcodes.

For example:

CRE ATE OPCODE- TABLE

] @ ! + 0< - R> DROP >R R@ [

Without any optimisation control, several elements of this table
would be merged, producing an incorrect result. The optimiser can
be ‘broken’ using the [\\] function as follows:

CRE ATE OPCODE- TABLE

] @ [\\] ! [\\] + [\\] 0< [\\] - [\\] R> [\\]
 DROP [\\] >R [\\] R@ [\\] [

The use of [\\] after each opcode forces the optimiser not to merge
any opcodes, but makes the code longer and difficult to read or
understand. A better solution is to use NO-OPTIMIZE and
OPTIMIZE to turn the optimiser off for a short while.

NO- OPTIMIZE

Page 15

MPE Forth 5 for RTX2000 Compiler glossary

CRE ATE OPCODE- TABLE
] @ ! + 0 - R DROP R R@ [

OP TI MIZE

NO-TAIL-OPT —
“no-tail-opt”

A procedure that ends in a call to another procedure, followed by a
return can often by optimised by just branching to the other
procedure. Because some Forth words can make assumptions
about the use of the return stack, this optimisation is controlled
separately from all other optimisations. The default is
NO-TAIL-OPT. It is recommended that you develop the code
without this optimisation, and then turn it on for final debugging.
NO-TAIL-OPT and TAIL-OPT can be used around single words
if required.

: A ;
: B A ;
If TAIL-OPT is active the last call to A will be converted to a jump,
saving two bytes and one clock cycle. If this is undesirable use the
code below.

: A ;
NO- TAIL- OPT
: B A ;
TAIL- OPT

ONWARDS n — n -1
“onwards”

A modifier used before FROM or FROM-FILE or other text file
words to use the text from a specified page to the end, for example
to compile page 5 to the end from the current text file use:

5 ON WARDS FROM

OPTIMIZE —
“optimise”

This directive enables the opcode optimiser. For details see
NO-OPTIMIZE.

ORG addr —
“org”

A directive used to set the dictionary pointer to the given address.

Page 16

Compiler glossary MPE Forth 5 for RTX2000

HEX
2080 ORG

OUTPUT-EMULATOR eprom-type bus-width —
“output-emulator”

Defines the EPROM type and bus width of the EPROM emulator
the compiler will use. This directive switches all target memory
words to use the EPROM emulator drivers instead of the output file
drivers. Predefined constants exist to define the EPROM type and
bus width. The EPROM type is one of:

E2764 E27128 E27256 E27512
and the bus-width is one of:

8BIT 16BIT 32BIT
For example:

E27256 16BIT OUTPUT- EMULATOR
The emulator tsr driver must be installed to use this word.

PAGED-VOCABULARY<name> —
“paged-vocabulary”

Used to make pages interactive. When a page is defined, a page
vocabulary should be created as well. The vocabulary must be
created in the page <name> i.e.

USE- CODE <name>
PAGED- VOCABULARY <name>

PRN: —
“to-prin”

Direct the cross-compiler log output to the printer. If required this
directive has to be used before the command CROSS-COMPILE.

PRN:

PTO —
“p-t-o”

Please Turn Over. This word causes FROM and FROM-FILE to
stop using the current page and to start on the next. (The same effect
as —> in screen files.)

PTO

Page 17

MPE Forth 5 for RTX2000 Compiler glossary

RESTART — ; <FileName>
“restart”

Continue cross compilation from the position saved under the
given file name. The cross compiler saved position files having
been generated using the directive SUSPEND during an earlier
cross compilation.

RE START KER NEL

SUSPEND — ; <filename>
“suspend”

Stop the present cross compilation, saving cross compiler
information to disc under the given filename, the cross compiler
then returning to host/target mode. Note that the file name should
not include an extension, the cross compiler supplies its own. The
directive RESTART is used to resume cross compilation later.

SUS PEND KER NEL

TAIL-OPT —
“tail-opt”

Turns on branch optimisation. The default is OFF. See
NO-TAIL-OPT

TARGET-COMPILATION—
“target-compilation”

Re-enable cross compilation after it has been turned off by
HOST-COMPILATION.

TARGET-WIDTH n—
“target-width”

Sets the maximum number of characters in the name field to be n. A
maximum of 31 characters is imposed by the compiler.

7 TARGET- WIDTH

THRU n1 n2 —
“through”

The contents of screens n1 to n2 inclusive of the current screen file
are compiled, e.g.

DECI MAL 7 23 THRU
It is good practice to define the number base just before LOAD or
THRU as ‘other people’ sometimes forget to restore the base at the

Page 18

Compiler glossary MPE Forth 5 for RTX2000

end of a screen, or it might be house policy only to define the base
where it matters. In this instance it does.

THRU-USING n1 n2 — ; <pathname>
“through-using”

The contents of screens n1 to n2 of the given screen file are
compiled. If no extension is given, the compiler will add the
extension ‘.SCR’.

USE — ; <text-file-name>
“use”

Set the default text file you wish to USE (like “USING xxx.scr” for
screen files). The file defaults to NUL.FTH.

USE TEXT FILE.FTH

USE-CODE <name> —
“use-code”

Used to select which page the compiled code is generated for. Any
code following USE-CODE will be compiled into the page
<name>. This will continue until the compilation is finished,
FINIS-CODE-PAGE, or another USE-CODE is found.

UCODE opcode — ; < opcode-name>
“u-code”

Used to define new opcodes in the form:

op code UCODE <opcode- name>

For example to define the RTX instruction SELDPR (for fetches
and stores in a data page) use the sequence

$B08D UCODE SELDPR

USE-DATA <name> —
“use-data”

Used to select which page the compiled data is generated for. Any
data following USE-DATA will be allocated in the page <name>.
This will continue until the compilation is finished or another
USE-DATA is found.

Page 19

MPE Forth 5 for RTX2000 Compiler glossary

.

Target glossary

The words are listed here in AS CII al pha beti cal or der, with the stan dard pro -
nun cia tion of the word un der the name. The stack com ments show the exe -
cu tion point as “—” with the pa rame ters to the left be ing the in put
pa rame ters, and those to the right are the re sults left (if any) by the word’s
exe cu tion. The top of the stack is to the right of the lists. The in di ca tor I in di -
cates that the word is im me di ate.

Note: Not all the words in this glos sary will ex ist in the Um bili cal Forth tar -
get.

Words be fore ‘A’

! 16b addr —
“store”

A sixteen bit integer is stored at the given address.

!CSP —
“store-c-s-p”

A word used by compiling and structure words. The stack pointer is
saved in user variable CSP.

!L 16b addr page —
“store-l”

A 16-bit integer is stored at the long address given in page and
address form.

+d1 — +d2
“sharp”

The remainder of +d1 divided by the value of BASE is converted to
an ASCII character and appended to the output string toward lower
memory addresses. +d2 is the quotient and is maintained for further
processing. Typically used between <# and #>.

Page 21

MPE Forth 5 for RTX2000 Target glossary

#> 32b — addr +n
“sharp-greater”

Pictured numeric output conversion is ended dropping 32b. addr is
the address of the resulting output string. +n is the number of
characters in the output string. addr and +n together are suitable for
TYPE.

#LITERAL n1..nn n —
“hash-literal”

Takes n words from the stack and compiles them as literals, n1 first
nn last. If no words are to be compiled, n may be zero. This word is
used with NUMBER? as part of a consistent numeric conversion
system.

#S +d — 0 0
“sharp-s”

+d is converted appending each resultant character into the
pictured numeric output string until the quotient (see: #) is zero. A
single zero is added to the output string if the number was initially
zero. Typically used between <# and #>.

‘ — compilation-addr
“tick”

Use in the form:

‘ ccccc
Searches the dictionary using the normal search order, returning
the compilation address (cfa) of the word. If the word is not found
an error message is given.

“” — addr (executing) ; I
“quotes-quotes” — (compiling)

use in the form:

“” <text>"
Compiles text into the dictionary as a string with a count byte, and
when the word containing “” executes later, the address of the
string’s count byte is returned.

Page 22

Target glossary MPE Forth 5 for RTX2000

“, —
”quotes-comma"

Compiles the string following in the input stream into the
dictionary as a counted string (count byte + text). Use in the form:

“, string”
The space before the string, and the trailing double quotes are not
compiled.

(—
“paren”

Used in the form:

(ccc)
The characters ccc, delimited by) (closing parenthesis), are
considered comments. Comments are not otherwise processed.
The blank following (is not part of ccc. (may be freely used while
interpreting or compiling. The number of characters in ccc may be
from zero to the number of characters remaining in the input stream
up to the closing parenthesis.

(”) — addr
“paren-quotes”

The run time action of “” compiled by “”. See “”

* w1 w2 — w3
“times”

W3 is the least-significant 16 bits of the arithmetic product of w1
times w2.

*/ n1 n2 n3 — n4
“times-divide”

n1 is first multiplied by n2 producing an intermediate 32-bit result.
n4 is the quotient of the intermediate 32-bit result divided by the
divisor n3. The product of n1 times n2 is maintained as an
intermediate 32-bit result for greater precision than the otherwise
equivalent sequence: n1 n2 * n3 / . An error condition results if the
divisor is zero or if the quotient falls outside the range
{-32,768..32,767}.

Page 23

MPE Forth 5 for RTX2000 Target glossary

*/MOD n1 n2 n3 — n4 n5
“times-divide-mod”

n1 is first multiplied by n2 producing an intermediate 32-bit result.
n4 is the remainder and n5 is the quotient of the intermediate 32-bit
result divided by the divisor n3. A 32-bit intermediate product is
used as for */ . n4 has the same sign as n3 or is zero. An error
condition results if the divisor is zero or if the quotient falls outside
of the range {-32,768..32767}.

+ w1 w2 — w3
“plus”

w3 is the arithmetic sum of w1 plus w2

+! w1 addr —
“plus-store”

w1 is added to the w value at addr using the convention for +. This
sum replaces the original value at addr.

+LOOP n1 —
“plus-loop” sys — (compiling)

n is added to the loop index. If the new index was incremented
across the boundary between limit-1 and limit the loop is
terminated and loop control parameters are discarded. When the
loop is not terminated, execution continues to just after the
corresponding DO. Sys is balanced with corresponding DO. See:
DO.
NB: Avoid using +LOOP where the difference between the start
and end limits is greater than 8000h as this will not produce the
results you expect! Use the more efficient FOR...NEXT or
BEGIN...WHILE...REPEAT structures instead.

, 16b —
“comma”

ALLOT space for 16b then store 16b at HERE 2-. This is the basic
word used to compile 16-bit data into the dictionary. It places the
data at the end of the dictionary and adds two to the dictionary
pointer. The byte equivalent is called C,

,(R) 16b —
“comma-r”

ALLOT space for 16b in the DATA RAM area then store 16b at
THERE 2-. This is the basic word used to compile 16-bit data into

Page 24

Target glossary MPE Forth 5 for RTX2000

RAM. It places the data at the end of the portion in use, and adds
two to the pointer. The byte equivalent is called C,(R)

- w1 w2 — w3
“minus”

w3 is the result of subtracting w2 from w1

—> — I
“arrow”

Continues interpretation/compilation from the next screen. Only
valid when interpreting/compiling from a screen file.

-1 — -1
“minus-one”

A constant

-ROT n1 n2 n3 — n3 n1 n2
“dash-rote”

Saves the top of the stack under the next two items. Equivalent to:

ROT ROT

-TRAILING addr +n1 — addr +n2
“dash-trailing”

The character count +n1 of a text string beginning at addr is
adjusted to exclude trailing spaces. If +n1 is zero, then +n2 is also
zero. If the entire string consists of spaces, then +n2 is zero.

. n —
“dot”

The absolute value of n is displayed in a free field format with a
leading minus sign if n is negative.

." — I
“dot-quotes” — (compiling)

Used in the form:

." ccc"
Later execution will display the characters ccc up to but not
including the delimiting “ (close-quote). The blank following ." is
not part of ccc.

Page 25

MPE Forth 5 for RTX2000 Target glossary

.(— I
“dot-paren”

An equivalent of ." to be used when interpreting, or for immediate
display from within compilation, as ." is intended by the standard
to be used within a colon definition to compile a string for later
execution. Use in the form:

.(string)

.BYTE n1 —
“dot-byte”

Prints n1 as an unsigned number in a format of two hex digits
followed by a space. The current value of BASE is unaffected.

.NAME addr —
“dot-name”

Given the name field address of a word, its name is displayed.

.R n1 n2 —
“dot-r”

The number n1 is printed right aligned in a field of width n2
without a trailing space.

.S —
“dot-s”

The contents of the stack are printed out, leaving the contents of the
stack unchanged.

.WORD n1 —
“dot-word”

The value of n1 is displayed unsigned as four hex digits and a
space. The current value of BASE is unaffected.

/ n1 n2 — n3
“divide”

n3 is the quotient of n1 divided by the divisor n2. An error
condition results if the divisor is zero or if the quotient falls outside
the range {-32,768..32767}.

Page 26

Target glossary MPE Forth 5 for RTX2000

/MOD n1 n2 — n3 n4
“divide-mod”

n3 is the remainder and n4 the quotient of n1 divided by the divisor
n2. n3 has the same sign as n2 or is zero. An error condition results
if the divisor is zero or if the quotient falls outside of the range
{-32,768..32,767}.

/STRING addr len n — addr+n len-n
“slash-string”

Steps a distance through a string. Often used by text scanning
operators, and is then followed by SKIP or SCAN. See SKIP
SCAN WORD

0 1 2 — n
The numbers 0..2 occur so often that it is more economical to
define them as constants.

0< n — flag
“zero-less”

The flag is true if n is less than zero (negative).

0<> n — flag
“zero-not-equals”

The flag is true if n is non-zero.

0= w — flag
“zero-equals”

flag is true if w is zero.

0> n — flag
“zero-greater”

flag is true if n is greater then zero.

1+ w1 — w2
“one-plus”

w2 is the result of adding one to w1 according to the operation of +.

1- w1 — w2
“one-minus”

w2 is the result of subtracting one from w1 according to the
operation of -.

Page 27

MPE Forth 5 for RTX2000 Target glossary

2! d1 addr —
“two-store”

The double number d1 is stored at addr. Forth stores double
precision numbers with the most significant of the two words on
the top of the stack. The word 2! preserves the memory order so that
the number configuration in memory is the same as on the stack.
See 2@.

2+ w1 — w2
“two-plus”

w2 is the result of adding two to w1 according to the operation of +.
This operation is performed so often (like 1+ 1- and 2-) that it is
worth having fast machine code routines.

2- w1 — w2
“two-minus”

w2 is the result of subtracting two from w1 according to the
operation of -.

2@ addr — d
“two-fetch”

The double number at addr is returned to the stack. Forth stores
double precision numbers with the most significant of the two
words on the top of the stack. The double number memory
operators preserve the memory order so that the number
configuration in memory is the same as on the stack. See 2!

2* n — 2n
“two-times”

A fast machine code multiply by 2.

2/ n — 2n
“two-slash” or “two-divide”

A fast machine code divide by two. Uses floored division.

2DROP d1 —
“two-drop”

The top two items on the stack are removed.

2DUP d1 — d1 d1
“two-dupe”

The top two items on the stack are duplicated.

Page 28

Target glossary MPE Forth 5 for RTX2000

2OVER d1 d2 — d1 d2 d1
“two-over”

Copies the second pair of words to the top of the stack.

2SWAP d1 d2 — d2 d1
“two-swap”

The top two pairs of items on the stack are interchanged.

: — sys I
“colon”

A defining word executed in the form:

: <name> ... ;
Create a word definition for <name> in the compilation
vocabulary and set compilation state. The search order is changed
so that the first vocabulary in the search order is replaced by the
compilation vocabulary. The compilation vocabulary is
unchanged.
The text from the input stream is subsequently compiled. <name>
is called a “colon definition”. The newly created word definition
for <name> cannot be found in the dictionary until the
corresponding ; or ;CODE is successfully processed.
An error condition exists if a word is not found and cannot be
converted to a number or if, during compilation from mass storage,
the input stream is exhausted before encountering ; or ;CODE. sys
is balanced by its corresponding ;.

; — ; I
“semi-colon” sys — (compiling)

Stops the compilation of a colon definition, allows the <name> of
this colon definition to be found in the dictionary, sets interpret
state and compiles ;S. sys is balanced by its corresponding :.

;S —
“semi-s”

The word compiled by ; to perform the return from a high level
word. Most often seen as the word at the end of a source screen to
stop interpretation. Its action is to leave the word being executed.
May be replaced by EXIT

Page 29

MPE Forth 5 for RTX2000 Target glossary

< n1 n2 — flag
“less-than”

flag is true if n1 is less than n2

<<8 n — n’
“shift-left-eight”

Shifts the top of stack eight places left, filling with zeros

<<N n 1 n2— n1’
“shift-left-n”

Shifts n1 left n2 places, filling with zeros

<= n1 n2 — flag
“less-than-or-equals”

The flag is true if n1 is less than or equal to n2.

<> n1 n2 — flag
“not-equal”

The flag is true if n1 is not equal to n2.

<# —
“less-sharp”

Initialise pictured numeric output conversion. The words: # #S
HOLD SIGN can be used to specify the conversion of a double
number into ASCII text string stored in right-to-left order. See also
#>

<MARK — addr
“back-mark”

Marks the entry point of a backward jump, which will later be
resolved by <RESOLVE.

<RESOLVE addr —
“back-resolve”

Resolves a backward jump whose destination was earlier marked
by <MARK

= w1 w2 — flag
“equals”

flag is true if w1 is equal to w2

Page 30

Target glossary MPE Forth 5 for RTX2000

> n1 n2 — flag
“greater-than”

flag is true if n1 is greater than n2

>>8 n — n’
“shift-right-eight”

Shifts the top of stack eight places right, filling with zeros

>>N n 1 n2— n1’
“shift-right-n”

Shifts n1 right n2 places, filling with zeros

>= n1 n2 — flag
“greater-than-or-equal”

The flag is true if n1 is greater than or equal to n2.

>BODY cfa — pfa
“to-body”

Converts a compilation address of a word (in this case, the address
of the cfa) to the parameter field address.

>IN — addr
“to-in”

The address of a variable which contains the present character
offset within the current input stream buffer. See: WORD BLK

>MARK — addr
“forward-mark”

Marks the start of a forward branch which will be later resolved by
RESOLVE>

>NAME cfa — nfa
“to-name”

Converts a word’s compilation address to its name field address.

>R 16b —
“to-r”

Transfers 16b to the return stack. The return stack is a handy place
to use for storing data temporarily while other data stack operations
take place.

Page 31

MPE Forth 5 for RTX2000 Target glossary

>RESOLVE addr —
“forward-resolve”

Resolves the branch address of a forward branch previously
marked by MARK

? addr —
“query”

Displays the contents of the address.

?BRANCH flag —
“query-branch”

Consumes a flag and branches to the address given in-line after
?BRANCH if the flag is true. See BRANCH

?COMP —
“query-comp”

Causes the error handler to operate if not compiling

?CSP —
“query-c-s-p”

Causes the error handler to operate if the stack is unbalanced after
last !CSP

?EVENT —
“query-event”

If the current task’s event flag is set, the flag is reset and the event
handler is executed.

?EXEC —
“query-exec”

Causes the error handler to operate if not interpreting

?LOADING —
“query-loading”

Causes the error handler to operate if not loading

?STACK —
“query-stack”

Causes the error handler to operate if the stack is out of limits.

Page 32

Target glossary MPE Forth 5 for RTX2000

?DNEGATE d1 n — d2
“query-d-negate”

If n is negative, d1 is negated, otherwise it is left alone.

?DO w1 w2 —
“query-do” — sys (compiling)

Used in the forms:

?DO ... LOOP
?DO ... +LOOP
Begins a loop which terminates based on control parameters. The
loop index begins at w2, and terminates based on the limit w1. See
LOOP and +LOOP for details on how the loop is terminated. The
loop will not execute if the index and limit are the same. For
example the words inside the loop formed by:

w DUP ?DO ... LOOP
will not be executed. See DO

?DUP 16b — 16b 16b
“query-dupe” 0 — 0

Duplicate 16b if it is non-zero. This word is very useful when
testing error conditions. Often zero is returned for successful
completion, a non-zero value being an error code.

?ERROR flag n —
“query-error”

If flag is true error message n is displayed. When loading, the error
message is taken n lines from line 0 of screen 4 in the current error
file.

?LEAVE flag —
“query-leave”

If the flag is true (non-zero), the current DO ... LOOP structure is
terminated immediately, execution resumed after the LOOP or
+LOOP.

?NEGATE n1 n2 — n3
“query-negate”

If n2 is negative, n1 is negated to give n3, otherwise n3 is n1.

Page 33

MPE Forth 5 for RTX2000 Target glossary

?PAIRS n1 n2 —
“query-pairs”

An error condition is reported if n1 is not equal to n2.

@ addr — 16b
“fetch”

16b is the value at addr in data space.

@L addr page— 16b
“fetch-l”

A 16-bit word is fetched from a page and address.

Words be gin ning with ‘A’

ABORT —
“abort”

Clear the stacks and enter the execution state. Return control to the
operator via QUIT, printing an appropriate message. In this
implementation ABORT calls QUIT. A sealed application will
usually replace QUIT with a word containing the endless loop that
forms the application.

ABORT" — (compiling)I
“abort-quotes” flag — (executing)

Used in the form:

ABORT" string"
If the flag is true the following string is displayed, and ABORT
then executed.

ABS n — |n|
“abs”

Leave the absolute value of n.

ACTIVATE task# —
“activate”

Initialises and starts the given task number. Task 0 is Forth itself
and was activated when Forth started. Note that ACTIVATE
causes the task to start from the very beginning. If the task was

Page 34

Target glossary MPE Forth 5 for RTX2000

halted, and execution should resume where it left off, use
RESTART instead.

AGAIN addr n — (compiling) I
“again” — (execution)

Used in a colon definition in the form:

BE GIN ... AGAIN
At run-time, AGAIN forces execution to resume at the
corresponding BEGIN. There is no effect on the stack. This is an
endless loop unless an exit is forced by other means. At compile
time, AGAIN forces the compilation of BRANCH, followed by
the address (addr) of the word after the corresponding BEGIN. The
value n is used for compile time error checking.

ALIGN —
“align”

In cross compiler: Forces the parameter field addresses (PFA) to be
on even byte boundaries
In target: Forces HERE to an even boundary.

ALLOT n —
“allot”

Reserves n bytes in the dictionary, from the current location. It adds
the signed n to the current value of DP.

ALLOT-RAM n—
“allot-ram”

Reserves n bytes of RAM from the current RAM pointer given by
THERE.

ALSO —
“also”

Room is made for another vocabulary to be added to the start of the
vocabulary search list. Space is made by duplicating the top entry.
This duplicate entry will be overwritten by the new vocabulary
when it is executed. If the order is just:

FORTH ROOT
then after executing ALSO it will be:

FORTH FORTH ROOT
and after executing another vocabulary name (say TOOLS) it will
become:

Page 35

MPE Forth 5 for RTX2000 Target glossary

TOOLS FORTH ROOT

AND w1 w2 — w3
“and”

Leaves the bitwise logical and of w1 and w2 as w3.

ASCII — char ; I
“ascii” — (compiling)

use in the form:

AS CII A
Used to generate the value of the character entered. The example
above will return the code for the letter A. If ASCII is used in a
colon definition the value of the character is compiled as a literal
which is returned when the word is executed.

ASSIGN — cfa (executing) ; I
“assign” — (compiling)

Used to assign the action for a deferred word, interrupt, or timer.
Used in the form:

AS SIGN action- word TO- DO word
See TO-DO

Words be gin ning with ‘B’

BASE — addr
“base”

The address of a user variable containing the current numeric
conversion radix. {{2..72}}

BEGIN — addr n (compiling) ; I
“begin”

Used in the forms:

BE GIN ... flag UN TIL
BE GIN ... AGAIN
BE GIN ... flag WHILE ... RE PEAT
BEGIN marks the start of a word sequence for repetitive
execution. A BEGIN ... UNTIL loop will be repeated until flag is
true, a BEGIN ... AGAIN loop executes forever unless otherwise

Page 36

Target glossary MPE Forth 5 for RTX2000

left, and a BEGIN ... WHILE ... REPEAT loop will be repeated
until flag is false. The words after UNTIL or REPEAT will be
executed when either loop is finished.

BINARY —
“binary”

Switches the current number conversion base to two, by setting
user variable BASE to two.

BL — char
“b-l”

A constant that returns the ASCII code for a space character.

BLANK addr count —
“blank”

Fills count bytes starting at addr with space characters.

BLK — addr
“b-l-k”

The address of a user variable containing the number of the mass
storage block being interpreted as the input stream. If the value of
BLK is zero the input stream is taken from the text input buffer.
{{0..the number of blocks available -1}} See: TIB

BLOCK u — addr
“block”

addr is the address of the assigned buffer of the first byte of block u.
If the block occupying that buffer is not block u and has been
UPDATEd it is transferred to mass storage before assigning the
buffer. If block u is not already in memory, it is transferred from
mass storage into an assigned block buffer. A block may not be
assigned to more than one buffer. If u is not an available block
number, an error condition exists. Only data within the last buffer
referenced by BLOCK or BUFFER is valid.

BODY> pfa — cfa
“body-to”

Converts a word’s parameter field address to its compilation
address (cfa).

Page 37

MPE Forth 5 for RTX2000 Target glossary

BOUNDS addr len — limit start
“bounds”

Converts an address and length into the end-address+1 and
start-address, suitable for use with DO ... LOOP. BOUNDS is
designed specifically for this purpose.

BRANCH —
“branch”

The Forth goto instruction, normally only used by structure words.
Branches to an address given in-line.

BS —
“b-s”

Performs a destructive backspace operation if the variable OUT is
non-zero. The destructive backspace is performed by the phrase:

8 EMIT SPACE 8 EMIT

Words be gin ning with ‘C’

C! 8b addr —
“c-store”

The least-significant 8 bits of 16b are stored into the byte at addr in
data space.

C!L 8b addr page —
“c-store-l”

Stores the byte (least significant part of word on stack) into the
page and address.

C@ addr — 8b
“c-fetch”

8b is the contents of the byte at addr in data space.

C@L addr page — 8b
“c-fetch-l”

8b is the contents of the byte at the page and address.

Page 38

Target glossary MPE Forth 5 for RTX2000

C, b —
“c-comma”

Compiles a byte into the next available dictionary location, and
advances the dictionary pointer by one. The basic word for
compiling byte wide data into the dictionary. See ,

C/L — n
“c-slash-l”

Returns the number of characters per line. Conventionally 64 even
on 80 character terminals. Don’t ask why.

CASE — addr n (compiling) ; I
“case”

The word used to mark the start of the CASE OF ENDOF
ENDCASE structure. For more details see the tutorial section of
the PC PowerForth manual on control structures.

CLR-EVENT-RUN —
“clear-event-run”

Clears the event run flag for the current task. This is bit 4 in the task
status byte.

CMOVE addr1 addr2 u —
“c-move”

Move u bytes beginning at address addr1 to addr2. The byte at
addr2 is moved first, proceeding towards high memory. If u is zero
nothing is moved. See CMOVE> MOVE

CMOVE> addr1 addr2 u —
“c-move-up”

Move u bytes beginning at address addr1 to addr2. The bytes in
high memory are moved first. If u is zero nothing is moved. This
word is provided so that blocks of memory can be moved if
overlapping. See CMOVE MOVE

COLD —
“cold”

Restarts the Forth system as if from scratch. Stacks are reset, the
dictionary is cleared out, and ABORT is executed.

Page 39

MPE Forth 5 for RTX2000 Target glossary

COMPILE —
“compile”

Typically used in the form:

: <name> ... COM PILE <namex> ... ;
When <name> is executed, the compilation address compiled for
<namex> is compiled and not executed. <name> is typically
immediate and <namex> is typically not immediate. Most often
used to build new compiling or defining words.

CONSTANT 16b —
“constant”

A defining word executed in the form:

16b CON STANT <name>
Creates a dictionary entry for <name> so that when <name> is later
executed, 16b will be left on the stack.

CONTEXT — addr
“context”

A variable array holding the vocabularies which are searched to
find a word.

COUNT addr1 — addr2 +n
“count”

addr2 is addr1+1 and +n is the length of the counted string at addr1.
The byte at addr1 contains the byte count +n. Range of +n is
{0..255}. Forth strings are often stored as a count byte followed by
the text. COUNT is used to convert the string address to the
address of the text, and the number of characters in that text. For
reasons of portability, do not use COUNT for any other purpose.
For example:

“” Hello" COUNT TYPE
is the same as:

." Hello"

CR —
“c-r”

Displays a carriage-return and line-feed or equivalent operation.
The user variable OUT is reset to 0.

Page 40

Target glossary MPE Forth 5 for RTX2000

CRASH —
“crash”

The default action of a deferred word as assigned by DEFER. On
execution it gives an error message and performs ABORT. See
DEFER ABORT.

CREATE — [parent]
“create” — addr [child]

A defining word executed in the form:

CRE ATE <name>
Creates a dictionary entry for <name>. After <name> is created,
the next available dictionary location is the first byte of <name>’s
parameter field. Execution of <name> returns the parameter field
address of <name>. CREATE is also often used within a colon
definition:

: cccc CRE ATE compile- time words
 DOES> run- time words ;
When ‘cccc’ is executed CREATE builds a new dictionary header.
DOES> is immediate and compiles code that causes the words
from the run-time portion of DOES> onwards to be executed. The
phrase:

cccc nnnn
causes a new word ‘nnnn’ to be created. When ‘nnnn’ executes,
DOES> returns the address of ‘nnnn’s parameter area, and the code
following DOES> is then executed. To illustrate this, we will
define VARIABLE and CONSTANT using CREATE and
DOES>. The action is identical to, but slower than, the usual
implementation because the new defining words execute high level
code. For example, compiling interactively on the target, the
definitions of CONSTANT and VARIABLE are:

: VARI ABLE
 CRE ATE 0 , DOES> ;

: CON STANT
 CRE ATE , DOES> @ ;

CURRENT — addr
“current”

A variable holding the vocabulary into which new definitions are
compiled

Page 41

MPE Forth 5 for RTX2000 Target glossary

Words be gin ning with ‘D’

D>F d — f
“d-to-f”

Converts a 32 bit double integer to a normalized f.p. number.

D+ wd1 wd2 — wd3
“d-plus”

wd1 is the arithmetic sum of wd1 plus wd2.

D- d1 d2 — d3
“d-sub”

The result d3 is d1-d2.

D. d1 —
“d-dot”

Print a signed double number in the current base followed by a
space.

D.R d1 n —
“d-dot-r”

Print a signed double number in the current base in a field n
characters wide. The output is right aligned with leading zeros
suppressed and no trailing space.

DABS d1 — d2
“d-abs”

Take the absolute value of d1 i.e. if d1 is negative, make it positive.

DECIMAL —
“decimal”

Set the input-output numeric conversion base to ten.

DEFER — (parent)
“defer” — (child)

A defining word used in the form:

DE FER <name>
When <name> executes it executes the action assigned to it. The
action assigned by DEFER is that of CRASH, but other actions are
assigned by the phrasing:

Page 42

Target glossary MPE Forth 5 for RTX2000

AS SIGN ac tion TO- DO <name>
e.g:

AS SIGN (EMIT) TO- DO EMIT
will assign the word (EMIT) to be the action of EMIT, which is a
deferred word.

DEFINITIONS —
“definitions”

The vocabulary that words are compiled into (defined by
CURRENT) is changed to be the same as the first vocabulary in
the search order (defined by CONTEXT).

DEG>RAD f1 — f2
“deg-to-rad”

Convert f1 degrees to its corresponding number of radians.

DEPTH — n
“depth”

Returns the current stack depth in cells, that is 1 represents one
word on the stack, 2 represents two words, and so on. The returned
value does not include n, so 0 represents an empty stack.

DIGIT char n1 — n2 true
“digit” char n1 — false

Converts the character char using base n1. If conversion is
successful the result is returned with the flag, otherwise only the
false flag is returned.

DINT f — d
“dint”

Leave the integer part of f as a double number on the stack.

DLITERAL d — ; I
“d-literal”

Compiles a double number into the dictionary as a literal. Unlike
its fig-Forth counterpart, the Forth-83 version is not state-smart.
See LITERAL LIT.

DNEGATE d1 — d2
“d-minus”

d2 is the two’s complement of d1.

Page 43

MPE Forth 5 for RTX2000 Target glossary

DNORM d n — f
“d-norm”

Normalize double number d by n left shifts. Leaves a f.p. number
on the stack.

DO w1 w2 —
“do” — sys (compiling)

Used in the forms:

DO ... LOOP
DO ... +LOOP
Begins a loop which terminates based on control parameters. The
loop index begins at w2, and terminates based on the limit w1. See
LOOP and +LOOP for details on how the loop is terminated. The
loop is always executed at least once. For example the words inside
the loop:

w DUP DO ... LOOP
are executed 65,536 times. See ?DO

DOES> — addr
“does” — (compiling)

Defines the execution-time action of a word created by high-level
defining word. Used in the form:

: <namex>
 CRE ATE ... DOES> ... ;
and then:

<namex> <name>
DOES> marks the termination of the defining part of the defining
word <namex> and then begins the definition of the
execution-time action for words that will later be defined by
<namex>. When <name> is later executed, the address of
<name>’s parameter field is placed on the stack and then the
sequence of words between DOES> and ; are executed.

DROP 16b —
“drop”

16b is removed from the stack.

Page 44

Target glossary MPE Forth 5 for RTX2000

DUMP addr n —
“dump”

The n bytes in memory starting at address addr are displayed (in
hexadecimal). Very useful when debugging. DUMP also shows
the ASCII characters formed by the memory.

DUP 16b — 16b 16b
“dupe”

Duplicate 16b.

Words be gin ning with ‘E’

E. f —
“e-dot”

Print the f.p. number on the stack in exponential form.

ELSE sys — sys I
“else”

Used in the form:

flag IF ... ELSE ... EN DIF
ELSE executes after the true part following IF and forces
execution to continue at just after ENDIF. See: IF, ENDIF and
THEN.

EMIT 8b —
“emit”

The ASCII character in the low byte is displayed.

EMPTY-BUFFERS —
“empty-buffers”

All the mass storage buffers are marked as unused, regardless of
their current contents or status.

Page 45

MPE Forth 5 for RTX2000 Target glossary

ENDCASE sys — (compiling) ; I
“end-case” n — (executing)

A word used to mark the end of the CASE OF ENDOF
ENDCASE structure. If entered from the default action a word is
dropped from the stack. See ?OF OF ENDOF CASE

ENDIF sys — (compiling) ; I
“end-if”

The word used to mark the end of the IF ENDIF or IF ELSE
.... ENDIF structures. See IF ELSE THEN

ENDOF sys — sys (compiling) ; I
“end-of”

The word used to mark the end of a selection procedure in the
CASE OF ENDOF ENDCASE structure. The code
between OF and ENDOF or ?OF and ENDOF is executed if the
test at OF or ?OF is passed. After ENDOF execution continues
immediately after the ENDCASE. See CASE OF ?OF
ENDCASE

ERASE addr n —
“erase”

At address addr, a count of n bytes is zeroed.

ERROR n —
“error”

The standard error handler reports error n. If the system is loading
the offending line will be displayed.

EVENT? — t/f
“event-query”

Returns true if the event triggered bit has been set in the current
task’s status byte.

EXECUTE addr —
“execute”

The word definition indicated by addr is executed. The application
will most probably crash if addr is not a compilation address.
Useful for executing an action (cfa) pulled out of a table.

Page 46

Target glossary MPE Forth 5 for RTX2000

EXIT —
“exit”

Compiled within a colon definition such that when executed, that
colon definition returns control to the definition that passed control
to it by returning control to the return point on top of the return
stack. An error condition exists if the top of the return stack does
not contain a valid return point, and so EXIT will not work within a
DO ... LOOP structure.

EXPECT addr +n —
“expect”

Defined by the standard to receive characters and store each into
memory. The transfer begins at addr proceeding towards higher
addresses one byte per character until either a <CR> is received or
until +n characters have been transferred. No more than +n
characters will be stored. The <CR> is not stored in memory.
All characters actually received and stored into memory will be
displayed, with <CR> displaying as space. The number of
characters collected (excluding any “return”) is stored in the user
variable SPAN. Note that because of this the contents of SPAN
interrogated directly from the keyboard may not reflect what you
intended.

Words be gin ning with ‘F’

F, f —
“f-comma”

Compile the f.p. number on the top of the stack.

F. f —
“f-dot”

Print the top f.p. number on the stack in free format.

F! f addr —
“f-store”

Store the f.p. number f at address addr.

Page 47

MPE Forth 5 for RTX2000 Target glossary

F+ f1 f2 — f3
“f-plus”

Add together the top two f.p. numbers on the stack and put the f.p.
result on the stack.

F- f1 f2 — f3
“f-minus”

Subtract the top f.p. number on the stack from the second f.p.
number on the stack, and put the f.p. result on the stack.

F* f1 f2 — f3
“f-star”

Take the top two f.p. numbers off the stack, multiply them together,
and leave the f.p. result on the stack.

F/ f1 f2 — f3
“f-slash”

Divide the second f.p. number on the stack by the top f.p. number
and leave the f.p. result on the stack.

F< f1 f2 — flag
“f-less-than”

Leave true flag if f1<f2. Otherwise, leave a false flag.

F<0 f — flag
“f-less-than-0"

Leave a true flag if f<0. Otherwise, leave a false flag.

F= f1 f2 — flag
“f-equals”

Leave a true flag if the top two f.p. numbers on the stack are equal.
Otherwise leave a false flag.

F=0 f — flag
“f-0-equals”

Leave a true flag if the f.p. number on the top of the stack is zero.

F> f1 f2 — flag
“f-greater-than”

Leave a true flag if f1>f2. Otherwise, leave a false flag.

Page 48

Target glossary MPE Forth 5 for RTX2000

F>0 f — flag
“f-greater-than-zero”

Leave a true flag if the f.p. number on the top of the stack is greater
than zero.

F# — f [executing]
“f-hash” — [compiling]

If interpreting, takes text from the input stream and, if possible,
converts it to a f.p. number on the stack. Numbers in integer format
will be converted to floating point. If compiling, the converted
number is compiled.

F#IN — f 3 | 0
“f-hash-in”

Attempts to convert a token from the input stream to a floating
point number. Numbers in integer format will be converted to
floating point. An indicator (0 or 3) is returned in the same way as
an indicator is returned by FNUMBER?.

F@ addr — f
“f-fetch”

Fetch the f.p. number from address addr and put it on the stack.

F10^X f1 — f2
“f-10-to-the-x”

Raise 10 to the power f1 and put the result on the stack.

FABS f — |f|
“f-abs”

Take the modulus of the f.p. number on the top of the stack.

FACOS f1 — f2
“f-a-cos”

Leave, on the stack, the angle (in degrees) whose cosine is f1, such
that 0<=f2<=180.

FARRAY fn-1..f0 n — [parent]
“f-array” n — fn [child]

When generating the array, take n f.p. numbers and n, and compile
them into the array. When executing the child word, take n and
place f.p. number n from the array onto the stack. Note that the
numbering in the array goes 0,1,..n-1.

Page 49

MPE Forth 5 for RTX2000 Target glossary

FASIN f1 — f2
“f-a-sine”

Leave, on the stack, the angle (in degrees) whose sine is f1, such
that -90<=f2<=90.

FATAN f1 — f2
“f-a-tan”

Leave, on the stack, the angle (in degrees) whose tangent is f1, such
that -90<f2<90.

FCONSTANT f — [parent]
“f-constant” — f [child]

Floating point equivalent of CONSTANT. Use in the form:

<f.p. number on stack> FCON STANT <name>

FCOS f1 — f2
“f-cos”

Take the cosine of f1 (degrees) and put it on the stack.

FDROP f —
“f-drop”

Drop the f.p. number on the top of the stack.

FDUP f — f f
“f-dup”

Duplicate the f.p. number on the top of the stack.

FE^X f1 — f2
“f-e-to-the-x”

Raise e, the exponential number, to the power f1 and put the result
on the stack.

FFRAC f1 f2 — f3
“f-frac”

Leave the fractional remainder from the division f1/f2. The
remainder takes the sign of the dividend.

FILL addr u 8b —
“fill”

u bytes of memory beginning at addr are set to 8b. No action is
taken if u is zero.

Page 50

Target glossary MPE Forth 5 for RTX2000

FIND addr1 — addr2 +/-1
“find” addr1 — addr1 0

A counted string is at addr1. It is a name to be looked up in the
dictionary. If the name cannot be found addr1 and a false flag are
returned, so that NUMBER? can later check to see if the string is a
valid number. If the name is found, its compilation address (cfa) is
returned, together with a non-zero flag. If the word is immediate
the flag is 1, otherwise it is -1. The search is through the currently
specified search order.

FINT f1 — f2
“fint”

Place the f.p. integer value of f1 on the stack.

FLITERAL f —
“f-literal”

When compiling, compile f as a literal. For example,

: ABCD [cal cu late f] FLIT ERAL ;
Compilation is suspended for the compile-time calculation of f.
Execution of ABCD leaves f on the stack.

FLN f1 — f2
“f-log-base-e”

Take the logarithm of f1 to base e and put the result on the stack.

FLOATS —
“floats”

Switches the action of NUMBER? to be FNUMBER?. This
action can be reversed by INTEGERS. Both FLOATS and
INTEGERS are in the FORTH vocabulary.

FLOG f1 — f2
“f-log-base-10"

Take the logarithm of f1 to base 10 and put the result on the stack.

FLUSH —
“flush”

Performs the function of SAVE-BUFFERS then unassigns all
block buffers. This word was originally intended to be useful for
mounting or changing mass storage media but is now used to

Page 51

MPE Forth 5 for RTX2000 Target glossary

ensure that data is passed from Forth to the operating system. The
phrase:

US ING xxx
where xxx is an invalid pathname will do this. See
SAVE-BUFFERS EMPTY-BUFFERS

FMAX f1 f2 — max{f1,f2}
“f-max”

Put the greater of the top two f.p. numbers onto the stack.

FMIN f1 f2 — min{f1,f2}
“f-min”

Put the lesser of the top two f.p. numbers onto the stack.

FNEGATE f — -f
“f-negate”

Negate the f.p. number on the top of the stack.

FNUMBER? addr — 0 | n 1 | d 2 | f 3
“f-number-query”

Converts string at address addr to either a single, double or floating
point number (see section 4.2) along with 1, 2, or 3 respectively. If a
0 is left on the stack then FNUMBER? was unable to convert the
string.

FOR — sys (compiling) I
“for” n — (executing)

Marks the start of the FOR ... NEXT structure peculiar to the RTX
family of processors. The structure is used in the form:

n FOR <words> NEXT
The words between FOR and NEXT are executed n+1 times. The
value n is transferred to the top of the return stack, and is
decremented on each iteration. If the value is 0 on ENTRY to
NEXT, the loop terminates and the return stack is popped. For
example a simple version of TYPE might be:

: TYPE \ addr len —
 1- \ loop exe cutes n+1 times
 for
 dup c@ emit \ dis play char ac ter
 1+ \ next ad dress
 next \ un til done

Page 52

Target glossary MPE Forth 5 for RTX2000

 drop \ clean up
;

FORGET —
“forget”

Used in the form:

FOR GET <name>
If <name> is found in the compilation vocabulary (defined by
CURRENT), delete <name> from the dictionary, and also delete
all words added to the dictionary after <name> regardless of their
vocabulary. Failure to find <name> is an error condition. An error
condition also exists if the compilation vocabulary is deleted.

FORTH —
“forth”

The name of the primary vocabulary. Execution replaces the first
vocabulary in the search order with FORTH. FORTH is initially
the compilation vocabulary and the first vocabulary in the search
order. New definitions become part of the FORTH vocabulary
until a different compilation vocabulary is established. See:
VOCABULARY

FOVER f1 f2 — f1 f2 f1
“f-over”

Floating point equivalent of OVER.

FROT f1 f2 f3 — f2 f3 f1
“f-rote”

Floating point equivalent of ROT.

FSEPARATE f1 f2 — f3 f4
“f-separate”

Leave the signed integer quotient f4 and remainder f3 when f1 is
divided by f2. The remainder has the same sign as the dividend.

FSIGN f — f flag
“f-sign”

Leave the f.p. number and a flag on the stack. Leaves a true flag if f
is negative, else leaves a false flag.

Page 53

MPE Forth 5 for RTX2000 Target glossary

FSIN f1 — f2
“f-sine”

Leave the floating point sine of f1 (degrees) and put it on the stack.

FSQR f1 — f2
“f-s-q-r”

Take the square root of the floating point number on the top of the
stack and put the result onto the stack.

FSWAP f1 f2 — f2 f1
“f-swap”

Floating point equivalent of SWAP.

FTAN f1 — f2
“f-tan”

Take the tangent of f1 (degrees) and put the result on the stack.

FVARIABLE —
“f-variable”

Floating point equivalent of VARIABLE. Set up an FVARIABLE
by typing:

FVARI ABLE <name>

FX^N f1 n — f2
“f-x-to-the-n”

Raise f1 to the power n (n integer), and put result on the stack.

FX^Y f1 f2 — f3
“f-x-to-the-y”

Raise f1 to the power f2 and put the result on the stack.

Words be gin ning with ‘G’

GET-MESSAGE — message task#
“get-message”

Waits for a message to be received and returns the message and the
sending task.

Page 54

Target glossary MPE Forth 5 for RTX2000

Words be gin ning with ‘H’

HALT task# —
“halt”

Halts the task whose number is given. Do not halt task 0. Halting a
task prevents it responding to messages or events.

HALT? — flag
“halt-query”

Tests the keyboard using KEY? to see if a key has been pressed. If
no key has been pressed, a zero flag is returned. If a key has been
pressed it is read. If the key is not a space, a true flag is returned. If
the key is a space, another key is read. If the second key is a space, a
false flag is returned, otherwise a true flag is returned.
This word is very useful to control output displays, as it pauses on
the space bar, and any other key returns a true flag, usually used to
terminate the display.

HERE — addr
“here”

The address of the next available dictionary location.

HEX —
“hex”

Changes the base for numeric conversion to hexadecimal. The
contents of BASE will be changed to decimal 16.

HOLD char —
“hold”

Char is inserted into a pictured numeric output string. Typically
used between <# and #> to embed a character into numeric output.

Page 55

MPE Forth 5 for RTX2000 Target glossary

Words be gin ning with ‘I’

I — w
“i”

w is a copy of the loop index. Unlike older fig-Forth
implementations, in Forth-83 I is not a synonym of R@ which
should not be used. May only be used in the forms:

DO ... I ... LOOP
DO ... I ... n +LOOP

IF flag — (executing)
“if” — sys (compiling)

Used in the forms:

flag IF ... ELSE ... EN DIF
flag IF ... EN DIF
If flag is true, the words following IF are executed and the words
following ELSE until just after the ENDIF are skipped. The ELSE
part is optional. If flag is false, words from IF through ELSE, or
from IF through ENDIF (when no ELSE is used), are skipped. See
ELSE ENDIF THEN.

IMMEDIATE —
“immediate”

Marks the most recently created dictionary entry as a word which
will be executed when encountered during compilation rather than
compiled.

INIT-MULTI —
“init-multi”

Initialises the multi-tasker, task 0 which is the Forth itself, and
starts the multi-tasker. Just include this word in COLD to kick the
multi-tasker into action.

INIT-TCBS —
“init-t-c-bees”

The main part of the multi-tasker reset process.

Page 56

Target glossary MPE Forth 5 for RTX2000

INTEGERS —
“integers”

Switches the action of NUMBER? to be INTEGER?. This action
reverses that of FLOATS. Both FLOATS and INTEGERS are in
the FORTH vocabulary.

INTERPRET —
“interpret”

The outer text interpreter which interprets or compiles each word
from the input stream according to the state of the variable STATE.
If the word is not in the dictionary, a number conversion is
attempted. If this fails, an error is reported. Text input is performed
by WORD and numeric conversion is performed by NUMBER?.

Words be gin ning with ‘J’

J — w
“j”

w is the index of the next outer loop. May only be used within a
nested DO ... LOOP or DO ... +LOOP structure in the form, for
example:

DO ... DO ... J ... LOOP ... +LOOP

Words be gin ning with ‘K’

KEY — char
“key”

Receives a character from the console/terminal or input stream. All
valid characters can be received. According to the Forth 83
standard, control characters should not be processed by KEY or the
host system for any editing purpose. Characters received by KEY
will not be displayed.

Page 57

MPE Forth 5 for RTX2000 Target glossary

KEY? — flag
“key-query”

Returns a true flag if a character is available for input by KEY.

Words be gin ning with ‘L’

LATEST — addr
“latest”

Returns the address of the most recently defined word in the
CURRENT vocabulary (the one words are being compiled into).

LEAVE — ; I
“leave”

When LEAVE is encountered the loop terminates immediately,
and execution resumes after LOOP or +LOOP. When the loop
terminates the loop control parameters are discarded. May only be
used in the forms:

DO ... LEAVE ... +LOOP
LEAVE may appear within other control structures which are
nested within the DO ... LOOP structure. More than one LEAVE
may appear within a DO ... LOOP structure.

LINK>N lfa — cfa
“link-to”

Converts a word’s link field address to its compilation address
(cfa).

LIT — n
“lit”

The primitive compiled by LITERAL to return an in-line value.
When a number such as 33 is encountered while compiling, it is
compiled as LIT 33 into the dictionary, and is returned by LIT
when the word executes.

LITERAL 16b — (compiling)I
“literal”

Typically used in the form:

[16b] LIT ERAL

Page 58

Target glossary MPE Forth 5 for RTX2000

Compiles a system dependent operation so that when later
executed, 16b will be left on the stack. Unlike its fig-Forth
counterpart, this word is not state-smart. See LIT

LOOP sys — (compiling)I
“loop” — (executing)

Increments the DO-LOOP index by one. If the new index crosses
the boundary between limit-1 and limit, the loop is terminated and
loop control parameters are discarded. When the loop is not
terminated, execution continues to just after the corresponding
DO.

Words be gin ning with ‘M’

M* n1 n2 — d
“m-star”

Two sixteen bit signed numbers are multiplied together to produce
a 32 bit signed number.

M/MOD d1 n2 — n3 n4
“m-slash-mod”

A signed mixed magnitude operator. NOT the same as the fig-Forth
word of the same name, which is replaced by MU/MOD. The 32
bit d1 is divided by the 16 bit n2 to produce a 16 bit remainder n3
and a 16 bit quotient n4. Note the use of floored division.

MAX n1 n2 — n3
“max”

n3 is the greater of n1 and n2 according to the operation of <.

MIN n1 n2 — n3
“min”

n3 is the lesser of n1 and n2 according to the operation of >.

MOD n1 n2 — n3
“mod”

n3 is the remainder after dividing n1 by the divisor n2. The sign of
n3 is determined by the rules of floored division.

Page 59

MPE Forth 5 for RTX2000 Target glossary

MOVE addr1 addr2 count —
“move”

An intelligent version of CMOVE that copies count bytes starting
at addr1 to addr2, such that the destination block is always an image
of the source block. Useful when the ranges may overlap.

MSG? task# — t/f
“message-query”

Returns true if the task is holding a message, and is therefore not
free to receive another one.

MU/MOD ud1 u2 — u3 ud4
“m-u-slash-mod”

An unsigned mixed magnitude operator. Double number ud1 is
divided by u2 to give a remainder u3 and a double quotient ud4.
This word is only necessary as the Forth-83 UM/MOD does not
return a double quotient as did its fig-Forth forbear. Be careful not
to confuse UM/MOD (part of the Forth-83 standard) with
MU/MOD (not part of the standard, introduced by F83).

MULTI —
“multi”

Turns the multi-tasker on, by clearing the bit in the TASK# byte in
RAM that inhibits the scheduler.

Words be gin ning with ‘N’

N>LINK cfa — lfa
“to-link”

Converts the compilation address of a word (in this case the cfa) to
the address of its name field.

NAME> nfa — cfa
“name-to”

Converts a word’s name field address to its compilation address
(cfa).

Page 60

Target glossary MPE Forth 5 for RTX2000

NEGATE n1 — n2
“minus”

n2 is the two’s complement of n1, i.e., the difference of zero less n1.

NEXT sys — (compiling)
“next” — (executing)

Marks the end of the FOR ... NEXT control structure peculiar to the
RTX family of processors. For details see FOR.

NIP n1 n2 — n2
“nip”

Removes the second item on the stack. Used for cleaning up.

NOOP —
“no-op”

A dummy word that does nothing.

NOT 16b1 — 16b2
“not”

16b2 is the one’s complement of 16b1.

NUMBER? addr — n1..nn n
“number-query”

Performs the function of converting text to binary numbers. The
counted string at addr is converted to a number. If conversion is
possible the number of words generated is left on the top of the
stack as well as a number of that size.

No con ver -
sion

— 0

Sin gle number — n 1
Dou ble number — d 2
Soft float ing point — f 3
If a comma is encountered, the variable DPL will contain the
number of digits after the comma, otherwise DPL contains -1. See
#LITERAL

Page 61

MPE Forth 5 for RTX2000 Target glossary

Words be gin ning with ‘O’

OF sys — (compiling)I
“of” n1 n2 — (executing & n1=n2)

n1 n2 — n2 (executing & n1n2)
Used to mark the start of a section of code conditionally executed in
a CASE ... OF ... ENDOF ... ENDCASE control structure. If n1 is
equal to n2 the code between OF and ENDOF is executed, and
control then passes to immediately after ENDCASE. Otherwise
control passes to immediately after the next ENDOF, n1 being kept
so that another test can be made in front of another OF ... ENDOF
clause.

OFF addr —
“off”

Clears (zeros) the word at the given address. Used for resetting
flags, and clearing counters. See ON

ON addr —
“on”

Sets the word at addr to -1. Used for setting flags.

ONLY —
“only”

Reduces the search order to be just the ROOT vocabulary, which is
a short vocabulary from which all others can be reached.

OR 16b1 16b2 — 16b3
“or”

16b3 is the bit-by-bit inclusive-or of 16b1 with 16b2.

ORDER —
“order”

Displays the order in which vocabularies are searched, starting
with the first one searched (the CONTEXT vocabulary). The
vocabulary into which definitions are built (the CURRENT
vocabulary) is also displayed.

Page 62

Target glossary MPE Forth 5 for RTX2000

OVER 16b1 16b2 — 16b1 16b2 16b1
“over”

Copies the second item on the stack to the top of the stack. Like
DUP this word is useful for getting a copy of a stack item for
passing as a parameter to another word. See DUP

Words be gin ning with ‘P’

PAD — addr
“pad”

The base address of a scratch area used to hold text and string data
for intermediate processing. The address or contents of PAD may
change and the data lost if the address of the next available
dictionary location is changed.

PAUSE
“pause”

Waits for one iteration of the scheduler. Equivalent to:

1 WAIT

PICK +n — 16b
“pick”

16b is a copy of the +nth stack value, not counting +n itself, where 0
refers to the top of the stack.

0 PICK is equiva lent to DUP
1 PICK is equiva lent to OVER

PLACE addr1 len addr2 —
“place”

Copies an uncounted string addr1/len to a counted string at addr2

PREVIOUS —
“previous”

Reduces the vocabulary search order by deleting the first entry in
the list. Used with ALSO to temporarily add a vocabulary to the
search list:

ALSO TOOLS PRE VI OUS

Page 63

MPE Forth 5 for RTX2000 Target glossary

Words be gin ning with ‘Q’

QUERY —
“query”

Input 80 characters of text (or until a carriage-return) from the
user’s terminal. The text is placed at the address contained in TIB
and the variable >IN (position in input line) is set to zero. See
EXPECT

QUIT —
“quit”

Clears the return stack, sets interpret state, accepts new input from
the current input data device, and begins text interpretation. No
message is displayed.

Words be gin ning with ‘R’

R@ — 16b
“r-fetch”

16b is a copy of the top of the return stack. The return stack is
unaffected.

R> — 16b
“r-from” or “from-r”

16b is removed from the return stack and transferred to the data
stack.

RAD>DEG f1 — f2
“rad-to-deg”

Convert f1 radians to degrees, and put result on the stack.

RECURSE — ; I
“recurse”

Compiles the compilation address (cfa) of a word inside the
definition of a word. Normally a word name is not available until its
definition is complete, so that a word can be redefined in terms of
its previous definition. If recursion is required, this mechanism
must be overcome, and that function is performed by RECURSE.

Page 64

Target glossary MPE Forth 5 for RTX2000

REPEAT sys — (compiling)
“repeat” — (executing)

Used in the form:

BE GIN ... flag WHILE ... RE PEAT
At execution time, REPEAT continues execution to just after the
corresponding BEGIN. See: BEGIN WHILE

RESET-BIT mask addr —
“reset-bit”

A bit masking operation performed on the byte at addr. All the ‘1’
bits in the mask are reset in the byte. Logically, the equivalent of
NOT AND.

RESTART task# —
“restart”

Restarts a task that was halted by HALT or WAIT. Unlike
ACTIVATE, the task resumes where it left off.

RESTORE-INT sr md cr —
“restore-int”

Restore the interrupt enable state previously saved by SAVE-INT.

ROLL +n —
“roll”

The +nth stack value, not counting +n itself is first removed and
then transferred to the top of the stack, moving the remaining
values into the vacated position. If n is negative no action is taken.
n=0 refers to the top of the stack. Note also that this is a slow
operation as data is actually copied.
Frequent use of ROLL is often a sign of bad factorisation of the
problem into separate words.

2 ROLL is equiva lent to ROT
1 ROLL is equiva lent to SWAP
0 ROLL is a null op era tion

ROT n1 n2 n3 — n2 n3 n1
“rote”

The top three stack entries are rotated, bringing the deepest to the
top.

Page 65

MPE Forth 5 for RTX2000 Target glossary

RP! addr —
“r-p-store”

The return stack pointer is set to the given value. The stack can be
reset to its original value by the phrase:

R0 @ RP!
See also RP@ R0 SP@ SP! S0

RP@ — addr
“r-p-fetch”

Returns the current value of the return stack pointer. See also R0
RP! S0 SP! SP@

Words be gin ning with ‘S’

S0 — addr
“s-nought”

A user variable holding the address which should be used to reset
the data stack.

S0 @ SP! \ re set data stack
The initialisation of each task that may reset the data stack should
include code to initialise this variable, e.g.

SP@ S0 ! \ ini tial ise

S>D n — d
“s-to-d”

The signed 16 bit number n is converted to a signed 32 bit number
d.

S>F n — f
“s-to-f”

Converts a single (16 bit) number to a normalized f.p. number.

S= addr1 addr2 length — flag
“s-equals”

The two strings at addresses addr1 and addr2, length bytes long, are
compared, and if they are identical a true flag is returned.

Page 66

Target glossary MPE Forth 5 for RTX2000

SAVE-BUFFERS —
“save-buffers”

The contents of all block buffers marked as UPDATEd are written
to their corresponding mass storage blocks. All buffers are marked
as no longer being modified, but remain assigned.

SAVE-INT — sr md cr
“save-int”

Saves the current state of the interrupt enable on the stack, and
disables interrupts. See RESTORE-INT.

SCAN addr len char — addr’ len’
“scan”

A text scanning primitive. Given the address of some ASCII text,
the number of bytes to go, and the character to look for, the text is
scanned for the given character. The address at which the character
was found, and the number of bytes remaining is returned. If the
number of bytes remaining is 0, the character was not found. See
SKIP

SELF — task#
“self”

Returns the task number of the current task. Useful with MSG? in
particular to determine whether or not a message has been received
by the task.

SEND-MESSAGE message task# —
“send-message”

Sends a message to the given task. The message can be used on its
own, or as a pointer to an extended message.

SET-BIT mask addr —
“set-bit”

A byte-wide bit masking operation. All ‘1’ bits in the mask are set
in the byte at addr. Logically equivalent to OR. See RESET-BIT
TEST-BIT TOGGLE-BIT

SIGN n —
“sign”

If n is negative, an ASCII “-” (minus sign) is appended to the
pictured numeric output string. Typically used between <# and #>.

Page 67

MPE Forth 5 for RTX2000 Target glossary

SINGLE —
“single”

Turns off the multi-tasker by setting the scheduler disable bit in the
TASK# byte in internal RAM.

SINT f — n
“sint”

Takes the single number integer part of f and puts it on the stack.

SKIP addr len char — addr’ len’
“skip”

As SCAN, but SKIP looks for the first character that is NOT the
specified character. See SCAN

SMUDGE —
“smudge”

Toggles the ‘smudge’ bit of the most recently defined words name
field. If the bit is set the word cannot be found by a normal
dictionary search. If an error occurs during compilation the phrase:

SMUDGE FOR GET <name>
can be used to remove from the dictionary the word in which the
error occurred.

SOURCE — addr len
“source”

Returns the address and length of the current input buffer. This will
be the text input buffer or the disc buffer, depending on the value of
BLK.

SP! addr —
“s-p-store”

Sets the parameter stack pointer to the given value.

SP@ — addr
“s-p-fetch”

Returns the current value of the parameter stack pointer.

SPACE —
“space”

Display an ASCII space.

Page 68

Target glossary MPE Forth 5 for RTX2000

SPACES n —
“spaces”

Display +n ASCII spaces. Nothing is displayed if n is zero or
negative.

STATE — addr
“state”

The address of a variable containing the compilation state. A
non-zero content indicates compilation is occurring, but the value
itself is system dependent. A standard program may not modify
this variable. Usually only used by ‘state-smart’ words (e.g.
ASCII) in application programs to determine whether Forth is
compiling or executing.

STATUS — n
“status”

Returns the task status byte of the current task but with the top bit
(bit 7) masked off. If this value is non-zero, the task has been
awakened for a reason other than for normal running.

SWAP 16b1 16b2 — 16b2 16b1
“swap”

The top two stack entries are exchanged.

Words be gin ning with ‘T’

TCBS — addr
“t-c-b-st”

A label, NOT a word, that returns the start address in DATA RAM
of the table holding the action words for all the tasks. In some
systems this is implemented as a constant for visibility.

TEST-BIT mask addr — b
“test-bit”

A byte-wide bit-masking operation. b is the result of testing all the
bits at addr that are ‘1’ bits in the mask. Logically equivalent to
AND.

Page 69

MPE Forth 5 for RTX2000 Target glossary

THEN sys — (compiling)
“then”

Used in the forms:

flag IF ... ELSE ... THEN
flag IF ... THEN
THEN is the point where execution continues after ELSE, or IF
when no ELSE is present. sys is balanced with its corresponding
IF or ELSE. See: IF ELSE ENDIF

THRU n1 n2 —
“thru”

Screens n1 to n2 inclusive are loaded.

TIB — addr
“t-i-b”

The address of the text input buffer. This buffer is used to hold
characters when the input stream is coming from the current input
device.

TO-DO — (compiling)I
“to-do” cfa — (executing)

Sets the action of the deferred word by writing the cfa into the
parameter field (body) of a word created by DEFER. Used in the
form:

DE FER word
AS SIGN action- word TO- DO word

TO-EVENT cfa task# —
“to-event”

Sets the CFA of a Forth word as the action to run when the task’s
event trigger is set.

AS SIGN <word> <n> TO- EVENT

TO-TASK cfa task# —
“to-task”

Stores the CFA of the word forming the task action in the task table
entry for the task.

AS SIGN <word> <n> TO- TASK

Page 70

Target glossary MPE Forth 5 for RTX2000

TOGGLE-BIT mask addr —
“toggle-bit”

A byte-wide bit-masking operation. All the ‘1’ bits in the mask are
inverted at addr. Logically equivalent to XOR. See TEST-BIT
SET-BIT RESET-BIT TOGGLE

TUCK n1 n2 — n2 n1 n2
“tuck”

Saves a copy of the top item on the stack under the second item.

TYPE addr n —
“type”

+n characters are displayed from the character at addr and
continuing through consecutive addresses. Nothing is displayed if
n is zero.

Words be gin ning with ‘U’

U. u —
“u-dot”

u is displayed as an unsigned number in a free-field format.

U< u1 u2 — flag
“u-less-than”

The flag is true if u1 is logically less than u2.

U> u1 u2 — flag
“u-greater-than”

The flag is true if u1 is logically greater than u2.

UM* u1 u2 — ud
“u-star”

Two unsigned 16 bit numbers are multiplied together to produce an
unsigned 32 bit number.

Page 71

MPE Forth 5 for RTX2000 Target glossary

UM/MOD ud u1 — u2 u3
“u-m-slash-mod”

The 32 bit unsigned number ud is divided by the unsigned 16 bit
number u1 to produce 16 bit unsigned numbers. The remainder is
u2 and the quotient is u3.

UNTIL sys — (compiling) I
“until” flag — (executing)

Used in the form:

BE GIN ... flag UN TIL
Marks the end of a BEGIN ... UNTIL loop which will terminate
based on the state of flag. If flag is true, the loop is terminated. If
flag is false, execution continues to just after the corresponding
BEGIN. See: BEGIN

UPC char1 — char2
“u-p-c”

If char1 is a lower case letter, it is converted to upper case. See
UPPER

UPDATE —
“update”

The currently valid block buffer is marked as modified. Blocks
marked as modified will subsequently be automatically transferred
to mass storage should its memory buffer be needed for storage of a
different block or upon execution of FLUSH or
SAVE-BUFFERS.

UPPER addr len —
“upper”

The string of len bytes starting at addr is converted to upper case
using UPC. See UPC.

USER n —
“user”

A defining word used in the form:

n USER cccc
which defines a user variable whose address is n bytes from the
start of the user area. When the user variable cccc is executed the
address of its data area is returned. User variables usually contain
system information which will be affected by a multi-user or

Page 72

Target glossary MPE Forth 5 for RTX2000

multi-tasking environment. The base address of the user area is
held in the UP register.

Words be gin ning with ‘V’

V-FIND addr1 addr2 — cfa +/-1
“paren-find” addr1 addr2 — addr1 0

A vocabulary defined by addr2 is searched. Each word name is
tested against the string at addr1. If a match is found, the cfa, and a
flag are returned. The flag is 1 for an immediate word, and -1 for a
normal word. If no match is found, the string address and 0 are
returned. The vocabulary address addr2 is the same address as is set
into CONTEXT by executing it.

VARIABLE —
“variable” — addr [child]

A defining word executed in the form:

VARI ABLE <name>
A dictionary entry for <name> is created and two bytes are
ALLOTted in its parameter field. This parameter field is to be used
for the contents of the variable. The contents are initialised to zero.
When <name> is later executed, the address of its parameter field is
placed on the stack.

VOCABULARY —
“vocabulary” — [child]

A defining word executed in the form:

VO CABU LARY <name>
A dictionary entry for <name> is created which specifies a new
ordered list of word definitions. Subsequent execution of <name>
replaces the CONTEXT vocabulary with <name>. When <name>
becomes the compilation vocabulary new definitions will be
appended to <name>’s list. See: DEFINITIONS CONTEXT
CURRENT V-FIND

Page 73

MPE Forth 5 for RTX2000 Target glossary

VOCS —
“vocs”

Displays a list of all the vocabularies in the dictionary.

Words be gin ning with ‘W’

WAIT n —
“wait”

Suspends the current task for n iterations of the scheduler. If n is 0,
the task is suspended until a message or event is received.

WAIT-EVENT/MSG —
“wait-event-or-message”

The current task is suspended until it receives a message or an event
trigger. The words MSG? and EVENT? can be used to determine
whether a message or an event trigger terminated the wait. Note
that if an event trigger is received, the event handler will have been
called, and the event run flag (bit 4 in the status byte) will be set.

WHILE sys — sys (compiling)
“while” flag — (executing)

Used in the form:

BE GIN ... flag WHILE ... RE PEAT
Selects conditional execution based on flag. When flag is true,
execution continues to just after the WHILE through to the
REPEAT which then continues execution back to just after the
BEGIN. When flag is false, execution continues to just after the
REPEAT, exiting the control structure. See: BEGIN REPEAT

WITHIN? n1 n2 n3 — flag
“within”

The flag is returned true if n1 is in the range n2..n3 inclusive.

WORD char — addr
“word”

Generates a counted string by non-destructively accepting
characters from the input stream until the delimiting character char

Page 74

Target glossary MPE Forth 5 for RTX2000

is encountered or the input stream exhausted. Leading delimiters
are ignored.
The entire character string is stored in memory beginning at
‘WORD as a sequence of bytes. The string is followed by a blank
which is not included in the count. The first byte of the string is the
number of characters {0..255}. If the string is longer than 255
characters, the count is unspecified. If the input stream is already
exhausted as WORD is called, then a zero length character string
will result. The address returned is the address at which the string
was placed.

WORDS —
“words”

Lists the names of the words in the CONTEXT vocabulary.
Pressing the space bar will halt the listing, which can be restarted
by pressing the space bar again. Any other key will cause the listing
to abort.

Words be gin ning with ‘X’

XOR 16b1 16b2 — 16b3
“x-or”

16b3 is the bit-by-bit exclusive-or of 16b1 with 16b2.

Words be gin ning with ‘Y’
None

Words be gin ning with ‘Z’
None

Page 75

MPE Forth 5 for RTX2000 Target glossary

Words af ter ‘Z’

[— ; I
“left-bracket” — (compiling)

Switches to the interpretation state. The text from the input stream
is subsequently interpreted. For typical use see LITERAL. The
use of [and] must be balanced.

[COMPILE] — (compiling) ; I
“bracket-compile”

Used in the form:

[COM PILE] <name>
Forces compilation of the following word <name>. This allows
compilation of an immediate word when it would otherwise have
been executed.

\ — I
“back-slash”

Defines a comment to the end of the input line. This word can be
used with any input source.

] —
“right-bracket”

Sets compilation state. The text from the input stream is
subsequently compiled. For typical usage see LITERAL. The use
of [and] must be balanced. See: [

Blank Page

Page 76

Target glossary MPE Forth 5 for RTX2000

Word list

!

! 21
!C 21
!CSP 32
!L 21
 ; 30
 ;S 30
“” 22- 23
“, 23
21, 30
#> 21- 22, 30, 56, 69
#LIT ERAL 22, 62
#S 22, 30
‘ 22
‘WORD 76
(5, 23
(”) 23
(EMIT) 6, 43
) 23
)ELSE(6, 12
)EN DIF 6, 12
* 23
*/ 23- 24
*/MOD 24
+! 24
+ 24, 28
+LOOP 24, 33- 34, 44, 58
, 24, 39
,(R) 25
- 25, 28
—> 18, 25
-1 25

-ROT 25
-TRAI LING 25
. 25
." 26
.(26
.BYTE 26
.NAME 26
.R 26
.S 26
.WORD 26
/ 27
/MOD 27
/STRING 27
0= 27
0< 27
0<> 27
0> 27
1+ 28
1- 28
2! 28
2* 28
2+ 28
2- 28
2/ 29
2@ 28
2DROP 29
2DUP 29
2OVER 29
2SWAP 29
: 12, 29- 30
<8 30
<N 30
= 31
>8 31

Page 77

MPE Forth 5 for RTX2000 Glossary word list

>N 31
? 32
?BRANCH 32
?COMP 32
?CSP 32
?DNE GATE 33
?DO 33, 45
?DUP 33
?ER ROR 34
?EVENT 33
?EXEC 33
?LEAVE 34
?LOAD ING 33
?NE GATE 34
?OF 46
?PAIRS 34
?STACK 33
@ 34
@C 34
[77
[COM PILE] 77
\ 77
] 13, 77
< 30, 60
<# 21- 22, 30, 56, 69
<= 30- 31
<> 30
<MARK 31
<RE SOLVE 31
> 31, 60
>BODY 31
>IN 31, 65
>LINK 32
>MARK 61
>NAME 32
>R 32
>RE SOLVE 32

A

ABORT 34- 35, 40- 41
ABORT" 35
ABS 35
AC TI VATE 35, 66
AGAIN 35, 37
ALIAS 6
ALIGN 6, 35
ALIGN- ODD 6
ALL 7
AL LOT 24- 25, 74
ALLOT- RAM 7, 36
ALONE 7
ALSO 36, 64
AND 36, 66, 71
AS CII 36
AS SIGN 36

B

BASE 21, 26, 37, 56
BASE- 36 7
BE GIN 35, 37, 66, 73, 76
BELL 37
BL 37
BLANK 37
BLK 31, 37, 69
BLOCK 38
BODY> 38
BOUND ING 8
BOUNDS 38
BRANCH 32, 35, 38
BS 38
BUFFER 38

Page 78

Glossary word list MPE Forth 5 for RTX2000

C

C! 39
C!C 39
C, 24, 39
C,(R) 25
C/L 39
C@ 39
C@C 39
C@L 39
CASE 39, 46, 62
CDUMP 39
CMOVE 40, 60
CMOVE-C 40
CMOVE 40
CMOVE> 40
CMOVEC 40
CODE PAGE 14
CODE- PAGE 8-9
COLD 57
COM PILE 40
CON: 9
CON STANT 40, 42, 50
CON TENTS 7
CON TEXT 43, 63, 74- 76
COUNT 41- 42
CR 41
CRASH 41, 43
CRE ATE 41- 42
CROSS- COMPILE 9-10, 18
CS> 42
CSP 21
CUR RENT 43, 53, 58, 63, 75

D

D+ 42
D- 42
D. 42

D.R 43
DABS 43
DATA- PAGE 9, 14
DECI MAL 43
DE FER 41, 43, 71
DEFI NI TIONS 43, 75
DEG>RAD 43
DEPTH 44
DIGIT 44
DINT 44
DISP- ERROR 44
DIS PLAY 7
DNE GATE 44
DNORM 44
DO 24, 33- 34, 38, 44, 47, 58- 59
DOES> 41- 42, 45
DP 35
DPL 62
DROP 45
DS> 45
DUMP 45
DUP 45, 63

E

E. 45
ELSE 6, 12, 46, 56, 71
EMIT 43, 46
EMPTY- BUFFERS 46, 52
EMU- BASE 9
END 46
END CASE 39, 46, 62
EN DIF 6, 12, 46, 56, 71
ENDOF 39, 46, 62- 63
EQU 10
ERASE 46
ER ROR 47
EVENT? 47, 75
EXE CUTE 47
EXIT 30, 47

Page 79

MPE Forth 5 for RTX2000 Glossary word list

EX PECT 47, 65
EX TER NAL 10, 15

F

F! 48
F# 49
F#IN 49
F* 48
F+ 48
F, 48
F- 48
F. 48
F/ 48
F10^X 49
F= 49
F=0 49
F@ 49
F< 48
F<0 48
F> 49
F>0 49
FABS 50
FA COS 50
FAR RAY 50
FA SIN 50
FA TAN 50
FCON STANT 50
FCOS 50
FDROP 50
FDUP 51
FE^X 51
FENCE 13
FFRAC 51
FILE: 10
FILL 51
FIND 51
FINIS 10
FINIS- CODE- PAGE 10
FINT 51
FLIT ERAL 51

FLN 52
FLOATS 52, 57
FLOG 52
FLUSH 52, 73
FMAX 52
FMIN 52
FNE GATE 52
FNUM BER? 52- 53
FOR 53
FOR GET 53
FORTH 53, 57
FO VER 54
FROM 5, 7, 11, 17- 18
FROM- FILE 5, 7, 11, 17- 18
FROT 54
FSEPER ATE 54
FSIGN 54
FSIN 54
FSQR 54
FSWAP 54
FTAN 54
FVARI ABLE 54
FX^N 55
FX^Y 55

G

GET- MESSAGE 55

H

HALT 55, 66
HALT? 55
HEADS? 11
HERE 13, 24, 56
HEX 56
HOLD 30, 56
HOST&TAR GET 11
HOST- COMPILATION 11, 18

Page 80

Glossary word list MPE Forth 5 for RTX2000

I

I 56
I: 12
IF 6, 12, 46, 56, 71
IF(6, 12
IM ME DI ATE 12, 57
IN- EMULATOR 12
INIT- FENCE 13
INIT- MULTI 57
INIT- TCBS 57
IN TE GER? 52, 57
IN TE GERS 52, 57
IN TER NAL 13
IN TER PRET 57
IS- FENCE 13

J

J 58

K

KER NEL 9, 13
KERNEL- RAM 9, 14
KEY 58
KEY? 55, 58

L

L: 13
LA BEL 14
LAT EST 58
LEAVE 58- 59
LINK> 59
LIT 44, 59
LIT ERAL 44, 59, 77
LOAD 14, 19

LOAD- USING 14
LOG 14
LOOP 33- 34, 38, 44, 47, 58- 59

M

M* 60
M/MOD 60
MARK 32
MAX 60
MEM- BASE 15
MEM- END 15
MIN 60
MOD 60
MOVE 40, 60
MSG? 60, 68, 75
MU/MOD 60- 61
MULTI 61

N

NAME> 61
NE GATE 61
NEXT 61
NIP 62
NO- HEADS 10- 11, 15
NO- LOG 15
NO- OPTIMIZE 15
NO- TAIL- OPT 16
NOOP 62
NOT 62, 66
NUM BER? 22, 51- 52, 57, 62

O

OF 39, 46, 62- 63
OFF 63
ON 63
ONLY 63
ON WARDS 18

Page 81

MPE Forth 5 for RTX2000 Glossary word list

OP TI MIZE 17
OR 63, 68
OR DER 63
ORG 17
OUT 38, 41
OUTPUT- EMULATOR 17
OVER 63

P

P 5
PAD 64
PAGE- WORD 8-9
PAGED- VOCABULARY 17
PAUSE 64
PDUMP 64
PLACE 64
PRE VI OUS 64
PRN: 18
PTO 18

Q

QUERY 65
QUIT 34, 65

R

R0 67
R@ 56, 65
R> 65
RAD>DEG 65
RE CURSE 65
RE PEAT 37, 66, 75- 76
RESET- BIT 66, 68, 72
RE SOLVE> 32
RE START 18, 66
RESTORE- INT 66, 68
ROLL 66
ROOT 63

ROT 54, 66
RP! 67
RP@ 67

S

S 5
S0 67
S= 67
S>D 67
S>F 67
SAVE- BUFFERS 52, 68, 73
SAVE- INT 66, 68
SCAN 27, 68- 69
SELF 68
SEND- BYTE 6
SEND- MESSAGE 68
SET- BIT 68, 72
SIGN 30, 69
SIN GLE 69
SINT 69
SKIP 27, 68- 69
SMUDGE 69
SOURCE 69
SP! 67, 69
SP@ 67, 70
SPACE 70
SPACES 70
SPAN 47
STATE 57, 70
STATUS 70
SUS PEND 18
SWAP 54, 70

T

TAB 71
TAB- WIDTH 71
TAIL- OPT 18
TARGET- COMPILATION 11, 18

Page 82

Glossary word list MPE Forth 5 for RTX2000

TARGET- ONLY 11
TARGET- WIDTH 15, 19
TASK# 69
TEST- BIT 68, 71- 72
THEN 46, 56, 71
THERE 25
THRU 11, 19, 71
THRU- USING 11, 19
TIB 37, 65, 71
TO- DO 36, 71
TO- EVENT 72
TO- TASK 72
TOG GLE 72
TOGGLE- BIT 68, 72
TUCK 72
TYPE 22, 72

U

U. 72
U< 72
U> 73
UCODE 20
UM* 73
UM/MOD 61, 73
UN TIL 37, 73
UPC 73
UP DATE 38, 68, 73
UP PER 73
USE 19
USE- CODE 19
USE- DATA 20
USER 74
US ING 19

V

V- FIND 74- 75
VARI ABLE 42, 74

VO CABU LARY 53, 75
VOCS 75

W

WAIT 66, 75
WAIT- EVENT/MSG 75
WARM 75
WHILE 37, 66, 75
WITHIN? 76
WORD 27, 31, 57, 76
WORDS 76

X

XOR 76

Page 83

MPE Forth 5 for RTX2000 Glossary word list

