MPE Forth 5 for RTX20xx

Usaer Manual







MPE Forth 5 for RTX 2000

USER MANUAL




RTX2000/1A/10 Target

Version: 5.100

User Manual

Revision; 1.02

Date: 17 February 1994

Package No:

For technical support:

Please contact your supplier

For further information:

MicroProcessor Engineering Limited
133 Hill Lane, Southampton

SO1 5AF, UK

Tel: 0703 631441

Fax: 0703 339691

Email: mpe@cix.compulink.co.uk




MPE Forth 5 for RTX2000
Copyright ©

Microprocessor Engineering Limited
1993-4

Acknowledgements

MPE would liketo thank thefollowing peoplefor al their involve-
ment in the production of this product:

Jon Lee, Stephen Pelc, Paul Gallienne, Gary Ellis

Microprocessor Engineering Limited
133 Hill Lane
Southampton
SO1 5AF, UK







Warranties, copyright and licences

Warranty

MPE software products hold a warranty of 90 days. Software errors, re-
ported within 90 dayswill be solved free of charge. After thistime, fixesto
problems are charged on atime and materials basis.

Technical support is available on the latest version of software. We do not
maintain back-issues of software.

Modificationsare only madeto thelatest version of the software. Therefore
solving a problem may involve an upgrade to the most recent version.

Copyright

Make as many copiesasyou need for backup and security. Thediscsarenot
copy protected. Pleasetreat thissoftwarelikeabook. Itiscopyrighted ma-
terial and only one copy of it should bein use at any onetime. If you need to
photocopy the manual, you probably ought to purchase asecond copy. Con-
tact ourselves or your vendor for details of multiple copy terms and site li-
censing.

All the sourcefilesare copyright material and may not befurther distributed
without permission in writing from MicroProcessor Engineering.

The cross assembler in particular is copyright and the licence terms do not
cover any use on target systems.

Licences

Any sealed object code generated by the cross compiler may be distributed
without royalty. If your applicationissealed (the user can’t get at the Forth




and does not know it iswritten in Forth) therewill be no licence problems -
you are free to distribute the application.

If you leavethe application open so that the text interpreter/compiler may be
used, leave an M PE copyright message along with your own copyright no-
ticeaspart of the sign on procedure, and contact M PE for details of OEM li-
censing terms.

OEM licences

The OEM licence allows developers to supply MPE documentation sets,
and to usethe ROM PowerForth utilitiesin their open Forth systems. Con-
tact MPE for the current licence terms.




Registration

Because of the number of copies sold through dealers and purchasing de-
partmentswe cannot keep track of all our users. If youfill out theregistration
form on the next page and return it or a photocopy to us, we will put you on
our mailing list. Thisway we will be able to keep you informed of updates
and new bolt-on goodies.

If you want direct technical support from uswewill need these detailsto re-
spond to you.




Software Registration Form

SEND TO:

MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO1 5AF

Hampshire

England

tel: (+44) 703 631441

Customer details
Overseas customers - please include the country with your address.

Name:
Company:
Department:
Address:

Telephone number/extension:

Fax number:

Package details

Title: MPE Forth 5 for RTX2000
Processor and computer type:
Operating system:

Disc format: (3 %, 5%)

Serial number:

Purchase date:

Bought from:




MPE Forth 5 for RTX2000 Table of Contents

Table of Contents

Chapter 1 - Installing the system 1
System requirements 1
Running the installer 1
Selecting the installation drive 1
Selecting the installation path 2
Standard or custom installation? 2
Standard installation 3
Custom installation system 3

Chapter 2 - The MPE Development System 5
XShell - the development environment 5
MPE Forth cross compiler 6
ROM and RAM target Forth 6
Umbilical Forth 7
Leburg EPROM emulator drivers 7
PC PowerForth Plus 7

Chapter 3 - Generating a ROM target Forth 9
Is your board aready supported? 9
The control file 10
The memory map 10
Modifying the serial line drivers 13
Setting up the system 16
Cross-compiling 18
Downloading the compiled image 20
Running the target Forth 21
Cross-compiling an application 23

Chapter 4 - Generating a RAM target Forth 27
What isa RAM target? 27
Is your board aready supported? 27
The control file 28
The memory map 28

Modifying the serial line drivers 30



Table of Contents MPE Forth 5 for RTX2000

Setting up the system 33
Cross-compiling 35
Downloading the compiled image 37
Running the target Forth 38
Cross-compiling an application 40
Chapter 5 - Generating an Umbilical Forth target 43
Is your board already supported? 43
The Umbilical system 44
The monitor control file 44
The memory map 45
Modifying the serial line drivers 47
Setting up the system 49
Cross compiling the monitor 51
The compilation summary 52
Cross compiling the Forth kernel 53
Chapter 6 - Optimising your Target Forth 57
Reducing the size of your image 57
Speeding up your code 59
Chapter 7 - Assembler Opcodes 61
Introduction 61
Processor Architecture 61
Building New Opcodes 62
How to Control the Optimiser 63
Predefined Opcodes 64
Optimiser Glossary 68
Chapter 8 - Multitasker 71
Initialising the multitasker 71
Writing atask 72
Initialising atask 74
Controlling tasks 74
Handling messages 75
Creating events 76
The multitasker’ sinternals 78
A simple example 78
Glossary 81
Chapter 9 - Interrupts 85

Interrupts on the RTX2000 Family 85



MPE Forth 5 for RTX2000 Table of Contents

Writing Forth interrupt handlers 85
Controlling the interrupts 88
A simple example 88
Glossary 90
Chapter 10 - Software floating point 93
Entering floating point numbers 93
The form of floating point numbers 93
Creating variables 93
Creating constants 94
Using the supplied words 94
Setting degrees or radians 96
Displaying floating point numbers 96
Glossary 97
Chapter 11 - ROM PowerForth Utilities 105
Compiling text files 105
Compiling screen files 108
Downloading a binary image 109
ROM PowerForth 111
Glossary 114
Chapter 12 - Paged targets 117
Creating a paged target 118
Compiling datainto a page 120
Chapter 13 - Controlling the compiler 121
Starting the cross-compiler 121
Stopping the cross-compiler 121
Aligning generated code 122
Enabling floating point 122
Turning the log on and off 122
Selecting code and data page 122
Conditional compilation 122
Chapter 14 - Forth on the target 125
Inside Umbilical Forth 126
Inside aROM and RAM target Forth 126
Chapter 15 - Optimising your development cycle 127
Speeding up the compilation 127

Speeding up the downloading 128



Table of Contents

MPE Forth 5 for RTX2000

Chapter 16 - Technical glossary

Chapter 17 - Further information
MPE courses
Recommended reading

Appendix A - Converting Targets from v4 to v5
Defining the memory map
Using an EPROM emulator
Selecting the compilation page

Appendix B - An Example Control File
Thefirst page
Setting the cross-compiler search order
L oading macros/Opcode definitions
Configuring for an EPROM emulator
Activating the floating point
Turning on the cross-compiler
Select the type of target
Setting the target’ s search order
Setting the alignment mechanism to be used
Displaying the cross-compile log
Defining the target configuration
Defining the memory map
Output into EPROM emulator
Selecting compilation pages
Configuring for ROM PowerForth
Setting the Clock Speed and Baud Rate
Setting up the interrupt vectors
Setting the stack size
Defining the number of tasks
Defining the user area size
Calculating the total memory requirement
Compiling the kernel
Compiling the multitasker
Compiling the software floating point
Compiling the ROM PowerForth utilities
Defining the target sign-on message
Defining the last word
Finishing cross-compilation

131

133
133
133

135
135
135
136

137
137
137
138
138
138
138
139
139
139
139
140
140
140
140
141
141
141
142
142
142
142
143
143
143
144
144
144
145



MPE Forth 5 for RTX2000 Table of Contents

Appendix C - Error Messages 147
Generd Forth Errors 0..15 147
System messages 16..31 148
Module errors 48..63 149
Sourcefile errors 64..79 149
DOS errors 80..112 150
Text file errors 112..127 151

Appendix D - Technical Support 153
Technical Support 153

I ndex 155



Table of Contents MPE Forth 5 for RTX2000

Blank Page

Vi



MPE Forth 5 for RTX2000 List of figures

List of Figures

Figure 1 - The development system’ s directory structure 6

Figure 2 - An example memory map 11
Figure 3 - The target sign-on 21
Figure 4 - Example turnkey application 24
Figure 5 - The target sign-on 38
Figure 6 - Example turnkey application 41
Figure 7 - Example memory map 45
Figure 8 - Umbilical download messages 53
Figure 9 - The Umbilical Forth sign-on 54
Figure 10 - Example umbilical turnkey application 56
Figure 11 - Multitasking example 72
Figure 12 - Example paging mechanism 117
Figure 13 - Conditional compilation example (1) 123
Figure 14 - Conditional compilation example (2) 123
Figure 15 - Adding words to the compiler 124
Figure 16 - Umbilical forth message passing 125
Figure 17 - Example version 4 memory definition 136

Vil



List of figures MPE Forth 5 for RTX2000

Figure 18 - Example version 5 memory definition 136

viii



MPE Forth 5 for RTX2000 List of tables

List of Tables
Table 1 - Key to cross-compiler log 18
Table 2 - Key to cross-compiler log 35
Table 3 - Key to cross-compiler log 51
Table 4 - Special register opcodes 64
Table 5 - Opcodes for internal register access 65
Table 6 - Opcodes for step mathematics 65
Table 7 - Memory access opcodes 66
Table 8 - Shift opcodes 66
Table 9 - Stack operator opcodes 67
Table 10 - Dyadic ALU opcodes 67
Table 11 - Miscellaneous opcodes 68
Table 12 - Multitasker data structure 76
Table 13 - A task’s status word 76

Table 14 - RTX vector table 86



List of tables MPE Forth 5 for RTX2000

Blank Page



MPE Forth 5 for RTX2000 Installing the system

Installing the system

It isrecommended that you install the M PE Forth 5 RTX2000 Devel opment
System by using the supplied installer. Theinstaller helpsyou through the
installation process and will make sure you have all the files you need.

System reguirements
Toinstall and use the development system you need:

IBM PC or compatible with DOS version 3 or higher with
480K bytes of available memory

- A hard disc with at least 1.5Mbytes of free disc space

Running the installer
Theinstaller is supplied on issue disc #1.

To install the development system from drive a:, place the installation disc
(disc #1) indrive a: and type aiinstall at the DOS prompt.

Selecting the installation drive

Theinstaller lists all the available drives on your PC. Drive C: can be se-
lected by pressing ENTER. If youwant toinstall on adifferent drive, select
adriveusing the cursor keysfollowed by ENTER. DrivesA: and B: arein-
cluded for installing onto a network.

Page 1



Installing the system MPE Forth 5 for RTX2000

Selecting the installation path

Theinstallation path isthe path to the directory wherethe systemisto bein-
stalled. Press ENTER to use the default path.

Standard or custom installation?

Theinstaller asksyou whether you requireastandard or custominstallation.
Select standard to install the complete system. Select custom to choose
which parts of the system you want to install. Y our choice of standard or
custom will normally depend on whether:

. you are anew user
- you have recently upgraded
. you are adding features which you didn’t install previously

A new user

If you are a new user and so are unfamiliar with MPE Forth development

systems, you should install the complete system by selectingstandard. This
gives you the ability to explore what the devel opment system hasto offer.

Recent upgrade

If upgrading your development system, select standard. Thisinstalls the
whole system as software versions are incompatible.

Adding to the system

Select custom to choose which itemsto install. If you have previously in-
stalled only part of the development system, but you now want to install

more of the system, select custom.

Page 2



MPE Forth 5 for RTX2000 Installing the system

Standard installation

If you selected the standard installation, the installer installs the complete
development system. It prompts for certain information:

PC PowerForth Plus path
- The XShell path

It then prompts for the discs it needs.

Custom installation system

If a custom installation has been selected, the installer will prompt for cer-
tain information:

- Theitemsto install

. The EPROM emulator driver required
- The EPROM emulator base address

. The PC Powerforth Plus path

. The XShell path

The itemsto install

Theinstaller needsto know what parts of the devel opment system you want
toinstall. By selecting Y ESfor anitem, theitemwill beinstalled. Thespace
bar toggles between YES and NO.

The emulator driver

The development system is supplied with two drivers for the LeBurg
EPROM emulator:

- TSR021
- TSR041

If you are going to use the LeProm emulator, select TSR021. If you are go-
ingto usetheLeMeg or theLeBig emulators, select TSR041. If no EPROM

emulator is going to be used, select the don't install a driver .

Page 3



Installing the system MPE Forth 5 for RTX2000

The emulator base address

Theinstaller needsto know what PC port addressto map the emulator driver
to.

PowerForth Plus path

PC PowerForth PlusisaForthfor your PC. Typethepath of whereyouwant
it to beinstalled. Pressreturn to use the default path.

XShell path

XShell is the cross compiler environment supplied as part of the develop-
ment system. Itisrequired to usethecross-compiler. Pressreturnto usethe
default path.

Page 4



MPE Forth 5 for RTX2000 The MPE Development System

The MPE Development System

Now that you have installed the MPE development system, you may be
wondering what you have got. The MPE development system is to the
Forth-83 standard and consists of

- XShell - the development environment
- the MPE Forth cross compiler with source
. source for generating a ROM target Forth
. source for generating an Umbilical Forth
. driversfor the LeBurg emulators

PC PowerForth Plus

The installer creates, by default, the directory structure of figure 1. The
place where X Shell and PC PowerForth Plus can be found may differ if the
default directories were changed during installation.

X Shell - the devel opment environment

The MPE Development System is based around X Shell. XShell istheenvi-
ronment used to:

. cross-compile source code
- communicate with the target
- download the image to an EPROM emulator or programmer
- edit your source code
run any DOS tools

X Shell givesyou acompl ete environment to generate, compile and execute
code for your target board. For more detailed information see the X Shell
manual. Theinstaller places XShell in the directory X Shell.

Page 5



The MPE Development System MPE Forth 5 for RTX2000

Artx ———— App
— Compiler — Source —— Drix
—— Monitor
Ram Configs
Drivers
Paging
Partial
Examples
Rom Configs
I— Dri ve?s
—— Romforth
—— Softfp
— Emu-tsr
— Pforth
—— XShell

Figure 1 - The development system's directory structure

MPE Forth cross compiler

The cross compiler can generate either aROM target Forth or an Umbilical
Forth from your source code. The source codefor the crosscompiler issup-
plied, so that you can extend the compiler and rebuild it from scratch if re-
quired.

The compiler can automate the generation of paged targets and also has a
built-in cross-assembler. The compiler isin the directory COMPILER and
the source is in the directory COMPILER\SOURCE and COM-
PILER\SOURCE\DRTX.

ROM and RAM target Forth

Source codeis supplied for developing ROM and RAM target Forths. The
Forth generated has a multitasker and software floating point.

It also hasalarger wordset than an Umbilical Forthtarget, butislarger at 8K
or more. If you require the multitasker, you must generate either aROM or
RAM target Forth. Theinstaller placesthe ROM target source code in the

Page 6



MPE Forth 5 for RTX2000 The MPE Development System

directory ROM, and the RAM target source codeinthedirectory RAM. See
chapters 3 and 4 on how to generate ROM and RAM target Forths.

Umbilical Forth

Source codeissuppliedto generatean Umbilical Forth. Umbilical Forthisa
significantly smaller Forth than the ROM target Forth, so an interactive
Forth can be generated which is smaller than 4K. Umbilical Forth does not
have all words defined in the ROM target Forth, but isuseful if ROM space
isat apremium. The Umbilical Forth source codeisinthe directories APP
and MONITOR.

Leburg EPROM emulator drivers

The cross compiler can directly download code, asit isgenerated, toalLe-
Burg emulator. Thisisdone viaone of two TSR'’s:

- TSR021.COM - LeProm
- TSR041.COM - LeMeg and LeBig
These arein the directory EMU-TSR.

PC PowerForth Plus

PC PowerForth PlusisaForth for your PC. It can be used to prototype code
in the host environment before porting to your target board. The installer
places PC PowerForth Plusin the directory \PFORTH.

Page 7



The MPE Development System MPE Forth 5 for RTX2000

Blank Page

Page 8



MPE Forth 5 for RTX2000 Generating a ROM target Forth

Generating a ROM target Forth

This chapter describes how to generate a ROM target Forth for your target
board. It guides you through:

. setting up your hardware and software

- writing the serial line drivers

- modifying the memory map for your board
- compiling and running atarget Forth

Supplied with your cross compiler are configurationsfor specific boards. If
you have one of these boards, the generating of atarget Forthisgreatly sm-
plified. If you do not have asupported board you will haveto configure the
cross compiler for your board and write new serial line drivers.

|s your board already supported?

If youhavean MPE RT X board you can usethe supplied control files. There
arefilesfor 2000, 2001 and 2010 variants of the RTX processor. By using
one of these the installation of a ROM target Forth for your board will be
greatly smplified. Thecontrol fileto usewill depend on thetype of proces-
sor andtheclock crystal fittedtoyour board. Thesefilesareinthedirectory
ROM\CONFIGS.

If you do not have an M PE board you will have to modify acontrol fileand
serial line driversto suit your own board.

Page 9



Generating a ROM target Forth MPE Forth 5 for RTX2000

The control file

Thecontrol file containsall the details of your board that the cross compiler
needs to know. Thisincludes:

- the memory map of your board

. whether you wish alog to be displayed
. the number of tasksin your system

. the clock rate of your board

As well as containing configuration information, the control file contains
compiler directives and alist of files which are to be cross compiled.

Oncethe cross compiler knowstheseitems, it can generate acorrect binary
image from your source code. An example control fileis shown in Appen-
dix B.

Creating a control file

To createanew control file, copy an existing oneand then modify it tomatch
your board. Thisisnormally easier than generating one from scratch. Ex-
ample control files are in the directory ROM\CONFIGS.

Setting the code generator

The code generator will by default generate code for aRAM Target. If you
wishto produce codefor aROM target you will need toinformthecompiler.

This may be done by using the ROM-TARGET directive directly after
CROSS-COMPILE. Thus you would code:

Cross-Compile \ generate target code
Rom-Target \ for ROM target

The memory map

The memory map describes the addresses where ROM and RAM start and
end inyour target system. The memory map is described to the cross com-
piler in your control file.

Page 10



MPE Forth 5 for RTX2000 Generating a ROM target Forth

The memory map is defined by the:
- start of ROM
. start of RAM
- end of ROM
- end of RAM

From thisinformationthe crosscompiler placesany itemsit needsinthecor-
rect area of memory.

Setting the memory map

The memory map isdescribed in your control file, so oncethefile has been
created, you can change the memory map definition to match your board.

The memory map is described in two parts:
. the start and end of ROM
. the start and end of RAM

Setting the start and end of ROM

The start and end of ROM is defined by using the compiler directive KER-
NEL. KERNEL isused intheform:

rom-start rom-end KERNEL <name>

whererom-start isthe address of the start of ROM, rom-end isthe address of
the end of ROM and <name> is the name of the output file. The compiler
automatically gives the filename <name> an extension .IMG so <name>
must be just aname without an extension. The numbersrom-start and rom-
end are, by default, in decimal, but can be entered in hex by preceding them
by a$.

Thelabel <name> isalso thename of the kernel pagein apaged system. For
more information see chapter 12, Paged targets.

Setting the start and end of RAM

The start and end of RAM is defined by using the compiler directive
KERNEL-RAM. KERNEL-RAM isused in the form:

ram-start ram-end page-id KERNEL-RAM <name>

Page 11



Generating a ROM target Forth MPE Forth 5 for RTX2000

whereram-start isthe address of the start of RAM, ram-end isthe address of
the end of RAM, page-id isaunique identifier for this area of memory and
<name> is the name for this area of memory. The numbers ram-start and
ram-end are, by default, in decimal, but can be entered in hex by preceding
thenby a $.

Thelabel <name>isthenameof thekernel’ sdataareain apaged system. In
a non-paged system <name> is not actually used but must be stated. In a
non-paged system, page-id can be set to any number. For moreinformation
on paged systems, see chapter 12, Paged targets.

Setting the compilation pages

In anon-paged system, the compiler must be instructed to compile into the

pagesdefined by KERNEL and KERNEL-RAM. Therefore, after the memory
map is defined you must code:

USE-CODE <namel>
USE-DATA <name2>

where <namel> isthe name of the kernel ROM page defined with KERNEL
and <name2> is the kernel RAM page defined with KERNEL-RAM.

Ram-end FFFF
Ram

Ram-start 8000

Rom-end TFFF

Rom

Rom-start 0000

Figure 2 - An example memory map

Page 12



MPE Forth 5 for RTX2000 Generating a ROM target Forth

An example

If your target board has a memory map asin figure 2, your control file
should be modified so that it reads,

$0000 $7FFF KERNEL Kern
$8000 $FFFF 1 KERNEL-RAM Kern-data

USE-CODE Kern
USE-DATA Kern-data

Thisindicates two areas of memory with names Kern and Kern-data.

Modifying the serial line drivers

Y our target board communicates with the the external world viaa UART
Unlike some other processors, the RTX does not have an onboard UART.
However, if you are using an 8530 serial communications device, the sup-
plied serial driver code can be used. Thisisin the directory ROM\DRIV -
ERS.

If you are using a different UART you will need to write all the words re-
quired to:

Initialise the UART
Send a character
Receive a character
. Test if acharacter has been received

Example serial line drivers in the files ROM\DRIVERS can be used as a
template. Aswiththe control fileitisnormally easier to modify an existing
serid line driver file rather than creating your own from scratch.

Interrupt or polled drivers?

Two types of interrupt driver can be written:
interrupt driven
polled

Page 13



Generating a ROM target Forth MPE Forth 5 for RTX2000

Interrupt driven

Aninterrupt driven serial line can only beused if the UART generatesinter-
rupt signalswhen charactersarereceived. Aninterrupt drivendriver will al-
low buffered serial communicationsto beimplemented with |east processor
overhead.

Polled

A polled driver will continuously poll a status bit in the UART to detect
when the UART has either transmitted or recelved a character.

Initialising the serial line

The word INIT-SER must perform all the UART initialisation required.
Thisincludes setting:

- the baud rate

. any handshaking required
- the number of data bits

- the number of stop bits

. the parity to be used

Itisrecommended that the baud rateisinitially set to 2400 baud until thetar-
get board isworking. It can then beraised to 9600 or above which makesa
moreresponsivetarget. The RTX will normally function correctly at 38400
baud.

Sending a character to the host

The target code needs to be able to send a character to the host for display.
Therefore, you need to write a word which:

. waitsfor the transmit line to become available
. transmits a character to the host
increment the variable OUT

Page 14



MPE Forth 5 for RTX2000 Generating a ROM target Forth

Themethod used can be either apolled or interrupt driven driver but must be
called (EMIT). Once (EMIT) iswritten, it must be assigned to the defered
word EMIT. The stack effect of (EMIT) is,

(EMIT) \ char — ; send char to host

Receiving a character from the host

Thetarget code needsthe ability to receive a character from XShell. Todo
thisit needs to:

. wait for a character to be received

place the character on the Forth stack

The method used can be polled or interrupt driven but the word must be
called (KEY). Once (KEY) has been written, it must be assigned to the
defered word KEY. The stack effect of (KEY) is:

(KEY) \— char ; wait for char to be received

Detecting areceived character

Thetarget needsto detect if acharacter hasbeen received. Thiscan beused
as part of (KEY). (KEY?) needs to:

return true on the Forth stack if a character isavailable (-1)
return false on the Forth stack if a character is not available (0)

Once (KEY?) iswritten, it must be assigned to the deferred word KEY. The
stack effect of (KEY?) is:

(KEY?) \—1t/f; trueif character received

Setting up the system

Setting up the system involves both hardware and software. The target
board, PC, EPROM emulator/programmer and serial line have to be con-
nected as well as configuring X Shell to run the cross compiler.

Page 15



Generating a ROM target Forth MPE Forth 5 for RTX2000

Setting up the hardware
To generate an interactive Forth target you need:
- an|BM PC or compatible
- A seria cable
. A target board
- An EPROM emulator or programmer

Y our PC needs to have at least one serial port for connecting to the target
board, so making the Forthinteractive. Theserial cable should beconnected
to COM1 asthisisthe default port used by XShell. Other ports can be used
by configuring Xshell. See the XShell manual.

Setting up the software

To compile source code that generates a Forth target, you need to configure
the cross compiler environment, XShell, to run the cross compiler. For de-
tailed information on configuring X Shell, see the X Shell manual.

Running X Shell

If during installation, you allowed the installer to modify your AUTO-
EXEC.BAT, thento run XShell you just need to type XS3. If you didn’t or
you haven’t rebooted since you installed the system, then you need to state
thefull path of XShell. For example, theinstaller will place XShell inthedi-
rectory, XRTX\XSHELL by default.

Configuring X Shell to use your control file

Beforeyou can cross compileyour source code, you must configure X Shell.
X Shell requiresthe nameof the control fileyou areusing. Theconfiguration
fileloadstheremaining files so you need only to load the configurationfile.
To setup the configuration file as the file to be loaded,

1) run XShell while in the ROM directory
1) type Alt-K, Configuration options
1) press B, setup commands

Iv) press E, compiler commands

Page 16



MPE Forth 5 for RTX2000 Generating a ROM target Forth

v) type ALL FROM-FILE followed by the path and name of your configura-
tion file, i.e ALL FROM-FILE CONFIGS\CONTROL.CTL followed by
ENTER

Vi) press the escape key to return to the previous menu
vii) press E, save configuration
viil) Press the escape key to return to the host forth

Y our XShell configuration is now set to cross compile your configuration
file.

Configuring the serial ports from XShell

X Shell isused to communicate with thetarget. Y ou therefore need to set up
X Shell to the same serial line settings that you are going to use on the target
board.

To do this, type:

1) run XShell while in the ROM directory

1) type Alt-K, Configuration options

lii) press D, seria line settings

Iv) set up your settings by pressing letters a-z
V) press the escape key when finished

vi) type E, save configuration

Vii) press the escape key to return to the host Forth

Cross-compiling

Now the hardware and software has been setup, you can cross compile the
source code to generate an executable image.

Page 17



Generating a ROM target Forth MPE Forth 5 for RTX2000

Creating an image

To cross compile the source code, press F3. XShell clears the display and
the cross compiler startscompiling. The compiler displaysits sign-on mes-
sage then compiles the source code.

The cross compilelog

Following thecompiler sign-onyou seethecrosscompilelog. Aseachword
Is compiled the compiler displaysthe word’ s address, itstype and its short-
ened name. The compiled typeof itemiscoded astwo charactersasintable
1.

Turning on and off the log

Instead of having the datadisplayed for each compiled item, you can chose
to only display adot. The advantage of thisisthat the compiler spendsless
time displaying dataand so the cross compileisquicker. Todo this, change
the compiler directiveinthe control filefrom LOG toNO-LOG. Thelog can
be turned on again by replacing LOG with NO-LOG in the control file.

Cod |Compiled type Code |Compiled type

e

VR Variable FV Floating point variable
CN |Constant FC Floating point constant
LB |Label FA Floating point array

: Colon defintion EQ Equate

CD |Code definition CR Create ... Does>

DF |Deferred word us User variable

VC |Vocabulary

Table 2 - Key to cross-compiler log

Page 18



MPE Forth 5 for RTX2000 Generating a ROM target Forth

Sending the log to afile

Thecrosscompiler will redirect thelogto afileinstead of thedisplay. Todo
this, use:

FILE: <name>

where<name> isthefilenameto generate. Thisdirective must beplaced be-
fore the command CROSS-COMPILE.

Sending the log to a printer
The cross compiler will send thelog to aprinter. To do this, use:

PRN:
before the command CROSS-COMPILE.

The compilation summary

Oncethecrosscompiler hasfinished cross-compiling thesourcecode, it dis-
plays information about the compilation. Thisincludes:

- any unresolved references
- the size of the compiled image
- theinitialised RAM table address and length

Unresolved references are words which are referenced in the source code
but are not defined. These can be spelling mistakesor some of thecodeisnot
being compiled.

The size of the compiled image isthe amount of actual code output into the
file. Theactual filesizewill bethesize of theROM indicated by thememory

map.

TheRAM tableistheplacein ROM whereavariable’ sinitial valueisstored.
When thetarget board isreset, theinitialisation copiesthistableinto RAM.
These initial values of variables will be modified in RAM when you store
into avariable.

The created image

The image created by the cross compiler is a straight binary executable. It
can be downloaded to asuitable EPROM emulator or programmer. Thefile

Page 19



Generating a ROM target Forth MPE Forth 5 for RTX2000

has the name given when defining the memory map using the compiler di-
rective KERNEL. It hasthe extension .IMG which cannot be changed.

Problems, Problems ...

If during compilation an error occurs, the compiler will stop compilation
and display thelineonwhichtheerror occurred. Thecrosscompiler shows
thelinenumber and thefilenamewheretheerror occurred aswell asthetype
of error that has occured.

Downloading the compiled image

Once the source code has been compiled the image needsto be downloaded
to an EPROM emulator or programmer.

Downloading to a LeBurg EPROM emul ator

The MPE cross compiler supports the LeBurg emulator. If you haveal e
Burg emulator, theinstaller should have setup your X Shell configuration to
useitif itisalready inthe DOS path. Inthiscasejust press F4 and theLe
Burg software should run. If theinstaller could not find your L eburg emul a-
tor software, you have to setup X Shell to run your emulator software. Refer
to the X Shell manual.

Downloading to a different emulator

Thebinary image can be downloaded to any EPROM emulator aslong asthe
emulator’ ssoftware supportsbinary imagefiles. Refer tothe X Shell chapter
on how to setup the X Shell configuration and the emulator’ s software man-
ual for download instructions.

Downloading to an EPROM programmer

The MPE development system supports the Sunshine programmer. If the
installer found the programmer’ s software, then your configuration will be
setup already. Toruntheprogrammer’ ssoftware pressF6. To setup X Shell
to use a EPROM programmer, refer to the XShell chapter.

Page 20



MPE Forth 5 for RTX2000 Generating a ROM target Forth

Running the target Forth

Theimage generated by the compiler hasbeen downloaded tothetarget, itis
ready to be reset and the Forth tested.

Switching to target mode

To receive characters from the target, X Shell must be in target mode. The
current modeis displayed on thetop banner. If you are not already in target
mode, type Alt-T or F5.

Resetting the target board

MPE RTX 2000 ROM PowerForth v3.00
27384 bytesfree

ok

Figure 3 - The target sign-on

Once the image has been downloaded, you can reset the target board. Y ou
can either use the reset supplied on the board or if no reset is on the board,
turn the board’ s power off and on again.

Thesign-on

Oncethe board hasbeen reset, thetarget should sign-on. Y ou should seethe
message infigure 3. The version number and the number of bytes free will
depend on your system. Y ou now should have aworking Forth. If thetarget
didn’t show the message, then you may have a problem with:

- the serid line drivers

- the memory map definition

. your target board

- your EPROM emulator/programmer

Page 21



Generating a ROM target Forth MPE Forth 5 for RTX2000

Each of these should be checked.

The serial linedrivers

If you do not get the sign on message, your transmit word might not bework-
ing correctly. Y ou can check that you can transmit a character up the serial
line, by appending code for emitting a character up the seria line, onto the
end of theinitialisation word INIT-SER.

The memory map definition.

If the memory map for the ROM definition is wrong, the target may not
sign-onat al. If thedefinition of the RAM memory mapiswrong, thetarget
may sign-on but may generate ‘ garbage’.

Y our target board

Itisalwaysnecessary to check theobvious. Istheseria lineconnected?Has
your target board got power? EPROMSRAM plugged in correctly? Are
jumpers set correctly?

Y our EPROM emulator/programmer

Check to seeif your emulator isemulating an EPROM that your target board
Isexpecting. If you havethewrong EPROM set, your target will not signon.

Testing the Forth - an example

Once the Forth has signed-on, you need to test that it’s working properly.
Type WORDS, thiswill display all the Forth words available.

If thisworks then typein,

: FORTH-TEST \—; A quick test for Forth
SHELLO!

FORTH-TEST

This should display,

HELLO
followed by the ok prompt.

Page 22



MPE Forth 5 for RTX2000 Generating a ROM target Forth

Cross-compiling an application

Onceyour Forthisworking on your target board, you will now want towrite
and compile your application.

Writing an application

Supplied with XShell isthe TED editor. Thiscan berun by pressing F2. A
different editor can be used by changing the X Shell configuration. Seethe
X Shell chapter.

Modifying the control file

Once your application has been written, you can add it to the control file.
Near thebottom of thecontrol file, thereisalist of commandsintheform:

ALL FROM-FILE <name>
To compile your application files you add them to the end of thelist.

Developing your application

As Forth is an interactive language, you can use this to your advantage by
writing small sections of code and testing asyou go. To helpyoudothis, the
ROM PowerForth utilitiesallow you to access your source files on the host.
Y our source files can be compiled from the target without cross-compiling
the whole application. Seethe chapter ROM PowerForth Utilitiesfor more
information.

Running your application
To compile the application you need to:
run the cross compiler(press F3)
- download to the EPROM emulator/programmer(press F4 or F6)
reset the target

The target board should now sign-on, and you can test your application.

Page 23



Generating a ROM target Forth MPE Forth 5 for RTX2000

:MY-APP \—;
INIT-SER \Initialise the serial line
BEGIN \ Application never ends...
S Hello" \
AGAIN

MAKE-TURNKEY MY-APP

Figure 4 - Example turnkey application

Generating aturnkey application

Onceyou havewritten your application, you will want to makeit start when
thetarget board isreset. Thisisknown asaturnkey or autostarting applica-
tion. Your application does not necessarily need to be interactive, so the
compiler directiveNO-HEADS canbeused. Thisremovesall theword head-
ers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the
form:

MAKE-TURNKEY <name>

where<name> isthe name of thewordto run at startup. Theword <name>
must be defined before using thisdirective. The exampleinfigure 4 gener-
ates a simple turnkey application when cross compiled. If you require the
use of serial communications or the multitasker, you must initialisethemin
your application. To initialise the serial communications use the word
INIT-SER. To initialise the multitasker use INIT-MULTI.

Page 24



MPE Forth 5 for RTX2000 Generating a ROM target Forth

Blank Page

Page 25






MPE Forth 5 for RTX2000 Generating a RAM target Forth

Generating a RAM target Forth

This chapter describes how to generate a RAM target Forth for your target
board. It guides you through:

. setting up your hardware and software
- writing the serial line drivers

modifying the memory map for your board
- compiling and running atarget Forth

Supplied with your cross compiler are configurationsfor specific boards. If
you have one of these boards, the generating of atarget Forthisgreatly sm-
plified. If you do not have asupported board you will haveto configure the
cross compiler for your board and write new serial line drivers.

What isa RAM target?

A RAM target has both EPROM and RAM. However, on power-up the en-
tire contents of the EPROM are copied into RAM and execution takes place
from there.

|s your board already supported?

If youhavean MPE RT X board you can usethe supplied control files. There
arefilesfor 2000, 2001 and 2010 variants of the RTX processor. By using
one of these the installation of a ROM target Forth for your board will be
greatly ssmplified. The control fileto use will depend on the type of board
you have. If you have an STE variant you should use one of the
STExxxX.CTL files as your control file. If you have a PowerBoard you
should use afile xxxxPBxx. The exact file you choose will depend on the
processor and the clock crystal fitted to your board. Thesefilesareinthedi-
rectory RAM\CONFIGS.

Page 27



Generating a RAM target Forth MPE Forth 5 for RTX2000

If you do not have an M PE board you will have to modify acontrol fileand
serial line driversto suit your own board.

The control file

Thecontrol file containsall the details of your board that the cross compiler
needs to know. Thisincludes:

- the memory map of your board

. whether you wish alog to be displayed
. the number of tasksin your system

. the clock rate of your board

As well as containing configuration information, the control file contains
compiler directives and alist of files which are to be cross compiled.

Oncethe cross compiler knowsthese items, it can generate a correct binary
Image from your source code. An example control fileis shownin Appen-
dix B.

Creating a control file

To createanew control file, copy an existing oneand then modify it tomatch
your board. Thisisnormally easier than generating one from scratch. Ex-
ample control files are in the directory RAM\CONFIGS.

The memory map

Themaindifference betweenaRAM target and aROM target isthat all code
and dataresidein RAM during execution. All code and datais copied from
ROM into RAM at startup, and then executed from RAM. Fromthetarget’s
point of view thereisno distinction between ROM and RAM. However you
still need to declare to the compiler where the start and end of your memory
areais. Thememory map is described to the cross compiler in your control
file.

Page 28



MPE Forth 5 for RTX2000 Generating a RAM target Forth

The memory map is defined by the:
. start of RAM
- end of RAM

From thisinformationthe crosscompiler placesany itemsit needsinthecor-
rect area of memory.

Setting the memory map
The memory map isdescribed in your control file, so oncethefile has been
created, you can change the memory map definition to match your board.

The memory map is described in two parts:
- the start and end of RAM
- adummy page for use by the cross compiler

Setting the start and end of RAM

The start and end of RAM is defined by using the compiler directive KER-
NEL. KERNEL isused intheform:

ram-start ram-end KERNEL <name>

whereram-start isthe address of the start of RAM, ram-end isthe address of
the end of RAM and <name> is the name of the output file. The compiler
automatically gives the filename <name> an extension .IMG so <name>
must be just aname without an extension. The numbersram-start and ram-
end are, by default, in decimal, but can be entered in hex by preceding them
by a$.

Thelabel <name> isalso thename of the kernel pagein apaged system. For
more information see chapter 12, Paged Targets.

Setting the dummy page

InaROM target, code and dataare split into two memory areas, onefor code
and onefor data (see chapter 3 for more details) The start and end of the data
area is defined by using the compiler directive KERNEL-RAM. InaRAM

target, this distinction does not exist, but the compiler still needs amemory
areato storeitsinternal labelsfor variable valuesand thelike. Y ou must de-

Page 29



Generating a RAM target Forth MPE Forth 5 for RTX2000

clare adummy page so the compiler will allocate memory correctly. Thisis
donein the form:

0 0 page-id DATA-PAGE dummy

wherethetwo zerosaresimply arbitrary numbers, page-idisauniqueidenti-
fier (onewhichyouwill not beusing elsewhere) and dummy issimply anar-
bitrary label, which is not actually used, but must be stated.

Sincethereisno ROM-TARGET directive, the compiler will assumethat you
are using a RAM target, and generate code accordingly.

Setting the compilation pages
In anon-paged system, the compiler must be instructed to compile into the
page defined by KERNEL.

USE-CODE <namel>
USE-DATA <dummy>

where <namel> is the name of the kernel page defined with KERNEL and
<dummy> is the compiler’s dummy page defined with DATA-PAGE.

An example
If your target board has a typical memory map, with RAM from 0000h to
FFFFh, your control file should be modified so that it reads,

$0000 $FFFF KERNEL Kern
$0000 $0000 0 DATA-PAGE Dummy

USE-CODE Kern
USE-DATA Dummy
Thisindicates a single area of memory with the name Kern.

Modifying the serial line drivers

Y our target board communicates with the the external world viaa UART
Unlike some other processors, the RTX does not have an onboard UART.
However, If you are using an 8530 serial communications device, the sup-
plied serial driver code can be used. Thisisin the directory RAM\DRIV -
ERS.

Page 30



MPE Forth 5 for RTX2000 Generating a RAM target Forth

If you are using a different UART you will need to write all the words re-
quired to:

Initialise the UART
Send a character
Receive a character
. Test if acharacter has been received

All four wordswill normally be Forth CODE definitions. Thisisrequired so
that the send and receive words are asfast as possible. Example serial line
driversin thefilesRAM\DRIVERS can be used asatemplate. Aswith the
control fileit isnormally easier to modify an existing serial line driver file
rather than creating your own from scratch.

Interrupt or polled drivers?

Two types of interrupt driver can be written:
interrupt driven
polled

Interrupt driven

Aninterrupt driven serial line can only beused if the UART generatesinter-
rupt signalswhen charactersarereceived. Aninterrupt drivendriver will al-
low buffered serial communicationsto beimplemented with |east processor
overhead.

Polled

A polled driver will continuously poll a status bit in the UART to detect
when the UART has either transmitted or recelved a character.

Initialising the serial line

The word INIT-SER must perform all the UART initialisation required.
Thisincludes setting:

. the baud rate
. any handshaking required

Page 31



Generating a RAM target Forth MPE Forth 5 for RTX2000

. the number of data bits
. the number of stop bits
. the parity to be used

Itisrecommended that the baud rateisinitially set to 2400 baud until thetar-
get board isworking. It can then beraised to 9600 or above which makesa
moreresponsivetarget. The RTX will normally function correctly at 38400
baud.

Sending a character to the host

The target code needs to be able to send a character to the host for display.
Therefore, you need to write a word which:

. waits for the transmit line to become available
. transmits a character to the host
increment the variable oUT

Themethod used can be either apolled or interrupt driven driver but must be
called (EMIT). Once (EMIT) iswritten, it must be assigned to the deferred
word EMIT. The stack effect of (EMIT) is,

(EMIT) \ char — ; send char to host

Receiving a character from the host

Thetarget code needsthe ability to receive a character from XShell. Todo
thisit needs to:

- walit for a character to be received
place the character on the Forth stack

The method used can be polled or interrupt driven but the word must be
called (KEY). Once (KEY) has been written, it must be assigned to the de-
ferred word KEY. The stack effect of (KEY) is:

(KEY) \— char ; wait for char to be received

Page 32



MPE Forth 5 for RTX2000 Generating a RAM target Forth

Detecting areceived character

Thetarget needsto detect if acharacter hasbeen received. Thiscan beused
as part of (KEY). (KEY?) needs to:

return true on the Forth stack if a character isavailable (-1)
return false on the Forth stack if a character is not available (0)

Once (KEY?) iswritten, it must be assigned to the deferred word KEY?. The
stack effect of (KEY?) is:

(KEY?) \—1t/f; trueif character received

Setting up the system

Setting up the system involves both hardware and software. The target
board, PC, EPROM emulator/programmer and serial line have to be con-
nected as well as configuring X Shell to run the cross compiler.

Setting up the hardware
To generate an interactive Forth target you need:
- an|BM PC or compatible
- A seria cable
. A target board
- An EPROM emulator or programmer

Y our PC needs to have at least one serial port for connecting to the target
board, so making the Forthinteractive. Theserial cable should beconnected
to COM1 asthisisthe default port used by XShell. Other ports can be used
by configuring Xshell. See the XShell manual.

Setting up the software

To compile source code that generates a Forth target, you need to configure
the cross compiler environment, XShell, to run the cross compiler. For de-
tailed information on configuring X Shell, see the X Shell manual.

Page 33



Generating a RAM target Forth MPE Forth 5 for RTX2000

Running X Shell

If during installation, you allowed the installer to modify your AUTO-
EXEC.BAT, then to run Xshell you just need to type XS3. If you didn’t or
you haven’t rebooted since you installed the system, then you need to state
thefull path of XShell. For example, theinstaller will place X Shell inthedi-
rectory, XRTX\XSHELL by default.

Configuring X Shell to use your control file

Beforeyou can cross compileyour source code, you must configure X Shell.
X Shell requiresthe nameof the control fileyou areusing. Theconfiguration
fileloadsthe remaining files so you need only to load the configurationfile.
To setup the configuration file as the file to be loaded,

1) run XShell while in the RAM directory
1) type Alt-K, Configuration options

1) press B, setup commands

Iv) press E, compiler commands

V) type ALL FROM-FILEfollowed by the path and name of your configura-
tion file, i.e ALL FROM-FILE CONFIGS\CONTROL.CTL followed by
ENTER

Vi) press the escape key to return to the previous menu
vii) press E, save configuration
viii) Press the escape key to return to the host Forth

Y our XShell configuration is now set to cross compile your configuration
file.

Configuring the serial ports from XShell

X Shell isused to communicate with thetarget. Y ou therefore need to set up
X Shell to the same serial line settings that you are going to use on the target
board.

To do this, type:
1) run XShell while in the RAM directory
1) type Alt-K, Configuration options

Iii) press D, seria line settings

Page 34



MPE Forth 5 for RTX2000 Generating a RAM target Forth

IVv) set up your settings by pressing letters a-z
V) press the escape key when finished
vi) type E, save configuration

Vii) press the escape key to return to the host Forth

Cross-compiling

Now the hardware and software has been setup, you can now cross compile
the source code to generate an executable image.

Creating an image

To cross compile the source code, press F3. XShell clears the display and
the cross compiler startscompiling. The compiler displaysitssign-on mes-

Cod |Compiled type Code |Compiled type

e

VR |Variable FV Floating point variable
CN |Constant FC Floating point constant
LB |Labd FA Floating point array

: Colon defintion EQ Equate

CD |Code definition CR Create ... Does>

DF |Deferred word us User variable

VC |Vocabulary

Table 3 - Key to cross-compiler log

sage then compiles the source code.

The cross compilelog

Following thecompiler sign-onyou seethecrosscompilelog. Aseachword
Is compiled the compiler displaysthe word’ s address, itstype and its short-

Page 35



Generating a RAM target Forth MPE Forth 5 for RTX2000

ened name. The compiled typeof itemiscoded astwo charactersasintable
3.

Turning on and off the log

Instead of having the datadisplayed for each compiled item, you can chose
to only display adot. The advantage of thisisthat the compiler spendsless
time displaying dataand so the cross compileisquicker. Todo this, change
the compiler directiveinthe control filefrom LOG to NO-LOG. Thelog can
be turned on again by replacing log with no-log in the contral file.

Sending the log to afile

Thecrosscompiler will redirect thelogto afileinstead of thedisplay. Todo
this, use:

FILE: <name>

where<name> isthefilenameto generate. Thisdirective must beplaced be-
fore the command CROSS-COMPILE.

Sending the log to a printer
The cross compiler will send thelog to aprinter. To do this, use:

PRN:
before the command CROSS-COMPILE.

The compilation summary

Oncethecrosscompiler hasfinished cross-compiling thesourcecode, it dis-
plays information about the compilation. Thisincludes:

- any unresolved references
- the size of the compiled image

Unresolved references are words which are referenced in the source code
but are not defined. These can be spelling mistakesor some of thecodeisnot
being compiled.

The size of the compiled image isthe amount of actual code output into the
file. Theactual filesizewill bethesize of theROM indicated by thememory

map.

Page 36



MPE Forth 5 for RTX2000 Generating a RAM target Forth

The created image

The image created by the cross compiler is astraight binary executable. It
can be downloaded to asuitable EPROM emulator or programmer. Thefile
has the name given when defining the memory map using the compiler di-
rective KERNEL. It hasthe extension .IMG which cannot be changed.

Problems, Problems ...

If during compilation an error occurs, the compiler will stop compilation
and display thelineonwhichtheerror occurred. The crosscompiler shows
thelinenumber and thefilenamewheretheerror occurred aswell asthetype
of error that has occured.

Downloading the compiled image

Once the source code has been compiled the image needsto be downloaded
to an EPROM emulator or programmer.

Downloading to a LeBurg EPROM emul ator

The MPE cross compiler supports the LeBurg emulator. If you haveal e
Burg emulator, theinstaller should have setup your X Shell configuration to
useitif itisalready inthe DOS path. Inthiscasejust press F4 and theLe
Burg software should run. If theinstaller could not find your L eburg emul a-
tor software, you have to setup X Shell to run your emulator software. Refer
to the X Shell manual.

Downloading to a different emulator

Thebinary image can be downloaded to any EPROM emulator aslong asthe
emulator’ ssoftware supportsbinary imagefiles. Refer tothe X Shell chapter
on how to setup the X Shell configuration and the emulator’ s software man-
ual for download instructions.

Page 37



Generating a RAM target Forth MPE Forth 5 for RTX2000

Downloading to an EPROM programmer

The MPE development system supports the Sunshine programmer. If the
installer found the programmer’ s software, then your configuration will be
setup already. Toruntheprogrammer’ ssoftware pressF6. To setup X Shell

MPE RTX 2000 RAM PowerForth v3.00
Copyright (C) 1988, 1989, 1990 Microprocessor Engineering
Free Dictionary Space: 29556 bytes

ok

Figure 5 - The target sign-on

to use a EPROM programmer, refer to the XShell chapter.

Running the target Forth

Theimage generated by the compiler hasbeen downloaded tothetarget, itis
ready to be reset and the Forth tested.

Switching to target mode

To receive characters from the target, X Shell must be in target mode. The
current modeis displayed on thetop banner. If you are not already in target
mode, type Alt-T or F5.

Resetting the target board

Once the image has been downloaded, you can reset the target board. Y ou
can either use the reset supplied on the board or if no reset is on the board,
turn the board’ s power off and on again.

Thesign-on

Oncetheboard hasbeen reset, thetarget should sign-on. Y ou should seethe
messageinfigure 5. The version number and the number of bytes free will

Page 38



MPE Forth 5 for RTX2000 Generating a RAM target Forth

depend on your system. Y ou now should have aworking Forth. If thetarget
didn’t show the message, then you may have a problem with:

- the serid line drivers

- the memory map definition

. your target board

- your EPROM emulator/programmer

Each of these should be checked.

The serial linedrivers

If you do not get the sign on message, your transmit word might not bework-
ing correctly. Y ou can check that you can transmit a character up the serial
line, by appending code for emitting a character up the seria line, onto the
end of theinitialisation word INIT-SER. Therefore acharacter can betrans-
mitted and seen without actually running any Forth.

The memory map definition.

If the memory map for either the ROM or RAM definitionsiswrong. The
target may not sign-on at all or may generate ‘ garbage'.

Y our target board

Itisalwaysnecessary to check theobvious. Istheseria lineconnected?Has
your target board got power? EPROMSRAM plugged in correctly? Are
jumpers set correctly?

Y our EPROM emulator/programmer

Check to seeif your emulator isemulating an EPROM that your target board
Isexpecting. If you havethewrong EPROM set, your target will not signon.

Testing the Forth - an example

Once the forth has signed-on, you need to test that it's working properly.
Type WORDS, thiswill display all the Forth words available.

If thisworksthen typein,

Page 39



Generating a RAM target Forth MPE Forth 5 for RTX2000

: FORTH-TEST \—; A quick test for Forth
SHELLO!

FORTH-TEST

This should display,

HELLO
followed by the ok prompt.

Cross-compiling an application

Onceyour Forthisworking on your target board, you will now want towrite
and compile your application.

Writing an application

Supplied with XShell isthe TED editor. Thiscan berun by pressing F2. A
different editor can be used by changing the X Shell configuration. Seethe
X Shell chapter.

Modifying the control file

Once your application has been written, you can add it to the control file.
Near thebottom of thecontrol file, thereisalist of commandsintheform:
ALL FROM-FILE <name>

To compile your application files you add them to the end of the list.

Developing your application

As Forth is an interactive language, you can use this to your advantage by
writing small sections of code and testing asyou go. To helpyoudothis, the
ROM PowerForth utilitiesallow you to access your source files on the host.
Y our source files can be compiled from the target without cross-compiling
the whole application. Seethe chapter ROM PowerForth Utilitiesfor more
information.

Page 40



MPE Forth 5 for RTX2000 Generating a RAM target Forth

:MY-APP \—;
INIT-SER \Initialise the serial line
BEGIN \ Application never ends...
S Hello" \
AGAIN

MAKE-TURNKEY MY-APP

Figure 6 - Example turnkey application

Running your application

To compile the application you need to:
run the cross compile(press F3)
download to the EPROM emulator/programmer(press F4 or F6)
reset the target

The target board signs-on. Y ou can now test your application.

Generating a turnkey application

Onceyou havewritten your application, you will want to makeit start when
thetarget board isreset. Thisisknown asaturnkey or autostarting applica-
tion. Your application does not necessarily need to be interactive, so the
compiler directiveNO-HEADS can beused. Thisremovesall theword head-
ers, so making the final image more compact.

To make an application turnkey, use the directive MAKE-TURNKEY in the
form:

MAKE-TURNKEY <name>

where<name> isthe name of thewordto run at startup. Theword <name>
must be defined before using thisdirective. The exampleinfigure 4 gener-
ates a simple turnkey application when cross compiled. If you require the
use of serial communications or the multitasker, you must initialisethemin
your application. To initialise the serial communications use the word
INIT-SER. To initialise the multitasker use INIT-MULTI.

Page 41



Generating a RAM target Forth MPE Forth 5 for RTX2000

Blank Page

Page 42



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Generating an Umbilical Forth target

This chapter describes how to generate an Umbilical Forth target for your
target board. It guides you through:

. setting up your hardware and software

- writing the serial line drivers

- modifying the memory map for your board
- compiling and running atarget Forth

Supplied with your cross compiler are configurationsfor specific boards. If
you have one of these boards, the generating of atarget forthisgreatly sm-
plified. If you do not have asupported board you will haveto configure the
cross compiler for your board and write new serial line drivers.

|s your board already supported?

If you have the MPE RTX Powerboard you can use the supplied control
files. Therearefilesfor the 2000 (8 and 10 MHz), 2001A and 2010 variants
of the RTX processor. A control fileisalso supplied for use with the Harris
RTX DB board. By using one of these, theinstallation of an Umbilical Forth
for your board will be greatly smplified. Thecontrol fileto usewill depend
onthetype of board you have. Thesupplied control filesareinthedirectory
MONITOR\CONFIGS.

If you do not have thisboard you will haveto create acontrol file and serial
line drivers for your board.

The Umbilical system

An RTX umbilical systemisgenerated intwo parts, the monitor and the ap-
plication. The monitor has three functions:

Page 43



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

- to download an application
. to execute application code
- to provide I/O servicesto the application

In order to run an application you must have aworking monitor installed on
your board, in EPROM or an EPROM emulator. Y ou can then crosscompile
the application and download it viathe serial line.

The monitor control file

The monitor control file contains all the details of your board that the cross
compiler needs to know. Thisincludes:

- the memory map of your board
. whether you wish alog to be displayed
- the clock rate of your board’s crystal

Aswell as containing configuration information, the control file contains a
list of fileswhich are to be cross compiled. Thesefiles are used to generate
the monitor for the board.

Oncethe cross compiler knowsthese items, it can generate a correct binary
Image from your source code.

Creating a control file

To createanew control file, copy an existing oneand then modify it tomatch
your board. Thisisnormally easier than generating one from scratch. Ex-
ample control files are in the directory MONITOR\CONFIGS.

The memory map

The memory map describes the addresses where ROM and RAM start and
end inyour target system. The memory map is described to the cross com-
piler in your control file.

The memory map is defined by the:

Page 44



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Start of ROM
Start of RAM
End of ROM
End of RAM

From thisinformationthe crosscompiler placesany itemsit needsinthecor-
rect area of memory.

Setting the memory map

The memory map is described in two partsin your control file.
- the start and end of ROM
- the start and end of RAM

Setting the start and end of ROM

The start and end of ROM is defined by using the compiler directive KER-
NEL. KERNEL isused intheform:

rom-start rom-end KERNEL <name>
whererom-start isthe address of the start of ROM, rom-end isthe address of

theend of ROM and <NAME> isthe name of the output file. The crosscom-

piler automatically adds the extension .IMG to <NAME> when saving the
file. Thenumbersrom-start and rom-end are, by default, in decimal, but can
be entered in hex by preceding them by a $.

<NAME> isalso the name of the kernel pagein apaged system. For morein-
formation see Paged targets, chapter 12.

Setting the start and end of RAM

The start and end of RAM isdefined by using the compiler directive DATA-
PAGE. DATA-PAGE isused in the form:
ram-start ram-end page-id DATA-PAGE <name>

whereram-start isthe address of the start of RAM, ram-end isthe address of
the end of RAM, page-id isaunique identifier for this area of memory and
<NAME> isthe name for this area of memory. The numbers ram-start and

Page 45



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

ram-end are, by default, in decimal, but can be entered in hex by preceding
the value with a $.

Thelabel <NAME> isthename of thekernel’ sdataareainapaged system. In

anon-paged system <NAME> is not actually used but must be stated. Ina
non-paged system, page-id can be set to any number. For moreinformation
on paged systems, see the chapter on paged targets .

Setting the compilation pages

In anon-paged system, the compiler must be instructed to compile into the

pages defined by KERNEL and DATA-PAGE. Therefore, after the memory
map is defined you must code:

USE-CODE <namel>
USE-DATA <name2>

where <namel> isthe name of the kernel ROM page defined with KERNEL
and <name2> isthe RAM page defined with DATA-PAGE.

An example

For example, if your target board hasamemory map asin figure2, your con-

Ram-end FFFF

Ram

Ram-start 8000
Rom-end 7FFF

Rom

Rom-start 0000

Figure 7 - Example memory map
trol file should be modified so that it reads,

$0000 $7FFF KERNEL Kern
$8000 $FFFF 0 DATA-PAGE Kern-data

Page 46



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

USE-CODE Kern
USE-DATA Kern-data

Thisindicatestwo areasof memory (pages) withnamesKernand Kern-data

Modifying the serial line drivers

Y our target board communicates with the the external world viaa UART.
If you are using an 8530 or 2691 UART, one of the supplied serial driver
filescan be used. These arein the directory MONITOR\DRIVERS.

If you are using a different UART you will need to write all the words re-
quired to:

Initialise the UART
- Send a character
Receive a character
. Test if acharacter has been received

Aswith the control fileitisnormally easier to modify an existing serial line
driver file rather than creating your own from scratch.

Initialising the serial line

The word that must perform all the initialisation is the word INIT-SER. |t
must perform all the UART initialisation required. Thisincludes setting:

- the baud rate

. any handshaking required
- the number of data bits

- the number of stop bits

. the parity to be used

Itisrecommended that the baud rateisinitially set to 2400 baud until thetar-
get board isworking. It canthen beraised to 9600 or abovewhich makesthe
target seem moreresponsive. The RTX will normally run without problems
at 38400 baud.

Page 47



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

Sending a character to the host

The target code needs to be able to send a character to the host for display.
Therefore, you need to write a word which:

. waits for the transmit line to become available
. transmits a character to the host.

Thetransmit word can either poll to detect whether thetransmit lineisavail-
able or ,if available, an interrupt can be used. The word must be called

(EMIT). The stack effect of (EMIT) is,

(EMIT) \ char — ; send char to host

Receiving a character from the host

Thetarget code needs to be able to receive a character from XShell. Todo
thisit needsto:

- walit for a character to be received
place the character on the forth stack

The receive word must be interrupt driven and the word must be called
(KEY). The stack effect of (KEY) is:

(KEY) \— char ; wait for char to be received

Detecting areceived character

Thetarget needsto detect if acharacter hasbeen received. Thiscan beused
as part of (KEY). (KEY?) needsto:

return true on the forth stack if a character isavailable (-1)
return false on the forth stack if a character is not available (0)

The stack effect of (KEY?) is:

(KEY?) \—1t/f; trueif character received

Page 48



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Setting up the system

Setting up the system involves both hardware and software. The target
board, PC, EPROM emulator/programmer and serial line have to be con-
nected as well as configuring X Shell to run the cross compiler.

Setting up the hardware
To generate an interactive Forth target you need:
- an|BM PC or compatible
. A serid line
- A target board
- An EPROM emulator or programmer

Y our PC needsto haveat |east oneserial lineport for connecting to thetarget
board, so making the Forth interactive.

If the Leburg EPROM emulator isbeing used, you will also need to connect
the emulator to the digital 1/0 card installed in your PC.

Setting up the software

To compile source code that generates Forth target, you need to configure
the crosscompiler environment, XShell, torunthe crosscompiler. For more
detailed information on configuring X Shell, see the X Shell manual.

Running X Shell

If you allowedtheinstaller tomodify your AUTOEXEC.BAT, youjust need
totype XS3torun XShell. If youdidn’t, then you need to state the full path
of XShell. Theinstaller will place X Shell inthedirectory, XRTX\XSHELL
by default.

Configuring X Shell to use your control file

Beforeyou can cross compileyour source code, you must configure X Shell.
X Shell requiresthe nameof the control fileyou areusing. Theconfiguration
fileloadstheremaining files so you need only to load the configurationfile.
To setup the configuration file as the file to be loaded,

Page 49



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

1) enter XShell whileinthe MONITOR directory
i) type Alt-K, Configuration options

1) press B, setup commands

Iv) press E, compiler commands

v) type ALL FROM-FILE followed by the path and name of your configura-
tion file, i.e ALL FROM-FILE CONFIGS\CONTROL.CTL followed by
ENTER

Vi) press the escape key to return to the previous menu
vii) press E, save configuration
viil) Press the escape key to return to the host Forth

Y our XShell configuration is now set to cross compile your configuration
file.

Configuring the serial ports from XShell

X Shell isused to communicate with thetarget. Y ou therefore need to set up
X Shell to the same serial line settings that you are going to use on the target
board.

Todothis:

1) run Xshell whilein the MONITOR directory
i) type Alt-K, Configuration options

lii) press D, seria line settings

Iv) set up your settings by pressing letters a-z
V) press the escape key when finished

vi) type E, save configuration

vii) press the escape key to return to the host forth

Page 50



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Cross compiling the monitor

Now the hardware and software has been setup, you can now cross compile
the monitor source code. This should then be either downloaded into an
EPROM emulator or blown into EPROM.

Creating an image

To cross compile the source code, press F3. XShell clears the display and
the cross compiler startscompiling. The compiler displaysits sign-on mes-
sage then compiles the source code.

The cross compilelog

Following thecompiler sign-onyou seethecrosscompilelog. Aseachword
Is compiled the compiler displays the words address, its type and its short-
ened name. The compiler typeis coded as two characters asin table 1.

Turning on and off the log

Instead of having the datadisplayed for each compiled item, you can chose
to only display adot. The advantage of thisisthat the compiler spendsless
time displaying dataand so the crosscompileisquicker. Todo this, change

Cod |Compiled type Code |Compiled type

e

VR |Variable FV Floating point variable
CN |Constant FC Floating point constant
LB |Label FA Floating point array

: Colon defintion EQ Equate

CD |Code definition CR Create ... Does>

DF |Deferred word us User variable

VC Vocabulary

Table 5 - Key to cross-compiler log

Page 51



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

the compiler directiveinthe control filefrom LOG toNO-LOG. Thelog can
be turned on again by replacing LOG with NO-LOG in the control file.

Sending the log to afile

Thecrosscompiler will redirect thelogto afileinstead of thedisplay. Todo
this, use:

FILE: <name>

where<name> isthefilenameto generate. Thisdirective must beplaced be-
fore the command CROSS-COMPILE.

Sending the log to a printer
The cross compiler will send thelog to aprinter. To do this, use:

PRN:
before the command CROSS-COMPILE.

The compilation summary

Oncethe crosscompiler hasfinished, it displaysinformation about the com-
pilation. Thisincludes:

- any unresolved references
- the size of the compiled image
. the number of forward references made

Wordsthat are unresolved references are words which arereferenced in the
source code but are not defined. These can be spelling mistakes or some of
the code is not being compiled.

The size of the compiled image isthe amount of image downloaded to your
emulator.

Theforward reference count simply informsyou of the number of wordsde-
fined after they are first used.

Page 52



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Problems, Problems ...

If during compilation an error occurs, the compiler will stop compilation
and display thelineonwhichtheerror occurred. The crosscompiler shows
theline number and thenameof thefileinwhichtheerror occurred aswell as
the type of error that occured.

Cross compiling the Forth kernel

Once you have amonitor you can cross compile the Forth kernel code and
download it to thetarget. Thereisacontrol filefor the kernel code, whichis
laid out in asimilar fashion to the monitor control file. Example kernel con-
trol files are in the directory APP\CONFIGS.

Themain difference between thetwoisthat thekernel control fileendswith
the UMBILICAL-FORTH directive. Thisinstructs the cross-compiler to run
anumbilical Forth system. Oncethisiscompleteyouwill beinstructedtore-
set your target board, and download the kernel.

Downloading the Forth kernel

Once you have reset your board you will be asked whether you wish to
“download files to target?” Whilst developing you should answer “Y” as
you will not have your Forth kernel and applicationin EPROM. Itisonly at
thefinal test stage when the application codeisin EPROM that you will not
need to download it. During the download stage, adot will be produced for

Please reset target system, and then
press <space> to run Umbilical Forth.

Download files to target? (y/n) Y

Downloading APP2000.IMG to page 00, offset 8100 ...

Figure 8 - Umbilical download messages

Page 53



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

Umbilical Forth v3.00

Target: Harris RTX 2000/20001A/2010
Copyright(C) 1990,91 Microprocessor Eng. Ltd.
BASE now in DECIMAL

ok

Figure 9 - The Umbilical Forth sign-on

each 1K block of codethat isbeing downloaded. An example screen display
iIsshown in figure 8

Running the target Forth

Once the image generated by the compiler has been downloaded to the tar-
get, it isready to be tested.

Thesign-on

Y ou will seeamessage similar to that infigure9. The cross compiler itself
displays this message, so the target is not necessarily up and working. To
test thetarget board, you needto defineadefinition. Thereforeif youtype:

: FORTH-TEST \—; A quick test for forth
SHELLO! \

FORTH-TEST

This should display,
HELLO
followed by the ok prompt.
If the you didn’t get this response, then you may have a problem with:
- the serid line drivers
- the memory map definition
. your target board
- your serid line
- your EPROM emulator/programmer

Page 54



MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Each of these should be checked.

Assuming all iswell you can proceed to generate your application.

Writing an application

Supplied with XShell isthe TED editor. Thiscan berun by pressing F2. A
different editor can be used by changing the X Shell configuration. Seethe
XShell chapter.

Modifying the control file

Once your application has been written, you can add it to the kernel control
file. Near the bottom of the control file, thereisalist of commandsin the
form:

al from-file <name>
To compileyour applicationfiles, you should add themto theend of thelist.

Running your application
To compile the application you need to:
run the cross compile(press F3)
reset the target
- download the application to the target board

The target board should then sign-on. Y ou can now test the application.

Generating aturnkey application

Onceyou havewritten your application, you will want to makeit start when
thetarget board isreset. Thisisknown asaturnkey or autostarting applica-
tion.

To make an application turnkey, use the directive MAKE-TURNKEY in the
form:

MAKE-TURNKEY <name>

Page 55



Generating an Umbilical Forth target MPE Forth 5 for RTX2000

:MY-APP  \—;
INIT-SER \Initidlise the serial line
BEGIN \ Application never ends...
" Hello" \ Replace seria linedrivers!
AGAIN

MAKE-TURNKEY MY-APP

Figure 10 - Example umbilical turnkey application

where<name> isthe name of thewordto run at startup. Theword <name>
must be defined beforeusing thisdirective. If your application usesthe serial
line you will also need to ensure that you are using adriver which does not
use the umbilical mechanism. The examplein figure 10 generatesasimple
turnkey application when crosscompiled. To seethe exampleworking, you
must switch XShell into target mode.

Page 56



MPE Forth 5 for RTX2000 Optimising your target Forth

Optimising your Target Forth

Onceyou have atarget Forth, you may want to either reduce the size of your
Image or increase the execution speed of the code. This chapter describes
thefeaturesof the M PE Devel opment systemwhich helpyouwiththisaim.

Reducing the size of your image

During development you may need to reduce the size of your target image.
Normally, your application has grown too large for your ROM space. Y ou
can reduce the size of your compiled image by:

removing headers
. factorising your code
removing excess code
using equates instead of constants
using Umbilical Forth

Removing headers

To reduce the size of the compiled image, you can instruct the compiler to
compile all or some of the code without heads. For each word defined, the
cross compiler generates aheader in thetarget image. A header isthe name
of the word as a counted string and is used when the target is used interac-
tively. Therefore, by removing the heads of wordsyou reducetheinteractiv-
ity of your system.

Removing al headers

To remove the heads from all the code, use NO-HEADS. The compiler will
produce codewhich will begreatly reducedin size, but cannot be used inter-
actively.

Page 57



Optimising your target Forth MPE Forth 5 for RTX2000

Selectively removing headers

To select anumber of wordsto be made headerless, use INTERNAL and EX-
TERNAL. INTERNAL instructsthe compiler to stop generating headers, and
EXTERNAL instructsit to generate headers again.

Factorising your code

When writing in Forth, code should be reused asmuch aspossible. By reus-
ing code, your target image can be reduced greatly. The smaller the proce-
dures you use, the more easily they can be reused. In addition, small
procedures are easy to test. Consequently code written with small proce-
duresis normally more reliable.

Removing excess code

During development, debug and test code isinserted into the source. This
codeiseasily left and forgotten about. By stripping out thisexcesscodeyou
can gain more space in the EPROM. A tool like MPE’s cross-referencer,
XREF, isinvaluable for this sort of pruning.

Using equates instead of constants

An equate is aconstant that just resides within the cross compiler. It there-
fore cannot be referenced when interactively debugging on your target sys-
tem. Theactual value of the equateiscompiled ‘in-line’ instead of refering
toaconstant. Thereforeyou savethe space onthetarget board for each con-
stant (6 bytes + number of characters in the name) defined but sacrifice
some interactivity. This only works if you don’t refer to the equate many
times, asan equate uses 2 more bytesthan aconstant, every timeit isrefered
to.

Defining an equate
An equate is defined in asimilar way to a constant:

xxxx EQU <name>

where xxxx is the value of the equate and <NAME> isits name.

Page 58



MPE Forth 5 for RTX2000 Optimising your target Forth

Using an equate

An eguate is used in the same way as a constant, by stating its name.

Using Umbilical Forth

If you require a compact target Forth but without the inconvenience of re-
moving target headers, you can use Umbilical Forth. Umbilical Forth gives
you an interactive Forth in a very compact size (Umbilical Forth kernel is
about 4k). The kernel doesn’t contain all the words in the ROM target, so
you might have to write a few words to get your code to compile or copy
some code from the ROM target Forth. For more details see the chapter on
Generating an Umbilical Forth target.

Speeding up your code

The RTX processors have ahigh degree of paralellism in their architecture.
It is sometimes possible to merge several instructions, and hence increase
the execution speed. See the chapter on Assember Opcodes to find out how
to do this.

Page 59



Optimising your target Forth MPE Forth 5 for RTX2000

Blank Page

Page 60



MPE Forth 5 for RTX2000 Assembler opcodes

Assembler Opcodes

| ntroduction

In most conventional Forth implementations, one Forth primitive corre-
sponds to several machine instructions. In the case of the RTX family of
processors, several Forth primitives can be combined into one instruction.
Thereisthereforeno assembler required for creating Forth primitives. How-
ever, it is possible to combine several Forth primitive instructions into one
RTX instruction. Doing this, allows those primitives to be executed in the
same clock cycle, and occupy one memory cell. How to combine primitive
Instructionsisdescribed in the section bel ow about building new opcodes.

For afull description of the processor instruction set, you should consult the
excellent ‘Harris RTX-2000 Programmer’s Reference Manual’, supplied
separately. Thisvolume contains adescription of all the useful instructions,
and provides a valuable insight into programming the RTX processors.

Processor Architecture

The RTX-2000 isatwo stack processor. One stack isused to hold datato be
acted on by primitive instructions and secondary subroutine calls, whilst the
other is used to store subroutine return addresses and other housekeeping
values. Eachinstruction onthe RTX-2000is16 bitswide. Thereareon-chip
registersin the processor core, each also 16 bits wide. These hold the stack
pointers, act as temporary storage during arithmetic calculations and map
1/O.

There is no decode ROM in the processor to protect it from errant instuc-
tions. For most instructions, all bits are significant, and each controls hard-
wired logic in the processor core.

Page 61



Assembler opcodes MPE Forth 5 for RTX2000

Building New Opcodes

The user isprovided with anamed set of instructionswhich match the Forth
word set, but other instructions can be formed asrequired, and the facilities
for generating new instruction mnemonics are described below.

Why should you build a new opcode?

The highly parallel nature of the processor, gained by using many internal
buses, meansthat two consecutive instructions can occur that use independ-
ent parts of the processor. If this happens, it isusually true that the different
parts of the processor are controlled by separate sets of bitsin the processor
opcode. Thetwo instructions can be merged to form anew instruction, halv-
ing thetimetaken for the sequenceto execute. Thismerging procedureisre-
ferred to as optimisation.

To avoid generating many mnemonics to describe these merged opcodes,
thecompiler containsaset of rulesfor merging opcodesautomatically. A list
of predefined opcodesis given later.

When to build a new opcode

If an opcodeisused only onceitisnot necessary to build aspecial opcodefor
it and the code can beinserted ‘in-line’ . However, if an opcode will be used
many timesit is often worth making a special word for it. This sort of deci-
sion issimilar to that taken when factorising normal Forth code.

N.B. When building new opcodes be careful to test them interactively first.
Since the processor has no protection against illegal instructions, and most
instructionswill do something, theresult of amistakeisoften havingto reset
the processor.

How to define an opcode in-line

Anopcode can beinserted into adefinition, using the [ and ] operatorswhich
temporarily turn off the compiler. Thisallows you to put the instruction di-
rectly into the dictionary using Forth’s*,* word. For example, a computed
goto can be generated by writing into the program counter with thereturn bit
set. The following sequence compiles this opcode:

..... [ $BEA7,] ......



MPE Forth 5 for RTX2000 Assembler opcodes

How to define a new opcode permanently

Y ou can define a new opcode by using the defining word UCODE in thefol-
lowing way:
nnnn UCODE <name>

Thiswill automatically generate codeto lay down therequired opcodewhen
itsnameisspecified. Thisissimilar to theway anormal Forthword (defined
using acolon) will generatecodeto executeitself whenitsnameisspecified.

For examplethe RTX-2000 opcodesSELDPR (fetch/storesin datapage) and
SELCPR (fetch/stores in code page) can be added as follows.

$B08D UCODE SELDPR \ define opcode
$B0OOD UCODE SELCPR \ define opcode

Y ou can how use SELDPR and SELCPR in the same way as you would use
any other Forth word such as DROP or 2+.

How to Control the Optimiser

In some casesit may benecessary toinhibit the optimiser’ saction, or modify
it in some way.

Why should you modify the optimiser’s action?
When the opcodeinvolvesthereturn stack it isoften necessary toturn off the

optimiser. Another common occasion is with the word COMPILE which
later compilestheword after itself. If the next two words can be merged, the
action that will be compiled will be the compound action, which isnot what
isusually required. Inthiscaseitisnecessary to turn off the optimiser so that
the optimisation does not happen.

How to modify the optimiser’s action

Two opcodes can be kept separate by using theimmediateword [\\]. For ex-
ample, the sequence

Page 63



Assembler opcodes MPE Forth 5 for RTX2000

COMPILE + 2*
would later compile the merged opcode

+ 2%
whereas

COMPILE + [\\] 2*
breaks the optimisation leading to the desired result. There is a non-

immediate form \\ which is most often used inside defining words or struc-
ture control wordsto prevent undesired merging when the opcode or struc-
tureis compiled.

Thisfeature of using the optimiser to pile up opcodes can be used to good ef -

fect with the streaming instruction TIMES (also referred to as OF( in the
Harrisdocumentation) to build up acompound instruction that isrepeated.

Predefined Opcodes

A number of opcodes are predefined in the cross compiler. These can be
used just like Forth words, but because they are defined as RTX opcodes,
they executein one or two cyclesonly. For convenience, they are presented
astablesof related instructions. However, for detail ed information about the
RTX opcode set, you should consult the Harris documentation.

Opcode Name Opcode Name
0A096 RTR 0AQ9E RDR
0A196 R’ OAADE C

0B010 -SOFTINT 0B090 SOFTINT
0B0OOD SELCPR 0B0O8D SELDPR

Page 64

Table 6 - Special register opcodes




MPE Forth 5 for RTX2000 Assembler opcodes

Opcode Name Opcode Name
OBEO3 CR@ OBE83 CR!
OBEO4 MD@ OBE84 MD!
OBEO5 SQ@ OBE85 SQ!
OBEO6 SR@ OBE86 SR!
OBEOQ7 PC@

OBEOS8 IMR@ OBES88 IMR!
OBEQ9 SPR@ OBE89 SPR!
OBEOB IVR@ OBESB SLR!
OBEOC IPR@ OBESC |PR!
OBEOD DPR@ OBESD DPR!
OBEOE UPR@ OBESE UPR!
OBEOF CPR@ OBES8F CPR!
OBE10 IBC@ OBE90 IBC!
OBE11 UBR@ OBE91 UBR!
OBE13 TCO@ OBE93 TCO!
OBE14 TCl1@ OBE94 TC1!
OBE15 TC2@ OBE95 TC2!

Table 7 - Opcodes for internal register access

Opcode Name Opcode Name
0A41A u/r 0A45A ur
0A458 u/ O0A51A SU
OAB55A S 0A558 S
0A49C u*" 0A89C u*’
0A89D *? 0A49D *

Table 8 - Opcodes for step mathematics

Page 65



Assembler opcodes

MPE Forth 5 for RTX2000

Opcode Name Opcode Name
OBEOO G@ OBES80 G!
O0CEOO0 u@ 0CES80 u!
OEEQO @ OEES80 !
OFEO0O0 C@ OFES80 C!
0E942 @++ 0E9C2 I++
0F941 Ca++ OF9C1 Cl++
0E940 @+ OE9CO I+
0E540 @- OE5CO I-
0F940 Co+ 0F9CO Cl+
0F540 C@- OF5CO0 Cl-
Table 9 - Memory access opcodes
Opcode Name Opcode Name
0A001 0
0A002 2* 0A003 2*C
0A004 Cu2/ 0A005 C2/
0A006 uz/ 0A0Q7 2/
0A008 N2* 0A009 N2*C
OAQOA D2* 0AQ0B D2*C
0A0QC CuD2/ 0A00D CD2/
O0AOOE uD2/ OAQOF D2/

Page 66

Table 10 - Shift opcodes




MPE Forth 5 for RTX2000

Assembler opcodes

Opcode Name Opcode Name
0A040 NIP 0AE40 DROP
0A0CO DUP 0AECO OVER
OAES80 SWAP OBEQO R@
OBEO1 R> OBE81 >R
Table 11 - Stack operator opcodes
Opcode Name Opcode Name
0A240 AND 0A340 NOR
0A440 SWAP- 0A540 SWAP-C
0A640 OR 0A740 NAND
0A840 ++ 0A940 +C
0AA40 XOR 0AB40 XNOR
0AC40 - 0AD40 -C

Table 12 - Dyadic ALU opcodes

Optimiser Glossary

Thefollowing words may be used to control the way in which the compiler
optimises the code.

Page 67



Assembler opcodes

MPE Forth 5 for RTX2000

Opcode Name Opcode Name
0A000 NOOP 0A000 NOP
0B8CO 0+ 0B8C1 1+
0B8C2 2+ 0B4C1 1-

0B4C2 2- 0A012 2%’
0BCCO NEGATE ODEOO LIT
OBE82 TIMES OBE82 Of(
OBE82 EXTRA( OBE87 EXECUTE
OBEA7 GOTO OBEAO R

08800 ?BRANCH 09000 BRANCH
09800 (NEXT) 0A100 NOT

Table 13 - Miscellaneous opcodes

W] —

“bracket-stop-opt”
Used during compilation to break the optimisation sequence at this
point. Opcodes either side of [\\] will not be merged. See

NO-OPTIMIZE OPTIMIZE

NO-OPTIMIZE —

“no-optimise”
This directive disables the opcode optimiser. The optimiser can
merge several opcodes into one, so producing smaller and faster

code. Thedefault stateisOPTIMIZE. Theusual reasontoturnthe
optimiser off isin order to build atable of opcodes.
For example:

CREATE OPCODE-TABLE
] @!+0<-R>DROP>RR@ [

Page 68



MPE Forth 5 for RTX2000 Assembler opcodes

Without any optimisation control, several elements of this table
would be merged, producing anincorrect result. The optimiser can

be ‘broken’ using the [\\] function as follows:

CREATE OPCODE-TABLE

] @[\ ! W + [\ o< [W] - [W] R> W]
DROP[\\] >R [\ R@ [\] [

The use of [\\] after each opcode forces the optimiser not to merge
any opcodes, but makes the code longer and difficult to read or

understand. A better solution is to use NO-OPTIMIZE and
OPTIMIZE to turn the optimiser off for a short while.

NO-OPTIMIZE

CREATE OPCODE-TABLE
] @' +0-RDROPRR@ |

OPTIMIZE

NO-TAIL-OPT —

“no-tail-opt”
A procedurethat endsin acall to another procedure, followed by a
return can often by optimised by just branching to the other
procedure. Because some Forth words can make assumptions
about the use of the return stack, this optimisation is controlled
separately from all other optimisations. The default is

NO-TAIL-OPT. It is recommended that you develop the code
without this optimisation, and then turn it on for final debugging.

NO-TAIL-OPT and TAIL-OPT can be used around singlewords

iIf required.
A L :
B ... A

if TAIL-OPT isactivethelast call to A will beconvertedtoajump,
saving two bytes and one clock cycle. If thisisundesirable usethe
code below.

A L X
NO-TAIL-OPT

TAIL-OPT

Page 69



Assembler opcodes MPE Forth 5 for RTX2000

OPTIMIZE —

“optimise”
This directive enables the opcode optimiser. For details see
NO-OPTIMIZE.

TAIL-OPT —

“tail-opt”
Turns on branch optimisation. The default is OFF. See
NO-TAIL-OPT

Page 70



MPE Forth 5 for RTX2000 The Multitasker

Multitasker

The multitasker supplied with the MPE development system can greatly
simplify complex tasks by breaking them down into managable chunks.
This chapter leads you through:

Initialising the multitasker

. writing atask

. communicating between tasks
handling events

The multitasker isinthefile MULTIRTX.FTH in the\ROM and \RAM di-
rectories.

Note: The multitasker cannot be used with Umbilical Forth

Initialising the multitasker

Themultitasker needsto beinitialised beforeuse. At compiletimethecross
compiler must betold thetotal number of tasksthat your system requiresand
at run-time, all the tasks must be initialised. How to do this at run-time is
dealt with later.

Setting the number of tasks
The number of tasksis set in your control file. Itisintheform:

xxxxX EQU #TASKS

where xxxx is, by default, 4 but can be set to alower number. This reduces
the amount of memory that is allocated to al the tasks., so leaving more
RAM for your application.

Page 71



The Multitasker MPE Forth 5 for RTX2000

: TASK1 \ —; An example task
BEGIN \ Start an endless |oop
7EMIT \ Produce a beep
1000 WAIT \ Reshedule 1000 times
AGAIN \ Go round again

Figure 11 - Multitasking example

Starting the multitasker

To start the multitasker, use MULTI. MULTI starts the scheduler so new
tasks can be added.

Stopping the multitasker
To stop the multitasker, use SINGLE.

Writing atask

Tasks are very straightforward to write, but the way tasks are scheduled
needs to be understood.

Using the scheduler

The multitasker is software scheduled. This means that each task relin-
guishescontrol back to the scheduler whenitsready. Thisisdifferentfroma
pre-emptive scheduler wherethe scheduler interruptsatask. Twowordsare

supplied so that atask can relinquish control back to the scheduler, PAUSE
and WAIT.

Using PAUSE

Theword PAUSE passes control back to the schedul er which executesall the
other tasks once, then returns back to this task.

Page 72



MPE Forth 5 for RTX2000 The Multitasker

Using WAIT

Theword WAIT suspendsatask for acertain number of schedules. Itisused
in the form:

n WAIT

wherenisthe number of schedulesto suspend thetask. When WAIT isused,
it transferscontrol to the scheduler. The schedul er does not executethistask
again until all the other tasks have been executed n times.

An example

Anexampletask isshowninfigure 11. Thetask isan endlessloop withthe

word WAIT embedded init. Whentheword WAIT isexecuted, the schedul er
reschedul es to the next task. The scheduler will not run thistask until it has
run all other tasks 1000 times. Each timethetask is executed, it will emit a

beep.

Task dependant variables

An areaof memory is set aside for each task. This memory contains user
variableswhich contain task specific data. For example, the current baseis
normally a user variable asit can vary from task to task.

Defining a user variable
A user variable is defined in the form:

n USER <name>
where n is the nth byte in the user area.

Using auser variable

A user variableisused in the same way asanormal variable. By stating its
name, its addressis placed on the stack, which can then be fetched using @
and stored by !.

Page 73



The Multitasker MPE Forth 5 for RTX2000

Initialising atask
A task needstobeinitialised beforeitisrun. Totothisit needsto beassigned

to atask number. The task number can range from zero to the maximum
number of tasks stated in the control file. A task isassigned in the form:

ASSIGN TASK1N TO-TASK

where TASK1isyour task word and nisthetask number. For example, toini-
tialise thetask in figure 11, to task 1, you type:

ASSIGN TASK1 1 TO-TASK
The task number is used to control the task.

Controlling tasks

Tasks can be controlled in the following ways:
- activated
- suspended for a number of schedules
- halted
. restarted after being halted

Y ou can also stop the current task.

Starting atask
A task can be started by activating it. To activate atask, use

n ACTIVATE
where n is the task number.

Stopping atask

A task may be stopped for anumber of cyclesof the scheduler or temporarily
suspended. A task may also stop itself.

Page 74



MPE Forth 5 for RTX2000 The Multitasker

Stopping for a number of cycles

To stop the current task for anumber of cycles, use WAIT. WAIT isused in
the form,

nWAIT
where n is the number of cyclesto stop for.

Temporarily stopping atask
To temporarily stop atask, use HALT. HALT isused in the form,

nHALT
where n is the task to be stopped.

To restart a stopped task, use RESTART. RESTART is used in the form,

n RESTART
where n isthe task to restart.

Stopping the current task
Tostopthecurrent task (i.e. stopitself) useSTOP. STOP isusedintheform,
STOP

Handling messages

Anessential feature of the multitasker isthe ability to send and receive mes-
sages between tasks.

Sending a message

To send a message to another task, use the word SEND-MESSAGE. SEND-
MESSAGE is used in the form:

message task# SEND-MESSAGE

Page 75



The Multitasker MPE Forth 5 for RTX2000

Field Contains Size
TCBSP Data stack pointer word
TCBST Task status byte byte
TCBID Task number of message sender byte
TCBMSG |Message code or address word
TCBEVENT |CFA of word run by task’sevent handler ~ word
TCBAC- CFA of main task word word
TION

Table 14 - Multitasker data structure

where message is a 16-bit message and task# is the number of the task to
send the messageto. The message can be data, an address or any other type
of information but its meaning must be known to the receiving task.

Bit when set when reset

7 Task isrunning Task is halted

6 M essage pending No messages

5 Event has been trig- No events
gered

Table 15 - A task's status word

Receiving a message

To receive amessage, use RECEIVE-MESSAGE. RECEIVE-MESSAGE sus-
pendsthetask until amessage arrives. When amessageisreceived thetask
Isre-activated and the sending task number and the datais returned.

Creating events

Eventsare analogousto interrupts. Whereasinterrupts happen on hardware
signals, events happen under software control.

Page 76



MPE Forth 5 for RTX2000 The Multitasker

Writing an event

An event isanormal Forth word. An event is associated to a task so that
when theevent istriggered, thetask isactivated. Therefore, an event isusu-
aly used as initialisation for atask.

Initialising an event

Events are initialised in asimiliar way to tasks. They are assigned in the
form,

ASSIGN EVENT1 n TO-EVENT

where EVENTL1 is your event handler and n is the task number of the task
that it isto be associated with.

Triggering an event

There are two ways of triggering an event:
using SET-EVENT
setting a bit in the status word

Using Set-event

SET-EVENT isaword which setsan event flag for atask. Oncetheevent flag
IS set, the tasker will execute the event before it switches to the task. The
task, is also activated.

Setting a bit in the status word.

A bit can be set in atasks status word which indicates to the multitasker that
an event hastaken place. Thismethod can be used totrigger an event froma
hardwareinterrupt. Refer to Themultitasker internalslater inthe chapter for
details on the status byte.

Clearing an event
To stop an event handler being run, use CLEAR-EVENT.

Page 77



The Multitasker MPE Forth 5 for RTX2000

The multitasker’ s internals

A multitasker triesto simulate many processors with just one processor. It
works by rapidly switching between each task. On eachtask switchit saves
the current state of the processor, and restores the state that the next task
needs.

The Forth multitasker is software scheduled. This meansthat each task re-
linquishes control to the scheduler, which then switchesto the next task. In
this way less processor state information needs to be saved.

The scheduler’ s data structure

The Forth multitasker creates atask control block for each task. The task
control block (TCB) isadata structure which contains information rel evant
to atask (figure ). The status byte (TCBST) contains information on the
execution of the task and its event (figure).

A simple example

The following example is a ssmple demonstration of the multitasker. Its
simpleroleistodisplay an hash (#) every so often, but leaving theforground
Forthrunning. To usethemultitasker you must cross-compilethefileMUL-
TIRTX.FTH into your target.

Defining a smple task
The following code defines a ssimple task called TASK1. It displays a#

every 1000 schedules.
VARIABLE DELAY \ time delay between #s
1000 DELAY ! \ initialise time delay
s TASK1 \—; task to display #s
ASCII $EMIT \ Display adollar (%)
BEGIN \ Start continuous loop
ASCII # EMIT \ Display ahash (#)
DELAY @ WAIT \ Reschedule Delay times

AGAIN \ Back to the start ...

Page 78



MPE Forth 5 for RTX2000 The Multitasker

Initialising the multitasker

Beforeany tasks can be activated, the multitasker must beinitialised. Thisis
done with the following code:

INIT-MULTI
MULTI

The word INIT-MULTI initialises all the multitasker’ s data structures and

MULTI switchesto multitasking. These words need only be executed once
in amultitasking system.

Assigning the exampl e task to atask number

Inamultitasking system, tasks arerepresented by numbers. Therefore, each
task must be assigned to atask number. For this example you type:

ASSIGN TASK1 1 TO-TASK

Thisassignstheword TASK1 to task number 1. It canbeassigned to any task
upto the number of tasks defined in the system (defined by #TASKS in the
control file).

Activating the example task
To activate (run) the example task, type:

1 ACTIVATE

Thiswill activatetask number one. Immediately youwill seeadollar and a
hash ($#) displayed. If you press <return> afew times, you notice that the
Forth is still running. After a couple of seconds another hash will appear.
Thisisthe example task working in the background.

Controlling the example task
The example task can be controlled in several way:
- therate of generation of hashes can be changed
it can be halted
- once halted it can be restarted
it can be started from scratch

Page 79



The Multitasker MPE Forth 5 for RTX2000

Changing the rate of hashes

The rate of production of hashes can be changed by changing the variable
DELAY. Try:

2000 DELAY !

Thischangesthe number of schedul esthat the exampl etasks makesbetween
displaying hashesto 2000. Thereforetherateof displaying hasheshalves.

Halting the example task

Thetask is halted by typing the tasks number followed by HALT:

1 HALT
Y ou notice that the hashes are not displayed.

Restarting the halted task

Thetask isrestarted by theword RESTART. Typethetask number followed
by RESTART:

1 RESTART
Y ou notice that the hashes are displayed again.

Restarting the task from scratch
To restart the task from scratch, just activate it again:

1 ACTIVATE

Y ou notice the dollar and the hash ($#) are displayed, followed by hashes
(#).

Page 80



MPE Forth 5 for RTX2000 The Multitasker

Glossary

Thisglossary contains details of the major wordsin the interrupt and multi-
tasking system. Other wordsexist, but are only used asfractionsof thewords
bel ow.

?EVENT —

“query-event”
If the current task’ s event flag is set, the flag is reset and the event
handler is executed.

ACTIVATE task# —

“activate’
Initialises and starts the given task number. Task O is Forth itself
and was activated when Forth started. Note that ACTIVATE causes
thetask to start from the very beginning. If thetask was halted, and
execution should resume where it |eft off, use RESTART instead.

CLR-EVENT-RUN —

“clear-event-run”
Clearstheevent runflag for thecurrent task. Thisisbhit 4inthetask
status byte.

EVENT? — t/f

“event-query”
Returns true if the event triggered bit has been set in the current
task’ s status byte.

GET-MESSAGE — message task#
“get-message”
Returnsthetask number of the currently executing task (oneself).
HALT task# —
“halt”

Halts the task whose number isgiven. Do not halt task 0. Halting a
task preventsit responding to messages or events.

Page 81



The Multitasker MPE Forth 5 for RTX2000

INIT-MULTI —

“Init-multi”
Initialises the multi-tasker, task 0, and starts the multi-tasker. Just
include thisword in COLD to kick the multi-tasker into action.

INIT-TCBS —
“init-t-c-bees”
The main part of the multi-tasker reset process.

MSG? task# — t/f

“message-query”
Returns true if the task is holding a message, and is therefore not
free to receive another one.

MULTI —

“multi”
Turnsthe multi-tasker on, by clearing thebit inthe TASK# bytein
internal RAM that inhibits the scheduler.

PAUSE —

13 pal'l%ﬂ
Waits for one iteration of the scheduler. Equivalent to:
1WAIT

RESTART task# —

“restart”

Restarts a task that was halted by HALT or WAIT. Unlike
ACTIVATE, the task resumes where it | eft off.

SELF — task#

13 gfﬂ
Returns the task number of the current task. Useful with MSG? in
particular to determinewhether or not amessage has been received
by the task.

SEND-MESSAGE message task# —

“send-message”
Sends a message to the given task. The message address can be
used on its own, or as a pointer to an extended message.

Page 82



MPE Forth 5 for RTX2000 The Multitasker

SINGLE —

“single”
Turns off the multi-tasker by setting the scheduler disablebit inthe
TASK# byte in internal RAM.

STATUS —n

“status’
Returns the task status byte of the current task but with the top bit
(bit 7) masked off. If this value is non-zero, the task has been
awakened for areason other than for normal running.

TCBS — addr

“t-c-b-st”
A label, NOT aword, that returnsthe start addressin DATA RAM
of the table holding the action words for al the tasks. In some
systems thisisimplemented as a constant for visibility.

TO-EVENT cfa task# —

“to-event”
Sets the CFA of aForth word as the action to run when the task’s
event trigger is set.

ASSIGN <word> <n> TO-EVENT

TO-TASK cfa task# —

“to-task”
Storesthe CFA of theword forming thetask actionin thetask table
entry for the task.

ASSIGN <word> <n> TO-TASK

WAIT n—
13 Wai t”
Suspendsthe current task for niterations of the scheduler. If nisO,

the task is suspended until a message or event are received.

Page 83






MPE Forth 5 for RTX2000 Interrupts

Interrupts

This chapter describes how to write interrupt handlers in Forth. It details
how to setup and control interrupt handlers.

| nterrupts on the RTX2000 Family

When aninterrupt occurson an RTX processor, execution startsfromaloca-
tion in the vector table. Each interrupt source is allocated a 32 byte block in
thetable, which can contain asmall serviceroutineor any other codethat the
user wishesto place there.

Thelocation of the vector tableis user selectable by writing to bits 10-15 of
the IBC register. In order that the supplied handlers can be used, the equate

INT-BASE should be set in the control file. The vector table MUST be
aligned on a 1K byte boundary.

There are a number of possible interrupt sources on an RTX processor.
Theseareshownintable16. For moreinformation ontheinterruptsfor your
processor, refer to your processor’s user guide.

Writing Forth interrupt handlers

A Forth interrupt service routine (ISR) isjust like any other Forth word. It
can therefore be tested and debugged like anormal Forthword. Only when
the word isfully tested need it be assigned to an interrupt.

Setting an interrupt

Aninterrupt is set by using the deferred words in table 16. For example, if
you wish to run your word UNDERFLOW-ERR if the parameter stack un-

Page 85



Interrupts

MPE Forth 5 for RTX2000

Offset into Vector Table |Deferred word | Source

0000h Reserved

0020h Reserved

0040h swi-isr Software interrupt

0060h eis-isr External interrupt 5
0080h e4-isr External interrupt 4
00AOQh e 3-isr External interrupt 3
00COh timer2-isr Timer/Counter 2

O00EOh timerl-isr Timer/Counter 1

0100h timer0-isr Timer/Counter O

0120h e2-isr External interrupt 2
0140h rsv-isr Return stack overflow
0160h pSv-isr Parameter stack overflow
0180h rsu-isr Return stack underflow
01A0h pSu-isr Parameter stack underflow
01COh ell-isr External Interrupt 1
01EOh nmi-isr NMI

0200h phantom-isr  |No interrupt

Table 16 - RTX vector table

derflows in your code, you need to assign an action to the deferred word

PSU-ISR (table 16). Therefore your source code should read:

ASSIGN UNDERFLOW-ERR TO-DO PSU-ISR

Page 86




MPE Forth 5 for RTX2000 Interrupts

Some common problems

Thereareafew common problemsthat might cause an interrupt not to work
correctly:

a stack fault
. the sourceis not cleared
. the interrupts are not enabled

Stack fault

Aninterrupt service routine can use the stack whileit is executing, but must
clear up the stack before returning from theinterrupt. The normal symptom
of a stack fault is that the interrupt handler runs but then the target board
crashes, either immediately or after alength of time.

Sourceis not cleared

Onceaninterrupt handler istriggered by an interrupt, the source of theinter-
rupt must be told that the interrupt is being serviced. If thisisnot done, the
source of theinterrupt will carry on generating interrupts. Normally thisap-
pears astheinterrupt handler executing once and then the target board *loc-
king'.

Interrupts are not enabled

Interrupts need to be enabled with EI before any interrupts will be serviced.
The vectors must be setup or the interrupt handler assigned to the deferred
word before theinterruptsare enabled. Y ou will also need to unmask thein-
dividual interrupt control bit for the interrupt you are interested in.

Special Note

Thereisabug in the NMI interrupt on the RTX2000 and 2001 processors,
which meansit isnot safeto perform areturn fromthistypeof interrupt. The

NMI should therefore be used only when areturn will not happen. Thisbug
has been corrected on the 2010 with the addition of an extraNM| mode.

Page 87



Interrupts MPE Forth 5 for RTX2000

Controlling the interrupts
Interrupts can be in one of two states, enabled or disabled.

Enabling interrupts

ToenableinterruptsuseEl. OnceEl hasbeen executed, all interruptsareen-
abled.

Disabling interrupts

To disable interrupts use DI. Once DI has been executed, all interrupts are
disabled.

Unmasking an individual interrupt

The RTX processors allow you to selectively enable and disableindividual
interrupts by use of aninterrupt mask register. To enableaspecificinterrupt,
specify the name of theinterrupt followed by the word UNMASK. Note that
you must still enable interrupts globally using El.

Masking an individual interrupt

Anindividual interrupt may be disabled by specifying its namefollowed by
the word MASK. Once this has been executed, interrupts fromthat source
will not be serviced.

A simple example

The following example patches ahigh level interrupt service routine (I1SR)
onto thetimer/counter O interrupt of the RTX. Totry thisexampleyou must
cross-compile the files INTERUPT.FTH and VECTORS.FTH onto your
target.

Page 88



MPE Forth 5 for RTX2000 Interrupts

Thetimer ISR

The example ISR increments a variable which can be fetched in the fore-
ground to detect that the timer is working.

VARIABLE TICKS \ timer variable

s TICKS-ISR \ —; Increment variable
1TICKS +! \ Increment ticks

Patching your ISR onto the timer

The ISR needsto be patched onto atimer interrupt. Thisis made simpleas
al that isrequiredisthat you assign your | SR to bethe action of the deferred
word TIMERO-ISR.

ASSIGN TICKS ISR TO-DO TIMERO-ISR

Oncethisisdone, thetimer isready to go. All that isrequiredisfor thetimer
to be initialised.

Initialising the timer

The timer needs to be initialised to:
enable Timer O interrupts
enable interrupts globally

To do thisaword INIT-TICKS is defined:

- INIT-TICKS\ —; initialise the timer overflow
TIMERO UNMASK \ enable Timer O interrupts
El \ enable interrupts globally

The timer can be initialised by typing INIT-TICKS.

Testing the timer is running
The timer can be tested by checking the variable TICKS:

TICKS?
This displays the current value of TICKS.

Page 89



Interrupts MPE Forth 5 for RTX2000

Glossary

This glossary contains details of the mgjor words in the interrupt system.
Other words exist, but are only used as fractions of the words below. The
source code for al these words may be found in INTERUPT.FTH.

DI —
13 d_i ”
Disables interrupts.

El —

[1] 1)

e
Enables interrupts.

MASK mask —

13 m&ﬂ
The interrupt(s) specified in the supplied mask are turned off via
the Interrupt Mask Register (IMR).

swi MASK \ Disable software interrupts

MASK-ALL —
13 mﬁ(_allﬂ
Turn off al interrupts viathe Interrupt Mask Register.

MASKED? mask — t/f

“masked-query”
Returns TRUE if the supplied interrupt(s) are currently disabled
viathe Interrupt Mask Register

RESTORE-INT srmd cr —
“restore-int”
Restore the interrupt enable state previously saved by SAVE-INT.

SAVE-INT —srmdecr
“save-int”
Saves the current state of the interrupt enable, and disables

interrupts. See RESTORE-INT.

Page 90



MPE Forth 5 for RTX2000 Interrupts

UNMASK mask —

“un-mask”
Theinterrupt(s) specifiedinthesupplied mask areturned onviathe
Interrupt Mask Register (IMR).

psv UNMASK \ Enable data stack overflow ints

Page 91



Interrupts MPE Forth 5 for RTX2000

Blank Page

Page 92



MPE Forth 5 for RTX2000 Software floating point

Software floating point

Although most applicationsonly requireinteger arithmetic, somedo require
floating point. Therefore software floating point is supplied with the cross-
compiler and the target Forth.

Thecross-compiler hasamore limited floating point support than thetarget,
this means that some words are avaliable within colon definitions, but not
outside them.

Entering floating point numbers
Floating point numbers can be entered in two forms, 1.234 and 0.1234el

Floating point numbers are compiled as literal numbers when in a colon
definition and placed on the cross-compiler’s stack when outside a defini-
tion.

The form of floating point numbers

A floating point number isplaced on the Forth stack. It consistsof three 16-
bit numbers. Twofor themantissaand onefor theexponent. Themantissais
normalised.

Creating variables

To create avariable, use FVARIABLE. FVARIABLE worksin the same way
asVARIABLE. For example, to createafloating point variable called VAR1
you code:

FVARIABLE VAR1

Page 93



Software floating point MPE Forth 5 for RTX2000

When VARL1 is used, it returns the address of the floating point number.

Accessing variables

Two wordsare used to access floating point variables, F@ and F!. Theseare
analogousto @ and !.

Creating constants

To createafloating point constant, use FCONSTANT. FCONSTANT isanalo-
gous to CONSTANT. For example, to generate a floating point constant
called CON1 with avalue of 1.234, you enter:

1.234 FCONSTANT CON1
When the CONL1 is executed, it returns 1.234 on the Forth stack.

Using the supplied words

The supplied words split into several groups:
sines, cosines and tangents
arc sines, cosines and tangents
arithmetic functions
logarithms
powers
displaying floating point numbers
Inputting floating point numbers

Thefollowing functionsonly exist astarget words so you cannot usethemin
calculations in your source code when outside a colon definition.

Page 94



MPE Forth 5 for RTX2000 Software floating point

Calculating sines, cosines and tangents

To calculate asine, cosine and tangent, use FSIN, FCOS and FTAN respec-
tively. They take either an anglein degrees or radians, depending on which
Is set at the moment. See Setting degrees or radians.

Calculating arc sines, cosines and tangents.

To calculate the arc sine, cosine and tangent, use FASIN, FACOS and FATAN
respectively. They return an angle in degrees or radians, depending on
whichisset. See Setting degrees or radians.

Calculating logarithms

Twowordsare suppliedto calculatelogarithms, FLOG and FLN. FLOG cal-
culatesalogarithm to base 10 (decimal). FLN calculatesalogarithmto base
e. Both take afloating point number in the range from 0 to ¥.

Calculating powers
Three power functions are supplied:

X

e
- 10°

Xy

Calculating e*

To calculate e”, use FEAX. FE~X takes x as afloating point number.

Calculating 10"

To calculate 10%, use F10nX. F107X takes x as a floating point number.

Calculating x”’

To calculate x?, use FX1Y. FXAY takes x and y as floating point numbers.

Page 95



Software floating point MPE Forth 5 for RTX2000

Setting degrees or radians

The angular measurement used in the trigonometric functions can be set to
beeither degreesor radians. To set it to degrees, usetheword DEGREES. To
set it to radians use the word RADIANS.

Converting between degrees and radians

To convert between degrees and radians use RAD>DEG or DEG>RAD.
RAD>DEG converts an angle from radians to degrees. DEG>RAD converts
an angle from degreesto radians.

Displaying floating point numbers

Two words are available for displaying floating point numbers, F. and E. .

Theword F. takes afloating point number off the stack and displaysitinthe
form xxxx.xxxxx or X.XxxxxxEyy depending on the size of the number. The

word E. displays the number in the latter form.

Page 96



MPE Forth 5 for RTX2000 Software floating point

Glossary

In the following glossary, you will find all the words that you are likely to
need when using software floating point; the words omitted are, in general,
subroutines used by words in the glossary.

N.B. Abbreviation: f.p. = floating point
D>F d—f

“d-to-f”
Converts a 32 bit double integer to a normalized f.p. number.

DEG>RAD f1—f2
“deg-to-rad”

Convert f1 degreesto its corresponding number of radians.
DEGREES —
“degrees’

Switches floating point calculations to be done in degrees.
DINT f—d
“dint”

L eave the integer part of f as a double number on the stack.

DNORM dn—f

“d-norm”
Normalize double number d by n left shifts. Leaves af.p. number
on the stack.

E. f—

“e-dot”

Print the f.p. number on the stack in exponential form.

F, f—
“f-comma’
Compile the f.p. number on the top of the stack.

F f—

“f—dot”
Print the top f.p. number on the stack in free format.

Page 97



Software floating point MPE Forth 5 for RTX2000

F! f addr —
“f-store”
Store the f.p. number f at address addr.

F+ f1f2—f3

“f-plus’
Add together the top two f.p. numbers on the stack and put thef.p.
result on the stack.

F- f1f2—f3

“f-minus’
Subtract the top f.p. number on the stack from the second f.p.
number on the stack, and put the f.p. result on the stack.

F* f1f2—13

13 f—Star”
Takethetoptwof.p. numbersoff the stack, multiply them together,
and leave the f.p. result on the stack.

F/ f1f2—f3

“f_g w]”
Divide the second f.p. number on the stack by the top f.p. number
and leave the f.p. result on the stack.

F< f1f2—flag
“f-less-than”
Leave trueflag if f1<f2. Otherwise, leave afalse flag.

F<0 f —flag
“f-less-than-0"
Leave atrueflag if f<0. Otherwise, leave afase flag.

F= f1f2—flag

“f-equals’
Leaveatrueflagif thetop two f.p. numberson the stack are equal.
Otherwise leave afase flag.

FO= f—flag

“f-0-equals’
Leaveatrueflagif thef.p. number onthetop of thestack iszero.

Page 98



MPE Forth 5 for RTX2000 Software floating point

F> f1f2—flag
“f-greater-than”
Leave atrueflag if f1>f2. Otherwise, leave afalse flag.

F>0 f —flag

“f-greater-than-zero”
Leaveatrueflagif thef.p. number on thetop of the stack isgreater
than zero.

F# — f [executing]

“f-hash” — [compiling]
If interpreting, takes text from the input stream and, if possible,
convertsitto af.p. number onthe stack. Numbersininteger format
will be converted to floating point. If compiling, the converted
number is compiled.

F#IN —f3]0

“f-hash-in”
Attempts to convert a token from the input stream to a floating
point number. Numbers in integer format will be converted to
floating point. Anindicator (0 or 3) isreturned in the sameway as
an indicator is returned by FNUMBER?.

F@ addr — f
“f-fetch”
Fetch the f.p. number from address addr and put it on the stack.

F10"X f1—f2
“f-10-to-the-x”
Raise 10 to the power f1 and put the result on the stack.

FABS f—If]
“f-abs’
Returns the modulus of the f.p. number on the top of the stack.

FACOS f1—f2

“f-a-cos’
L eave, on the stack, the angle (in degrees or radians) whose cosine
isfl, such that 0<=f2<=180 (f2 in degrees).

Page 99



Software floating point MPE Forth 5 for RTX2000

FARRAY fn-1..f0O n — [parent]

“f-array” n— fn [child]
When generating the array, take n f.p. numbersand n, and compile
them into the array. When executing the child word, take n and
place f.p. number n from the array onto the stack. Note that the
numbering in the array goes 0,1,..n-1.

FASIN f1—f2

“f-asine’
L eave, on the stack, the angle (in degrees or radians) whose sineis
f1, such that -90<=f2<=90.

FATAN f1—f2

“f-atan”
L eave, onthestack, theangle (in degreesor radians) whosetangent
isf1, such that -90<f2<90.

FCONSTANT f — [parent]
“f-constant” — f [child]
Floating point equivalent of CONSTANT. Use in the form:

<f.p. number on stack> FCONSTANT <name>

FCOS f1—1f2
“f-cos’
Take the cosine of f1 (degrees or radians) and put it on the stack.

FDROP f—
“f-drop”
Drop the f.p. number on the top of the stack.

FDUP f—ff
“f_dup”
Duplicate the f.p. number on the top of the stack.

FE~X f1—f2

“f-e-to-the-x”
Raise e, the exponential number, to the power f1 and put the result
on the stack.

Page 100



MPE Forth 5 for RTX2000 Software floating point

FFRAC f1f2—f3

“f-frac”
Leave the fractional remainder from the division f1/f2. The
remainder takes the sign of the dividend.

FINT f1—f2
“fint”
Place the f.p. integer value of f1 on the stack.

FLITERAL f—
“f-literal”
When compiling, compile f asaliteral. For example,

: ABCD [cdculatef] FLITERAL ; o _
Compilation is suspended for the compile-time calculation of f.

Execution of ABCD leavesf on the stack.

FLN f1—1f2
“f-log-base-¢”
Take the logarithm of f1 to base e and put the result on the stack.

FLOATS —
“floats’

Switches the action of NUMBER? to be FNUMBER?. This action
canbereversed by INTEGERS. BothFLOATS and INTEGERS arein
the FORTH vocabulary.

FLOG fl1—1f2

“f-log-base-10"
Takethelogarithm of f1 to base 10 (decimal) and put the result on
the stack.

FMAX f1f2 — max{f1,f2}

“f-max”

Put the greater of the top two f.p. numbers onto the stack.
FMIN f1f2— min{f1,f2}

“f-min”
Put the lesser of the top two f.p. numbers onto the stack.

Page 101



Software floating point MPE Forth 5 for RTX2000

FNEGATE f—-f
“f-negate”
Negate the f.p. number on the top of the stack.

FNUMBER? addr — O|n 1|d 2Jf 3

“f-number-query”
Convertsstring at address addr to either asingle, double or floating
point number along with 1, 2, or 3 respectively. If aOisleft onthe
stack then FNUMBER? was unable to convert the string.

FOVER f1f2—f1f2f1
“f-over”
Floating point equivalent of OVER.

FROT f1f2f3—f213f1
“f-rote”
Floating point equivalent of ROT.

FSEPARATE f1f2—f3f4

“f-separate”
L eave the signed integer quotient f4 and remainder f3 when flis
divided by f2. The remainder has the same sign as the dividend.

FSIGN f—fflag

“f_s'gn”
Leavethef.p. number and aflag onthe stack. Leavesatrueflagif f
IS negative, else leaves afalse flag.

FSIN f1—f2

“f-sing”
L eavethefloating point sineof f1 (degreesor radians) and put it on
the stack.

FSQOR f1—f2

13 f_s_q_rﬂ
Take the square root of the floating point number on the top of the
stack and put the result onto the stack.

Page 102



MPE Forth 5 for RTX2000 Software floating point

FSWAP f1f2—f2f1

“f—S’Vap”
Floating point equivalent of SWAP.

FTAN f1—f2

“f-tan”
Takethetangent of f1 (degreesor radians) and put the result on the
stack.

FVARIABLE —

“f-variable’
Floating point equivalent of VARIABLE. Set up an fvariable by
typing:
FVARIABLE <name>

FX~N fln—1f2

“f-x-to-the-n”

Raise f1 to the power n (n integer), and put result on the stack.

FXAY f1f2—f3
“f-x-to-the-y”
Raise f1 to the power f2 and put the result on the stack.

INTEGERS —

“integers’
Switches the action of NUMBER? to be INTEGER?. This action
reverses that of FLOATS. Both FLOATS and INTEGERS are in the
FORTH vocabulary.

RAD>DEG f1—f2
“rad-to-deg”
Convert f1 radians to degrees, and put result on the stack.
RADIANS —
“radians’

Switches floating point calculations to be done in radians.

Page 103



Software floating point MPE Forth 5 for RTX2000

S>F n—f
“sto-f”
Converts asingle (16 bit) number to a normalized f.p. number

SINT f—n

“sint”
Takes the single number integer part of f and putsit on the stack.

Page 104



MPE Forth 5 for RTX2000 ROM PowerForth

ROM PowerForth Utilities

Supplied as source are utilities to:
. compile source code on your target board viathe serial line
upload a binary image from your target to your PC

These utilities can be used to generate an EPROM which hasall thetoolsre-
quired to develop an application.

Compiling text files

Source text files can be compiled directly from the host PC onto the target
system. This savestime in not having to cross compile all the source if a
small modification is made. The utilities assume that each text fileis split
into pages. A page is separated from another by an ASCII 12 character.
Writing source code with pages gives you the ability to compile discrete
chunksof code. If you do not have any pagesin your source code, thewhole
file should be treated as page one.

Note: You must switch XShell to file server mode to use this facility. See
the XShell manual.

Therequired files

To compile text files on your target board, cross compile the files 10-
DEF.FTH and TEXTFILE.FTH.

Page 107



ROM PowerForth MPE Forth 5 for RTX2000

Compiling a specified text file

To compile all or part of a specified text file onto your target, use FROM-
FILE in the form:

start-page end-page FROM-FILE <name>
This compiles the file <NAME> into the target’ s dictionary.

Compiling the default text file

An alternative approach is to specify a default filename which is remem-
bered by the target. The file can then be compiled without specifying the
text file'sname. Thisisnormally quicker if you are repeatedly compiling
onefile.

Specifying the default text file
To set the default filename, type:

USE <name>

where<NAME> isthetext file snameto be set asthedefault. |f no extension
Is specified, an extension of .FTH is assumed.

Compiling the default text file
To compile the default file, type:

start-page end-page FROM

This compiles the pages from start-page to end-page inclusive onto the tar-
get.

Specifying the start and end pages

Words are supplied to enable you to compile partsor all of afileeasily. To
compilepartsof afileyou can use ONWARDS, UPTO and ALONE with either
FROM or FROM-FILE.

Compiling from a specified page to the end of thefile

To compile from a start page to the end of the file, use ONWARDS in the
form:

Page 108



MPE Forth 5 for RTX2000 ROM PowerForth

start-page ONWARDS

This generates a start and end page which can be used with either FROM-
FILE or FROM.

For example,

10 ONWARDS FROM
compiles from page ten to the end of the default text file.

Compiling from the start of the file to a specified page
To compilefromthestart of afileto aspecified page, useUPTO intheform:

UPTO end-page

This generates a start and end page which can be used with either FROM-
FILE or FROM.

For example,

UPTO 10 FROM
compiles from the start of the file to page ten of the default text file.

Compiling asingle page
To compile asingle page, use ALONE in the form:

start-page ALONE

This generates a start and end page which can be used with either FROM-
FILE or FROM.

For example,

10 ALONE
compiles page ten of the default text file.

Page 109



ROM PowerForth MPE Forth 5 for RTX2000

Compiling screen files

Standard Forth screen files can be compiled onto the target system, in the
same way as on a host system.

Note: You must switch XShell to file server mode to use this facility. See
XShell manual.

Therequired files

To compile screen files from your target board, cross compile the files 1O-
DEF.FTH and BLOCKS.FTH.

Compiling a specified screen file

To compileall or part of aspecified screen file onto your target, use THRU-
USING in the form:

start-screen end-screen THRU-USING <name>

This compiles the file <NAME> into the target’ s dictionary.

Compiling the default screen file

An alternative approach is to specify a default filename which is remem-
bered by the target. The file can then be compiled without specifying the
text file'sname. Thisisnormally quicker if you are repeatedly compiling
onefile.

Specifying the default screen file
To set the default filename, type:

USING <name>

where<NAME> isthe screen file' snameto be set asthe default. 1f no exten-
sion is specified, an extension of .SCR is assumed.

Page 110



MPE Forth 5 for RTX2000 ROM PowerForth

Compiling the default screen file
To compile the default file, type:

start-page end-page THRU

Thiscompilesthe screensfrom start-page to end-pageinclusiveonto thetar-
get.

Compiling asingle screen

A single screen can be loaded from the default screen file or a specified
screen file.

Compiling a single screen from a specified screen file
To compile asingle screen, use LOAD-USING in the form:

screent LOAD-USING <name>
This compiles the screen screen# of the file <NAME> onto the target.

Compiling a single page from the default screen file
To compile asingle screen, use LOAD in the form:

screent#t LOAD
where screentt is the screen number to load.

Downloading abinary image

A binary image can be downloaded from the target to your host PC. Two
utilities are provided:

an Intel hex download
aXMODEM download

For both utilities a suitable communications package will be required (e.g.
ProComm).

Page 111



ROM PowerForth MPE Forth 5 for RTX2000

XMODEM binary image download

Binary images can be downloaded to your PC using the XMODEM proto-
col.

Required files

Tousethisutility you must cross compilethefilesBLOCKS.FTH and BIN-
DOWN.FTH.

Using the XMODEM binary download utility

To down-load a binary image from the target system to your PC, use BIN-
DOWN in the form:

addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytes to down-
load starting from addr.

For example,

1200 400 BIN-DOWN
sends the area of memory from 1200 to 1599 to your host PC.

Intel hex binary image download
Binary images can be downloaded to your PC using the Intel hex format.

Required files

To use this utility you must cross compile the files BLOCKS.FTH and
HEX-DOWN.FTH.

Using the binary download utility

To download a binary image from the target system to your PC, use BIN-
DOWN in the form:

addr #bytes HEX-DOWN

whereaddr isthe start address and #bytesisthe number of bytesto download
starting from addr.

For example,

Page 112



MPE Forth 5 for RTX2000 ROM PowerForth

1200 400 HEX-DOWN
sends the area of memory from 1200 to 1599 to your host PC.

ROM PowerForth

ROM PowerForth can be used to generate a stand-al one Forth system. With
these utilities, you can generate an EPROM which can contain aninteractive
Forth with the ability to develop an application.

It is recommended that the RAM target code be used to generate the ROM
PowerForth EPROMSs as this will simplify the hardware requirements.

The notes below describe a ROM PowerForth system built using the RAM
target code.

Note: A licenceisrequired to distribute open Forth systems. Contact
MPE for more details.

Hardware requirements

Todevelop an application using ROM PowerForth, your board requirestwo
areas of memory:

- one for EPROM
. onefor RAM

EPROM area

The EPROM area contains the development kernel, and later, once the ap-
plication has been devel oped, the application itself.

RAM area

TheRAM areaisusedto hold acopy of the ROM image plusthe application
codeunder development. Oncethe applicationiscomplete, thisentireareais
down-loaded to the PC, and blowninto EPROM, ready to befitted to thetar-
get board in place of the kernel EPROM.

Page 113



ROM PowerForth MPE Forth 5 for RTX2000

Making your application turnkey

Once your application has been developed, it needs to be made turnkey so
that it starts executing at powerup. The application can be made permanent
by copying the image into an EPROM.

Configuring aturnkey application

Theword SETUPtakesthe address of theword passed to it and marksthisin
the RAM/EPROM header asthe address of the word to be run at power-up.
If avalueof zeroispassedto SETUP, theinteractive Forth kernel will berun
at power-up.

For example, theword JOB isto berun at power-up. Thereforeyoutype,

* JOB SETUP

Note that if you are cross compiling your application you should use
MAKE-TURNKEY as described in the “Generating a ROM Target”and
“GeneratingaRAM Target” sections of thismanual. It isrecommended that
SETUP only be used where a cross compiler is not available.

Discarding the application RAM area
The application can be discarded by typing:
0 ROM !

Changing the application RAM start address

The constant ROM returnsthe start address of the application RAM area. If
the address of thisareaisto be changed, the EPROM must be modified. To
do this, the 16-bit value in ROM must be changed.

Downloading atarget image

Y ou can download atarget image to your PC using the BIN-DOWN utility
supplied. Y ou will require asuitable communications package providing an
XMODEM download facility (e.g. Procomm)

Tousethisutility you must cross compilethefilesBLOCKS.FTH and BIN-
DOWN.FTH.

To down-load a binary image from the target system to your PC, use BIN-
DOWN in the form:

Page 114



MPE Forth 5 for RTX2000 ROM PowerForth

addr #bytes BIN-DOWN

where addr is the start address and #bytes is the number of bytes to down-
load starting from addr. This should be your entire RAM area

For example, if your RAM areaextendsfrom 0000 through 7FFF youwould
use

hex
00000 O7FFF BIN-DOWN

Thiswill produce a 32K image which can be blown into EPROM and in-
serted in place of the kernel EPROM.

Page 115



ROM PowerForth MPE Forth 5 for RTX2000

Glossary

$FROM-FILE \ first last $addr — ;

“dollar-from-file”
Compilesatext file given by the counted string $addr. Pagesfrom
first to last will be compiled. e.g.

1020“” TEST.FTH" $FROM-FILE
Compiles pages ten to twenty of file TEST.FTH.

$USING \ addr$ — ;
“dollar-using”
Sets the default screen file to the counted string addr$. e.g.

“” TEST.SCR" $USING
sets the default screen fileto TEST.SCR.

ALL \ —first last ;
“aIIH
Used with FROM and FROM-FIL E to compileacompletefile. e.g.

ALL FROM _
compiles all of the default text file.

ALONE \n—firstlast;
“aone’
Used with FROM and FROM-FIL Eto compileasinglepage. e.g.

1 ALONE FROM _
compiles page one of the default text file

CLS \—;
“c-l-g
Clearsthe display.

EMPTY-BUFFERS \—;
“empty-buffers’
Marks screen file buffers as empty

FLUSH \—;
“flush”
Flushes the screen file buffer to disk

Page 116



MPE Forth 5 for RTX2000 ROM PowerForth

FROM \ first last — ;
“from”
Compiles pagesfirst to last of the default text file.

FROM-FILE \ first last <name>—;

“ from-file’
Compilesarange of pages (first to last inclusive) from a specified
text file <name>.

INDEX \nln2—;
“index”
List top linesin range of screens.

L \—:

[1] I”

Displays the current screen.

LIST \ blk# —;
“Iiﬁ”
Display screen given.

LOAD \ blk# — ;
13 I Oad”
Compile given screen

N \—;

[1] 1

Displays the next screen

ONWARDS \ first — first last ;

“onwards’
Used with FROM and FROM-FILE to compile from a specified
page to the end of thefile.

P \—;

[1] 1)

Displays the previous screen

Page 117



ROM PowerForth MPE Forth 5 for RTX2000

QX \—;
13 q—X”
Displays the top line of every screen in the default screen file.
SAVE-BUFFERS \—;
“save-buffers’

Saves the screen file buffersif they have been modified.

SET-USEFILE \ $addr —
“set-use-file”
The counted string $addr is set to be the default screen file

THRU \ blk#from blk#to — ;

“thru”
Compiles from screens blk#from to blk#to inclusive of the default
screen file

UPDATE \—;
“update”
Flags the screen file buffer as being modified.

UPTO \ last — first last ;

13 uptoﬂ
Used with FROM and FROM-FIL E to compilefrom the start of the
fileto the specified page. e.g.

10 UPTO FROM _
compiles from the start of the default text file to page 10.

USE \ <name> — ;

13 u%
Specifiesthedefault text file. If an extensionisnot included inthe
filename, .FTH is assumed. e.g.

USE TEST _
sets the default text fileto TEST.FTH.

USING \ —;

“using”
Specifiesthe default screenfile. If an extension isnot included in
the filename, .SCR is assumed. e.g.

Page 118



MPE Forth 5 for RTX2000 Paged Targets

Paged targets

Many people develop for 8-bit and 16-bit target processors. One disadvan-
tage of using 8-bit and 16-bit processors is their limited addressing range
(64KB). To overcome this limitation the MPE cross compiler supports
paged targets. Paging is used when the application’s sizeislarger than the
available memory. To overcome this, different parts of the application are
loaded into memory when required.

The RTX processor has abuilt in paging mechanism which allows up to 16
64K pages, any one of which may be in memory at any time.

An example memory map for the MPE Powerboard is shown figure 12.

Boot ROM - This contains the Forth kernel in EPROM. When
the board is powered up it copies itself into RAM and executes
from there. It maps into page O

RAM - In this example, there are two pages, 0 and 1. Page O
contains the Forth kernel as copied out from ROM. Page 1 may
contain any other data or code that the user chooses to put there.
When compiling code, it is not necessary to enter extra code to
switch pages. The compiler will do thisfor you. However to

Physical Memory Logical Memory

FFFF [ 0 rea
FFFD

Data Ram | 1:0000-FFFF

Kernel RAM| 0: 0000-FFFF

4162256
RAM

Boot ROM | 0: 0000-FFFF

2427512
e EPROM

Figure 12 - Example paging mechanism

Page 121



Paged Targets MPE Forth 5 for RTX2000

fetch data from another page it is necessary to specify which
page the dataisin. You can do this by using the long fetch and
store words provided.

/O Area- The MPE RTX Powerboard’ s access to the outside
world. Thisis mapped into every page and exists between FOO0Oh
and FFFFh.

Note that other boards may use other paging mechanisms to the one de-
scribed.

Since Forth requiresrepeated accessto the kernel, it may often be more effi-
cienttocompilethekernel into all code pagesthan compileinter-pagecalls.

Creating a paged target

To create apaged target, you need to define each page’ s memory map. The
actual switchingisbuilt into the processor, and the compiler will automati-
cally produceinter-page callswhere necessary. Thusyou only need to spec-
ify the page number (0-15) that you wish to use.

Defining a page

A pageisdefinedinasimilar way tothekernel. Seperate pagesfor code and
data can be defined. A pageis defined by three items:

. the start of the page in addressable space
. the end of the page in addressable space
- the page number you wish to use

To define acode page, use CODE-PAGE. To define adata page, use DATA-
PAGE.

CODE-PAGE isused in the form:;
<start> <end> <page-no> CODE-PAGE <page-name>
DATA-PAGE isused in the form:

<start> <end> <page-no> DATA-PAGE <page-name>

where <start> isthe start addressin the page, <end>isthelast addressinthe
page and <page-no> isthe page number you aredefining. Thisisusedtoin-

Page 122



MPE Forth 5 for RTX2000 Paged Targets

dicate which page to switch to. The <page-name> is an identifier for the
page, and in the case of code pages defines the name of the image file that
will be produced.

For example, to definethethree pagesinfigure 12 (RAM target) youwould
code:

$0000 $EFFF KERNEL Kern
$0000 $0000 0 DATA-PAGE dummy
$0000 $EFFF 1 CODE-PAGE Pagel

if page 1 contained code, and

$0000 $EFFF KERNEL Kern
$0000 $0000 0 DATA-PAGE dummy
$0000 $EFFF 1 DATA-PAGE Pagel

if page 1 contained data.

Any other pages are coded in asimilar way. The page-number used isthe
same as the page that you wish to use.

Compiling code into a page

Compiling your source code isvery similar to compiling codeinto the ker-
nel, but some extrainitialisation must be done and somerestrictions must be
observed.

Compiling into a page

The majority of Forth can be compiled into a page except for inter-page
defered words.

To compile into a page use:

USE-CODE <NAME>

where <name> isthe name of the page you wish to compileinto. Any code
compiled after thisinstruction will be compiled into the page <name>. Y ou
can switch between compilation pages at any time, so that all your code for
one page does not need to be compiled together.

Restrictions for compiling into a code page

Y ou cannot forward reference aword in a different page.

Page 123



Paged Targets MPE Forth 5 for RTX2000

Finishing compilation of a page

Once your code has been compiled into apage, FINIS-CODE-PAGE must be
executed, in the form:

FINIS-CODE-PAGE <name>

Where<name> isthenameof the pagetofinish. Thecrosscompiler showsa
compilation summary for the page.

Compiling datainto a page

Compiling data such as variables and constants into a page is straightfor-
ward but some restrictions must be observed.

Setting the data page
To select the page that datais to be used for, use USE-DATA in the form:

USE-DATA <name>

where <name> isthe name of the page defined with DATA-PAGE. Variables
and constants can then be defined.

Restrictions for compiling into a data page

Data defined in pages other than the KERNEL page (RAM Target) or the
KERNEL-RAM page (ROM Target) will not be initialised. This must be
done at startup by the application.

Page 124



MPE Forth 5 for RTX2000 Controlling the cross compiler

Controlling the compiler

While cross-compiling, the cross-compiler needsto beinstructed on how to
configure itself. You need to tell the cross-compiler:

- when to start cross compilation

- when to stop cross compilation

. whether to align code to even/odd bytes

- whether to enable floating point

- whether to turn the compiler log on or off

. which code and data page to compile into
how to selectively compile portions of code

Theseinstructionsarenormally placed inthecontrol file, beforeany instruc-
tions are compiled.

Starting the cross-compiler

To start cross-compiling, use the word CROSS-COMPILE. Any code after
this directive will be cross-compiled into the target image instead of com-
piled onto the cross-compiler.

Stopping the cross-compiler

To stop the cross-compilation, use FINIS. FINIS stops cross-compilation,
closes all files and returnsto X Shell.

Page 125



Controlling the cross compiler MPE Forth 5 for RTX2000

Aligning generated code

The RTX family processors requireinstructionsto beword aligned. Toin-
struct the compiler to do this use the directive ALIGN.

Enabling floating point

If you want to the compiler to be able to handle floating point numbers, you
need to instruct it with the word FLOATS. The default isinteger only.

Turning the log on and off

The cross-compiler log can either display dots (when off) or information on
the items compiled (when on). To turn thelog on, use LOG. To turn the
compiler off, use NO-LOG.

Selecting code and data page

In apaged system you need to select what page code and data is compiled
into. Todothisuse USE-CODE and USE-DATA. They areusedintheform:

USE-CODE <name>
USE-DATA <name>

where <name> is the name of the page to compile code into. <name> was
specified when defining the memory map using KERNEL and KERNAL-
RAM.

Conditional compilation

Conditional compilation is used to selectively compile portions of code.
Three words are available to do this, IF(, JELSE( and )ENDIF. These are
analogousto IF, ELSE and ENDIF. They can be used within Forth words to

Page 126



MPE Forth 5 for RTX2000 Controlling the cross compiler

selectively compile portions of it, or can be used outside a Forth word to se-
lectively compile whole words.

An example

Two codeexamplesareshowninfigure13 and 14. Theexamplesgiven per-
form conditional compilation inside and outside a colon definition.

Conditional compilation outside a colon definition

The example shown infigure 13 compiles one of the PRINT10R2's. Which
one is compiled is dependant on the value of 10R2?. If it is set to one,
PRINT1OR?2 displays a one when executed. If it is set to two, PRINT10R2

displays atwo.
1 EQU 10R2?
10R2? \ Display one or two?
| F( \ If 10R27=1, PRINT1 will be compiled
. PRINT1OR2\ — ; Display a one
M1
EL SE( \ If 10R27=2, PRINT2 will be compiled
' PRINT10OR2\ — ; Display atwo
2"
ENDIF \ End marker for conditional compilation

Figure 13 - Conditional compilation example (1)

Conditional compilation within a colon definition

Using conditional compilation within a colon definition is slightly more
compilcated. This is because you need to write a word which places a
number on the cross-compiler’ sstack whenit’ scross-compiling. Anexam-

: PRINT30OR4\ — ; Display athree or four
30R4? \ compiler word
IF( ."3" \Display athree
)ELSE( ." 4" \ Display afour
)ENDIF \

Figure 14 - Conditional compilation example (2)

Page 127



Controlling the cross compiler MPE Forth 5 for RTX2000

pleisshown infigure 15, where a constant 30R4? is added to the compiler.
This can then be used in the example in figure 14.

ONLY FORTH ALSO C-C DEFINITIONS \ Switch vocabularies

CCIC \ Switch to compiler vocabulary
3 CONSTANT 30R4? \ add the word 30R4?

ONLY FORTH ALSO C-C DEFINITIONS \ Restore search order

Figure 15 - Adding words to the compiler

Page 128



MPE Forth 5 for RTX2000 Forth on a Target

Forth on the target

This chapter describes how a Forth islaid out on atarget board. Itisthere-
fore not necessary to read thischapter, but providesmoreinformationif you
areinterested or want to perform more advanced modificationsto the cross-
compiler or target.

HOST FORTH

CROSS COMPILER
& SYMBOL TABLE

TARGET EMULATOR

MESSAGE PASSING
SYSTEM

MESSAGE PASSING
SYSTEM

REDUCED TARGET FORTH

Figure 16 - Umbilical forth message passing

Page 129



Forth on a Target MPE Forth 5 for RTX2000

Inside Umbilical Forth

Umbilical Forth behaves in the same way as the ROM and RAM target
Forths, but the internal mechanism istotally different. When you reset the
target and the board signs-on, you are still running the cross-compiler. Um-
bilical Forth istherefore an extension of the basic cross-compiler.

When a word is cross-compiled, the cross-compiler places information in
the symbol table. The symbol table therefore containsthe CFA of theword
inthetarget image and its page number. By using amessage passing system
betweenthe cross-compiler and thetarget, the CFA and page of theword can
be passed to the target. The target can then execute the word on the target
passing parameters to and from as appropriate. Therefore, the target does
not need any headersin the target image as you are not communicating with
the target directly.

Inside aROM and RAM target Forth

A ROM target Forth communicates with the host viaaseria line. The host
needsto be running adumb terminal emulator. Theterminal emulator dis-
plays any characters which arrive from the target and sends characters any
characters typed at the host’s keyboard. The target takes input and makes
output directly fromthe serial line, not from akeyboard andto adisplay. To
do this, the deferred words EMIT and KEY have the actions SER-KEY and

SER-EMIT respectively.

Page 130



MPE Forth 5 for RTX2000 Optimising your Development Cycle

Optimising your development cycle

While developing an application, you cycle through a series of steps:
- editing your source code
. cross-compiling to generate a binary image file
- downloading to an EPROM emulator/programmer
- testing and debugging your code

Thisdevelopment cycleisrepeated until all development and debugging is
completed. Thefaster you can go round thiscycle, the sooner your applica-
tionisfinished. X Shell andthecrosscompiler helpyou achievetheseaims.

Speeding up the compilation

Every time a cross-compilation is carried out, certain sections of code,
which are never altered, are compiled again and again. Thisisparticularily
the casefor thekernel fileswhich generatethe Forthimage. Y ou can usethe
partial compilation feature of the cross compiler to halt the cross-
compilation at a strategic position and save the cross compiler’ sstate. Y ou
can then continue cross-compiling fromthissaved position. Inthisway, you
can dramatically reduce the time the application takes to compile.

Note: Partial compilation cannot be used when directly compiling to an
emulator

Saving the compilation state

To stop and save the cross-compilation at arequired place, use SUSPEND.
SUSPEND is used in the form:

SUSPEND <filename>

Page 131



Optimising your Development Cycle MPE Forth 5 for RTX2000

where <filename> isthe name of filesthe crosscompiler will useto savethe
state information. The filename is a name without an extension.

Restarting from a saved state

To restart from a previously saved cross-compilation state, use RESTART.
RESTART is used in the same form as SUSPEND,
RESTART <filename>

where <filename> is the filename used when saving the compilation state.
RESTART must be used after the word CROSS-COMPILE and any macros
must be |oaded.

Note: Theoldimagefileisused by thecompiler. Thismust exist inthe com-
pilation directory.

An example
An example control file can be found in the directory RAM/PARTIAL.

Speeding up the downloading

The cross compiler has the facility to download the compiled image to the
LeBurg emulator whileit is compiling. This speeds up the turn-around of
the edit,compile,download and test cycle by removing the download step.
To download directly to aLeBurg emulator, you need to tell the cross com-
piler:

- what size of EPROM it is generating for

. the bus width (e.g. 8 bit, 16 bit)

- which page to put in the emulator

Y ou will ablso need the correct emulator TSR driver installed in your ma-
chine. Thisshould be TSR021 for LePROM emulatorsand TSR041 for Le-
Meg and LeBig emulators.

Note: This facility cannot be used with partial compilation.

Page 132



MPE Forth 5 for RTX2000 Optimising your Development Cycle

Setting the size and bus width

To set the size of EPROM to use and the bus width of the target board, use
OUTPUT-EMULTOR. Thisisin the form:

size width OUTPUT-EMULATOR
where size and width can be selected from tables 17 and 18.

Target bus width width EPROM type size

8 bits 8bit 2764 2764
16 hits 16bit 27128 27128
32 bits 32bit 27256 27256

Table 17 - Avallable buswidths  Table 18 - Available EPROM sizes

For example, if your board uses a 27256 and your target has a 16-bit bus
width, code:

€27256 16bit OUTPUT-EMULATOR

This instruction must be placed in your control file before the CROSS-
COMPILE directive.

Setting the page
To send a page to an EPROM emulator, use IN-EMULATOR in the form:

xxxXX IN-EMULATOR <name>

where <name> is the name of the page set by KERNEL or CODE-PAGE and
XXxX is the base address in the emulator where to place the image.

Page 133



Optimising your Development Cycle MPE Forth 5 for RTX2000

Blank page

Page 134



MPE Forth 5 for RTX2000 Technical Glossary

Technical glossary

Compiler log When each label, variable, constant or colon defintition is
cross-compiled the cross-compiler displays a dot or information about the
compiled item.

Control file A filewhichisloaded by the cross-compiler. It containsdirec-
tivesto the cross-compiler and the names of any additional filesto be com-
piled.

Cross-compiler A program which generates executable codefor aproces-
sor different to that on which it is running.

Dictionary A list of words defined in a Forth system

Event A non-regular occurence. Inthe multitasker an eventisused to trig-
ger atask.

Glossary A list of forth words with their pronunciation, stack effect and a
brief description of its action.

Host The platform the cross-compiler runs on. Normally a PC.
Host mode One of XShell’s modes which is a Forth for the PC.

Image file The output of the cross-compiler. It hasthe extension .IMG by
default.

Initialised RAM See RAM table.
Kernel The code required to generate an interactive Forth.

Memory map A description of the start and end of ROM and RAM in
memory

Multitasker A programwhich allowsaprocessor to run morethan onetask
by continuously switching between different tasks.

Page 135



Technical Glossary MPE Forth 5 for RTX2000

Paged target A system wherethereis more memory available that can be
addressed at onetime. Areasof memory can beswitched into an addressable
range, so simulating alarger address space than is physically possible.

RAM table An area of memory in the ROM that is copied to RAM at
startup. It contains any initial values of variables.

RAM target Forth A Forth which on power up copiesitself from ROM to
RAM and then executes from RAM.

ROM target Forth A Forth which works on aROM/RAM system as op-
posed to aRAM system.

ROM/RAM target A target board with code executed out of ROM and
data kept in RAM.

Scheduler The part of a multitasker which switches to the next task
Screenfile A typeof filewhich Forthsourcewasoriginally developedin.

Serial line driver The words which interface the target code to the serial
line. Thesearedevicedependant whereastherest of thekernel isgeneric.

Symbol table Used and generated by the cross-compiler. It containsinfor-
mation on each item compiled.

Target The processor or board that the cross-compiler is generating code
for .

Targetmode Oneof XShell’smodeswhich actsasadumbterminal. Itlets
you communicate with your target board.

Task Inamultitasking environment, atask isastand-alone program which
appears to run simultaneously with other tasks.

Task control block Whereinformation about atask iskept. Itisused by the
scheduler to switch to the next task.

TCB Seetask control block

UART Universa Asynchronous Receiver/Transmitter - Sends and re-
ceives seria data.

Umbilical Forth A reduced Forth designed for single chip targets. Usesa
message passing system to commicate with the host.

Page 136



MPE Forth 5 for RTX2000 Further Information

Further information

M PE courses

MicroProcessor Engineering run the following courses:

Architectual introduction to Forth

A two day coursefor those with little or no experience of Forth. It provides
an introduction to the architecture of a Forth system. It shows, by practical
example, how software can be coded, tested and debugged, quickly and effi-
ciently, using Forth’ s interactive abilities.

Embedded software for hardware engineers

A three day course for hardware engineers needing to construct real-time
embedded applications using Forth cross-compilers.

Recommended reading

For an introduction to Forth:
“Starting Forth” by Leo Brodie
“Forth: A Text and Reference” by Kelly and Spies

For more experienced Forth programmers:
“Object Oriented Forth” by Dick Pountain
“Scientific Forth” by Julian Noble

Page 139



Further Information MPE Forth 5 for RTX2000

Other miscellaneous Forth books:

“Forth Applications in Engineering and Industry” by John Matthews
“Stack Machines: The New Wave” by Philip J Koopman Jr

All of these books can be supplied by MPE.

Page 140



MPE Forth 5 for RTX2000 Converting Targets from v4 to v5

Appendix A
Converting Targets from v4 to v5

Themaindifferencesbetween v4 and v5target source code arein the control
file. Therefore, if you want to use your old control file you need to modify
the way:

- the memory map is defined
- an EPROM emulator is used
- code is compiled into a page

Defining the memory map

The memory map in version 4 control filesis defined asin figure 17. The
equivalent v5 memory definitionisshowninfigure18. The version5mem-
ory definition is defined by three words: KERNEL, KERNEL-RAM and

MEM-END..

KERNEL isused to definethe start and end of ROM. KERNEL-RAM isused
to definethestart and end of RAM. MEM-END isthesameasinversion4.

Using an EPROM emulator

For theversion 5 compiler, you must indicate whichimageyou want to goto
theemulator. Inanon-paged system, theimage nameisthe namefollowing
the command KERNEL. Therefore, to send the image ROMRTX to an
EPROM emulator starting at address 0000h, you code:

$0000 IN-EMULATOR ROMRTX
This must be placed before the page is selected by USE-CODE.

Page 141



Converting Targets from v4 to v5 MPE Forth 5 for RTX2000

\ Define the amount of RAM that can be initialised
0400 INITIALISED-RAM \ up to 2k bytes RAM can be set
\ from atable in ROM. This
\ equate sets the max. size
\ The ROM for RTX systemsis nearly always at 0000h
00000 ROM-BASE \ ROM starts at 00000
\ User areas need 0100h bytes/task + 1 page for interrupts,
\ requiring 0900h bytes for afull system with 8 tasks.
\ Place INIT-UO at the bottom of the RAM area.
\ The variable & dictionary follows, and is set by RAM-BASE

08000 EQU INIT-UO \ task area base INIT-UO

taskram + EQU int-init-u0 \ interrupt page base

int-init-u0 intram + equ INIT-TIB \ TIB starts at task+0900

INIT-TIB 0100 + RAM-BASE \Vars & Dict start at task+0A00
\ MEM-END defines the end of RAM+1

OF000 MEM-END \ RAM ends at xxxx-1

Figure 17 - Example version 4 memory definition

$0000 $7FFF KERNEL ROMRTX \ Define kernel ROM
$8000 $EFFF 0 KERNEL-RAM ROMRTX-DATA \ Define kernedl RAM $F000 MEM-
END \ End of usable memory

Figure 18 - Example version 5 memory definition

Sel ecting the compilation page

With the version 5 cross-compiler you can generate multiple images, and
code can be compiled into any image at any time. To select the page which
code will be compiled into, code:

USE-CODE <name>
where <name> is the image' s name (i.e. ROMRTX in the previous exam-
ples).
In asimilar way, the data page may be selected:

USE-DATA <name>

where<name>istheimage sdataspace(i.e. ROMRTX-DATA intheprevi-
ous examples).

Page 142



MPE Forth 5 for RTX2000 An Example Control File

Appendix B
An Example Control File

Thisappendix leadsyou through acomplete control file. 1t describestheuse
of each command followed by the usage in atypical control file. For more
Information on the syntax of each command seethe command’ sglossary en-
try in the glossary manual.

Thefirst page

Thefirst pageisused to introducetherest of thefile. It containsabrief (one
line) description of thefiles purposefollowed by any other general informa-
tion.

\ MPE RTX PowerBoard target control file
pto
Released for use with the MPE Forth Cross Compiler by:

MicroProcessor Engineering
133 Hill Lane

Shirley

Southampton SO1

England

tel: (+44) 703 631441 (international)
0703631441  (domestic)

Setting the cross-compiler search order

The cross-compiler’ s vocabulary search order is set so that commands can
be found.

only forth definitions decimal

Page 143



An Example Control File MPE Forth 5 for RTX2000

L oading macros/Opcode definitions

At this stage any macros must be compiled. Macros must be loaded before
the command CROSS-COMPILE. (see below)

all from-file rtx2000.def \ configure to correct processor

Different processorsin the RTX family have slightly different opcode sets,
so the above line will load in the definitions for the RT X 2000.

Configuring for an EPROM emulator

The cross-compiler will download the compiled target codewhileitisbeing
generated. To do thisthe cross-compiler needs to be told:

- the port address of thei/o card
- the type of EPROM to emulate
- the bus width of the emulated EPROM

If anemulator isnot in usethefollowing two lines should be commented out.

Hex 0320 Emu-Base \ emulator i/o addr
€27256 16bit Output-Emulator \ define EPROM & Width

Activating the floating point

Floating point can be switched on by using the word FLOATS.

Floats \ switch on floating point

Turning on the cross-compiler

The cross-compiler is turned on by the command CROSS-COMPILE. Any
code compiled after this will be cross-compiled into the target image.

\ turn compiler on
CROSS-COMPILE

Page 144



MPE Forth 5 for RTX2000 An Example Control File

Select the type of target
Y ou must tell the compiler whether you wish to generate codefor aROM or
RAM target. The default isfor aRAM target.

Rom-Target \ Generate ROM target code

Setting the target’ s search order
The target’s search order must be set. This tells the compiler to compile
code on top of the target’ s Forth vocabulary.

only forth definitions

Setting the alignment mechanism to be used

If a 16-bit value is to be retrieved, it must be taken from a word aligned
(even) address. Thisrestriction forcesthe compiler to placeall instructions
on even addresses. To do this, strings must be padded out with an extra
space if necessary.

aign \ headers word aligned

Displaying the cross-compile log

Thecross-compilelog can bedisplayed by usingtheword LOG. Inthisstate
the cross-compiler showsthetype of item compiled and the target address of
each item asit iscompiled. This contains useful debug information but, as
moretext isdisplayed on the screen, is slower to compile. To stop the com-
piler from generating afull log, and just generate a dot for each definition,
use NO-LOG.

no-log \ no output log

Page 145



An Example Control File MPE Forth 5 for RTX2000

Defining the target configuration

These flags define whether certain files are loaded, and whether certainini-
tialisation words are included in COLD. Note that selection of the multi-
tasker is defined by the value set for #TASKS.

1 equ romforth? \ true to load romforth extensions
Oequpaged?  \trueif target is paged
1 equ softfp? \ true if target needs floating point

Defining the memory map
Thememory map describesto the compiler wherethe start and end of ROM

andRAM is. TheROM areaisdefined by theword KERNEL andtheRAM
area by the command KERNEL-RAM.

\ memory definitions
$0000 $7FFF KERNEL ROMRTX \ Define kernel ROM
$8000 $A000 0 KERNEL-RAM ROM-DATA \ Define kernel RAM

Output into EPROM emulator

Thecross-compiler can send atarget imagedirectly toan EPROM emulator,
which removes from the cycle the time required to download the generated
image. The cross-compiler needs to know what image to download (there
can be several in a paged target) and where in the emulator to start down-
loading to. Thefollowing example setsthe compiler to download theimage
ROMRTX, starting at address 0000h.

$0000 IN-EMULATOR ROMRTX \ Output to emulator

Sel ecting compilation pages

The cross-compiler must be instructed into which page to compile code and
data. For anon-paged system, thereisonly one code page and one datapage,
so this only needsto be done once. For apaged system, different compila-

Page 146



MPE Forth 5 for RTX2000 An Example Control File

tion pages can be set throughout the code, so redirecting the codeto different

pages.
use-code ROMRTX \ Select code page
use-data ROM-DATA \ Select data page

Configuring for ROM PowerForth

If the ROM PowerForth utilitiesare being |loaded, the start of the application
RAM/ROM area must be defined.

For example, if the application area is the upper half of a 16k of battery
backed RAM, you would code:

0A000 equ appl-rom

Setting the Clock Speed and Baud Rate

The compiler needsto know how fast you wish the serial lineto run. To cal-
culatethisisalso needsto know the crystal speed of your board. It isrecom-
mended that for new designs you use 2400 Baud until you are satisifed that
the Forth is fully functional on your board.

10000 equ clock-khz
38400 equ seria-baud

Setting up the interrupt vectors

TheRTX family of processorsallow youto movetheinterrupt vector areain
memory. This means that you must set this up initially.

0 equ INT-BASE\ interrupt vector base - must be 1KB aigned

Page 147



An Example Control File MPE Forth 5 for RTX2000

Setting the stack size

The on-chip stack size of the RTX processor in use needs to be specified.

$80 constant stack-size

Defining the number of tasks

In amultitasking target the number of tasks need to be set. Each task takes
up 256 bytes of RAM, so afull 8 taskstakes up 2k of RAM. If RAM usage
needs to be reduced, the number of tasks can be set to the number of tasks
you have.

$0008 Equ #tasks \ number of tasks, at least 1
\ each task needs 0100 bytes
\ this spaceis reserved first

Defining the user area size

The user areais set by using an equate. Thisequateisused in acalculation
beforetheactual user areaisallocated. Theuser areaisusedto hold task spe-

cific variables such as BASE and SPAN.

$0100 Equ per-task \ size of each tasks user area

Calculating the total memory requirement

Thetotal RAM required by the system isgiven by theequate US. Thisisthe
amount of memory required for onetask multiplied by the number of tasksin
the system.

#tasks per-task * Equ Us \ space used for task pages

Page 148



MPE Forth 5 for RTX2000 An Example Control File

Compiling the kernel

The main source code which makes up the interactive Forth kernel is now

compiled.

decimal dl from-file startup \ start up code

decimal al from-file code2000 \ main code defs.
decimal all from-file kernel \ Forth high level kernel
decimal al from-file drivers\pbrdio \ UART driver code
decimal al from-file rtx-tool \ Toolkit

decimal al from-file ucodertx \ RTX Opcodes

Compiling the multitasker

The multitasker source will only be compiled if the number of tasks speci-
fied is greater than one.

#itasks 1 >
if(

decima all from-file multirtx \ multi-tasker
Jendif

Compiling the software floating point

The software floating point consists of two files, SOFTFP.FTH, and either
FPRAM.HI or FPROM.HI depending on whether aRAM or ROM targetis
in use. It will only be compiled if the SOFTFP? flag was set earlier in the
control file.

\ Software floating point

softfp?

if(

decimal dl from-file softfp\fpromhi.fth \ ROM target primitives
decimal al from-file softfp\softfp.fth \ high-level

Jendif

Page 149



An Example Control File MPE Forth 5 for RTX2000

Compiling the ROM PowerForth utilities

The ROM PowerForth utilities give you the ability to use hard disk services
from the target system. It will only be compiled if the ROMFORTH? flag
was set earlier in the control file.

\ the ROMForth files

romforth?

if(

decimal all from-file romforth\link \ linker
decimal all from-file romforth\iodef \'io definitions
decimal all from-file romforth\filetran \ source load
decimal al from-file romforth\bin-down \ binary host
decima all from-file romforth\hex-down \ hex host
decima all from-file romforth\textfile \ text files
decimal all from-file romforth\blocks \ blocks
Jendif

Defining the target sign-on message

The target sign-on message is defined as an internal word. This makesthe
word unavailablefor interactive use, which saves spacein thetarget system.

internal
:.cpu \ —; sign on message

" MPE RTX2000/1A/10 ROM PowerForth" ; \'signon
externa

Defining the last word

Thelast word definedisalwaysFORTH-83. Thisindicatestheend of theker-
nel.

:FORTH-83 ; \fina word

Finishing cross-compilation

Thecross-compiler stopscompilingwhenit reachesthecommand FINIS. At
this point, the cross-compiler displays the cross-compile summary and
prompts for a key to be pressed.

Page 150



MPE Forth 5 for RTX2000 An Example Control File

FINIS

Page 151



An Example Control File MPE Forth 5 for RTX2000

Blank Page

Page 152



MPE Forth 5 for RTX2000 Error Messages

Appendix C
Error M essages

Error messagesarekept inthescreenfileERTX.XS3inthe COMPILER di-
rectory. Error numbersstart at 0, and each error number refersto aline start-
ingat line0. Thisformat allowstheerror messagefileto be maintained using
any screen file editor.

The error messages are listed in different categories:

. general Forth errors

. system messages
module errors

. sourcefileerrors
DOS errors

. text file errors

General Forth Errors0..15

These are the basic errors of a Forth system.

Error O - isundefined. The word isnot in the dictionary search order speci-
fied, or it was misspel led.

Error 1 - empty stack, the last operation caused a stack underflow. Usually
caused by using the wrong number of parameters to aword.

Error 2 - dictionary full, there is no room for more definitions. This error
should not arise within the cross compiler unless you are extending it.

Error 3 - hasincorrect address mode.

Error 4 - isredefined - the word’ s name has been used before. Thisisonly a
warning, not a proper error.

Error 5 - isundefined. See error 0

Page 153



Error Messages MPE Forth 5 for RTX2000

Error 7 - full stack, there aretoo many itemson the stack. Usually caused by
astack fault in aloop.

Error 8 - cannot open USING file. Incorrect file name? Wrong directory?

Error 9 - cannot compilefrom screen zero. Screen 0 should be used for com-
ments only.

Error 12 - uninitialised deferred word.
Error 13 - BASE must be DECIMAL.

Error 14 - missing decimal point. Only found when using floating point ex-
tensions.

System messages 16..31

These are error messages caused by mistreating Forth.

Error 17 - compilation only, use in definition, not when executing. Usually
happens when a ; is missing from a previous word.

Error 18 - execution only - not all owed during compilation. Usually because
a[COMPILE] ismissing in front of an immediate word.

Error 19 - conditionals not paired - overlapping control structures.

Error 20 - definition not finished - a control structure needs correction.

Error 21 - in protected dictionary - thewordisbelow theaddressin FENCE.
Not found in the cross compiler except when modifying the cross compiler,
or in bizarre circumstances with Umbilical Forth.

Error 22 - use only when loading, illegal from the keyboard
Error 23 - block number out of range 0..32767 (0..7FFFh)

Error 24 - reset vocabularies- CONTEXT must bethesameasCURRENT
when using FORGET.

Error 25 - do not use when loading, only from the keyboard.

Error 27 - Forwardreferencesareillegal between CREATE ... DOES and I:
... ; for the cross compiler.

Page 154



MPE Forth 5 for RTX2000 Error Messages

Error 28 - word between CREATE ...DOES oorI: ... ;isnotinhost FORTH
vocabulary

Error 29 - illegal internal value - contact MPE on (+44) 703 631441.

Module errors 48..63
Error 49 - public words table full - max 32 (decimal) words/module

Error 50 - module number out of range 0..31 (decimal)

Error 51 - slot already occupied - slot must be empty before entry is made
Error 52 - not enough memory - fit more! - RAM is cheap!

Error 53 - can’t load module file- DOS can’t find it, or can’'t read it

Error 54 - can’t free memory - DOSwon't let go - see DOS function 49H

Error 55 - module not present - requested module is not resident

Error 56 - external references table full - max 32 (decimal) words/module

Error 57 - unresolved external reference - use RESOLVE-ALL before exe-
cution

Error 58 - Bad module version code - recompile using correct SLAV E.XxX.
Thisisan internal software error. Contact MPE.

Error 62 - illegal operation in slave module

Error 63 - illegal operation in master module

Sourcefileerrors 64..79
These errors are given by the screen file handlers.

Error 65 - no screenfileopen. Oftenaresult of apreviousoperationfailingto
open or reopen afile.

Error 66 - screen file seek error.

Error 67 - screen file read error.

Page 155



Error Messages MPE Forth 5 for RTX2000

Error 68 - screen file write error.

Error 69 - path not found. Usually because the file or path name has been
misspel led.

Error 70 - starting screen number less than ending screen number.
Error 72 - Memory buffer release error

Error 73 - Memory buffer allocation error

Error 74 - Source file nesting level too deep

Error 75 - No source file to un-nest

Error 76 - End of file before requested page

Error 77 - Screen file close error

DOS errors 80..112

Error 81 - invalid funtion number - DOS doesn’t know what to do

Error 82 - file not found - wrong directory or doesn’t exist

Error 83 - path not found - incorrect spelling? - device not installed?
Error 84 - no handle available - al handles arein use

Error 85 - access denied - e.g. attempt to write to read-only file

Error 86 - invalid handle - file/path not open?

Error 87 - memory control blocks destroyed - whoops!

Error 88 - insufficient memory - not enough RAM or memory fragmented.
Error 89 - invalid memory block address- DOSdid not all ocatethis segment
Error 90 - invalid environment - previous SET or PATH command bad
Error 91 - invalid format - ask Microsoft what this one means!

Error 92 - invalid access code

Error 93 - invalid data

Error 95 - invalid drive specification

Error 96 - attempt to remove current directory

Page 156



MPE Forth 5 for RTX2000 Error Messages

Error 97 - not same device

Error 98 - no more files to be found

Text fileerrors 112..127

These errors are issued by the text file handler.
Error 113 - cannot all ocate memory. Each nested file needsabout 9k bytes.

Error 114 - cannot free memory. Usually a symptom of something running
amok.

Error 115 - cannot open file. Usually because of a misspelled name.

Error 116 - cannot close file. Usualy a symptom of something running
amok.

Error 117 - cannot seek to byte requested in file. Usually a symptom of
something running amok.

Error 118 - read-path error. Disk cannot be read, normally seen only from
floppy disks, or failing hard discs.

Error 119 - file nesting depth reached - cannot open another file. Y ou have
nested files too deep.

Error 120 - file de-nesting error. Usually a symptom of something running
amok.

Error 121 - start page number greater than last page number in file.
Error 122 - missing right bracket - must be space separated.

Page 157



Error Messages MPE Forth 5 for RTX2000

Blank Page

Page 158



MPE Forth 5 for RTX2000 Technical Support

Appendix D
Technical Support

Technical Support

Technical support is available from MPE by fax or phone during office
hours (9am-5pm UK Time). If reporting a problem, please fax a short piece
of codewhichillustratesit, so that we can respond to you quickly. You can
also obtain technical support via email, or by access to our own technical
support conference on the CI X (Compulink Information eX change) bulletin
board system.

tel: +44 703 631441

fax: +44 703 339691

cix (voice): +44 81 390 8446

cix (bbs): +44 81 399 1244

Internet: mpe@cix.compulink.co.uk

Page 159



Technical Support MPE Forth 5 for RTX2000

Blank page

Page 160



MPE Forth 5 for RTX2000

Index

A

Aligning code, 121
Application
cross-compiling, 23, 40, 55
running, 24, 41, 55
writing, 55
Autostarting
See Turnkey

B

Binary image
downloading, 109
Seeimage
Intel hex download, 110
XMODEM download, 110

C

Communications
task, 75

Control file, 10, 28, 44
creating, 10, 28, 44
example, 137
modifying, 23, 40, 55
supplied, 9, 27

Cross compile log, 51
redirecting to afile, 19, 36

| ndex

speeding up, 127
Cross-compiler
search order, 137
starting, 121
stopping, 121

D

Downloading
speeding up, 128

E

End of memory
setting, 30, 46
EPROM emulator, 7
Base address, 4
installation, 3
installing drivers, 3
LeBurg, 20, 37
sending a page to, 129
setting the size, 128
setting the width, 128
EPROM programmer
downloading, 21, 38
Equate
defining, 58
using, 59
Error messages, 147

turning on and off, 18, 36, 51

Cross compiler, 6
running, 18, 35, 51

Page 161



MPE Forth 5 for RTX2000

Floating point
constants, 94
functions, 94
number format, 93
variables, 93

Forward references
number, 52

H

Hardware

setting up, 16, 33, 49
Headers

removing, 57

Image

downloading, 20, 37

generated, 20, 37

size, 19, 36, 52
Initialised RAM

See RAM table
Installation, 1

custom, 3

drive, 1

EPROM emulator, 3

on network, 1

path, 2

PC Powerforth, 4

running, 1

selecting items, 3

system requirements, 1

XShell, 4
Interrupt

timer, 89
Interrupts, 85

Page 162

controlling, 88
disabling, 88, 90
enabling, 88, 90
example, 88
setting, 85
writing, 85, 87

K
Kernd file, 127

L

LeBurg

See EPROM emulator
Log

See Cross compile log

M

Macros
loading, 138
Memory map, 10, 28, 45
Forth, 126
setting, 11, 29, 45
Multitasker
example, 78
initialising, 71, 79
number of tasks, 71
scheduler, 72
stopping, 72
See also task
writing, 72

Opcodes, 62
Optimisation



MPE Forth 5 for RTX2000

Index

Control of, 63
Instruction, 62

P

Page

compiling into, 119

data, 120

defining, 118
Page switching, 119
Paged target

creating, 118
Pages

selecting, 122
Paging

restrictions, 119-120
Partial compilation, 127

using with emulator, 127
PC PowerForth, 7
PowerForth

See PC PowerForth
Processor architecture, 61

R
RAM table
address, 19, 52
size, 19

ROM PowerForth, 105
hardware requirements, 111
ROM target Forth, 6

S

Screen files, 108
compiling, 108
default, 108

Seria line
initialising, 14, 31, 47
interrupt driven, 14, 31

modifying drivers, 13, 30, 47
polled, 14, 31
receiving characters, 15, 32, 48
sending characters, 15, 32, 48
Serial ports
configuring, 17, 34, 50
Single chip
Umbilical Forth, 126
Source code
factorizing, 57

T

Target Forth
running, 21, 38
Target mode
switching to, 21, 38
Task
activating, 79
assigning to atask number, 79
communications, 75
controlling, 74, 79
defining, 78
halting, 80
initialising, 73
See aso multitasker
restarting, 80
Text files
compiling, 105
default, 106
pages, 105
Timer
initialising, 89
Turnkey
generating, 24, 41, 55

UART, 13, 30
off-chip, 47
Umbilica Forth, 7

Page 163



Index MPE Forth 5 for RTX2000

requirements, 43

using, 59
Unresolved references, 19, 36, 52
User area, 73
User variables

defining, 73

using, 73

Vector
setting, 85
Vectors
table, 86

X

XShdl, 5
configuring, 16, 34, 49
file server, 105
running, 16, 33, 49
setting up, 16, 33, 49

Page 164



