
MPE Forth 5 for RTX20xx

User Man ual

.

MPE Forth 5 for RTX2000

USER MAN UAL

RTX2000/1A/10 Tar get

Ver sion: 5.100

User Man ual

Re vi sion: 1.02

Date: 17 Feb ru ary 1994

Pack age No:

For tech ni cal sup port:

Please con tact your sup plier

For fur ther in for ma tion:

Mi cro Proc es sor En gi neer ing Lim ited
133 Hill Lane, South amp ton
SO1 5AF, UK
Tel: 0703 631441
Fax: 0703 339691
Email: mpe@cix.com pul ink.co.uk

MPE Forth 5 for RTX2000
Copy right ©
Mi cro proc es sor En gi neer ing Lim ited
1993-4

Ac know ledge ments

MPE would like to thank the fol low ing peo ple for all their in volve -
ment in the pro duc tion of this prod uct:

Jon Lee, Ste phen Pelc, Paul Gal li enne, Gary El lis

Mi cro proc es sor En gi neer ing Lim ited
133 Hill Lane
South amp ton
SO1 5AF, UK

.

Warranties, copyright and licences

War ranty
MPE soft ware prod ucts hold a war ranty of 90 days. Soft ware er rors, re -
ported within 90 days will be solved free of charge. Af ter this time, fixes to
prob lems are charged on a time and ma te ri als ba sis.

Tech ni cal sup port is avail able on the lat est ver sion of soft ware. We do not
main tain back- issues of soft ware.

Modi fi ca tions are only made to the lat est ver sion of the soft ware. There fore
solv ing a prob lem may in volve an up grade to the most re cent ver sion.

Copy right
Make as many cop ies as you need for backup and se cu rity. The discs are not
copy pro tected. Please treat this soft ware like a book. It is copy righted ma -
te rial and only one copy of it should be in use at any one time. If you need to
pho to copy the man ual, you proba bly ought to pur chase a sec ond copy. Con -
tact our selves or your ven dor for de tails of mul ti ple copy terms and site li -
cens ing.

All the source files are copy right ma te rial and may not be fur ther dis trib uted
with out per mis sion in writ ing from Mi cro Proc es sor En gi neer ing.

The cross as sem bler in par ticu lar is copy right and the li cence terms do not
cover any use on tar get sys tems.

Li cences
Any sealed ob ject code gen er ated by the cross com piler may be dis trib uted
with out roy alty. If your ap pli ca tion is sealed (the user can’t get at the Forth

and does not know it is writ ten in Forth) there will be no li cence prob lems -
you are free to dis trib ute the ap pli ca tion.

If you leave the ap pli ca tion open so that the text in ter preter/com piler may be
used, leave an MPE copy right mes sage along with your own copy right no -
tice as part of the sign on pro ce dure, and con tact MPE for de tails of OEM li -
cens ing terms.

OEM li cences
The OEM li cence al lows de vel op ers to sup ply MPE docu men ta tion sets,
and to use the ROM Pow er Forth utili ties in their open Forth sys tems. Con -
tact MPE for the cur rent li cence terms.

Registration

Be cause of the number of cop ies sold through deal ers and pur chas ing de -
part ments we can not keep track of all our us ers. If you fill out the reg is tra tion
form on the next page and re turn it or a pho to copy to us, we will put you on
our mail ing list. This way we will be able to keep you in formed of up dates
and new bolt- on good ies.

If you want di rect tech ni cal sup port from us we will need these de tails to re -
spond to you.

Soft ware Reg is tra tion Form
SEND TO:
Mi cro Proc es sor En gi neer ing Lim ited
133 Hill Lane
South amp ton SO1 5AF
Hamp shire
Eng land
tel: (+44) 703 631441

Cus tomer de tails
Over seas cus tom ers - please in clude the coun try with your ad dress.

Name:

Com pany:

De part ment:

Ad dress:

Tele phone number/ex ten sion:

Fax number:

Pack age de tails

Ti tle: MPE Forth 5 for RTX2000

Proc es sor and com puter type:

Op er at ing sys tem:

Disc for mat: (3 51
2

1
4,)

Se rial number:

Pur chase date:

Bought from:

Ta ble of Con tents

Chap ter 1 - In stall ing the sys tem 1
Sys tem re quire ments 1
Run ning the in staller 1
Se lect ing the in stal la tion drive 1
Se lect ing the in stal la tion path 2
Stan dard or cus tom in stal la tion? 2
Stan dard in stal la tion 3
Cus tom in stal la tion sys tem 3

Chap ter 2 - The MPE De vel op ment Sys tem 5
XShell - the de vel op ment en vi ron ment 5
MPE Forth cross com piler 6
ROM and RAM tar get Forth 6
Um bili cal Forth 7
Le burg EPROM emu la tor driv ers 7
PC Pow er Forth Plus 7

Chap ter 3 - Gen er at ing a ROM tar get Forth 9
Is your board al ready sup ported? 9
The con trol file 10
The mem ory map 10
Modi fy ing the se rial line driv ers 13
Set ting up the sys tem 16
Cross- compiling 18
Down load ing the com piled im age 20
Run ning the tar get Forth 21
Cross- compiling an ap pli ca tion 23

Chap ter 4 - Gen er at ing a RAM tar get Forth 27
What is a RAM tar get? 27
Is your board al ready sup ported? 27
The con trol file 28
The mem ory map 28
Modi fy ing the se rial line driv ers 30

i

MPE Forth 5 for RTX2000 Table of Contents

Set ting up the sys tem 33
Cross- compiling 35
Down load ing the com piled im age 37
Run ning the tar get Forth 38
Cross- compiling an ap pli ca tion 40

Chap ter 5 - Gen er at ing an Um bili cal Forth tar get 43
Is your board al ready sup ported? 43
The Um bili cal sys tem 44
The moni tor con trol file 44
The mem ory map 45
Modi fy ing the se rial line driv ers 47
Set ting up the sys tem 49
Cross com pil ing the moni tor 51
The com pi la tion sum mary 52
Cross com pil ing the Forth ker nel 53

Chap ter 6 - Op ti mis ing your Tar get Forth 57
Re duc ing the size of your im age 57
Speed ing up your code 59

Chap ter 7 - As sem bler Op codes 61
In tro duc tion 61
Proc es sor Ar chi tec ture 61
Build ing New Op codes 62
How to Con trol the Opti miser 63
Pre de fined Op codes 64
Opti miser Glos sary 68

Chap ter 8 - Mul ti tasker 71
Ini tial is ing the mul ti tasker 71
Writ ing a task 72
Ini tial is ing a task 74
Con trol ling tasks 74
Han dling mes sages 75
Cre at ing events 76
The mul ti task er’s in ter nals 78
A sim ple ex am ple 78
Glos sary 81

Chap ter 9 - In ter rupts 85
In ter rupts on the RTX2000 Fam ily 85

ii

Table of Contents MPE Forth 5 for RTX2000

Writ ing Forth in ter rupt han dlers 85
Con trol ling the in ter rupts 88
A sim ple ex am ple 88
Glos sary 90

Chap ter 10 - Soft ware float ing point 93
En ter ing float ing point num bers 93
The form of float ing point num bers 93
Cre at ing vari ables 93
Cre at ing con stants 94
Us ing the sup plied words 94
Set ting de grees or ra di ans 96
Dis play ing float ing point num bers 96
Glos sary 97

Chap ter 11 - ROM Pow er Forth Utili ties 105
Com pil ing text files 105
Com pil ing screen files 108
Down load ing a bi nary im age 109
ROM Pow er Forth 111
Glos sary 114

Chap ter 12 - Paged tar gets 117
Cre at ing a paged tar get 118
Com pil ing data into a page 120

Chap ter 13 - Con trol ling the com piler 121
Start ing the cross- compiler 121
Stop ping the cross- compiler 121
Align ing gen er ated code 122
Ena bling float ing point 122
Turn ing the log on and off 122
Se lect ing code and data page 122
Con di tional com pi la tion 122

Chap ter 14 - Forth on the tar get 125
In side Um bili cal Forth 126
In side a ROM and RAM tar get Forth 126

Chap ter 15 - Op ti mis ing your de vel op ment cy cle 127
Speed ing up the com pi la tion 127
Speed ing up the down load ing 128

iii

MPE Forth 5 for RTX2000 Table of Contents

Chap ter 16 - Tech ni cal glos sary 131

Chap ter 17 - Fur ther in for ma tion 133
MPE courses 133
Rec om mended read ing 133

Ap pen dix A - Con vert ing Tar gets from v4 to v5 135
De fin ing the mem ory map 135
Us ing an EPROM emu la tor 135
Se lect ing the com pi la tion page 136

Ap pen dix B - An Ex am ple Con trol File 137
The first page 137
Set ting the cross- compiler search or der 137
Load ing mac ros/Op code defi ni tions 138
Con fig ur ing for an EPROM emu la tor 138
Ac ti vat ing the float ing point 138
Turn ing on the cross- compiler 138
Se lect the type of tar get 139
Set ting the tar get’s search or der 139
Set ting the align ment mecha nism to be used 139
Dis play ing the cross- compile log 139
De fin ing the tar get con figu ra tion 140
De fin ing the mem ory map 140
Out put into EPROM emu la tor 140
Se lect ing com pi la tion pages 140
Con fig ur ing for ROM Pow er Forth 141
Set ting the Clock Speed and Baud Rate 141
Set ting up the in ter rupt vec tors 141
Set ting the stack size 142
De fin ing the number of tasks 142
De fin ing the user area size 142
Cal cu lat ing the to tal mem ory re quire ment 142
Com pil ing the ker nel 143
Com pil ing the mul ti tasker 143
Com pil ing the soft ware float ing point 143
Com pil ing the ROM Pow er Forth utili ties 144
De fin ing the tar get sign- on mes sage 144
De fin ing the last word 144
Fin ish ing cross- compilation 145

iv

Table of Contents MPE Forth 5 for RTX2000

Ap pen dix C - Er ror Mes sages 147
Gen eral Forth Er rors 0..15 147
Sys tem mes sages 16..31 148
Mod ule er rors 48..63 149
Source file er rors 64..79 149
DOS er rors 80..112 150
Text file er rors 112..127 151

Ap pen dix D - Tech ni cal Sup port 153
Tech ni cal Sup port 153

In dex 155

v

MPE Forth 5 for RTX2000 Table of Contents

Blank Page

vi

Table of Contents MPE Forth 5 for RTX2000

List of Fig ures

Fig ure 1 - The de vel op ment sys tem’s di rec tory struc ture 6

Fig ure 2 - An ex am ple mem ory map 11

Fig ure 3 - The tar get sign- on 21

Fig ure 4 - Ex am ple turn key ap pli ca tion 24

Fig ure 5 - The tar get sign- on 38

Fig ure 6 - Ex am ple turn key ap pli ca tion 41

Fig ure 7 - Ex am ple mem ory map 45

Fig ure 8 - Um bili cal down load mes sages 53

Fig ure 9 - The Um bili cal Forth sign- on 54

Fig ure 10 - Ex am ple um bili cal turn key ap pli ca tion 56

Fig ure 11 - Mul ti task ing ex am ple 72

Fig ure 12 - Ex am ple pag ing mecha nism 117

Fig ure 13 - Con di tional com pi la tion ex am ple (1) 123

Fig ure 14 - Con di tional com pi la tion ex am ple (2) 123

Fig ure 15 - Add ing words to the com piler 124

Fig ure 16 - Um bili cal forth mes sage pass ing 125

Fig ure 17 - Ex am ple ver sion 4 mem ory defi ni tion 136

vii

MPE Forth 5 for RTX2000 List of figures

Fig ure 18 - Ex am ple ver sion 5 mem ory defi ni tion 136

viii

List of figures MPE Forth 5 for RTX2000

List of Ta bles

Ta ble 1 - Key to cross- compiler log 18

Ta ble 2 - Key to cross- compiler log 35

Ta ble 3 - Key to cross- compiler log 51

Ta ble 4 - Spe cial reg is ter op codes 64

Ta ble 5 - Op codes for in ter nal reg is ter ac cess 65

Ta ble 6 - Op codes for step mathe mat ics 65

Ta ble 7 - Mem ory ac cess op codes 66

Ta ble 8 - Shift op codes 66

Ta ble 9 - Stack op era tor op codes 67

Ta ble 10 - Dy adic ALU op codes 67

Ta ble 11 - Mis cel la ne ous op codes 68

Ta ble 12 - Mul ti tasker data struc ture 76

Ta ble 13 - A task’s status word 76

Ta ble 14 - RTX vec tor ta ble 86

ix

MPE Forth 5 for RTX2000 List of tables

Blank Page

x

List of tables MPE Forth 5 for RTX2000

Installing the system

It is rec om mended that you in stall the MPE Forth 5 RTX2000 De vel op ment
Sys tem by us ing the sup plied in staller. The in staller helps you through the
in stal la tion pro cess and will make sure you have all the files you need.

Sys tem re quire ments
To in stall and use the de vel op ment sys tem you need:

• IBM PC or compatible with DOS version 3 or higher with
480Kbytes of available memory

• A hard disc with at least 1.5Mbytes of free disc space

Run ning the in staller
The in staller is sup plied on is sue disc #1.

To in stall the de vel op ment sys tem from drive a:, place the in stal la tion disc
(disc #1) in drive a: and type a:in stall at the DOS prompt.

Se lect ing the in stal la tion drive
The in staller lists all the avail able drives on your PC. Drive C: can be se -
lected by press ing EN TER. If you want to in stall on a dif fer ent drive, se lect
a drive us ing the cur sor keys fol lowed by EN TER. Drives A: and B: are in -
cluded for in stall ing onto a net work.

Page 1

MPE Forth 5 for RTX2000 Installing the system

Se lect ing the in stal la tion path
The in stal la tion path is the path to the di rec tory where the sys tem is to be in -
stalled. Press EN TER to use the de fault path.

Stan dard or cus tom in stal la tion?
The in staller asks you whether you re quire a stan dard or cus tom in stal la tion.
Se lect stan dard to in stall the com plete sys tem. Se lect cus tom to choose
which parts of the sys tem you want to in stall. Your choice of stan dard or
cus tom will nor mally de pend on whether:

• you are a new user

• you have recently upgraded

• you are adding features which you didn’t install previously

A new user
If you are a new user and so are un fa mil iar with MPE Forth de vel op ment

sys tems, you should in stall the com plete sys tem by se lect ing stan dard. This
gives you the abil ity to ex plore what the de vel op ment sys tem has to of fer.

Re cent up grade

If up grad ing your de vel op ment sys tem, se lect stan dard. This in stalls the
whole sys tem as soft ware ver sions are in com pati ble.

Add ing to the sys tem

Se lect cus tom to choose which items to in stall. If you have pre vi ously in -
stalled only part of the de vel op ment sys tem, but you now want to in stall

more of the sys tem, se lect cus tom.

Page 2

Installing the system MPE Forth 5 for RTX2000

Stan dard in stal la tion
If you se lected the stan dard in stal la tion, the in staller in stalls the com plete
de vel op ment sys tem. It prompts for cer tain in for ma tion:

• PC PowerForth Plus path

• The XShell path

It then prompts for the discs it needs.

Cus tom in stal la tion sys tem
If a cus tom in stal la tion has been se lected, the in staller will prompt for cer -
tain in for ma tion:

• The items to install

• The EPROM emulator driver required

• The EPROM emulator base address

• The PC Powerforth Plus path

• The XShell path

The items to in stall
The in staller needs to know what parts of the de vel op ment sys tem you want
to in stall. By se lect ing YES for an item, the item will be in stalled. The space
bar tog gles be tween YES and NO.

The emu la tor driver
The de vel op ment sys tem is sup plied with two driv ers for the Le Burg
EPROM emu la tor:

• TSR021

• TSR041

If you are go ing to use the LeProm emu la tor, se lect TSR021. If you are go -
ing to use the Le Meg or the Le Big emu la tors, se lect TSR041. If no EPROM

emu la tor is go ing to be used, se lect the don’t in stall a driver .

Page 3

MPE Forth 5 for RTX2000 Installing the system

The emu la tor base ad dress
The in staller needs to know what PC port ad dress to map the emu la tor driver
to.

Pow er Forth Plus path
PC Pow er Forth Plus is a Forth for your PC. Type the path of where you want
it to be in stalled. Press re turn to use the de fault path.

XShell path
XShell is the cross com piler en vi ron ment sup plied as part of the de vel op -
ment sys tem. It is re quired to use the cross- compiler. Press re turn to use the
de fault path.

Page 4

Installing the system MPE Forth 5 for RTX2000

The MPE Development System

Now that you have in stalled the MPE de vel op ment sys tem, you may be
won der ing what you have got. The MPE de vel op ment sys tem is to the
Forth- 83 stan dard and con sists of:

• XShell - the development environment

• the MPE Forth cross compiler with source

• source for generating a ROM target Forth

• source for generating an Umbilical Forth

• drivers for the LeBurg emulators

• PC PowerForth Plus

The in staller cre ates, by de fault, the di rec tory struc ture of fig ure 1. The
place where XShell and PC Pow er Forth Plus can be found may dif fer if the
de fault di rec to ries were changed dur ing in stal la tion.

XShell - the de vel op ment en vi ron ment
The MPE De vel op ment Sys tem is based around XShell. XShell is the en vi -
ron ment used to:

• cross-compile source code

• communicate with the target

• download the image to an EPROM emulator or programmer

• edit your source code

• run any DOS tools

XShell gives you a com plete en vi ron ment to gen er ate, com pile and exe cute
code for your tar get board. For more de tailed in for ma tion see the XShell
man ual. The in staller places XShell in the di rec tory XShell.

Page 5

MPE Forth 5 for RTX2000 The MPE Development System

MPE Forth cross com piler
The cross com piler can gen er ate ei ther a ROM tar get Forth or an Um bili cal
Forth from your source code. The source code for the cross com piler is sup -
plied, so that you can ex tend the com piler and re build it from scratch if re -
quired.

The com piler can auto mate the gen era tion of paged tar gets and also has a
built- in cross- assembler. The com piler is in the di rec tory COM PILER and
the source is in the di rec tory COM PILER\SOURCE and COM -
PILER\SOURCE\DRTX.

ROM and RAM tar get Forth
Source code is sup plied for de vel op ing ROM and RAM tar get Forths. The
Forth gen er ated has a mul ti tasker and soft ware float ing point.

It also has a larger word set than an Um bili cal Forth tar get, but is larger at 8K
or more. If you re quire the mul ti tasker, you must gen er ate ei ther a ROM or
RAM tar get Forth. The in staller places the ROM tar get source code in the

Page 6

The MPE Development System MPE Forth 5 for RTX2000

Figure 1 - The development system's directory structure

di rec tory ROM, and the RAM tar get source code in the di rec tory RAM. See
chap ters 3 and 4 on how to gen er ate ROM and RAM tar get Forths.

Um bili cal Forth
Source code is sup plied to gen er ate an Um bili cal Forth. Um bili cal Forth is a
sig nifi cantly smaller Forth than the ROM tar get Forth, so an in ter ac tive
Forth can be gen er ated which is smaller than 4K. Um bili cal Forth does not
have all words de fined in the ROM tar get Forth, but is use ful if ROM space
is at a pre mium. The Um bili cal Forth source code is in the di rec to ries APP
and MONI TOR.

Le burg EPROM emu la tor driv ers
The cross com piler can di rectly down load code, as it is gen er ated, to a Le -
Burg emu la tor. This is done via one of two TSR’s:

• TSR021.COM - LeProm

• TSR041.COM - LeMeg and LeBig

These are in the di rec tory EMU- TSR.

PC Pow er Forth Plus
PC Pow er Forth Plus is a Forth for your PC. It can be used to pro to type code
in the host en vi ron ment be fore port ing to your tar get board. The in staller
places PC Pow er Forth Plus in the di rec tory \PFORTH.

Page 7

MPE Forth 5 for RTX2000 The MPE Development System

Blank Page

Page 8

The MPE Development System MPE Forth 5 for RTX2000

Generating a ROM target Forth

This chap ter de scribes how to gen er ate a ROM tar get Forth for your tar get
board. It guides you through:

• setting up your hardware and software

• writing the serial line drivers

• modifying the memory map for your board

• compiling and running a target Forth

Sup plied with your cross com piler are con figu ra tions for spe cific boards. If
you have one of these boards, the gen er at ing of a tar get Forth is greatly sim -
pli fied. If you do not have a sup ported board you will have to con fig ure the
cross com piler for your board and write new se rial line driv ers.

Is your board al ready sup ported?
If you have an MPE RTX board you can use the sup plied con trol files. There
are files for 2000, 2001 and 2010 vari ants of the RTX proc es sor. By us ing
one of these the in stal la tion of a ROM tar get Forth for your board will be
greatly sim pli fied. The con trol file to use will de pend on the type of proc es -
sor and the clock crys tal fit ted to your board. These files are in the di rec tory
ROM\CON FIGS.

If you do not have an MPE board you will have to mod ify a con trol file and
se rial line driv ers to suit your own board.

Page 9

MPE Forth 5 for RTX2000 Generating a ROM target Forth

The con trol file
The con trol file con tains all the de tails of your board that the cross com piler
needs to know. This in cludes:

• the memory map of your board

• whether you wish a log to be displayed

• the number of tasks in your system

• the clock rate of your board

As well as con tain ing con figu ra tion in for ma tion, the con trol file con tains
com piler di rec tives and a list of files which are to be cross com piled.

Once the cross com piler knows these items, it can gen er ate a cor rect bi nary
im age from your source code. An ex am ple con trol file is shown in Ap pen -
dix B.

Cre at ing a con trol file
To cre ate a new con trol file, copy an ex ist ing one and then mod ify it to match
your board. This is nor mally eas ier than gen er at ing one from scratch. Ex -
am ple con trol files are in the di rec tory ROM\CON FIGS.

Set ting the code gen era tor
The code gen era tor will by de fault gen er ate code for a RAM Tar get. If you
wish to pro duce code for a ROM tar get you will need to in form the com piler.
This may be done by us ing the ROM- TARGET di rec tive di rectly af ter
CROSS- COMPILE. Thus you would code:

Cross- Compile \ gen er ate tar get code
Rom- Target \ for ROM tar get

The mem ory map
The mem ory map de scribes the ad dresses where ROM and RAM start and
end in your tar get sys tem. The mem ory map is de scribed to the cross com -
piler in your con trol file.

Page 10

Generating a ROM target Forth MPE Forth 5 for RTX2000

The mem ory map is de fined by the:

• start of ROM

• start of RAM

• end of ROM

• end of RAM

From this in for ma tion the cross com piler places any items it needs in the cor -
rect area of mem ory.

Set ting the mem ory map
The mem ory map is de scribed in your con trol file, so once the file has been
cre ated, you can change the mem ory map defi ni tion to match your board.

The mem ory map is de scribed in two parts:

• the start and end of ROM

• the start and end of RAM

Set ting the start and end of ROM

The start and end of ROM is de fined by us ing the com piler di rec tive KER -

NEL. KER NEL is used in the form:

rom- start rom- end KER NEL <name>

where rom- start is the ad dress of the start of ROM, rom- end is the ad dress of
the end of ROM and <name> is the name of the out put file. The com piler
auto mati cally gives the file name <name> an ex ten sion .IMG so <name>
must be just a name with out an ex ten sion. The num bers rom- start and rom-
 end are, by de fault, in deci mal, but can be en tered in hex by pre ced ing them
by a $.

The la bel <name> is also the name of the ker nel page in a paged sys tem. For
more in for ma tion see chap ter 12, Paged tar gets.

Set ting the start and end of RAM

The start and end of RAM is de fined by us ing the com piler di rec tive
KERNEL- RAM. KERNEL- RAM is used in the form:

ram- start ram- end page- id KERNEL- RAM <name>

Page 11

MPE Forth 5 for RTX2000 Generating a ROM target Forth

where ram- start is the ad dress of the start of RAM, ram- end is the ad dress of
the end of RAM, page- id is a unique iden ti fier for this area of mem ory and
<name> is the name for this area of mem ory. The num bers ram- start and
ram- end are, by de fault, in deci mal, but can be en tered in hex by pre ced ing
then by a $.

The la bel <name> is the name of the ker nel’s data area in a paged sys tem. In
a non- paged sys tem <name> is not ac tu ally used but must be stated. In a
non- paged sys tem, page- id can be set to any number. For more in for ma tion
on paged sys tems, see chap ter 12, Paged tar gets.

Set ting the com pi la tion pages
In a non- paged sys tem, the com piler must be in structed to com pile into the
pages de fined by KER NEL and KERNEL- RAM. There fore, af ter the mem ory
map is de fined you must code:

USE- CODE <name1>
USE- DATA <name2>

where <name1> is the name of the ker nel ROM page de fined with KER NEL

and <name2> is the ker nel RAM page de fined with KERNEL- RAM.

Page 12

Generating a ROM target Forth MPE Forth 5 for RTX2000

Figure 2 - An example memory map

An ex am ple
If your tar get board has a mem ory map as in fig ure 2, your con trol file
should be modi fied so that it reads,

$0000 $7FFF KER NEL Kern
$8000 $FFFF 1 KERNEL- RAM Kern- data

USE- CODE Kern
USE- DATA Kern- data

This in di cates two ar eas of mem ory with names Kern and Kern- data.

Modi fy ing the se rial line driv ers
Your tar get board com mu ni cates with the the ex ter nal world via a UART
Un like some other proc es sors, the RTX does not have an on board UART.
How ever, if you are us ing an 8530 se rial com mu ni ca tions de vice, the sup -
plied se rial driver code can be used. This is in the di rec tory ROM\DRIV -
ERS.

If you are us ing a dif fer ent UART you will need to write all the words re -
quired to:

• Initialise the UART

• Send a character

• Receive a character

• Test if a character has been received

Ex am ple se rial line driv ers in the files ROM\DRIV ERS can be used as a
tem plate. As with the con trol file it is nor mally eas ier to mod ify an ex ist ing
se rial line driver file rather than cre at ing your own from scratch.

In ter rupt or polled driv ers?
Two types of in ter rupt driver can be writ ten:

• interrupt driven

• polled

Page 13

MPE Forth 5 for RTX2000 Generating a ROM target Forth

In ter rupt driven

An in ter rupt driven se rial line can only be used if the UART gen er ates in ter -
rupt sig nals when char ac ters are re ceived. An in ter rupt driven driver will al -
low buff ered se rial com mu ni ca tions to be im ple mented with least proc es sor
over head.

Polled

A polled driver will con tinu ously poll a status bit in the UART to de tect
when the UART has ei ther trans mit ted or re ceived a char ac ter.

Ini tial is ing the se rial line
The word INIT- SER must per form all the UART ini tiali sa tion re quired.
This in cludes set ting:

• the baud rate

• any handshaking required

• the number of data bits

• the number of stop bits

• the parity to be used

It is rec om mended that the baud rate is ini tially set to 2400 baud un til the tar -
get board is work ing. It can then be raised to 9600 or above which makes a
more re spon sive tar get. The RTX will nor mally func tion cor rectly at 38400
baud.

Send ing a char ac ter to the host
The tar get code needs to be able to send a char ac ter to the host for dis play.
There fore, you need to write a word which:

• waits for the transmit line to become available

• transmits a character to the host

• increment the variable OUT

Page 14

Generating a ROM target Forth MPE Forth 5 for RTX2000

The method used can be ei ther a polled or in ter rupt driven driver but must be
called (EMIT). Once (EMIT) is writ ten, it must be as signed to the defered
word EMIT. The stack ef fect of (EMIT) is,

(EMIT) \ char — ; send char to host

Re ceiv ing a char ac ter from the host
The tar get code needs the abil ity to re ceive a char ac ter from XShell. To do
this it needs to:

• wait for a character to be received

• place the character on the Forth stack

The method used can be polled or in ter rupt driven but the word must be
called (KEY). Once (KEY) has been writ ten, it must be as signed to the
defered word KEY. The stack ef fect of (KEY) is:

(KEY) \ — char ; wait for char to be re ceived

De tect ing a re ceived char ac ter
The tar get needs to de tect if a char ac ter has been re ceived. This can be used
as part of (KEY). (KEY?) needs to:

• return true on the Forth stack if a character is available (-1)

• return false on the Forth stack if a character is not available (0)

Once (KEY?) is writ ten, it must be as signed to the de ferred word KEY. The
stack ef fect of (KEY?) is:

(KEY?) \ — t/f ; true if char ac ter re ceived

Set ting up the sys tem
Set ting up the sys tem in volves both hard ware and soft ware. The tar get
board, PC, EPROM emu la tor/pro gram mer and se rial line have to be con -
nected as well as con fig ur ing XShell to run the cross com piler.

Page 15

MPE Forth 5 for RTX2000 Generating a ROM target Forth

Set ting up the hard ware
To gen er ate an in ter ac tive Forth tar get you need:

• an IBM PC or compatible

• A serial cable

• A target board

• An EPROM emulator or programmer

Your PC needs to have at least one se rial port for con nect ing to the tar get
board, so mak ing the Forth in ter ac tive. The se rial ca ble should be con nected
to COM1 as this is the de fault port used by XShell. Other ports can be used
by con fig ur ing Xshell. See the XShell man ual.

Set ting up the soft ware
To com pile source code that gen er ates a Forth tar get, you need to con fig ure
the cross com piler en vi ron ment, XShell, to run the cross com piler. For de -
tailed in for ma tion on con fig ur ing XShell, see the XShell man ual.

Run ning XShell

If dur ing in stal la tion, you al lowed the in staller to mod ify your AUTO -
EXEC.BAT, then to run XShell you just need to type XS3. If you didn’t or
you ha ven’t re booted since you in stalled the sys tem, then you need to state
the full path of XShell. For ex am ple, the in staller will place XShell in the di -
rec tory, XRTX\XSHELL by de fault.

Con fig ur ing XShell to use your con trol file

Be fore you can cross com pile your source code, you must con fig ure XShell.
XShell re quires the name of the con trol file you are us ing. The con figu ra tion
file loads the re main ing files so you need only to load the con figu ra tion file.
To setup the con figu ra tion file as the file to be loaded,

i) run XShell while in the ROM di rec tory

ii) type Alt-K, Con figu ra tion op tions

iii) press B, setup com mands

iv) press E, com piler com mands

Page 16

Generating a ROM target Forth MPE Forth 5 for RTX2000

v) type ALL FROM- FILE fol lowed by the path and name of your con figu ra -
tion file, i.e ALL FROM- FILE CON FIGS\CON TROL.CTL fol lowed by
EN TER

vi) press the es cape key to re turn to the pre vi ous menu

vii) press E, save con figu ra tion

viii) Press the es cape key to re turn to the host forth

Your XShell con figu ra tion is now set to cross com pile your con figu ra tion
file.

Con fig ur ing the se rial ports from XShell

XShell is used to com mu ni cate with the tar get. You there fore need to set up
XShell to the same se rial line set tings that you are go ing to use on the tar get
board.

To do this, type:

i) run XShell while in the ROM di rec tory

ii) type Alt-K, Con figu ra tion op tions

iii) press D, se rial line set tings

iv) set up your set tings by press ing let ters a-z

v) press the es cape key when fin ished

vi) type E, save con figu ra tion

vii) press the es cape key to re turn to the host Forth

Cross- compiling
Now the hard ware and soft ware has been setup, you can cross com pile the
source code to gen er ate an ex ecu ta ble im age.

Page 17

MPE Forth 5 for RTX2000 Generating a ROM target Forth

Cre at ing an im age
To cross com pile the source code, press F3. XShell clears the dis play and
the cross com piler starts com pil ing. The com piler dis plays its sign- on mes -
sage then com piles the source code.

The cross com pile log
Fol low ing the com piler sign- on you see the cross com pile log. As each word
is com piled the com piler dis plays the word’s ad dress, its type and its short -
ened name. The com piled type of item is coded as two char ac ters as in ta ble
1.

Turn ing on and off the log

In stead of hav ing the data dis played for each com piled item, you can chose
to only dis play a dot. The ad van tage of this is that the com piler spends less
time dis play ing data and so the cross com pile is quicker. To do this, change

the com piler di rec tive in the con trol file from LOG to NO- LOG. The log can
be turned on again by re plac ing LOG with NO- LOG in the con trol file.

Page 18

Generating a ROM target Forth MPE Forth 5 for RTX2000

Cod
e

Com piled type Code Com piled type

VR Vari able FV Float ing point vari able

CN Con stant FC Float ing point con stant

LB La bel FA Float ing point ar ray

: Co lon de fin tion EQ Equate

CD Code defi ni tion CR Cre ate ... Does>

DF De ferred word US User vari able

VC Vo cabu lary

Table 2 - Key to cross-compiler log

Send ing the log to a file

The cross com piler will re di rect the log to a file in stead of the dis play. To do
this, use:

FILE: <name>

where <name> is the file name to gen er ate. This di rec tive must be placed be -
fore the com mand CROSS- COMPILE.

Send ing the log to a printer

The cross com piler will send the log to a printer. To do this, use:

PRN:

be fore the com mand CROSS- COMPILE.

The com pi la tion sum mary
Once the cross com piler has fin ished cross- compiling the source code, it dis -
plays in for ma tion about the com pi la tion. This in cludes:

• any unresolved references

• the size of the compiled image

• the initialised RAM table address and length

Un re solved ref er ences are words which are ref er enced in the source code
but are not de fined. These can be spell ing mis takes or some of the code is not
be ing com piled.

The size of the com piled im age is the amount of ac tual code out put into the
file. The ac tual file size will be the size of the ROM in di cated by the mem ory
map.

The RAM ta ble is the place in ROM where a vari able’s ini tial value is stored.
When the tar get board is re set, the ini tiali sa tion cop ies this ta ble into RAM.
These ini tial val ues of vari ables will be modi fied in RAM when you store
into a vari able.

The cre ated im age
The im age cre ated by the cross com piler is a straight bi nary ex ecu ta ble. It
can be down loaded to a suit able EPROM emu la tor or pro gram mer. The file

Page 19

MPE Forth 5 for RTX2000 Generating a ROM target Forth

has the name given when de fin ing the mem ory map us ing the com piler di -
rec tive KER NEL. It has the ex ten sion .IMG which can not be changed.

Prob lems, Prob lems ...
If dur ing com pi la tion an er ror oc curs, the com piler will stop com pi la tion
and dis play the line on which the er ror oc curred. The cross com piler shows
the line number and the file name where the er ror oc curred as well as the type
of er ror that has oc cured.

Down load ing the com piled im age
Once the source code has been com piled the im age needs to be down loaded
to an EPROM emu la tor or pro gram mer.

Down load ing to a Le Burg EPROM emu la tor
The MPE cross com piler sup ports the Le Burg emu la tor. If you have a Le -
Burg emu la tor, the in staller should have setup your XShell con figu ra tion to
use it if it is al ready in the DOS path. In this case just press F4 and the Le -
Burg soft ware should run. If the in staller could not find your Le burg emu la -
tor soft ware, you have to setup XShell to run your emu la tor soft ware. Re fer
to the XShell man ual.

Down load ing to a dif fer ent emu la tor
The bi nary im age can be down loaded to any EPROM emu la tor as long as the
emu la tor’s soft ware sup ports bi nary im age files. Re fer to the XShell chap ter
on how to setup the XShell con figu ra tion and the emu la tor’s soft ware man -
ual for down load in struc tions.

Down load ing to an EPROM pro gram mer
The MPE de vel op ment sys tem sup ports the Sun shine pro gram mer. If the
in staller found the pro gram mer’s soft ware, then your con figu ra tion will be
setup al ready. To run the pro gram mer’s soft ware press F6. To setup XShell
to use a EPROM pro gram mer, re fer to the XShell chap ter.

Page 20

Generating a ROM target Forth MPE Forth 5 for RTX2000

Run ning the tar get Forth
The im age gen er ated by the com piler has been down loaded to the tar get, it is
ready to be re set and the Forth tested.

Switch ing to tar get mode
To re ceive char ac ters from the tar get, XShell must be in tar get mode. The
cur rent mode is dis played on the top ban ner. If you are not al ready in tar get
mode, type Alt-T or F5.

Re set ting the tar get board

Once the im age has been down loaded, you can re set the tar get board. You
can ei ther use the re set sup plied on the board or if no re set is on the board,
turn the board’s power off and on again.

The sign- on
Once the board has been re set, the tar get should sign- on. You should see the
mes sage in fig ure 3. The ver sion number and the number of bytes free will
de pend on your sys tem. You now should have a work ing Forth. If the tar get
didn’t show the mes sage, then you may have a prob lem with:

• the serial line drivers

• the memory map definition

• your target board

• your EPROM emulator/programmer

Page 21

MPE Forth 5 for RTX2000 Generating a ROM target Forth

 MPE RTX 2000 ROM Pow er Forth v3.00
 27384 bytes free

 ok

Figure 3 - The target sign-on

Each of these should be checked.

The se rial line driv ers

If you do not get the sign on mes sage, your trans mit word might not be work -
ing cor rectly. You can check that you can trans mit a char ac ter up the se rial
line, by ap pend ing code for emit ting a char ac ter up the se rial line, onto the
end of the ini tiali sa tion word INIT- SER.

The mem ory map defi ni tion.

If the mem ory map for the ROM defi ni tion is wrong, the tar get may not
sign- on at all. If the defi ni tion of the RAM mem ory map is wrong, the tar get
may sign- on but may gen er ate ‘ga rbage’.

Your tar get board

It is al ways nec es sary to check the ob vi ous. Is the se rial line con nected? Has
your tar get board got power? EPROMs/RAM plugged in cor rectly? Are
jump ers set cor rectly?

Your EPROM emu la tor/pro gram mer

Check to see if your emu la tor is emu lat ing an EPROM that your tar get board
is ex pect ing. If you have the wrong EPROM set, your tar get will not sign on.

Test ing the Forth - an ex am ple
Once the Forth has signed- on, you need to test that it’s work ing prop erly.
Type WORDS, this will dis play all the Forth words avail able.

If this works then type in,

: FORTH- TEST \ — ; A quick test for Forth
 ." HELLO"
;
FORTH- TEST

This should dis play,

HELLO

fol lowed by the ok prompt.

Page 22

Generating a ROM target Forth MPE Forth 5 for RTX2000

Cross- compiling an ap pli ca tion
Once your Forth is work ing on your tar get board, you will now want to write
and com pile your ap pli ca tion.

Writ ing an ap pli ca tion
Sup plied with XShell is the TED edi tor. This can be run by press ing F2. A
dif fer ent edi tor can be used by chang ing the XShell con figu ra tion. See the
XShell chap ter.

Modi fy ing the con trol file
Once your ap pli ca tion has been writ ten, you can add it to the con trol file.
Near the bot tom of the con trol file, there is a list of com mands in the form:

ALL FROM- FILE <name>

To com pile your ap pli ca tion files you add them to the end of the list.

De vel op ing your ap pli ca tion
As Forth is an in ter ac tive lan guage, you can use this to your ad van tage by
writ ing small sec tions of code and test ing as you go. To help you do this, the
ROM Pow er Forth utili ties al low you to ac cess your source files on the host.
Your source files can be com piled from the tar get with out cross- compiling
the whole ap pli ca tion. See the chap ter ROM Pow er Forth Utili ties for more
in for ma tion.

Run ning your ap pli ca tion
To com pile the ap pli ca tion you need to:

• run the cross compiler(press F3)

• download to the EPROM emulator/programmer(press F4 or F6)

• reset the target

The tar get board should now sign- on, and you can test your ap pli ca tion.

Page 23

MPE Forth 5 for RTX2000 Generating a ROM target Forth

Gen er at ing a turn key ap pli ca tion
Once you have writ ten your ap pli ca tion, you will want to make it start when
the tar get board is re set. This is known as a turn key or auto start ing ap pli ca -
tion. Your ap pli ca tion does not nec es sar ily need to be in ter ac tive, so the
com piler di rec tive NO- HEADS can be used . This re moves all the word head -
ers, so mak ing the fi nal im age more com pact.

To make an ap pli ca tion turn key, use the di rec tive MAKE- TURNKEY in the
form:

MAKE- TURNKEY <name>

where <name> is the name of the word to run at startup. The word <name>
must be de fined be fore us ing this di rec tive. The ex am ple in fig ure 4 gen er -
ates a sim ple turn key ap pli ca tion when cross com piled. If you re quire the
use of se rial com mu ni ca tions or the mul ti tasker, you must ini tial ise them in
your ap pli ca tion. To ini tial ise the se rial com mu ni ca tions use the word
INIT- SER. To ini tial ise the mul ti tasker use INIT- MULTI.

Page 24

Generating a ROM target Forth MPE Forth 5 for RTX2000

 : MY- APP \ — ;
 INIT- SER \ Ini tial ise the se rial line
 BE GIN \ Ap pli ca tion never ends...
 ." Hello" \
 AGAIN
 ;

 MAKE- TURNKEY MY- APP

Figure 4 - Example turnkey application

Blank Page

Page 25

MPE Forth 5 for RTX2000 Generating a ROM target Forth

.

Generating a RAM target Forth

This chap ter de scribes how to gen er ate a RAM tar get Forth for your tar get
board. It guides you through:

• setting up your hardware and software

• writing the serial line drivers

• modifying the memory map for your board

• compiling and running a target Forth

Sup plied with your cross com piler are con figu ra tions for spe cific boards. If
you have one of these boards, the gen er at ing of a tar get Forth is greatly sim -
pli fied. If you do not have a sup ported board you will have to con fig ure the
cross com piler for your board and write new se rial line driv ers.

What is a RAM tar get?
A RAM tar get has both EPROM and RAM. How ever, on power- up the en -
tire con tents of the EPROM are cop ied into RAM and exe cu tion takes place
from there.

Is your board al ready sup ported?
If you have an MPE RTX board you can use the sup plied con trol files. There
are files for 2000, 2001 and 2010 vari ants of the RTX proc es sor. By us ing
one of these the in stal la tion of a ROM tar get Forth for your board will be
greatly sim pli fied. The con trol file to use will de pend on the type of board
you have. If you have an STE vari ant you should use one of the
STExxxx.CTL files as your con trol file. If you have a Pow er Board you
should use a file xxxxPBxx. The ex act file you choose will de pend on the
proc es sor and the clock crys tal fit ted to your board. These files are in the di -
rec tory RAM\CON FIGS.

Page 27

MPE Forth 5 for RTX2000 Generating a RAM target Forth

If you do not have an MPE board you will have to mod ify a con trol file and
se rial line driv ers to suit your own board.

The con trol file
The con trol file con tains all the de tails of your board that the cross com piler
needs to know. This in cludes:

• the memory map of your board

• whether you wish a log to be displayed

• the number of tasks in your system

• the clock rate of your board

As well as con tain ing con figu ra tion in for ma tion, the con trol file con tains
com piler di rec tives and a list of files which are to be cross com piled.

Once the cross com piler knows these items, it can gen er ate a cor rect bi nary
im age from your source code. An ex am ple con trol file is shown in Ap pen -
dix B.

Cre at ing a con trol file
To cre ate a new con trol file, copy an ex ist ing one and then mod ify it to match
your board. This is nor mally eas ier than gen er at ing one from scratch. Ex -
am ple con trol files are in the di rec tory RAM\CON FIGS.

The mem ory map
The main dif fer ence be tween a RAM tar get and a ROM tar get is that all code
and data re side in RAM dur ing exe cu tion. All code and data is cop ied from
ROM into RAM at startup, and then exe cuted from RAM. From the tar get’s
point of view there is no dis tinc tion be tween ROM and RAM. How ever you
still need to de clare to the com piler where the start and end of your mem ory
area is. The mem ory map is de scribed to the cross com piler in your con trol
file.

Page 28

Generating a RAM target Forth MPE Forth 5 for RTX2000

The mem ory map is de fined by the:

• start of RAM

• end of RAM

From this in for ma tion the cross com piler places any items it needs in the cor -
rect area of mem ory.

Set ting the mem ory map
The mem ory map is de scribed in your con trol file, so once the file has been
cre ated, you can change the mem ory map defi ni tion to match your board.

The mem ory map is de scribed in two parts:

• the start and end of RAM

• a dummy page for use by the cross compiler

Set ting the start and end of RAM

The start and end of RAM is de fined by us ing the com piler di rec tive KER -

NEL. KER NEL is used in the form:

ram- start ram- end KER NEL <name>

where ram- start is the ad dress of the start of RAM, ram- end is the ad dress of
the end of RAM and <name> is the name of the out put file. The com piler
auto mati cally gives the file name <name> an ex ten sion .IMG so <name>
must be just a name with out an ex ten sion. The num bers ram- start and ram-
 end are, by de fault, in deci mal, but can be en tered in hex by pre ced ing them
by a $.

The la bel <name> is also the name of the ker nel page in a paged sys tem. For
more in for ma tion see chap ter 12, Paged Tar gets.

Set ting the dummy page

In a ROM tar get, code and data are split into two mem ory ar eas, one for code
and one for data (see chap ter 3 for more de tails)The start and end of the data
area is de fined by us ing the com piler di rec tive KERNEL- RAM. In a RAM
tar get, this dis tinc tion does not ex ist, but the com piler still needs a mem ory
area to store its in ter nal la bels for vari able val ues and the like. You must de -

Page 29

MPE Forth 5 for RTX2000 Generating a RAM target Forth

clare a dummy page so the com piler will al lo cate mem ory cor rectly. This is
done in the form:

0 0 page- id DATA- PAGE dummy

where the two ze ros are sim ply ar bi trary num bers, page- id is a unique iden ti -
fier (one which you will not be us ing else where) and dummy is sim ply an ar -
bi trary la bel, which is not ac tu ally used, but must be stated.

Since there is no ROM- TARGET di rec tive, the com piler will as sume that you
are us ing a RAM tar get, and gen er ate code ac cord ingly.

Set ting the com pi la tion pages
In a non- paged sys tem, the com piler must be in structed to com pile into the
page de fined by KER NEL.

USE- CODE <name1>
USE- DATA <dummy>

where <name1> is the name of the ker nel page de fined with KER NEL and
<dummy> is the com pil er’s dummy page de fined with DATA- PAGE.

An ex am ple
If your tar get board has a typi cal mem ory map, with RAM from 0000h to
FFFFh, your con trol file should be modi fied so that it reads,

$0000 $FFFF KER NEL Kern
$0000 $0000 0 DATA- PAGE Dummy

USE- CODE Kern
USE- DATA Dummy

This in di cates a sin gle area of mem ory with the name Kern.

Modi fy ing the se rial line driv ers
Your tar get board com mu ni cates with the the ex ter nal world via a UART
Un like some other proc es sors, the RTX does not have an on board UART.
How ever, If you are us ing an 8530 se rial com mu ni ca tions de vice, the sup -
plied se rial driver code can be used. This is in the di rec tory RAM\DRIV -
ERS.

Page 30

Generating a RAM target Forth MPE Forth 5 for RTX2000

If you are us ing a dif fer ent UART you will need to write all the words re -
quired to:

• Initialise the UART

• Send a character

• Receive a character

• Test if a character has been received

All four words will nor mally be Forth CODE defi ni tions. This is re quired so
that the send and re ceive words are as fast as pos si ble. Ex am ple se rial line
driv ers in the files RAM\DRIV ERS can be used as a tem plate. As with the
con trol file it is nor mally eas ier to mod ify an ex ist ing se rial line driver file
rather than cre at ing your own from scratch.

In ter rupt or polled driv ers?
Two types of in ter rupt driver can be writ ten:

• interrupt driven

• polled

In ter rupt driven

An in ter rupt driven se rial line can only be used if the UART gen er ates in ter -
rupt sig nals when char ac ters are re ceived. An in ter rupt driven driver will al -
low buff ered se rial com mu ni ca tions to be im ple mented with least proc es sor
over head.

Polled

A polled driver will con tinu ously poll a status bit in the UART to de tect
when the UART has ei ther trans mit ted or re ceived a char ac ter.

Ini tial is ing the se rial line
The word INIT- SER must per form all the UART ini tiali sa tion re quired.
This in cludes set ting:

• the baud rate

• any handshaking required

Page 31

MPE Forth 5 for RTX2000 Generating a RAM target Forth

• the number of data bits

• the number of stop bits

• the parity to be used

It is rec om mended that the baud rate is ini tially set to 2400 baud un til the tar -
get board is work ing. It can then be raised to 9600 or above which makes a
more re spon sive tar get. The RTX will nor mally func tion cor rectly at 38400
baud.

Send ing a char ac ter to the host
The tar get code needs to be able to send a char ac ter to the host for dis play.
There fore, you need to write a word which:

• waits for the transmit line to become available

• transmits a character to the host

• increment the variable OUT

The method used can be ei ther a polled or in ter rupt driven driver but must be
called (EMIT). Once (EMIT) is writ ten, it must be as signed to the de ferred
word EMIT. The stack ef fect of (EMIT) is,

(EMIT) \ char — ; send char to host

Re ceiv ing a char ac ter from the host
The tar get code needs the abil ity to re ceive a char ac ter from XShell. To do
this it needs to:

• wait for a character to be received

• place the character on the Forth stack

The method used can be polled or in ter rupt driven but the word must be
called (KEY). Once (KEY) has been writ ten, it must be as signed to the de -
ferred word KEY. The stack ef fect of (KEY) is:

(KEY) \ — char ; wait for char to be re ceived

Page 32

Generating a RAM target Forth MPE Forth 5 for RTX2000

De tect ing a re ceived char ac ter
The tar get needs to de tect if a char ac ter has been re ceived. This can be used
as part of (KEY). (KEY?) needs to:

• return true on the Forth stack if a character is available (-1)

• return false on the Forth stack if a character is not available (0)

Once (KEY?) is writ ten, it must be as signed to the de ferred word KEY?. The
stack ef fect of (KEY?) is:

(KEY?) \ — t/f ; true if char ac ter re ceived

Set ting up the sys tem
Set ting up the sys tem in volves both hard ware and soft ware. The tar get
board, PC, EPROM emu la tor/pro gram mer and se rial line have to be con -
nected as well as con fig ur ing XShell to run the cross com piler.

Set ting up the hard ware
To gen er ate an in ter ac tive Forth tar get you need:

• an IBM PC or compatible

• A serial cable

• A target board

• An EPROM emulator or programmer

Your PC needs to have at least one se rial port for con nect ing to the tar get
board, so mak ing the Forth in ter ac tive. The se rial ca ble should be con nected
to COM1 as this is the de fault port used by XShell. Other ports can be used
by con fig ur ing Xshell. See the XShell man ual.

Set ting up the soft ware
To com pile source code that gen er ates a Forth tar get, you need to con fig ure
the cross com piler en vi ron ment, XShell, to run the cross com piler. For de -
tailed in for ma tion on con fig ur ing XShell, see the XShell man ual.

Page 33

MPE Forth 5 for RTX2000 Generating a RAM target Forth

Run ning XShell

If dur ing in stal la tion, you al lowed the in staller to mod ify your AUTO -
EXEC.BAT, then to run Xshell you just need to type XS3. If you didn’t or
you ha ven’t re booted since you in stalled the sys tem, then you need to state
the full path of XShell. For ex am ple, the in staller will place XShell in the di -
rec tory, XRTX\XSHELL by de fault.

Con fig ur ing XShell to use your con trol file

Be fore you can cross com pile your source code, you must con fig ure XShell.
XShell re quires the name of the con trol file you are us ing. The con figu ra tion
file loads the re main ing files so you need only to load the con figu ra tion file.
To setup the con figu ra tion file as the file to be loaded,

i) run XShell while in the RAM di rec tory

ii) type Alt-K, Con figu ra tion op tions

iii) press B, setup com mands

iv) press E, com piler com mands

v) type ALL FROM- FILE fol lowed by the path and name of your con figu ra -
tion file, i.e ALL FROM- FILE CON FIGS\CON TROL.CTL fol lowed by
EN TER

vi) press the es cape key to re turn to the pre vi ous menu

vii) press E, save con figu ra tion

viii) Press the es cape key to re turn to the host Forth

Your XShell con figu ra tion is now set to cross com pile your con figu ra tion
file.

Con fig ur ing the se rial ports from XShell

XShell is used to com mu ni cate with the tar get. You there fore need to set up
XShell to the same se rial line set tings that you are go ing to use on the tar get
board.

To do this, type:

i) run XShell while in the RAM di rec tory

ii) type Alt-K, Con figu ra tion op tions

iii) press D, se rial line set tings

Page 34

Generating a RAM target Forth MPE Forth 5 for RTX2000

iv) set up your set tings by press ing let ters a-z

v) press the es cape key when fin ished

vi) type E, save con figu ra tion

vii) press the es cape key to re turn to the host Forth

Cross- compiling
Now the hard ware and soft ware has been setup, you can now cross com pile
the source code to gen er ate an ex ecu ta ble im age.

Cre at ing an im age
To cross com pile the source code, press F3. XShell clears the dis play and
the cross com piler starts com pil ing. The com piler dis plays its sign- on mes -

sage then com piles the source code.

The cross com pile log
Fol low ing the com piler sign- on you see the cross com pile log. As each word
is com piled the com piler dis plays the word’s ad dress, its type and its short -

Page 35

MPE Forth 5 for RTX2000 Generating a RAM target Forth

Cod
e

Com piled type Code Com piled type

VR Vari able FV Float ing point vari able

CN Con stant FC Float ing point con stant

LB La bel FA Float ing point ar ray

: Co lon de fin tion EQ Equate

CD Code defi ni tion CR Cre ate ... Does>

DF De ferred word US User vari able

VC Vo cabu lary

Table 3 - Key to cross-compiler log

ened name. The com piled type of item is coded as two char ac ters as in ta ble
3.

Turn ing on and off the log

In stead of hav ing the data dis played for each com piled item, you can chose
to only dis play a dot. The ad van tage of this is that the com piler spends less
time dis play ing data and so the cross com pile is quicker. To do this, change
the com piler di rec tive in the con trol file from LOG to NO- LOG. The log can
be turned on again by re plac ing log with no- log in the con trol file.

Send ing the log to a file

The cross com piler will re di rect the log to a file in stead of the dis play. To do
this, use:

FILE: <name>

where <name> is the file name to gen er ate. This di rec tive must be placed be -
fore the com mand CROSS- COMPILE.

Send ing the log to a printer

The cross com piler will send the log to a printer. To do this, use:

PRN:

be fore the com mand CROSS- COMPILE.

The com pi la tion sum mary
Once the cross com piler has fin ished cross- compiling the source code, it dis -
plays in for ma tion about the com pi la tion. This in cludes:

• any unresolved references

• the size of the compiled image

Un re solved ref er ences are words which are ref er enced in the source code
but are not de fined. These can be spell ing mis takes or some of the code is not
be ing com piled.

The size of the com piled im age is the amount of ac tual code out put into the
file. The ac tual file size will be the size of the ROM in di cated by the mem ory
map.

Page 36

Generating a RAM target Forth MPE Forth 5 for RTX2000

The cre ated im age
The im age cre ated by the cross com piler is a straight bi nary ex ecu ta ble. It
can be down loaded to a suit able EPROM emu la tor or pro gram mer. The file
has the name given when de fin ing the mem ory map us ing the com piler di -
rec tive KER NEL. It has the ex ten sion .IMG which can not be changed.

Prob lems, Prob lems ...
If dur ing com pi la tion an er ror oc curs, the com piler will stop com pi la tion
and dis play the line on which the er ror oc curred. The cross com piler shows
the line number and the file name where the er ror oc curred as well as the type
of er ror that has oc cured.

Down load ing the com piled im age
Once the source code has been com piled the im age needs to be down loaded
to an EPROM emu la tor or pro gram mer.

Down load ing to a Le Burg EPROM emu la tor
The MPE cross com piler sup ports the Le Burg emu la tor. If you have a Le -
Burg emu la tor, the in staller should have setup your XShell con figu ra tion to
use it if it is al ready in the DOS path. In this case just press F4 and the Le -
Burg soft ware should run. If the in staller could not find your Le burg emu la -
tor soft ware, you have to setup XShell to run your emu la tor soft ware. Re fer
to the XShell man ual.

Down load ing to a dif fer ent emu la tor
The bi nary im age can be down loaded to any EPROM emu la tor as long as the
emu la tor’s soft ware sup ports bi nary im age files. Re fer to the XShell chap ter
on how to setup the XShell con figu ra tion and the emu la tor’s soft ware man -
ual for down load in struc tions.

Page 37

MPE Forth 5 for RTX2000 Generating a RAM target Forth

Down load ing to an EPROM pro gram mer
The MPE de vel op ment sys tem sup ports the Sun shine pro gram mer. If the
in staller found the pro gram mer’s soft ware, then your con figu ra tion will be
setup al ready. To run the pro gram mer’s soft ware press F6. To setup XShell

to use a EPROM pro gram mer, re fer to the XShell chap ter.

Run ning the tar get Forth
The im age gen er ated by the com piler has been down loaded to the tar get, it is
ready to be re set and the Forth tested.

Switch ing to tar get mode
To re ceive char ac ters from the tar get, XShell must be in tar get mode. The
cur rent mode is dis played on the top ban ner. If you are not al ready in tar get
mode, type Alt-T or F5.

Re set ting the tar get board
Once the im age has been down loaded, you can re set the tar get board. You
can ei ther use the re set sup plied on the board or if no re set is on the board,
turn the board’s power off and on again.

The sign- on
Once the board has been re set, the tar get should sign- on. You should see the
mes sage in fig ure 5. The ver sion number and the number of bytes free will

Page 38

Generating a RAM target Forth MPE Forth 5 for RTX2000

MPE RTX 2000 RAM Pow er Forth v3.00
Copy right (C) 1988, 1989, 1990 Mi cro proc es sor En gi neer ing
Free Dic tion ary Space: 29556 bytes
 ok

Figure 5 - The target sign-on

de pend on your sys tem. You now should have a work ing Forth. If the tar get
didn’t show the mes sage, then you may have a prob lem with:

• the serial line drivers

• the memory map definition

• your target board

• your EPROM emulator/programmer

Each of these should be checked.

The se rial line driv ers

If you do not get the sign on mes sage, your trans mit word might not be work -
ing cor rectly. You can check that you can trans mit a char ac ter up the se rial
line, by ap pend ing code for emit ting a char ac ter up the se rial line, onto the
end of the ini tiali sa tion word INIT- SER. There fore a char ac ter can be trans -
mit ted and seen with out ac tu ally run ning any Forth.

The mem ory map defi ni tion.

If the mem ory map for ei ther the ROM or RAM defi ni tions is wrong. The
tar get may not sign- on at all or may gen er ate ‘ga rbage’.

Your tar get board

It is al ways nec es sary to check the ob vi ous. Is the se rial line con nected? Has
your tar get board got power? EPROMs/RAM plugged in cor rectly? Are
jump ers set cor rectly?

Your EPROM emu la tor/pro gram mer

Check to see if your emu la tor is emu lat ing an EPROM that your tar get board
is ex pect ing. If you have the wrong EPROM set, your tar get will not sign on.

Test ing the Forth - an ex am ple
Once the forth has signed- on, you need to test that it’s work ing prop erly.
Type WORDS, this will dis play all the Forth words avail able.

If this works then type in,

Page 39

MPE Forth 5 for RTX2000 Generating a RAM target Forth

: FORTH- TEST \ — ; A quick test for Forth
 ." HELLO"
;
FORTH- TEST

This should dis play,

HELLO

fol lowed by the ok prompt.

Cross- compiling an ap pli ca tion
Once your Forth is work ing on your tar get board, you will now want to write
and com pile your ap pli ca tion.

Writ ing an ap pli ca tion
Sup plied with XShell is the TED edi tor. This can be run by press ing F2. A
dif fer ent edi tor can be used by chang ing the XShell con figu ra tion. See the
XShell chap ter.

Modi fy ing the con trol file
Once your ap pli ca tion has been writ ten, you can add it to the con trol file.
Near the bot tom of the con trol file, there is a list of com mands in the form:

ALL FROM- FILE <name>

To com pile your ap pli ca tion files you add them to the end of the list.

De vel op ing your ap pli ca tion
As Forth is an in ter ac tive lan guage, you can use this to your ad van tage by
writ ing small sec tions of code and test ing as you go. To help you do this, the
ROM Pow er Forth utili ties al low you to ac cess your source files on the host.
Your source files can be com piled from the tar get with out cross- compiling
the whole ap pli ca tion. See the chap ter ROM Pow er Forth Utili ties for more
in for ma tion.

Page 40

Generating a RAM target Forth MPE Forth 5 for RTX2000

Run ning your ap pli ca tion
To com pile the ap pli ca tion you need to:

• run the cross compile(press F3)

• download to the EPROM emulator/programmer(press F4 or F6)

• reset the target

The tar get board signs- on. You can now test your ap pli ca tion.

Gen er at ing a turn key ap pli ca tion
Once you have writ ten your ap pli ca tion, you will want to make it start when
the tar get board is re set. This is known as a turn key or auto start ing ap pli ca -
tion. Your ap pli ca tion does not nec es sar ily need to be in ter ac tive, so the
com piler di rec tive NO- HEADS can be used. This re moves all the word head -
ers, so mak ing the fi nal im age more com pact.

To make an ap pli ca tion turn key, use the di rec tive MAKE- TURNKEY in the
form:

MAKE- TURNKEY <name>

where <name> is the name of the word to run at startup. The word <name>
must be de fined be fore us ing this di rec tive. The ex am ple in fig ure 4 gen er -
ates a sim ple turn key ap pli ca tion when cross com piled. If you re quire the
use of se rial com mu ni ca tions or the mul ti tasker, you must ini tial ise them in
your ap pli ca tion. To ini tial ise the se rial com mu ni ca tions use the word
INIT- SER. To ini tial ise the mul ti tasker use INIT- MULTI.

Page 41

MPE Forth 5 for RTX2000 Generating a RAM target Forth

 : MY- APP \ — ;
 INIT- SER \ Ini tial ise the se rial line
 BE GIN \ Ap pli ca tion never ends...
 ." Hello" \
 AGAIN
 ;

 MAKE- TURNKEY MY- APP

Figure 6 - Example turnkey application

Blank Page

Page 42

Generating a RAM target Forth MPE Forth 5 for RTX2000

Generating an Umbilical Forth target

This chap ter de scribes how to gen er ate an Um bili cal Forth tar get for your
tar get board. It guides you through:

• setting up your hardware and software

• writing the serial line drivers

• modifying the memory map for your board

• compiling and running a target Forth

Sup plied with your cross com piler are con figu ra tions for spe cific boards. If
you have one of these boards, the gen er at ing of a tar get forth is greatly sim -
pli fied. If you do not have a sup ported board you will have to con fig ure the
cross com piler for your board and write new se rial line driv ers.

Is your board al ready sup ported?
If you have the MPE RTX Pow er board you can use the sup plied con trol
files. There are files for the 2000 (8 and 10 MHz), 2001A and 2010 vari ants
of the RTX proc es sor. A con trol file is also sup plied for use with the Har ris
RTX DB board. By us ing one of these, the in stal la tion of an Um bili cal Forth
for your board will be greatly sim pli fied. The con trol file to use will de pend
on the type of board you have. The sup plied con trol files are in the di rec tory
MONI TOR\CON FIGS.

If you do not have this board you will have to cre ate a con trol file and se rial
line driv ers for your board.

The Um bili cal sys tem
An RTX um bili cal sys tem is gen er ated in two parts, the moni tor and the ap -
pli ca tion. The moni tor has three func tions:

Page 43

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

• to download an application

• to execute application code

• to provide I/O services to the application

In or der to run an ap pli ca tion you must have a work ing moni tor in stalled on
your board, in EPROM or an EPROM emu la tor. You can then cross com pile
the ap pli ca tion and down load it via the se rial line.

The moni tor con trol file
The moni tor con trol file con tains all the de tails of your board that the cross
com piler needs to know. This in cludes:

• the memory map of your board

• whether you wish a log to be displayed

• the clock rate of your board’s crystal

As well as con tain ing con figu ra tion in for ma tion, the con trol file con tains a
list of files which are to be cross com piled. These files are used to gen er ate
the moni tor for the board.

Once the cross com piler knows these items, it can gen er ate a cor rect bi nary
im age from your source code.

Cre at ing a con trol file
To cre ate a new con trol file, copy an ex ist ing one and then mod ify it to match
your board. This is nor mally eas ier than gen er at ing one from scratch. Ex -
am ple con trol files are in the di rec tory MONI TOR\CON FIGS.

The mem ory map
The mem ory map de scribes the ad dresses where ROM and RAM start and
end in your tar get sys tem. The mem ory map is de scribed to the cross com -
piler in your con trol file.

The mem ory map is de fined by the:

Page 44

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

• Start of ROM

• Start of RAM

• End of ROM

• End of RAM

From this in for ma tion the cross com piler places any items it needs in the cor -
rect area of mem ory.

Set ting the mem ory map
The mem ory map is de scribed in two parts in your con trol file.

• the start and end of ROM

• the start and end of RAM

Set ting the start and end of ROM

The start and end of ROM is de fined by us ing the com piler di rec tive KER -

NEL. KER NEL is used in the form:

rom- start rom- end KER NEL <name>

where rom- start is the ad dress of the start of ROM, rom- end is the ad dress of
the end of ROM and <NAME> is the name of the out put file. The cross com -
piler auto mati cally adds the ex ten sion .IMG to <NAME> when sav ing the
file. The num bers rom- start and rom- end are, by de fault, in deci mal, but can
be en tered in hex by pre ced ing them by a $.

<NAME> is also the name of the ker nel page in a paged sys tem. For more in -
for ma tion see Paged tar gets, chap ter 12.

Set ting the start and end of RAM

The start and end of RAM is de fined by us ing the com piler di rec tive DATA-

 PAGE. DATA- PAGE is used in the form:

ram- start ram- end page- id DATA- PAGE <name>

where ram- start is the ad dress of the start of RAM, ram- end is the ad dress of
the end of RAM, page- id is a unique iden ti fier for this area of mem ory and
<NAME> is the name for this area of mem ory. The num bers ram- start and

Page 45

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

ram- end are, by de fault, in deci mal, but can be en tered in hex by pre ced ing
the value with a $.

The la bel <NAME> is the name of the ker nel’s data area in a paged sys tem. In
a non- paged sys tem <NAME> is not ac tu ally used but must be stated. In a
non- paged sys tem, page- id can be set to any number. For more in for ma tion
on paged sys tems, see the chap ter on paged tar gets .

Set ting the com pi la tion pages

In a non- paged sys tem, the com piler must be in structed to com pile into the
pages de fined by KER NEL and DATA- PAGE. There fore, af ter the mem ory
map is de fined you must code:

USE- CODE <name1>
USE- DATA <name2>

where <name1> is the name of the ker nel ROM page de fined with KER NEL

and <name2> is the RAM page de fined with DATA- PAGE.

An ex am ple

For ex am ple, if your tar get board has a mem ory map as in fig ure 2, your con -

trol file should be modi fied so that it reads,

$0000 $7FFF KER NEL Kern
$8000 $FFFF 0 DATA- PAGE Kern- data

Page 46

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

Figure 7 - Example memory map

USE- CODE Kern
USE- DATA Kern- data

This in di cates two ar eas of mem ory (pages) with names Kern and Kern- data

Modi fy ing the se rial line driv ers
Your tar get board com mu ni cates with the the ex ter nal world via a UART.
If you are us ing an 8530 or 2691 UART, one of the sup plied se rial driver
files can be used. These are in the di rec tory MONI TOR\DRIV ERS.

If you are us ing a dif fer ent UART you will need to write all the words re -
quired to:

• Initialise the UART

• Send a character

• Receive a character

• Test if a character has been received

As with the con trol file it is nor mally eas ier to mod ify an ex ist ing se rial line
driver file rather than cre at ing your own from scratch.

Ini tial is ing the se rial line

The word that must per form all the ini tiali sa tion is the word INIT- SER. It
must per form all the UART ini tiali sa tion re quired. This in cludes set ting:

• the baud rate

• any handshaking required

• the number of data bits

• the number of stop bits

• the parity to be used

It is rec om mended that the baud rate is ini tially set to 2400 baud un til the tar -
get board is work ing. It can then be raised to 9600 or above which makes the
tar get seem more re spon sive. The RTX will nor mally run with out prob lems
at 38400 baud.

Page 47

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Send ing a char ac ter to the host
The tar get code needs to be able to send a char ac ter to the host for dis play.
There fore, you need to write a word which:

• waits for the transmit line to become available

• transmits a character to the host.

The trans mit word can ei ther poll to de tect whether the trans mit line is avail -
able or ,if avail able, an in ter rupt can be used. The word must be called
(EMIT). The stack ef fect of (EMIT) is,

(EMIT) \ char — ; send char to host

Re ceiv ing a char ac ter from the host
The tar get code needs to be able to re ceive a char ac ter from XShell. To do
this it needs to:

• wait for a character to be received

• place the character on the forth stack

The re ceive word must be in ter rupt driven and the word must be called
(KEY). The stack ef fect of (KEY) is:

(KEY) \ — char ; wait for char to be re ceived

De tect ing a re ceived char ac ter
The tar get needs to de tect if a char ac ter has been re ceived. This can be used
as part of (KEY). (KEY?) needs to:

• return true on the forth stack if a character is available (-1)

• return false on the forth stack if a character is not available (0)

The stack ef fect of (KEY?) is:

(KEY?) \ — t/f ; true if char ac ter re ceived

Page 48

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

Set ting up the sys tem
Set ting up the sys tem in volves both hard ware and soft ware. The tar get
board, PC, EPROM emu la tor/pro gram mer and se rial line have to be con -
nected as well as con fig ur ing XShell to run the cross com piler.

Set ting up the hard ware
To gen er ate an in ter ac tive Forth tar get you need:

• an IBM PC or compatible

• A serial line

• A target board

• An EPROM emulator or programmer

Your PC needs to have at least one se rial line port for con nect ing to the tar get
board, so mak ing the Forth in ter ac tive.

If the Le burg EPROM emu la tor is be ing used, you will also need to con nect
the emu la tor to the digi tal I/O card in stalled in your PC.

Set ting up the soft ware
To com pile source code that gen er ates Forth tar get, you need to con fig ure
the cross com piler en vi ron ment, XShell, to run the cross com piler. For more
de tailed in for ma tion on con fig ur ing XShell, see the XShell man ual.

Run ning XShell

If you al lowed the in staller to mod ify your AUTO EXEC.BAT, you just need
to type XS3 to run XShell. If you didn’t, then you need to state the full path
of XShell. The in staller will place XShell in the di rec tory, XRTX\XSHELL
by de fault.

Con fig ur ing XShell to use your con trol file

Be fore you can cross com pile your source code, you must con fig ure XShell.
XShell re quires the name of the con trol file you are us ing. The con figu ra tion
file loads the re main ing files so you need only to load the con figu ra tion file.
To setup the con figu ra tion file as the file to be loaded,

Page 49

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

i) en ter XShell while in the MONI TOR di rec tory

ii) type Alt-K, Con figu ra tion op tions

iii) press B, setup com mands

iv) press E, com piler com mands

v) type ALL FROM- FILE fol lowed by the path and name of your con figu ra -
tion file, i.e ALL FROM- FILE CON FIGS\CON TROL.CTL fol lowed by
EN TER

vi) press the es cape key to re turn to the pre vi ous menu

vii) press E, save con figu ra tion

viii) Press the es cape key to re turn to the host Forth

Your XShell con figu ra tion is now set to cross com pile your con figu ra tion
file.

Con fig ur ing the se rial ports from XShell

XShell is used to com mu ni cate with the tar get. You there fore need to set up
XShell to the same se rial line set tings that you are go ing to use on the tar get
board.

To do this:

i) run Xshell while in the MONI TOR di rec tory

ii) type Alt-K, Con figu ra tion op tions

iii) press D, se rial line set tings

iv) set up your set tings by press ing let ters a-z

v) press the es cape key when fin ished

vi) type E, save con figu ra tion

vii) press the es cape key to re turn to the host forth

Page 50

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

Cross com pil ing the moni tor
Now the hard ware and soft ware has been setup, you can now cross com pile
the moni tor source code. This should then be ei ther down loaded into an
EPROM emu la tor or blown into EPROM.

Cre at ing an im age
To cross com pile the source code, press F3. XShell clears the dis play and
the cross com piler starts com pil ing. The com piler dis plays its sign- on mes -
sage then com piles the source code.

The cross com pile log
Fol low ing the com piler sign- on you see the cross com pile log. As each word
is com piled the com piler dis plays the words ad dress, its type and its short -
ened name. The com piler type is coded as two char ac ters as in ta ble 1.

Turn ing on and off the log

In stead of hav ing the data dis played for each com piled item, you can chose
to only dis play a dot. The ad van tage of this is that the com piler spends less
time dis play ing data and so the cross com pile is quicker. To do this, change

Page 51

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

Cod
e

Com piled type Code Com piled type

VR Vari able FV Float ing point vari able

CN Con stant FC Float ing point con stant

LB La bel FA Float ing point ar ray

: Co lon de fin tion EQ Equate

CD Code defi ni tion CR Cre ate ... Does>

DF De ferred word US User vari able

VC Vo cabu lary

Table 5 - Key to cross-compiler log

the com piler di rec tive in the con trol file from LOG to NO- LOG. The log can
be turned on again by re plac ing LOG with NO- LOG in the con trol file.

Send ing the log to a file

The cross com piler will re di rect the log to a file in stead of the dis play. To do
this, use:

FILE: <name>

where <name> is the file name to gen er ate. This di rec tive must be placed be -
fore the com mand CROSS- COMPILE.

Send ing the log to a printer

The cross com piler will send the log to a printer. To do this, use:

PRN:

be fore the com mand CROSS- COMPILE.

The com pi la tion sum mary
Once the cross com piler has fin ished, it dis plays in for ma tion about the com -
pi la tion. This in cludes:

• any unresolved references

• the size of the compiled image

• the number of forward references made

Words that are un re solved ref er ences are words which are ref er enced in the
source code but are not de fined. These can be spell ing mis takes or some of
the code is not be ing com piled.

The size of the com piled im age is the amount of im age down loaded to your
emu la tor.

The for ward ref er ence count sim ply in forms you of the number of words de -
fined af ter they are first used.

Page 52

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

Prob lems, Prob lems ...
If dur ing com pi la tion an er ror oc curs, the com piler will stop com pi la tion
and dis play the line on which the er ror oc curred. The cross com piler shows
the line number and the name of the file in which the er ror oc curred as well as
the type of er ror that oc cured.

Cross com pil ing the Forth ker nel
Once you have a moni tor you can cross com pile the Forth ker nel code and
down load it to the tar get. There is a con trol file for the ker nel code, which is
laid out in a simi lar fash ion to the moni tor con trol file. Ex am ple ker nel con -
trol files are in the di rec tory APP\CON FIGS.

The main dif fer ence be tween the two is that the ker nel con trol file ends with
the UMBILICAL- FORTH di rec tive. This in structs the cross- compiler to run
an um bili cal Forth sys tem. Once this is com plete you will be in structed to re -
set your tar get board, and down load the ker nel.

Down load ing the Forth ker nel
Once you have re set your board you will be asked whether you wish to
“down load files to tar get?” Whilst de vel op ing you should an swer “Y” as
you will not have your Forth ker nel and ap pli ca tion in EPROM. It is only at
the fi nal test stage when the ap pli ca tion code is in EPROM that you will not
need to down load it. Dur ing the down load stage, a dot will be pro duced for

Page 53

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

 Please re set tar get sys tem, and then
 press <space> to run Um bili cal Forth.

 Down load files to tar get? (y/n) Y

 Down load ing APP2000.IMG to page 00, off set 8100 ...

Figure 8 - Umbilical download messages

each 1K block of code that is be ing down loaded. An ex am ple screen dis play
is shown in fig ure 8

Run ning the tar get Forth
Once the im age gen er ated by the com piler has been down loaded to the tar -
get, it is ready to be tested.

The sign- on
You will see a mes sage simi lar to that in fig ure 9. The cross com piler it self
dis plays this mes sage, so the tar get is not nec es sar ily up and work ing. To
test the tar get board, you need to de fine a defi ni tion. There fore if you type:

: FORTH- TEST \ — ; A quick test for forth
 ." HELLO" \
;
FORTH- TEST

This should dis play,

HELLO

fol lowed by the ok prompt.

If the you didn’t get this re sponse, then you may have a prob lem with:

• the serial line drivers

• the memory map definition

• your target board

• your serial line

• your EPROM emulator/programmer

Page 54

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

 Um bili cal Forth v3.00
 Tar get: Har ris RTX 2000/20001A/2010
 Copy right(C) 1990,91 Mi cro proc es sor Eng. Ltd.

 BASE now in DECI MAL

 ok

Figure 9 - The Umbilical Forth sign-on

Each of these should be checked.

As sum ing all is well you can pro ceed to gen er ate your ap pli ca tion.

Writ ing an ap pli ca tion
Sup plied with XShell is the TED edi tor. This can be run by press ing F2. A
dif fer ent edi tor can be used by chang ing the XShell con figu ra tion. See the
XShell chap ter.

Modi fy ing the con trol file
Once your ap pli ca tion has been writ ten, you can add it to the ker nel con trol
file. Near the bot tom of the con trol file, there is a list of com mands in the
form:

all from- file <name>

To com pile your ap pli ca tion files, you should add them to the end of the list.

Run ning your ap pli ca tion
To com pile the ap pli ca tion you need to:

• run the cross compile(press F3)

• reset the target

• download the application to the target board

The tar get board should then sign- on. You can now test the ap pli ca tion.

Gen er at ing a turn key ap pli ca tion
Once you have writ ten your ap pli ca tion, you will want to make it start when
the tar get board is re set. This is known as a turn key or auto start ing ap pli ca -
tion.

To make an ap pli ca tion turn key, use the di rec tive MAKE- TURNKEY in the
form:

MAKE- TURNKEY <name>

Page 55

MPE Forth 5 for RTX2000 Generating an Umbilical Forth target

where <name> is the name of the word to run at startup. The word <name>
must be de fined be fore us ing this di rec tive. If your ap pli ca tion uses the se rial
line you will also need to en sure that you are us ing a driver which does not
use the um bili cal mecha nism. The ex am ple in fig ure 10 gen er ates a sim ple
turn key ap pli ca tion when cross com piled. To see the ex am ple work ing, you
must switch XShell into tar get mode.

Page 56

Generating an Umbilical Forth target MPE Forth 5 for RTX2000

 : MY- APP \ — ;
 INIT- SER \ Ini tial ise the se rial line
 BE GIN \ Ap pli ca tion never ends...
 ." Hello" \ Re place se rial line driv ers!
 AGAIN
 ;

 MAKE- TURNKEY MY- APP

Figure 10 - Example umbilical turnkey application

Optimising your Target Forth

Once you have a tar get Forth, you may want to ei ther re duce the size of your
im age or in crease the exe cu tion speed of the code. This chap ter de scribes
the fea tures of the MPE De vel op ment sys tem which help you with this aim.

Re duc ing the size of your im age
Dur ing de vel op ment you may need to re duce the size of your tar get im age.
Nor mally, your ap pli ca tion has grown too large for your ROM space. You
can re duce the size of your com piled im age by:

• removing headers

• factorising your code

• removing excess code

• using equates instead of constants

• using Umbilical Forth

Re mov ing head ers
To re duce the size of the com piled im age, you can in struct the com piler to
com pile all or some of the code with out heads. For each word de fined, the
cross com piler gen er ates a header in the tar get im age. A header is the name
of the word as a counted string and is used when the tar get is used in ter ac -
tively. There fore, by re mov ing the heads of words you re duce the in ter ac tiv -
ity of your sys tem.

Re mov ing all head ers

To re move the heads from all the code, use NO- HEADS. The com piler will
pro duce code which will be greatly re duced in size, but can not be used in ter -
ac tively.

Page 57

MPE Forth 5 for RTX2000 Optimising your target Forth

Se lec tively re mov ing head ers

To se lect a number of words to be made head er less, use IN TER NAL and EX -

TER NAL. IN TER NAL in structs the com piler to stop gen er at ing head ers, and
EX TER NAL in structs it to gen er ate head ers again.

Fac tor is ing your code
When writ ing in Forth, code should be re used as much as pos si ble. By re us -
ing code, your tar get im age can be re duced greatly. The smaller the pro ce -
dures you use, the more eas ily they can be re used. In ad di tion, small
pro ce dures are easy to test. Con se quently code writ ten with small pro ce -
dures is nor mally more re li able.

Re mov ing ex cess code
Dur ing de vel op ment, de bug and test code is in serted into the source. This
code is eas ily left and for got ten about. By strip ping out this ex cess code you
can gain more space in the EPROM. A tool like MPE’s cross- referencer,
XREF, is in valu able for this sort of prun ing.

Us ing equates in stead of con stants
An equate is a con stant that just re sides within the cross com piler. It there -
fore can not be ref er enced when in ter ac tively de bug ging on your tar get sys -
tem. The ac tual value of the equate is com piled ‘in -line’ in stead of re fer ing
to a con stant. There fore you save the space on the tar get board for each con -
stant (6 bytes + number of char ac ters in the name) de fined but sac ri fice
some in ter ac tiv ity. This only works if you don’t re fer to the equate many
times, as an equate uses 2 more bytes than a con stant, every time it is ref ered
to.

De fin ing an equate

An equate is de fined in a simi lar way to a con stant:

xxxx EQU <name>

where xxxx is the value of the equate and <NAME> is its name.

Page 58

Optimising your target Forth MPE Forth 5 for RTX2000

Us ing an equate

An equate is used in the same way as a con stant, by stat ing its name.

Us ing Um bili cal Forth
If you re quire a com pact tar get Forth but with out the in con ven ience of re -
mov ing tar get head ers, you can use Um bili cal Forth. Um bili cal Forth gives
you an in ter ac tive Forth in a very com pact size (Um bili cal Forth ker nel is
about 4k). The ker nel doesn’t con tain all the words in the ROM tar get, so
you might have to write a few words to get your code to com pile or copy
some code from the ROM tar get Forth. For more de tails see the chap ter on
Gen er at ing an Um bili cal Forth tar get.

Speed ing up your code
The RTX proc es sors have a high de gree of paralel lism in their ar chi tec ture.
It is some times pos si ble to merge sev eral in struc tions, and hence in crease
the exe cu tion speed. See the chap ter on As sem ber Op codes to find out how
to do this.

Page 59

MPE Forth 5 for RTX2000 Optimising your target Forth

Blank Page

Page 60

Optimising your target Forth MPE Forth 5 for RTX2000

Assembler Opcodes

In tro duc tion
In most con ven tional Forth im ple men ta tions, one Forth primi tive cor re -
sponds to sev eral ma chine in struc tions. In the case of the RTX fam ily of
proc es sors, sev eral Forth primi tives can be com bined into one in struc tion.
There is there fore no as sem bler re quired for cre at ing Forth primi tives. How -
ever, it is pos si ble to com bine sev eral Forth primi tive in struc tions into one
RTX in struc tion. Do ing this, al lows those primi tives to be exe cuted in the
same clock cy cle, and oc cupy one mem ory cell. How to com bine primi tive
in struc tions is de scribed in the sec tion be low about build ing new op codes.

For a full de scrip tion of the proc es sor in struc tion set, you should con sult the
ex cel lent ‘Ha rris RTX- 2000 Pro gram mer’s Ref er ence Man ual’, sup plied
sepa rately. This vol ume con tains a de scrip tion of all the use ful in struc tions,
and pro vides a valu able in sight into pro gram ming the RTX proc es sors.

Proc es sor Ar chi tec ture
The RTX- 2000 is a two stack proc es sor. One stack is used to hold data to be
acted on by primi tive in struc tions and sec on dary sub rou tine calls, whilst the
other is used to store sub rou tine re turn ad dresses and other house keep ing
val ues. Each in struc tion on the RTX- 2000 is 16 bits wide. There are on- chip
reg is ters in the proc es sor core, each also 16 bits wide. These hold the stack
point ers, act as tem po rary stor age dur ing arith metic cal cu la tions and map
I/O.

There is no de code ROM in the proc es sor to pro tect it from er rant in stuc -
tions. For most in struc tions, all bits are sig nifi cant, and each con trols hard-
 wired logic in the proc es sor core.

Page 61

MPE Forth 5 for RTX2000 Assembler opcodes

Build ing New Op codes
The user is pro vided with a named set of in struc tions which match the Forth
word set, but other in struc tions can be formed as re quired, and the fa cili ties
for gen er at ing new in struc tion mne mon ics are de scribed be low.

Why should you build a new op code?
The highly par al lel na ture of the proc es sor, gained by us ing many in ter nal
buses, means that two con secu tive in struc tions can oc cur that use in de pend -
ent parts of the proc es sor. If this hap pens, it is usu ally true that the dif fer ent
parts of the proc es sor are con trolled by sepa rate sets of bits in the proc es sor
op code. The two in struc tions can be merged to form a new in struc tion, halv -
ing the time taken for the se quence to exe cute. This merg ing pro ce dure is re -
ferred to as op ti mi sa tion.

To avoid gen er at ing many mne mon ics to de scribe these merged op codes,
the com piler con tains a set of rules for merg ing op codes auto mati cally. A list
of pre de fined op codes is given later.

When to build a new op code
If an op code is used only once it is not nec es sary to build a spe cial op code for
it and the code can be in serted ‘in -line’. How ever, if an op code will be used
many times it is of ten worth mak ing a spe cial word for it. This sort of de ci -
sion is simi lar to that taken when fac tor is ing nor mal Forth code.

N.B. When build ing new op codes be care ful to test them in ter ac tively first.
Since the proc es sor has no pro tec tion against il le gal in struc tions, and most
in struc tions will do some thing, the re sult of a mis take is of ten hav ing to re set
the proc es sor.

How to de fine an op code in- line

An op code can be in serted into a defi ni tion, us ing the [and] op era tors which
tem po rar ily turn off the com piler. This al lows you to put the in struc tion di -

rectly into the dic tion ary us ing For th’s ‘,‘ word. For ex am ple, a com puted
goto can be gen er ated by writ ing into the pro gram coun ter with the re turn bit
set. The fol low ing se quence com piles this op code:

..... [$BEA7 ,]

Page 62

Assembler opcodes MPE Forth 5 for RTX2000

How to de fine a new op code per ma nently

You can de fine a new op code by us ing the de fin ing word UCODE in the fol -
low ing way:

nnnn UCODE <name>

This will auto mati cally gen er ate code to lay down the re quired op code when
its name is speci fied. This is simi lar to the way a nor mal Forth word (de fined
us ing a co lon) will gen er ate code to exe cute it self when its name is speci fied.

For ex am ple the RTX- 2000 op codes SELDPR (fetch/stores in data page) and
SELCPR (fetch/stores in code page) can be added as fol lows.

$B08D UCODE SELDPR \ de fine op code
$B00D UCODE SELCPR \ de fine op code

You can now use SELDPR and SELCPR in the same way as you would use
any other Forth word such as DROP or 2+.

How to Con trol the Opti miser
In some cases it may be nec es sary to in hibit the opti mis er’s ac tion, or mod ify
it in some way.

Why should you mod ify the opti mis er’s ac tion?
When the op code in volves the re turn stack it is of ten nec es sary to turn off the

opti miser. An other com mon oc ca sion is with the word COM PILE which
later com piles the word af ter it self. If the next two words can be merged, the
ac tion that will be com piled will be the com pound ac tion, which is not what
is usu ally re quired. In this case it is nec es sary to turn off the opti miser so that
the op ti mi sa tion does not hap pen.

How to mod ify the opti mis er’s ac tion

Two op codes can be kept sepa rate by us ing the im me di ate word [\\]. For ex -
am ple, the se quence

Page 63

MPE Forth 5 for RTX2000 Assembler opcodes

COM PILE + 2*

would later com pile the merged op code

+ 2*

whereas

COM PILE + [\\] 2*

breaks the op ti mi sa tion lead ing to the de sired re sult. There is a non-

 immediate form \\ which is most of ten used in side de fin ing words or struc -
ture con trol words to pre vent un de sired merg ing when the op code or struc -
ture is com piled.

This fea ture of us ing the opti miser to pile up op codes can be used to good ef -

fect with the stream ing in struc tion TIMES (also re ferred to as OF(in the
Har ris docu men ta tion) to build up a com pound in struc tion that is re peated.

Pre de fined Op codes
A number of op codes are pre de fined in the cross com piler. These can be
used just like Forth words, but be cause they are de fined as RTX op codes,
they exe cute in one or two cy cles only. For con ven ience, they are pre sented
as ta bles of re lated in struc tions. How ever, for de tailed in for ma tion about the
RTX op code set, you should con sult the Har ris docu men ta tion.

Page 64

Assembler opcodes MPE Forth 5 for RTX2000

Op code Name Op code Name

0A096 RTR 0A09E RDR

0A196 R’ 0AADE C’

0B010 -SOF TINT 0B090 SOFT INT

0B00D SELCPR 0B08D SELDPR

Table 6 - Special register opcodes

Page 65

MPE Forth 5 for RTX2000 Assembler opcodes

Op code Name Op code Name

0BE03 CR@ 0BE83 CR!

0BE04 MD@ 0BE84 MD!

0BE05 SQ@ 0BE85 SQ!

0BE06 SR@ 0BE86 SR!

0BE07 PC@

0BE08 IMR@ 0BE88 IMR!

0BE09 SPR@ 0BE89 SPR!

0BE0B IVR@ 0BE8B SLR!

0BE0C IPR@ 0BE8C IPR!

0BE0D DPR@ 0BE8D DPR!

0BE0E UPR@ 0BE8E UPR!

0BE0F CPR@ 0BE8F CPR!

0BE10 IBC@ 0BE90 IBC!

0BE11 UBR@ 0BE91 UBR!

0BE13 TC0@ 0BE93 TC0!

0BE14 TC1@ 0BE94 TC1!

0BE15 TC2@ 0BE95 TC2!

Table 7 - Opcodes for internal register access

Op code Name Op code Name

0A41A U/1’ 0A45A U/’

0A458 U/" 0A51A S1’

0A55A S’ 0A558 S"

0A49C U*" 0A89C U*’

0A89D *’ 0A49D *"

Table 8 - Opcodes for step mathematics

Page 66

Assembler opcodes MPE Forth 5 for RTX2000

Op code Name Op code Name

0BE00 G@ 0BE80 G!

0CE00 U@ 0CE80 U!

0EE00 @ 0EE80 !

0FE00 C@ 0FE80 C!

0E942 @++ 0E9C2 !++

0F941 C@++ 0F9C1 C!++

0E940 @+ 0E9C0 !+

0E540 @- 0E5C0 !-

0F940 C@+ 0F9C0 C!+

0F540 C@- 0F5C0 C!-

Table 9 - Memory access opcodes

Op code Name Op code Name

0A001 0

0A002 2* 0A003 2*C

0A004 CU2/ 0A005 C2/

0A006 U2/ 0A007 2/

0A008 N2* 0A009 N2*C

0A00A D2* 0A00B D2*C

0A00C CUD2/ 0A00D CD2/

0A00E UD2/ 0A00F D2/

Table 10 - Shift opcodes

Opti miser Glos sary
The fol low ing words may be used to con trol the way in which the com piler
op ti mises the code.

Page 67

MPE Forth 5 for RTX2000 Assembler opcodes

Op code Name Op code Name

0A040 NIP 0AE40 DROP

0A0C0 DUP 0AEC0 OVER

0AE80 SWAP 0BE00 R@

0BE01 R> 0BE81 >R

Table 11 - Stack operator opcodes

Op code Name Op code Name

0A240 AND 0A340 NOR

0A440 SWAP- 0A540 SWAP-C

0A640 OR 0A740 NAND

0A840 ++ 0A940 +c

0AA40 XOR 0AB40 XNOR

0AC40 - 0AD40 -C

Table 12 - Dyadic ALU opcodes

[\\] —
“bracket-stop-opt”

Used during compilation to break the optimisation sequence at this

point. Opcodes either side of [\\] will not be merged. See

NO-OPTIMIZE OPTIMIZE

NO-OPTIMIZE —
“no-optimise”

This directive disables the opcode optimiser. The optimiser can
merge several opcodes into one, so producing smaller and faster

code. The default state is OPTIMIZE. The usual reason to turn the
optimiser off is in order to build a table of opcodes.
For example:

CRE ATE OPCODE- TABLE

] @ ! + 0< - R> DROP >R R@ [

Page 68

Assembler opcodes MPE Forth 5 for RTX2000

Op code Name Op code Name

0A000 NOOP 0A000 NOP

0B8C0 0+ 0B8C1 1+

0B8C2 2+ 0B4C1 1-

0B4C2 2- 0A012 2*’

0BCC0 NE GATE 0DE00 LIT

0BE82 TIMES 0BE82 Of(

0BE82 EX TRA(0BE87 EXE CUTE

0BEA7 GOTO 0BEA0 ;R

08800 ?BRANCH 09000 BRANCH

09800 (NEXT) 0A100 NOT

Table 13 - Miscellaneous opcodes

Without any optimisation control, several elements of this table
would be merged, producing an incorrect result. The optimiser can

be ‘broken’ using the [\\] function as follows:

CRE ATE OPCODE- TABLE

] @ [\\] ! [\\] + [\\] 0< [\\] - [\\] R> [\\]
 DROP [\\] >R [\\] R@ [\\] [

The use of [\\] after each opcode forces the optimiser not to merge
any opcodes, but makes the code longer and difficult to read or

understand. A better solution is to use NO-OPTIMIZE and

OPTIMIZE to turn the optimiser off for a short while.

NO- OPTIMIZE

CRE ATE OPCODE- TABLE
] @ ! + 0 - R DROP R R@ [

OP TI MIZE

NO-TAIL-OPT —
“no-tail-opt”

A procedure that ends in a call to another procedure, followed by a
return can often by optimised by just branching to the other
procedure. Because some Forth words can make assumptions
about the use of the return stack, this optimisation is controlled
separately from all other optimisations. The default is

NO-TAIL-OPT. It is recommended that you develop the code
without this optimisation, and then turn it on for final debugging.

NO-TAIL-OPT and TAIL-OPT can be used around single words
if required.

: A ;
: B A ;
If TAIL-OPT is active the last call to A will be converted to a jump,
saving two bytes and one clock cycle. If this is undesirable use the
code below.

: A ;

NO- TAIL- OPT

: B A ;

TAIL- OPT

Page 69

MPE Forth 5 for RTX2000 Assembler opcodes

OPTIMIZE —
“optimise”

This directive enables the opcode optimiser. For details see

NO-OPTIMIZE.

TAIL-OPT —
“tail-opt”

Turns on branch optimisation. The default is OFF. See

NO-TAIL-OPT

Page 70

Assembler opcodes MPE Forth 5 for RTX2000

Multitasker

The mul ti tasker sup plied with the MPE de vel op ment sys tem can greatly
sim plify com plex tasks by break ing them down into mana ga ble chunks.
This chap ter leads you through:

• initialising the multitasker

• writing a task

• communicating between tasks

• handling events

The mul ti tasker is in the file MUL TIRTX.FTH in the \ROM and \RAM di -
rec to ries.

Note: The mul ti tasker can not be used with Um bili cal Forth

Ini tial is ing the mul ti tasker
The mul ti tasker needs to be ini tial ised be fore use. At com pile time the cross
com piler must be told the to tal number of tasks that your sys tem re quires and
at run- time, all the tasks must be ini tial ised. How to do this at run- time is
dealt with later.

Set ting the number of tasks
The number of tasks is set in your con trol file. It is in the form:

xxxx EQU #TASKS

where xxxx is, by de fault, 4 but can be set to a lower number. This re duces
the amount of mem ory that is al lo cated to all the tasks., so leav ing more
RAM for your ap pli ca tion.

Page 71

MPE Forth 5 for RTX2000 The Multitasker

Start ing the mul ti tasker

To start the mul ti tasker, use MULTI. MULTI starts the sched uler so new
tasks can be added.

Stop ping the mul ti tasker

To stop the mul ti tasker, use SIN GLE.

Writ ing a task
Tasks are very straight for ward to write, but the way tasks are sched uled
needs to be un der stood.

Us ing the sched uler
The mul ti tasker is soft ware sched uled. This means that each task re lin -
quishes con trol back to the sched uler when its ready. This is dif fer ent from a
pre- emptive sched uler where the sched uler in ter rupts a task. Two words are
sup plied so that a task can re lin quish con trol back to the sched uler, PAUSE

and WAIT.

Us ing PAUSE

The word PAUSE passes con trol back to the sched uler which exe cutes all the
other tasks once, then re turns back to this task.

Page 72

The Multitasker MPE Forth 5 for RTX2000

: TASK1 \ — ; An ex am ple task
 BE GIN \ Start an end less loop
 7 EMIT \ Pro duce a beep
 1000 WAIT \ Reshed ule 1000 times
 AGAIN \ Go round again
;

Figure 11 - Multitasking example

Us ing WAIT

The word WAIT sus pends a task for a cer tain number of sched ules. It is used
in the form:

n WAIT

where n is the number of sched ules to sus pend the task. When WAIT is used,
it trans fers con trol to the sched uler. The sched uler does not exe cute this task
again un til all the other tasks have been exe cuted n times.

An ex am ple
An ex am ple task is shown in fig ure 11. The task is an end less loop with the
word WAIT em bed ded in it. When the word WAIT is exe cuted, the sched uler
re sched ules to the next task. The sched uler will not run this task un til it has
run all other tasks 1000 times. Each time the task is exe cuted, it will emit a
beep.

Task de pend ant vari ables
An area of mem ory is set aside for each task. This mem ory con tains user
vari ables which con tain task spe cific data. For ex am ple, the cur rent base is
nor mally a user vari able as it can vary from task to task.

De fin ing a user vari able

A user vari able is de fined in the form:

n USER <name>

where n is the nth byte in the user area.

Us ing a user vari able

A user vari able is used in the same way as a nor mal vari able. By stat ing its
name, its ad dress is placed on the stack, which can then be fetched us ing @
and stored by !.

Page 73

MPE Forth 5 for RTX2000 The Multitasker

Ini tial is ing a task
A task needs to be ini tial ised be fore it is run. To to this it needs to be as signed
to a task number. The task number can range from zero to the maxi mum
number of tasks stated in the con trol file. A task is as signed in the form:

AS SIGN TASK1 N TO- TASK

where TASK1 is your task word and n is the task number. For ex am ple, to ini -
tial ise the task in fig ure 11, to task 1, you type:

AS SIGN TASK1 1 TO- TASK

The task number is used to con trol the task.

Con trol ling tasks
Tasks can be con trolled in the fol low ing ways:

• activated

• suspended for a number of schedules

• halted

• restarted after being halted

You can also stop the cur rent task.

Start ing a task
A task can be started by ac ti vat ing it. To ac ti vate a task, use

n AC TI VATE

where n is the task number.

Stop ping a task
A task may be stopped for a number of cy cles of the sched uler or tem po rar ily
sus pended. A task may also stop it self.

Page 74

The Multitasker MPE Forth 5 for RTX2000

Stop ping for a number of cy cles

To stop the cur rent task for a number of cy cles, use WAIT. WAIT is used in
the form,

n WAIT

where n is the number of cy cles to stop for.

Tem po rar ily stop ping a task

To tem po rar ily stop a task, use HALT. HALT is used in the form,

n HALT

where n is the task to be stopped.

To re start a stopped task, use RE START. RE START is used in the form,

n RE START

where n is the task to re start.

Stop ping the cur rent task

To stop the cur rent task (i.e. stop it self) use STOP. STOP is used in the form,

STOP

Han dling mes sages
An es sen tial fea ture of the mul ti tasker is the abil ity to send and re ceive mes -
sages be tween tasks.

Send ing a mes sage

To send a mes sage to an other task, use the word SEND- MESSAGE. SEND-

 MESSAGE is used in the form:

mes sage task# SEND- MESSAGE

Page 75

MPE Forth 5 for RTX2000 The Multitasker

where mes sage is a 16- bit mes sage and task# is the number of the task to
send the mes sage to. The mes sage can be data, an ad dress or any other type
of in for ma tion but its mean ing must be known to the re ceiv ing task.

Re ceiv ing a mes sage

To re ceive a mes sage, use RECEIVE- MESSAGE. RECEIVE- MESSAGE sus -
pends the task un til a mes sage ar rives. When a mes sage is re ceived the task
is re- activated and the send ing task number and the data is re turned.

Cre at ing events
Events are analo gous to in ter rupts. Whereas in ter rupts hap pen on hard ware
sig nals, events hap pen un der soft ware con trol.

Page 76

The Multitasker MPE Forth 5 for RTX2000

Field Con tains Size

TCBSP Data stack pointer word

TCBST Task status byte byte

TCBID Task number of mes sage sender byte

TCBMSG Mes sage code or ad dress word

TCBEVENT CFA of word run by task’s event han dler word

TCBAC -
TION

CFA of main task word word

Table 14 - Multitasker data structure

Bit when set when re set

7 Task is run ning Task is halted

6 Mes sage pend ing No mes sages

5 Event has been trig -
gered

No events

Table 15 - A task's status word

Writ ing an event
An event is a nor mal Forth word. An event is as so ci ated to a task so that
when the event is trig gered, the task is ac ti vated. There fore, an event is usu -
ally used as ini tiali sa tion for a task.

Ini tial is ing an event
Events are ini tial ised in a si mil iar way to tasks. They are as signed in the
form,

AS SIGN EVENT1 n TO- EVENT

where EVENT1 is your event han dler and n is the task number of the task
that it is to be as so ci ated with.

Trig ger ing an event
There are two ways of trig ger ing an event:

• using SET-EVENT

• setting a bit in the status word

Us ing Set- event

SET- EVENT is a word which sets an event flag for a task. Once the event flag
is set, the tasker will exe cute the event be fore it switches to the task. The
task, is also ac ti vated.

Set ting a bit in the status word.

A bit can be set in a tasks status word which in di cates to the mul ti tasker that
an event has taken place. This method can be used to trig ger an event from a
hard ware in ter rupt. Re fer to The mul ti tasker in ter nals later in the chap ter for
de tails on the status byte.

Clear ing an event

To stop an event han dler be ing run, use CLEAR- EVENT.

Page 77

MPE Forth 5 for RTX2000 The Multitasker

The mul ti task er’s in ter nals
A mul ti tasker tries to simu late many proc es sors with just one proc es sor. It
works by rap idly switch ing be tween each task. On each task switch it saves
the cur rent state of the proc es sor, and re stores the state that the next task
needs.

The Forth mul ti tasker is soft ware sched uled. This means that each task re -
lin quishes con trol to the sched uler, which then switches to the next task. In
this way less proc es sor state in for ma tion needs to be saved.

The sched ul er’s data struc ture
The Forth mul ti tasker cre ates a task con trol block for each task. The task
con trol block (TCB) is a data struc ture which con tains in for ma tion rele vant
to a task (fig ure). The status byte (TCBST) con tains in for ma tion on the
exe cu tion of the task and its event (fig ure).

A sim ple ex am ple
The fol low ing ex am ple is a sim ple dem on stra tion of the mul ti tasker. Its
sim ple role is to dis play an hash (#) every so of ten, but leav ing the for ground
Forth run ning. To use the mul ti tasker you must cross- compile the file MUL -
TIRTX.FTH into your tar get.

De fin ing a sim ple task
The fol low ing code de fines a sim ple task called TASK1. It dis plays a #
every 1000 sched ules.

VARI ABLE DE LAY \ time de lay be tween #’s
 1000 DE LAY ! \ ini tial ise time de lay

: TASK1 \ — ; task to dis play #’s
 AS CII $ EMIT \ Dis play a dol lar ($)
 BE GIN \ Start con tinu ous loop
 AS CII # EMIT \ Dis play a hash (#)
 DE LAY @ WAIT \ Re sched ule De lay times
 AGAIN \ Back to the start ...
;

Page 78

The Multitasker MPE Forth 5 for RTX2000

Ini tial is ing the mul ti tasker
Be fore any tasks can be ac ti vated, the mul ti tasker must be ini tial ised. This is
done with the fol low ing code:

INIT- MULTI
MULTI

The word INIT- MULTI ini tial ises all the mul ti task er’s data struc tures and
MULTI switches to mul ti task ing. These words need only be exe cuted once
in a mul ti task ing sys tem.

As sign ing the ex am ple task to a task number
In a mul ti task ing sys tem, tasks are rep re sented by num bers. There fore, each
task must be as signed to a task number. For this ex am ple you type:

AS SIGN TASK1 1 TO- TASK

This as signs the word TASK1 to task number 1. It can be as signed to any task
upto the number of tasks de fined in the sys tem (de fined by #TASKS in the
con trol file).

Ac ti vat ing the ex am ple task
To ac ti vate (run) the ex am ple task, type:

1 AC TI VATE

This will ac ti vate task number one. Im me di ately you will see a dol lar and a
hash ($#) dis played. If you press <re turn> a few times, you no tice that the
Forth is still run ning. Af ter a cou ple of sec onds an other hash will ap pear.
This is the ex am ple task work ing in the back ground.

Con trol ling the ex am ple task
The ex am ple task can be con trolled in sev eral way:

• the rate of generation of hashes can be changed

• it can be halted

• once halted it can be restarted

• it can be started from scratch

Page 79

MPE Forth 5 for RTX2000 The Multitasker

Chang ing the rate of hashes

The rate of pro duc tion of hashes can be changed by chang ing the vari able
DE LAY. Try:

2000 DE LAY !

This changes the number of sched ules that the ex am ple tasks makes be tween
dis play ing hashes to 2000. There fore the rate of dis play ing hashes halves.

Halt ing the ex am ple task

The task is halted by typ ing the tasks number fol lowed by HALT:

1 HALT

You no tice that the hashes are not dis played.

Re start ing the halted task

The task is re started by the word RE START. Type the task number fol lowed
by RE START:

1 RE START

You no tice that the hashes are dis played again.

Re start ing the task from scratch

To re start the task from scratch, just ac ti vate it again:

1 AC TI VATE

You no tice the dol lar and the hash ($#) are dis played, fol lowed by hashes
(#).

Page 80

The Multitasker MPE Forth 5 for RTX2000

Glos sary
This glos sary con tains de tails of the ma jor words in the in ter rupt and multi-
 tasking sys tem. Other words ex ist, but are only used as frac tions of the words
be low.

?EVENT —
“query-event”

If the current task’s event flag is set, the flag is reset and the event
handler is executed.

ACTIVATE task# —
“activate”

Initialises and starts the given task number. Task 0 is Forth itself
and was activated when Forth started. Note that ACTIVATE causes
the task to start from the very beginning. If the task was halted, and
execution should resume where it left off, use RESTART instead.

CLR-EVENT-RUN —
“clear-event-run”

Clears the event run flag for the current task. This is bit 4 in the task
status byte.

EVENT? — t/f
“event-query”

Returns true if the event triggered bit has been set in the current
task’s status byte.

GET-MESSAGE — message task#
“get-message”

Returns the task number of the currently executing task (oneself).

HALT task# —
“halt”

Halts the task whose number is given. Do not halt task 0. Halting a
task prevents it responding to messages or events.

Page 81

MPE Forth 5 for RTX2000 The Multitasker

INIT-MULTI —
“init-multi”

Initialises the multi-tasker, task 0, and starts the multi-tasker. Just

include this word in COLD to kick the multi-tasker into action.

INIT-TCBS —
“init-t-c-bees”

The main part of the multi-tasker reset process.

MSG? task# — t/f
“message-query”

Returns true if the task is holding a message, and is therefore not
free to receive another one.

MULTI —
“multi”

Turns the multi-tasker on, by clearing the bit in the TASK# byte in
internal RAM that inhibits the scheduler.

PAUSE —
“pause”

Waits for one iteration of the scheduler. Equivalent to:

1 WAIT

RESTART task# —
“restart”

Restarts a task that was halted by HALT or WAIT. Unlike
ACTIVATE, the task resumes where it left off.

SELF — task#
“self”

Returns the task number of the current task. Useful with MSG? in
particular to determine whether or not a message has been received
by the task.

SEND-MESSAGE message task# —
“send-message”

Sends a message to the given task. The message address can be
used on its own, or as a pointer to an extended message.

Page 82

The Multitasker MPE Forth 5 for RTX2000

SINGLE —
“single”

Turns off the multi-tasker by setting the scheduler disable bit in the
TASK# byte in internal RAM.

STATUS — n
“status”

Returns the task status byte of the current task but with the top bit
(bit 7) masked off. If this value is non-zero, the task has been
awakened for a reason other than for normal running.

TCBS — addr
“t-c-b-st”

A label, NOT a word, that returns the start address in DATA RAM
of the table holding the action words for all the tasks. In some
systems this is implemented as a constant for visibility.

TO-EVENT cfa task# —
“to-event”

Sets the CFA of a Forth word as the action to run when the task’s
event trigger is set.

AS SIGN <word> <n> TO- EVENT

TO-TASK cfa task# —
“to-task”

Stores the CFA of the word forming the task action in the task table
entry for the task.

AS SIGN <word> <n> TO- TASK

WAIT n —
“wait”

Suspends the current task for n iterations of the scheduler. If n is 0,
the task is suspended until a message or event are received.

Page 83

MPE Forth 5 for RTX2000 The Multitasker

.

Interrupts

This chap ter de scribes how to write in ter rupt han dlers in Forth. It de tails
how to setup and con trol in ter rupt han dlers.

In ter rupts on the RTX2000 Fam ily
When an in ter rupt oc curs on an RTX proc es sor, exe cu tion starts from a lo ca -
tion in the vec tor ta ble. Each in ter rupt source is al lo cated a 32 byte block in
the ta ble, which can con tain a small serv ice rou tine or any other code that the
user wishes to place there.

The lo ca tion of the vec tor ta ble is user se lecta ble by writ ing to bits 10- 15 of
the IBC reg is ter. In or der that the sup plied han dlers can be used, the equate
INT- BASE should be set in the con trol file. The vec tor ta ble MUST be
aligned on a 1Kbyte bound ary.

There are a number of pos si ble in ter rupt sources on an RTX proc es sor.
These are shown in ta ble 16. For more in for ma tion on the in ter rupts for your
proc es sor, re fer to your proc es sor’s user guide.

Writ ing Forth in ter rupt han dlers
A Forth in ter rupt serv ice rou tine (ISR) is just like any other Forth word. It
can there fore be tested and de bugged like a nor mal Forth word. Only when
the word is fully tested need it be as signed to an in ter rupt.

Set ting an in ter rupt
An in ter rupt is set by us ing the de ferred words in ta ble 16. For ex am ple, if
you wish to run your word UNDERFLOW- ERR if the pa rame ter stack un -

Page 85

MPE Forth 5 for RTX2000 Interrupts

der flows in your code, you need to as sign an ac tion to the de ferred word
PSU- ISR (ta ble 16). There fore your source code should read:

AS SIGN UNDERFLOW- ERR TO- DO PSU- ISR

Page 86

Interrupts MPE Forth 5 for RTX2000

Off set into Vec tor Ta ble De ferred word Source

0000h Re served

0020h Re served

0040h swi- isr Soft ware in ter rupt

0060h ei5- isr Ex ter nal in ter rupt 5

0080h ei4- isr Ex ter nal in ter rupt 4

00A0h ei3- isr Ex ter nal in ter rupt 3

00C0h timer2- isr Timer/Counter 2

00E0h timer1- isr Timer/Counter 1

0100h timer0- isr Timer/Counter 0

0120h ei2- isr Ex ter nal in ter rupt 2

0140h rsv- isr Re turn stack over flow

0160h psv- isr Pa rame ter stack over flow

0180h rsu- isr Re turn stack un der flow

01A0h psu- isr Pa rame ter stack un der flow

01C0h ei1- isr Ex ter nal In ter rupt 1

01E0h nmi- isr NMI

0200h phantom- isr No in ter rupt

Table 16 - RTX vector table

Some com mon prob lems
There are a few com mon prob lems that might cause an in ter rupt not to work
cor rectly:

• a stack fault

• the source is not cleared

• the interrupts are not enabled

Stack fault

An in ter rupt serv ice rou tine can use the stack while it is exe cut ing, but must
clear up the stack be fore re turn ing from the in ter rupt. The nor mal symp tom
of a stack fault is that the in ter rupt han dler runs but then the tar get board
crashes, ei ther im me di ately or af ter a length of time.

Source is not cleared

Once an in ter rupt han dler is trig gered by an in ter rupt, the source of the in ter -
rupt must be told that the in ter rupt is be ing serv iced. If this is not done, the
source of the in ter rupt will carry on gen er at ing in ter rupts. Nor mally this ap -
pears as the in ter rupt han dler exe cut ing once and then the tar get board ‘loc -
king’.

In ter rupts are not en abled

In ter rupts need to be en abled with EI be fore any in ter rupts will be serv iced.
The vec tors must be setup or the in ter rupt han dler as signed to the de ferred
word be fore the in ter rupts are en abled. You will also need to un mask the in -
di vid ual in ter rupt con trol bit for the in ter rupt you are in ter ested in.

Spe cial Note

There is a bug in the NMI in ter rupt on the RTX2000 and 2001 proc es sors,
which means it is not safe to per form a re turn from this type of in ter rupt. The

NMI should there fore be used only when a re turn will not hap pen. This bug
has been cor rected on the 2010 with the ad di tion of an ex tra NMI mode.

Page 87

MPE Forth 5 for RTX2000 Interrupts

Con trol ling the in ter rupts
In ter rupts can be in one of two states, en abled or dis abled.

Ena bling in ter rupts

To en able in ter rupts use EI. Once EI has been exe cuted, all in ter rupts are en -
abled.

Dis abling in ter rupts

To dis able in ter rupts use DI. Once DI has been exe cuted, all in ter rupts are
dis abled.

Un mask ing an in di vid ual in ter rupt
The RTX proc es sors al low you to se lec tively en able and dis able in di vid ual
in ter rupts by use of an in ter rupt mask reg is ter. To en able a spe cific in ter rupt,
spec ify the name of the in ter rupt fol lowed by the word UN MASK. Note that
you must still en able in ter rupts glob ally us ing EI.

Mask ing an in di vid ual in ter rupt
An in di vid ual in ter rupt may be dis abled by speci fy ing its name fol lowed by
the word MASK. Once this has been exe cuted, in ter rupts from that source
will not be serv iced.

A sim ple ex am ple
The fol low ing ex am ple patches a high level in ter rupt serv ice rou tine (ISR)
onto the timer/coun ter 0 in ter rupt of the RTX. To try this ex am ple you must
cross- compile the files IN TERUPT.FTH and VEC TORS.FTH onto your
tar get.

Page 88

Interrupts MPE Forth 5 for RTX2000

The timer ISR
The ex am ple ISR in cre ments a vari able which can be fetched in the fore -
ground to de tect that the timer is work ing.

VARI ABLE TICKS \ timer vari able

: TICKS- ISR \ — ; In cre ment vari able
 1 TICKS +! \ In cre ment ticks
;

Patch ing your ISR onto the timer
The ISR needs to be patched onto a timer in ter rupt. This is made sim ple as
all that is re quired is that you as sign your ISR to be the ac tion of the de ferred
word TIMER0- ISR.

AS SIGN TICKS- ISR TO- DO TIMER0- ISR

Once this is done, the timer is ready to go. All that is re quired is for the timer
to be ini tial ised.

Ini tial is ing the timer
The timer needs to be ini tial ised to:

• enable Timer 0 interrupts

• enable interrupts globally

To do this a word INIT- TICKS is de fined:

: INIT- TICKS \ — ; ini tial ise the timer over flow
 TIMER0 UN MASK \ en able Timer 0 in ter rupts
 EI \ en able in ter rupts glob ally
;

The timer can be ini tial ised by typ ing INIT- TICKS.

Test ing the timer is run ning

The timer can be tested by check ing the vari able TICKS:

TICKS ?

This dis plays the cur rent value of TICKS.

Page 89

MPE Forth 5 for RTX2000 Interrupts

Glos sary
This glos sary con tains de tails of the ma jor words in the in ter rupt sys tem.
Other words ex ist, but are only used as frac tions of the words be low. The
source code for all these words may be found in IN TERUPT.FTH.

DI —
“d-i”

Disables interrupts.

EI —
“e-i”

Enables interrupts.

MASK mask —
“mask”

The interrupt(s) specified in the supplied mask are turned off via
the Interrupt Mask Register (IMR).

swi MASK \ Dis able soft ware in ter rupts

MASK-ALL —
“mask-all”

Turn off all interrupts via the Interrupt Mask Register.

MASKED? mask — t/f
“masked-query”

Returns TRUE if the supplied interrupt(s) are currently disabled
via the Interrupt Mask Register

RESTORE-INT sr md cr —
“restore-int”

Restore the interrupt enable state previously saved by SAVE-INT.

SAVE-INT — sr md cr
“save-int”

Saves the current state of the interrupt enable, and disables
interrupts. See RESTORE-INT.

Page 90

Interrupts MPE Forth 5 for RTX2000

UNMASK mask —
“un-mask”

The interrupt(s) specified in the supplied mask are turned on via the
Interrupt Mask Register (IMR).

psv UN MASK \ En able data stack over flow ints

Page 91

MPE Forth 5 for RTX2000 Interrupts

Blank Page

Page 92

Interrupts MPE Forth 5 for RTX2000

Software floating point

Al though most ap pli ca tions only re quire in te ger arith metic, some do re quire
float ing point. There fore soft ware float ing point is sup plied with the cross-
 compiler and the tar get Forth.

The cross- compiler has a more lim ited float ing point sup port than the tar get,
this means that some words are avali able within co lon defi ni tions, but not
out side them.

En ter ing float ing point num bers
Float ing point num bers can be en tered in two forms, 1.234 and 0.1234e1

Float ing point num bers are com piled as lit eral num bers when in a co lon
defi ni tion and placed on the cross- compiler’s stack when out side a defi ni -
tion.

The form of float ing point num bers
A float ing point number is placed on the Forth stack. It con sists of three 16-
 bit num bers. Two for the man tissa and one for the ex po nent. The man tissa is
nor mal ised.

Cre at ing vari ables
To cre ate a vari able, use FVARI ABLE. FVARI ABLE works in the same way
as VARI ABLE. For ex am ple, to cre ate a float ing point vari able called VAR1
you code:

FVARI ABLE VAR1

Page 93

MPE Forth 5 for RTX2000 Software floating point

When VAR1 is used, it re turns the ad dress of the float ing point number.

Ac cess ing vari ables

Two words are used to ac cess float ing point vari ables, F@ and F!. These are
analo gous to @ and !.

Cre at ing con stants
To cre ate a float ing point con stant, use FCON STANT. FCON STANT is analo -
gous to CON STANT. For ex am ple, to gen er ate a float ing point con stant
called CON1 with a value of 1.234, you en ter:

1.234 FCON STANT CON1

When the CON1 is exe cuted, it re turns 1.234 on the Forth stack.

Us ing the sup plied words
The sup plied words split into sev eral groups:

• sines, cosines and tangents

• arc sines, cosines and tangents

• arithmetic functions

• logarithms

• powers

• displaying floating point numbers

• inputting floating point numbers

The fol low ing func tions only ex ist as tar get words so you can not use them in
cal cu la tions in your source code when out side a co lon defi ni tion.

Page 94

Software floating point MPE Forth 5 for RTX2000

Cal cu lat ing si nes, co sines and tan gents

To cal cu late a sine, co sine and tan gent, use FSIN, FCOS and FTAN re spec -
tively. They take ei ther an an gle in de grees or ra di ans, de pend ing on which
is set at the mo ment. See Set ting de grees or ra di ans.

Cal cu lat ing arc si nes, co sines and tan gents.

To cal cu late the arc sine, co sine and tan gent, use FA SIN, FA COS and FA TAN
re spec tively. They re turn an an gle in de grees or ra di ans, de pend ing on
which is set. See Set ting de grees or ra di ans.

Cal cu lat ing loga rithms

Two words are sup plied to cal cu late loga rithms, FLOG and FLN. FLOG cal -
cu lates a loga rithm to base 10 (deci mal). FLN cal cu lates a loga rithm to base
e. Both take a float ing point number in the range from 0 to ¥ .

Cal cu lat ing pow ers
Three power func tions are sup plied:

• ex

• 10x

• x y

Cal cu lat ing ex

To cal cu late ex, use FE^X. FE^X takes x as a float ing point number.

Cal cu lat ing 10x

To cal cu late 10x, use F10^X. F10^X takes x as a float ing point number.

Cal cu lat ing x y

To cal cu late x y, use FX^Y. FX^Y takes x and y as float ing point num bers.

Page 95

MPE Forth 5 for RTX2000 Software floating point

Set ting de grees or ra di ans
The an gu lar meas ure ment used in the trigo no met ric func tions can be set to
be ei ther de grees or ra di ans. To set it to de grees, use the word DE GREES. To
set it to ra di ans use the word RA DI ANS.

Con vert ing be tween de grees and ra di ans

To con vert be tween de grees and ra di ans use RAD>DEG or DEG>RAD.
RAD>DEG con verts an an gle from ra di ans to de grees. DEG>RAD con verts
an an gle from de grees to ra di ans.

Dis play ing float ing point num bers
Two words are avail able for dis play ing float ing point num bers, F. and E. .

The word F. takes a float ing point number off the stack and dis plays it in the
form xxxx.xxxxx or x.xxxxxEyy de pend ing on the size of the number. The
word E. dis plays the number in the lat ter form.

Page 96

Software floating point MPE Forth 5 for RTX2000

Glos sary
In the fol low ing glos sary, you will find all the words that you are likely to
need when us ing soft ware float ing point; the words omit ted are, in gen eral,
sub rou tines used by words in the glos sary.

N.B. Ab bre via tion: f.p. = float ing point

D>F d — f
“d-to-f”

Converts a 32 bit double integer to a normalized f.p. number.

DEG>RAD f1 — f2
“deg-to-rad”

Convert f1 degrees to its corresponding number of radians.

DEGREES —
“degrees”

Switches floating point calculations to be done in degrees.

DINT f — d
“dint”

Leave the integer part of f as a double number on the stack.

DNORM d n — f
“d-norm”

Normalize double number d by n left shifts. Leaves a f.p. number
on the stack.

E. f —
“e-dot”

Print the f.p. number on the stack in exponential form.

F, f —
“f-comma”

Compile the f.p. number on the top of the stack.

F. f —
“f-dot”

Print the top f.p. number on the stack in free format.

Page 97

MPE Forth 5 for RTX2000 Software floating point

F! f addr —
“f-store”

Store the f.p. number f at address addr.

F+ f1 f2 — f3
“f-plus”

Add together the top two f.p. numbers on the stack and put the f.p.
result on the stack.

F- f1 f2 — f3
“f-minus”

Subtract the top f.p. number on the stack from the second f.p.
number on the stack, and put the f.p. result on the stack.

F* f1 f2 — f3
“f-star”

Take the top two f.p. numbers off the stack, multiply them together,
and leave the f.p. result on the stack.

F/ f1 f2 — f3
“f-slash”

Divide the second f.p. number on the stack by the top f.p. number
and leave the f.p. result on the stack.

F< f1 f2 — flag
“f-less-than”

Leave true flag if f1<f2. Otherwise, leave a false flag.

F<0 f — flag
“f-less-than-0"

Leave a true flag if f<0. Otherwise, leave a false flag.

F= f1 f2 — flag
“f-equals”

Leave a true flag if the top two f.p. numbers on the stack are equal.
Otherwise leave a false flag.

F0= f — flag
“f-0-equals”

Leave a true flag if the f.p. number on the top of the stack is zero.

Page 98

Software floating point MPE Forth 5 for RTX2000

F> f1 f2 — flag
“f-greater-than”

Leave a true flag if f1>f2. Otherwise, leave a false flag.

F>0 f — flag
“f-greater-than-zero”

Leave a true flag if the f.p. number on the top of the stack is greater
than zero.

F# — f [executing]
“f-hash” — [compiling]

If interpreting, takes text from the input stream and, if possible,
converts it to a f.p. number on the stack. Numbers in integer format
will be converted to floating point. If compiling, the converted
number is compiled.

F#IN — f 3 | 0
“f-hash-in”

Attempts to convert a token from the input stream to a floating
point number. Numbers in integer format will be converted to
floating point. An indicator (0 or 3) is returned in the same way as
an indicator is returned by FNUMBER?.

F@ addr — f
“f-fetch”

Fetch the f.p. number from address addr and put it on the stack.

F10^X f1 — f2
“f-10-to-the-x”

Raise 10 to the power f1 and put the result on the stack.

FABS f — |f|
“f-abs”

Returns the modulus of the f.p. number on the top of the stack.

FACOS f1 — f2
“f-a-cos”

Leave, on the stack, the angle (in degrees or radians) whose cosine
is f1, such that 0<=f2<=180 (f2 in degrees).

Page 99

MPE Forth 5 for RTX2000 Software floating point

FARRAY fn-1..f0 n — [parent]
“f-array” n — fn [child]

When generating the array, take n f.p. numbers and n, and compile
them into the array. When executing the child word, take n and
place f.p. number n from the array onto the stack. Note that the
numbering in the array goes 0,1,..n-1.

FASIN f1 — f2
“f-a-sine”

Leave, on the stack, the angle (in degrees or radians) whose sine is
f1, such that -90<=f2<=90.

FATAN f1 — f2
“f-a-tan”

Leave, on the stack, the angle (in degrees or radians) whose tangent
is f1, such that -90<f2<90.

FCONSTANT f — [parent]
“f-constant” — f [child]

Floating point equivalent of CONSTANT. Use in the form:

<f.p. number on stack> FCON STANT <name>

FCOS f1 — f2
“f-cos”

Take the cosine of f1 (degrees or radians) and put it on the stack.

FDROP f —
“f-drop”

Drop the f.p. number on the top of the stack.

FDUP f — f f
“f-dup”

Duplicate the f.p. number on the top of the stack.

FE^X f1 — f2
“f-e-to-the-x”

Raise e, the exponential number, to the power f1 and put the result
on the stack.

Page 100

Software floating point MPE Forth 5 for RTX2000

FFRAC f1 f2 — f3
“f-frac”

Leave the fractional remainder from the division f1/f2. The
remainder takes the sign of the dividend.

FINT f1 — f2
“fint”

Place the f.p. integer value of f1 on the stack.

FLITERAL f —
“f-literal”

When compiling, compile f as a literal. For example,

: ABCD [cal cu late f] FLIT ERAL ;
Compilation is suspended for the compile-time calculation of f.
Execution of ABCD leaves f on the stack.

FLN f1 — f2
“f-log-base-e”

Take the logarithm of f1 to base e and put the result on the stack.

FLOATS —
“floats”

Switches the action of NUMBER? to be FNUMBER?. This action
can be reversed by INTEGERS. Both FLOATS and INTEGERS are in
the FORTH vocabulary.

FLOG f1 — f2
“f-log-base-10"

Take the logarithm of f1 to base 10 (decimal) and put the result on
the stack.

FMAX f1 f2 — max{f1,f2}
“f-max”

Put the greater of the top two f.p. numbers onto the stack.

FMIN f1 f2 — min{f1,f2}
“f-min”

Put the lesser of the top two f.p. numbers onto the stack.

Page 101

MPE Forth 5 for RTX2000 Software floating point

FNEGATE f — -f
“f-negate”

Negate the f.p. number on the top of the stack.

FNUMBER? addr — 0|n 1|d 2|f 3
“f-number-query”

Converts string at address addr to either a single, double or floating
point number along with 1, 2, or 3 respectively. If a 0 is left on the
stack then FNUMBER? was unable to convert the string.

FOVER f1 f2 — f1 f2 f1
“f-over”

Floating point equivalent of OVER.

FROT f1 f2 f3 — f2 f3 f1
“f-rote”

Floating point equivalent of ROT.

FSEPARATE f1 f2 — f3 f4
“f-separate”

Leave the signed integer quotient f4 and remainder f3 when f1 is
divided by f2. The remainder has the same sign as the dividend.

FSIGN f — f flag
“f-sign”

Leave the f.p. number and a flag on the stack. Leaves a true flag if f
is negative, else leaves a false flag.

FSIN f1 — f2
“f-sine”

Leave the floating point sine of f1 (degrees or radians) and put it on
the stack.

FSQR f1 — f2
“f-s-q-r”

Take the square root of the floating point number on the top of the
stack and put the result onto the stack.

Page 102

Software floating point MPE Forth 5 for RTX2000

FSWAP f1 f2 — f2 f1
“f-swap”

Floating point equivalent of SWAP.

FTAN f1 — f2
“f-tan”

Take the tangent of f1 (degrees or radians) and put the result on the
stack.

FVARIABLE —
“f-variable”

Floating point equivalent of VARIABLE. Set up an fvariable by
typing:

FVARI ABLE <name>

FX^N f1 n — f2
“f-x-to-the-n”

Raise f1 to the power n (n integer), and put result on the stack.

FX^Y f1 f2 — f3
“f-x-to-the-y”

Raise f1 to the power f2 and put the result on the stack.

INTEGERS —
“integers”

Switches the action of NUMBER? to be INTEGER?. This action
reverses that of FLOATS. Both FLOATS and INTEGERS are in the
FORTH vocabulary.

RAD>DEG f1 — f2
“rad-to-deg”

Convert f1 radians to degrees, and put result on the stack.

RADIANS —
“radians”

Switches floating point calculations to be done in radians.

Page 103

MPE Forth 5 for RTX2000 Software floating point

S>F n — f
“s-to-f”

Converts a single (16 bit) number to a normalized f.p. number

SINT f — n
“sint”

Takes the single number integer part of f and puts it on the stack.

Page 104

Software floating point MPE Forth 5 for RTX2000

ROM PowerForth Utilities

Sup plied as source are utili ties to:

• compile source code on your target board via the serial line

• upload a binary image from your target to your PC

These utili ties can be used to gen er ate an EPROM which has all the tools re -
quired to de velop an ap pli ca tion.

Com pil ing text files
Source text files can be com piled di rectly from the host PC onto the tar get
sys tem. This saves time in not hav ing to cross com pile all the source if a
small modi fi ca tion is made. The utili ties as sume that each text file is split
into pages. A page is sepa rated from an other by an AS CII 12 char ac ter.
Writ ing source code with pages gives you the abil ity to com pile dis crete
chunks of code. If you do not have any pages in your source code, the whole
file should be treated as page one.

Note: You must switch XShell to file server mode to use this fa cil ity. See
the XShell man ual.

The re quired files
To com pile text files on your tar get board, cross com pile the files IO -
DEF.FTH and TEXT FILE.FTH.

Page 107

MPE Forth 5 for RTX2000 ROM PowerForth

Com pil ing a speci fied text file
To com pile all or part of a speci fied text file onto your tar get, use FROM-
 FILE in the form:

start- page end- page FROM- FILE <name>

This com piles the file <NAME> into the tar get’s dic tion ary.

Com pil ing the de fault text file
An al ter na tive ap proach is to spec ify a de fault file name which is re mem -
bered by the tar get. The file can then be com piled with out speci fy ing the
text file’s name. This is nor mally quicker if you are re peat edly com pil ing
one file.

Speci fy ing the de fault text file

To set the de fault file name, type:

USE <name>

where <NAME> is the text file’s name to be set as the de fault. If no ex ten sion
is speci fied, an ex ten sion of .FTH is as sumed.

Com pil ing the de fault text file

To com pile the de fault file, type:

start- page end- page FROM

This com piles the pages from start- page to end- page in clu sive onto the tar -
get.

Speci fy ing the start and end pages
Words are sup plied to en able you to com pile parts or all of a file eas ily. To
com pile parts of a file you can use ON WARDS, UPTO and ALONE with ei ther
FROM or FROM- FILE.

Com pil ing from a speci fied page to the end of the file

To com pile from a start page to the end of the file, use ON WARDS in the
form:

Page 108

ROM PowerForth MPE Forth 5 for RTX2000

start- page ON WARDS

This gen er ates a start and end page which can be used with ei ther FROM-

 FILE or FROM.

For ex am ple,

10 ON WARDS FROM

com piles from page ten to the end of the de fault text file.

Com pil ing from the start of the file to a speci fied page

To com pile from the start of a file to a speci fied page, use UPTO in the form:

UPTO end- page

This gen er ates a start and end page which can be used with ei ther FROM-

 FILE or FROM.

For ex am ple,

UPTO 10 FROM

com piles from the start of the file to page ten of the de fault text file.

Com pil ing a sin gle page

To com pile a sin gle page, use ALONE in the form:

start- page ALONE

This gen er ates a start and end page which can be used with ei ther FROM-

 FILE or FROM.

For ex am ple,

10 ALONE

com piles page ten of the de fault text file.

Page 109

MPE Forth 5 for RTX2000 ROM PowerForth

Com pil ing screen files
Stan dard Forth screen files can be com piled onto the tar get sys tem, in the
same way as on a host sys tem.

Note: You must switch XShell to file server mode to use this fa cil ity. See
XShell man ual.

The re quired files
To com pile screen files from your tar get board, cross com pile the files IO -
DEF.FTH and BLOCKS.FTH.

Com pil ing a speci fied screen file

To com pile all or part of a speci fied screen file onto your tar get, use THRU-

 USING in the form:

start- screen end- screen THRU- USING <name>

This com piles the file <NAME> into the tar get’s dic tion ary.

Com pil ing the de fault screen file
An al ter na tive ap proach is to spec ify a de fault file name which is re mem -
bered by the tar get. The file can then be com piled with out speci fy ing the
text file’s name. This is nor mally quicker if you are re peat edly com pil ing
one file.

Speci fy ing the de fault screen file

To set the de fault file name, type:

US ING <name>

where <NAME> is the screen file’s name to be set as the de fault. If no ex ten -
sion is speci fied, an ex ten sion of .SCR is as sumed.

Page 110

ROM PowerForth MPE Forth 5 for RTX2000

Com pil ing the de fault screen file

To com pile the de fault file, type:

start- page end- page THRU

This com piles the screens from start- page to end- page in clu sive onto the tar -
get.

Com pil ing a sin gle screen
A sin gle screen can be loaded from the de fault screen file or a speci fied
screen file.

Com pil ing a sin gle screen from a speci fied screen file

To com pile a sin gle screen, use LOAD- USING in the form:

screen# LOAD- USING <name>

This com piles the screen screen# of the file <NAME> onto the tar get.

Com pil ing a sin gle page from the de fault screen file

To com pile a sin gle screen, use LOAD in the form:

screen# LOAD

where screen# is the screen number to load.

Down load ing a bi nary im age
A bi nary im age can be down loaded from the tar get to your host PC. Two
utili ties are pro vided:

• an Intel hex download

• a XMODEM download

For both utili ties a suit able com mu ni ca tions pack age will be re quired (e.g.
Pro Comm).

Page 111

MPE Forth 5 for RTX2000 ROM PowerForth

XMO DEM bi nary im age down load
Bi nary im ages can be down loaded to your PC us ing the XMO DEM pro to -
col.

Re quired files

To use this util ity you must cross com pile the files BLOCKS.FTH and BIN-
 DOWN.FTH.

Us ing the XMO DEM bi nary down load util ity

To down- load a bi nary im age from the tar get sys tem to your PC, use BIN-
 DOWN in the form:

addr #bytes BIN- DOWN

where addr is the start ad dress and #bytes is the number of bytes to down-
 load start ing from addr.

For ex am ple,

1200 400 BIN- DOWN

sends the area of mem ory from 1200 to 1599 to your host PC.

In tel hex bi nary im age down load
Bi nary im ages can be down loaded to your PC us ing the In tel hex for mat.

Re quired files

To use this util ity you must cross com pile the files BLOCKS.FTH and
HEX- DOWN.FTH.

Us ing the bi nary down load util ity

To down load a bi nary im age from the tar get sys tem to your PC, use BIN-
 DOWN in the form:

addr #bytes HEX- DOWN

where addr is the start ad dress and #bytes is the number of bytes to down load
start ing from addr.

For ex am ple,

Page 112

ROM PowerForth MPE Forth 5 for RTX2000

1200 400 HEX- DOWN

sends the area of mem ory from 1200 to 1599 to your host PC.

ROM Pow er Forth
ROM Pow er Forth can be used to gen er ate a stand- alone Forth sys tem. With
these utili ties, you can gen er ate an EPROM which can con tain an in ter ac tive
Forth with the abil ity to de velop an ap pli ca tion.

It is rec om mended that the RAM tar get code be used to gen er ate the ROM
Pow er Forth EPROMs as this will sim plify the hard ware re quire ments.

The notes be low de scribe a ROM Pow er Forth sys tem built us ing the RAM
tar get code.

Note: A li cence is re quired to dis trib ute open Forth sys tems. Con tact
MPE for more de tails.

Hard ware re quire ments
To de velop an ap pli ca tion us ing ROM Pow er Forth, your board re quires two
ar eas of mem ory:

• one for EPROM

• one for RAM

EPROM area

The EPROM area con tains the de vel op ment ker nel, and later, once the ap -
pli ca tion has been de vel oped, the ap pli ca tion it self.

RAM area

The RAM area is used to hold a copy of the ROM im age plus the ap pli ca tion
code un der de vel op ment. Once the ap pli ca tion is com plete, this en tire area is
down- loaded to the PC, and blown into EPROM, ready to be fit ted to the tar -
get board in place of the ker nel EPROM.

Page 113

MPE Forth 5 for RTX2000 ROM PowerForth

Mak ing your ap pli ca tion turn key
Once your ap pli ca tion has been de vel oped, it needs to be made turn key so
that it starts exe cut ing at powe rup. The ap pli ca tion can be made per ma nent
by copy ing the im age into an EPROM.

Con fig ur ing a turn key ap pli ca tion

The word SETUP takes the ad dress of the word passed to it and marks this in
the RAM/EPROM header as the ad dress of the word to be run at power- up.
If a value of zero is passed to SETUP, the in ter ac tive Forth ker nel will be run
at power- up.

For ex am ple, the word JOB is to be run at power- up. There fore you type,

‘ JOB SETUP

Note that if you are cross com pil ing your ap pli ca tion you should use
MAKE- TURNKEY as de scribed in the “Gen er at ing a ROM Tar get”and
“Gen er at ing a RAM Tar get” sec tions of this man ual. It is rec om mended that
SETUP only be used where a cross com piler is not avail able.

Dis card ing the ap pli ca tion RAM area

The ap pli ca tion can be dis carded by typ ing:

0 ROM !

Chang ing the ap pli ca tion RAM start ad dress

The con stant ROM re turns the start ad dress of the ap pli ca tion RAM area. If
the ad dress of this area is to be changed, the EPROM must be modi fied. To
do this, the 16- bit value in ROM must be changed.

Down load ing a tar get im age

You can down load a tar get im age to your PC us ing the BIN- DOWN util ity
sup plied. You will re quire a suit able com mu ni ca tions pack age pro vid ing an
XMO DEM down load fa cil ity (e.g. Pro comm)

To use this util ity you must cross com pile the files BLOCKS.FTH and BIN-
 DOWN.FTH.

To down- load a bi nary im age from the tar get sys tem to your PC, use BIN-
 DOWN in the form:

Page 114

ROM PowerForth MPE Forth 5 for RTX2000

addr #bytes BIN- DOWN

where addr is the start ad dress and #bytes is the number of bytes to down-
 load start ing from addr. This should be your en tire RAM area

For ex am ple, if your RAM area ex tends from 0000 through 7FFF you would
use

hex
00000 07FFF BIN- DOWN

This will pro duce a 32K im age which can be blown into EPROM and in -
serted in place of the ker nel EPROM.

Page 115

MPE Forth 5 for RTX2000 ROM PowerForth

Glos sary

$FROM-FILE \ first last $addr — ;
“dollar-from-file”

Compiles a text file given by the counted string $addr. Pages from
first to last will be compiled. e.g.

10 20 “” TEST.FTH" $FROM- FILE
Compiles pages ten to twenty of file TEST.FTH.

$USING \ addr$ — ;
“dollar-using”

Sets the default screen file to the counted string addr$. e.g.

 “” TEST.SCR" $US ING
sets the default screen file to TEST.SCR.

ALL \ — first last ;
“all”

Used with FROM and FROM-FILE to compile a complete file. e.g.

ALL FROM
compiles all of the default text file.

ALONE \ n — first last ;
“alone”

Used with FROM and FROM-FILE to compile a single page. e.g.

1 ALONE FROM
compiles page one of the default text file

CLS \ — ;
“c-l-s”

Clears the display.

EMPTY-BUFFERS \ — ;
“empty-buffers”

Marks screen file buffers as empty

FLUSH \ — ;
“flush”

Flushes the screen file buffer to disk

Page 116

ROM PowerForth MPE Forth 5 for RTX2000

FROM \ first last — ;
“from”

Compiles pages first to last of the default text file.

FROM-FILE \ first last <name>— ;
“ from-file”

Compiles a range of pages (first to last inclusive) from a specified
text file <name>.

INDEX \ n1 n2 — ;
“index”

List top lines in range of screens.

L \ — ;
“l”

Displays the current screen.

LIST \ blk# — ;
“list”

Display screen given.

LOAD \ blk# — ;
“load”

Compile given screen

N \ — ;
“n”

Displays the next screen

ONWARDS \ first — first last ;
“onwards”

Used with FROM and FROM-FILE to compile from a specified
page to the end of the file.

P \ — ;
“p”

Displays the previous screen

Page 117

MPE Forth 5 for RTX2000 ROM PowerForth

QX \ — ;
“q-x”

Displays the top line of every screen in the default screen file.

SAVE-BUFFERS \ — ;
“save-buffers”

Saves the screen file buffers if they have been modified.

SET-USEFILE \ $addr —
“set-use-file”

The counted string $addr is set to be the default screen file

THRU \ blk#from blk#to — ;
“thru”

Compiles from screens blk#from to blk#to inclusive of the default
screen file

UPDATE \ — ;
“update”

Flags the screen file buffer as being modified.

UPTO \ last — first last ;
“upto”

Used with FROM and FROM-FILE to compile from the start of the
file to the specified page. e.g.

10 UPTO FROM
compiles from the start of the default text file to page 10.

USE \ <name> — ;
“use”

Specifies the default text file. If an extension is not included in the
filename, .FTH is assumed. e.g.

USE TEST
sets the default text file to TEST.FTH.

USING \ — ;
“using”

Specifies the default screen file. If an extension is not included in
the filename, .SCR is assumed. e.g.

Page 118

ROM PowerForth MPE Forth 5 for RTX2000

Paged targets

Many peo ple de velop for 8- bit and 16- bit tar get proc es sors. One dis ad van -
tage of us ing 8- bit and 16- bit proc es sors is their lim ited ad dress ing range
(64KB). To over come this limi ta tion the MPE cross com piler sup ports
paged tar gets. Pag ing is used when the ap pli ca tion’s size is larger than the
avail able mem ory. To over come this, dif fer ent parts of the ap pli ca tion are
loaded into mem ory when re quired.

The RTX proc es sor has a built in pag ing mecha nism which al lows up to 16
64K pages, any one of which may be in mem ory at any time.

An ex am ple mem ory map for the MPE Pow er board is shown fig ure 12.

• Boot ROM - This contains the Forth kernel in EPROM. When
the board is powered up it copies itself into RAM and executes
from there. It maps into page 0

• RAM - In this example, there are two pages, 0 and 1. Page 0
contains the Forth kernel as copied out from ROM. Page 1 may
contain any other data or code that the user chooses to put there.
When compiling code, it is not necessary to enter extra code to
switch pages. The compiler will do this for you. However to

Page 121

MPE Forth 5 for RTX2000 Paged Targets

Figure 12 - Example paging mechanism

fetch data from another page it is necessary to specify which
page the data is in. You can do this by using the long fetch and
store words provided.

• I/O Area - The MPE RTX Powerboard’s access to the outside
world. This is mapped into every page and exists between F000h
and FFFFh.

Note that other boards may use other pag ing mecha nisms to the one de -
scribed.

Since Forth re quires re peated ac cess to the ker nel, it may of ten be more ef fi -
cient to com pile the ker nel into all code pages than com pile inter- page calls.

Cre at ing a paged tar get
To cre ate a paged tar get, you need to de fine each page’s mem ory map. The
ac tual switch ing is built in to the proc es sor, and the com piler will auto mati -
cally pro duce inter- page calls where nec es sary. Thus you only need to spec -
ify the page number (0-15) that you wish to use.

De fin ing a page
A page is de fined in a simi lar way to the ker nel. Seper ate pages for code and
data can be de fined. A page is de fined by three items:

• the start of the page in addressable space

• the end of the page in addressable space

• the page number you wish to use

To de fine a code page, use CODE- PAGE. To de fine a data page, use DATA-

 PAGE.

CODE- PAGE is used in the form:

<start> <end> <page- no> CODE- PAGE <page- name>

DATA- PAGE is used in the form:

<start> <end> <page- no> DATA- PAGE <page- name>

where <start> is the start ad dress in the page, <end> is the last ad dress in the
page and <page- no> is the page number you are de fin ing. This is used to in -

Page 122

Paged Targets MPE Forth 5 for RTX2000

di cate which page to switch to. The <page- name> is an iden ti fier for the
page, and in the case of code pages de fines the name of the im age file that
will be pro duced.

For ex am ple, to de fine the three pages in fig ure 12 (RAM tar get) you would
code:

$0000 $EFFF KER NEL Kern
$0000 $0000 0 DATA- PAGE dummy
$0000 $EFFF 1 CODE- PAGE Page1

if page 1 con tained code, and

$0000 $EFFF KER NEL Kern
$0000 $0000 0 DATA- PAGE dummy
$0000 $EFFF 1 DATA- PAGE Page1

if page 1 con tained data.

Any other pages are coded in a simi lar way. The page- number used is the
same as the page that you wish to use.

Com pil ing code into a page
Com pil ing your source code is very simi lar to com pil ing code into the ker -
nel, but some ex tra ini tiali sa tion must be done and some re stric tions must be
ob served.

Com pil ing into a page
The ma jor ity of Forth can be com piled into a page ex cept for inter- page
defered words.

To com pile into a page use:

USE- CODE <NAME>

where <name> is the name of the page you wish to com pile into. Any code
com piled af ter this in struc tion will be com piled into the page <name>. You
can switch be tween com pi la tion pages at any time, so that all your code for
one page does not need to be com piled to gether.

Re stric tions for com pil ing into a code page

You can not for ward ref er ence a word in a dif fer ent page.

Page 123

MPE Forth 5 for RTX2000 Paged Targets

Fin ish ing com pi la tion of a page

Once your code has been com piled into a page, FINIS- CODE- PAGE must be
exe cuted, in the form:

FINIS- CODE- PAGE <name>

Where <name> is the name of the page to fin ish. The cross com piler shows a
com pi la tion sum mary for the page.

Com pil ing data into a page
Com pil ing data such as vari ables and con stants into a page is straight for -
ward but some re stric tions must be ob served.

Set ting the data page

To se lect the page that data is to be used for, use USE- DATA in the form:

USE- DATA <name>

where <name> is the name of the page de fined with DATA- PAGE. Vari ables
and con stants can then be de fined.

Re stric tions for com pil ing into a data page

Data de fined in pages other than the KER NEL page (RAM Tar get) or the
KERNEL- RAM page (ROM Tar get) will not be ini tial ised. This must be
done at startup by the ap pli ca tion.

Page 124

Paged Targets MPE Forth 5 for RTX2000

Controlling the compiler

While cross- compiling, the cross- compiler needs to be in structed on how to
con fig ure it self. You need to tell the cross- compiler:

• when to start cross compilation

• when to stop cross compilation

• whether to align code to even/odd bytes

• whether to enable floating point

• whether to turn the compiler log on or off

• which code and data page to compile into

• how to selectively compile portions of code

These in struc tions are nor mally placed in the con trol file, be fore any in struc -
tions are com piled.

Start ing the cross- compiler
To start cross- compiling, use the word CROSS- COMPILE. Any code af ter
this di rec tive will be cross- compiled into the tar get im age in stead of com -
piled onto the cross- compiler.

Stop ping the cross- compiler
To stop the cross- compilation, use FINIS. FINIS stops cross- compilation,
closes all files and re turns to XShell.

Page 125

MPE Forth 5 for RTX2000 Controlling the cross compiler

Align ing gen er ated code
The RTX fam ily proc es sors re quire in struc tions to be word aligned. To in -
struct the com piler to do this use the di rec tive ALIGN.

Ena bling float ing point
If you want to the com piler to be able to han dle float ing point num bers, you
need to in struct it with the word FLOATS. The de fault is in te ger only.

Turn ing the log on and off
The cross- compiler log can ei ther dis play dots (when off) or in for ma tion on
the items com piled (when on). To turn the log on, use LOG. To turn the
com piler off, use NO- LOG.

Se lect ing code and data page
In a paged sys tem you need to se lect what page code and data is com piled
into. To do this use USE- CODE and USE- DATA. They are used in the form:

USE- CODE <name>
USE- DATA <name>

where <name> is the name of the page to com pile code into. <name> was
speci fied when de fin ing the mem ory map us ing KER NEL and KERNAL-

 RAM.

Con di tional com pi la tion
Con di tional com pi la tion is used to se lec tively com pile por tions of code.
Three words are avail able to do this, IF(,)ELSE(and)EN DIF. These are
analo gous to IF, ELSE and EN DIF. They can be used within Forth words to

Page 126

Controlling the cross compiler MPE Forth 5 for RTX2000

se lec tively com pile por tions of it, or can be used out side a Forth word to se -
lec tively com pile whole words.

An ex am ple
Two code ex am ples are shown in fig ure 13 and 14. The ex am ples given per -
form con di tional com pi la tion in side and out side a co lon defi ni tion.

Con di tional com pi la tion out side a co lon defi ni tion

The ex am ple shown in fig ure 13 com piles one of the PRINT1OR2‘s. Which
one is com piled is de pend ant on the value of 1OR2?. If it is set to one,
PRINT1OR2 dis plays a one when exe cuted. If it is set to two, PRINT1OR2
dis plays a two.

Con di tional com pi la tion within a co lon defi ni tion

Us ing con di tional com pi la tion within a co lon defi ni tion is slightly more
com pil cated. This is be cause you need to write a word which places a
number on the cross- compiler’s stack when it’s cross- compiling. An ex am -

Page 127

MPE Forth 5 for RTX2000 Controlling the cross compiler

1 EQU 1OR2?

1OR2? \ Dis play one or two?
IF(\ If 1OR2?=1, PRINT1 will be com piled
: PRINT1OR2 \ — ; Dis play a one
 ." 1"
;
)ELSE(\ If 1OR2?=2, PRINT2 will be com piled
: PRINT1OR2 \ — ; Dis play a two
 ."2"
;
)EN DIF \ End marker for con di tional com pi la tion

Figure 13 - Conditional compilation example (1)

: PRINT3OR4 \ — ; Dis play a three or four
 3OR4? \ com piler word
 IF(." 3" \ Dis play a three
)ELSE(." 4" \ Dis play a four
)EN DIF \
;

Figure 14 - Conditional compilation example (2)

ple is shown in fig ure 15, where a con stant 3OR4? is added to the com piler.
This can then be used in the ex am ple in fig ure 14.

Page 128

Controlling the cross compiler MPE Forth 5 for RTX2000

ONLY FORTH ALSO C-C DEFI NI TIONS \ Switch vo cabu lar ies

CC/C \ Switch to com piler vo cabu lary
3 CON STANT 3OR4? \ add the word 3OR4?

ONLY FORTH ALSO C-C DEFI NI TIONS \ Re store search or der

Figure 15 - Adding words to the compiler

Forth on the target

This chap ter de scribes how a Forth is laid out on a tar get board. It is there -
fore not nec es sary to read this chap ter, but pro vides more in for ma tion if you
are in ter ested or want to per form more ad vanced modi fi ca tions to the cross-
 compiler or tar get.

Page 129

MPE Forth 5 for RTX2000 Forth on a Target

Figure 16 - Umbilical forth message passing

In side Um bili cal Forth
Um bili cal Forth be haves in the same way as the ROM and RAM tar get
Forths, but the in ter nal mecha nism is to tally dif fer ent. When you re set the
tar get and the board signs- on, you are still run ning the cross- compiler. Um -
bili cal Forth is there fore an ex ten sion of the ba sic cross- compiler.

When a word is cross- compiled, the cross- compiler places in for ma tion in
the sym bol ta ble. The sym bol ta ble there fore con tains the CFA of the word
in the tar get im age and its page number. By us ing a mes sage pass ing sys tem
be tween the cross- compiler and the tar get, the CFA and page of the word can
be passed to the tar get. The tar get can then exe cute the word on the tar get
pass ing pa rame ters to and from as ap pro pri ate. There fore, the tar get does
not need any head ers in the tar get im age as you are not com mu ni cat ing with
the tar get di rectly.

In side a ROM and RAM tar get Forth
A ROM tar get Forth com mu ni cates with the host via a se rial line. The host
needs to be run ning a dumb ter mi nal emu la tor. The ter mi nal emu la tor dis -
plays any char ac ters which ar rive from the tar get and sends char ac ters any
char ac ters typed at the host’s key board. The tar get takes in put and makes
out put di rectly from the se rial line, not from a key board and to a dis play. To
do this, the de ferred words EMIT and KEY have the ac tions SER- KEY and
SER- EMIT re spec tively.

Page 130

Forth on a Target MPE Forth 5 for RTX2000

Optimising your development cycle

While de vel op ing an ap pli ca tion, you cy cle through a se ries of steps:

• editing your source code

• cross-compiling to generate a binary image file

• downloading to an EPROM emulator/programmer

• testing and debugging your code

This de vel op ment cy cle is re peated un til all de vel op ment and de bug ging is
com pleted. The faster you can go round this cy cle, the sooner your ap pli ca -
tion is fin ished. XShell and the cross com piler help you achieve these aims.

Speed ing up the com pi la tion
Every time a cross- compilation is car ried out, cer tain sec tions of code,
which are never al tered, are com piled again and again. This is par ticu lar ily
the case for the ker nel files which gen er ate the Forth im age. You can use the
par tial com pi la tion fea ture of the cross com piler to halt the cross-
 compilation at a stra te gic po si tion and save the cross com pil er’s state. You
can then con tinue cross- compiling from this saved po si tion. In this way, you
can dra mati cally re duce the time the ap pli ca tion takes to com pile.

Note: Par tial com pi la tion can not be used when di rectly com pil ing to an
emu la tor

Sav ing the com pi la tion state

To stop and save the cross- compilation at a re quired place, use SUS PEND.
SUS PEND is used in the form:

SUS PEND <file name>

Page 131

MPE Forth 5 for RTX2000 Optimising your Development Cycle

where <file name> is the name of files the cross com piler will use to save the

state in for ma tion. The file name is a name with out an ex ten sion.

Re start ing from a saved state

To re start from a pre vi ously saved cross- compilation state, use RE START.
RE START is used in the same form as SUS PEND,

RE START <file name>

where <file name> is the file name used when sav ing the com pi la tion state.
RE START must be used af ter the word CROSS- COMPILE and any mac ros
must be loaded.

Note: The old im age file is used by the com piler. This must ex ist in the com -
pi la tion di rec tory.

An ex am ple
An ex am ple con trol file can be found in the di rec tory RAM/PAR TIAL.

Speed ing up the down load ing
The cross com piler has the fa cil ity to down load the com piled im age to the
Le Burg emu la tor while it is com pil ing. This speeds up the turn- around of
the edit,com pile,down load and test cy cle by re mov ing the down load step.
To down load di rectly to a Le Burg emu la tor, you need to tell the cross com -
piler:

• what size of EPROM it is generating for

• the bus width (e.g. 8 bit, 16 bit)

• which page to put in the emulator

You will ablso need the cor rect emu la tor TSR driver in stalled in your ma -
chine. This should be TSR021 for LePROM emu la tors and TSR041 for Le -
Meg and Le Big emu la tors.

Note: This fa cil ity can not be used with par tial com pi la tion.

Page 132

Optimising your Development Cycle MPE Forth 5 for RTX2000

Set ting the size and bus width
To set the size of EPROM to use and the bus width of the tar get board, use
OUTPUT- EMULTOR. This is in the form:

size width OUTPUT- EMULATOR

where size and width can be se lected from ta bles 17 and 18.

For ex am ple, if your board uses a 27256 and your tar get has a 16- bit bus
width, code:

e27256 16bit OUTPUT- EMULATOR

This in struc tion must be placed in your con trol file be fore the CROSS-

 COMPILE di rec tive.

Set ting the page

To send a page to an EPROM emu la tor, use IN- EMULATOR in the form:

xxxx IN- EMULATOR <name>

where <name> is the name of the page set by KER NEL or CODE- PAGE and
xxxx is the base ad dress in the emu la tor where to place the im age.

Page 133

MPE Forth 5 for RTX2000 Optimising your Development Cycle

Tar get bus width width

8 bits 8bit

16 bits 16bit

32 bits 32bit

Ta ble 17 - Avail able bus widths

EPROM type size

2764 e2764

27128 e27128

27256 e27256

Ta ble 18 - Avail able EPROM sizes

Blank page

Page 134

Optimising your Development Cycle MPE Forth 5 for RTX2000

Technical glossary

Com piler log When each la bel, vari able, con stant or co lon de fin ti tion is
cross- compiled the cross- compiler dis plays a dot or in for ma tion about the
com piled item.

Con trol file A file which is loaded by the cross- compiler. It con tains di rec -
tives to the cross- compiler and the names of any ad di tional files to be com -
piled.

Cross- compiler A pro gram which gen er ates ex ecu ta ble code for a proc es -
sor dif fer ent to that on which it is run ning.

Dic tion ary A list of words de fined in a Forth sys tem

Event A non- regular oc curence. In the mul ti tasker an event is used to trig -
ger a task.

Glos sary A list of forth words with their pro nun cia tion, stack ef fect and a
brief de scrip tion of its ac tion.

Host The plat form the cross- compiler runs on. Nor mally a PC.

Host mode One of XShell’s modes which is a Forth for the PC.

Im age file The out put of the cross- compiler. It has the ex ten sion .IMG by
de fault.

Ini tial ised RAM See RAM ta ble.

Ker nel The code re quired to gen er ate an in ter ac tive Forth.

Mem ory map A de scrip tion of the start and end of ROM and RAM in
mem ory

Mul ti tasker A pro gram which al lows a proc es sor to run more than one task
by con tinu ously switch ing be tween dif fer ent tasks.

Page 135

MPE Forth 5 for RTX2000 Technical Glossary

Paged tar get A sys tem where there is more mem ory avail able that can be
ad dressed at one time. Ar eas of mem ory can be switched into an ad dress able
range, so simu lat ing a larger ad dress space than is physi cally pos si ble.

RAM ta ble An area of mem ory in the ROM that is cop ied to RAM at
startup. It con tains any ini tial val ues of vari ables.

RAM tar get Forth A Forth which on power up cop ies it self from ROM to
RAM and then exe cutes from RAM.

ROM tar get Forth A Forth which works on a ROM/RAM sys tem as op -
posed to a RAM sys tem.

ROM/RAM tar get A tar get board with code exe cuted out of ROM and
data kept in RAM.

Sched uler The part of a mul ti tasker which switches to the next task

Screen file A type of file which Forth source was origi nally de vel oped in.

Se rial line driver The words which in ter face the tar get code to the se rial
line. These are de vice de pend ant whereas the rest of the ker nel is ge neric.

Sym bol ta ble Used and gen er ated by the cross- compiler. It con tains in for -
ma tion on each item com piled.

Tar get The proc es sor or board that the cross- compiler is gen er at ing code
for .

Tar get mode One of XShell’s modes which acts as a dumb ter mi nal. It lets
you com mu ni cate with your tar get board.

Task In a mul ti task ing en vi ron ment, a task is a stand- alone pro gram which
ap pears to run si mul ta ne ously with other tasks.

Task con trol block Where in for ma tion about a task is kept. It is used by the
sched uler to switch to the next task.

TCB See task con trol block

UART Uni ver sal Asyn chro nous Re ceiver/Trans mit ter - Sends and re -
ceives se rial data.

Um bili cal Forth A re duced Forth de signed for sin gle chip tar gets. Uses a
mes sage pass ing sys tem to com mi cate with the host.

Page 136

Technical Glossary MPE Forth 5 for RTX2000

Further information

MPE courses
Mi cro Proc es sor En gi neer ing run the fol low ing courses:

Ar chi tec tual in tro duc tion to Forth
A two day course for those with lit tle or no ex pe ri ence of Forth. It pro vides
an in tro duc tion to the ar chi tec ture of a Forth sys tem. It shows, by prac ti cal
ex am ple, how soft ware can be coded, tested and de bugged, quickly and ef fi -
ciently, us ing For th’s in ter ac tive abili ties.

Em bed ded soft ware for hard ware en gi neers
A three day course for hard ware en gi neers need ing to con struct real- time
em bed ded ap pli ca tions us ing Forth cross- compilers.

Rec om mended read ing

For an in tro duc tion to Forth:

“Start ing Forth” by Leo Bro die

“Forth: A Text and Ref er ence” by Kelly and Spies

For more ex pe ri enced Forth pro gram mers:

“Ob ject Ori ented Forth” by Dick Poun tain

“Sci en tific Forth” by Jul ian No ble

Page 139

MPE Forth 5 for RTX2000 Further Information

Other mis cel la ne ous Forth books:

“Forth Ap pli ca tions in En gi neer ing and In dus try” by John Mat thews

“Stack Ma chines: The New Wave” by Philip J Koop man Jr

All of these books can be sup plied by MPE.

Page 140

Further Information MPE Forth 5 for RTX2000

Appendix A
Converting Targets from v4 to v5

The main dif fer ences be tween v4 and v5 tar get source code are in the con trol
file. There fore, if you want to use your old con trol file you need to mod ify
the way:

• the memory map is defined

• an EPROM emulator is used

• code is compiled into a page

De fin ing the mem ory map
The mem ory map in ver sion 4 con trol files is de fined as in fig ure 17. The
equiva lent v5 mem ory defi ni tion is shown in fig ure 18. The ver sion 5 mem -
ory defi ni tion is de fined by three words: KER NEL, KERNEL- RAM and
MEM- END..

KER NEL is used to de fine the start and end of ROM. KERNEL- RAM is used
to de fine the start and end of RAM. MEM- END is the same as in ver sion 4.

Us ing an EPROM emu la tor
For the ver sion 5 com piler, you must in di cate which im age you want to go to
the emu la tor. In a non- paged sys tem, the im age name is the name fol low ing
the com mand KER NEL. There fore, to send the im age ROMRTX to an
EPROM emu la tor start ing at ad dress 0000h, you code:

$0000 IN- EMULATOR ROMRTX

This must be placed be fore the page is se lected by USE- CODE.

Page 141

MPE Forth 5 for RTX2000 Converting Targets from v4 to v5

Se lect ing the com pi la tion page
With the ver sion 5 cross- compiler you can gen er ate mul ti ple im ages, and
code can be com piled into any im age at any time. To se lect the page which
code will be com piled into, code:

USE- CODE <name>

where <name> is the im age’s name (i.e. ROMRTX in the pre vi ous ex am -
ples).

In a simi lar way, the data page may be se lected:

USE- DATA <name>

where <name> is the im age’s data space (i.e. ROMRTX- DATA in the pre vi -
ous ex am ples).

Page 142

Converting Targets from v4 to v5 MPE Forth 5 for RTX2000

\ De fine the amount of RAM that can be ini tial ised
 0400 INITIALISED- RAM \ up to 2k bytes RAM can be set

\ from a ta ble in ROM. This
 \ equate sets the max. size
\ The ROM for RTX sys tems is nearly al ways at 0000h
00000 ROM- BASE \ ROM starts at 00000
\ User ar eas need 0100h bytes/task + 1 page for in ter rupts;
\ re quir ing 0900h bytes for a full sys tem with 8 tasks.
\ Place INIT- U0 at the bot tom of the RAM area.
\ The vari able & dic tion ary fol lows, and is set by RAM- BASE
08000 EQU INIT- U0 \ task area base INIT- U0
task ram + EQU int- init- u0 \ in ter rupt page base
int- init- u0 in tram + equ INIT- TIB \ TIB starts at task+0900
INIT- TIB 0100 + RAM- BASE \ Vars & Dict start at task+0A00
\ MEM- END de fines the end of RAM+1
0F000 MEM- END \ RAM ends at xxxx-1

Figure 17 - Example version 4 memory definition

$0000 $7FFF KER NEL ROMRTX \ De fine ker nel ROM
$8000 $EFFF 0 KERNEL- RAM ROMRTX- DATA \ De fine ker nel RAM $F000 MEM-
 END \ End of us able mem ory

Figure 18 - Example version 5 memory definition

Appendix B
An Example Control File

This ap pen dix leads you through a com plete con trol file. It de scribes the use
of each com mand fol lowed by the us age in a typi cal con trol file. For more
in for ma tion on the syn tax of each com mand see the com mand’s glos sary en -
try in the glos sary man ual.

The first page
The first page is used to in tro duce the rest of the file. It con tains a brief (one
line) de scrip tion of the files pur pose fol lowed by any other gen eral in for ma -
tion.

\ MPE RTX Pow er Board tar get con trol file
pto
Re leased for use with the MPE Forth Cross Com piler by:

Mi cro Proc es sor En gi neer ing
133 Hill Lane
Shir ley
South amp ton SO1
Eng land

tel: (+44) 703 631441 (in ter na tional)
 0703 631441 (do mes tic)

Set ting the cross- compiler search or der
The cross- compiler’s vo cabu lary search or der is set so that com mands can
be found.

only forth defi ni tions deci mal

Page 143

MPE Forth 5 for RTX2000 An Example Control File

Load ing mac ros/Op code defi ni tions
At this stage any mac ros must be com piled. Mac ros must be loaded be fore
the com mand CROSS- COMPILE. (see be low)

all from- file rtx2000.def \ con fig ure to cor rect proc es sor

Dif fer ent proc es sors in the RTX fam ily have slightly dif fer ent op code sets,
so the above line will load in the defi ni tions for the RTX2000.

Con fig ur ing for an EPROM emu la tor
The cross- compiler will down load the com piled tar get code while it is be ing
gen er ated. To do this the cross- compiler needs to be told:

• the port address of the i/o card

• the type of EPROM to emulate

• the bus width of the emulated EPROM

If an emu la tor is not in use the fol low ing two lines should be com mented out.

Hex 0320 Emu- Base \ emu la tor i/o addr
e27256 16bit Output- Emulator \ de fine EPROM & Width

Ac ti vat ing the float ing point
Float ing point can be switched on by us ing the word FLOATS.

Floats \ switch on float ing point

Turn ing on the cross- compiler
The cross- compiler is turned on by the com mand CROSS- COMPILE. Any
code com piled af ter this will be cross- compiled into the tar get im age.

\ turn com piler on
CROSS- COMPILE

Page 144

An Example Control File MPE Forth 5 for RTX2000

Se lect the type of tar get
You must tell the com piler whether you wish to gen er ate code for a ROM or
RAM tar get. The de fault is for a RAM tar get.

Rom- Target \ Gen er ate ROM tar get code

Set ting the tar get’s search or der
The tar get’s search or der must be set. This tells the com piler to com pile
code on top of the tar get’s Forth vo cabu lary.

only forth defi ni tions

Set ting the align ment mecha nism to be used
If a 16- bit value is to be re trieved, it must be taken from a word aligned
(even) ad dress. This re stric tion forces the com piler to place all in struc tions
on even ad dresses. To do this, strings must be pad ded out with an ex tra
space if nec es sary.

align \ head ers word aligned

Dis play ing the cross- compile log
The cross- compile log can be dis played by us ing the word LOG. In this state
the cross- compiler shows the type of item com piled and the tar get ad dress of
each item as it is com piled. This con tains use ful de bug in for ma tion but, as
more text is dis played on the screen, is slower to com pile. To stop the com -
piler from gen er at ing a full log, and just gen er ate a dot for each defi ni tion,
use NO- LOG.

no- log \ no out put log

Page 145

MPE Forth 5 for RTX2000 An Example Control File

De fin ing the tar get con figu ra tion
These flags de fine whether cer tain files are loaded, and whether cer tain ini -
tiali sa tion words are in cluded in COLD. Note that se lec tion of the mul ti -
tasker is de fined by the value set for #TASKS.

1 equ rom forth? \ true to load rom forth ex ten sions
0 equ paged? \ true if tar get is paged
1 equ softfp? \ true if tar get needs float ing point

De fin ing the mem ory map
The mem ory map de scribes to the com piler where the start and end of ROM

and RAM is. The ROM area is de fined by the word KER NEL and the RAM
area by the com mand KERNEL- RAM.

\ mem ory defi ni tions
$0000 $7FFF KER NEL ROMRTX \ De fine ker nel ROM
$8000 $A000 0 KERNEL- RAM ROM- DATA \ De fine ker nel RAM

Out put into EPROM emu la tor
The cross- compiler can send a tar get im age di rectly to an EPROM emu la tor,
which re moves from the cy cle the time re quired to down load the gen er ated
im age. The cross- compiler needs to know what im age to down load (there
can be sev eral in a paged tar get) and where in the emu la tor to start down -
load ing to. The fol low ing ex am ple sets the com piler to down load the im age
ROMRTX, start ing at ad dress 0000h.

$0000 IN- EMULATOR ROMRTX \ Out put to emu la tor

Se lect ing com pi la tion pages
The cross- compiler must be in structed into which page to com pile code and
data. For a non- paged sys tem, there is only one code page and one data page,
so this only needs to be done once. For a paged sys tem, dif fer ent com pi la -

Page 146

An Example Control File MPE Forth 5 for RTX2000

tion pages can be set through out the code, so re di rect ing the code to dif fer ent
pages.

use- code ROMRTX \ Se lect code page
use- data ROM- DATA \ Se lect data page

Con fig ur ing for ROM Pow er Forth
If the ROM Pow er Forth utili ties are be ing loaded, the start of the ap pli ca tion
RAM/ROM area must be de fined.

For ex am ple, if the ap pli ca tion area is the up per half of a 16k of bat tery
backed RAM, you would code:

0A000 equ appl- rom

Set ting the Clock Speed and Baud Rate
The com piler needs to know how fast you wish the se rial line to run. To cal -
cu late this is also needs to know the crys tal speed of your board. It is rec om -
mended that for new de signs you use 2400 Baud un til you are satisifed that
the Forth is fully func tional on your board.

10000 equ clock- khz
38400 equ serial- baud

Set ting up the in ter rupt vec tors
The RTX fam ily of proc es sors al low you to move the in ter rupt vec tor area in
mem ory. This means that you must set this up ini tially.

0 equ INT- BASE \ in ter rupt vec tor base - must be 1KB aligned

Page 147

MPE Forth 5 for RTX2000 An Example Control File

Set ting the stack size
The on- chip stack size of the RTX proc es sor in use needs to be speci fied.

$80 con stant stack- size

De fin ing the number of tasks
In a mul ti task ing tar get the number of tasks need to be set. Each task takes
up 256 bytes of RAM, so a full 8 tasks takes up 2k of RAM. If RAM us age
needs to be re duced, the number of tasks can be set to the number of tasks
you have.

$0008 Equ #tasks \ number of tasks, at least 1
\ each task needs 0100 bytes
\ this space is re served first

De fin ing the user area size
The user area is set by us ing an equate. This equate is used in a cal cu la tion
be fore the ac tual user area is al lo cated. The user area is used to hold task spe -
cific vari ables such as BASE and SPAN.

$0100 Equ per- task \ size of each tasks user area

Cal cu lat ing the to tal mem ory re quire ment
The to tal RAM re quired by the sys tem is given by the equate US. This is the
amount of mem ory re quired for one task mul ti plied by the number of tasks in
the sys tem.

#tasks per- task * Equ Us \ space used for task pages

Page 148

An Example Control File MPE Forth 5 for RTX2000

Com pil ing the ker nel
The main source code which makes up the in ter ac tive Forth ker nel is now
com piled.

deci mal all from- file startup \ start up code
deci mal all from- file co de2000 \ main code defs.
deci mal all from- file ker nel \ Forth high level ker nel
deci mal all from- file driv ers\pbrdio \ UART driver code
deci mal all from- file rtx- tool \ Toolkit
deci mal all from- file ucod ertx \ RTX Op codes

Com pil ing the mul ti tasker
The mul ti tasker source will only be com piled if the number of tasks speci -
fied is greater than one.

#tasks 1 >
if(
 deci mal all from- file mul tirtx \ multi- tasker
)en dif

Com pil ing the soft ware float ing point
The soft ware float ing point con sists of two files, SOFTFP.FTH, and ei ther
FPRAM.HI or FPROM.HI de pend ing on whether a RAM or ROM tar get is
in use. It will only be com piled if the SOFTFP? flag was set ear lier in the
con trol file.

\ Soft ware float ing point
softfp?
if(
 deci mal all from- file softfp\fpromhi.fth \ ROM tar get primi tives
 deci mal all from- file softfp\softfp.fth \ high- level
)en dif

Page 149

MPE Forth 5 for RTX2000 An Example Control File

Com pil ing the ROM Pow er Forth utili ties
The ROM Pow er Forth utili ties give you the abil ity to use hard disk serv ices
from the tar get sys tem. It will only be com piled if the ROM FORTH? flag
was set ear lier in the con trol file.

\ the ROM Forth files
rom forth?
if(
 deci mal all from- file rom forth\link \ linker
 deci mal all from- file rom forth\io def \ io defi ni tions
 deci mal all from- file rom forth\fi le tran \ source load
 deci mal all from- file rom forth\bin- down \ bi nary host
 deci mal all from- file rom forth\hex- down \ hex host
 deci mal all from- file rom forth\text file \ text files
 deci mal all from- file rom forth\blocks \ blocks
)en dif

De fin ing the tar get sign- on mes sage
The tar get sign- on mes sage is de fined as an in ter nal word. This makes the
word un avail able for in ter ac tive use, which saves space in the tar get sys tem.

in ter nal
: .cpu \ — ; sign on mes sage
 ." MPE RTX2000/1A/10 ROM Pow er Forth" ; \ sign on
ex ter nal

De fin ing the last word
The last word de fined is al ways FORTH- 83. This in di cates the end of the ker -
nel.

: FORTH- 83 ; \ fi nal word

Fin ish ing cross- compilation
The cross- compiler stops com pil ing when it reaches the com mand FINIS. At
this point, the cross- compiler dis plays the cross- compile sum mary and
prompts for a key to be pressed.

Page 150

An Example Control File MPE Forth 5 for RTX2000

FINIS

Page 151

MPE Forth 5 for RTX2000 An Example Control File

Blank Page

Page 152

An Example Control File MPE Forth 5 for RTX2000

Appendix C
Error Messages

Er ror mes sages are kept in the screen file ERTX.XS3 in the COM PILER di -
rec tory. Er ror num bers start at 0, and each er ror number re fers to a line start -
ing at line 0. This for mat al lows the er ror mes sage file to be main tained us ing
any screen file edi tor.

The er ror mes sages are listed in dif fer ent cate go ries:

• general Forth errors

• system messages

• module errors

• source file errors

• DOS errors

• text file errors

Gen eral Forth Er rors 0..15
These are the ba sic er rors of a Forth sys tem.

Er ror 0 - is un de fined. The word is not in the dic tion ary search or der speci -
fied, or it was mis spelled.

Er ror 1 - empty stack, the last op era tion caused a stack un der flow. Usu ally
caused by us ing the wrong number of pa rame ters to a word.

Er ror 2 - dic tion ary full, there is no room for more defi ni tions. This er ror
should not arise within the cross com piler un less you are ex tend ing it.

Er ror 3 - has in cor rect ad dress mode.

Er ror 4 - is re de fined - the word’s name has been used be fore. This is only a
warn ing, not a proper er ror.

Er ror 5 - is un de fined. See er ror 0

Page 153

MPE Forth 5 for RTX2000 Error Messages

Er ror 7 - full stack, there are too many items on the stack. Usu ally caused by
a stack fault in a loop.

Er ror 8 - can not open US ING file. In cor rect file name? Wrong di rec tory?

Er ror 9 - can not com pile from screen zero. Screen 0 should be used for com -
ments only.

Er ror 12 - un ini tial ised de ferred word.

Er ror 13 - BASE must be DECI MAL.

Er ror 14 - miss ing deci mal point. Only found when us ing float ing point ex -
ten sions.

Sys tem mes sages 16..31
These are er ror mes sages caused by mis treat ing Forth.

Er ror 17 - com pi la tion only, use in defi ni tion, not when exe cut ing. Usu ally

hap pens when a ; is miss ing from a pre vi ous word.

Er ror 18 - exe cu tion only - not al lowed dur ing com pi la tion. Usu ally be cause

a [COM PILE] is miss ing in front of an im me di ate word.

Er ror 19 - con di tion als not paired - over lap ping con trol struc tures.

Er ror 20 - defi ni tion not fin ished - a con trol struc ture needs cor rec tion.

Er ror 21 - in pro tected dic tion ary - the word is be low the ad dress in FENCE.
Not found in the cross com piler ex cept when modi fy ing the cross com piler,
or in bi zarre cir cum stances with Um bili cal Forth.

Er ror 22 - use only when load ing, il le gal from the key board

Er ror 23 - block number out of range 0..32767 (0..7FFFh)

Er ror 24 - re set vo cabu lar ies - CON TEXT must be the same as CUR RENT
when us ing FOR GET.

Er ror 25 - do not use when load ing, only from the key board.

Er ror 27 - For ward ref er ences are il le gal be tween CRE ATE ... DOES and I:
... ; for the cross com piler.

Page 154

Error Messages MPE Forth 5 for RTX2000

Er ror 28 - word be tween CRE ATE ... DOES or I: ... ; is not in host FORTH
vo cabu lary

Er ror 29 - il le gal in ter nal value - con tact MPE on (+44) 703 631441.

Mod ule er rors 48..63
Er ror 49 - pub lic words ta ble full - max 32 (deci mal) words/mod ule

Er ror 50 - mod ule number out of range 0..31 (deci mal)

Er ror 51 - slot al ready oc cu pied - slot must be empty be fore en try is made

Er ror 52 - not enough mem ory - fit more! - RAM is cheap!

Er ror 53 - can’t load mod ule file - DOS can’t find it, or can’t read it

Er ror 54 - can’t free mem ory - DOS won’t let go - see DOS func tion 49H

Er ror 55 - mod ule not pres ent - re quested mod ule is not resi dent

Er ror 56 - ex ter nal ref er ences ta ble full - max 32 (deci mal) words/mod ule

Er ror 57 - un re solved ex ter nal ref er ence - use RESOLVE- ALL be fore exe -
cu tion

Er ror 58 - Bad mod ule ver sion code - re com pile us ing cor rect SLAVE.xxx.
This is an in ter nal soft ware er ror. Con tact MPE.

Er ror 62 - il le gal op era tion in slave mod ule

Er ror 63 - il le gal op era tion in mas ter mod ule

Source file er rors 64..79
These er rors are given by the screen file han dlers.

Er ror 65 - no screen file open. Of ten a re sult of a pre vi ous op era tion fail ing to
open or re open a file.

Er ror 66 - screen file seek er ror.

Er ror 67 - screen file read er ror.

Page 155

MPE Forth 5 for RTX2000 Error Messages

Er ror 68 - screen file write er ror.

Er ror 69 - path not found. Usu ally be cause the file or path name has been
mis spelled.

Er ror 70 - start ing screen number less than end ing screen number.

Er ror 72 - Mem ory buffer re lease er ror

Er ror 73 - Mem ory buffer al lo ca tion er ror

Er ror 74 - Source file nest ing level too deep

Er ror 75 - No source file to un- nest

Er ror 76 - End of file be fore re quested page

Er ror 77 - Screen file close er ror

DOS er rors 80..112
Er ror 81 - invalid fun tion number - DOS doesn’t know what to do

Er ror 82 - file not found - wrong di rec tory or doesn’t ex ist

Er ror 83 - path not found - in cor rect spell ing? - de vice not in stalled?

Er ror 84 - no han dle avail able - all han dles are in use

Er ror 85 - ac cess de nied - e.g. at tempt to write to read- only file

Er ror 86 - invalid han dle - file/path not open?

Er ror 87 - mem ory con trol blocks de stroyed - whoops!

Er ror 88 - in suf fi cient mem ory - not enough RAM or mem ory frag mented.

Er ror 89 - invalid mem ory block ad dress - DOS did not al lo cate this seg ment

Er ror 90 - invalid en vi ron ment - pre vi ous SET or PATH com mand bad

Er ror 91 - invalid for mat - ask Mi cro soft what this one means!

Er ror 92 - invalid ac cess code

Er ror 93 - invalid data

Er ror 95 - invalid drive speci fi ca tion

Er ror 96 - at tempt to re move cur rent di rec tory

Page 156

Error Messages MPE Forth 5 for RTX2000

Er ror 97 - not same de vice

Er ror 98 - no more files to be found

Text file er rors 112..127
These er rors are is sued by the text file han dler.

Er ror 113 - can not al lo cate mem ory. Each nested file needs about 9k bytes.

Er ror 114 - can not free mem ory. Usu ally a symp tom of some thing run ning
amok.

Er ror 115 - can not open file. Usu ally be cause of a mis spelled name.

Er ror 116 - can not close file. Usu ally a symp tom of some thing run ning
amok.

Er ror 117 - can not seek to byte re quested in file. Usu ally a symp tom of
some thing run ning amok.

Er ror 118 - read- path er ror. Disk can not be read, nor mally seen only from
floppy disks, or fail ing hard discs.

Er ror 119 - file nest ing depth reached - can not open an other file. You have
nested files too deep.

Er ror 120 - file de- nesting er ror. Usu ally a symp tom of some thing run ning
amok.

Er ror 121 - start page number greater than last page number in file.

Er ror 122 - miss ing right bracket - must be space sepa rated.

Page 157

MPE Forth 5 for RTX2000 Error Messages

Blank Page

Page 158

Error Messages MPE Forth 5 for RTX2000

Appendix D
Technical Support

Tech ni cal Sup port
Tech ni cal sup port is avail able from MPE by fax or phone dur ing of fice
hours (9am- 5pm UK Time). If re port ing a prob lem, please fax a short piece
of code which il lus trates it, so that we can re spond to you quickly. You can
also ob tain tech ni cal sup port via email, or by ac cess to our own tech ni cal
sup port con fer ence on the CIX(Com pul ink In for ma tion eX change) bul le tin
board sys tem.

tel: +44 703 631441
fax: +44 703 339691
cix (voice): +44 81 390 8446
cix (bbs): +44 81 399 1244
Inter net: mpe@cix.com pul ink.co.uk

Page 159

MPE Forth 5 for RTX2000 Technical Support

Blank page

Page 160

Technical Support MPE Forth 5 for RTX2000

In dex

A
Align ing code, 121
Ap pli ca tion

cross- compiling, 23, 40, 55
run ning, 24, 41, 55
writ ing, 55

Auto start ing
See Turn key

B
Bi nary im age

down load ing, 109
See im age
In tel hex down load, 110
XMO DEM down load, 110

C
Com mu ni ca tions

task, 75
Con trol file, 10, 28, 44

cre at ing, 10, 28, 44
ex am ple, 137
modi fy ing, 23, 40, 55
sup plied, 9, 27

Cross com pile log, 51
re di rect ing to a file, 19, 36
turn ing on and off, 18, 36, 51

Cross com piler, 6
run ning, 18, 35, 51

speed ing up, 127
Cross- compiler

search or der, 137
start ing, 121
stop ping, 121

D
Down load ing

speed ing up, 128

E
End of mem ory

set ting, 30, 46
EPROM emu la tor, 7

Base ad dress, 4
in stal la tion, 3
in stall ing driv ers, 3
Le Burg, 20, 37
send ing a page to, 129
set ting the size, 128
set ting the width, 128

EPROM pro gram mer
down load ing, 21, 38

Equate
de fin ing, 58
us ing, 59

Er ror mes sages, 147

Page 161

MPE Forth 5 for RTX2000 Index

F
Float ing point

con stants, 94
func tions, 94
number for mat, 93
vari ables, 93

For ward ref er ences
number, 52

H
Hard ware

set ting up, 16, 33, 49
Head ers

re mov ing, 57

I
Im age

down load ing, 20, 37
gen er ated, 20, 37
size, 19, 36, 52

Ini tial ised RAM
See RAM ta ble

In stal la tion, 1
cus tom, 3
drive, 1
EPROM emu la tor, 3
on net work, 1
path, 2
PC Pow er forth, 4
run ning, 1
se lect ing items, 3
sys tem re quire ments, 1
XShell, 4

In ter rupt
timer, 89

In ter rupts, 85

con trol ling, 88
dis abling, 88, 90
ena bling, 88, 90
ex am ple, 88
set ting, 85
writ ing, 85, 87

K
Ker nel file, 127

L
Le Burg

See EPROM emu la tor
Log

See Cross com pile log

M
Mac ros

load ing, 138
Mem ory map, 10, 28, 45

Forth, 126
set ting, 11, 29, 45

Mul ti tasker
ex am ple, 78
ini tial is ing, 71, 79
number of tasks, 71
sched uler, 72
stop ping, 72
See also task
writ ing, 72

O
Op codes, 62
Op ti mi sa tion

Page 162

Index MPE Forth 5 for RTX2000

Con trol of, 63
In struc tion, 62

P
Page

com pil ing into, 119
data, 120
de fin ing, 118

Page switch ing, 119
Paged tar get

cre at ing, 118
Pages

se lect ing, 122
Pag ing

re stric tions, 119- 120
Par tial com pi la tion, 127

us ing with emu la tor, 127
PC Pow er Forth, 7
Pow er Forth

See PC Pow er Forth
Proc es sor ar chi tec ture, 61

R
RAM ta ble

ad dress, 19, 52
size, 19

ROM Pow er Forth, 105
hard ware re quire ments, 111

ROM tar get Forth, 6

S
Screen files, 108

com pil ing, 108
de fault, 108

Se rial line
ini tial is ing, 14, 31, 47
in ter rupt driven, 14, 31

modi fy ing driv ers, 13, 30, 47
polled, 14, 31
re ceiv ing char ac ters, 15, 32, 48
send ing char ac ters, 15, 32, 48

Se rial ports
con fig ur ing, 17, 34, 50

Sin gle chip
Um bili cal Forth, 126

Source code
fac tor iz ing, 57

T
Tar get Forth

run ning, 21, 38
Tar get mode

switch ing to, 21, 38
Task

ac ti vat ing, 79
as sign ing to a task number, 79
com mu ni ca tions, 75
con trol ling, 74, 79
de fin ing, 78
halt ing, 80
ini tial is ing, 73
See also mul ti tasker
re start ing, 80

Text files
com pil ing, 105
de fault, 106
pages, 105

Timer
ini tial is ing, 89

Turn key
gen er at ing, 24, 41, 55

U
UART, 13, 30

off- chip, 47
Um bili cal Forth, 7

Page 163

MPE Forth 5 for RTX2000 Index

re quire ments, 43
us ing, 59

Un re solved ref er ences, 19, 36, 52
User area, 73
User vari ables

de fin ing, 73
us ing, 73

V
Vec tor

set ting, 85
Vec tors

ta ble, 86

X
XShell, 5

con fig ur ing, 16, 34, 49
file server, 105
run ning, 16, 33, 49
set ting up, 16, 33, 49

Page 164

Index MPE Forth 5 for RTX2000

