Minos and Theseus

GUI Display and Designer in Forth

b

g

<
(€)
(>
(%)

-
.
-
-
-
.
.
-
| oot
-
-
[
[

Bernd Paysan & Stephen Pelc

Copyright (© Bernd Paysan & Microprocessor Engineering Limited
Published by Microprocessor Engineering

Minos and Theseus
User manual
Manual revision 4.4
31 August 2009

Software
Software version 4.40

For technical support
Please contact your supplier

For further information:

Bernd Paysan

email: bernd.paysan@gmx.de
MicroProcessor Engineering Limited
133 Hill Lane

Southampton SO15 5AF

UK

Tel: +44 (0)23 8063 1441
Fax: +44 (0)23 8033 9691
e-mail: mpe@mpeforth.com
tech-support@mpeforth.com
web: www.mpeforth.com

Table of Contents

1 Licensing and other matters.................................. 1
1.1 Copyright . oo 1
1.2 LACENSE TOITIIS. . .ottt t ettt e et e e e e e e e e 1

1.2.1 Default terms. 1
1.2.2 VEX Forth ..o 1
1.3 LGPL exemption, support and upgradesc.oiiiiieiiiii .. 1

2 Theseus GUI designer..........., 3
2.1 Introducing TheseuUS e e 3
2.2 Compiling Minos and Theseus e 4
2.3 Launching Theseus e e 4
2.4 Calculator example e 6
2.5 Concepts fOr MENUS.ottt e e e 8
2.6 Menu example. 9

2.6.1 Top level Menu 9
2.6.2 Adding second level menus ... 10
2.6.3 Reviewing the design 11
2.6.4 Making it pretty . ..o 11
2.7 Adding a menu without a panel 11
2.8 Navigating Theseus e 11
2.8. 1 AL the GO . ottt 11
2.8.2 Editing modes. 11
2.8.3 Dialog editor 12
2.8.4 BOX Creatior. . ..ot 13
2.8.5 BOX INSPECEOT . . oottt 13
2.8.6 ODbJect INSPECOT . .« o\ttt 14
2.9 Adding aCtionSttt e 14

3 BerndOOF Object Oriented Forth.......................... 15

3.1 What is Object Oriented Programming? 15
3.1.1 The Class Conceptot e 15
3.1.2 Binding: Late or Early? oo 17
3.1.3 Objects as Instance Variables........... ... i, 18
3.1.4 Tools and Application Examples.......... .. i 22

3.2 The Complete BerndOOF Descriptionoooiiiiiiiin... 23

3.3 Formal Syntaxo 27

3.4 Porting the OOP packages.o e 27

4 Portability layer for VFX Forth............................. 29
4.1 BlOCKS . oot 29
4.2 Floating point. 29
4.3 Floored diviSIOnot e e e 30
4.4 Miscellaneous math 30
4.5 Headerless Words e 30
4.6 Memory access with address increment i i 31
4.7 Memory allocation e 31

4.8 OVEITIAES . o oottt 32

ii Minos and Theseus
4.9 Miscellaneous t00lso 32
4.10 Interpretive StruCtUTes.ot 35
4.11 Application startup chains...... 35
4.12 MODULE from bigFORTH. ... e 36
4.13 Operating system dependencies.t 36

Index 37

Chapter 1: Licensing and other matters 1

1 Licensing and other matters

1.1 Copyright

The code for Minos and Theseus was written by, and is maintained by, Bernd Paysan. The
copyright of the code is held by Bernd Paysan for all versions.

1.2 License terms
1.2.1 Default terms

Unless otherwise ngotiated, Minos and Theseus are released under the terms of the GNU GEN-
ERAL PUBLIC LICENSE v3 contained in the file GPLv3 in the main Minos folder.

1.2.2 VFX Forth

The effect of this license is that you do not have to provide the code in the Minos folder with
your application. However, should anyone ask for it, you must supply it. You can, however,
purchase an LGPL exemption, technical support, and upgrades.

1.3 LGPL exemption, support and upgrades

For details please contact Bernd Paysan or MicroProcessor Engineering Ltd. The contact details
are at the front of this manual.

Minos and Theseus

Chapter 2: Theseus GUI designer 3

2 Theseus GUI designer

2.1 Introducing Theseus

Minos and Theseus are the answer to the question "Is there something like Visual BASIC or
Delphi in Forth?". Basically, these GUI systems contain two components: a library with a
wide variety of elements for drawing a graphical user interface; e.g. windows, buttons, edit-
controls, drawing areas, etc. and an editor to select and combine the elements with the mouse
by drag-and-drop or click-and-point actions. You then insert code that acts when buttons are
pressed.

It isn’t really necessary to paint graphical user interfaces together, in the same way as it isn’t for
text, e.g. TeX versus Open Office. Many typesetting functions are more semantic than visual,
e.g. a piece of text is a headline or emphasized instead of written in bold 18 point Garamond
or 11 point Roman italic. All this is true for user interface design too, and to some extent much
more. It’s not the programmer who decides which font and size to use for the User Interface -
that’s up to the user, as are the colour of buttons and texts.

To lay out individual widgets, more abstraction than defining position, width and height makes
sense. Typically buttons are arranged horizontally or vertically, perhaps with some space be-
tween them. The size of buttons must follow the containing strings, and should conform to a
consistent aesthetic, e.g. each button in a row has the same width.

Such an abstract model, related to TeX’s boxes and glues model, performs quite well even
without a visual editor. The programmer isn’t responsible for typesetting the buttons and
boxes. This approach is quite usual in Unix. Motif and Tcl/Tk use neighborhood relations,
Interviews uses boxes and glues. I decided for boxes and glues, since it’s a fast and intuitive
solution, although it needs more objects to get the same result. Boxes form the components.
The space between them is defined by glues.

These concepts contradict somehow with a graphical editing process, since the editors I know
don’t provide abstract concepts such as "place left of an object" or place in a row, but positions.

Theseus works with a relationship model. It does not work in terms of the x,y,w,h positioning
model familiar to Windows programmers. Instead you specify the relationship between items in
Theseus, and then Minos displays the items.

Theseus is designed to create Minos dialogs. Each dialog is derived from a window class. You
can create dialogs by composing boxes (layout managers) and widgets together, add actions to
the widgets, add variables and methods to the derived window classes and so on.

Minos has four sets of classes:

e Widgets: "window gadgets", these are the basic objects like buttons, labels, icons and text
fields.

e Displays: these widgets are the drawing area of other widgets. They know how to draw to
X or to the parent display. It is also possible to create new displays that, e.g., draw into
an OpenGL widget or send drawing events over the network, to copy drawing messages to
more than one parent display and so on.

4 Minos and Theseus

e Boxes: or layout managers. Although each object in Minos has coordinates and size,
formating is done by a surrounding layout manager. These either form horizontal boxes,
and align their contents from left to right, or vertical boxes, and align their contents from
top to bottom. Each widget has a horizontal and a vertical glue, which are used to compute
the look of the widgets.

e Actions: these are the objects (Forth words) that link data and widgets together. An action
knows in which state it is, and what to do when the state changes. There are several types
of actions, for simple buttons, toggle buttons, text fields, and sliders.

Each dialog is hierarchically composed from widgets, boxes, and displays (e.g. viewports). Each
active object, thus each button, toggle button, slider, and text field has an associated action, a
name, and other attributes.

2.2 Compiling Minos and Theseus

If you have not been supplied with a precompiled version of Theseus or you have upgraded
the Forth kernel, you will have to rebuild Theseus. The incantations are specific to the host
Forth. To run Theseus as it is is designed to be run, you should create an executable with a
precompiled version of Minos. Note that this may modify the start-up behaviour and command-
line processing of your Forth.

For bigForth, build zbigforth:

bigforth
include startx.fs

For VFX Forth, build zuvfxlin:

vfxlin
include startx.fs
save xvfxlin

You can now run the binary, which will appear in a window. We usually refer to this binary as
<zbin>.

2.3 Launching Theseus

In most cases, Theseus is compiled from source code every time - it only takes a fraction of a
second. Theseus will start when the code has compiled.

<xbin> theseus.fs

This will leave you with the following display.

Chapter 2: Theseus GUI designer 5

K = T

©
®
%)

II IR LLLLLLLL

Bl N7 .

T T Y ST RN : e

You start a new design using the top menu bar.

The file menu allows you to load and save designs. The edit menu has only two
entries, for a new dialog and a new menu window.

Once you have selected a menu or dialog to buid, you can then select what you are going to put
in it using the widget bar below the menu.

The widget bar contains groups of widgets. To insert a widget into a dialog, select
the group and click on a button. The corresponding widget is inserted in the current position
(affected by the mode switches).

Rather than go into tedious detail about every button, we are now going to take you step by
step through the process of building a simple calculator. After that, we’ll build a menu system.

6 Minos and Theseus

2.4 Calculator example

BUttDﬂSITuggleslText Fields| Sliders| Menues| Sizer| Labels| Glues| Complex| Displays|
Button| LButton| Icon-Button| Icon| Big-Icon| Tri- Button|

The picture above shows what we are going to build. There’s a canned example
cale.m if you want to cheat. It really is worth going through this example yourself.

Formatting buttons and text fields is done by the system, and is thus not the task of the
programmer (you), who only has to specify the logical arrangement.

The project is hierarchically arranged. The topmost hierarchy are the dialog windows. These
windows understand two additional methods, open and modal-open which allows you to create
both non-modal and modal dialogs. The user then creates a framework of horizontal and vertical
boxes inside the dialog. These boxes are filled with contents and glues. Glues are what we call
the space between items. Glue can be modified (by you) too.

Launch Theseus. Create a "New Dialog" with the "Edit" menu. This is the dialog bar at the
start of the project:

Qv 2 ||TItIE:|ND Title Name:/comp0000
*

Fach object has a title and a name. The title is usually displayed at the top of the
object as a caption. If the title field shows "No Title", there will be no caption. The name is
the name of the Forth object that will be generated when Theseus generates code for you. For
the moment, we will not bother much with titles or names, but they will be important when
we get to the menu example.

Next we need three entries that contain a label and an editable number. Click in the box in the
new dialog that has a cross in it. The cross indicates an empty area. Select "Text Fields" in
the widget bar, and then click "Infonumber" three times. You should see:

ﬁl\fl(}? | ! | Title:/Ho Title Mame:|comp0000 |
String'l]_
3tr‘ing|l]_

When you select each field in turn, you will see that the box inspector has replaced the Minos
logo. Edit three of the four fields
e Infotextfield name - this is the name (in Forth) of the object. We need the name in order
to get at the data in the number field. Call these a# and b# for the inputs, and r# for the
result.

Chapter 2: Theseus GUI designer 7

e Number - the initial value that will appear in the edit box.

e string - this is the label at the left of each entry. Suitable strings are A:, B: and R:.

Beneath the two input fields the operation buttons should be arranged one aside each other. A
horizontal box (hbox) does the job, with four buttons in it.

1.
2.

First click to select the second input box, the one labelled B.

At the left of the main Theseus window, hover the mouse over the top four icons in the
vertical bar. Tooltips will appear to show their action. Select the one whose tip says "Add
after current object".

Select hbox (near upper right) to make the box.
Click the "Add last in box" icon.

Click into the new box and click off the vskip button on the right hand side of the main
Theseus window.

Click "Buttons" on the widget bar, and then click "Button" on the next line four times to
put the buttons in the hbox.

Select each button in turn and label it for one of the primary operations +, -, *, /. After
selecting it, you can press <Esc> to clear the text field first and then just type the text.

Now you should see something like this:

al‘i.;?ltf | [4 | Title:|Ho Title Hame:/comp0000

Y —
Y T—
ERNEIE
RO

You have already given object names to the input and result boxes. Now we must
add the action code in the Code: field of each button. The code looks as follows, for +, -, *,
and /.

a# get Db# get d+ r# assign
a# get Db# get d- r# assign
a# get Db# get dx r# assign
a# get b# get drop ud/mod r# assign drop

We will discuss the gory details of accessing object data later. For the moment, we’ll just note
that get and assign are methods applied to the objects a#, b# and r#. You should have a
button inspector display like the one below.

8 Minos and Theseus

Button| Change Funtl

Code:ls# get b# get d+ c# aszsign
Tooltip:|

String:f+ |

It may be useful to take the result and copy it to one of the input buttons for reuse. Thus two
additional buttons are required, and to make it nice, all buttons should have the same size (with
"tabbing" box style). The dialog should have a title, and a name, too. The added code for the
>A and >B buttons is:

r# get a# assign
r# get Db# assign

Now you should see something like this:

‘al\ﬂ&?l i 4 ||TIﬂE:|l::all:: Mame:|calc

A0
B:j0
Frrrrr

R |

Save the application. You must provide the extension for the file name. By conven-
tion, Theseus uses a .m extension for its auto-generated files.

If your particular host Forth permits it, you can click the Run application button and make
your calculator do some calculations.

2.5 Concepts for menus

Remember that Minos builds things from boxes and glues. A menu is just a collection of labelled
boxes that do things when pressed. In Minos terms, a top-level menu entry that just runs another
menu is a menu-title. An entry that actually does something is a menu-entry. A menu entry
(not at the top level) that launches another menu is a sub-menu.

A top-level menu is built either as a menu bar using an dialog, or as a "New menu window",
which is an box containing menu items and a panel for the application’s display. All other menus
are built with dialogs containg menu items.

To link them together, the menu-titles point to the dialogs containg menu items and so on. Note
that initially you only want to see the top-level menu, so all the dialogs for sub-menus have their
"Show dialog" buttons (see the left-hand buttons on each dialog editor) set to "not shown" (red
cross rather than green mark). This prevents all the menus being visible at application start-up.

Chapter 2: Theseus GUI designer 9

2.6 Menu example

The example here was generated during the port of Minos and Theseus to VFX Forth for Linux.

r

M - VFXForth for Linux

File Edit Options| Help

Font
Editor

—~Empty- PDF help
VFX Source

2.6.1 Top level menu

Start Theseus and then

1.
2.
3.

Select Add last in box (the default) and
Add a New Menu Window from the Edit menu.

Select the box portion at the top, and click the border button to make the menu more
distinct.

In the dialog bar (a menu window is a special case of a dialog), give the dialog a title
(caption), and a name for the Forth object. We used MainMenu, because that’s what we
were prototyping then.

You will see a horizontal box at the top and an empty panel below it. The box will contain the
top-level menu, and the panel will contain the other parts of the application. We are now ready
to build the top-level menu. The picture below shows the Theseus display midway through the

process.
1. Select Menus on the widget bar, and add three Menu-Titles.
2. Select Glues on the widget bar, and add one HGlue
3. Go back to Menus and add another Menu-Title.
4. Select each menu entry in turn and edit the Menu-Title name and String fields. The names

are the names of Forth objects. Since this is the main menu and the first entry is for a File
menu, we name it mmFile and enter File as the string. We will edit the Menu field when
we have built the File menu itself.

Select the HGlue by selecting the gap between the third and fourth menu titles. Check the
fill button to keep the Help menu at the right. If you don’t like this layout you can remove
the HGlue by selecting it with a shift-left-mouse-button click.

10 Minos and Theseus

- M E Theseus: fhome/stephen/Products/VfxForth.dev/Sources/Examples/Lin32/Minos/SFPmenu.m * —

| e

Giue| HGlue| VGlue| Rule| HRuk| VRule| Topgiuel
E:; EI@EFE VX Forth for Linux Name:]lVizinllen

2.6.2 Adding second level menus

Next, we need to add the four menus. These are vertically oriented dialogs containing Menu-
Entry components. The process is as follows.

1. Create a new dialog. It should not have a title, but it needs a name. Again this is a Forth
object. For the File menu, we called it FileMenu.

2. Give the dialog a border and change the Show Dialog button on the dialog bar to a red
cross. This stops the dialog being displayed until you actually select it.

3. Add your Menu-Entry items. Each one needs a Forth name in the Menu-Entry name field
and some text in the String field.

4. To make the menu entry do something when selected, you can put a code fragment in the
Code field. For the moment leave this field blank. See the section "Adding actions" below
for more details.

Chapter 2: Theseus GUI designer 11

2.6.3 Reviewing the design

Click the Run application button and press the menu entries. The menus appear as they will
appear in your final application.

At first glance the boxes are too deep - there’s far too much white space, and the items could
be grouped by the use of separators. We’ll do this in the next section.

After reviewing a design, remember to close the test design otherwise you’ll find the screen
cluttered with examples!

2.6.4 Making it pretty

2.7 Adding a menu without a panel

2.8 Navigating Theseus

2.8.1 At the top

File Edit Help

The menu bar contains a file menu, an edit menu and a help menu. From the Edit
menu, you select a new dialog or menu.

BUttD"SITuggleslText Fields| Sliders| Menues| Sizer| Labels| Glues| Complex| Displays|
Button| LButton| Icon-Button| Icon| Big-lcon| Tr-Button|

The widget bar contains groups of widgets. To insert a widget into a dialog, select
the group and click on a button. The corresponding widget is inserted in the current position
(affected by the mode switches).

2.8.2 Editing modes

oa

il

mfua

[t

| e

The editing modes are separated into three groups:

12 Minos and Theseus

1. Insert modes:
e Add object first in current box
e Add object last in current box
e Add object before current box
e Add object after current box

2. Navigation through nested boxes, sets the active box. The reason why there is a navigator
is that sometimes boxes are unselectable because they have no border and the inside boxes
fill them completely, leaving no outer space to select with a mouse click.

e Move one box up in hierarchy
e Move one box to the left/up
e Move one box to the right/down
e Move to the first child
3. Short cuts:
e Load dialog
e Save dialog
e Try dialog

e Save as module

2.8.3 Dialog editor

'al‘ﬁfltxgl ? ||TIHE:|[:al[: Name:|calc
GE(
B:0
+ - * | =4 =B
R:j0

The dialog editor shows a navigation bar for each dialog to edit. The dialog itself is
resizable with the split bar below and on the side, to see how it looks resized.

The navigation bar consists of an icon to open/hide the dialog, to open/hide the declarations
field, to open/hide the code field, to select whether to show the dialog, a dialog menu, a dialog
title and a dialog name. It is important to give every dialog a name, since dialogs without names
can’t be saved. The dialog name is the name of the derived class, you can refer to this class in
your code.

The declaration field contains variable and method declarations of the dialog class. The code
field contains method definitions. The dialog edit field contains the dialog itself.

Use the mouse for selection.

e [Edit] A simple mouse click opens the inspector of that object, with focus on the
text/code/name field (left/middle/right mouse button).

e [Cut&Paste] Shift-mouse} clicking left cuts the object to the cut stack, clicking middle or
right pastes from the cut stack.

Chapter 2: Theseus GUI designer 13

e [Try] Cintrol-mouse clicking makes the object react as in the dialog, but without executing
code.

You can delete a complete dialog using Dialog Menu > Cut Dialog in the dialog’s navigation
bar.

When you are happy with a dialog, you can fold it to consume less Theseus display space using
the Dialog Editor button. Clicking this button again will unfold (restore) the view.

2.8.4 Box creator

hbhox
vhox

The box creator has two buttons to create horizontal and vertical boxes. Boxes are
simple layout managers, that arrange containing objects one after the other. Boxes are created
as normal objects, so they go to the same places where a normal object would go. They inherit
the settings of the parent object, so these settings have to be changed using the box inspector.

2.8.5 Box inspector

W horizontal
W activate
2l radio

W tabhing
1 tabular
I hfixhox
_l wiizhox
-l flipho=

- rzhox

Low | Details
w hskip

- wskip

-l horder

hox name:

disEIaE name:

The properties of the current box can be changed in the box inspector on the right
hand side of the Theseus screen:

e The horizontal switch changes the direction of the box

e The activate switch changes the selection behavior: active boxes contain one single active
object, navigation with <tab> is possible.

14 Minos and Theseus

e The radio switch enables deselection on click, thus only one switch inside such a box may
be active at a time.

e The tabbing switch changes the layout: all objects except glues in tabbed boxes have the
same size.

e The hfixbox shrinks the box to the minimal size, no growing

e The vfixbox shrinks the box to the minimal size, no growing is possible in vertical direction
e The flipbox hides the box when active

e The hskip box or slider (with Details activated) adds horizontal skips between objects

e The vskip box or slider (with Details activated) adds vertical skips between objects

e The border box or slider (with Details activated) adds a shadow to the box (raised or
sunken).

2.8.6 Object inspector

Button| Change Funtl

Code:fs4 cet b# get d+ c# assign
Tooltip:|
String:f+ |

The object inspector contains the informations of the current object. The fields
depend on the class of the object, however, some fields are common between objects.

e The name field selects the name of the object, this name is used in code to refer to this
object

e The string field is the string the object displays
e The code field is the code that is executed on clicks

e The tooltip field is the tooltip that is shown when the mouse is over the object (an empty
string means no tooltip)
There are other fields for properties specific to each type of widget.

2.9 Adding actions

Chapter 3: BerndOOF Object Oriented Forth 15

3 BerndOOF Object Oriented Forth

The OOP package documented here here was written by Bernd Paysan for his bigforth
system. Since then it has been ported to other Forth systems. The package is now known
as BerndOOF for short. The source code is in the file oof.fs. Minos and Theseus rely on
BerndOOF.

3.1 What is Object Oriented Programming?

The buzzword of the late 80s and 90s in the IT industry was without doubt "object ori-
ented". No operating system, no application, and certainly no programming language,

that isn’t object oriented. Forth isn’t excluded as publications like Dick Pountain’s Object-
Oriented FORTH show clearly.

Ewald Rieger had ported Pountain’s OOF to bigFORTH and gave it to me on the Forth-
Tagung in 1991 to look at it. Since this OOF lacked several features, I completely rewrote
it, to make this interesting programming paradigma available for bigFORTH. This system
is in use since 1992, and has proved to be useful even in the rough world of real-time
programming. Ewald Rieger uses it to control an automatic chromatography system.

The encapsulation of data and algorithm to form an object has proven useful, more proven
essential, especially for changing hardware configurations, as they are typical for many tasks
in practise.

To give you an impression of what is possible with object oriented programming, and how
to do it, the following is an introduction using a small example. The sources are in the file
oofsampl.fth. Tuse a small collection of data types that are known: integers, lists, arrays, and
pointers. Object oriented programming hides behind a jargon that, after a closer look has
some similatities with concepts like modularity and definition of clean interfaces.

3.1.1 The Class Concept

The core principle of object oriented programming is to encapsulate data and the procedures
that operate on the data into an object. Ideally the procedures (methods) that access an
object are the only way to operate on the data. The interface to the object then consists of
the names of the methods (messages) and the parameters that are sent with the message.
Since many objects return results, the stack is used conventionally for the message passing
and the method is called like a Forth word - with a detour over the object, that manages
the encapsulation.

It would be a waste to program each method for each single object; especially since many
objects have the same or similar structure and are only distinguished by the data itself.
Such similar objects are summed up as a class. A class is so to speak a template (or a form)
for an object; after instantiation a real object is created from a class with space for data,
and the methods common for all objects of that class.

Often you need only minor modifications to a class to obtain a new one, and therefore you
use inheritance to create a sublcass - a derivative. Additional variables and modified or
new methods are just appended to the class.

16

Minos and Theseus

All objects of a class and its subclasses have a common message protocol, thus they under-
stand the same messages and react similarly. The differences in detail are called polymor-
phism. So may each graphical object have the method draw_me, but one object may draw
a circle, another a point or rectangle.

If you emphasise the common protocol to all objects of a class hierarchy, you create the
protocol separated from the implementation of the subclasses and call the class, which
contains only protocol but no implementation, an abstract data type. Such a data type is
the class data presented in the following listing:

-
Memory also Forth
object class data \ abstract data class
cell var ref \ reference counter
public:
method ! method @ method .
method null method atom? method #
how:
: atom? (-- flag) true ;
:# (-—n) 0 ;
: null (—— addr) new ;
class;
-

Here I must add that in BerndOOZF all classes are eventually originated from the same
parent class, the class object. Also, classes and objects aren’t only used for operating on
data, but also for creating new subclasses and instantiation of objects. Therefore a class
is just an object without a data area. A class can create new subclasses using the method
class.

The description of a class consists of two parts: a declaration of variables and methods,
and the implementation of the methods. All variables, all polymorphic and externally
accessible methods must be declared; helper methods could be declared optionally. In the
implementation part, undeclared methods are automatically declaired as EARLY (private).

The example creates a cell sized variable called ref, in the private area of the class that
isn’t visible from the outside, but can be inherited (thus corresponds to protected: in C++).
public:, thus publically available are the six methods !, @, ., null, atom?, and #, which
are used to store, read, and display the value, to create a null object, the query whether
the object is atomic or composed, and the number of sub objects if the latter is the case.

The last three methods are already implemented, since they are the same for all simple
objects. The unimplemented methods cannot be executed, more precisely they lead to
abort". They must be implemented in real data types, like in the following data type
integer:.

Chapter 3: BerndOOF Object Oriented Forth 17

-
data class int
cell var value
how:
! value F ! ;
: @ value F @ ;
.00 .r ;
: init (data -——) ! ;
: dispose
-1 ref +! ref F Q@ 0<=
IF super dispose THEN ;
: null (-—— addr) O new ;

class;
.

Here I create a new class in the same manner and allocate a (private) variable value. The
two methods store and fetch (! and @) access value. As an interface this is sufficient. The
F before the words changes the interpretation from the object vocabulary to the normal
vocabulary, thus the normal Forth kernel words ! and @ are used. The method . is easy to
understand too. Here the @ however is interpreted as the access method.

I must say a few words about the methods init and dispose: the init method is called in
the creation of the object and is used to initialise it. Here in the example I initialize value
with a number on the stack. The dispose method removes an object from the dynamic
memory management. If you modify this method, you must (unlike in C++) explicitely call
the dispose method of the parent class with super dispose. I dispose only if the reference
counter is zero or negative, meaning that there are no further references. Otherwise, the
reference counter is just decremented.

The null method now has the meaning as expected: it creates an object with the value 0
(dynamically) and leaves its address on the stack. The word new is, like dispose, a method.
Without additional information (thus without class or object), the method of the current
class is used.

3.1.2 Binding: Late or Early?

Let’s take a step back and look at how methods are called. How much must be defined
at compile time, and what has to be resolved at runtime, and then should not produce an
error?

As long as it is clear which method of which class is executed, as with super dispose, it
will be resolved at compile time and create a direct call to the specified method. This is
called early binding. It’s for sure the fastest method, but unfortunately it doesn’t allow for
polymorphism.

Often it is not clear in advance which subclass the object belongs to when you want to send
a method to it. You have to find the address of the method at runtime, then. A search in
the dictionary is prohibitively inefficient, as well as a (possibly even sequential) search over
a numerical key isn’t what I call run time efficiency.

In BerndOOF therefore, each object contains a pointer to a jump table as its first element.
The jump table contains the addresses of all methods. This doesn’t only guarantee a
response time independent of the number of methods (after all, Forth should still remain a

18

Minos and Theseus

real time language), it is also quite fast. Especially, since this approach is so easy to code,
a simple macro can be directly inserted in the caller’s code.

What’s prevented, or at least made much more difficult, with this approach is multiple
inheritance. Crossing a new child class from several parent classes is problematic anyway.
Methods and variables with the same names must be renamed if they are not inherited
from the same grandparent class, and the offsets of variables in the object change (and so
must also be determined at runtime). Alternatively, the compiler must ensure in advance
that the necessary space for the mixed class is already reserved in the parent classes. This
is a space versus speed tradeoff that cannot be done with a one-pass compiler, and creates
difficulties even in complex systems.

A very important aspect is the real time properties of the created code. Thus the run
times must be known to the programmer. In turn, this only leaves completely determin-
istic approaches for binding. Only then the programmer does not lose control of what he
writes. C++ does not have this property, and therefore is only of limited use for real time
applications.

3.1.3 Objects as Instance Variables

Quite often a straight-forward class hierarchy is good enough. Appropriate abstract data
types allow us to circumvent real multiple inheritance issues. In the case of an emergency,
you can reach a sort of multiple inheritance by copying the sources.

What is necessary though is to have objects as instance variables in other objects, as well
as by pointer and direct reference. This can be shown using lists as example, since they
need pointers in their implementation:

Chapter 3: BerndOOF Object Oriented Forth 19

e N
forward nil
data class lists
public:
data ptr first
data ptr next
method empty?
method 7
how:
: null nil ;
: atom? false ;
class;

| lists class nil-class
how:
: empty? true ;
: dispose ;
.Il ()H .

class;

| nil-class : (nil
(nil self Aconstant nil
nil (nil bind first

nil (nil bind next
\ J

Here, we first create an abstract data class for lists; this needs as both pointer to first and
rest of the list as data. Since both may normal data, also dot pairs are allowed as in Lisp.
Would the rest of the list have been a list again, the type isn’t necessary; that creates a
pointer to the object of the current declared class. The phrase 1ists ptr next won’t work,
since the class 1ists isn’t completely defined at this point and therefore can’t be executed.

Additionally to these pointers you also need a few methods: a list could be empty, so you
should be able to ask for that. Also, it would be quite useful to display the first element
(with 7).

A null-list is the empty list, also called nil. Since this is a list, it must be declared later,
therefore I create a forward reference, which is resolved with the later definition of nil.

Empty lists differ from ordinary lists quite significantly. They always return true to empty?,
there’s only one of them, and this one certainly may not deleted. It displays a pair of
parentheses.

Now I create an element of the class of empty lists, and the address of this element (put on
the stack with the method self) finally is called nil. Both the first as the next element
of the empty list is again the empty list. That prevents crashes when a program runs over
the end of the list.

The method bind allows to bind object references to an object pointer. The object pointer
first of the object (nil behaves, after being bound, exactly like the object that it is bound
to, thus (nil itself. This is more interesting with real lists:

20

Minos and Theseus

-
lists class linked
how:
: empty? false ;
: init (first next --)
dup >0 1 ref +! o> bind next
dup >0 1 ref +! o> bind first ;
: 7 first . ;
: @ first @ ;
I first ! ;
: . self >o ’(
BEGIN
emit 7 next atom? next self o> >o
IF ." . " data . o> .")" EXIT THEN
bl empty?
UNTIL
o> drop .")" ;
: # next # 1+ ;
: dispose
-1 ref +! ref F @ 0> 0= IF
first dispose next dispose super dispose
THEN ;

class;
.

~

A linked list certainly isn’t empty. On creation, I bind the references first and next;
appropriate object addresses must have been put on the stack. At binding, I increment the
reference counters of the objects - now another pointer points to them. To make them the
current object, I push them on the object stack, thereby with ref their reference counter is
addressed, and not the one of the list. The object stack isn’t a real stack; only the topmost
element is put into a register, the rest is on the return stack.

The methods @, ! and 7 refer to the first element of the list; they are only passed through.
No complex pointer arithmetic is necessary, the name of the reference is sufficient.

To print a list, I must walk through the list. Before the first element, I open a parenthesis,
otherwise the elements are separated by blanks. The current first element of the list is
displayed. If the next element is an atom, it must be printed as dot pair; the list ends then.
The list also ends when the next element is the empty list. Afterwards, only the parenthesis
has to be closed, and the blank is dropped from the stack.

Surprising is the recursion in #, which competes the length of a list. It simply computes
the length of the rest of the list, increments the result and and finishes. As soon as the list
terminates with nil or an atom that has length=0, the recursion terminates. Here you first
see a clear advantage of object oriented programming; it makes lots of IF. .ELSE. . THEN for
decisions unnecessary and therefore eases recursions.

At deletion of a list, both parts of the list and the node itself have to be deleted. Here
also no case decision is necessary, and the termination question, which is often forgotten in
recursive programs, isn’t asked here.

Now we just need element objects for the list. We already have numbers, but strings would
be nice, too. Here they are:

Chapter 3: BerndOOF Object Oriented Forth 21

(")
int class string
how:

! (addr count --)

value over 1+ SetHandleSize
value F @ place ;
: @ (—— addr count) value F @ count ;
. 0@ type ;
init (addr count --)
dup 1+ value Handle! !
: null S" " new ;
: dispose
ref F @ 1- 0> 0=
IF value HandleOff THEN
super dispose ;

class;

We derive the class string from int. I use its instance variable value as handle, as pointer
to a movable memory area. There, the string is stored as counted string. When storing
a new string, the size of the memory block must be adusted; at the first time, it must be
allocated, and freed at deletion. All the rest is self-explaining, I hope.

Very useful is the pointer class. You can directly create pointer variables, but you can’t
insert them into e.g. a list.
(0
data class pointer
public:
data ptr container
method ptr!
how:
! container ! ;
] container Q ;
container . ;
: # container # ;
init (data --) dup >o 1 ref +! o> bind container ;
: ptr! (data --) container dispose init ;
: dispose
-1 ref +! ref F @ 0> 0=
IF container dispose super dispose THEN ;
: null nil new ;

class;
k J

Analoguous to the list I create a pointer instance variable (pointer); then there’s the
method ptr!, which is used to assign a new object. The methods @, !, . and # are fed
through to the container. The init method binds a passed object to the pointer. The
method ptr! first releases the previous object, and afterwards stores the new object. I
certainly care about reference counting here.

Deletion of a pointer object also means that one pointer less points to the object (and it
eventually has to be deleted); afterwards, the pointer is deleted.

Minos and Theseus

Analoguous to a pointer you can create a whole array of pointers:

()
data class array
public:
data [] container
cell var range
how:
! (<value> n --) container ! ;
: 0 (n -- <value>) container Q ;
[#0
?D0 emit I container . , LOOP
drop o]u ;
: init (data n --) range F ! bind container ;
: dispose -1 ref +! ref F @ 0> 0=
IF #0
?D0 I container dispose LOOP
super dispose
THEN ;
: null (== addr) nil O new ;
D # (--n) range F @ ;
: atom? (-- flag) false ;
class;
S J

Similarly to the method new you create a new array of objects with new[] which contains
elements of this class. The array really is an array of pointers, you can assign other objects
at any position of the array with bind[]. The array index for accessing an array variable
is expected on the stack.

3.1.4 Tools and Application Examples

The list packet still isn’t very easy to use. I've written a few small tools that eases the use
- but certainly won’t make up a complete Lisp or something like that out of it:

-
. cons linked new ;
list nil cons ;
car >0 lists first self o> ;
cdr >0 lists next self o> ;
: print >0 data . o> ;
: ddrop >0 data dispose o> ;
: make-string string new ;
28 state @ IF
compile S" compile make-string exit
THEN
>’ parse make-string ; immediate
-

The words cons and 1list help to create a list. Cons concatenates two objects on the stack
to a list (TOS as next, thus should be a list; NOS as first element of the list). List takes
an object and together with nil creates a list out of it.

Chapter 3: BerndOOF Object Oriented Forth 23

Car and cdr should be known from Lisp; they return first with respect to the rest of the
list.

Print calls the output method of an object.

Ddrop finally removes and deletes an object.
Make-string is the string constructor, analogous to list.
$" constructs a string constant.

As example how to create a list with these tools:

-
$" Dies" $" ist" $" ein" list cons $" Test" list cons cons ok
dup print (Dies (ist ein) Test) ok

pointer : test ok

test . (Dies (ist ein) Test) ok

test # . 3 ok
_

3.2 The Complete BerndOOF Description

The interface to object oriented programming in BerndOOF divides into three parts:

e Tools to manage objects, which are themselves not object related, and the classes from
which all other classes and objects are derived,

e Tools to create instance variables and methods,

e methods of the root class, to create new classes, instances, handling of object pointers
and similar things.

Only the words of the first item above are directly accessible from the FORTH vocabulary.
The words of the second item are only available during declaration of a class, and the words
of the third item are not words in the traditional Forth sense, but are methods of objects.

BerndOOF uses a coherent way to manage classes: classes are objects, although with class
global instance variables, that are just used to create and manage new classes and objects.
Classes are also used to send messages to objects whose address is stored in an object
pointer, and that need explicit context (because it’s not the current defined object), thus
are also used as a sort of type casting.

Vocabulary oo-types \ --

All the words that are used to declare classes and implement methods are in the vocabulary
00-TYPES. 00-TYPES must be topmost of the search order during class definition, since
otherwise conflicts would arise. For example : is defined in 00-TYPES, the current PUBLIC
thread, as well as in FORTH.

“(--0)
Returns the pointer o to the current object.

: 0@ (-- addr)
Returns the address of the method table of the current object.

24

Minos and Theseus

:> (o --) (0SS --0)

Moves the pointer to object o to the object stack. The object thereby becomes the current
object. Attention: the previously used object is pushed on the return stack, object stack
accesses therefore must be balanced with other return stack accesses like DO ... LOOPs and
>R and R>.

0> (-—) (0So--)
Pops the pointer to the current object from the object stack. The previously used object is
restored from the return stack and becomes the current object.

: static ("<name>" --) \ oof- oof
Creates a variable that is common to all the objects of a class. This variable is cell sized
and created uninitialized as pointer.

: method ("<name>" --) \ oof- oof
Declares a method. Methods declared like this are late bound, if it’s not specified in the
context which class is used.

: early ("<name>" --) \ oof- oof
Declares an early bound method. You can’t change such a method in a subclass, if you
want to use the same name again, you have to declare the early method again.

: var (size "<name>" --) \ oof- oof
Creates an instance variable of size bytes length.

: defer ("<name>" --) \ oof- oof
Declares an object specific method, that can execute object specific actions. Execution
tokens are assigned with IS. This is e.g. useful to assign callbacks.

: dynamic (--) [’] Dalloc alloc ! ; dynamic
Dynamic object creation in the heap on NEW. This is the default behaviour.

: static (--) [’] Salloc alloc ! ;

Static object creation in the dictionary on NEW. You can compile object structures, preserve
them with SAVE and reuse them after program load, as long as the objects themselves don’t
use other functions to allocate dynamic memory.

Each object consists of variables and methods that have to be declared. The methods
afterwards need to be implemented. Visibility of variables and objects to the outside can
be selected. Private methods and variables are only visible inside the class and subclasses,
externally visible methods and variables have to be declared public.

BerndOOF separates declaration and implementation of classes. Both together form the
definition of a class.

: bind (o "<name>" --)
Binds the object o to the object pointer <name>. The object o must be derived from the
class name or a subclass thereof.

: how: (--) \ oof- oof how-to
Changes from the declaration to the implementation part. In this part, you initialise static
variables, and implement methods.

: class; (——) \ oof- oof end-class

Ends the implementation of a class.

The management of classes and objects is task of the classes themselves. Therefore, the
root class OBJECT provides some methods and class global variables. These can be separated
into the following groups:

Chapter 3: BerndOOF Object Oriented Forth 25

e (lass browser
e Subclass creation
e Memory management, instance creation

e Binding

: ptr ("<name>" --) \ oof- oof
Declares an object pointer, which must point to the currently declared class or a subclass,
and is initialized with BIND.

: asptr (class "<name>" --) \ oof- oof
Casts a pointer created with PTR to the currently declared class, and declares the casted
pointer as name.

("<name>" --) \ oof- oof colon
Implements the method name. You end the implementation with ;.

Create object (... "<method>" -- ...) immediate O (class
The root of all object classes. Executes method resp. compiles it dynamically bound in the
context of the current object.

cell var oblink \ create offset for backlink
First instance variable: points to the method table of an object.

static parento \ -- addr
Points to the parent class.

static childo \ —- addr
Points to the last derived subclass.

static nexto \ -- addr
Points to the next old subclass of the parent class.

static method# \ -- addr
Number of the methods and static variables in bytes.

static size \ -- addr
Number of bytes used as dynamic memory

static newlink \ -- addr
Points to a list of all sub-objects which consume memory in the object. Used for the internal
memory management.

method init (... ==) \ object- oof
Initializes an object with the given parameters. INIT is also called for all objects that are
declared as instance variables, in the order of declaration, but first for the main object.
INIT is a polymorphic method.

method dispose (--) \ object- oof
Frees the object’s memory space. DISPOSE is a polymorphic method.

early class ("name" --) \ object- oof
Starts declaration of a subclass called name.

early new (-— o) immediate \ object- oof
Creates a nameless object (instance) of the current class.

early new[] (n -- o) immediate \ object- oof new-array
Creates an array of nameless objects of the current class with n elements.

26

Minos and Theseus

early : ("<name>" --) \ object- oof define
Creates an object under the name name.

early ptr ("name" --) \ object- oof

Creates a pointer to an object of the current class (or subclass) under the name name. The
pointer is empty at first, use BIND to assign an object to the pointer.

early asptr (o "name" --) \ object- oof
Casts a pointer created with PTR to the current class and creates the casted pointer under
the name name.

early [J (n "name" --) \ object- oof array
Creates an array of objects with n elements under the name name.

early :: ("name" --) immediate \ object- oof scope
Binds method name of the current class early. Invoked directly in the implementation part
of a class, it inherits methods from other classes, and thus allows a limited form of multiple
inheritance. The method must be defined in a common parent class. Only the code address
of the method is inherited.

early class? (o -- flag) \ object- oof class-query

Early Method: Checks class relationship. Flag is only true when object is in the upward
derivation chain of the object that executes CLASS?.

early goto ("name" --) immediate \ object- oof

Used for end (tail) recursion. The method name is called directly, without pushing a return
address (or eventually the old object class) onto the return stack.

early super ("name" --) immediate \ object- oof
Binds method name of the parent class early. SUPER is used to modify inherited behaviour,
and to access the original behaviour in the modified method. You can use SUPER repeatedly
to access methods higher up the inheritance chain.

early self (-- o) \ object- oof
Returns the address of the object.

early bind (o "name" --) immediate \ object- oof
Stores the address object in the pointer variable name The object must belong to the
pointer’s class or a subclass thereof.

early link ("name" -- addr) immediate \ object- oof

Creates a reference to the object pointer name, thus an address where object pointers can
be stored with !.

: public: (--) ; \ empty stub for VFX
Switches to public declaration. All further methods and variables are visible interfaces to
the object.

For debugging porposes, there is the DEBUGGING object. It contains further methods which
are helpful for debugging. Not all methods are implemented yet.

object class debugging (... "name" -- ...)
This is a helper class, that provides necessary tools to debug objects. Otherwise like OBJECT.

early words (--)
Lists all the words in the public and private vocabulary.

early m’ ("name" -- xt)
Finds the xt of a method or object variable.

Chapter 3: BerndOOF Object Oriented Forth 27

early see ("name" --)
Decompiles Name

early view ("name" --)
Opens the editor at the declaration of name.

early trace’ (... "name" -- ...)
Traces the method name.

3.3 Formal Syntax

()
declaration ::=

<parent> CLASS <object>

{[private: | public:] <creator> <selector> }

[HOW: {: <method> <coding> ; }]
CLASS;

<creator> <selector> ::=
STATIC <static> | METHOD <method> | EARLY <method> |

<number> VAR <var> | <object> (: | [1 | PTR) <instance>
<parent> :.:=

OBJECT | <object>
<creation> ::=

<object> (: | PTR) <instance> |

<number> <object> [] <instance>
<coding> ::=

<word> <coding> |
{ <instance> } <selector> <coding>
N J

3.4 Porting the OOP packages

All the host dependencies are isolated in separate directories for each host system other
than bigForth, e.g. the VFX Forth code is in Minos/vfr-minos. Use one of the port folders
as the basis for yours if you need to port Minos to another host.

28

Minos and Theseus

Chapter 4: Portability layer for VFX Forth 29

4 Portability layer for VFX Forth

The code in Minos/vfr-minos/VFXharness,fth contains the main Forth host dependencies
required to port Minos and Theseus to VFX Forth for Linux.

In order to allow some redefinitions to be sensitive to whether the Minos or VFX Forth
notation is to be used, the flag MinosMode? is provided. If you want to revert to the
original VFX Forth behaviour, clear this flag.

1 value MinosMode? \ -- flag
Some words can operate in Minos mode or in the native host mode.

4.1 Blocks

The Minos/Theseus editor supports blocks. Block support is taken from a library file.

4.2 Floating point

: ans-float \ -

Set VEX Floats to ANS mode, in which ’.” is both the double number separator and the
floating point separator.

: mpe-float \ —-

Set VFX Floats to MPE mode, in which ’,” is the double number separator and ’.” is the
floating point separator.

include %1ib%/Ndp387.fth
Compile floating point library.
: float ; \ ——
Indicates that floats have been compiled.
: fx$ \ F: f -=— ; -- caddr len

Convert a floating point number to ASCII text. This still needs furthr processing according
to the required presentation mode to insert a decimal point and so on.

Code f>r \ F: £f —-; R: - f
Transfer a float to the return stack.

Code fr> \R: £f ——; F: ——- f
Transfer a float from the return stack.

code fr@ \R: f —-f ; F: —— f
Copy a float from the return stack.

: fmx \F: £f-——-f" ;n-—
Multiply a float by an int.

: fm/ \F: £f -f> ; n -
Divide a float by an int.

¢ fmkx \F: f-——-f;n--
Raise a float to the power of the int.

: f>fs \F: f - ; — fs
Convert a native float to its 32 bit form on the data stack.

30

Minos and Theseus

: fs>f \ fs —— ; F: —— £
Convert a 32 bit float on the data stack to a native float.

4.3 Floored division

Many graphics operations in Minos require floored division. Because ANS Forth permits
Forth systems to default to either symmetric or floored division, a set of operations that
always use floored division is defined.

: /modf (nl n2 -- rem quot)
Floored version of /MOD.

: /£ (nl n2 -- quot)
Floored version of /.

: modf (nl n2 -- rem)
Floored version of MOD.

: */modf (a b c -- rem quot)
Floored version of */MOD.

:x/f (abc-—mn)

Floored version of */.

Synonym m/mod fm/mod (d n -- rem quot)
This name is widely used, so we force it to be floored.

4.4 Miscellaneous math

$7FFFFFFF Constant mi \ -- n

Returns MAXINT, the largest positive integer.
Synonym ud/mod mu/mod (udl u2 -- urem udquot)
Rename to preserve Minos code base.

:dx (udl ud2 -- udprod)

Unsignsigned multiply of two doubles to produce a third.
: Omax O max ;

A micro-optimisation for 0 MAX.

: Omin O min ;

A micro-optimisation for 0 MIN.

: 8 (n-- 8*n) 3 lshift ;

A micro-optimisation for 8 *.

: 3x (n-- 3%n) dup 2% + ;

A micro-optimisation for 3 *.

4.5 Headerless words

I C-=)
Used in the form below to indicate that the word can be headerless. If the host Forth does
not support headerless words, this becomes a NOOP.

| : <name> ... ;

Chapter 4: Portability layer for VFX Forth 31

4.6 Memory access with address increment
1 cO+ \ caddr -- char caddr’

Fetch a char/byte and increment the address.

: we+ \ addr -- w addr’
Fetch a 16 bit word and increment the address.

. O+ \ addr -- x addr’
Fetch a cell and increment the address.

T ocl+ \ b addr -- addr’
Store a char/byte and increment the address.

Cowl \ w addr -- addr’

Store a 16 bit word and increment the address.

1+ \ x addr -- addr’
Store a cell and increment the address.

: wextend \w — w’
Sign extend a 16 bit word to a cell.

: cextend \ b --Db’
Sign extend an 8 bit byte to a cell.

: cx@ \ addr -- sb
Fetch a byte and sign extend it.

1 wx@ \ addr -- sw
Fetch a 16 bit word and sign extend it.

: wx0+ \ addr -- sw addr’

Fetch a 16 bit word, sign extend it and increment the address.

4.7 Memory allocation

Minos uses its own versions of memory access words. Most of these words simply THROW on
error. These words were inspired by the Mac OS functions.

vocabulary memory \ —-
Vocabulary holding the memory access words.

: NewPtr (len -- addr)
Allocate a block of memory.

: DisposPtr (addr --)
Free a mmory block.

: NewFix (root len n -- addr)
Allocates a new element of length len from a pool specified by the cell-sized variable at root.
If the pool has no free elements, n new elements will be created and added to the pool.

Variable Masters \ —-- addr
The root of a pool.

: NewMP (-- MP)
Allocate a new master pointer, referred to as mp in the stack comments for other words.

: NewHandle (len -- mp)

32

Minos and Theseus

Allocate a new dangling memory area, which is pointed to by by the returned master
pointer.

: DisposHandle (addr --)
Free a a dangling memory area and associated master pointer.

: Handle! (len mp —--)
Allocate a block of len bytes and associate it with mp.

: SetHandle (addr mp --)
Set the given master pointer.

: HandleOff (addr --)
Free the block whose pointer is at addr.

: Hlock (mp --)
Lock the pool. A dummy in most implementations.

: Hunlock (addr --)
Unlock the pool. A dummy in most implementations.

: SetHandleSize (mp size --)
Resize the pool.

: GetHandleSize (mp -- size)
Get the size of the pool.

4.8 Overrides

The words in this section override the VFX Forth versions

variable Seed \ -- addr

A dummy variable used to satisfy references.

: RANDOM \ n1 -- n2
Generate a random number *\i{n2) in the range 0..n1-1. The VFX Forth word that directly
performs this is CHOOSE.

4.9 Miscellaneous tools

:pin (xn --)

Store x in the nth stack slot. The inverse of PICK.
: \G postpone \ ; immediate

A documenting comment used by gForth.

: PEXIT \ -
Equivalent to IF EXIT THEN.

: 8aligned (nl -- n2)
Align n! to a boundary of eight.

: F ("<name>" --)
Compiles name with FORTH as the first vocabulary in the search path.

synonym AVariable Variable
A variable holding an address which may need relocation.

synonym AValue Value
A value holding an address which may need relocation.

Chapter 4: Portability layer for VFX Forth 33

synonym A, ,
For an address which may need relocation.

synonym AConstant Constant
An address which may need relocation.

synonym ALiteral Literal
An address which may need relocation.

synonym Patch Defer
Equivakent to Defer.

synonym << lshift
Equivakent to 1shift.

synonym >> arshift
Equivakent to arshift which is as rshift, but performs an arithmetic right shift.

synonym toss previous
Equivakent to previous.

synonym extend s>d
Equivakent to s>d.

: cont (addr ——) >r ;
Causes a branch to addr. When that code EXITs, execution resumes after the cont.

: push \ addr --
Save the contents of addr on the return stack, execute the rest of the word and then restore
the contents of addr.

& \ -- addr

Return the address of the data area of word rather than its xt.
: 0>= 0< 0= ;

Equivakent to 0 >= or 0< 0=.

: 0<= 0> 0= ;

Equivakent to 0 <= or 0> 0=.

: uw>= u< 0= ;

Equivakent to u< 0=.

: u<= u> 0= ;

Equivakent to u> 0=.

: rdrop postpone r> postpone drop ; immediate
Equivakent to R> DROP.

S \ -—-

Use inside DO ... LOOP and friends to return the loop limit.

: +i” \ n -- flag

Increment the loop limit by n and return true if the index is now greater than the limit.
The comparison is performed using circular arithmetic.

: ith \ addr -- x
Use inside DO ... LOOP and friends to return the contents of the *fo{I}th cell in an array.

: list> (thread -- element)
Execute the rest of the word for each element of the given list.

34

Minos and Theseus

-1 cells Constant -cell \ -- -4
The ngative size of a cell.

: over?2 V\abc--a
Equivalent to 2 PICK.

: toupper (char -- char’)
Convert char to upper case.

: tolower (char -- char’)
Convert char to lower case.

: \needs "name" --

If name is not defined, interpret the rest of the line, otherwise ignore it. Usually used in the
form:

\needs foo include foobar.fth
: onlyforth (--) only forth ;
Equivalent to ONLY FORTH, setting the basic search order.
: perform \ 77?7 addr -- 777
EXECUTE the xt held at addr.

: forward \ "name" --
Declares a forward reference. Will be replaced by DEFER.

: forward? (xt -- flag)
Return true if the zt is of a forward referenced word. OBSOLETE.

(llnamell —_)
Redefinition of : to cope with forward references in a very rough way. OBSOLETE.

: recursive \ —-
Used inside a colon definition to make the word visible for direct recursion.

: +bit (addr n --)
Set bit n in the bit array starting at addr.

: -bit (addr n --)
Clear bit n in the bit array starting at addr.

: bit@ (addr n -- flag)
Test bit n in the bit array starting at addr.
) o" (-)
Lay a zero terminated string. The end of the string is not aligned.
,0" <text>"
synonym 0" z" \ -- ; -- addr
Compile a zero terminated string. At run-time the address of the first character is returned.

: >len (addr -- addr u) dup zstrlen ;
The equivalent of COUNT for a zero-terminated string.

: Oplace (caddr len addr --)
Save the string caddr/len as a zero-terminated string at addr.

: safe/string (c-addr u n -- c-addr’ u’)
protect /string against overflows.

Chapter 4: Portability layer for VFX Forth 35

4.10 Interpretive structures

These structures only operate in the context of a single line.

[IFUNDEF] "name" --
Equivalent to [undefined] name [if].

[IFDEF] \ "name" --
Equivalent to [defined] name [if].

[DO] (n-limit n-index --)
Interpreted version of DO.

[?DO] (n-limit n-index --)
Interpreted version of ?DO.

[(+LOOP] (n --)
Interpreted version of +LO0O0OP.

[LoorP] (--)
Interpreted version of LOOP.

[FOR] (n --)
Interpreted version of FOR.

[NEXT] (n --)
Interpreted version of NEXT.

(1]

Interpreted version of I.

4.11 Application startup chains

Minos requires two startup chains to which actions can be added. The first uses the VFX
Forth ColdChain mechanism. This chain is executed in compilation order, i.e. the first
word added is executed first. The second chain, anchored by MainChain, is executed so
that the last word added is executed first. The MainChain allows outermost operations to
initialise themselves before earlier operations are initialised.

variable MainChain \ -- addr
Anchors the list of operations.

: withChain: \ anchor --
Starts a :noname word that is executed as part of the chanin whose anchor is given.

: Cold: \ -
Starts a :noname word that is executed as part of ColdChain. The first word added is
executed first.

: Bye: \ —-
Starts a :noname word that is executed as part of ExitChain when VFX Forth finishes.
The lasr word added is executed first.

: Main: \ --
Starts a :noname word that is executed as part of MainChain. The last word added is
executed first.

: WalkMainChain \ --
Execute all the actions anchored by MainChain.

36

Minos and Theseus

4.12 MODULE from bigFORTH
#16 cells buffer: ModCurrents \ -- addr
Holds the value of *\fo{CURRENT when a module is created.

variable pMC \ -- addr

Holds a pointer into ModCurrents above.
: initPMC \ —-

Initialise pMC above.

: +Module \ —-
Save the owner of a new module.

: —Module \ ——
Restore the owner of the previous module.

: widOwner \ -- wid
Return the wid of the owning module.

: findExport \ caddr len -- xt
Find the given word in the module, i.e. in the CURRENT wordlist.

: createExport \ caddr len --
Perform CREATE on the string, making the word in the owning wordlist.

: MakeExport \ caddr len --
Create a new definition iwhich behaves like an existing one. The new definition is in the
owning vocabulary and is searched for in the CURRENT wordlist.

4.13 Operating system dependencies

char : constant pathsep \ -- char
The separator between items in a list of paths. This is a colon for Unix-based operating
systems, but varies for others, e.g. a semi-colon is used in Windows.

.NextToken \ -
Display the next token in the input stream.

: terminali/o (--)
Use the same output device as when the code was compiled. Be careful!

smy.s C ... —— ...)
A horizontal display version of .s.

(*7) (in line source --)
Display the source location using terminali/o.

o -=)
Compile code so that the source location is displayed at run time.
["7] \ -

Display the current source location.

Index

e

%o

Index

I PP 31
%1ib%/ndp387 . fth. . .o 29
2 33
() 36
& 30
*/modf ... 30
o PP 34
25 33
tmodule i 36
SO 34
2 T 7 34
“MOdULE ... 36
nexttokRen...........iiiii 36
2 30
/modf 30
2 25, 26, 34, 36
S 26
K e 33
D e 33

-~

37
>0 it 24
=5 5 A 32
OF o 31
[+loop] .o 35
[?d0] .. 35
[0 26
R 36
[dod .. o 35
[for] ... 35
I 35
[ifdef] .ot 35
[ifundef] i 35
[Toopl o 35
[mext] ... 35
PP 23
N et 32
\needs ... 34
| 30
P 36
Ol 34
0K et e 33
O ot 33
(011 PP 30
OMAn. oo 30
0place ..o 34
B 30
Bk 30
Baligned..........cooiiiiiiiiiiiii 32

buffer: 36
bye:. 35

disposhandle.............

Minos and Theseus

gethandlesize, 32
BOLO . ottt 26
handle! 32
handleofft 32
hloCK. .o 32
oW oot 24
hunlocCK . ..ot 32
Y 33
Andt. . 25
initpme ... 36
Ath. . 33
1inK . . 26
1ast> . 33
I e e e e 26
M/MOA. .ttt 30
ML . 35
mainchain............ i 35
makeexport.................i 36
MASTETS « vttt ettt it e 31
MEMOTY .+ vttt vttt 31
method ...t 24
method# i 25
1 30
minosmode?ottt 29
modf 30
mpe-float.......... il 29
2= T 36
4= P 25
new] .. 25
newfix ... 31
newhandle............ccoiiiiiiii 31
newlinkt 25
TLEWIMP .« . ettt 31
NEeWPET ... 31
= e T 25
O it 24
00 . 23
object 25
onlyforth.................... 34
OO =EYPES « .ttt 23
OV T2 . o ettt et e et e et e e s 34

Index 39

pPatch. ... 33 TOLOWET .« ottt 34
perform...... 34 B 0SS ittt 33
Pin....oooiiiiii 32 toupper ... 34
| S R R 36 trace’ ...l 27
PET o 25, 26
public: 26
Push....... . i 33 U
R U= et e e e 33
randomo 39 UA/MOA ..t 30
TATOD . oottt 33
FECUTrSIVe ..ottt 34 V
S VAT ottt e e 24, 25
VW e ettt e e 27
safe/string......... ool 34
=T 2P 27
Seed. ... 32 W
self ... 26
SEthANALe . .o vooeee 32 Wl e 31
sethandleSiZe . ..o 32 WOH . e 31
SAZE . i 25 walkmainchain.............. 35
StAtLIC oo ot 24 wextend ... 31
SUPET . .t 26 widowner 36
withchain: 35
WOXAS . oottt ettt 26
T WX . e 31

40

Minos and Theseus

	Licensing and other matters
	Copyright
	License terms
	Default terms
	VFX Forth

	LGPL exemption, support and upgrades

	Theseus GUI designer
	Introducing Theseus
	Compiling Minos and Theseus
	Launching Theseus
	Calculator example
	Concepts for menus
	Menu example
	Top level menu
	Adding second level menus
	Reviewing the design
	Making it pretty

	Adding a menu without a panel
	Navigating Theseus
	At the top
	Editing modes
	Dialog editor
	Box creator
	Box inspector
	Object inspector

	Adding actions

	BerndOOF Object Oriented Forth
	What is Object Oriented Programming?
	The Class Concept
	Binding: Late or Early?
	Objects as Instance Variables
	Tools and Application Examples

	The Complete BerndOOF Description
	Formal Syntax
	Porting the OOP packages

	Portability layer for VFX Forth
	Blocks
	Floating point
	Floored division
	Miscellaneous math
	Headerless words
	Memory access with address increment
	Memory allocation
	Overrides
	Miscellaneous tools
	Interpretive structures
	Application startup chains
	MODULE from bigFORTH
	Operating system dependencies

	Index

