
FORTH INTEREST GROUP I 1 ' I I I P.0.B0x1105

7 San Carlos, CA 94070

Volume Ill
Number 6
Price: $2.50

IMSlOE

1 68 Letters

170 Technotes

174 Techniques Jou . Execution Vectors
Henry Laxon

1 75 Charles Moore's BASIC
Compiler Revisited
M i chael Perry

180 8080 Assembler
John Cassady

182 Skewed Sectors for CP/M
Roger D. Knapp

1 86 Graphic Graphics
Bob Gotsch

187 Cases Continued

195 FORTH Standard Team Meeting

196 1982 Rochester Conference

FROM ?HE EDITOR

FORTH OlmE~SlCINS

Published by For th Interest Group

Volume I11 No. 6

Publisher
Editor

Edi tor ia l Review Board

B i l l Ragsdale
Dave Boulton
K i m Harr is
John James
Dave Kilbridge
Henry Laxen
George Maverick
Bob Smith
John Bumgarner
Gary Feierbach
Bob Berkey

Hi! I'm happy to say that starting wi th this issue, I'll be
serving as regular editor o f FORTH Dimensions. I'd l ike t o thank
Car l Street, the previous editor, who has been a great help to me
during the transition. Ca r l has made several important contribu-
tions to FORTH Dimensions, such as the writer's k i t fo r helping
you submit articles. Car l w i l l rejoin FORTH Dimensions as our

March/Apr i l 1982 advertising director beginning later this year.

Roy C. Martens I'd also l ike to thank Roy Martens, the publisher, for sug-
Leo Brodie gesting that I take the editor's post, and fo r teaching me some o f

the facts o f l i fe i n magazine publication.

FORTH DIMENSIONS solicits edi tor ia l material, comments
and letters. No responsibility is assumed fo r accuracy o f mater ia l
submitted. MOST MATERIAL PUBLISHED BY THE FORTH
INTEREST GROUP IS IN THE PUBLIC DOMAIN. Information i n
FORTH DIMENSIONS may be reproduced w i th credi t given t o the
author and the For th Interest Group.

Subscription to FORTH DIMENSIONS is free wi th membership
i n the For th Interest Group a t $15.00 per year ($27.00 foreign
air). For membership, change o f address and/or to submit
material, the address is:

For th Interest Group
P.O. Box 1105
San Carlos, C A 94070

MSTORICAL PERSPECTIVE

I hope to make this magazine as useful as possible t o the
greatest number o f people. Since most o f our readers are s t i l l
learning FORTH a t one level or another, I intend to encourage the
publication o f tutorials (such as Henry Laxen's excellent series
which continues wi th this issue), application stories (sure, FORTH
is fun, bu t let's show the world what we can wi th it!), examples
of well-written FORTH code (the best way to learn style is by
reailing elegant examples), and any ideas, discoveries, impressions
or feelings you care t o express i th is is your magazine, a f te r all!).

In short, we'll be concentrating on how to use FORTH in
solving problems.

By contrast, system implementation details are more the
responsibility o f the individual vendors' documentation. I n
addition, the FORTH community boasts two organizations
devoted to improving and extending the language: the Standards
Team and the FORTH Modification Laboratory (FORML). Each
o f these groups convenes annually, and the proceedings of these
conventions (available through FIG) are extremely valuable docu-
ments fo r the advanced study o f FORTH.

I'm looking to each o f you to help make this the kind o f
magazine you want it to be, by contributing articles, examples,
and letters. We don't have a staf f of writers, so everything we
pr in t comes f rom you. (I f you want to contribute but don't know
what or how, drop me a line. I'll send you the information k i t that
Car l put together, and answer any questions you may have.)

I hope you enjoy FORTH Dimensions. And remember, I hope
to hear f rom a l l o f you.

FORTH was created by Mr. Charles H. Moore i n 1969 a t the Leo Brodie
Nat ional Radio Astronomy Observatory, Charlottesville, VA. It
was created out o f dissatisfaction w i th available programming
tools, especially fo r observatory automation.

Mr. Moore and several associates formed FORTH, Inc. i n 1973
fo the purpose o f licensing and support o f the FORTH Operating
System and Programming Language, and to supply application
programming to meet customers' unique requirements.

The For th Interest Group is centered in Northern California.
Our membership is over 3,500 worldwide. It was formed i n 1978
by FORTH programmers t o encourage use o f the language by the
interchange o f ideas through seminars and publications.

Although the FORTH Interest Group specifies a l l i t s publica-
tions are non-copyright (public domain), several exceptions
exist. As a mat ter of record, we would l ike to note that the
copyright has been retained on the 6809 Assembly l ist ing by
Talbott Microsystems and the Alpha-Micro Assembly l ist ing by
Robert Berkey. Several conference papers have had copyright
reserved. The general statement by FIG cannot be taken an
absolute, where the author states otherwise.

The 79-Standard has been voted on and adopted to serve as a
common denominator for transportable FORTH code and for
future discussion of FORTH systems. Beginning wi th the next
issue, FORTH DIMENSIONS w i l l give preference to articles that
adopt the 79-Standard

Listings which us? words that are not 79-Standard are
welcome, but if possible explain such words i n a br ie f glossary
w i th a note tha t they are not 79-Standard. For instance, i f your
application addresses the name field of a definit ion (which is
i l legal in the Standard), you should supply a glossary description
o f NFA.

I f possible, also include the definit ion o f such a word. High
level source is preferred, but i f necessary, the definit ion may be
wr i t ten i n assembler.

We hope this policy w i l l encourage unification, eliminate
ambiguity, and simplify explanations.

Page 167 FORTH DIMENSIONS 11116

F O R M Application Library

Dear fig,

As distributors i n the U K for FORTH
Inc., w i th a rapidly growing customer
base, we are potentially interested i n any
application software that is generally
useful.

Most o f our customers are i n the pro-
cess control/industrial/scientific sectors
which, by their nature, require fairly spe-
cialized and customized software. Never-
theless, we are sure there are many areas
o f commonly useful software and that
such software would be useful even i f only
as a starting point or guideline, i n order to
avoid too much reinvention o f the wheel!

Such software might be offered as free
and unsupported, a t media cost, or as a
chargeable product. Whichever way, it
needs to have a t least some documenta-
tion, (i.e., overview and glossary) but it
does not have t o be a professional pack-
age.

We have an in i t ia l enquiry f rom a user
who needs a 3-term controller program for
servo control, and some process mathe-
matics for numerical f i l tering and linear
conversion. As he said to us, "surely
someone has done this before and writt.eri
it up enough to be useful?". So can you
help? I f you're offering something free,
perhaps we can do a trade for something
you would like.

I f people are interested in application
exchanging we would be happy to act as a
'node' for making contacts. And where
someone has some software that has a
marketable value, we are interested in
helping to create and promote viable
packages. We'll not make any f i rmer plans
or suggestions unt i l we hear f rom you!

Nic Vine
Director
COMSOL
Treway House
Hanworth Lane
Chertsey, Surrey KT16 9LA

Benchmark Battles

Dear Fig:

I believe that the primary considera-
t ion of an implementation be fluency o f
use, and not speed or size except when
specific problems arise. But a f ter reading
the "Product Review" in FORTH Dimen-
sions IIII1, page 11 and seeing some
benchmarks, I couldn't resist trying the
same on my own home-brew implementa-
tion: 4mHz 2-80, 5-100 bus (one wait
state on a l l memory ref's). These are the
results I got, plus another column correct-
ing for my slower clock (but not for the

LETTERS
wait state). I guess I designed for speed.

Just want to stick up for the 01' 2-80.
I f other people can brag about how com-
pact their implementations are, can't I
brag about how fast mine is?

Timin Duncan
LOOPTEST 2 -3 2.9
-TEST 5.9 7.4
*TEST 44 .O 54.9
/TEST 74.3 88.6

Bonadio
LOOPTEST 1.7
-TEST 6.8
*TEST 17.5
/TEST 29.4

Note -

A l l times i n seconds. Each test involves
32767 iterations.

No, I don't use any special hardware.
Just the normal 2-00 instruction set. That
mulitply threw me of f when I f i rs t t imed
it, but the cycles add up about right. I
just can't figure out why everyone e!se is
so slow.

I don't have mass storage. That's why I
skipped the last two benchmarks. I store
everything in EPROMs. Much faster than
those clumsy mechanical devices.

Allan Bonadio
1521 Acton St.
Berkeley, C A 94702

Editor's Note:

Here is the code for the benchmarks
published in Volume 111, No. 1:

: LOOPTEST
7FFF 0 DO LOOP ;

: -TEST
7FFF 0 DO I DUP - DROP LOOP ;

: *TEST
7FFF O DO I DUP * DROP LOOP ;

: /TEST
7FFF 0 0 0 7FFF I / DROP LOOP;

TO 1 ~ 1 1 or not ti 'G"
Dear Fig,

I would l ike to comment on the "Start-
ing FORTH Editor." The "Mu command is
bad for reasons o f safety and philosophy.
It takes a line from the current screen,
and puts it "out there" somewhere. I f it
goes to the wrong place (these things hap-
pen), good luck finding it.

A far better alternative is the inverse
command, which I cal l "G" for "get." G
takes the same parameters as M (block/
line-) and gets a line onto the current
screen. I believe that only the screen

being edited should change. M violates
this rule, G does not.

One further point: (1: inserts the new
line the current line, not under it. This
allows you t.o alter line 0, which M cannot.

The next extension is BRING , which
gets several lines. I t takes (block/line/
count-). I find G and BRING extremely
useful. Comments are solicited.

Mike Perry

I agree! G is more satisfying from the
user's point o f view. With M, I find myself
checking back and forth between the
source and destination blocks repeatedly.

The problem of copying a line onto line
zero with "M" reminds me of the same
problem one has wi th "U" (also i n the
"Starting FORTH" editor). I'd like to point
out a simple way to "push" a line onto line
zero, moving the current line zero and
every thing else down:

0 T U This w i l l be the new line zero
O T X U

The second phrase swaps lines zero and
one.--ed.

FORTH in i t s Own Write

Dear Fig,

The two paragraphs below appeared in
an article i n BYTE Magazine on pg. 109 of
the August 1980 issue. When it f i rst
appeared, I agreed wi th what it was saying
but did not feel the need to point i t out to
others. Now, however, I think that it's
t ime to remind a l l of us abollt FORTH and
what it isn't. Clearly i t isn't any other
language.

The most important c r i t i c is~n of
FORTH is that its source pro-
grams are d i f f i cu l t to read.
Sorne of this impression results
f rom unfamiliarity with a lan-
guage different f rom others in
common use. However, much of
it results from its historical
development i n systems work and
in read-only-memory-based
machine control, where very
t ight programming that sacrifices
clar i ty for memory economy can
be justified. Today's trend is
strongly toward adequate com-
menting and design for readabil-
i ty.

FORTH benefits most f rom a
new, different programming
style; techniques blindly carried
over f rom other environments
can produce cumbersome P ~ S U I C S .

FORTH DIMENSIONS 11116 Page 168

It s t i l l eludes me as to why people
insist on building things into FORTH which
are "importstt f r om other language struc-
tures and that in most places do not have
any logical place in FORTH. Surely they
would not be used by a good FORTH pro-
grammer. Take as a simple example spac-
ings. FORTH does not impose indentation
or s t r ic t spacing requirements as do some
other constructs, sa why do people insist
on indenting? I disagree that this contri-
butes to the readabiiity o f the language as
FORTH is one o f the most terse con-
structs i n existence. One might say that a
first at tempt to improve the readability o f
FORTH should center around removing the
cryptological do-dads that are used. For
instance, should be renamed
"FETCH'. Likewise, " ! " should be re-
named 'ISTORP' and "." changed t o
"PRINT".

Obviously this is absurd and so is the
notion o f indentation and other pseudo
spacing requirements that some say con-
tr ibute to "good programming style."
Good programming style is writ ing clear,
concise, fast code that does simple things
and then using that and other code to
construct more complex definitions. This
is the premise upon which FORTH was
based. I have seen readable code that was
sloppily written, too b ig for the job that it
attempted to accomplish and in a single
word was abominable. However, it
"looked neat and clean."

When the FORTH 79 standard was
released I applauded. We are a l l aware of
the small ambiguities and possible defi-
ciencies i n the standard. However, the
standards team must be commended mere-
l y because they exist and they a t least
attempted t o create a standard o f some
kind. Why then don't people wri te i n stan-
dard code? It aggravates me to see code
i n your journal prefixed or post-addended
by a phrase similar to "all you need to do
to bring this code up to the standard
is..." Why not wr i te standard code i n the
f i rst place?

This le t ter is purposely provocative
and I sincerely hope that you decide to
publish it. Through it I hope t o force a re-
evaluation o f the way some individuals
look a t FORTH. Some o f us s t i l l think
that FORTH is elegant because o f i ts
simplicity. It is unfortunate that many
refuse to see FORTH as the beautiful
language that it is, but see it only as
another language that they'd l ike to
resemble.

J.T. Currie, Jr.
Virginia Polytechnic Institute
Blacksburg, VA 24061

Well-expressed, on both points! Regarding
the use o f the 79-Standard, see our "New
Policy" a t the front o f this issue.--ed.

Minnesota Chapter

Dear fig,

Greetings froin the Frozen Wasteland!

This let ter is to inform you o f the
formation o f a Minnesota chapter o f the
FORTH Interest Group. We have had two
meetings so far, wi th attendances of
twelve and sixteen respectively. We plan
t o be meeting once a mcnth. Anyone who
is interested should get i n contact wi th us
f i rs t a t the above address.

We hope to start some kind o f news-
le t ter i n the near future. I've heard that
it's possible to get copies o f program list-
ings and other handouts which have
appeared s t Northern California meet-
ings. Could you please l e t us know how we
go about gett ing copies? I have enclosed a
SASE for you to respond.

One o f our members is running a Con-
ference Tree (a Flagship for The Commui-
Tree Group) which we hope to use for
interchange o f ideas, programs, etc. out-
side the general rneetlng, and to comple-
ment the newsletter. The phone number
for that Tree is (612) 227-0307. The
FORTH branch is very sparse r ight now,
however, since we are just getting o f f the
ground.

We are also contacting local computer
groups about jointly sponsoring FORTH
tutorials for specific machines, and pro-
viding a public-domain, turn-key FORTH
system that w i l l turn on their machines.
We currently have such software for the
Apple I!, SYM-1, are close on an Osborne-
1, close on an OSI, and are seeking out a
TRS-80 version.

Well, that's our plans for the next few
months. We would appreciate your cur-
rent mailing l ist o f Minnesota residents
(55xxx and 56xxx zip codes, I believe).

Hope to hear f rom you soon!

Mark Abbott
Fred Olson
Co-founders o f MNf ig

Happy to hear about your new
chapter! Your mail ing l ist is on i ts way.
And yes, handouts f rom the Northern Cali-
fornia Chapter meetings are available.
Here's how to obtain them:

John Cassady o f the Northern Cali-
fornia chapter has agreed to serve as a
clearinghouse. The Secretary o f any FIG
Chapter can mail, each month, handouts
f rom his own Chapter's meetings t o Mr.
Cassady. I n return, John w i l l send back
one set o f a l l handouts he receives each
month, including those from the Northern
California meetings. Even i f a local
Chapter has no handouts, the Secretary
must sent a t least a postcard to indicate
the Chapter's continued interest. The

local Chapter's Secretary w i l l make the
necessary copies to distribute to members
o f that Chapter.

So, let's see those handouts f rom a l l
the Chapters! Write to:

John Cassady
339 15th Street
Oakland, C A 94612

Brain-System

Dear fig,

The special FORTH issue o f Dr. Dobb's
Journal made a deep impression on me and
on my son. My son is since 1 2 years a
system programmer and knows more than
a dozen computer programming lan-
guages. I am a logician and engineer, code
designer and the developer o f the only
existing proto-model of Interdisciplinary
Unif ied Science and i ts computer-
compatible language, the UNICODE.

Thus, I represent a radically different
path o f scientif ic development--disre-
garded by many because it does not
promise immediate financial returns.

My approach is centered on a new and
far more encompassing system-idea o f the
temporary name 'brain-system" having a
physical-hetero-categorical genetically
ordered sequence o f models o f logic. This
sequence has a specific case for present-
day formal logic and a corresponding sim-
pl i f ied variant o f the system-idea: this is
the system-idea o f the digi ta l computer.

UNICODE is the f i rst specific brain-
system programming language. It is a
content oriented language, it has powerful
semantics and register-techniques. It has
"words" which are a t the same time total
programs for the generation o f the invars
and "content" the term intends t o com-
municate.

I think to study UNICODE w i l l lead to
unsuspected breakthrough i n the develop-
ment o f programming, especially i f think-
ing has been made elastic and modular by
studying FORTH.

I would l ike to receive the private
addresses of a few creative FORTH fans.
In the hope of your early reply, I remain...

Prof. Dipl. Ing. D.L. Szekely
P.O. Box 1364
91013 Jerusalem, Israel
December 1981

Anyone follow that?--ed.

--
Page 169 FORTH DIMENSIONS 11116

TECHNOTES

ENCLOSE Correction
for 6502

'EYCLClSF' PF1K:TIVE FOR G5P2 v:TV 1 6 - 3 : T !%DF';YG Andy Biggs
41, Lode Way

Haddenham
Ely, Cambs
CB6 3UL
England

T t I E ' Y ' P E r ; I S i [- l : 1fiF.M: TI I : L O , ' ? l ' D E ; . Y c
SLACK LOCATIO; : 7.1 .>: ILCPt!S ;''+C ! l I C ! l : Y . ! , E')'Tr
T I E iASL AI!IK.L S I I - i l ~ L D 11; Z l i - r ? . 2!14:: 1; I.L!..C .!.-FECTEC

. C Y T E P U 7 . ' F N 9 L O 5 r '

.htDCC~ L 2 4 3

.',10R@ - + 2

On converting my 6502 fig-FORTH
(V1.l) to work with 256 byte disc sectors, I
discovered (af ter many system hang-ups)
that WFR's 'ENCLOSE' pr imit ive is not
guaranteed to work wi th disc sector sizes
greater than or equal to 256 bytes i n size.

JSR %SETUP
T X A
S E C
s e c n s s
TAX
S l Y 5 3 ,X
S T Y $1 . X ; I N I T I A L I S E A S eEFOCE

; S E T T I N G H I INDE:! = fl
D E Y

In his 'ENCLOSE,' B i l l uses the 6502 Y
register to index through the input tex t
stream, but this register is only 8 bits, so
i f the tex t stream contains a block o f
delimiter characters, e.g., 'space' bigger
than 256, it wi l l loop forever, as I found to
my cost!

IJEC
i!EC
I N Y
BtJE
I N C
I NC
1 DA
CMP
REQ

; P R I M E THESE V f i l . l h B L E S FOP, LOO?
L 3 1 3

XXX 1

: I N C R E M E N T H I ADDF.ESS
A i i D l i l I N D E X

; G E T C H A F A C l ER t R O M I r i P U T S I Z E A M
: I S I T D E - I M I T E R ?
; LOOP I F TRUE

S T Y
L DA
S T A

~ 3 i a LDA
O N F:

S T Y

; PIOII-DCL I M I T T R 1.0 PUT F I R S T
: PESIJLT ON T-IE S T A C K When wi l l this occur? Never f rom the

terminal input buffer, which is only 80
characters long. ; GET C H A E A C i i R !.GAIN

; CRA!vCH I F !1'3T :. I I U L L

With a disc sector size o f 256 or
bigger, i f you have an entire sector of
spaces in a load screen, then the load wi l l
hang up on this chunk o f spaces.

or...
I f your sector size is bigger than 256, then
any chunk of spaces 256 or bigger w i l l
hang it.

S T Y
I DA
STA

; T I D Y UP R E S J L T S FOP. ' X U L L ' E X I T

; I F F I R S T AFi3 L A S T I N D E X E S ARE EQUAL

THEN

I # C R E H E N T TH:S R E S U L T
BNE
I NC

L 3 2 6 JI4P

~ 3 5 6
$3 . X
NEXT I encountered this because I decided to

emulate John James' method used on the
PDP-11 version, where 'R/W' handles 1 K
every time, so as far as BLOCK, BUFFER,
and ENCLOSE are concerned, the disc
block is 1024 bytes, and compiling hung up
on any tex t gap bigger than 256 bytes!

: S A V E CHARACTER L 3 2 7 PHA
S T Y
L D A Z1 ; X
S T A S 3 . X
I N V

SAVE 7 U K P E N T I N ? F X A9 P F F S E T TO
F I R S T D E L I I ~ I I T E R A F T 1 !: T E X T

BNE X X X 5
I N C S 1 . X
I N C BN+3

X X X 5 F L A

; I N C R E M E N T I V O i X
: AND H I A D D P c S S
: RECO'VER CHI.s, lCTEF

Anyway, I ENCLOSE (ha ha) a revised
version o f the ENCLOSE pr imit ive which I
am now using, which has fu l l 16 b i t index-
ing. I'm sure some assembly language
programmer could produce a neater ver-
sion, but a t least I know that this one
works. CIGP $14

BNE 1.318
S T Y SB,X
JMP R E X T

; I F l<OT D E L I ? < ? T F P
: THE14 LOO'
; E L S E E X 1 T

Keep up the good work.

By the way, I'm wil l ing to act as a f ig
software exchange/library i n the UK,
unless there is someone already doing i t ?

FORTH DIMENSIONS 11116 Page 1.70

TRANSlENT DEFINITIONS
Phil l ip Wasson

Editor's Note: This article appeared in
the last issue, but, unfortunately, without
the source code. Here is the article as it
should have appeared. Our apologies.

These ut i l i i tes allow you to have tem-
porary definition (such as compiler
words: CASE, OF ENDOF, ENDCASE,
GODO, etc.) i n the dictionary during
compilation and then remove them af ter
compilation. The word TRANSIENT
moves the dictionary pointer to the
"transient area" which must be above the
end o f the current dictionary. The tem-
porary definitions are then compiled into
this area. Next, the word PERMANENT
restores the dictionary to i ts normal
location. Now the application program is
compiled and the temporary definitions
are removed with the word DISPOSE.
DISPOSE w i l l take a few seconds because
it goes through every link (including vo-
cabulary links) and patches them to bypass
a l l words above the dictionary pointer.

NOTE: These words are wri t ten in
MicroMotion's FORTH-79 but some
non-79-Standard words are used. The
non-Standard words have the fig-
FORTH definitions.

FIRST 1000 - CONSTANT TAREA (Transient aPPa address)
VARIABLE TP TAI?EA TP ! (Transient ~ointer)
: TRANSIENT (--- ADDH)

HERE TP 3 KIP ! ;
: PERMANENT (ADI'K)

HERE TP ! DP ! ;
: DISPOSE (---)

TAREA TP ! VOC-LINK
BEGIN DUP
BEGIN 12 DUP TAHEA U(UNTIL DUP ROT ! DUP O=
UNTIL DROP VOC-LINK @
BEGIN UUP 4 -
BEGIN DUP
BEGIN FFA LFA Q DUP TAREA U(
UNTII. DUP ROT PFA L.FA ! UUF O=
UNTIL DROP @ DUP O=
UNTIL DROP LCOMPILE FORTH DEFINITIONS ;

(Examp) e)
TRANS I ENT
: CASE 1 . 1 ;
: OF *.. :
: ENfICIF + 3 ;
: ENDCASE 1 * * ;
PERMANENT
: DEMOi . CASE

+ , , OF t r + ENDOF
I e , €IF + , t ENDOF

ENDCASE :

TRANS I ENT
: EQlJATE (N - - -)

CREATE t IMMEDIATE
DOFS) @ STATE @
IF CCOMPILE LITERAL THEN ;

7 ERCIATE SOME-LONG- WORD- NAME
FERMANENT
: DEMO2 (SOME-LONG-WORD-NAME i s c ~ r i ~ ~ i 1 cd)

SOME-LONG.-WORD-NAME . ; (as a literal)

L) I SPCISE (Removes the uol-ds EQUATEr SOME-LONG-WORD-NANEt 1
(CAS1:p OFr ENUOFt and ENUCASE from the)

(d i c t iondry.)

DEMO? 7 OK (Test DEMO21 i t prints a seven*)

RENEW TODAY!

Page 171 FORTH DIMENSIONS 11116

NOVA bugs

John K. Gotwals
Computer Technology Department

South Campus Courts C
Purdue University

W. Lafayette, IN 47907

I have just finished installing f ig-
FORTH on my NOVA 1200, using the
l ist ing I received from fig. Instead o f
running it standalone, as the f ig l ist ing
does, I run it as a task under RDOS Rev.
5.00.

So far I have found four bugs or omis-
sions i n the listing. They are as follows:

Page 10 o f the l ist ing - EMIT does not
increment OUT.

[COMPILE 1 does not work properly. It
can be fixed by removing CFA, f rom
line 07 on page 42 of the listing.

VOCABULARY does not work proper-
ly. This can be fixed by adding CFA
between AT and COMMA on l ine 53 o f
page 44.

(FLUSH) can not be accessed un t i l a
missing <51> is inserted a f te r FLUSH
on line 13 of page 52.

After installing f ig FORTH, I entered
the CYBOS editor f rom the keyboard and
used this editor to boot the f ig editor
l isted in the installation manual. A f te r
this experience, I am somewhat pessimis-
t i c about FORTH's portabil i ty between
word and byte addressing machines. I had
to make quite a few changes before the
f ig editor would run. Some examples:

BLANKS expects a word address and
word count.

COUNT expects a word address and
returns a byte address.

HOLD and PAD both return word
addresses.

I f any RDOS NOVA users would l i ke a
copy of my "fig-FORTH," they should feel
free t o contact me.

RENEW NOW!

RENEW TODAY!

FORTH Standards Corner

Robert L. Smith

DO, LOOP, and +LOOP -

There have been some complaints
about the way that +LOOP is defined in
the FORTH-79 Standard. The f i rs t
obvious problem is that the Standard does
not define the action to be taken when the
increment n is equal t o zero. Presumably
tha t was either an oversight, or a typogra-
phical error. The most l ikely correction is
to t reat the n=O case the same as n>O,
since the ar i thmet ic is defined to be two's
complement, and for that arithmetic, the
sign o f 0 may be considered to be posi-
tive. I am aware o f other possibilities, bu t
they seem to be fair ly d i f f i cu l t to imple-
ment or explain.

The second point that is mentioned is
that the parameter range seems to have a
strange asymmetry. When a positive in-
crement is used, the DO-LOOP index I
may not reach the specified l imit. How-
ever when a negative increment is used,
the index I may be equal to the specified
increment. Users o f f ig-FORTH systems
have pointed out that the f ig +LOOP is
symmetric in the sense that for either
negative or positive increments the l im i t
value is never reached. One may consider
that the Standard version terminates when
the boundary between the l im i t n and n-1
is crossed, whether the increment is
positive or negative.

Finally it has been noted that the
Standard LOOP and +LOOP depend on
signed arithmetic. Many, but not all,
FORTHs use a modular or circular arith-
met ic on DO-LOOPS, allowing the index I
to direct ly address memory. The use of I
to address memory in a Standard LOOP
may result in a non-transportable program
unless a certain amount o f care is taken.
The Standard version is easier to define
than one involving circular arithmetic.
Note also that the Standard version allows
approximately twice the ranqe o f most
circular loops (such as in fig-FORTH).

The best suggestions for new looping
methods can be found in a paper given by
Robert Berkey a t the recent FORML
Conference. The paper is entit led "A
Generalized FORTH Looping Structure." I
recommend that readers interested in the
topic get a copy of this paper and imple-
ment his suggested words. I wqould Like to
slightly modify his results for the current
discussion. Rerkey essentially shows a
technique for looping in which the incre-
merit for +LOOP may alternate between
positive and negative values without
necessarily terminatinq the loop. Modular
arithmetic is used so that either signed or
unsigned use of the index I may be
employed. The increment rnay be any
value. The terminating condition is when

the boundary between n and n-1 (actually
n + l i n Berkey's paper) is crossed dynami-
cally. The implementation appears t o be
even more ef f ic ient than that described by
Brodie and Sanderson ("Division, Rela-
tions, and Loops," Rochester Conference,
1981). The only apparent disadvantage o f
the implementation is that the index is
computed by addition or subtraction. A
novel feature of Berkey's implementation
is that when the word LEAVE is executed,
the loop is terminated at that point (i.e.,
LEAVE actually leaves). Berkey also
suggests that for normal positive
incrementing loops that the index range
should include the upper l imit, in a manner
more consistent wi th other languages as
wei l as typical use in the fig-FORTH
INDEX. Finally, he suggests a construct
so that a loop may be skipped entirely i f a
counting parameter is zero.

The work discussed above is o f poten-
t i a l interest t o future directions in
FORTH. It shows that FORTH is s t i l l
evolving, even though i t cannot e f fec t the
current Standard.

Position Wanted

I am looking for a software engineering
position wi th another company that uses
FORTH. I would l ike to work for a f i rm
using FORTH t o develop state-of-the-art
systems software; specifically, a FORTH-
based development and oeprating system
environment t o compete head on w i th
UNIX.

Brent Hoffman
13533 37th N.E.
Seattle, WA 98125
(206) 363-0642

FORTH DIMENSIONS 11116 Paqe 172

A TECHNIQUES TUTORIAL: EXECUTION VECTORS
Henry Laxen

Laxen & Harris Inc.
24301 Southland Drive
Hayward, C A 94545

This month, we continue our explora- however, control characters w i l l succeed D IE is used to send an error message to
t ion o f FORTH programming techniques and w i l l be incremented by 64, making the termina! and reset the FORTH system
by taking a look a t a concept known as them displayable. into a clean state. EXECUTE: is a defin-
Execution Vectors. This is really a fancy ing word which init ial izes itself to DIE,
name for very sirnple concept, namely There are several other FORTH words but hopefully w i l l be changed later by the
using a variable to hold a pointer to a that have proven useful to vector. Some user. Words defined wi th EXECUTE: can
routine that is to be executed later. o f these include: be changed with IS as follows:

It is only fair to warn you that the KEY input from keyboard pr imit ive
dialect of F ~ R T H that I a; using is the
one discussed in Startino FORTH by Leo CREATE change header structures

Brodie. It has several differences f rom LOAD useful for many ut i l i t ies
figFORTH, not the least o f which is the
fac t that in f igFORTH EXECUTE operates
on code f ie ld addresses (cfa's), while i n
Starting FORTH EXECUTE operates on
parameter f ie ld addresses (pfa's). This
may not seem like a b ig deal, bu t i f you
have ever fed EXECUTE a p fa when it was
expecting a cfa, you have undoubtedly
remembered the result. Anyway, my
EXECUTE uses pfa's. I ts function is to
perform or EXECUTE the word that this
p fa points to. An example w i l l clear this
up. Suppose we have the following:

: GREET ." HELLO, HOW ARE YOU" ;
' GREET (LEAVE THE PFA OF

GREET ON THE STACK)
EXECUTE (AND NOW PERFORM I T)

the result is:

HELLO, HOW ARE YOU

which is the same result as just typing
GREET.

The above may not seem too signifi-
cant, but the imp!ications are tremen-
dous. Consider the following examples:

VARIABLE 'EMIT

: EMIT (CHAR ---)
'EMIT 2 EXECUTE ;

(EMIT) 'EMIT !

I assume that (EMIT) is a routine which
takes a character f rom the stack and
sends it to the terminal. By defining EMIT
to use 'EMIT as an execution vector, we
now have the abil i ty to redirect the output
of FORTH in any manner we choose. For
example, suppose we want a l l control
characters that are sent to the screen t o
be prefixed wi th a caret. We could do the
following:

R/W disk i /o pr imit ive

For example, i f LOAD were vectored,
then by redefining it to pr in t a screen
instead o f loading it, you could wr i te a
pr in t u t i l i t y which prints screens i n load
order by LOADinq a load screen and rede-
f ining LOAD t o print. CREATE could be
changed to add the screen number o f each
definit ion to the dictionary header so that
it could later be retrieved with VIEW or
the equivalent. KEY may be changed to
get i ts characters f rom a f i le somewhere
instead o f the keyboard. In short, there
are a thousand and one uses for Execution
Vectors.

But be careful, I may have opened
Panaora's box wi th the above selling job.
There is a price to be paid for execution
vectors, and that is complexity, the arch-
enemy o f rel iabil i ty. Every word that you
decide to vector a t least doubles the corn-
plexity o f the FORTH system you are
running, since it introduces a t least two or
more states that the system can be in.
You must now also know what the version
is o f each execution vector you are
using. I f you have 3 di f ferent EMITS and 2
di f ferent KEYS and 3 different LOADS,
you have a to ta l o f 18 different states
that the system can be i n just on these
vectors alone. So use vectors sparingly,
otherwise you w i l l lose contro! o f the
complexity very very quickly.

Having decided to use execution vec-
tors, we're now faced wi th di f ferent
approaches towards implementing them.
The one described above works, and is
used by many people, bu t it has one unfor-
tunate property, namely the need to name
a variable which is basically overhead.
Here is another way to accomplish the
same thing without having to define a
variable. Consider the following:

: DIE (---)

: CONTROL-EMIT I CHAR --- 1 ABORT' THIS WOULD HAVE CRASHED!" ;
DUP 32 (BLANK) < IF I Control Char?)

94 () (EMIT) (Y e s , emit an) : EXECUTE:
44 (ASCII A - 1 + (and convert it) CREATE (--- 1

THEN L ' 1 DIE ,
(EMIT) ; DOES> (---)

a EXECUTE ;
CONTROL-EMIT 'ENIT !

: IS (PFC\ ---
' ! i

Now al l regular characters w i l l f a i l the
test, since they w i l l be larger than blanks;

EXECUTE: EMIT

(EMIT) IS EMIT (or perhaps)
' CONTROL-EMIT IS EMIT

What EXECUTE: has done is combined
the variable name with the Execution
Vector name into one name. IS is used as
a convenience, so that the user can forget
the internal structure o f vrords defined by
EXECUTE:. Also it provides an extremely
readable way of redefining Execution
Vectors. Not ice that as defined, IS may
only be used during interpretation. I leave
it as an exercise for the reader to define
an IS that may be compiled within : defini-
tions.

Another approach to redefining execu-
t ion vectors is v ia the word ASSIGN. It
could be defined as follows:

: (ASSIGN) (CFFi --- ;
R> 2* SWAP ! ;

: ASSIGN (---)

COMPILE (ASSIGN)
c ' : CFA a i LIlfiRFiL, ; InMEDl6lc

It would be used as follows:

: UPPER-ONLY < ---)

(' 3 EMIT ASSIGN
DUP 96 1 flSCIi a-1) > IF

DUP 123 (ASCII 2+1) < IF
32 -

THEN
THEN
tEnli1 (AS ALWAYS 2 i

When UPPER-ONLY is executed, EMIT
is redefined to execute the code following
the ASSIGN, which w i l l convert a l l lower
case characters to upper case, and send
them t o the terminal. Note tha t unlike IS,
ASSIGN may only be used within : defini-
tions.

That's a l l for now, good luck, and may
the FORTH be wi th you.

FORTH DIMENSIONS 11116 Page 174

CHARLES MOORE'S BASIC COMPILER REVISITED

In this paper I wil l discuss several
interesting features of the "BASIC
Compiler in FORTH" by Charles Moore
(1981 FORML Proceedings).

Why is a BASIC compiler interesting?
There are a number of reasons. Foremost
of them is that BASIC is in many ways
typical of a variety of popular languages,
particularly FORTRAN, PASCAL, and
ADA. Conspicuous features of these lan-
guages are algebraic notation, lack of
access to the underlying hardware, poor
input and output facilities, and non-exten-
sibility. FORTRAN and BASIC also suffer
from poor structuring due to the extensive
use of GOTO. These languages all tend to
be best a t solving equations. Other prom-
inent features of BAS!C ere it s use of
statement numbers as labels, low speed,
and its use of a few complicated functions
(e.g., PRINT) rather than many simple
ones.

Why is it slow? BASIC interpreters
usually convert source code statements to
an intermediate form, where keywords
become tokens. The token interpreter is
slow because tokens must be deciphered
(translated into actions) a t run time. This
BASIC to FORTH compiler produces code
which runs unusually fast. This is because
it produces FORTH object code, i.e., se-
quences of addresses o f code routines.

You should look at the example pro-
grams (blocks 80-82) before reading the
text. You wi l l notice that each BASIC
program becomes a FORTH word named
RUN. It is executed by typing its name,
i.e., RUN. This is how BASIC usually
works; you type RUN to execute the
program. It serves to demonstrate that
from FORTH's point of view, BASIC only
knows one "word," RUN. Is it not more
useful and flexible to let routines have any
name, and to be able to execute any of
them by typing its name? Yes, and that is
a key feature of FORTH.

How It Works

I will refrain from commenting on the
intrinsic value of a BASIC compiler; that
has already been covered well i n Moore's
paper. The principal features I wil l dis-
cuss are the handling o f operator prece-
dence, variables in algebraic equations,
and the use of the FORTH compiler. The
most important part of this BASIC com-
piler is i ts ability to convert algebraic
(infix) source code to reverse polish (post-
fix) object code.

Michael Perry

executed during compilation must be
immediate. This use o f the FORTH com-
piler was perhaps my greatest lesson from
studying this BASIC compiler. The ordi-
nary FORTH compiier is far more versa-
t i le than I had realized. I f I had written
this compiler, it would doubtless have run
in the execution state and would have
been far more cotnpliczted as a result.

Let's look at an example. The BASIC
state men t
l O L E T X = A + B
wi l l be compiled into object code equiva-
lent to the FORTH expression
X A @ B @ + S W A P !
where X, A, and B are variables. One of
the variables (X) returns an address, the
rest return values (with a fetch). The add
is compiled after the fetches of the values
to be added. The equals becomes the
" SWAP ! " at the end. Because the source
code (in BASIC) is in algebraic notation,
and the (FORTH) object code is in reverse
polish order, some way is needed to
change the order of operations when com-
piling the BASIC program. The mecha-
nism which controls the compilation order
is based on the idea of operator prece-
dence, which means that some operators
are assigned higher priority than others.

PRECEDENCE

The idea o f operator precedence is a
prominent feature of most computer lan-
guages (FORTH is a notable exception).
Operations are not necessarily performed
in the order you specify. An example will
help. The equation X = 5 + 7 * 2 could
mean either X = (5 + 7) * 2 or X = 5 +
(7 * 21, usually the latter. In FORTH this
would be 7 2 * 5 + X !where the order is
explicit. In algebraic languages some
method is needed to clarify the order of
evaluation of operators in expressions.
That is what precedence does. Each oper-
ation is assigned a precedence level.
Operations with higher precedence are
performed earlier.

During compilation of the BASIC pro-
gram (the FORTH word named RUN) the
compilation o f many words is deferred.
This allows the order of words to differ
between the source code and the object
code. Take '+' as an example. To defer
compilation o f '+' a new word is created
which is immediate (and so executes at
compile time). When this new word is
executed, it leaves the address of '+' on
the stack, and on top i t leaves the prece-
dence value of '+I. The definina word
PRECEI3ENCE creates the new word as

A BASIC Program is compiled inside follows: 2 PRECEDENCE + I' . This
the colon definition of a word named creates a new, immediate word named I+',
RUN- This means that the FORTH systern which wi l l leave the address of the old
is in its compile state, and any words to be word '+I under the value 2.

The word which decides how long to
defer compilation is DEFER. DEFER
looks at two pairs of numbers on the
stack. Each pair consists of an address
and a precedence value. I f the precedence
of the top pair is larger than that of the
lower, DEFER does nothing. I f the top
precedence is less than or equal to the one
below, the address part of the lower pair
is compiled, and i ts precedence is dis-
carded. DEFER wi l l continue to compile
unt i l the upper precedence is larger than
the lower.

So how do you get started? Essen-
tially, most BASIC keywords (such as LET)
execute START wqhich leaves 'NOTHING
0 on the stack, where 'NOTHING is the
address of a do nothing routine and 0 is i ts
precedence. This pair wi l l remain on the
stack during the compilation of that
statement, because everything has higher
than zero precedence.

A t the end of each line, RPN is execut
ed. It performs a 0 1 DEFER, which
forces the compilation of any deferred
words, because every operator has a pre-
cedence of a t least 1. RPN then consumes
the 0 and executes NOTHING. Actually,
each statement is ended by the start of
the next. BASIC keywords such as LET
execute STATEMENT, which contains
RPN (to finish the previous statement) and
START (to begin the next).

BRANCHING

Three new branching primitives are
used. They are compiled by various higher
level words. JUMP is used by GOTO.
SKIP and JUMP are used by IF-THEN.
JUMP is compiled followed by an absolute
address. When executed it simply loads
that address into the IF' (virtual machine
instruction pointer). When SKIP executes,
it takes a boolean of f the stack. I f true i t
adds 4 to the IP, skipping (usually) the
following JUMP.

(NEXT) is used for FOR-NEXT loops.
It is compiled followed by an absolute
address. When executed it takes three
parameters from the stack: final value of
the loop index, step size, and the address
of the variable coriLaining the current
value of the loop index. It adds the step
(plus or minus) to the variable, and loops
unt i l the index passes the limit.

Adding GOSUB would require another
branchiny; primitive, CALL.

Page 175 FORTH DIMENSIONS 11116

STATEMENT NUMBERS

Each BASIC statement must be pre-
ceded by a number. This number acts as a
label, al lowing branches between lines. I n
this compiler, the numerical value o f the
labels does not a f fec t execution order.
When a statement number is encountered,
i t is compiled in line as a literal. The
address o f L IT is compiled followed by the
l i teral value 10. For example, when the
statment "10 REM" is encountered, 10 is
compiled as a literal. The keyword REM
is immediate, and so is executed. It
begins by executing STATEMENT, which,
amongst other things, fetches the vaiue o f
the line number just compiled (101, and
enters it into the statement number table
(#S) along w i t h the address (HERE) o f the
star t o f that statement. STATEMENT
then de-allocates the space used by the
l i te ra l 10 (wi th a -4 ALLOT). I t scans the
table and resolves any forward references
to the new statement. When a forward
reference occurs, as i n "GOTO 50" before
statement 50 is compiled, GOT0 compiles
'JUMP 0'. The zero w i l l later be replaced
by the address o f l ine 50. The reference is
entered into the table w i th the address to
be patched instead o f the actual address
o f statement 50. Additional forward
references to the same point w i l l be
chained to each other. To indicate that
this is a forward reference, the address i n
the table is negated. This means that
BASIC programs must be compiled below
8000H, so that a l l addresses appear t o be
positive. Here simplicity was chosen over
generality.

VARIABLES

There are two particularly interesting
things t o notice about variables. They are
immediate, and they know which side o f
an equation they are on, Three types o f
variables are supported: integers, arrays,
and two dimensional arrays. Variables
must be declared (defined) before use.
The BASIC expressions: LET X = A + B
(where X, A, and B are variables) compiles
into the following FORTH equivalent:
X A @ B @ + S W A P !
Not ice that when an integer appears on
the l e f t o f an equals sign, it must compile
i t s address, and when on the r igh t side, i t s
value (address, fetch). Also note that only
one can appear on the lef t , while many
can be on the right.

The way this is implemented is sur-
prisingly simple. The variable ADDRESS
contains a flag which indicates which side
of the equals sign a variable is on. The
word LET sets ADDRESS to 1. "INTEGER
X" creates a variable named X, which is
immediate. When X is executed it com-
piles i t s address. X then examines
ADDRESS. I f it is true (non-zero), X
simply makes it zero. If ADDRESS is
false, X compiles a @ a f te r the address,
thereby rturning the value when the
BASIC program is run.

Not ice that the equals sign plays no
role i n this process; everything is done by
key words (e.g., LET) and variables.

Future Directions

Many more features can easily be
added to this BASIC compiler. But why
bother? A much more f r u i t f u l line o f
endeavor would be t o make use o f the
lessons learned in this compiler to write
compilers for other, more useful, lan-
guages such as C. A C compiler which is
easy to modify and extend, and just as
portable as FORTH is, could actually be

useful. Another area worthy o f e f f o r t
might be generators fo r machine code, a
common thing fo r compilers t o have.

Conclusions

It is possible t o use FORTH to produce
portable compilers for other languages.
Doing so provides insight into the nature
o f languages, and the desirability o f vari-
ous approaches t o problem solving.
Whether the compilers themselves prove
useful or not, it is worthwhile t o wr i te
them.

(screens on fol lowing pages)

Transportable Control Structures
With Compiler Security

Marc Perkel
Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

This ar t ic le is an enhancement of the
idea presented by K i m Haris a t the
Rochester FORTH Conference (f rom the
Conference Proceedings, page 97).
Basically, the art ic le proposes a wordset
o f pr imi t ives for defining control words
such as I F , ELSE , THEN , D O , LOOP ,
BEGIN , WHILE , REPEAT , UNTIL ,
AGAIN , CASE , etc. K i m points out that
these strucures are either compiling a
branch t o a location no t yet defined (such
as I F --> THEN) or back t o a location
previously defined (BEGIN <-- UNTIL).
There are two steps i n compiling either
k ind o f branch: marking the f i rs t place
compiled and then later resolving the
branch. This observation leads to four of
Kim's words:

>MARK Marks the source o f forward
branch and leaves a gap.

>RESOLVE Resolves forward branch and
leaves a gap.

<MARK Marks destination o f back-
ward branch.

<RESOLVE Resolves backward branch.

I complement K i m a t this point for his
excellent choice o f names. Here's where

compiler security comes in.

The word >RESOLVE is f i l l ing a gap
l e f t by >MARK . I f >RESOLVE were t o
f i rs t check t o make sure a gap was there
(DUP @ 0 ?PAIRS) it would help ensure
that the value on the stack was indeed l e f t
by >MARK . Likewise, i f <RESOLVE made
sure that the point where it branches back
to does not have a gap (DUP @ NOT
0 ?PAIRS) it would guarantee that it was
not answering a >MARK . This method
allows some compiler security where it is
important not to carry pairs on the stack.

Example:

: >MARK HEREO,;
: >RESOLVE DUP @ 0 ?PAIRS HERE

SWAP ! ;
: <MARK HERE;
: (RESOLVE DUP B NOT 0 ?PAIRS, ;
: IF C, >MARK ;
: ENDIF >RESOLVE;
: ELSE CJ I F SWAP ENDIF ;
: BEGIN <MARK ;
: UNTIL C,<RESOLVE;
: AGAIN C3 UNTIL ;
: WHILE IF ;
: REPEAT SWAP AGAIN ENDIF ;

FORTH DIMENSIONS 11116 Page 176

72 73
O ; Charles R c o r e ' s BASIC ;oepi:ei, i c d i f i e d for fig-FCRTH I L Frecedence !
? BOf.bBULkrf k!?I?HKET!C. ARITHEE?IC 9EF:NISIONS i: VAR!BB?E fiDBfiESS :) ?AkIABLE #i
2 90CABIWRI L061C VOUBULFiRf !!$PC!? FOXTH ZEF!!:IT!O?!S : i -16 X (ti t (3 G{ ABORT" Un~atihed ? ' ; IRREDlaTE
3 : PEFER [a n a n - a n ! 1 1 3 7
4 : +LORE 7 + ; BE6!# ZDPEF: SWAP EROP OVE9 : NOT
5 : !GET#; EL CCRD HEPi #UEBER PROP : XHILE ?$PIP 5RDP CFA . REPEIT :
b : (,! 5->D SYRP OVER DRBS 0 % SiSW Y > ; : PREZEDEWiE I n - ! !N O ICCHPILEI ' > R I N !
7 9 IRBIWELE ?S 128 2LLDT 'BOILDS , R> , IKREGIBTE CBES: 23 DEFER ;
8 : SCR !; 46 ? r RS :i ;
9 i "cce?jen;~ ! 1 tLDF;O 2 3 tinE" LY A. : F;% N i n i 0 : f;EiES ?D43P 8 ; 2 or! AP08?* 5yntaxn ;

19 : [93 Y0R3 ; IRYECIATE : ?!E?dI!!5 ;
11 AR:THREI!C PEF lN IT IO IS . L. ,3s , : r - a f i ! ? 8 ; i 6 RDDRESS ! ' NCTH:NG 0
:? I ERS:f 1 4 t: +?OED t. ?LOAD 7 iLC!b$ AR!TRLTIC : iRREDIATE
13 : ! 1 2 # (t! IEKEPikTE : 7!6NCRE #! .: l c 2 : DEFER ?BEOP 4 4 BROF THE?! ;
:4 : ; I nj , ; I F'RREEQEXLE ;
15 FCRTH CEFINITIONS

71
O I S r a n c s i n g - h i g h level !
1
: : n n ? x i J :? ;
3 : SK!? 6= !F R > 4 + ?R THEN ;
4 : !NEXT! i t o ? step \ varxabie aC3res; -- i
5 ?PUP +I : add step t e ra; !
b !R 23UP R: a 5#@ (t 5 t r 5 i
7 0(I F SWAP THE# -
9 b: I F ?BROQ X: ?+ ELSE R i D THE:! ;R ;
3 : [NEXT1 COKPILE (WEXT: , ;

10
I1
12
!3
14
:9 . ..

75
Z (Stateam? n~ater;:
I : F!IC (a - a l ! #S 2 85 2, DD
2 1 p = IF 2bg3p I :t 3 LERVE ?HER 4 +:OOP
3 1' sggp t~ ; 2: #S 3 zt 4 5s -! THEW ;
4
5 : RESOLVE (n) F i N a $uF 2 DUP 3: ;iSORi" kiip!i;a:fd'
6 BEGIN UPr'- * t ~ L k DgP 2 HERE RCT i REPEAT
? HEHE MEBGTE SNAP : :
8 : CHAI# i - a: FIWD DUF a oi != 2 a s a i E
Q ELSE DU? S 3E lE ROT i THEN ;

10
!I : ST$TEnsT [n! HERE 2- f :R -$ $?LOT RF!! Ccfi EXECUTE
1; 3:; RES~L:IE [COFILE; g h g r ;
!3
14
I C ,I

75
(Yariahle;!
: INTEGER !EL'!LCS O , IRKECIRTE R E S i [CBRPI:E! LITERR?

RDDPXSS 2 I F 0 BDDRESS ! EiSE CCtlPILE 1 THE# ;

: (BRPBY) i 4 a - a p)

SYAP >R 7 DEFER R) ICORPILE! LiTERGL
A9f fKSS 2 !E O l k r l E S S i
ELSE ' i ? t ! S + ?SWAP THEN ;

: It] (1 a - ;: SK? i- ?t t ;
: ARRAY L F - i (BUILDS 2 t &PLOT IHMEOIBTE

npecl 7 [+! (2 ~ 5 % ~ ;
Y .,.I.,

7:

! 3k5 IC 1
: LET STATEKEN: : ADCRESS ! f !XKE2IATE
: FOE CCOt!P!LE: LET 1 I3RECIBTE
: !1: CCHPILE 1 SERE ;
: TO RPN DR8P ' ['I D : IKREZIATE
: STEP RPN DR3P ' HERE O ; I!inED!ATE
: NEiT ST9TEEEN: ?DRDP ' IMEXT! 5 1 kCD%iS ' i IKHEbISTE
: EEE STb!EKS#i is 3 C I L ! I* ::I? t !W ! : iE3EPIkTE
: 31: tcL?t!P!:El RE?! ; !flnEEiFTE
: ST!3 ETRTEEEX? COKPILE ; S ; !RnEDi$TE
: Et!? STATEEEH: 2DRCP fEt !PILEI ; !COHP!LE! FGRTH ; i!ltlED!ATE

: (E3T.5; !GEfgi ;OEP:ii JO!!? CHI lN , ;
: SDTO 3.f4TEnEIS fSDT2) ; !!ffiEDiATE
: !F STATERElT LOSiC : IHREDiATE
: THEN RPH 6 COk?II:E SK iP {SOTC! ; IRNEliATE

Page 177 FORTH DIMENSIONS 11116

78
O : Chlr !~; !sore's BRSlE i o t p i l e r , !nput and Otitpat i
1 : ASK ." ? " SUEPI ;
2 : PUT (GET#) SWkF ! :
5 : LlRPBT! CDHPILE PUT :
4 : I:) I n l !. 1 14 EVER - SPACES TYPE SPACE ;
5 : , ! ni ?iGN!!RE ' (,) 1 2EFER ; il!EEDiBTE
L . I . fCOflPILE1 ."?DROP ; It!REC:BTE

7 INPST 1EFIRlT!ORS
e : , lIGKCRE RP# 0 ii#Pt!?) 1 ADDRESS ! ; IEtIE2:ATE
9

:4 EhSliHET!C DEF!M!?lOIS
I! : PRINT STATEI!E#T C@fiP!LE CR ' i,i l ; !!REDIATE
1: : 14P6T STRTEKEST ZDROP CO!fP:LE bSK ' !ISPUT: 0 :#PUT
!3 ! ADDRESS ! ; ! IEDIATE
14
I E
A L.

90
? [p . . " j e r , page 17, P r e g r a n 11 SCR
1 INTEGER J INTEGER I
1

3 : REX E:fiXT
9 18 F11 IT ' fH!S I S n" COEPi!iEBn
5 25 FOR r; = ! S2 4
j 30 FffI!!T ' #C?H!#S ;A$ 69"
7 46 FOB 1: 1 TO 3
9 50 PRINT v R % a G "
9 bO REX1 .'

10 70 ? E X ? k
11 BO E I D
1 1 IL

13 R!!Y
14
! 5

fit
: bas ic : I r s i v d f r ~ ! SCR
IbiTEGER K
9 R R W CODRD!SIITE

: RL!! STAR?
IC ~ 0 4 K = 1 TO T
20 LET f.D0RT:Ik2TE i: = f !G - # : t $:
48 PRINT CfiERDiNATE K + 5
GO NEXT K
80 Et!D

FORTH DIMENSIONS 11116 Page 178

A ROUNDTABLE ON RECURSION

Recursion, as it applies to FORTH, is
the technique o f defining a word in such a
way that it calls itself. One o f the nicest
examples I've seen o f a good use for
recursion can be found in Douglas R.
Hofstadter's book Godel, Escher, Bach.
He describes a system which can produce
gramaticaily correct phrases out o f parts
o f speech.

A t the end o f the definition, semi- : SUM
colon again executes SMUDGE . This DUP 1- DUP I F RECURS SUM RECURS
toggles the b i t back to i ts original state, ENDIF
so that the name is again findable. +

;
There are various means o f circum-

venting FORTH's protection against recur- I use the RECURS word i n tree
sion. Here are two recent contributions searches.
from our readers:

I'll use FORTH to describe his
example: A Recursion Technique Editor's note:

Christoph P. Kukulies
Aachen, West Germany

The technique that is generally pre-
ferred was described by Joel Petersen in
the original article. It defines MYSELF as

: FANCY-NOUN
4 CHOOSE
(select random number 0-3)
CASE

0 OF NOUN ENDOF
1 OF

NOUN PRONOUN
VERB FANCY-NOUN ENDOF

2 OF
NOUN PRONOUN
FANCY-NOUN VERB ENDOF

3 OF
NOUN PREPOSITION
FANCY-NOUN ENDOF

ENOCASE ;

Here is my solution to the problem of
recursion i n FORTH shown in a possible
way to implement the ACKERMANN1s
function (see FORTH DIMENSIC)NS, Vol.
111, No. 3, p. 89).

: MYSELF
LATEST PFA CFA , ; IMMEDIATE

or, for some other versions such as poly-
FORTH:

F i rs t test i f your FORTH-system is
"crash-proof" wi th the following sequence:

: MYSELF
LAST @ @ 2+ , ; IMMEDIATE

: CRASH L SMUDGE 1 CRASH ;
SMUDGE CRASH

MYSELF simply compiles the code
f ie ld o f the latest header i n the dictionary
(the word being defined) into the defini-
tion. Three o f the four possible variations on

FANCY-NOUN include a cal l on FANCY-
NOUN itself. Case 0 might produce
'books." Case 1 might produce "man who
reads books!' But Case 1 might also
produce something more complicated, like
"man who reads books that explain alge-
bra," i f the iner call to FANCY-NOUN
decides to get fancy.

Af ter having recovered from CRASH
yo;l should try this:

The problem with using the word
SMUDGE inside a definition is 1) it's not
readable, since smudging has nothing to do
with what the definition is about, and 2)
i t s behavior is different on different sys-
tems.

(m n -> ACKERMANN (m,n)
:ACKERMANN (m n -- ACK)
[SMUDGE 1 SWAP DUP O= IF DROP 1+

ELSE SWAP DUP
O= I F DROP 1 - 1 ACKERMANN

ELSE OVER SWAP
1 - ACKERMANN SWAP
1 - SWAP ACKERMANN

THEN
THEN ; SMUDGE

Similarly, having to say RECURS
ACKERMANN RECURS is not quite as
readable as simply MYSELF.

Normally FORTH deliberately prevents
recursion so that you can call an existing
word inside the definition o f a new defini-
t ion o f the same name. For example: An even more readable solution is this:

Be aware o f typing
3 4 ACKERMANN . : + SHOW-STACK + SHOW-STACK ; : :R

[COMPILE] : SMUDGE ; IMMEDIATE
: R,

SMUDGE [COMPILE 1 ; ; IMMEDIATE
This example might be a redefinit ion

o f plus to teach beginners what the stack
looks like before and after addition. The
plus that is called i n the middle o f the
definition is the oriqinal + , not the one
being defined.

Another Recursion
Here a special version o f colon and o f

semi-colon named :R and R; are defined to
allow recursion without any other hoopla.

Arthur J. Smith
Osahawa Canada LIG 6P7

FORTH prevents recursion with a word
called SMUDGE . This word usually tog-
gles a b i t in the name field o f the word
most recently defined. With this b i t tog-
gled, the name is "smudged"; that is, un-
recognizable. i n the definit ion of + above,
the colon lays down a head i n the diction-
ary, and then executes SMUDGE before
compiling the rest o f the definition.

Regarding the recursion problem, I
think that I have found a more elegant
solution. The solution involves an
immediately executed word to re-
SMUDGE the word being defined.

RENEW I define a word RECCJRS as follows:

: RECURS SMUDGE ; IMMEDIATE

RENEW TODAY! When the second + is encountered, the
compiler searches the dictionary for a
word of that name. The new head with
the same name is bypassed only because it
has been smudged.

then use the word to bracket the recursive
self definition as i n the example:

Page 179 FORTH DIMENSIONS 11116

8080 ASSEMBLER

This 8080 assembler has been available
i n a slightly different form for approxi-
mately one and one-half .years. It appears
to be bug-free.

ENDIF 's have been replaced by THEN,
and AGAIN has been removed in conform-
ance with FORTH-79. I have never had
occasion to use AGAIN ; I doubt if I'll
miss it.

I have removed the compiler security.
We frequently want non-structured control
mechanisms a t the code level. The
?PAIRS really gets i n the way.

I have introduced three macros: NEXT
PSHl and PSH2. They emplace, respec-
tively, a jump t o NEXT , a jump to the
byte before NEXT and a jump to two bytes
before NEXT . Literally, PSHl means
push one level (HI-) and fa l l into NEXT. I
believe this is a more tradit ional approach
and the source code has a cleaner appear-
ance.

The actual address o f NEXT is stored
i n (NEXT) . I ts value is plucked from ; S .
This technique was suggested by Patrick
Swayne o f the Heath User's Group. I say
"suggested" because Swayne1s method is a
b i t different.

I have l e f t out the conditional
CALLS. I never used them and they can
always be I' C, Id in. The conditional
jumps are, o f course, handled automatic-
ally by the conditionals: I F WHILE and
UNTIL, in conjunction with the flag
testers: 0 = CS PE 0 < and NOT .
I have opted to retain the immediate

instructions MVI and LV I as opposed to an
immediate flag 8.

The 1MI 2MI etc stands for "number
one machine instruction" etc. The f i rst
cut o f this assembler was wri t ten when
three let ter names were the craze.

I have a selfish motive in publishing
this assembler. I hope that this w i l l flush
out assemblers for other processors and
that there w i l l be a "rush to publish."
There is a good reason t o do this besides
vanity. I f someone else publishes the
assembler for the "xyz" chip that you use,
and it becomes established, it means that
you w i l l have to change your code to con-
form with the quirks o f the "established"
version. It pays t o get there first.

John J. Cassady
339 15th Street

Oakland, C A 94612

S c r e e n 4 8 3 0 H
0 (F I G F O R T H 8080 ASSEMBLER 1 8 1 A U G 1 7 J J C 8 0 M A R 0 4)
1 HEX VOCABULARY ASSEMBLER I M M E D I A T E : 8* DUP + DUP + DUP + -
2 A S S E Y B L E R C F A ' ; C O D E 8 + ! (P A T C H ;CODE I N N U C L ~ S
3 : CODE ? E X E C C R E A T E [C O M P I L E] ASSEMBLER ! C S P ; I M M E D I A T E
4 : C ; CURRENT !? CONTEXT ! ? E X E C ? C S P SMUDGE - I M M E D I A T E
5 : L A B E L ? E X E C 0 V A R I A B L E SMUDGE -2 ALLOT C C ~ M P I L E] ASSEMBLER
6 ! C S P . I M M E D I A T E ASSEMBLER D E F I N I T I O N S
7 4 CONSTAN? H 5 CONSTANT L 7 CONSTANT A 6 CONSTANT PSW
9 2 CONSTANT D 3 CONSTANT E 0 CONSTANT B 1 CONSTANT C
9 6 CONSTANT M 6 CONSTANT S P ' ; S OB + @ CONSTANT (N E X T)

10 : 1 M I < B U I L D S C , D O E S > C e C , ; : 2 M I < B U I L D S C , D O E S > C@ + C , ;
1 1 : 3 M I < B U I L D S C , D O E S > C@ SWAP 8" + C , ;
1 2 : 4 M I < B U I L D S C , D O E S > C 9 C , C , ;
1 3 : 5 Y I < B U I L D S C , D O E S > C@ C , , ; : P S H l C 3 C , (N E X T) 1 - , ;
1 4 : P S H 2 C 3 C , (N E X T) 2 - , ; : NEXT C 3 C , (N E X T) , ;
15 ;S

S c r e e n 4 9 3 1 H
0 (F I G F O R T H 8080 ASSEMBLER 2 8 1 M A R 2 2 J J C 8 0 M A R 0 4
1 00 1 M I N 3 P 7 6 1 M I HLT F 3 1 M I D I F B I M I E I
2 07 1MI RLC O F 1 M I RRC 17 I M I RAL 1 F 1 M I RAR
3 E 9 1 M I PCHL F 9 1 M I S P H L E 3 1 M I XTHL E B 1WI XCHG

2F 1 M I CMA
88 2 M I ADC
A 8 2 M I XRA
C 1 3 M I P O P
0 4 3 M I I N R
C 7 3 M I R S T
C E 4 M I A C I
EE 4 M I X R I
2 A 5 M I L H L D
; s

37 1x1 S T C
90 2 M I S U B
BO 2 M I ORA
C 5 3 M I PUSH
05 3 M I DCR
D 3 4 ' 4 1 OUT
D 6 4 M I S U I
F 6 4 M I O R 1
32 5 W I S T A

3 F 1 M I CMC
9 8 2YI S B B
B 8 2 M I C Y P
02 3 M I S T A X
0 3 3 M I I N X
DB 4 M I I N
D E 4 M I S B I
F E 4 M I C P I
3 A 5 M I L D S

4 27 1 M I DAA
5 80 2 M I ADD
6 A 0 2 M I ANA
7 09 3 M I DAD
8 OA 3 M I LDAX
9 OB 3 M I DCX

1 0 C 6 4 N I A D 1
1 1 E 6 4 H I A N 1
12 2 2 5 M I S H L D
1 3 CD 5 M I CALI.
1 4
1 5

S c r e e n 50 3 2 H
0 (F I G F O R T H 9090 ASSFMBLER 3 81AUG17 J JC 80MAR34)
1 C 9 1 M I R E T C 3 5 M I J M P C 2 CONSTANT O= D 2 C O N S T A N I C S
2 E 2 CONSTANT P E F 2 CONSTANT O < : NOT 8 + ;
3 : MOV 8* 4 0 + + C , ; : MVI 8* 6 + C , C , ; : L X I 8" 1 + C , , ;
4 : THEN HERE SWAP ! - : I F C , HERE 0 , ;
5 : ELSE c3 IF SWAP T ~ E N ; : B E G I N HERF ;
6 : U N T I L C , , ; : W H I L E I F ;
7 : R E P E A T SWAF C 3 C , , THEN ;
8 ; S
9

1 0
1 1
12
1 3
14
1 5

FORTH DIMENSIONS III/6 Page 180

S c r e e n 5 1 33H
0 (E X A M P L E S U S I N G F O R T H 8080 A S S E M B L E R 1 8 1 A U G 1 7 J J C 8 0 M A R 1 2)
1 F O R T H D E F I N I T I O N S H E X
2 CODE CSWAP (WORD-I--- SWAYS H I AND LOW BYTE O F WORD ON S T A C K)
3 H P O P L A MOV H L MOV A H MOV P S H 1 C;
4 CODE L C F O L D (FROM-2 QTY-I - - - C O N V E R T S LOWER C A S E T O U P P E R)

5 11 FOP H POP
6 B E G I N D A MOV E ORA O= NOT
7 W H I L E M A MOV 60 C P I C S NOT
8 I F 20 SUI A M MOV
9 THEN D DCX H I N X

1 0 R E P E A T NEXT C ;
1 1 ; S
1 2
'I 3
1 4
15
S c r e e n 5 2 3 4 H

0 (F X A M P L E S U S I N G FORTH 8 0 8 0 A S S E M B L E R 2 8 1 A U G 1 7 J J C 8 0 M A R 1 2)
1 CODE CMOVE (FROM-3 T O - 2 QTY-I - - - SAME A S I N N U C L E U S)
2 C L MOV B H MOV B P O P D P O P XTHL
3 B E G I N B A MOV C ORA O= NOT
4 U H I L E M A MOV H I N X D S T A X D I N X B DCX
5 R E P E A T B P O P NFXT C ;
6 CODE -CMOVE (FROM-3 T O - 2 QTY-I--- SAME BUT O P P D I R E C T I O N)
7 L L dOV B H MOV B P O P XCHG
3 t 1 3 DAD XCHG XTHL B DAD
3 S b G I ' N S A MOV C ORA 0- NOT

10 W H I L E H DCX M A MOV D DCX D S T A X B DCX
1 1 R E P E A T B P O P NEXT C ;
1 2 : MOVE (FRO'4-3 TI-! 4I 'Y- I - - - S Y A R T MOVE, D O E S NOT OVERLAY)

> R 2DUP R > ROT ROT -
l 3 1 4 LF -CMOVE E L S L CMOYE THEN ;
1 5 ; S

S c r e e n 53 3 5 H
0 (F X A M P L E S U S I N G F O R T S 8 0 8 0 A S S E Y B L E R 3 8 1 A U G 1 7 J J C 8 0 M A R 1 2)
1 80 CONSTANT CMMD (COMMAND B Y T E)
2 F O CONSTANT CMMDPORT (COMMAND PORT)
3 F 1 CONSTANT S T A T U S P O R T (S T A T U S P O R T)
4 L A B E L DELAY (--- DELAY CONSTANT I N D E , D O N ' T U S E T H h S T A C K)
5 B F G I N D DCX D A MOV E ORA O = U N T I L R E T C ;
6 CODE S T A T U S (B I T MASK-I---)
I 5 POF CYMD A MVI CMMDPORT OUT
5 1 . I 3 E L A Y CALI,
9 B E G I N

1 r) S T A T U S P O R T I N L ANA O = NOT
I I I J Y I I L N E X T C ;
1 2 ; S

Sieve of Eratostenes
in FORTH

Mitchell E. Timin
Timin Engineering Co.

The enclosed version of Eratosthenes
Sieve was written for an implementation
of Timin FORTH release 3. I was pleased
tha t i t executed in 75.9 seconds, a s com-
pared to the 85 seconds of figFORTH.
Mine was run on a 4 MHz 2-80 machine,
a s were the others in the BYTE maqazine
article.

The speed improvement is primarily
due t o the array handling capability o f
Tirnin FORTH release 3. FLAGS is
created with the defining word STRING;
n FLAGS leaves the address of the nth
element of FLAGS. This calculation
occurs in machine code.

SCR + 35
0 1 The Sieve of Eratosthenest after J. Cilbreaihr BYTE 9/81)
1 6190 CONSTANT SIZE SIZE STRING FLAGS (make array of flaos)
2 : PRIME 0 FLAGS SIZE 1 FILL (start by settina the fla~5)
3 0 (create counter which remains on top of stack)

4 SIZE 0 DO (rereat followiffi loop Bt90 times)
5 I FLAGS CO (fetch next flao to top of stack)

6 IF (if f l a ~ is true then do the followino:
7 I W P + 3 t (calculate the prime number)

8 DUP I t (stack is: counter. prime* K)
9 BEGIN DUP SIZE < WHILE (repeat for K < 8190)
10 0 OVER FLAGS C! (clear Kth f lao
I 1 OVER t (add prime to K)
12 REPEAT
13 DROP DROP it (drop K & prime, increment counter)
14 ENDIF
15 LOOP 3 SPACES .' PRIMES ' i (finish* display count)

SCR U 36
0 (testino the sieve aloorithm) 0 VFIRIABLE K O M T
1 : BELL 7 EMIT i
2 : NEW-LINE CR 0 OUT ! i
3 : NEW-LINE? OUT @ 70 > IF NEW-LINE ENDIF i
4
5 : PRIME-TEST BELL (first sound the bell)

b 10 0 DO PRIHE LOOP BELL I run the prime finder 10 X)
7 (above is for timinG test* below is for validatien)
B 0 KOUNT I NEW-LINE (clear counter* start new line
9 SIZE 0 DO (check each flao
10 I FLAGS C@ (see if it's set)

11 IF I DUP t 3 t (calculate the prime number)
12 7 .R NEW-LINE? (display it)

13 i KOUNT t! (count it
14 ENDIF
15 LOOP CR KOUNT ? . ' PRIMES ' 3 (display the count)

Page 181 FORTH DIMENSIONS III/6

SKEWED SECTORS FOR CP/M

In regard to Michael Burton's article in
FORTH DIMENSIONS, 11112, page 53, "In-
creasing fig-FORTH Disk Access Speed," I
enclose a simple mod to the 8080 or 280
assembly list to effect the CP/M skewed
sector disk 110. The FORTH routines I
used to test the scheme are included. The
first cluster or screen is offset by 52 sec-
tors so that the operating system is trans-
parent and screens 0 and 1 hold the direc-
tory. I move the message screens to
SCR# 24 and 25 leaving 2-20 for the
FORTH binary program run by CP/M or
CDOS.

In order to check any increase in disk
access speed I timed the following opera-
tion with a 10 screen buffer:

20 270 10 MCOPY 20 270 10 MCOPY
20 270 10 MCOPY

Elapsed times were 204 and 138 seconds
for straight and skewed sectors respec-
tively. Note that this reflects disk access
speed for read/write of several sequential
sectors and in no way compensates for
inadequate planning or poor programming
in other disk 110 applications.

I f this seems trivial, then you have no
need for CP/M fi le compatible 110. My
motive for these changes is the desire to
write the assembler program for fig-
FORTH via modem (easy to implement in
FORTH) to friends and colleagues. As
added value my disk 110 can be faster.

Roger D. Knapp

PCP
JP

DR - *
~ 1 3

33
r.. :: ,I

SSKEU: D!:'
POP
LD
RD2
L 3
PlJYY
.J P

; RESTORE ! I P)

i A M E D
5 A F T E R

5+ 7. I ,,
9: ; SFCTPR SEC1IE1:TII L 1 ~ E T D R I V E "
P i , TRTB L ; TPF::SLATTq!! T P R L E ABOVE I

UL ,GE : ADG' DF ':E!J SECTQR
E , (H L)

i
DE ; SECTO2 TGIGSLATED
FJEXT J

5 i t l G L E DE6SITY
TSC; iS: L I T , ~ ~ . P L u S GI4 I P 52 SECTORS FDR

L!!< L I T ,8UPDRl
Vr< SLi:OD L~F'EFZATING S V 5 T E - M

i L X ~ E L Ins (CP!I.: SEE.\!ISC ?E~;';~EST ! ! L~HL~: , y iy ,~ , J O ~ ~ L , rl
(1

- , - p - , - - ,.:: SET-:? (sectcr track addrs ---)
:., H Drip, E PUSH, L~ R LQ, L c L P , 21 D LDP!, YS C L L L , B PV,
7 H PZP. E PL15c;, H 3 LD. L C LD. 1 R 9 L D P i , IPS CkLc , B PqP,
:: H F ~ P . R PGSH, L c L G . I E n L ~ I . rqs CALL, r. P ~ P ,
o >!EXT, C;

1 -:I
11 CODE SET-DRIVE (n --- \

FORTH DIMENSIONS 11116 Page 182

SCE i 51
(5ECTOR SKEiJ FPR CP/l.i FORI*tAT CLUSTERS

1 FORTH 3EFlE!!T!OIIS DEC1:-l.AL
2 : CThBLE (bytes ize TABLE)
3 (BUILDS n D:I c, inop DOES> + CP ;
4 72 15 10 4 24 11: 12 6 26 20 14 t? 2 21 15 9 3 23 17 11 5 25 1s
5 12 7 1 :: 27 CTARLE 5-SKE:! (f o r CP/t4 c l~ r s t e r s \
6
7 : !!SETUP (Set.irp n sectors for bIXTS.
2 ! adrs b lk n --- SeC trk addr ... seen trkn addrn)
!! ROT 3VER 126 * + ROT ROT OVER + 1- SWAP I- SNAP

19 03 1 26 /!KG3 SGA? I+ S-SKEW S\<,+P R3T 128 - DUP
11 -1 +LCOP DRCP ;
12
I?. : "!RTS (Read n sectors. 1 (s t 3 ... sn t n a n n ---)
1C '3 D3 SET-TO SES-XEAD DISK-ERROR b I F LEAVE THEY LOOP :
15

SCR * 67
5 (~ : G E CP/:" FO;.:.:~T nIsx I /o
! FORTH DEF Ili!TI'!:IS OECI!(:P.L
2
? : tII:TS ! h:lritr n soctnrs t.n CP/!, clkrstr?r.)
C '' 3," SET- In SEC-\, 'RITE D!SK-EP.RC:! r? \ F LESVE Tt'E'! L V I P ;
-.

6 : ::./!.'--;PI;' f Cp/!', ske,,:=fi cl 1 : s t ~ r 119.1
7 1 addrs b l k f - - - 1 > R 52 + 2!!W /FlO!l SET-9RIVE
o CFC/$L%)'SETUP (67 + so -1 tistc-r a l l or C Q f : ' 1
5% ?> I F SEC/RLK t X T S

ELSE SECIPLK !)\ITS

12 1 / I 1 nf scrczns 5: .~n< 52 shz?l?l~ssly ;..dant~< from John clm~s'!
I < f fic-Fil:{TF f o r tiia LSI-I! . 1
! 5

oi.

S C R # 90

0 (. B U S TDH 7/11/81 1
1 DECIMAL
2 : . S U P S (disp lay adr of a l l burfers)

CR . U # Addr(hex) Upd Block# Soreen -subn 2 FIRST #RIIPF l + 1 DO
5 CR I 2 .R 2 S P A C E S
h DUP 2 + HEX 6 0 SWAP D.R D E C I M A L SPACES
7 DUP @ 32768 AND
8 0= 0= 32 + EMIT 2 SPACES
9 DUP O 32767 AND DUP 6 .R 4 S P A C E S

10 ~ / S C R /MOD 5 .R 4 SPACES 2 .R
11 1 7 2 + ? T E R M I N A L I F L E A V E T H E N
12 LOOP n R O P CR ;
17
1 b
15

Screen -sub
90 0

Diagnostics on Disk Buffers

Timothy Huang
9529 NE Gertz Circle
Portland, OR 97211

While I was in the process of explaining
the disking to some friends, I found it
would be nice to show them some sort of
representqtion which lists al l the disk
buffer status. This short program was
then written for this purpose.

The figFORTH uses the memory above
USER area for the disk buffer. This disk
buffer area is further divided into several
blocks with the length of each block equal
to B/BUF + 4 bytes. There are some im-
plementations that set B/BUF to be 1024
bytes and some, like 8080 CP/M, that set
it to be 128 bytes. Another constant
beside B/BUF frequently referred in disk-
ing is the B/SCR (buffers per screen). For
B/BUF = 1024, the B/SCR = 1 and for
B/BUF = 128, B/SCR = 8.

Each block needs 2 bytes i n front of it
as the header which contains the update
b i t (bit 15) and block number (lower 0-14
bits). It also needs a 2-by te tai l to end the
block.

The word BLOCK wi l l put the begin-
ning address o f a given block (assuming
the block number on stack before exe-
cuting BLOCK). With these simple words,
virtual memory can be utilized, but i t is
beyond the scope o f this short article.

1)\\\\ The short program will display the
status o f each disk block unt i l i t is ex-
hausted or you terminate it by pressing
any key. The first thing it does is print
out the t i t le line (line 4). Line 5 sets up
the boundary for the DO ... LOOP. Line 6
prints the buffer number while line 7
prints the beginning address of each buffer
in hex. Lines 8 and 9 check the buffer
update status. I f it has been updated, then
an ,I . t 9' wil l be printed in the upd

column. Lines 10 and 11 calculate the
block number, screen number and the -sub
number. The reason for teh -sub is
because for my system, R/LBUF = 128,
B/SCR = 8, there are 8 blocks to make a
whole screen. So, I thought it would be
handier to know which subpart of a given
screen the block I want.

Lines 12 and 13 check the early termi-
nation and finish the definition.

Page 183 FORTH DIMENSIONS 11116

FLOATING POINT ON THE TRS-80

Most FORTH systems have no provi-
sions for handling floating piont numbers,
although most popular micros have the
necessary routines hidden in their ROM-
based BASIC interpreter. These are fast
routines wri t ten in assembler. The follow-
ing is to demonstrate how these can be
accessed and used to implement single
precision floating pint arithmetics for the
TRS-80 in MMSFORTH, Version 1.8.

Single precision floating point data is
stored as a normalized binary fraction,
with an assumed decimal point before the
most significant bit. The most significant
b i t also doubles as a sign bit.

A binary exponent takes one byte in
each floating point number. It is kept i n
excess 128 form; that is, 128 is added to
the actual binary exponent needed.

The binary mantissa is 24 bi ts long, the
most significant b i t representing the sign
bit. It is stored as 3 bytes normally w i th
the least significant byte (LSB) stored
f i rst and the most significant byte (MSB)
last, followed by the exponent.

Numbers should be entered using the
notation specified for the TRS-80 L2
BASIC. Integers and dobule precision
numbers are converted to and stored in-
ternally as single precision numbers.

BLOCK 9

0 (FTP #1 :KIF 810816) FORGET F.TASK : FTASK ; HEX
1 (SINGLE FHEC. FLOATING POINT FOH TRS-80 I N MMSFORTH '51.8)
2 : EXX D 9 C , ;
3 CODE F.& EXX OFBD CALL 28A7 CALL EXX NEXT
4 C O D E F # & EXX HLPOP 2 R S T OEjCCALL
5 OAAl CALL EXX NEXT
6 : F@ DUP 2 + 4 SWAP B 4 \$OAF C l ;
7 : Fl DIiP 2OPSWAP 6 2 + 1 4 4 0 A F C! ;
8 : A S 4 1 2 1 F@
9 : F#O HERE 0 ~ V E R 3E FILL BL WORD F#& A A -

1 0 : F#IN " 7 ' PAD D I P I+ 6 3 EXPECT F#& A ; ;
11 : F#l F#O SWAP (L) (L) (L) (L)
l a : F# STATE C@ IF F#I ~ L S . E F#O T H ~ N ' ; ' IMMEDIATE
1 3 : F. S A F.& 4 &OAF C! ;
14 : lOFT ; DECIMAL
1 5

BLOCK 1 0

The complete vocabulary and l isting o f
the source screens for either MMSFORTH
or figFORTH (specify) is available for $7
(U.S.) from Kal th microsystems. It in-
cludes both single and double precision,
trigonometric and log functions, f loating
point constant, variable and stack opera- F
tors, conversion routines to/from integers
(FORTH type) and floating piont numbers.

0 (FLOT. PT. #2 : I F 8 1 0 8 1 6) FORGET lOFT : 10FT ;
1 HEX
2 CODE F+& EXX DE POP BC POP 716 CALL EXX NEXT
7 CODE F-& EXX DE POP RC POP 713 CALL EXX NEXT
4 CODE F*& EXX DE POP BC POP 847 CALL EXX NEXT
5 CODE ?/& EXX DE POP BC FOP 8A2 CALL EXX NEXT
6 : ~ + S A F+& A S ; : F - S A F-& A S ;
? : F * S A F*& A S ; : F/ S A F/& A S ;
8 DECIMAL
9 (SAMPLE AND TEST ROU'?IWJ23)

1 0 : FTEST F#IN CR F# 2 F+ F# 200.OE-2 F-
11 F# 5000.1 F* F# 5 . n o O l E i 3 F/
1 2 PAD F! PAD FB 8'. ;
1 7 ;S
14
1 5

GLOSSARY

Single Precision Floating Point

F + (F l F 1 - - F) Add
(F=FP+Fl)

Sub t rac t

Multiply

Divide

Kalman Fejes
Ka l th Microsystems

PO Box 5457, Station F
Ottawa, Ontario K2C 351

Canada

(- - F)
Takes a number from the current
buffer, converts it to single pre-
cision floating point number and
leaves it on the stack.

F # I N (- - F)
Asks for a floating pint number
from the keyboard, and leaves it
on the stack.

(A - - F)
Floating point fetch. Takes a
floating point number from
memory a t address and leaves it
on the stack.

(F A - -)
Floating point store. Stores the
floating point number on stack in
memory a t location A.

F TEST (--)
A sample program to demon-
strate the use of these floating
point operators. It asks for a
f loating point number from the
keyboard, manipulates it using al l
the operators defined and prints
the result. (I t should be the same
number that was supplied.)

Notes: A -- 16 b i t address

F, F1, F2 -- are single precision
floating pint numbers (two 16-bit
words each).

FORTH DIMENSIONS 11116 Page 1 8 4

TURNING THE STACK INTO LOCAL VARIABLES
Marc Perkel

Perkel Software Systems
1636 N. Sherman

Springfield, MO 65803

Occasionally in writing a definition, I
find t h a t I need t o do unwieldly stack
juggling. For example, suppose you come
into a word with the length, width, and
height of a box and want t o return t h e
volume, surface area, and length of
edges. Try it!

For this kind of siuation I developed
my ARGUMENTS-RESULTS words. The
middle block fo the tr iad shows my solu-
tion t o the box problem.

The phrase "3 ARGUMENTS" assigns
the names of local variables 1 through 9 t o
nine stack positions, wtih S1, S2 and S3
returning the top 3 stack values t h a t were
there before 3 ARGUMENTS was exe-
cuted. 54 through S9 a r e zero-filled and
the stackpointer is set t o just below S9.

S1 thorugh S9 a c t a s local variables
returning their contents, not their
addresses. To write to them you precede
them with the word " TO ". For example,
5 TO S4 writes a 5 into S4. Execution of
S4 returns a 5 to the stack.

After a l l calculating is done, the
phrase "3 RESULTS" leaves t h a t many
results on the stack relative to the stack
position when ARGUMENTS was exe-
cuted. All intermediate s tack values a r e
lost, which is good because you can leave
the stack "dirty" and i t doesn't matter .

!5CR q: K{
0 (%%% C AE'C;lJMEN'TS-RE:SlILIS >%JX)
1. Ui ' iRIABl ... E CAHGL1 VAT;IABI.-E CTO:I
.:? ; .+i;Ri; Cl?E:Al-E: 9 DC)EE;::, @ CAliC;7 C? :;WAF' C:T03 P ?lDLII::'
f I F G.:: I F f ! ELSE ! EiNDII:' E:1..9E @ ENDIF:' 0 I::'I'C)7 1 i
4
5 O +ARG $1 2 $ARC; 52 4 +ARG !33 6 ,+ARli S 4
/3 8 SARG $15 A +AR(? $6 C: t A R G S7 E 9ARG S 8
7 10 + A R G 55' (#('I'Cl VARI:AEILES%)

8
9 TO :I, r ' r i l :~ 1 5 ($SETS S'I'CIRE: F:'I..A(:; F'OI? .+ARGX)

I? : .+'TC) --I 1:T(33 ! i ! QC~E:TC; .~.:;Tc)RI:: I"L..AG FOR +ARG$)

SCR 47. C
0 ! ARGUHENT EXAMPLE BOX COMES I N WTTH HEIGI-I'Tv LENf iT t l
.I, Z WL'D'rI.1 AND L-EAVEEI VOI-1JMEr SURFACE A l iEA 8 L.ENGTI-I CII-' EDC;I:::; :)

3 t FOX 3 ARGUMENTS
4 (V0L.M) 51 SZ S3 % % T O S4
5 1 SURF) S1 52 2 4 $ SZ 33 2 8 $ S1 SJ 2 * * f + TO 55
6 1 EDGE) S1 4 U 52 4 $ $3 4 % t t TO S3
7 $3 TO S2
a 5 4 TO ::i3.
(9 3 ~~:: ;(j l . . ' r j ;
A
B
c

::; (1: 1:: * ::
0 : TASK i
I : E X S K I ? ! 5 APGUpiENTS
2 S1 S 2 0.403 U;MOD I$ TO Sj. T n s2
5 BEGTN S.1 0:;
4 WIiTL..E S1 bL.Ui:k 52 t. 53
s
-1 S5 I F SWfiF UPTtr"rlE: ENDXF
b S3 0 4 0 0 52 -- MTN I1lJP TO S1 CMC!LIE:
;7 S6 t.TO S3
0 C;A NEGATE .+'rc) 94
P 1 +TO S 1
A 0 TO S
B): 'F:~JAT . .- .-
C 0 RESULTS E
n : EIXSKP I:I:KC~I<F 1 c
E : D I S K ! :I. Dl"" r;h@! c
c: - :.

Page 185 FORTH DIMENSIONS 11116

GRAPHIC GRAPHICS

Accompanying these comments a r e
several graphic specimens drawn on Apple
computer using FORTH and printed on a
dot-matrix printer. They range from logo-
type design to experiments in geometry
and pattern. One can generate real-time
motion graphics on the Apple in which
color and action partially compensate for
the low resolution of 280 by 192 pixeis.
Hardcopy, whether prinout or color photo,
isn't the final product. The interactive,
sequenced and timed display on t he screen
is the designed product, likely to displace
the medium of print on paper in the
future.

While these graphic samples could have
been programmed in other languages, I
have fourid the advantages of using
FORTH are both practical and
expressive: immediate and modular ex-
perimentation with the peculiarities and
limitations of t he Apple video display, and
orchestration of complex visual e f f ec t s
with self-named procedures ra ther than
the tedious plots and pokes t o undis-
tinguished addresses. With this ease of
wielding visual ideas, FORTH might lead
t o a new era of computer graphics, even
creative expression.

It may remain individual and personal
expression, however, without graphics
standards. Transportability of grahics--
generating code may be neither possible
nor desirable considering the differences
in video display generation, a l te rna te
charac ter sets , shape tables, display lists,
interrupts, available colors, etc., between
microcomputers. Each has some individ-
ual features to exploit. Most have, how-
ever, such limited memory for graphics a s
t o make machine-dependent economy an
overriding aspec t of programming for
graphics.

Despite the rarity of FORTH graphics
thus far, I'm convinced it is an excellent
vehicle for bringing out undiscovered
graphics potential of each micro. In ad-
dition, the visibility gained by some ef for t
to evolve grahic ideas in FORTH would
help in both spreading and teachinq the
language. Perhaps this issue of FORTH
DIMENSIONS will stimulate just such
activity.

Editor's Note: The author tells me
that Osborne/McGraw-Hill publishers have
used his patterns, generated on Apple I1
using Cap'n Software FORTH, a s cover
artwork for their book "Some Common
BASIC Programs"!

Bob Gotsch
California College of Arts and Craf t s

- - -

FORTH DIMENSIONS 11116 Page 186

CASES CONTINUED
Editor's Note: In Volume IT, Number 3,

FORTH DIMENSIONS published the results
of FIG'S CASE Statement Contest. As we
had hoped, the variety of responses has
stimulated further work on the subject.
Here are four additional CASE constructes
submitted by our readers.

Eaker$ CASE for 8080 0 (C A S E S T A T E M E N T BY C H A R L E S EAKER F D I1 3 39
1 : C A S E ?COMP C S P @ ! C S P 4 ; I M M E D I A T E

J J C 8 1 A U G 0 9)

John J. Cassady 2 CODE (O F) H P O P D P O P ' - 8 + CALL L A MOV H ORA Or
3 I F B I N X B I N X NEXT E N D I F D P U S H ' BRANCH JMP C ;

!+ere is an 8080 (280) version of the 4 : OF 4 ? P A I R S C O M P I L E (OF) HERE 0 5 ; I M M E D I A T E
keyed case statement by charles ~~k~~ 5 : ENDOF 5 ? P A I R S C O M P I L E BRANCH HERE 0 ,
that was in FORTH DIMEN- 5 SWAP 2 [C O M P I L E] THEM 4 ; I M M E D I A T E
SIONS 11/3, page 37. I have found it very : ENDCASE
useful. 8 B E G I N S P @ C S P @ = 0=

9 W H I L E 2 [C O Y P I L E I THEN
10 R E P E A T C S P ! . I M M E D I A T E
11 : TEST C A S E 4 1 OF ." A ENDOF
1 2 4 2 OF ." B " ENDOF
1 3 65 O F ." e " ENDOF
1 4 (4 1 TEST A OK)
15

ENDCASE ;

Eaker's CASE Augmented

Alfred J. Monroe
3769 Grandv ie:v Blvd.

Los Angeles, C A 90066

I was delighted with Dr. Eaker's
CASE construction (FORTH DIMEN-
SIONS, Vol. iI, No. 3, p. 37) and imple-
mented it immediately. Recently I have
found it desirable to augment CASE with
three additional constructs in order to
t reat ranges o f variables. It has occurred
to me that other FORTH users may be
interested i n the same extension, hence
this short note.

Screen 144 lists Dr. Eaker's CASE
construct wi th one sliqht modification.
OF has been modified to use (OF). The
original OF compiled to ten bytes. The
revised OF compiles to six bytes. This
forty percent reduction in code is not as
impressive as that which occurs using Dr.
Eaker's CODE word (OF) construct, but
it does have the advantage that it is highly
portable. (OF) tests for equality and
leaves a true or false flag on the stack.
Note that it drops the test value if the
test is true.

Screen 145 lists the extensions that I
have found useful, <OF, >OF, and RNG-
OF. <OF does a "less than" test. >OF does
a "greater than" test. RNG-OF does an
inclusive range test. <OF and >OF are
tr iv ia l modifications o f OF and (OF).
RANGE and RNG-OF are constructed in
the same spirit as (OF) and OF .

Screen 144 compiles to 175 bytes.
Screen 145 compiles t o 223 bytes.

*:- j 'l.6 8 ; # 145
b I.. I ~t :,.I-I~- . .;.I-I~ ., f l t iL1 ki;lb--Crf- t X - I E N 5 I ON3 ?

: ,.-..,!-I;- :.! c!..lkf+ :Lk- L>PLtk. 1 kL.5-t, 0 k!.I[>If- ;
i: :: .:Lit 4 !.t'll:klr. !L:I..IPI~' i ~ t :: :.L:!-) C:C.!MPILE QkkfiNc::H

+ikk.k c .. k. ; 1PtPIkL~lt;~l t
4 : I.. j . ~ : t . ,.I !-!?~t-j,: ... i k ii.h::..l:.-' 1 CLkt- C-l E~-I~.IXF :
kt ;. 1:. i-it 4 : f-'h l i.:l L.L:I.ip'i it C ::-OF 3 CCPtF' 1 LE OtrEf-lt.ICH
6 H t ~ t t3 . 5, : 1MP:tDiH-1.E
i : knl.ltxt >K i ! ! ~ t k : oLit? k> l+ .:.. It. ?AHP 1- : I F GRf-lP 1 f-Lrjt
U
L. ri.ILll t t~.:,t b~:-rp L>#iiY O EtlLj 1 k ;
Y c p::i~,.,-I.!? 4 : 'yt~iI-:L. C-i!:'lPlit. KHb4GE C:OMFL'ILk BBHHk4C-:H HERE .. 5 ;

is .lP;tlt~.L:~i;-ll t
11
I '.*
.L L

.L .-.
: 4
I L I -. I

Page 187 FORTH DIMENSIONS 11116

z:,:sC:C: # 146
i3 t>~~.:l-tFll-'Lk USk Cck AUGPYttJ'iED LHSE >
1 4 3 tilt.&'; hN.1 "80 ST' LOtJS'CHN? "9" 65 CONSTfIHT "H"
,: , 'u l-.utiL ; ;dMl " F " 12 i'Qt-,!siHt.J'l "CR"
< .: i. :, CClt-tL:ifik4'r CF4TKL-L
4
3 ki i.ji-ik i &:Lt FLfiCj
i.
;' 2, .,>I-.;-. c H S (-'I-. ." 5II-,'tJ.Ifi-l:.{ Ef?f.:QKr KEEt.fTkR }JCIMBEK " L;k
b L~Ki-lk' Uk:Llr & "kin ;
r : I.--fit:LIK I C:l< . " I;DMP1FltdD HEOW[" C:R DROP [>MclP @I-I 1-1- :
b

A 1
1 i : ',!H&ili.:'l CN'I'#L-C = IF DfZCtP CI;(. " CCIPlPlfiNCi HBCt:-T " CH ul-I 11
1 L. tLSE DUP ENDIF ;
p j
.i j .;

Screen 147 illustrates a pre-Eaker
solution to the design of an interactive
terminal input t ha t places a hexadecimal
number on the stack, and which provides
for e r ror detection and error recovery. It
is, o f course written in my usual sloppy,
unannotated, semi-readable fashion.

Screen 148 offers a neater solution in
te rms of <OF and >OF. It is definitely
more readable. Screen 149 offers a still
nea ter solution in te rms o f RNG-OF.

Screen 147 compiles t o 160 bytes,
screen 148 to 176 bytes, and screen 149 to
144 bytes. Need I say more?

k.:-:t<: # 14 i..
cr, i Gt I -HIS.:: ttHl..jk f j Hk).:: # L1t.l 'I'OF' OF 5THC:K 1:s

1 I.. 13 PHk ijk. kifL-..tk 5OLUl.lOt-i TCI FftJ It-4TEKfiC:T 1t)E TEHMItJHL INPI-I 1
L

4 : i& t -HtX b3 + L..HG ! B I !4 Ic:kL? LJCIF' LJLIP k M l T ?FIBOR-I
5 1::. = li- 1 FLAG ! L&OP
6 fpSt Ljt-Ip ";,u <[i E ~2 -.I Y i .- ERR

f i g ~ -9") IF DUP i 1~ ~,++ERR
ELSt LjLlp ':F " >. SVt.l-EPr;i' kt.IC, 1 F

9 t b l L j ? I- kt.ILj i l- tHD 1 F ktJD 1 F
1u ~ L H G ie b= IF 45: - - L>~-IP i+ > I F 7 - ENDlF 5WAP 16 :* + tNIJ1 F
11
1 2 f-LHI> 83 L!t.JT 1 L
.$ -.. A 1

,: 4
1 :,

SEND A CHECK TO FIG TODAY!
MAKE THIS YOUR BEGINNING!

RENEW NOW!

RENEW TODAY!

FORTH DIMENSIONS 11116 Page 188

CASE as a Defining Word

Dan Lerner

Af ter reading the CASE contest ar t i -
cles and looking for a simple function, I
am compelled t o submit a simple CASE
statement. These words are fast to
corripile and execute, compact, simple,
generate minimum code, and very sim-
@. There is no error checking since the
form is so simple the rnost novice pro-
grammer can use it.

CASE is analogous to vectored GOT0
in other languages. I ts usage wi th my
words is:

CASE NAME
A IS FUNC'TION A
B I S FUNCTiON B
C IS FUNCTION C
(etc.)
OTHERS ERROR FUNCTION

General usage would be as a menu
selector; for example, you pr in t a menu:

1 BREAKFAST
2 LUNCH
3 DINNER

SELECTION -->

The user types a number which goes n
the stack, then executes the CASE word
MEAL. MEAL selects BREAKFAST,
LUNCH or DINNER, or ABORTS on
error, The source is:

CASE MEAL
1 IS BREAKFAST
2 IS LUNCH
3 IS DINNER
OTHERS NO MEAL

You have previously defined BREAK-
FAST, LUNCH, DINNER and NO MEAL.

How CASE is Structured

CASE builds an array using IS and
OTHERS to fill and complete the values in
the array. A t execution, the DOES>
portion o f CASE takes a value from the
stack and looks through the array for it.
A match executes the word, no match
executes the word a f ter OTHERS i n
source.

The form o f CASE is a new class o f
words, as CONSTANT , VARIABLE ,
MSG , etc. are. The code executed to test
the array is minimal.

1. 06
0 i CASE: t.lAME
1. A :[I:-[,jN L'f (1) 1.4A
2 ic 1: :; I::{.! FJ !" '1' 3: ('j F.j.-. 1:
7' r: 1:s FlINC:T1'11N-..D
4 ETC.
I [:IT 1.4 F: I?!;

.-. '. '.". .. .-: i l) I,: I iJ 14 [.; I .L !:I bI)

cj
7 :: <:AS[: CF3E:ATE I..IERE 0. y (AT COMF'IL.ATI:ON HlJLLrlS HEAI:IER,LINK
8 POIN'TS TO rII:tDR O F $ OF I."AIFiS
9 I-IE:I<E:: I:;E:T TCI AI:IDR CIF VAL .. I.IE...I . \

:L 0 DOES; (A T EXI":C:!J'I':l:!INp ADlSR (31' QOF I'AIRS)
:I. :L 1. ROT ROT U!JF' 2-+ SLJAF' d
:!. 2 !i ISC! 2I:IUF' @ -: IF ' ISUP 24 @ i CC)tiF'AIREi INPUT Vcrjl..lJE :)
:I. 3 1:;: x I: 1.: ij .r I:: 1.2 (:) .r S:IR 0 I=' o I: r~ T I? (3 .r w I 'T t.1 13 I,.. I..! I:: ;I , 1:: [; I:.. .T (:; 13 N X:I :I

:I. 4 L-[:Ai+I[;: E:l.,.!jE: 2.+ 2.t. 'rtjE:b$ L,(J('Jp i I:XE:Cl.!Tf:S A"";' ,);)1)[.;1.~# " 1 'i:l F-UNT:TIcl)N)

1 5 TiOT I F @ EXECUTE E:L.SE DF:I?F' 'i'l.iE:N IIROF:' ;

THIS IS THE END!
THE END OF VOLUME I I I

THE END OF YOUR MEMBERSHIP?
DON'T LET IT HAPPEN!

RENEW TODAY!

Page 189 FORTH DIMENSIONS 11116

Generalized CASE Structure
in FORTH

E.H. Fey

CASE: xxxx c f a l cfa2 cfan ; DOES> par t o f the compiler. Hence if we
simply change the definit ion of the DOES>
par t o f CASE: , we can transform it into a
general purpose case compiler.

to define a case selector word named
xxxx.

When the new word, xxx , is executed
i n the form

The Multi-Purpose Case Corrpiler
Introduction

The method ut i l ized to develop a
generalized case compiler is to compile a
number for the case type as the f i rs t byte
i n the parameter f ie ld o f xxx . A t
execution time, the number is retrieved
and used to select the appropriate DOES>
par t for the case type o f xxxx . The type
number is transparent t o the user.

The CASE CONTEST held by FIG last
year ended wi th some excellent
contributions to the FORTH literature.
The judges noted however that few people
tried to devise a generai case structure
encompassing both the positional type,
where the case is selected by an integer
denoting i ts position in the l ist o f cases
(ala FORTRAN's computed GO TO), and
the more general keyed type o f structure,
where the case selector key is tested for a
match in the case words key list.

the k'th word i n the l ist w i l l be executed.
For example, define the following words,
COW , CHICK, PIG , and BARN :

: COW ." MooOOoo" ;
: CHICK ." Peep" ;
: PIG ." Oink" ;

CASE: BARN COW PIG CHICK ;
The definit ion o f the new case

compiler is:

I f we now execute the sequence 2
BARN , Oink w i l l be typed. Similarly 1
BARN w i l l type MooOOoo.

: MCASE: <BUILDS SMUDGE ! CSP
HERE 1 C, 0 C, 1

DOES> DUP Cf@ DOESPART ; This article discusses a general case
structure which combines the positional
and keyed types. Like FORTH itself, the
case structure is extensible. I have added
a third type called range where the case
selector lkey is tested to be within the
range o f pairs o f values i n the case words
key list.

Although there are no error checks,
this case structure is easy to use, executes
fast and requires a minimum o f dictionary
space for each case word, xxx. Bilobran,
eta1 have used CASE: extensively i n
developing a FORTH f i le system with
named record components (1980 FORML
proc. pp 188, Nov. 1980). I have done
likewise iollowing their example.

where DOESPART is a case selector word
defined by CASE: .

The (BUILDS part o f MCASE: compiles
a "1" for the default case type (positional)
and a "0" for the count o f the number o f
cases entered into the case list. It also
leaves the parameter f ie ld address o f the
newly defined word on the stack so that it
can be found later during the compilation
process even though i ts name field is
smudged.

For any o f the three types o f
structures, the user is also provided wi th
the option o f using headerless high level
code sequences to specify the execution
behavior o f the individual cases.

The interesting par t of the definit ion
o f CASE: is the <BUILDS part which I have
called <LIST for obvious reasons. It
creates the dictionary entry for xxxx.
Then, a f ter executing SMUDGE and ! CSP
which are par t o f fig-FORTH's compiler
security, it executes 1 which forces
FORTH into the compilation state so that
the user can enter the list. The l ist is
terminated by ; which completes the
definit ion o f xxxx .

I f the newly defined case word, say
xxxx , is to be other than the positional
type, it is immediately followed by the
word KEYED or RANGE to define the
type o f xxxx as keyed type = 3 or range
type = 5.

A complete source listing in fig-
FORTH is given on screens 165 to 180
with i l lustrative exampies on screens 180
and 181. The source code listings may
seem lengthier than usual but it is the
author's practice to include the Glossary
definit ion r ight w i th the source and to
annotate the source code wit4 notes on
the status o f the parameter stack. VJhen
this practice is followed, I find FORTH t o
be an einminently readable language, even
months af ter the particu!ar coding has
been prepared. However, this style of
coding requires a good FORTH video
editor. With a good case structure in
FORTH, that is not d i f f i cu l t to develop.

:KEYED 3 OVER C ! ; IMMEDIATE
:RANGE 5 OVER C !: IMMEDIATE

For CASE: words, the l ist is a l ist o f
code field addresses o f previously defined
FORTH words. Since FORTH is i n the
compilation state when the l ist is being
entered, a l l the user has to do is l is t the
names o f the case select words (COW PIG
CHICK in the example o f BARN !.
FORTH then compiles their code f ie ld
addresses, as long as they are not special
IMMEDIATE words which execute during
compilation.

The case l ist subsequently entered
must agree with the case type specified.

Two options are provided for the
execution elements o f the case list. The
f i rst or default option is the single word
execution as i n CASE: . The second option
allows a headerless sequence of FORTH
words to be defined as the execution
elements of each case. The two may not
be mixed.

Background

In the Aug. '80 issue of Byte, K i m
Harris introduced a very simple positional
type of case compiler. A slightly revised
version o f his compiler is

Now suppose that we knew beforehand
that the code f ie ld address o f PIG was say
14332. The same definit ion o f BARN
could then have been achieved by

A default case a t the end o f the case
l ist is mandatory, although it may be a
null word. The default case must be
preceded by the word DEFAULT: whose
definit ion is

: CASE: <LIST DOES> IX @ EXECUTE ;

CASE: BARN COW [14382 , 1 CHICK ; where

: <LIST <BUILDS SMUDGE !CSP 1 ;
: I X (k p fa ... adr) SWAP 1 M A X

1- D U P + + ;

where [stopped the compilation state,
14382 was entered to the stack, the word ,
(comma) , compiled it and 1 resumed the
compilation state.

: DEFAULT: ?COMP EOL , HERE
OVER C@ [DEF] ; IMMEDIATE

where EOL is an end o f l is t terminator
constant defined by and is used i n the form:

The point is that <LIST is a powerful
word for entering named lists and data of
a l l sorts to the dictionary. The method o f
retrieval o f the data is determined by the

' ;S CFA CONSTANT EOL

FORTH DIMENSIONS 11116 Page 190

and [DEF 1 is a case selector word defined
by CASE: .

DEFAULT! f i rs t checks to see that you
are i n the compile state since you should
be compiling xxxx . It then enters the end
o f l ist terminator, EOL , to the diction-
ary. Finally it takes the parameter f ie ld
address o f xxxx l e f t on the stack by the
<BUILDS par t o f MCASE: , gets the type
o f xxxx and executes the case selector
word [DEF 1 depending on the type o f xxxx . I f the type is 1, 3 or 5, [DEFl counts
the number o f cases entered and stores it
in the second byte o f the parameter f ie ld
of xxxx . I f the case type is 2,4 or 6, then
the execution elements are headerless
code sequences. Hence for these types,
[DEF'l init iates the process o f defining
the default code sequence.

Execution of Case Selector

A l l case selector words, xxxx , defined
by MCASE: are executed i n the form:

k xxxx

where the key, k , is an integer. The
interpretation o f k in selecting the case
depends on the case l is t type.

With three case l is t types and two
options for each type, there are actually 6
different forms o f case lists available.
Let's consider f i rst the lists wi th single
word execution elements.

Single Word Execution Elements

(1) Positional type

MCASE: is used in the form:

MCASE: xxxx c f a l cfa2 ... cfan
DEFAULT: c fad ;

When xxxx is executed i n the fo rm k
xxxx , the case cfak w i l l be selected i f
k = l , 2 ,..., n . Otherwise the default
case, cfad, w i l l be selected and
executed.

(2) Keyed type

MCASE: xxxx KEYED
[k l , 1 c f a l

k2 , 1 cfa2 ...
r k n , 1 cfan
DEFAULT: c fad ;

When xxxx is later executed i n the
form k xxxx , the case c fa i w i l l be
executed if a value o f k=ki is found in
the list. Otherwise, the default case,
cfad , w i l l be executed.

145, 14
165 1:
166 C;
165 1
165 ?

3
166 4
16.4 5
166 6
it-la 7
1L.t S
166 1
166 10
166 i i

166 1 2
I t 5 13
145 i4
146 15
167 0
167 1
167 2

167 3
167 1
167 5
167 6
167 7
167 8
167 9
167 14
I67 i i

167 iZ
167 1 3

lL7 11
ib; 15
i63 0
163 1

169 2
166 3

163 4

165 5
163 6

163 7
166 6

169 f
169 10
168 i i
169 12
165 13
163 14
163 15
167 4
lo? 1
167 2

167 3
167 4
167 5

1 6 1 6
167 7

169 8
l b 1 9

EHF 10/'23/61

i EXECUTIU?4 VARIABLES A N D ARRAYS a18 Kin Har-risr Prte Auri ' 6 3 j

(PF 164 6159 S E ~ M, A + RcCosrt , FD I I (4 r r 107. EHF 2 / 1 i / 6 i j

: Ii: i h ~ f r . + . r , i ' , : ; i C ~ k F i i t e ~ ad7 of incie..: I(= l r 2 , . . , , n 1
SWAF 1 fiAX (+ . ~ f s k ~ i a x l)
1 - G U F ' f i ; (*. .~faf2:R-l : 1

' ; CFA I2 CO?iLTAN: COLE?; i For h e ~ d e r i e s s c o z i ~ d e f i z i t i o n s)
i 3 CFA CfiNST&!iT EDL (End of I i5L i ~ l i o ~ i t o r 1

-- ..
; CASE; .:,LIzT DOES,>- 1% @ E;;E;b;E ;
(Used ~n t;-~e f o r & ; CASE; ;:..;,.:'. cf il rf a = + ++; fan ; :
; t o cr r a t e ar, e::e,-utioii ar r av xi:,;:: w i t h i ; t i L i ; l v;;iue.:. c.fai. j

(c f ~ 2 , ,.,cfan &ich a r e code f l ~ i d addresses of F r e v i o s s i r ;
(& f i n e d wo:.ds+ E;;e:.btins ,r,i,.;;c i i ~ ti-{? ffo:r~: 1% XXP;,:

(w i l l pro-juce t h s a,;e-,utior, of c : G ~ \ r I..= I r Z r . , , 9 5 1

; LIST: .::LIST g3ES:; X X @ ;
i Lse3 1i1 form: LIST: >:>ti;:: C fi: r nZ r n3 r + , , + t I i i
(t o c . ;~; te a l i s t of c o n s t s n t s narurd ir;-:iix , E;:ecb:lns ;ix;rx j
; i n t h e fo:ir~: k x x x x w i i i i e r r e n K on t i i ~ sLz.:ri, 1

: XEgVAC: .:;LIST iigE3:i @ EXECUTE ;
Used ifi t h e f o r r ; XEOVAB: XiiXi: C ~ G i)

(t o c r e a t e an ~ ; ; e c u t i o n v s r i ~ h i e zxxx r i i h or, lr,iti,; v a : ; ; ~ j
(p f ~ which i s an ~;-ti~tiiis U D T G . E i : e ~ u t . i i ~ s >:>:it>: c.;jses) --i.
(,-fa t.2 bs e;ie-uted, The uo;d c f a mar be s.h&r;se.rj bs " s i n s ;
(I@ST,JLi nnrtii A: x>:;;x;.: ~ h ~ i t ~ . finrtn i s the i f i c~ , uzrc;, ;

: IWSTAL; (+ * , , - f a) [Cg%"'i:i] ' STAT; E IF Ca,I;?;LE CTA ELSE CFA
THEN ; I#3El;IATE

; AT (c f a + + . j L C $ j . " l . ' i i E l ' STAYE C IF C2.';".ILE ? t Cilfi3:iE !
ELSE 2+ ! THEN ; IH5ZLiIATE

: (ATb:IN) (k c f a r f ; . , ,) K3i 1 IYAA 2 1 t ! i i Ljtorej c f c a t j

(ad:=zi.,+r;fa w,',B:E k=lr29 . . . rn C ~ n l ~ i l e d bs ATt;:i4 . j

; A T ~ ; I ~ ; (1. c f a , , ,) iCs?f?ILEj ' STAIE g i F L35PIiE ATf.;if, >
ELSE (Ait,,i;{ 1 T8Et.l ; IfiYr".'*- 1rL1rnaE

; gsefi i n fo ; r : li It iSTALL c f ~ ATt<Iii >:;:l;i: i
i ~ h e r e ;.:>:;ti; sfi e>:ec.i;tion a r r a s defifie,< b r CASE; , ,-f a ; --;.

(is t h e new uord t o be i n s t a l i e d a s e ;ehsa t R=l ,T ,+ . , ,n j

(NOTE: fic.Cobrt's i a = l e s e n t a t i o n of t h e f;ir,ctiir.-r INSTALL Ait..iiij

(n o t w ~ r K i n s i d e a : d e f i n i t i o n , The sbave dszs,)

1, Three trrrs of case s t u c t u r e s :
2, PiJSITIONAL (d e f a u l t
b , EEYEU

n.ru: c, R^""
2 . s t r u c t u r e o ~ t l o n s f o x r s c h WE:

a, SIt.cLii U3Fii i EXECLii3; i d e f i c i t)
b , H I G H LEVEL HEAGERLE;; C t L E SERUENEE

(nerine 25E;pAR: and KIIE;] a s Ei:e,-utioa a r r a u s t o be f i l l e d j

(i n l a t e r)

~ ~ 5 2 : D~JESF~;:T ~ I ' J M C!JfS KID3 Kt33 Cllh CLi5 Wiln ; (6 cases)

C A S E ; CDEF] rtUM ngfi nS?i DdM nu?! ;

: CASE; (The s ~ f i e : a l ~ z e b c a s e c u e ~ r i l e :)
~ ~ ~ I L D S s H ~ D G E !CSP HERE (Leave r f s on s t s c k)

Page 191 FORTH DIMENSIONS 11116

(3) Range type

MCASE: xxxx RANGE
[L1 , Hi , 1 c f a l
[L2 , HZ , 1 cfa2
[Ln , Hn , 1 cfan
DEFAULT: cfad ;

For this type each of the n entries to
the case list consists of a pair of
values specifying the upper and lower
l imits of the range , Li and f-ii ,
followed by the execution element,
cfai.

When xxxx is later executed in the
form k xxxx , the case cfai wi l l be
selected i f the condition

is found during a search o f the list. I f
not, the default case, cfad , wil l be
exwuted.

Headerless Code Execution Uemnts

Instead of specifying the execution
elements as previously defined FORTH
words, the elements may be specified as a
sequence of FORTH words in the form:

H: seq ;H

DEFAULT: seq ;
where seq is the sequence of
executable FORTH words.

Again we have the three applicable
case list types, the default type, position,
the keyed type and the range type.
Examples of the structure of each o f these
types is

(1) Positional type

MC ASE: xxxx
H: ... seql ... ;H
H: ... seq2 ... ;H ...
H. *.. seqn ... ;H
DEFAULT: seqd ;

(2) Keyed type

MC ASE: xxxx KEYED
[k l , 1 ti: ... seql. .. ;H
[k2 , 1 H: ... seq2 ... ;H ...
[kn , 1 H: ... seqn... ;H
DEFAULT; ... seqd ;

1 CP ! QePault t s r s = 1)

I; CI I H;re:~e: o f case; i n list = Ir j
1 (Eiiter coa~ile s t a t e far l i s t j

DOES; DUP CP i Gets t r p r)

DOESPAFiT I E>:ecirtes a r r r o ~ r i a t e rear ih)
-- 2

: DEFA'JLT: (~ f e . , , j (ManGt:j:.s ~ 3 r d o s ~ i J bftf:. c.i;se:ist ii,:

(an MCASE: drf in i tAon , Co2!~i!~s $ 5 , j

?COMP EOL 9 HERE F!ER Cf3 (, , . r f a ;d;h t r ~ e >
CilEF3 i IMMEZI ATE

: t.17 i n ~ f a . . . n r t a f) (Checks f o r valici case:uzr,tt rt 7 w i t h :
(cour~t i n case l ist s i t - h fa s~ecified. True i f va l i d .
DUE:: DVEE i f CZ i + + + i t fa i t i . o b r ~ t 1
OVEF; i .< >.R (+..n rfa n count) > ,q;> Qi; (4' j - - ,..

; FD;;TI~NAL T- I F = .- WITH S!:$ULE W9X.i EXECUTIDN 0PTID:ir TYPE 1)

: PSFIHD (r~ ~ f 2 . t ~) i TVPE 1 case for DOESFART, f i n d s and ;
i E.. . - A b e - - - ,.e?. -3 c652 n o: d?fac;it i f ri::l or n>cisrcaunt f o -)

(MCASE: l i s t Ffs, Similar to i X f s : CASE: 1
f+T I F < . I - > < * ~ * A G i ~ i 2 f SEA? i , , . r f s f 2 n i

ELS': rig7 c@ ::F; ,j t s29r. E23.. FC.1 (, , ,F.f,+& c ;

: FSLiEF !. ~ r ' s adr.dcf .,,! i Criunts tr c a s e s ente:ed end st.o:es)
i in caseccbr,t at ~ f a i i , The zddress uf the d e f a u i t e f a i s ;
i st a b r d e f = rfatbt2Ln-i i j

OVER 5 + - 2 ,' i fa it-1)
i f SZA? i t C! ;

-- --
FORTH DIMENSIONS 11116

--
Page 192

3 Range type

MCASE: xxxx RANGE
[L I , Hi , 1 H: ... seql ... ;H
[L2 , HZ , 1 H: ... seql... ;H ...
[Ln , Hn , 1 H: ... seqn... ;H
DEFAULT: ... seqd. .. ;

The interpretation o f k in case
selecting is the same as previously
discussed for the single word execution of
the same case type. The only difference
i s that a FORTH sequence, ... seqi ... is
executed instead of a single FORTH word,
c fa i .
Examples

Examples o f a l l 6 possible
combinations of case structures are given
on Screens 180 and 181. If the screen is
loaded and examples tested, typical
execution results should be:

EXECUTE RESULT TYPED

1 BARN MOO
2 BARN OINK

18 BARN PEEP (~ e f a u l t)

1 ZOO PEEP PEEP PEEP
3 ZOO PEEP PEEP MOO

-6 ZOO OINK OINK OINK
(Default)

1 F A R M OINK (Default)
77 FARM MOO

-10 CASE MOOOINK PEEP
(Default)

77 CASE MOOoooOOO

-10 CORRAL
-1 CORRAL

309 CORRAL
310 CORRAL

COMMENTS

PEEP PEEP
OINK OINK
PEEP OINK MOO
MOO (~ e f a u l t)

1. K i m Harris' case compiler, CASE:
avoids the use of OVER = IF DROP
ELSE ... THEN for every case as used in
many of the other CASE constructs.
The result is shorter compiled code in
the application. The compiler,
MCASE: presented here is an extension
of CASE: and consequently shares this
feature.

2. The compiler, CASE: and the
Execution Array introduced by M.A.
McCourt i n F D II/4 pp 109 are
functionally equivalent. Further, the
Execution Variable, XEQVAR , o f
McCourt turns out to be a degenerate
case o f CASE: wi th only one element
i n the case list. The definitions

: XEQARRAY CASE: ;
: XEQVAR <LIST DOES> @ EXECUTE ;

(KEYEKi TYPE UITH SINELE U043 EXECUTION OPTION, TYPE 3)

: KSfiEF i r f a arjsd.;f, ,,) i Counts # cases entered and stores ;
(i n c.asecsir,t. at fail+ Ads:-e;s of defziilt c fa i;)
(sdr t i c f = ~ f & b b i - 4 : n - - l l 1
OVEE 6 + - 4 / i t ':$A' I f C ! ;

, f.a:ihi; ,,--I,7 i K pfa.. ,) (~ : . a ~ c h r s t r -e 3 11s: fo:. u ~ t c l ' ~ o f Ka-, !
tJ = + - - . - - A -f-+- E..: ,,r;uc=; :-- 'fc E-fie:. P I E : - C : , S ~ j . - - j

.: k2sS 2: s2fE.;;I,, ;-T 6.; r.atr.:l ifgl;i1j,)
71 S r z i K 1 :I-.$:,:JP g 7.z -
i: -.i -u- (, . .k 3 d - l f ;

IF ! not ED- i DVER DVER @ = i . , , t i ad: l k=Z? 1
I F ; nl~i,:ble~) 2+ I * * * k s&1+.2 ;

F::,:. - :;.;: 4 $:HEN (, , ,K ~ ~ A : , I I A ~ ..-'- - - 1

EL;E (EGL j 2+ (+ + , k z-',.-'- u. urf i
Tiifri R::. i , , + k a d r n e j f 1

UNTIL i i;-;tc-h2d or is:) SxA' &Fi2P @ Ej'EZGTE ;

; t i ~ ~ i t ; ~ ; (b: F < - l C + , ,) (S z i r c h ~ j ~ ~ c e 4 l i s t To: n i b L h uf k b ;
(is K * S:;ri; ct -'-: -. , E.;-.-..L - -

,*r;u rr, iSi5i1 l e ~ e i s=aue;,;.e / ---.i-

(foiio;jli lz iilst;;i a; k z f ~ u i : e; i jenc; if no k s i z h fu,i;ii, ;
2+ ~ E C I ~ ; i ;;: ~ ' j ? e r n Lo- - (, * * & -..'.: f ;

CI'J. I
r F (E21) OLIEE G$Efi @ = (, , , t i h=CT 2

IF < K I ~ ~ , c ~ z G) 4 + < * * + k & ? i t 4)
E r r ; . r;
4-

.,,, 2$ E " " - & :
I I ~ L S Y < h SG: it:-:t

ELSr (EGL) ? !
-T (.. + k ai:,<zf i

T if C f.i F: ,:: i + , , L sdrsed f i
i;:{;;i (fi&$,ch?d 6: EOL) Sb,>+ ii;<3- EX'ChTE ;

* , p~rit: ,a. (# p f ; , , ,) (S+s?c.hes t s r g 5 iist fay f l r s i uzcfirie;i;
i c~ uf I(#;:hlrl ~f r a i , ~ r . .;p;~e:, ;xe:i]tr era foiio;i-. ;
i li-. IJ Fs;T.t ;i;e.-..ie=. - B J C - - dPfEl , i t c f s i f noL folind ;
2.; b ~ ~ i r i 1 .. E I ~ ~ F P E;L .- i + + , I . 235-1 f

1; ; noi EG-) ,)YE;:; 2,;F; p^;imi 7 +I. L . i . + + k i L ,
ii (in ib35F j 4 T (+ + + K a d ~ i t 4)
ELSE I;.;- i - > R 5 i THEN (, , ,k 3 , 5 - ~ ; . : i i

ELSE < E O l i Zt i ..,k ahrdrf)
THE;; R). < +,+k 6'J. 1lei.d f)

U."IL ; In ransi or EOL; "'""
I(I axn7 fi!;d? EXEC:JTE ; ..

= 4 7 i h a ,-- i ALL R3.FiND ATt<itC D9ES?A?::

5 li.iSiALL RSL2F ATt, i i i [LIEF3

i RAN25 0YTIii:i WITH t i163 LEVEL ELF 114 L I S T Y TYPE 6)

: R2';ML; (k ~ f i . .,) (5esrches tvre 6 list fo? f r r s t o c c u r r - 1

(ence of k idiihln P E i r o f raiise vaiues. i S foandl e>:e2ut~sj
(f s i i ~ r i f i z h i& iei.ei se.aue;lce, e,iez"te; .25f sefi;i.=sce;
?+ BEGIN 1 ;F; fiy? - < + * * k ~ d ~ 1 f 1

Ii (n o t E3L) OVER OVEZ RANGE? (, . + k ad71 2)
(i n i- . .'.. & s r j 6 i (.+. K i d r i f b

ELSL R .: 1 - ,:.R 4 + @ THEN i , . . L i i v n i : i)

ELSE I EDL) 2+ (+..k a d r d e f)

Page 193 FORTH DIMENSIONS 11116

are fig-FORTH functional equivalents
o f McCourt's definitions. Hence
CASE: car] he used as an Execution
Array as suqgested by McCourt. The
definitions o f AT , ATKIN and
INSTALL on screens 167 and 168 can
he used ala McCourt to change the
elements in CASE: l ist words. They
are used in the form

k INSTAL yyyy ATKIN xxxx

t o chanqe the k'th element i n a case
list, xxxx defined by CASE: to the code
field address o f yyyy . Now whenever
k xxxx is enr:ountered, the word yyyy
wi l l he executed rattler than the
oriqinal word i n the k'th position o f the
case list.

LJsiny the previous CASE: example o f
HARN , i f we execute

2 INSTALL. COW ATKIN BARN

the second case i n BARN w i l l be
chanqed from PIG to COW. Later
execution o f 2 BARN anywhere i n the
program wi l l ther; type Moo0000
instead of Oink.

Although this is non-structured
programrninq, it is s t i l l a valuable
proqnlnming tool when used
properly. The present definitions o f
INSTAL!.. and ATKIN can he c~sed
within a c:olon definition.

Please nnte that the use o f the
Execution Array i n the development o f
MCASH: on screen 169 is purely
stylistic. It is not a necessary feature
o f t.he rlevelopnlent.

3. The essentially unique feature o f
1-CIKTt-1 is that i t is extendable by the
user. With an expanding FORTH
literature, it is clear to this author
that FORTH w i l l improve w i th t ime
faster ttian al l other lanqr~aqes and
that thert: is no upper l i ~ n i t Lo i ts
irr~prc?verne~~t.. It. has been less than 18
months since I first qot FCIRTH up and
runnhq. I n that short period o f time,
thanks to the fiq literature, t t ~ ?
FOFZTt-1 systerr~ I have rurit~inq now is,
in my opinion, vnstls s ~ ~ p e r i o r to m y
other lanqc~aqe 1 have ever seen. And
i t w i l l yet better:

THEN F:,- (. . + K aG:cte,d f)

UFiTIL (I n range CJ: E O L) 'JUA!? D 1 Y EXECUTE: i --

6 INSTALL F;klFIti;i AThIN fi3Ej?&li7
6 INSTALL PHIiEF ATtiIN L;:;j i 3; LUG.- +. r, - 2 ;nd 4)

; 5

n;p,s; ; BAT;^^ C U i P I G CHILI, DEFA'JLT: C H i C h i

WZGSE: 203 H: CtiICtt CHIC!. CHICt. i H
ti: COW e " 033933" ;H
H: C H I C K CdiCt.* LO3 i H
I , ~ F ' A L ~ L l ; F'Ig PI(', F ' iL ;

f'iCASK: FA?M KEYEl C 3; r I F I G
[. 77 r 3 COY
C l T r I CtiICt,
1ITFAli;T; I - '1G i

FORTH DIMENSIONS 11116 Pagc 194

FORTH STANDARDS TEAM MEETING

A FORTH Standards 7'earn meeting
will be held in Bethesda, MD, from May 11
through May 14. The meeting is open t o
the current Standards Team members and
a limited number of observers. The si te
will be the National 4H Center , a self-
contained educational facility, just outside
Washington, DC. The campus-like Center
has meeting rooms, dining facilities and
dormitory accommodations.

This four-day meeting will allow
world-wide Team members to consider
proposals and corrections for the current
FORTH Standard and develop future stan-
dards policy. Participation is possible by
submittal and attendance. Written sub-
mittals received by April 30 will be
distributed to at tendees before t he
meeting. La te receipts will be distribued
a t the team meeting. Those wishing to
at tend must apply without delay, a s space
is severely limited.

Applicants (other than team members)
must submit a biography by April 15 for
consideration by the credentials com-
mittee. You should include:

1. Your skills and comprehension of
multiple FORTH dialects and their
application.

2. Why your views a r e representat ive
of a significant portion of the
FORTH community.

Accommodations a r e $41 t o $47 per
day, per person, including meals. Send a
refundable $100 deposit (and biography for
observers) to the meeting coordinator.
You will receive further details on choices
in housing and meals.

Submittals a r e essential if Team
actions a r e to represent the broadening
scope of FORTH users. Specific con-
sideration will be given to an addendum
correcting FORTH-79, t he Team Charter ,
and alliance with other standards groups.
Those not attending may receive copies of
submittals by sending $30 to the rneetinq
coordinator.

All submittals and reservations should
be directed to the meeting coordinator:

Pam Totta
Creative Solutions
4801 Randolph Road
Rockville, MD 20852
(301) 984-0262

FORTH DIMENSIONS
VOLUME IV

BEGINS NEXT ISSUE

I/ From the Editor:

Beginning with the next issue, each
edition of FORTH DIMENSIONS will high-
light a special theme. Our May/June issue
will feature several art icles on complex
ari thmetic routines in FORTH such a s
fixed-point trig, square root, and floating
point. Of course, the remainder of each
issue will contain the usual technotes,
product rpviews, tutorials, let ters , e tc .

Suggestions for future themes include:

Process Control Applications
Database System Applications
Teaching FORTH
Data Acquisition and Analysis
FORTH in the Arts
CP/M
Laboratory Workstations
Serial Cornrnunications
Metacompilation and its Alternatives
The FORTH Environment

Yo~lr input to these topics is greatly
needed!

RENEW TODAY!

Page 195 FORTH DIMENSIONS 11116

LECTURES ON APPLIED FORTH

a two day seminar on Forth and its application

and t h e

1982 ROCHESTER FORTH CONFERENCE ON DATA BASES AND PROCESS CONTROL

May 17 through May 21, 1982
Un ive r s i t y of Rochester Roches ter , New York

As p a r t of t h e 1982 Rochester FORTH Conference on Data Bases and Process
Cont ro l t h e r e w i l l be a two day seminar on Applied FORTH. Managers and pro-
graxmners w i l l f i n d t h e s e l e c t u r e s ve ry u s e f u l f o r exp lo r i ng FORTH a p p l i c a t i o n s
and programming concepts , Each l e c t u r e r w i l l a l s o l e ad a Working Group a t t h e
subsequent Conference. P a r t i c i p a n t s should have a copy of Leo Brodie ' s book,
S t a r t i n g FORTH, which i s a v a i l a b l e from Mountain v iew-Press , PO Box 4656, Mt;
View, CA 94040 f o r $16.00.

Lec tu r e r s f o r t h e two dey seminar a r e :
Leo Brodie, au tho r of S t a r t i n g FORTH, on "Beginning FORTH".

Kim H a r r i s , of Laxen & H a r r i s , I n c . , on "FORTH Prog raming S t y l e "

Hans Nieuwenhuijzen, o f t h e Un ive r s i t y of U t r ech t , on "FORTH Programming
Environment I t .

Larry Fo r s l ey , of t h e Laboratory f o r Laser Ene rge t i c s , on "Extens ib le
Con t ro l and Data S t ruc tu r e " .

David Beers of Aregon Systems, Inc . , on "A Large Programming P r o j e c t Case
Study: Bui ld ing a R e l a t i o n a l Database i n FORTH".

S teven Marcus of K i t t Peak Nat iona l Observatory, on "Assemblers & Cross
Assemblers".

James Hawood o f t h e I n s t i t u t e f o r Astronomy a t t h e Un ive r s i t y of Hawaii,
on "Computation Tradeoff sf'.

Roger S t a p l e t o n of S t . Andrews Observatory. Scot land , on "Hardware Con t ro l
w i t h FORTH".

Raymond Dessey of V i r g i n i a Po ly t echn i c I n s t i t u t e , on "Concurrency, Net-
working and Ins t rument Control".

REGISTRATION FORM
(must b e r ece ived by A p r i l 23, 1982)

Name

Address

Ci ty S tate-ZIP

Phone (Days) ()

CHOICES TO BE MADE

- Applied FORTH Seminar, May 17 & 18

- 1982 Rochester FORTH Conference, May 19-21 .

- Housing f o r : (c i r c l e da t e s) May 16 17 18 19 20 21 $ 13.00/person d b l
16.50/person s g l

TOTAL AMOUNT ENCLOSED $

Make checks payable t o : "Univers i ty of RO ches te r /F~RTH Conference"

Send check and R e g i s t r a t i o n t o :
M r s . B. Rueckert , Lab f o r Laser Ene rge t i c s , 250 E River Rd, Rochester , NY 14623

Fo r informat ion c a l l : Barbara Rueckert (716) 275-2357

-
FORTH DIMENSIONS 11116 Paqe 196

NEW PRODUCTS
Marx FORT?-l for Northstar

now Available

Marx FORTH is a fast, powerful
FORTH system wri t ten i n Z-80 code.
Package includes self-compiler, complete
source code, screen editor, and "smart"
assembler. Some o f the features inclvde
calls to the N* directory functions allow-
ing creation, deletion and l isting of
directories and ease o f wr i t ing FORTH
programs that operate on f i les created by
N* BASIC. Some o f the performance fea-
tures include very fast compile speeds,
very fast math, 31-character variable
length names, case compiler security,
arguments-results, l ink f ie ld i n f ront o f
name, and many machine code definitions
for high speed.

The self-compiler allows you to change
anything. I f you don't like how I do it,
change it! Add anything you want. Price
is $85 on N* single density diskette.
Source l isting available separately for $25.

Perkel Software Systems
1636 N. Sherman
Springfield, MO 65803
(417) 862-9830

f i le o f screens), and Apple 3.2 and 3.3
disks; inquite about other formats.

Ben Curry
Curry Associates
PO Box 11324
Palo Alto, C A 94306

New Book: Introduction t o FORTH

Introduction to FORTH, a 142-page
textbook by Ken Knecht, presents the
most complete information available on
the MMS FORTH version o f the FORTH
language. It is wr i t ten for anyone who
wants to learn how to wri te computer
software using FORTH.

No previous knowledge o f FORTH is
required, but some exposure to Microsoft
Level I1 BASIC w i l l be helpful. Although
the book is designed specifically for the
MMSFORTH version o f FORTH for the
Radio Shack TRS-80 Models I and 111, most
program examples can be adapted to run
on other rnicrocornputers that use di f -
ferent versions o f FORTH.

FORTH Programming Aids

FORTH Programming Aids are high
level FORTH routines which enhance the
development and debugging o f FORTH
programs and complement cross compiler
and meta compiler operations wi th the
following features:

- A command to decompile high level
FORTH words from R A M into struc-
tured FORTH source code including
structure control words. This
command is useful to examine the
actual source code o f a FORTH
word, or to obtAIn variations o f
FORTH words by decompiling to
disk, editinq, and recompiling the
modified source code.

- A command to f ind words called by a
specified word to all nesting levels.

- Commands to patch improvements
into compiled words and to merge
infrequently called words for in-
creased program speed.

- Complete source code and 40-page
manual are provided.

Requires a FORTH nucleus using the
fig-FORTH model; a minimum o f 3K bytes
and a recommended 13K bytes o f free dic-
tionary space. $150 single CPU license;
$25 for manual alone (credit applied
toward program purchase). California
residents add 6.5% tax. Add $15 for
foreign a i r shipments. Available on 8-inch
ss/sd disks (FORTH screens or CP/M 2.2

RENEW NOW!

F O R M for Ohio Scientif ic

We've received f rom Technical
Products Co. a copy o f their newsletter.
This issue contains product news anrl
update screens for FORTH-79. We
applaud their intent o f good customer
support, bu t note technical errors i n
definit ion o f several standard words
(WORD, R@ , END-CODE , ZCONSTANT
,) This OSI-FORTH operates wi th
Ohio Scientif ic 0s-65D 3.3 operating
system release.

Their new address is Technical
Products Co., Box 2358, Boone, N C
28607--ed.

RENEW TODAY!

'
MCZ, ZO S, UDS FORTH

FORTH is now running on Zilog MCZ,
ZDS, and Mult i tech UDS microcomputer
systems. It has compiler, editor,
assembler, t ex t interpreter, and I /O drives
for floppy disk, Centronics printer, and
RS232 devices.

Assembly source listing is available
now fo r $10. Source code on diskette is
$50 (specify MCZ, ZDS, or UDS). User's
manual w i l l accompany each order.

Send checks t o Thomas Y. Lo, Uec t r i -
cal Engineering Department, Chung Yuan
Christian University, Chung Li, Taiwan,
Republic o f China.

Software for 09 C1P

Shoot The Teacher - Find the teacher and
shoot him with your water pistol.
(Teaches basic graphing) $6.95

Speedo - M e - Race the computer wi th
your car. (Dril ls basic addition and
multiplication) $6.95

Kamakaze Education Pack - Four pro-
grams in one. Addition, X Tables,
Spelling, and Place Value Dril l . Answer a
question and your men go on their last
mission. $11.95.

That's Crazy - A takeoff f rom a famous
TV Show where you risk your l i f e to jump
over cars and a canyon. A spelling
program that provides hours o f enter-
tainment. 1 $11.95 (specify qrade level)

Want Ads L i f e Skills - A program that
helps slow readers understand the Want
Ads. Five levels o f diff iculty. $7.95

Rescue S@ - Transport i n j l ~ red soldiers to
the hospital. But the enemy has covered
the ocean wi th mines. One o f them could
destroy you.

Addition - $11.95
Subtraction - $11.95
Multipl ication - $11.95
(a l l three on tape - $28.00)

Please include $1.00 to cover postage and
handling and send to:

Henry Svec
668 Sherene Terrace
London Ontario Canada
N6H 3K1

Page 197 FORTH DIMENSIONS 11116

The following vendors have versions o f
FORTH available or are consultants. (FIG
makes no judgment on any products.)

ALPHA MICRO
Professional Management Services
724 Arastradero Rd. b109
Palo Alto, C A 94306
(408) 252-2218

Sierra Computer Co.
617 Mark NE
Albuquerque, N M 87123

AFVLE
IDPC Company
P. 0. Box 11594
Philadelphia, PA 19116
(215) 676-3235

IUS (Cap'n Software)
281 Arlington Avenue
Berkeley, C A 94704
(415) 525-9452

George Lyons
280 Henderson St.
Jersey City, N J 07302
(201) 451-2905

MicroMction
12077 Wilshire Blvd. 1506
Los Angeles, C A 90025
(213) 821-4340

CROSS COMPLERS
Nautilus Systems
P.O. Box 1098
Santa Cruz, C A 95061
(408) 475-7461

POWFORTH
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, C A 90254
(213) 372-8493

LYNX
3301 Ocean Park 1301
Santa Monica, C A 90405
(213) 450-2466

M & B Design
820 Sweetbay Drive
Sunnyvale, C A 94086

Micmpolis
Shaw Labs, Ltd.
P. 0. Box 3471
Hayward, C A 94540
(415) 276-6050

North Star
The Software Works, Inc.
P. 0. Box 4386
Mountain View, C A 94040
(408) 736-4938

PDP-11
Laboratory Software Systems, Inc.
3634 Mandeville Canyon Rd.
Los Angeles, C A 90049
(213) 472-6995

0s
Consumer Computers
8907 LaMesa Blvd.
LaMesa, C A 92041
(714) 698-8088

FQRTH VENDORS
Softwere Federation
44 University Dr.
Arlington Heights, IL 60004
(312) 259-1355

Technical Products Co.
P. 0. Box 12983
Gainsville, F L 32604
(9041 372-8439

Tom Zimmer
292 Fa!cato Dr.
Milpitas, C A 95035

1802
FSS
P; 6. Box 8403
Austin, TX 78712
(512) 477-2207

Talhot Microsystems
1927 Curtis Avenue
Redando Beach, C A 90278
(213) 376-9941

ms-m
The Micro Works (Color Computer)
P. 0. Box 1110
De l Mar, C A 92014
(710) 942-2400

Mil ler Microcomputer Services
61 Lake Shore Rd.
Natick, M A 01760
(617) 653-6136

The Software Farm
P. 0. @ox 2304
Reston, VA 22090

Sirius Systems
3528 Oak Ridge Hwy.
Knoxville, T N 37921
(615) 693-6583

6502
Eric C. Rehnke
540 S. Ranch View Circle 1 6 1
Anaheim Hills, C A 92087

Saturn Software, LCd.
P. 0. Box 397
New Westmii~ister, BC
V3L 4Y7 CANADA

BOaOkZeS/CP/M
Laboratory Microsystems
4147 Beethoven St.
Los Angeles, C A 90066
(213) 390-9292

Timin Engineering CO.
9575 Genesse Ave. bE-2
San Diego, C A 92121
(714) 455-9008

Application Packages
InnoSys
2150 Shattcck Avenue
Berkeley, C A 94704
(415) 843-8114

Decision Resources Corp.
28203 Ridgefen Ct.
Rancho Palo Verde, C A 90274
(213) 357-3533

68000
Emperical Res. Grp.
P. 0. Box 1176
Milton, WA 98354
(206) 631-4855

Firmware, Boards and Machines
Datricon
7911 NE 33rd Dr.
Portland, OR 97211
(503) 284-8277

Forward Technology
2595 Mart in Avenue
Santa Clara, CA 95050
(408) 293-8993

Rockwell International
Microelectronics Devices
P.O. Box 3669
Anaheim, CA 92803
(714) 632-2862

Zendex Corp.
6398 Oougherty Rd.
Dublin, CA 94566

Variety o f FORM Products
Interactive Computer Systems,
6403 D i Marco Rd.
Tampa, FL 33614

Mountain View Press
P. 0. Box 4656
Mountain View, C A 94040
(415) 961-4103

Supersoft Associates
P.O. Box 1628
Champaign, I L 61820
(217) 359-2112

Consultants
Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852

Dave Boulton
581 Oakridge Dr.
Redwood City, C A 94062
(415) 368-3257

Leo Brodie
9720 Baden Avenue
Chatsworth, C A 91311
(21 3) 998-8502

Go FORTH
504 Lakemead Way
Redwood City, C A 94062
(415) 366-6124

Inner Access
517K Marine View
Belmont, C A 94002
(415) 591-8295

Laxen & Harris, Inc.
24301 Southland Drive, Q303
Hayward, CA 94545
(415) 887-2894

Microsystems, Inc.
2500 E. Foothill Blvd., a102
Pasadens, C A 91107
(213) 577-1471

-!+ FORTH DIMENSIONS will go to a pmduct matrix in Volume IV. Send in a list o f your products and services by Apri l 18

Inc.

FORTH DIMENSIONS 11116 Page 198

FIG CHAPTERS

How to form a FIG Chapter:

I. You decide on a t ime and place for the
f i rst meeting in your area. (Allow a t least
8 weeks for steps 2 and 3.)

2. Send FIG a meeting announcement on one
side o f 8-112 x 11 paper (one copy is
enough). Also send l ist o f ZIP numbers
that you want mailed to (use f i rst three
digits i f it works for you).

3. FIG w i l l print, address and mai l to
members w i th the ZIP'S you want f rom
San Carlos, CA.

4. When you've had your f i rst meeting wi th 5
or more attendees then FIG w i l l provide
you wi th names i n your area. You have to
te l l us when you have 5 or more.

Northern California
4 th Sat FIG Monthly Meetinq, 1:00 p.m., a t

Southland Shopping ~t r . , Hayward,
CA. FORML Workshop a t 10:OO am.

Southern California
Los Angeles
4th Sat F IG Meeting, 11:00 a.m., Allstate

Savings, 8800 So, Sepulveda, L.A.
Philip Wasson, (213) 649-1428.

Orange County
3rd Sat FIG Meeting, 12:00 noon, Fullerton

Savings, 18020 Brockhorst, Fountain
Valley, CA. (714) 896-2016.

San Diego
Thur FIG Mesting, 12:OO noon. Guy

Kelly, (714) 268-3100, x 4784 for
site.

Northwest
Seattle Chuck Pliske or Dwight Vandenburg, '

(206) 542-7611.

New England
Boston
1st Wed FIG Meeting, 7:00 p.m., Mi t re Corp.,

Cafeteria, Bedford, MA. Bob
Demrow, (617) 389-6400, x198.

Boston
3rd Wed MMSFOKTH Users Group, 7:00 p.m.,

Cochituate, MA. Dick Miller, (617)
653-6136 for site.

Southwest
Phoenix Peter Bates a t (602) 996-8398.

Tulsa
3rd Tues FIG Meeting, 7:30 p.m., The

Computer Store, 4343 So. Peoria,
Tulsa, OK. Bob Giles, (918) 599-
9304 or A r t Gorski, (918) 743-0113.

Austin John Hastings, (512) 327-5864.

Dallas
Ft . Worth
4 th Thur FIG Meeting, 7:00 p.m., Software

Automation, 1005 Business
Parkway, Richardson, TX. Marvin
Elder, (214) 231-9142 or B i l l Drissel
(214) 264-9680.

Mountain West
Salt Lake C i t v

 ill Haygood, (801) 942-8000

Mid At lant ic
Potomac Joel Shprentz, (703) 437-9218.

New Jersey George Lyons (201) 451-2905.

New York Tom Jung, (212) 746-4062.

Midwest
Det ro i t Dean Vieau, (313) 493-5105.

Minnesota
1st Mon FIG Meeting. Mark Abbott (days),

(612) 854-8776 or Fred Olson, (612)
588-9532. Cal l for meeting place
or wr i te to: MNFIG, 1156 Lincoln
Avenue, St. Paul, M N 55105.

Foreign
Australia Lance Collins (03) 292600.

England FORTH Interest Group, c/o 38,
Worsley Road, Frimley, Camberley,
Surrey, GU16 5AU, England

Japan FORTH Interest Group, Baba-bldg.
8F, 3-23-8, Nishi-Shirnbashi,
Minato-ku, Toyko, 105 Japan.

Canada - Quebec
Gilles Paillard, (418) 871-1960 or
643-2561.

W. GermanyWolf Gervert, Roter Hahn 29, D-2
Hamburg 72, West Germany,(O4O)
644-3985.

SIGN UP A FRIEND

START A PIG CIIAPTER

PUT THE ORDER FORM ON THE BULLETIN EOARE

Page 199 FORTH DIMENSIONS 11116

FORTH MTEREST GROUP MAIL ORDER

FOREIGN
USA AIR

Membership in FORTH INTEREST GROUP and Volume IV of $15 $27
FORTH DIMENSIONS (6 issues)

Volume III of FORTH DIMENSIONS (6 issues) 15 18

Volume I1 of FORTH DIMENSIONS (6 issues) 15 18

0 Volume I of FORTH DIMENSIONS (6 issues) 15 18

fig-FORTH Installation Manual, containing the language model of 15 18
fig-FORTH, a complete glossary, memory map and installation instructions

0 Assembly Language Source Listing of fig-FORTH for specific CPU's
and machines. The above manual is required for installation.
Check appropriate boxes. Price per each.
0 1802 0 6502 6800 6809

8080 9 8066/8088 9900 0 APPLE I1
PACE NOVA PDP-11 0 ALPHA MICRO

"Starting FORTH" by Brodie. BEST book on FORTH. (Paperback)
"Starting FORTH" by Brodie, (Hard Cover)

PROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference

PROCEEDINGS 1981 FORTH University of Rochester Conference

PROCEEDINGS 1981 FORML Conference, Both Volumes

Volume I, Language Structure
Volume 11, Systems and Applications

FORTH-79 Standard, a publication of the FORTH Standards Team

0 K i t t Peak Primer, by Stevens. An indepth self-study primer

BYTE Magazine Reprints o f FORTH articles, 8/80 to 4/81
FIG T-shirts: - O Small Medium Large X-Large

O Poster, Aug. 1980 BYTE cover, 16 x 22"
0 FORTH Programmer Reference Card. I f ordered separately, send a

stamped, addressed envelope.
TOTAL

16 20
20 25

25 35

25 35

40 55

25 35
25 35

15 18

25 35

5 10
10 12

3 5
FREE

NAME MAIL STOP/APT
ORGANIZATION (i f company address)

ADDRESS
CITY STATE ZIP COUNTRY
VISA MASTERCARD f L
EXPIRATION DATE (Minimum of $10.00 on charge cards)

Make check or money order in U S Funds on US bank, payable to: FIG. All prices include
postage. No purchase orders without check. California residents add sales tax.

ORDER PHONE NUMBER: (415) 962-8653

FORTH INTEREST GROUP PO BOX 1105 SAN CARLOS, C A 94070

