

F O R T H
m

EGGS, OVALS EASY - ROBERT GARIAN

C 6
The method for drawing described here generates shapes like footballs, ellipses, and eggs. An oval is
generated by three radii, variations in which produce several classes of oval objects. And it is just as easy
to draw filled ovals ...

m
FILLING ALGORITHMS - ZBIGNIEW SZKARADNIK

10
Filling algorithms are specially suited to Forth because of the ease of using the stack for data storage. The
author discusses filling areas of known contour and filling polygons whose vertices are known.

m
PDE FULL-SCREEN EDITOR - FRANS VAN DUZNEN

14
Another editor, yes, but with differences ... multi-file editing, windows, copying screens between files,
single-step execution-with stack control--of on-screen words, nested VIEWS, and more. Even if you don't
use F83 (the flavor of this code), you will certainly want to adopt some of the author's ideas.

ACCESSING 80286 EXTENDED MEMORY - RICHARD F. OLIVO
19

MS-DOS was written for the 80286's "real" mode, leaving 15 unaddressable Mb of memory that is further
limited by the PC architecture. Even with extended memory cards, a program under MS-DOS cannot directly
read from or write to such memory. The ROM BIOS does, however, provide a way out. Here are some Forth
words that access memory well above the one-meg boundary.

EXPERT SYSTEM TOOLKIT - MARCUS CRUZ e 23
Here the author describes his environment in which to write expert systems. It uses a set of Forth words to
define the rules, questions, and answers one finds in an expert system. There are just three basic steps: define
the questions, the rules, and at last the order of the rules and the answers they lead to.

m
TWO ASSEMBLERS ARE BETTER THAN ONE - DARRYL C. OLIVIER

30
The Forth assembler is handy for short pieces of code but cumbersome for large routines. A full-fledged
macro assembler is ideal for larger routines but messy to implement. Fortunately, we can use a regular macro
assembler and treat the binary output as a Forth word.

Editorial
4

Letters
5

Best of GEnie
32

Reference Section
33

FIG Chapters
36-39

Advertisers Index

37

Volume XI, Number 2 3 Forth Dimensions

Call for Articles:
FORTH HARDWARE

Creative Solutions' Don Colburn was
recently attending a developers conference
where he met, by chance, one of the Forth
Interest Group's directors. He suggested
Forth Dimensions pay for articles about a
particular theme announced by the editor.
I'm usually in favor of paying authors, so I
passed the idea to FIG for consideration
along with some other items. We didn't end
up with a fixed policy, but we will try it and
let the results do the talking.

Therefore, we are happy to offer pay-
ments of $450, $300, and $225, respec-
tively, to the three authors whose articles
are chosen as best suited for the upcoming
theme issue about "Forth Hardware." The
issue is currently scheduled for FD XU6.
We need your theme-related submission by
November 1 , 1989 to be included in this
offer.

I will work closely with our technical
reviewers to choose articles that merit
payment and publication in the theme is-
sue, and those decisions will be final. If an
article of high quality and interest is not
among the three selected, Forth Dimen-
sions may ask to publish it later under our
standard terms: payment in the form of peer
recognition, technical feedback, and a
couple of free copies. Along with, of
course, the satisfaction that comes from

, making a contribution to our growing body
of common knowledge.

Now is the time to jot down your article
idea, and maybe a brief outline from which
to work. Deadlines lurch up unexpectedly
fast, especially when you want to track
down the last idea you had while polishing

that "final" draft and it's time to prettify the
code for publication.

I look forward to hearing from you!

If you haven't rushed out to write about
Forth hardware yet, you probably have a
few minutes to peruse the rest of this issue.
Dust off your graphics vocabulary and dig
into "Eggs, Ovals Easy" (my nomination
for best original title) and "Filling Algo-
rithms." The last is by one of our authors in
Poland, where several items have been
published about Forth. We have very few
details, and can only speculate about how
Forth is being used there and how well it is
regarded.

In fact, I received a couple of manu-
scripts from Poland at about the time Jack
Woehr's Chapter Coordinator column
pointed out that Forth interest overseas is
far from on the wane. Another two articles
from Spain showed up in the mail that same
week--one appears in this issue titled,
"Expert Systems Toolkit." We appreciate
the efforts of these far-flung fellow Forth
users, many of whom will be key to the
future of Forth development around the
world. We welcome each of them to our
community-may we learn a great deal
from one another.

--Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume XI, Number 2

July/August 1989
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: ForthInter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1989 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-cornrner-
cia1 purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers, and engineers who
create practical, Forth-based solutions to real-
worldneeds. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose, CA. POSTMASTER:
Send address changes to Forth Dimensions,

1 P.O. Box 8231, San Jose, CA 95155."

I

Forth Dimensions 4 Volume XI, Number 2

1
Volume XI, Number 2 5 Forth Dirnenriom

this make to the Forth landscape?
I assume that each instance of a class is

created by honoring each of the data decla-
rations in the hierarchy of classes. For
example, FIXED-STACK creates an in-
stance object by creating the BoS and ToS
instance variables inherited from the
STACK class, followed by the MAXS I ZE
instance variable directly declared in the
FIXED-STACK class, followed by space
for the stack itself. Wow! Presumably the
name fields, such as TOS and BOS, aren't
recreated with each instance object.
Rather, those names should become shared
addressing methods for FLOAT and
STACK classes (as well as any of their
descendent classes).

Less inspirationally, there remains the
need for programmer-supplied typing of
objects. Abu-Mostafa has provided his
object-oriented method of taking the aver-
age of two numbers:
USE FLOAT
A @
B @
+ 2 /
C !

The introductory phrase USE FLOAT
should not be necessary in an object-ori-
ented language. Because objects such as A
and B are known to be of a given class, the
methods for fetching and adding them
should be automatically predetermined.
Only those methods owned by an object
should be available for use, and the use of
any other methods should result in enor
messages.

I will stand by my description of stan-
dard Forth as having a two-stack architec-

(Continued on page 35.)

Wish List
Dear FIG,

One comment I want to give is that we
should adopt the Modula-2 definition mod-
ule for specifying all Forth abstract data
types. This would allow standard libraries
to be developed from Forth implementation
modules by using the vocabulary structure.
Definition modules are readily available
for lists, priority queues, binary s€!arch
trees, AVL trees, records, B W S , Sets,
polynomials, and graphs.

Also, I want to see more written about
using a Forth Prolog interpreter for conver-
sions between regular expressions, deter-
ministic and nondeterministic finite auto-
mata, push-down automata, context-free
grammars, and Turing machines.

Some discussion about the limits of
computability and the Chomsk~ Hierarchy
would help set the diverse Forth commu-
nity on common ground for an even more
productive future.

John Howard
627 N.E. Terrace Drive
Kansas City, Missouri 641 16

Curious About Code With Class
Dear Marlin,

A significant reward for being pub-
lished is the comfort derived from knowing
that your interests are shared by others. I
now h o w that Dr. Awan Abu-Mostafa
shares my interest in object-oriented Forth
(OOF). Forthis I am thankful and relieved.
Before seeing his letter, 1 was worried that
the audience of Forth Dimensions may not
really be interested in this topic. While that
possibility remains, at least I have found
one voice willing to speak UP in support of
OOF.

I am overjoyed to hear Forth program-
mers support object-oriented Forth pro-
gramming. By taking the role of devil's
advocate and criticizing OOF, I hoped to
motivate readers to develop better object-
oriented Forths than have been offered so
far in the Forth journals. At least some of
my whines were considered legitimate,
such as the mixing of postfix and prefix
notation while manipulating data ("It's a
bad design"). By the way, Rick Hoselton
managed to get the syntax correct on the
first try (See "Object-Oriented Forth in
Forth Dimensions X/2).

Clear progress is being made to over-
come all the obstacles to OOF. Still, it's
hard to express an educated opinion regard-
ing OOF without more published works to
draw upon. If I had access to as-yet unpub-
lished works, I might only have positive
things left to say about object-oriented
Forth @OF).

As further explanation of my point of
view, realize that the guidance offered in
my series of articles [FD X/2-51was the
design of data structures, not how to best
produce obj&t-orientedForth. However, to
the extent that I observed how well the
object-oriented programming model re-
sulted in more portable and reusable de-
signs, I felt compelled to acknowledge
~p and to encourage its study.

Now back to my provocations: I am
extremely curious about the implementa-
tions Abu-Mostafa has come up with to
support postfix messaging, private and
public methods, and inheritance.

Of extreme interest is the embodiment
of several &ta and colon-definition decla-
rations within a structure that looks like a
super colon definition (delimited by
: CLASS and ; CLASS). What change does

YES, THERE IS A BETTER WAY
A FORTH THAT ACTUALLY

DELIVERS ON THE PROMISE

I POWER

HSIFORTH's compilation and execution speeds are
unsurpassed. Compiling at 20,000 lines per minute, ~t
compiles faster than miny systems Ilnk. For real lobs
execution speed IS unsurpassed as well. Even non-
optimized programs run as fast as ones produced by
most C compilers. Forth systems designed to fool
benchmarks are slightly faster on nearly empty do
loops, but bog down when the colon nesting level ap-
proaches anythlng useful, and have much greater
memory overhead for each definit~on. Our optimizer
gives assembler language performance even for
deeply nested definitions containing complex data and
control structures.

HSIFORTH provides the best architecture, so good that
another major vendor "cloned" (rather poorly) many of
its features. Our Forth uses all available memory for
both programs and data with almost no execution tlme
penalty, and very llttle memory overhead. None at all for
programs smaller than 200kB. And you can resize seg-
ments anytime, without a system regen. With the
GigaForth option, your programs transparently enter
natlve mode and expand into 16 Meg extended memory
or agigabyte of virtual, and run almost as fast as in real
mode.

Benefits beyond speed and program size Include word
redefinition at any time and vocabularystructures that
can be changed at will, for instance from simple to
hashed, or from 79 Standard to Forth 83. You can be-
head word names and reclaim space at any time. This
includes automatic removal of a colon deftnition's local
variables.

Colon definitions can execute ins~de machine code
primitives, great for interrupt 8 exception handlers.
Multi-cfa words are easily implemented. And code
words become incredibly powerful, with mult~ple entry
points not requiring jumps over word fragments. One of
many reasons our system is much more compact than
itslmmense dict~onary (1 600words) would imply.

1 INCREDIBLE FLEXIBILITY

The Rosetta Stone Dynamic Llnker opens the world of
utility libraries. Link to resident routines or link 8 remove
routines interactively. HSIFORTH preserves relocata-
bility of loaded libraries. Link to BTRIEVE METAWIN-
DOWS HALO HOOPS ad ~nfinitum. Our call and data
structure words provide easy linkage.

HSIFORTH runs both 79 Standard and Forth 83 pro-
grams, and has extensions covering vocabulary search
order and the complete Forth 83 test suite. It loads and
runs all FIG Libraries, the main difference being they
load and run faster, and you can develop larger applica-
tions than wlth any other system. We like source code in
text files, but support both file and sector mapped Forth
block interfaces. Both line and block file loading can be
nested to any depth and includes automatic path
search.

Volume X I , Number 2

FUNCTIONALITY APPLICATION CREATION TECHNIQUES 1
More important than how fast a system executes. IS

whether ~t can do the job at all. Can it workw~th your
computer. Can it work with your other tools. Can ~t trans-
form your data Into answers. A language should be
complete on the first two, and minlmlze the unavoidable
effort requ~red for the last.

HSIFORTH opens your computer like noother lan-
guage. You can execute function calls. DOS com-
mands, other programs lnteractlvely, from deflnlt~ons.
or evenfromf~les belng loaded. DOS and BlOSfunction
calls are well documented HSlFORTH words, we don't
settle forgiving you an INTCALLand saylng "haveat ~t".
We also Include both fatal and lnformat~ve DOS error
handlers, Installed by executing FATALor INFORM

HSIFORTH supports character or blocked, sequent~al
or random I 0 The character stream can be recelved
fromlsent to console, flle, memory, prlnteror com port
We Include a communlcatlons plus upload and down-
load utll~ty, and foregroundibackground muslc Dlsplay
output through BlOS for compat~bll~ty or memory
mapped for speed

Our formatt~ng and parslng words are w~thout equal In-
teger, double. quad. flnanc~al. scaled, tlme, date, float-
lng or exponent~al, all our output words have str~ng
formattlng counterparts for bulldlng records We also
prov~de words to parse all data types w~th your cholce of
f~eld defln~t~on HSIFORTH parses flles from any Ian
guage Other words treat flles l~ke memory, nn@H and
nnlH read or wrlte fromito a handle (file or dev~ce) as
fast as poss~ble For advanced flle support. HSI FORTH
eas~ly llnks to BTRIEVE, etc

HSIFORTH supports texVgraph~c wlndows for MONO
thru VGA Graphlcdrawlngs (I~ne rectangle ell~pse) can
be absolute or scaled to currentwlndow slze and
cl~pped, and work w~th our penplot routlnes Wh~le great
for plottlng and llne drawlng, ~t doesn t approach the ca-
pabll~tles of Metawlndows (tm Metagraphlcs) We use
our Rosetta Stone Dynam~c Llnker to Interface to Meta-
wlndows HSIFORTH w~th MetaW~ndows makes an un-
beatable graphlcs system Or Rosetta to your own
preferred graph~cs drlver

HSIFORTH prov~des hardwarelsoftware floatlng polnt,
includ~ng trig and transcendentals. Hardware fp covers
full range trig, log, exponential functions plus complex
and hyperbolic counterparts, and all stack and compari-
son ops. HSIFORTH supports all 8087 data types and
works In RADIANS or DEGREES mode No coproces-
sor? No problem. Operators (mostly fast machlne code)
and parselformat words cover numbers through 18 d~g-
its. Software fp ellminates conversion round off error
and minimizes conversion time.

Slngle element through 40 arrays for all data types In-
cludlng complex use mult~ple cfa s to Improve both per-
formance and compactness Z = (X-Y) I (X + Y) would
be coded X Y - X Y + I IS 2 (16 bytes) tnstead of X (a
Y @ - X @ Y @ + I Z 1(26 bytes) Arrays can Ignore 64k
boundaries Words use SYNONYMsfor data type lnde-
pendence HSIFORTH can even prompt the user for
retry on erroneous numerlc Input

The HSIFORTH machlne coded strlng l~brary w~th up to
3D arrays IS w~thout equal Segment spannlng dynam~c
strlng support Includes Insert, delete, add, flnd, replace,
exchange, save and restore strlng storage

Our minimal overhead round robln and tlme slice multl-
taskers require a word that exlts cleanly at the end of
subtask execution. The cooperative round robin multi-
tasker prov~des lnd~vidual user stack segments as well
as user tables. Control passes to the next taskiuser
whenever desired.

HSlFORTH assembles to any segment to create stand
alone programs of any size. The optim~zer can use HSI
FORTH as a macro library, or complex macros can be
bullt as colon words. Full forward and reverse labeled
branches and calls complement structured flow control.
Complete syntax checking protects you. Assembler
programming has never been so easy.

The Metacompller produces threaded systems from a
few hundred bytes, or Forth kernelsfrom 2k bytes. W~th
it, you can create any threading scheme or segmenta-
t~on architecture to run on d~sk or ROM.

You can turnkey or seal HSIFORTH for distr~bution, with
no royaltlesfor turnkeyed systems. Or convert for ROM
in saved, sealed or turnkeyed form.

HSIFORTH includes three editors, or you can qulckly
shell to your favorite program editor. The resident full
wlndow editor lets you reuse former command llnes and
save to or restore from a flle. It IS both an lndlspensable
development aid and a great user interface. The macro
editor prov~des reuseable functions, cut, paste, file
merge and extract, sesslon log, and RECOMPILE. Our
full screen Forth ed~tor edits file or sector mapped
blocks.

Debug tools Include memoryistack dump, memory
map, decomplle, slngle step trace, and prompt options.
Trace scope can be limited by depth or address.

HSIFORTH lacks a modular comp~lat~on envtron-
ment One motlvatlon toward modular compllat~on IS

that, w~th convent~onal comp~lers recomplllng an entlre
appllcatlon to change one subroutine 1s unbearably
slow HSIFORTH complles at 20,000 llnes per mlnute
faster than many languages llnk- let alone compllel
The second motlvatlon 1s I~nklng to other languages
HSIFORTH llnks to fore~gn subroutines dynamically
HSIFORTH doesn t need the extra layer of flles, or the
programs needed to manage them W~th HSIFORTH
you have source coda and the executablef~le Per~od
Development envlronments are cute and necessary

for unnecessar~ly complicated languages Slmpllc~ty IS

so much better

HSIFORTH Programming Systems
Lower levels Include all funct~ons not named at a h~gher
level Some funct~ons available separately

Documentat~on 8 Worklng Demo
(3 books, 1000 + pages, 6 Ibs) $ 95

Student $1 45
Personal optlmlzer, scaled 8 quad Integer $245
Profess1onal80~87. assembler. turnkey. $395

dynamlc strlngs, mult~tasker
RSDL Ilnker.
physlcal screens

Product~on ROM. Metacomptler, Metawlndows
$495

Level upgrade, price d~fference plus $ 25
OBJ modules $495.
Rosetta Stone Dynam~c L~nker $ 95.
Metawindows by Metagraph~cs (tncludes RSDL)

$1 45
Hardware Floating Point 8 Complex $ 95.
Quad Integer, software floating polnt $ 45.
Time sllce and round robin multitaskers $ 75.
GigaForth (802861386 Native mode extension) $295

HARVARD
SOFTWORKS

PO BOX 69
SPRINGBORO, OH 45066

(51 3) 748-0390 I

I
7 Forth Dirnensionr

Glossary

Special Terms
biradial arc

A circular arc is swept out by a single
radius around a point; a biradial arc is
swept out by a varying-length line seg-
ment arrived at using the values of two
fixed radii. A biradial arc becomes a
circular arc only when the two radii are
equal.

convex
A plane curve is convex if any straight
line cuts the curve in just two points.

hemioval
The northern or southern part of a gen-
eralized oval, divided by the equator.

oval
A closed curve bounding a convex
domain.

pole
The point at which the height of a
hernioval is maximum or minimum.

HS/Forth Words
FIND <word> O= ? (...)

Similar to IF THEN and used to load
extension modules as needed, i.e. if
<word> wasn't found.

VAR
A word created by VAR has three pos-
sible actions: return a stored number,
store a number, or return the address
where a number is stored. VARs are a
hybridbetween constants and variables.
If X is a var, then 10 IS X will store 10
at the address of X, and X alone will
simply leave 10 thereafter.

FI
A loop index used by the coprocessor,
similar to I.

FSIN. FCOS. F+, F-, F*
Math functions directed toward the
coprocessor.

Convert single numbers to and from
floating-point numbers on the respec-
tive stacks.

%
Precedes a number to be put on the
floating-point stack.

I I

Figure Two. Typical egg shape.

Figure Three. Eggs of increasing point height.

Figure Four. Nested eggs of varying poirtt heights and equatorial radii.

FOR X=D-R1 TO D+R1 STEP . 0 3
Y l=R3 * S Q R (~ - ((X-D) / R 1) " 2) + C
Y2=R2 * - S Q R (~ - ((X-D) / R 1) " 2) + C
PSET (X, Y1) ,1
PSET (X I Y2) ,1
NEXT. X

Figure Five. The explicit oval function written in BASICA.

Forth Dimensions 8 Volume XI, Number 2

\ Source code fo r "Eggs, ovals easy." by Robert Garian, 24Dec88
\ Written i n Harvard Softworks' HS/Forth 3.4 f o r IBM PC and compatibles
\ Uses Math Coprocessor.

FIND DG->RD O= ? (FLOAD TRIG) DECIMAL \ Floating p t . & Trig. f t n s .
FLOATS
FINIT \ I n i t i a l i z e coprocessor
DEGREES \ Compute i n degrees
BW640 \ High resolution mode

O V A R C
0 VAR D
0 VAR R 1
0 VAR R2
0 VAR R3
0 VAR STJ?
1 VAR KOLOR

\ See Fig. 1
\
\ radius 1
\ radius 2
\ radius 3
\ s tep s i z e
\ Erase=O Draw=l

: ORIGIN 99 IS C 319 IS D ; \ centers oval a t (99,319)

: BARC (TO-ANGLE EROM-ANGLE -) \ Note: .4166667=5/12=aspect
DO FI FDUP \ next angle
FSIN R2 S->F % .4166667 F* F* F->S C + \ compute corresp. row
FCOS R1 S->F F* F->S D + \ compute corresp. co l
KOLOR PIX!) LOOP ; \ s e t p ixe l

: OVAL (-)
361 181 BARC
R3 IS R2
181 0 BARC ;

\ draw northern a r c
\ cross ecpator
\ draw southern a r c

: NEST-OF-EGGS WIPE ORIGIN
CR ." Equatorial radius i s increasing''

90 IS R3 \ f ixed R3
30 IS STP
300 50 DO I IS R 1 \ new R 1

50 150 DO I IS R2 \ new R2
OVAL \ draw the oval

STP -1 * +LOOP
STP +LOOP ;

: ONE-EGG \ draw an egg t o specif icat ions
ORIGIN
CR ." Use whole numbers between 10 and 200. Typical egg i s 50 100 75."
CR ." Enter radius a t equator: ' #IN IS R 1
CR ." Enter height of NORTH pole: ' # I N IS R2
CR ." Enter height of SOUTH pole: ' #IN IS R3
WIPE OVAL ;

6 VAR #COLS
2 VAR #ROWS
0 VAR HJUMP
0 VAR VJUMP
20 VAR F1
30 VAR F2

\ horizontal spacing
\ ve r t i ca l spacing

\ s t r e t ch f ac to r
\ s t r e t ch f ac to r

I

Volume XI, Number 2 9

I WlSC CPU116
The stack-oriented "Writeable Instruction Set 1 1 1
Computer" (WISC) is a new way of harmonizing
the hardware and the application program with the
opcode's semanttc content. Vastly Improved
throughput is the result.

Assembled and tested WlSC for
IBM PCIATIXT $1500
Wirewrap Kit WlSC for IBM PCIATIXT $ 500
WlSC CPUI16 manual $ 50

MVP-FORTH
Stable - Transportable - Publlc Domaln - Tools
You need two primary features ~n a software devel-
opment package ... a stable operating system and
the abil~ty to move programs easily and qulckly to a
var~ety of computers. MVP-FORTH glves you both
these features and many extras

MVP Books - A Series
Vol. 1, All about FORTH Glossary $28
Vol. 2, MVP-FORTH Source Code $25
Vol. 3, floating Point and Math 535
Vol. 4, Expert System $22
Vol. 5, File Management System $30
Vol. 6, Expert Tutorial $22

I3 VOl.'7, FORTH GUIDE $25
I3 Vol. 8, MVP-FORTH PADS $55

Vol. 9, WorkIKalc Manual $25
MVP-FORTH Sofiware - A trans-
portable FORTH

MVP-FORTH Programmer's Kit Including
disk, docurnentatcon Volumes 1.2 t. 7 of MVP
Series, FORTH Applical~ons, and Startlng
FORTH, IBM, Apple, Amiga, CP/M, MS-DOS,
PDP-11 and others. Spec~fy. $225
MVP-FORTH Enhancemenl Package for
IBM Programmer's Kit, Includes full screen edi-
tor & MS-DOS f~ le ~nterface. $110
MVP-FORTH Floating Point and Math

IBM. 0 Apple, or CP/M. 8" $100
MVP-LIBFORTH for IBM Four d~sks of
enhancements $25
MVP-FORTH Screen ed~tor for IBM $15
MVP-FORTH Graph~cs Extension for

IBM or Apple $100
MVP-FORTH PADS (Profess~onal
Appl~cat~on Development System)
An Integrated system for custom~z~ng your
FORTH programs and appl~cat~ons PAOS IS a
true profess~onal development system Speclfy
Computer IBM Apple $500
MVP-FORTH Floaling Point Math $100
MVP-FORTH Graphics Extension $100
MVP-FORTH EXPERT-2 System
for learn~ng and developing knowledge based
programs Spectfy Apple IBM or

CP/M 8 $175

Order Numbers:
800-321 -41 03

(In Californta) 415-961-4103

I FREE
CATALOG I I

MOUNTAIN VIEW
PRESS

PO DRAWER X
Mountain View, CA 94040

Forth Dirnensiot

FILLING
ALGORITHMS
- -

ZBIGNIEW SZKARADNIK - BYTOM, POLAND

Algor i thms making use of a stack 1 1
for storing data are quite often applied in
practice. However, if a high-level lan-
guage is used, it is usually hard to imple-
ment a stack efficiently. This does not
concern Forth, of course, which is spe-
cially suited to such algorithms. Filling
algorithms are very applicable here.

The task of filling an area may be de-
fined as follows:

Filling an area of known contour (not
necessarily regular).
Filling the interior of a polygon (not
necessarily convex) whose vertices'
coordinates are known.

"Forth is specially suited
to such algorithms."

Let us begin with the first algorithm,
realized as the word F i 11 in Listing One.
The algorithm assumes that the closed
contour of an area is stored in video mem-
ory, and that the coordinates of a point
lying within the contour are known. This
point is called the seed, and its coordinates
are pushed onto the stack. In the next step,
the seed point is displayed at a given posi-
tion and intervals connecting it with the
contour to the right and left are drawn. At
that time, the coordinates of the extreme
points X le f t and Xright of thecontour
are calculated. Next (Scan) is called,
which investigates the line above and the
line below the plotted interval (limited by
X l e f t and right). The investigation's
effect is to find new seeds, whose coordi-

Figure One.

nates are pushed onto the stack. The de-
scribed actions, as shown in Figure One, are
repeated until the stack is empty. The ~ o t
word-used by F i 11-allows displaying a
point at coordinates X,Y while Po in t
checks to see if the point is displayed.

The second filling algorithm, realized as
the word Area in Listing Two, requires that
the coordinates of the vertices of a filled
polygon be determined. The algorithm does
not need a bit map of the image, so this
method is used by some plotters. The con-
tour must be closed (i.e., the coordinates of
the first vertex must be identical with those
of the last). First, the contour is drawn using

Line. Next, the minimum and maximum
values of coordinate Y are found by search-
ing through all the vertices' coordinates.
This is done by MaxY and MinY. Now, for
each line Y falling within the determined
interval, the X coordinates of the intersec-
tions with all the intervals of the contour
are found. It can be proven that, for aclosed
contour, the number of intersections with
line Y=const is even. To fill a contour like
that, the found points must first be ade-
quately connected, as shown in Figure
Two.

The problem in this case is that the X
coordinates of the intersections are not de-

1

Forth Dimensions 10 Volume XI, Number 2

Figure Two.

Listing One.

rived in order. Thus, the coordinates must
be sorted before the points can be con-
nected. However, we usually do not know
a priori how many intersections will be
obtained. Thus, it is best to store the subse-
quent X coordinates on the stack, which is
sorted by S o r t each time a new number is
pushed onto it. To make the stack sorting
process more effective, the return stack has
been applied. The sorting operation is real-
ized by insertion. The idea of the process is
that all coordinates smaller than the one to
be inserted are popped from the stack and
temporarily stored on the return stack.
Then the inserted coordinate is pushed onto
the stack and all the coordinates on the
return stack are pushed back to the stack.
After all the intersections are derived and
sorted, D r a w s c a n connects the points
whose coordinates are stored on the stack,
thus filling the polygon. D r a w (called by
A r e a) draws a line to the point X,Y while
P l o t just moves to the point.

v a r i a b l e x l e f t
v a r i a b l e x r

v a r i a b l e x r i g h t
v a r i a b l e y r

: r i g h t > (---)

1 x r t! begin
x r @ y r @ p o i n t O= while
x r @ y r @ d o t 1 x r t!

r e p e a t x r @ 1- x r i g h t ! ;

: l e f t > (---)

-1 x r t! begin
x r @ y r @ p o i n t O= while
x r @ y r @ d o t -1 x r t!

r e p e a t x r @ I+ x l e f t ! ;

: (scan) (- - - x y . . .)

begin x r @ x r i g h t @ <= while
0 f l a g ! begin

x r @ y r @ po in t O= x r @ x r i g h t @ <= and while
1 f l a g ! 1 x r t! r e p e a t

f l a g @ i f
x r @ y r @ po in t O= x r @ x r i g h t @ = and i f

x r @ y r @ e l s e x r @ 1- y r @ t h e n then
x r @ begin

x r @ y r @ p o i n t x r @ x r i g h t @ < and while
1 x r +! r e p e a t

x r @ = i f 1 x r t! t hen
r epea t ;

Call for Articles
about

Forth Hardware

Forth Dimensions will publish an
issue about Forth hardware in the

coming months.

To encourage high-quality article
submissions, we will be offering

payment for the theme-related
articles we publish in that issue.

Your article is welcome. For
more, see the "Editorial" in this

issue.

Send article, self-addressed
stamped envelope, and (optional)
Macintosh or IBM 5.25" diskette:

Editor
Forth Interest Group

P.O. Box 8231
San Jose, California 951 55

Volume XI, Number 2 Forth Dimemiom

(Listing One, continued.)

var iab le s t a c k

: f i l l (x y ---)

sp@ 4 + s t a c k !
begin

y r ! xr !
xr @ yr @ dot
xr @ r i g h t ? x r ! l e f t \
x l e f t @ x r ! 1 yr +! (scan)
x l e f t @ xr ! --2 y r t! (scan)

sp@ s t a c k @ = u n t i l ;

Listing Two.

: p o i n t s (yn xn . . . y l x l n ---)

c r e a t e 0 do , , loop does> ;

: l i n e (adr n ---)

swap dup dup 0 . x swap 0 . y p l o t
swap 1 do

dup dup i . x swap i . y draw
loop drop ;

v a r i a b l e p t s v a r i a b l e v e r t

: s o r t < xn . . . x l x i xn . x i . x l)

xmin @ begin sp@ s t a c k @ < > while
2dup < i f swap then ?r repeat

begin dup xmin @ < ? while r? repeat drop ;

: maxy (--- maxy)

ymin @ v e r t @ 0 do p t s @ i . y max loop ;

: miny (--- miny)

ymax @ v e r t @ 0 do p t s @ i . y min loop ;

: drawscan (ys ---)

?r begin sp@ s t a c k @ <:> while r@ plo t r@ draw repea t r> drop ;

: area (adr n ---)

2dup l i n e v e r t ! p t s !
sp@ s t a c k ! maxy 1t miny do

ver t @ 1- 0 do
p t s @ i . y p t s @ i 1t . y
2dup min j < r o t r o t 2dup max j ?= r o t r o t
< > and and i f

j p t s @ i . y -
p t s @ i 1t . x p t s @ i . x -
p t s @ i 1t . y p t s @ i . y -
*/mod swap drop p t s @ i . x + s o r t

then
loop i drawscan

loop ;

FORTH

INTEL
MICRO-

CONTROLLER

FEATURES
-FORTH-79 Standard Sub-Set
-Access to 8031 features
-Supports FORTH and machine

code Interrupt handlers
-System timekeep~ng maintams

time and date with leap
year correction

-Supports ROM-based self-
starting applications

COST
130 page manual - S 30.00
8K EPROM with manual-$1 00.00

Postage pa~d In North Arner~ca
Inquire for license or quantlty prlclng

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330

(207) 547-32 18

Forth Dimensions 12 Volume XI, Number 2

Volume XI, Number 2 13 Forth Dimensions

-
+'

CALL FOR PAPERS
for the eleventh annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 24-26, 1989

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U. S .A.

Theme: Forth and Object-Oriented Programming

Data structures to support object-oriented program development are readily constructed in
Forth. This is possible because Forth is an extensible language that has unique properties
for building data structures. These structures may be reused which increases productivity
when new applications are developed. Papers are invited that address relevant issues in
the development of object-oriented programming and object-oriented applications.

Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by September 1,1989 to:

FORML
P. 0. Box 8231

San Jose, CA 95155

Completed papers are due November 1, 1989.

For registration information telephone the Forth Interest Group business office at (408)
277-0668 or write to FORML, P.O. Box 8231, San Jose, CA 95155.

Asilomar is a wonderful place for a conference. It combines comfortable meeting and
living accommodations with secluded forests on a Pacific Ocean beach. Registration
includes deluxe rooms, all meals, and nightly wine and cheese parties.

PDE FULL-SCREEN
EDITOR

x i s article is about PDE, a program
editor for Forth (F83 flavour). Yet another
editor? Yes, but with a few differences.

The PDE (Program Development Envi-
ronment) editor is a derivative of the Henry
Laxen WS-like screen editor1, and provides
many added capabilities, including most of
those in VED and FSED~, two other editors
derived from the original Laxen editor.

Over the years, I had adapted the Laxen
editor to a variety of computers (TRS-80,
Osborne, IBM PC), and had built in a con-
siderable number of features for testing and
debugging. Using that as the backbone, I
incorporatedthebestof FSED andVED and
a whole slew of further enhancements. The
result is PDE.

FRANS VAN DUINEN - TORONTO, ONTARIO
m

"It is integrated and
easy to use."

PDE provides:
editing any number of files
copying screens or parts thereof between
files
stepwise execution of on-screen word
definitions, with inspection and modifi-
cation of the stack
inspection of word definitions (built-in
SEE and VIEW), with nesting of VIEWS
and return to screen being edited
LOAD part of screen
upperllower case and numeric base con-
version
screen insert and delete
two-window support, one for screen
being edited and one scrolling, as for
DEBUG output

.\ W2-SCROLL INSTAU
: w2-SCROLL (s --)

0 1 2 AT -LINE 0 1 8 AT #OUT OFF ;

: INSTALL [' 1 W2-SCROLL I S CR ;

I Figure One. Scrolling window on lower part of screen

: USCAN (S addr l e n c - addr' l e n ')
CAPS @ OVER ?ALPHA AND \ C a n case m a t t e r ?
I F DUP 2 0 XOR 2OVER ROT SCAN \ yes - s c a n 2 w a y s

>R >R SCAN R, R, DUP 3 PICK < I F 2DROP ELSE
ROT DROP ROT DROP THEN

ELSE SCAN THEN ; \ no - simple scan
(USCAN - C a s e i n s e n s i t i v e s c a n)

.\ INSTRING - F i n d s t r i n g S w i t h i n s t r i n g B - fast
: INSTRING (S sadr s l e n badr blen -> blen' I 0)

2OVER >R C@ >R \ slen & c t o >R
ROT - 0 MAX DUP I F \ O n l y i f b l e n >- s l e n

1+ \ L e n g t h t o s c a n (b l e n - s l e n + l)
BEGIN R@ \ sadr badr blen' c

USCAN . DUP I F \ sadr badrl blenl
R, 20VER R@ COMPARE \ O=equa l , +1 or -1 for n o t eql
SWAP >R \ c b a c k t o >R

ELSE 0 THEN \ F i x # of parms o n s t a c k
WHILE 1 -1 D+ REPEAT \ Step past m a t c h i n g char

THEN R, R, 2DROP \ saddr baddr' b l e n '
-ROT 2DROP ; \ blen' - l e n g t h not searched

Figure Two. SEARCH for substring, case insensitive.

: INS-STR (S addr l e n P o s --)
DUP >R 2DUP + DUP CHARS-TO-EOL/B BUF-MV \ Make space (l e n)
R, BADDR SWAP MOVE E-UPD ;

: REPL (S R-add r R- l en P o s D- len --)
OVER DEL-CHARS INS-STR ;

Figure Three. Text insert and replace.

I

Forth Dimensions I4 Volume XI, Number 2

multi-screen search capability and more...

This article describes some of the more
interesting techniques used inPDE to allow
others to tinker with and enhance PDE.
Only a few of the 80-plus screens are cov-
ered here.

PDE is in the public domain (non-com-
mercial use) and i$ source code is available
on the East Coast Forth Board [see "Refer-
ence Section"], Canada Remote Systems
(416-231-0538) and "other fine bulletin
boards." That version of PDE (ver 1.02+) is
specific to Laxen and Petry 's F83 and to the
IBM PC. PDE is virtually all high-level
code and can be readily adapted to other
systems.

PDE includes ideas and code from a
number of public-domain sources, and I'll
give credit to those sources in the follow-
ing.

: STEP (S --) (Executes one word & displays stack)
EXTRACT-WD SET-TIB \ S t a r t addr of word i n buff
EXEC-WD \ copy word & execute
0 MV-CURS \ Restore cursor i n CRT screen

: 2STEE' (S ->) (Executes 2 words & display s tack)
EXTRACT-WD SET-TIB \ S t a r t addr of word i n buff
!?XIRACT-WD ADD-TIB \ Addr of next word i n buff
EXEC-WD \ copy word & execute
0 MV-CURS , \ Restore cursor i n CRT screen

I Figure Four. Execute one or two on-meen words. I
: DO-WD (S cad& -- ??)

EXlWiCT-WD SET-TIB \ Get word pointed t o i n screen
@W2AT (EXEC-WD) ; \ Go do words

: SEE-WD (S --)
['1 SEE DO-WD ; \ Execute SEE against TIB

(SEE-WD issues SEE against word pointed t o)

: DEBUG-WD (s -- 1
['1 DEBUG DO-WD ; \ Execute DEBUG against TIB

I : (EVIEW) ['1 ' DO-WD ((EVIEW)) NXT-SCR-FILE ; I
Figure Five. Operate on word under cursor. . I

- -

I
I I SDS FORTH for the 8051 ,
I
I Programming Environment
I Use your IBM PC compatible as terminal and disk server

0 Trace debugger

Full screen editor

Software Features
0 Supports Intel 805x, 87C51FA, N80C451, Siemens 80535, Dallas 5000

Forth-83 standard compatibility

Built-in assembler I
0 Generates headerless, self starting ROM-based applications I

RAM-less target or separate data and program memory space I

SDS Technical Support v
150+ pages reference manual, hot line, 8051 development board available now

I
Limited development system, including PC software and 8051 compiled software with manual, for $150.00.

I
I

(generates ROMable applications on top of the development system)
I
1
I ' ill^., 537'5 Pare Avenue #* lo. Montreal, PC, Canada W4P 1 P i (514) 731-5797 I I

Volume XI, Number 2 15 Forth Dimensions

: !Wl"RACT-WD (S -- addr l e n)
BPOS \ S t a r t addr o f word in b u f f
MV-RIGHT-WD DUP +CPOS \ S t e p t o n e x t word i n b u f f
-TRAILING 1+ ; \ B u t r e t u r n l e n g t h + l o n l y

: PROC-WD (S exec-addr --) \ P r o c e s s word u n d e r cursor
>R CPOS \ F o r DISPL-TO-EOL
EXTRACT-WD \ S t a r t addr of word i n b u f f
R> EXECUTE \ Go process - addr l e n -> -

\ Must set E-UPD as reqd
DISPL-TO-EOL/S ; \ R e s t o r e c u r s o r o n CRT s c r e e n

: LWCASE (S --) (LWCASE c o n v e r t s o n e word t o l o w e r c a s e)
[' I \ C o n v e r t t o l o w e r case
PROC-WD E-UPD ; \ Apply LOWERto c u r r e n t word

: UPCASE S --) (UPCASE c o n v e r t s o n e word t o u p p e r c a s e)
[' I UPPER \ C o n v e r t t o u p p e r case
PROC-WD E-UPD ; \ Apply UPPER t o current word

Figure Six. Get a word on the screen and operate on it.

: (GET-FILE) (s f c b --)
DUP FILE @ <> OVER OR I F \ o n l y i f fcb diff and <>O

SAVE-BUFFERS [DOS] !FILES OPEN-FILE
ELSE DROP THEN ;

: MARK-UPD (S --)
&UPD @ I F \ Any c h a n g e s made?

S a @ BUXK DROP \ Make b l o c k c u r r e n t
&SET-ID @ I F STAMP THEN \ S e t d a t e s t a m p i f w a n t e d
1 BUFFER# 4 + @ &BADDR @ <> ABORT" B u f f e r e r r o r " .\ test
UPDATE &UPD OFF THEN ; \ S e t u p d a t e d flags

Figure Seven. Multi-file editing made easy.

: ((EVIEW)) (S code-addr -- f i l e c u r s scr)
@VIEW ?DUP \ G e t w o r d ' s VIEW f i e l d
I F 2* VIEW-FILES + @ 2+ \ scr # & FCB addr
ELSE [DOS] FCBl THEN
0 ROT ; \ S e t t o c u r s o r l o c 0

: (EVIEW) ['1 ' DO-WD ((EVIEW)) NXT-SCR-FILE ;

: FIX ' ((EVIEW)) OTH-INIT (NXT-SCR-FILE) (E) ;
Figure Eight. View/editscreen where word is defined.

: (eSOURCE)
BLK @ I F GET-SUB-BLK DROP ELSE TIB #TIB @ THEN ;

: eLOAD (S -- 1
@W2AT ['1 (eSOURCE) I S SOURCE
FILF. @ >R BLK @ >R >IN @ >R
2 TAG@ BLK ! >IN ! DROP RUN
R> >IN ! R> BLK ! R> [DOS] !FILES
FIX-SOURCE ;

Figure Nine. LOAD partial screen from within editor.

: GET-CUR-ADDR (S c u r p o s S c r # fcb -- addr > i n)
FILE @ >R (GET-FILE) BLOCK
R> (GET-FILE) ; \ Assumes mltiple b l o c k buffers

: GET-SUB-BLK (S -- addr l e n > i n)
2 TAG@ ROT GET-CUR-ADDR
3 TAG@ DROP NIP ROT ;

Figure Ten. Get sub-block's address, make sure it's in memory.

Self-Contained Editor
PDE is self contained and does not need

the traditional F83 EDITOR vocabulary.
Instead, screens 5B-5E (all numbers in
hex) are adapted from F83' screens OC-1B
of the file UTILITY.BLK. From there
comes the scrolling window, where the top
12h lines of the CRT display the screen
under test, while the lower portion scrolls
to allow debug output, etc.
Figure One shows the two words that take
care of scrolling, w2-SCROLL and IN-
STALL, which installs W2-SCROLL as
CR. W2 - S C R O L L (adapted from
EDITOR'S. ALL on screen 13), uses
- L I N E to delete the top line of the second
window, causing everything below it to
scroll up.

Note that this form of windowing
works by preempting the PC's ROM rou-
tines from scrolling the whole screen. As
long as CR is used to force a new line, we're
okay. When we output a line of more than
50h characters, or one that includes charac-
ters OD or OA, the whole screen scrolls and
our windowing gets messed up. That is one
reason I'm using a version of . S that only
displays the top six items on the stack, and
thereby avoids line wrap on the display.
(This . S also handles stack underflow-it
is found in screen 5A.)

The other words from EDITOR are
cursor addressing and GET-ID, etc. GET-
I D (screen F) uses the system clock; it does
not require a hardware clock. Simply set
the PC's system date using the usual DOS
command. Most of the supporting code on

1 screen five is lifted from FSED.

Search Capability
The original Laxen editor used SCAN+

and SCAN- for forward and backward
scanning to find a character; SCAN+<>
and SCAN-<> to scan for the first occur-
rence of anything other than the character.
These were high-level definitions and,
given their frequent use, kind of slow.

FS3, of course, has a machine code
SCAN and S K I P , which are the same as
SCAN+ and SCAN+<> respectively,
though with some stack differences.
Screens six through eight implement a
machine-language version of SCAN- and
S K I P - for both 8086 and 8080 assembler.

Also included in screens nine and OA
are USCAN and I N S T R I N G (Figure TWO),
which together are a faster version of
SEARCH. Both I N S T R I N G and SEARCH

Forth Dimensions 16 Volume XI, Number 2

in &reen 26; see ~ i & e Three).
INS-STR uses CHAR-TO-EOL/B to

determine the number of characters to the
end of the line or block. (When you insert a
string, the text to the right of the insertion
point has to be moved over, with truncation
occurring at the end. Similar to deletion,
padding occurs at the end.) PDE will sup-
port truncation/padding at either the end of
the line, or at the end of the block (or any
number in between; see &PAGEL, LINE-
MODE, and BLOCK-MODE in screen 12).
The Laxen editor supported only end-of-
line truncation. Thus, if text was bumped
past the end of the line, it was lost.

By supporting end-of-block truncation,
anything bumped off one line gets carried
over to the next. It does mean, however, that
the entire rest of the screen may change and
need to be re-displayed, which makes this
mode too slow for normal use.

can do a case-insensitive search (where
upper-case and lower-case characters are
acceptable).

SEARCH uses COMPARE against every
possible subsmng. For instance, if looking
for a five-character string within a 400h
character block, it would compare the
search string against characters one
through five of the block, then against two
through six, then three through seven, etc.
More than a thousand times!

I N S T R I N G goes on the basis that we
first look for the first character of the search
string, then seeif therest matches. Since the
machine-language SCAN is so much faster
than a high-level loop, we gain. Of course,
if we're looking for a string starting with a
blank in a screen that's 75 percent blanks,
we don't gain all that much.

For an even faster SEARCH, look at the
machine-language version published in
Forth Dirnen~ions.~ That version is case-
sensitive, however. It also returns the abso-
lute memory address where the substring
was found, rather than the offset in the
block as returned by the F83 SEARCH.
INS TRING returns the length "not
searched," i.e., the offset relative to theend
of the block. Hence thedifferent name: it is
not identical to SEARCH.

INSTRING is used by the multi-screen
search capability ('QF in good WordStar
fashion), the heart of which are QF 1 and QF
in screen 4 1. Not implemented is a search-
and-replace function (AQA), even though
the primitives exist (INS -STR and REPL

Volume XI, Number 2 17 Forth Dimensions

Execution of Words w the Screen
One of the powerful features of PDE is

that it can take words off the screen, move
them to TIB (the keyboard input buffer),
and then interpret them. The idea for this
originally came from Tom Blakeslee5,
whose code I had adopted as-is; when I
started factoring his code into smaller
words, it became really intereskg!

STEP (screen 45) was the original word
(see Figure Four). The basic process is:

EXTRACT-WD
Get the memory address and length of the

word (character string) where the cursor
is at on the screen, and skip past it.

SET-TIB
Copy that string to the TIB and set #TIB

accordingly.
EXEC-W
Issue INTERPRET to handle the text string

now in TIB, showing the stack after-
wards.

Now, by factoring EXEC-WD into an
(EXEC-WD) that can extxute words other
than INTERPRET, we can easily do some
interesting stuff, such as SEE a word,
VIEW/F 1xor DEBUG a word-seeFigure
Five. Note that the approach taken is not to
redirect SOURCE, since any errors would
"hang" the system-see eLOAD below.

Similarly, EXTRACT-WD, which re-
turns the memory address and length
(minus trailing blanks) of the word (text
smng) under the cursor (and moves the
cursor to the next word), makes it easy to
implement other transformations, such as
LWCASE, UPCASE and NUM>NUM, for
case or number base conversion; =Figure
Six.

PROC-WD sets everything up, then
executes the word whose code field address
(CFA) is passed and re-displays the screen
(from the original cursor position). Note
the use of DISPL-TO-EOL/S in PROC-
WD toallow for actions that affectmorethan
just the current screen line.

The word LOWER in LWCASE is similar
to the F83 code word UPPER, except it
changes alphas to lower case.

Multi-File Editing
F83 maintains its block buffers by using

a list of buffer headers that describe where
in memory the block is, etc. The buffer
header also contains a pointer to the FCB
(File Control Block) for the file that con-
tains this block.

BLOCK, the word to read a specified
block, passes to (BLOCK) -the primitive
that actually brings in the wanted block (or
locates it, if already in a buffer)-the ad-
dress of the FCB to use (from the pointer
F I LE).

I I

That made it very easy to implement
multi-file capability. Simply set FILE to
point to a different FCB, make sure the file
is open (OPEN-FILE), and issue BLOCK.
(GET-FILE) in screen 34 and Figure
Seven does that.

Well, almost that easy. If the current
block was changed, UPDATE has to be
executed before issuing BLOCK again,
because it always applies to the current
block--the one in the first position in the
buffer header list.

There appears to be yet another prob-
lem. At least some updates to ablock would
not be written out when switching between
files. The SAVE-BUFFERS h (GET-
F ILE) and the extra code h MARK-UPD
(Figure Seven) should not be necessary, but
seem to have fixed the problem.

Another place where mu1 ti-file capabil-
ity had an impact was in the TAGS. FSED
used five to six fields to note a specific
screen and line number, e.g., to mark a spot
for fast return, or to mark a block or range
of lines for copying. PDE extends this in
two ways. Firstly, every TAG includes the

FCB for that block; secondly, every tag
includes the exact cursor location at the
time the tag was noted.

PDE also maintains a circular TAG list
of the last ten screens edited. This allows us
to quickly revisit screens or to return from
inspecting definitions of words (EVIEW).

A very powerful capability in PDE is
on-screen VIEW (EVIEW, screen 47, Fig-
ure Eight). While (EvIEW) is simply an
adaptation of F83's VIEW, it is important
because it is integrated and easy to use.

Say you're writing a new definition that
uses SEARCH, but don't remember what
SEARCH needdeaves on the stack. Simply
position the cursor at the start of the word
SEARCH on the screen (which you had
typed as part of the definition you're creat-
ing), press "F5 and, presto, you're looking
at the screen on which SEARCH is defined
(screen OA in UTILITY.BLK), including
the comment that describes its stack effect.
Use "PgDn to get to i t . shadow.

If you want more detail, such as about
the word \STRING that SEARCH uses,
point, press "F5 again, and you're looking

Employment opportunity for a Forth programmer
with two to three years of real-time systems ex-
perience and knowledge of an assembler lan-
guage for interrupt processing.

The programmer will join a small work group with
a progressive company in Manchester, New
Hampshire. This company develops dedicated
data acquisition systems with embedded micro-
processors. It is part of a US firm with world-wide
manufacturing and distribution.

Please send your resume and salary history and
requirements in confidence to:

Mr Manfred Peschke
Intersystems@ Company
RFD 3 Story Hill Road
Dunbarton
Goffstown NH 03045

who is conducting this search for his client.

at screen 3F of KERNEL86.BLK. A re-
peated "F6 gets you back where you were.

Of course, all of this supposes that the
words you're looking up (SEARCH and
\STRING, in our example) are "visible"
in a context vocabulary, and that you used
VIEWS, etc. when originally loading those
definitions. And, yes, it supposes you have
a hard disk to have all your permanent
source files on line. If not, get one; this
feature alone makes it worthwhile: on-line
documentation for your entire Forth envi-
ronment!

Load from the Editor
Occasionally you want to LOAD only

part of a screen, such as when you're cor-
recting the second or third definition on a
screen. PDE has the ability to mark the
beginning and end of a section of a block
("F6, AF8) and then issue the eLOAD com-
mand (see Figure Nine).

eLom works by setting the SOURCE
that F83 uses (for LOAD as well as for
INTERPRET). (eSOURCE) is similar to
the regular (SOURCE) in that it can accept
input from TIB as well. While eLOAD
never uses input from that source (it sets
BLK), it is very important.

If there were an error in the (sub) block
being loaded, F83 would ABORT/QUIT
and reset for keyboard input. It would not
reset SOURCE, however, but would look to
(e SOURCE) for input. If (eSOURCE)
did not allow for keyboard input, you'd
have F83 waiting for keyboard input with-
out ever seeing any.

(eSOURCE) uses GET-SUB-BLK
and GET-CUR-ADDR (Figure Ten) to re-
turn the address and length of the marked
section, where 2 TAG@ and 3 TAG@
define the screen number, FCB, and cursor
for the start and end of the section. Note
how GET-SUB-BLK and GET-CUR-
ADDR return an address in two compo-
nents: start of block address and offset of
start of sub-block within that block. That
drastically simplified the implementation
of (eSOURCE) , since it allows us to use
> I N to tell F83 "we've already processed
that portion of the block."

Miscellaneous
A few other techniques are of note:
e K E Y in screen four handles the PC's

peculiarity of returning certain keystrokes
as two characters (the "extended" keys,

(Continued on page 35.)

Forth Dimensions 18 Volume XI, Number 2

ACCESSING 80286
EXTENDED MEMORY

RICHARD F. OLNO - NORTHAMPTON, MASSACHUSETTS

Al though the 80286 processor is
capable of addressing up to 16 Mb of
memory in its protected mode, MS-DOS-
for reasons of downward compatibility-
was written for the processor's "real"
mode. That mode has an absolute limit of 1
Mb of address space, which is further lim-
ited by a PC architecture that reserves the
upper 384 Kb for special purposes. As a
result, MS-DOS programs have access to a
maximum of 640 Kb of address space.
Even though one can plug so-called ex-
tended memory cards with addresses above
1 Mb into a PCIAT, a program under MS-
DOS cannot directly read from or write to
such memory. This is, of course, not a good
thing.

default address settings put the two image
buffers at (hex) A0 0000 and A4 0000-
well above 10 0000, the 1 Mb boundary.
To be able to inspect and manipulate im-
ages, move them to disk, and do other
operations that require direct access to the
digitized image, it was necessary first to
move part of the image down into DOS-
accessible memory. (This is the same tech-
nique used by standard software for ex-
tended memory cards.) The largest block of
data that interrupt 15 can move is one
segment, or 64 Kb; thus, a 256 Kb image

I would have to be treated as at least four
separate segments. However, I actually

I

blocks-of data between extended memory
and DOS-accessible memory. Prior to call-
ing this function, a Global Descriptor Table
(GDT) that lists the source and destination
addresses must be set up in memory, and
the table's own address must be placed in
the 80286's registers. I describe here some
Forth words that use intempt 15 to access
extended memory. My own need for this
code arose while working with a video
digitizer (Data Translation's DT285 1
frame grabber) in an application where I
wanted to manipulate an image directly.
The digitizer has two on-board image buff-
ers. each 256 Kb in size and each capable of
holding a 512 x 512 x 8-bit image. Obvi-
ously, this total of 512Kbof imagememory
cannot readily be placed in MS-DOS'
measly 640 Kb, since that would leave es-
sentially no memory for the operating sys-
tem and programs. In fact, the digitizer's

fhe ROM BIOS in a PCIAT does,
however, provide a way out. A service at
interrupt 15 (hex), function 87 moves

.F

cards. "

"The same technique
is used -for memory

found it more efficient to move one video
line at a time (512 bytes). The main reason
is that in our implementation of Forth-83
(Uniforth from Unified Software Systems),
it is much easier to perform subsequent
operations on data that is held in the same
memory segment as the Forth dictionary,
rather than to use the more cumbersome
and time-consuming procedures that ma-
nipulate data held in other segments. Con-
sequently, the application examples de-
scribed below all work with single video
lines.

The most generic of my Forth words are
shown on screens 1 and 2. GDT is a48-byte
array that will hold the Global Descriptor
Table. MAKE-GDT sets up the descriptor
table, based on 32-bit double addresses for

the source and destination, and a 16-bit
count of the number of bytes to be moved.
(The table actually requires 24-bit ad-
dresses but, for convenience, 32-bit opera-
tors are used and the highest-order byte is
later overwritten.) The addresses are cal-
culated by subsequent words in the list-
ings. The code word INTl5, written in as-
sembly language, calls the BIOS interrupt
to move the data. INT15 requires 16-bit
addresses for the start of the descriptor
table and the table's segment, and for the
number of words (not bytes) to be moved.
(In Uniforth's 8086 assembler, unlike
Intel's assembler, the syntax of instruc-
tions like AX s I Mov follows the Forth
practice of first giving the source, then the
destination, then the action.) Both MAKE-
GDT and INT15 are general-purpose
words that can be used to move any batch
of data in any direction.

The use of these words is illustrated in
excerpts from an imaging application on
screens three through nine. A 512-byte
array (VIDL INE) is created in the Forth
dictionary to hold one video line. Absolute
32-bit addresses for this array and for the
image buffers, required by MAKE-GDT,
are calculated by words in screens three,
four, and six. (Some of the defining words,
like DSEG and SEG>ADR, are specific to
Uniforth.) New Forth words that move
single video lines are DICT>VLINE
(screen five), which copies the VIDL I N E
array from the dictionary to the image
buffer; and VLINE>DICT (screen six),
which copies video line Y from the image
buffer to the array. These words are typi-
cally used in the opposite order from
which they are presented: a video line is
moved from the image to the dictionary,

I

Volume XI, Number 2 19 Forth Dimensions

manipulated, and then moved back to the
image. Since a video line is usually re-
placed at the same location it was taken
from, DICT>VLINE d m not automati-
cally recalculate the Y-value address. (This
lack of symmetry was adopted for speed,
but it strikes me as a potentially risky
programming style.) A few words that act
on images are shown as examples in screen
seven. !PIXEL and @PIXEL access a
single pixel (picture element); when one
considers how much hidden work these
words invoke, screen seven may also be
taken as a commentary on the disastrous
architecture of Intel processors. Neverthe-
less, filling the screen (WILL) takes only
about a second.

Transfemng images to and from disk
(screens eight and nine) is an example of
the more general task of moving data be-
tween a disk and extended memory. The
"save" routines utilize a loop that copies
each of an image's 480 lines into the
V I D L I N E array, from which the line is
written to disk. (The disk-handling words
are from Uniforth.) The real work of copy-
ing images is carried out by the intermedi-
ate-level words IMAGE>DI SK and
DISK> IMAGE; the high-level words
SAVE and RESTORE handle the additional
tasks of specifying filenames, and opening
and closing files.

(Screens on next page.)

Richard F. Olivo, a neurobiologist, is a
professor at Smith College. He uses
Forth for laboratory-oriented imaging
and analog data acquisition. He is cur-
rently programming a PClAT data
acquisition system with dropdown
menus, dialog boxes, and other Macin-
tosh-like tools. He wishes Forth had
standard extensions to make such 4-
forts unnecessary.

-

L
Forth Dimensions

(with LMI FORTHTM 1

1 For Programming Professionals: I
an expanding family of
compatible, high-performance,
Forth-83 Standard compilers
for microcomputers

For Development:
Interactive Forth-83 InterpreterlCompilers

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
400 page manual written in plain English
Options include software floating point, arithmetic
coprocessor support, symbolic debugger, native code
compilers, and graphics support

For Applications: Forth-83 Metacompiler
Unique table-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate
states, and performs conditional compilation
Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051,
8096, 1802, and 6303
No license fee or royalty for compiled applications

For Speed: CForth Application Compiler
Translates "high-level" Forth into in-line, optimized
machine code
Can generate ROMable code

Support Services for registered users:
Technical Assistance Hotline
Periodic newsletters and low-cost updates
Bulletin Board System

Call or write for detailed product information
and prices. Consulting and Educational Services
available by special arrangement.

l ~ a b o r a t o r ~ Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295

credit card orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systerne Angelika Flesch. Titisee-Neustadt. 7651-1665
U K . System Science Ltd.. London. 01-248 0962
France: Micro.Sigma S.A.R.L.. Paris, (1) 42.65.95.16
Japan: Southern Pacific Ltd.. Yokohama, 045.314-9514
Australla: Wave-onic Assoclates. Wilson. W.A.. (09) 451.2946

20 Volume XI, Number 2

0 \ ACCESS TO 80286 EXTENDED MEMORY UNDER MS-DOS.
1

I I NGS FORTH
A FAST FORTH,
OPTIMIZED FOR THE IBM
PERSONAL COMPUTER AND
MS-LXIS COMPATIBLES.

STANDARD FEATURES
INCLUDE:

079 STANDARD

oDIRECT 1/0 ACCESS

.m ACCESS TO MS-DOS
FILES AND FUNCTIONS

.ENVIRONMENT SAVE I I & LOAD

i I *MULTI-SEGMENTED FOR
LAFtGE APPLICATIONS

/ (@EXTENDED ADDRESSING

I I &EMORY ALLDCATION
CONFIGURABLE ON-LINE

/ I .LINE & SCREEN EDITORS

I I ODECOMPILER AND
DEBUGGING AIDS

1 1 08088 ASSEMBLER

((OGRAPIIICS & SOUND

I I ONGS ENHANCEMENTS 1 I ODETAILED MANUAL

.INEXPENSIVE UPGRADES

aNGS USER NEWSLETTER

! I A CrmPLGTE FOFTH
D E v E U) W SYSTEM.

NEXT GENERATION 8YSTEMB
P.O.BOX 2987
6ANTA CLARA, CA. 95055
(408) 241-5909

2 Uses interrupt 15, function 87:
3 Swaps block of data between PC/AT's extended memory
4 (addresses above 1 MB), and DOS-accessible memory below 640K.
5 Based on James T. Smith, IBM PC AT Programner' s Guide (1986)
6 section 10.4: 'Using extended rnemry."
7
8 Written i n Uniforth implementation of Forth-83
9 (UnifiedSoftwareSystems, POBox21294, Columbus, OH43221)

10
11 Prof. Richard F. Olivo
12 Department of Biological Sciences
13 Smith College
1 4 Northampton, Massachusetts 01063
15

SCR t 1
0 \ WRITE GLOBAL DESCRIPTOR TABLE (GDT)
1 decimal
2 create GDT 48 a l l o t \ Global descriptor t a b l e f o r INT15
3
4 : MAKE-GDT (src-daddr dest-daddr #bytes -- 1
5 \ daddr: uses 32 b i t address, eg. source OOAO 0000
6 \ Xbytes: bytes moved can be up t o 64K (1 segment)
7 GDT 48 erase \ F i l l e n t i r e t a b l e with 00
8 d u p G D T 1 6 + ! \ Store source length, #bytes
9 GDT 24 + ! \ & dest inat ion length, #bytes

10 GDT 26 + 2! \ Store dest inat ion address
11 GDT 18 + 2! \ & source address
12 147 GDT 21 + c! \ Store access-rights byte $93,=147 dec
13 147 GDT 29 + c! ; \ i n two places i n GDT
1 4 ->
15

SCR # 2
0 \ IEPPERRUPT 15 CODE: moves data, using GDT
1 hex
2 code INTI5 (gdt.addr segment #words -- s t a t u s 1 O=success)
3 CLI , \ disable in ter rupts (time of day clock)
4 BX C X MOV, \ #words from top-of-stack (=BX) t o CX
5 AX POP, \ GDT' s (=dictionaryr s) segment
6 AX ES MOV, \ GDT segment i n to ES
7 SI DX MOV, \ save SI, Uniforth' s in t e rp re t e r pointer
8 AX POP, \ GDT's address (=offset i n segment)
9 AX SI MOV, \ GDT of f se t i n t o SI

10 00 # AL MOV, 87 # AH MOV, \ function # $87 t o AH
11 15 INT, \ c a l l in te r rupt 15
12 DX SI MOV, \ res tore SI
13 AH BL MOV, \ put s t a tus code on t o s
1 4 00 # BH MOV, \ c lea r high byte, tos ; r e s to re in t rup t s
15 STI, NEXT, END-CODE decimal ->

Volwne XI, Nwnber 2 21 Forth Dimemions

SCR # 3
0 \ APPLICATION: Copy to/from video frame-grabber (DT2851)
1 \ CONSTANTS, ARRAYS & VARIABLES
2
3 \ Frame-grabber has 2 buffers, each 256KB, starting at address
4 \ OOAO 0000 in extended memory. We will access these one video
5 \ line at a time (512 bytes/line).
6
7 decimal
8 512 constant PIXELS/LINE \ In ~orth dictionary, make
9 create VIDLINE pixels/line allot \ array to hold 1 video line
10
11 \ GDT requires 32-bit addresses, =>double constants & variables
12 \ Absolute address of vidline array in Forth dictionary:
13 dseg vidline seg>adr \ Segment & offset of vidline array,
14 2constant VIDLINE (DADR) \ converted to 32-bit (daddr) const.
15 ->

SCR # 4
0 \ CONSTANTS & VARIABLES: ADDRESSES FOR DT2851 IMAGE BUFFERS
1 hex
2 \ Absolute 32-bit addresses of DT2851 image buffers 0 6 1:
3 OOAO 0000 2constant BUFFER0 \ daddr of buffer0
4 buffer0 4 0 d+ 2constant BUFFER1 \ daddr of buffer1
5 Zvariable CURRENT-VLINE \ daddr of active video line
6
7 \ Automatic calculation of active buffer's address:
8 (?out-buf returns 0 or 1 to indicate active output buffer)
9 : CURRENT-BUFFER (-- daddr) \ active image buffer
10 ?out-buf 4 * 0 buffer0 d+ ;
11 : OTHER-BUFFER (-- daddr) \ inactive image buffer
12 buffer1 ?out-buf 4 * 0 d- ;
13
14 ->
15

SCR # 5
0 \ COPY ONE VIDEO LINE FROM FORTH DICTIONARY SPACE TO ImGE
1 \ Requires previous calculation of current-vline (next screen).
2
3 decimal
4 : DICT>VLINE (--) \ Move one line up to image.
5 vidline (dadr) \ source: constant daddr of vidline
6 current-vline 28 \ destination: prev calcld daddr
7 pixels/line \ #bytes: pixels on one line
8 make-GDT \ write GDT
9 GDT dseg pixels/line 2/ \ gdt addr & segment, #words
10 intl5 \ call intl5
11 dup not if drop \ then test status: Oiok, drop code
12 else ." Error:" . quit \ if error, print code, & quit
13 then ;
14 ->
15

(Screens continued on page 28.)

INNER ACCESS
provides

FORTH
Development Tools

For Zilog'a

28874 Super8
FORTH chip

*Development Board
Incorporating the Super8 FORTH
microcomputer, offers an unparalleled
development environment for control
applications. With the addition of just
a 5 volt power source and terminal,
you can develop serious applications
swiftly and interactively in a nearly
full implementation of F83 FORTH.

*Metacornpiler
FORTH program that runs on an IBM
compatible, that creates an image of
a Super8 FORTH complete with the
programmer's application and can be
downloaded to the Super8 emulator
for testing.

*Development ROMs
Enable you to compile FORTH code
directly usins any of the 3 types of
Supergs available from Zilog. The
Super8 contains a serial interface
that can be connected to a terminal
or PC for direct loading of source
code.

For more information
call (415) 591-8295.

Inner Access
Box 888

elmont CA

i

Volume XI, Number

I

2 Forth Dimensions 22

EXPERT SYSTEM
TOOLKIT

S rsIF0rt.h is an environment in
which to write expert systems. It is not a
program to make expert systems, but a
toolkit with which to make them. Once
SISIFOrth has been loaded, we can make
use of a set of new words to define therules,
questions, and answers. I will try to explain
how.

Before writing an expert system, of
course, we have to design it. When that is
done, we can build it using SISIFOrth.
There are three steps on the way: define the
questions, the rules, and at last the order of
the rules and the answers they lead to.

"We can think of SI-
SIFOrth rules as
Prolog sentences."

Each question of the expert system is
stored in any line of any screen. To define
a questions, the word QUE s T ION has to be
used in this way:

sn In QUESTION %name

where sn is the screen number of the text of
the question, In is the line number on that
screen where the question is found, and
%name is the question's name.

A rule is a number of conditions that, if
all of them are true, leads to an answer.
Each rule is just a word, defined in this way:

: rule-name
((question1
& question2)) ;

- - -- - -

MARCOS CRUZ - MADRID, SPAIN
m

: TASK

128 CONSTANT QUESTIONS (array lenght)
VARIABLE QNSWERS QUESTIONS ALLOT ! array)
VQELABLE N%
VARIABLE PJQ
: . T I T L E CR . " S I S I F O r t h environment V Z . OO " . CPU

: SISTFORTH-OK
ANSWERS DUESTIONS ERASE (erarec arrav)
CLS . T I T L E CR . " B>.: Marims C ~ C I Z , 1988. S F A I N " CF:

: Y/N i ---flag
C F:
BEGIN

} E Y (asc i i
DlJP DIJP 8: ascii. ascil. ascii)
83 = (asci i, ztscl i, asci i=P?.'!
SWAP (ascii, sscii=97?, ascii)
78 = i asci i , asci i :=By?, arc 1 i =?fi',
OF' ; 2sci.t. ascl i=87 OP ascl i=78")
NO? (asc 1 ; , asc; 1 ! 1- 8, AND asc 1 i :: : 787

WHILE (asc i i)
DPOP ()

REPEAT
(Y o r N +:~:perJ! (a s c ~ I. !
8 5 = DIJP ! asci l =8:", asc i ' ~ 9 3 7)
I F (i j. =857r

. " -.'tes" .
ELSE

. " :"No"
ENDJ F
&BE. (cnnver-tr flag 8:' - 1 t o I?.':. i

CR
(I f " Y " haz+ been t<,,ped. flag=l)
(I f "N" has been typed. .flag=(:))

: QUESTION

Volume XI, Number 2 23 Forth Dimemiom

CREATE ! screen. l i n e)
C 3 I screz..".,:
C 3 !)

1 NO DUP 13 ! 1. NO address. N i l c o n t e n t '
! 1. Na address)

+ ! ()

(Each word c rea ted by CIUESTIOh! stor iss:)
(l i n e o f i t s t e x t . i n p f a)
! screen o f i t s t e x t , i n p f a + l)
(number o f ques t i on . i n p f a+2 and o f a+:)

DOES '. ! p fa - -
DUF' (pTa.
3 -1- ! p . fa .
I (p f a .
DUF' ! p fa .
ANSWERS (p f a .
+ ! p f a .
C 12 (p f a .
"DIJP
(I T f lag-r! ' ! p f a .
(I f f l a g = l) ! n f a ,
I F

.answer)
pTa)
p f 3.+2)
g ~ ~ e s t i on-no)
g i i e s t i or:-na, cueat: on,,-no!
s i i e s t i on-no. a~ies5!. rjr,-r;o. sr;z:;;crn
question-no, oi..ieztq. o r - i : :>s . ? d r ?
quest ion-no, f? 3 p !

(The q ~ i e s t i o n was answered be fo re !
! p f a . quest ion-no. f l s g)

1 - ! p f a. quecioc-no. 3r>swet-1
HOT (ouest lon-no. snswar. o f a)
ROT (answer. p f a. ques t i on -nc)
ZDROP ! answer)

ELSE
(The ques t i on has never be made)

(p f a, quest ion-no)
SWAP (q~ ies t i on -no . p f a)
CUP (quest ion-no. p f a , fa?
C@ (quest ion-no. p f a, l i n e !
SWAP I + quest ion-no, 1 i ne , p f a + l)
C 12 ! quest ion-no. 1 i n e . zcreen!
CH
.LINE
Y/N
(1.1: "Y"
t I f "NU
DUP 1 +
HOT
CINSWERS
+
C '

END I F

: ((

(:I Nt< !
; IMMEDIATE
: P?

1 N.3 + !
CCOMF'ILEI I F

; IMMEDIATE
: 0))

I F
C F:
SWAP
.LINE
CR
QU 1 T

ELSE

(question-no)
! quest ion-no, answer!

was typed. answer=l)
was typed, answer=(:))

(quest1 on-no, answer. answer+l)
! answer. answer+l. q u e s t ~ o n - n o)
(answer. answer+l . quest 1 on-no. qnswer E -adr '
(answer, answerc l , question-adt-!
(answer)

! screen. l i n e , f l a g - - '
(screen, l ~ n e)

! l i n e . screen?
()

! screen. l i n e)

There can be any number of questions in-
side a rule.

If the answer to any question must be
false, we can add~oT after the name of the
question:

: rule-name
((questionl
& question2 NOT
& question3 1) ;

It is possible to use AND or OR to link
two or more questions:

: rule-name1
((questionl
question2 AND)) ;

: rule-name2
((questionl
question2 OR ;

But there are some problems if we do
this. If we use AND both questions will be
asked of the user, even if the answer to
quest ion1 is false.

Instead of AND, we should use the word
& (the ampersand):

: rule-name1
((questionl
& question2)) ;

Now if the answer to questionl is
"not," question2 will not be asked.

The OR case is not so important, be-
cause there is no difference between
rulepame2 above and the next two
rules.

: rule-name2.1
((questionl 1) ;

We have questions and rules; now we
order the rules inside a Forth word (the
main word of the expert system) in the
following way:

: expert-system-name
SISIFORTH-OK
. " Starting message"
snl In1 rule-name1
sn2 ln2 rule-name2
(etc)

I

Forth Dimemiom 24 Volume XI, Number 2

."Message if no rule was true"

For each rule, sn and In are the screen
number and line number where the text of
the answer has been typed. So, if the rule is
true, line In of screen sn will be printed
and SISIFOrth will stop.

The order of the rules is very important,
because SISIFOrth will stop whenever it
finds a true rule. So, for example, if there
are two rules like:

: rulel
((question1

& question2
& question3)) ;

then rule2 should always be after
rulel. If not, and if questionl and
question3 are both true, SISIFOrth
would stop in rule2 before examining
rulel.

SISIFOrth Words
I think SISIFOrth will be easy to under-

stand, because only a few words do all the
work. The power of SISIFOrth is the way it
does the dirty work; we have nothing to do
but tell it the rules and where the text is
located.

QUESTIONS
A constant that holds the maximum

number of questions ever used. It has to be
changed as needed.

ANSWERS
An array that holds the answers made by

the user. Answers are stored as 0 for 'ques-
tion not answered,' 1 for 'question an-
swered false,' and 2 for 'question answered
me.'

N &

Counter of how many times & is found
within a rule, used to compile the correct
number of END IFs at the end of the rule.

NQ
Counter of how many questions were

 rated by QUEST ION.

2DROP ()

ENDIF

:))

COMPILE 0))

N& 19 (&-no)
"DUF'
(I f %-no=(:)) (81-no)
(I f %-no-:?(:)) (8:-no, Pi-no)
I F

C) (%-no, 1 :))

DO
CCOMF'ILEI ENDIF

LOOP
END I F

: IMMEDIfiTE
: HLt + (- - sc reen)

-.? ,, WORD (a d d r e s s)
NUMHEP (number. 0)
DF:OF' (number)
+RLOCt' (s c r e e n)
(+BLOC1 adds c u r r e n t s c r e e n number t n t h e number o r TOS)
STATE I?! (sc reen . compi 1 l n g ")
I F (s c r e e n)

(RLt + 1 s b e i n g ~ ~ s e d i n s i d e a d e f l n i t l o n)
[COMPILE] LITEKAL

END I F
: IMMEDIATE

Screen # 2
O (S I S I F O r t h . v e h i c l e s e x p e r t)
1 (C luest ions:)
2 HLK+ 1 5 QUESTION MONEY
7 HLK+ 1 6 QUESTION PASSENGERS
4 HLK+ 1 7 ClUESTION BAGGAGE
5 ELI::+ 1 8 QUESTION SPEED
6 BLC:+ 1 9 QUESTION SPORT
7 (R u l e s :)

8 : SUBWAY ((MONEY NOT)) ;
9 : CAR ((PASSENGERS BAGGAGE OH)) :

10 : MCYCLE ((SPEED)) ;
11 : C5 ((SPORT NOT)) ;
12 : R1I::E ((SPORT)) ;
13 --;:.

14
15

Screen # 3
O (S I S I F O r t h , v e h i c l e s e x p e r t , c o n t i n u e d)
1 : SISIFORTH-VEHICLES SISIFORTH-OK
2 ." V e h i c l e s E x p e r t System'' CH ELK+ 0 11 SUBWhY BLK+ 0 12
3 CAR BLK+ 0 13 MCYCLE BLK+ 0 14 CS BLK+ O 15 BIKE ; ;S
4 (T e x t s o f q u e s t i o n s r)
5 Have y o u g o t money enough?
6 A r e y o u c a r r i n g passengers?
7 A r e y o u c a r r i n g baggage?
8 Do y o u l i k e speed?
9 Do y o u l i k e s p o r t ?

1 0 (T e x t s o f answers:)
1 1 Go t o t h e subway, s i l l y !
12 Ruy a c a r . s u r e .
13 Buy a speedy m o t o r c y c l e , t h e n .
14 W e l l , b u y a e l e c t r i c S i n c l a i r C 5 t r i c i c l e !
15 B e t t e r b u y a b i k e , my f r i e n d .

I I

Volume XI, Number 2 25 Forth Dimensions

Prints titles.

S c r e e n # 6
(1 (S I S I F O r t h . l i b r a r y m a n a g e r)
1 BLK+ 3 121 QUESTION COMPUTER-LANGUAGES
2 BLK+ 3 02 QUESTION FORTH-LANGUAGE
3 BLK+ 3 (27 QUESTION FORTH-79-LANGUAGE
4 BLK+ T 08 QUESTION FORTH-83-LANGUAGE
5 ELI::+ 5 09 QUESTION MMS-FORTH-LANGUAGE
6 ELK+ 3 1 0 QUESTION FIG-FORTH-LANGUAGE
7 ELK+ 3 (3.3 QUESTION PASCAL-LANGUAGE
8 BLt:::+ 3 1 2 QUESTION UCSD-PASCAL-LANGUAGE
9 BLK+ 3 1 1 QUESTION TURBO-PASCAL-LANGUAGE

10 ELF::+ 3 0 4 QUESTION BASIC-LANGUAGE
1 1 BLK+ 3 0 5 QUESTION C-LANGUAGE
12 BLK+ 3 0 6 QUESTION PARTICULAR-VERSION
1.7 --)
1 4
1 5

S c r e e n # 7
(1) (S I S I F O r t h . l i b r a r y manage r , c o n t i n u e d !
1 : NO-SHELVING ((COMPUTER-LANGUAGES NOT 1) ;
2 : SHELVING-(31 ((FORTH-LANGUAGE

t PARTICULAR-VERSION NOT) ;
4 : SHELVING-02 ((FORTH-!-ANGUAGE P.: PAF:TICCILRF:_,'?EPSIOM
c
-8 B FORTH-??-LANGUAGE)) :

6 : SHELVING-O3 ((FORTH-LANGUAGE t PARTICULAR-VERSION
7 8< FORTH-83-LANGUAGE 1) :
8 : SHELVING-04 ((FORTH-LANGUAGE ?< PARTICULAR-VERSION
9 & MMS-FORTH-LANGUAGE)) :

1 0 : SHELVI NG-05 ((FORTH-LANGUAGE t PART I CULAR-VERSI ON
1 1 % FIG-FORTH-LANGUAGE !) :
1 2 : SHELVING-O6 ((BASIC-LANGUAGE) ;
1 3 : SHELVING-07 ((C-LANGUAGE)) ;
1 4 -->.

S c r e e n # 8
(1) (S I S I F O r t h , l i b r a r y manage r , c o n t i n u e d)
1 : SHELVING-08 ((PASCAL-LANGUAGE
2 & PARTICULAR-VERSION NOT)) ;
3 : SHELVING-(29 ((PASCAL-LANGUAGE t PARTICULAR-VERSION
4 & TURBO-PASCAL-LANGUAGE)) :
5 : SHELVING-10 ((PASCAL-LANGUAGE
6 B UCSD-PASCAL)) :
7 : SISIFORTH-LIBRARY SISIFOHTH-Ok: . " L e t ' s s t a r t ! "
8 BLK+ 2 1 1 NO-SHELVING
9 ELK+ 2 0 1 SHELVING-(11 BLK+ 2 0 2 SHELVING-02

1 0 BLC:+ 2 0 3 SHELVING-03 ELK+ 2 0 4 SHELVING-04
1 1 ELK+ 2 0 5 SHELVING-115 BLK+ 2 0 6 SHELVING-06
1 2 BLK+ 2 07 SHELVING-07 BLK+ 2 0 8 SHELVING-08
1 3 ELI<+ 2 09 SHELVING-09 ELK+ 2 10 SHELVING-10
1 4 ." S o r r y , I c a n ' t h e l p y o u . " ;
1 5 :S

S c r e e n # 9
O (S I S I F O r t h , l i b r a r y manage r . c o n t i n u e d)
1 A r e y o u i n t e r e s t e d o n c o m p u t e r l a n g u a g e s ?
2 A r e VOLI i n t e r e s t e d o n F o r t h l a n g u a g e ?
3 A r e y o u i n t e r e s t e d on P a s c a l l a n g u a g e ?
4 A r e y o u i n t e r e s t e d o n BAS IC l a n g u a g e ?
5 A r e y o u i n t e r e s t e d o n C l a n g u a g e ?
6 A r e y o u i n t e r e s t e d o n a n y p a r t i c c ~ l a r d i a l e c t ?
7 A r e y o u i n t e r e s t e d o n F o r t h - 7 9 ?
8 A r e y o u i n t e r e s t e d o n F o r t h - 8 3 ?
9 A r e y o u i n t e r e s t e d o n MMS-For th?

1 0 A r e y o u i n t e r e s t e d o n f i g - F o r t h ?
11 A r e y o u i n t e r e s t e d o n T u r b o P a s c a l ?
1 2 A r e y o u i n t e r e s t e d o n UCSD-Pasca l?
13
1 4

SISIFORTH-OK
Clears ANSWERS and the display, to

start execution of rules.

Y / N (-- flag)
Waits fora"Y7' or " N to be typed, and

leaves a flag.

QUESTION (sn In --)

A word to create other words. Stores sn
and In at the PFA of the new word, with
the content of NQ, and increments the
content of NQ. When the new word is
executed, it checks its flag in ANSWERS
and, if it is 1 or 2 (which would mean the
question has already been answered by
the user), decrements it and leaves in on
top of the stack. If the flag is 0, it calls
Y / N to get the answer horn the user. In
any case, the word created by QUE S T ION
leaves a flag (i.e., the answer) when exe-
cuted.

((
Resets the content of N& when a rule is

compiled.

&

Increments the content of N& and
compiles an IF.

0 1)
The shadow word compiledat the start

of)) . It checks to see if the rule is me; if
so, it writes the answer and ends execu-
tion of SISIFOrth.

)
Compiles ())) and the needed

ENDIFs to complete the rule structure,
using the value stored in N&.

BLK+
This makes the expert system source

code relocatable among screens. Instead
of using absolute screen numbers to indi-
cate where an answer or questions has
been typed, we can use BLK+ rs where
rs stands for 'relative screen,' the offset
from the actual compilation screen. Thus,
BLK+ 0 denotes the screen currently
being compiled, BLK+ 1 means the next
screen, etc.

Conversion to fig-SISIFOrth
To convert this code to run on a fig-

FORTH system, just add 0 before any

Forth Dimemiom 26 Volume XI, Number 2

occurrence of the word VARIABLE. Then,
in the word)) ,use -DUP in placeof ?DUP.
The word AB S at the end of the definition of
Y / N could be deleted. In the definition of
BLK+, use WORD HERE instead of simply
WORD. If necessary, use <BUILDS instead
of CREATE at the StZirt of QUESTION.

Simple Examples
Screens two and three show a simple

example. To get it working, just compile
the screen where it starts, then type
SISIFORTH-VEHICLES. You will have
to answer some questions before SI-
SIFOrth gives an answer. Try again,chang-
ing your answers, to see what happens.

I know this example is very simple, but
if the way SISIFOrth works has been un-
derstood, it should be clear that very com-
plex expert systems can be written in this
way, not based on probabilities but "hard
rules" expert systems.

Screens six through ten show another
example. As can bee seen, the only problem
in building an expert system is designing it!

Screen # 10
O (SISIFOrth. l i b r a r y manager. cont inued)
1 Please, look a t she lv lng 1
2 Please. look. a t she lv ing 2
S Please. look: a t she lv ing 3
4 Please. look a t she lv ing 4
5 Please, look: a t shelv ing 5
6 Please. 1001: a t she lv ing 6
7 Please. look. a t she lv inq 7
8 Please. look a t she lv ing 8
9 Please. 1001,: a t she lv ing 9

10 Please, loot: a t seh lv ing 1 0
11 Sorry. we have on ly computer languages books.
12
13
14
15

CONCEPT 4
f o r t h W I N D O W S +

Text and Data Windows
O - O 1 90 Windows1 per available memory I P V M 8 3 1

8086,8088 Native
Code generator.
The easy way to
optimize Laxen &
Perry F83, including
the hi-level flow
control words ... If ..

Popup Windows
Save and Restore windows from files

Mouse Support
Circular Event Que for Mouse/keyboard

DOS services/ directory
F83, HSFORTH, FPC supported

PLUS

Prolog
Virtual

Machine

Add productivity,
flexibility, and auto-

mated reasoning
Fully interactive

Then, Do .. Loop, I $49.95 I between Forth and
Begin..Again. All programs require DOS 2.0 or higher Prolog code

All programs include 5 114" disk and manual
$20.00 Send check or money order to : $69.95

CONCEPT 4, INC. PO BOX 20136 VOC AZ 86341

Volume XI, Number 2 27 Forth Dimensions

We can also think of SISIFOrth rules as
Prolog sentences, where there are condi-
tions to make the rule true. With that idea in
mind, as you can see in the last example, it
is as easy to write an intelligent data base
using SISIFOrth as it would be using
Prolog.

One more thing: if the order of the rules
inside the main word is chosen with care,
some questions of some rules can be saved.
But it is better to write everv auestion
needed in every rule, it is suet. knd the
final message should not be needed if the
rules have been thought outproperly, but it
is better to keep it there while debugging an
expert system.

About the Name
In Greek mythology, Sisifo [Sisyphus

in most English translations] was sen-
tenced by Zeus to roll a big stone up a
mountain; but when he arrived, the stone
dropped back down and Sisifo had to go
down and start again ... and so on, again and
again, forever. Do you understand?

Marcos Cruz joined the Forth Interest
Group last year, and reports that the few
Forth users he knows in Spain mostly
use 68000-based computers such as the
Sinclair QL, Commodore Amiga, and
Atari ST. SISIFOrth was originally
written for a Sinclair M Spectrum with
a fig-FORTH from Melbourne House;
that was improved upon and translated
for a Sinclair QL running a Forth-83
from Computer One. The author wel-
comes mailed suggestions or improve-
ments at Acacias 44, 28023 Madrid,
Spain.

I

(Screens continued from page 22 .)

SCR #
0 \
1
2 :
3
4
5
6

7
8

6
COPY VIDEO LINE FROM IMAGE TO FORTH DICTIONARY SPACE

!CURREW-VLINE (Y-val --) \ Calc. address in image.
(For active image, calc 32-bit address of video line Y,)
(and save the address in double variable.)
pixels/line uss*d \ unsigned mult w.32-bit prod: Y*px/l
current-buf f er d+ \ added to start-addr = line address
current-vline 2! ; \ stored as daddr in variable.

9 : VLINE>DICT (Y-val --) \ Copy one line (Y) down.
10 !current-vline current-vline 2@ \ source daddr to stack
11 vidline(dadr) pixels/line make-GDT \ + dest & #bytes -XDT
12 GDT dseg pi.els/line 2/ \ gdt addr & segment, #words
13 intl5 dup not if drop \ call intl5, test status
14 else ." Error:" . quit then ; \ if error, print code.
15 ->

SCR # 7
0 \ STORE & FETCH SINGLE PIXELS AT X,Y; FILL IMAGE WITH 1 VALUE
1
2 : !PIXEL (n x y --) \ Replace pixel X,Y with value n.
3 vlinexlict \ Bring video line Y from image,
4 vidline + c! \ address pixel X, mdify it,
5 dict>vline ; \ and send line back to image.
6
7 : @PIXEL (x y -- n) \ Fetch value n of pixel X,Y.
8 vlinedict \ Y-coord specifies one line;
9 vidline + c@ ; \ address pixel X, find value.
10
11 : WILL (n --) \ Fill entire innge with byte n.
12 freeze \ End live video, hold image
13 vidline pixels/line rot fill \ set up video line
14 480 0 do i !current-vline \ address 480 lines of image
15 dict>vline loop ; -> \ & copy same array into each.

SCR # 8
0 \ SAVE AN IMAGE TO DISK FILE
1 decimal
2 : HANDLEI (-- n) fcb @ c@ ; \ Get current file handle.

IMAGE>DISK (--)
480 0 do
i vline>dict
vidline 512 handle#
write-bytes drop
loop ;

SAVE (filename) (--
close freeze
. Saving image '
make (filename)
imagedisk close ; ->

\ Move video image to an open file.
\ For 480 lines of a video image,
\ mve each line from image to array,
\ set address, count & file-handle
\ write array to disk, drop status,
\ and do next line.

) \ Save image in new disk file.
\ Close any open file, freeze image;
\ tell user something is happening;
\ open a file using filename supplied
\ copy image, and close file.

Forth Dimemiom 28 Volume XI, Number 2

I

(Screens continued on page 34.)

I

SILICON COMPOSERS

Performance, Quality, Service

S C / F O P Forth Optimized expresstm

SC/FOX PCS Parallel Coprocessor System
Uses Harris RTX 20ootm real-time Forth CPU.
System speeds options: 8 or 10 MHz.
Full-length 8 or 16-bit PC/XT/AT plug-in board.
32K to 1M bytes, 0-wait-state static RAM.
Hardware expansion, two S p i n strip headers.
Multiple PCS board parallel operation.
Data transfer thru moveable shared 16K window.
Includes FCompiler, SC/Forth optional.
Prices start at $1.995 with software.

SC/FOX SBC Single Board Computer
Uses RTX 2000 real-time Forth CPU.
System speed options: 8, 10, or 12 MHz.
32K to 512K bytes 0-wait-state static RAM.
64K bytes of shadow-EPROM space.
RS232 serial and Centronic printer ports.
Hardware expansion, two S p i n strip headers.
Eurocard size: 100mm by 160mm.
Includes FCompiler, optional SCjForth EPROM.
Prices start at $995 with software.

SC/FOX SCSI 110 Daughter Board -- NEW!
Plug-on daughter board for SC/FOX PCS and SBC.
Source s/w drivers for FCompiler and =/Forth.
SCSI adaptor with 5 Mbytes/sec synchronous or
3 Mbytes/sec asynchronous transfer rates.
Floppy disk adaptor, up to 4 drives, any type.
Full RS232C Serial Port, 50 to 56K Baud.
16-bit bidirectional, latching-parallel port.
Price $695 with software.

SC/Forthtm Language
Interactive Forth-83 Standard.
15-priority timesliced multitasking.
Supports user-defmed PAUSE.
Automatic optimization and lrcode support.
Turnkey application support.
Extended structures and case statement.
Double number extensions.
Infix equation notation option.
Block or text file interpretation.
Optional sorce code developers system.
Prices start at $695.

SC/FOX Support Products:
SC/Forth Source Code
=/Floatm IEEE Floating Point Library.
SC/PCS/PROTO Prototype Board.
SC/SBC/PROTO Prototype Board.
SC/FOX/SP Serial-Parallel Board.
XRUI$"' Utilities and SC/SBC Serial Cable.

Harris RTX 2000 Real-Time Forth CPU
1-cycle multiplier, 14-prioritized interrupts,
one NMI, two 256-word stacks, 16-bit timer/counters,
and an %channel multiplexed 16-bit 110 bus.

Ideal for embedded real-time control, high-speed data acquisition and reduction, image or signal
processing, or computation intense applications. For additional information, please contact us at:

Silicon Composers, Inc., 210 California Avenue, Suite K, Palo Alto, CA 94306 (415) 322-8763

Volume XI, Number 2 29 Forth Dimensions

TWO ASSEMBLERS
ARE BETTER THAN ONE

DARRYL C. OLNIER - NEW ORLEANS, WUISIANA

T e Forth assembler is handy for writ-
ing short pieces of code to access the hard-
ware or to speed up a loop, but it can be
cumbersome for large routines. A full-
fledged macro assembler with all the bells
and whistles is ideal for larger routines, but
it would be very messy to implement as a
Forth vocabulary. Fortunately, this is not
necessary. It is possible to write a routine
using a regular macro assembler, then to
incorporate the resultant binary file as a
Forth word. I will describe a way to do this
for a PC-type segmented memory struc-
ture. Forth-79 is used, along with the
Microsoft Macro Assembler under MS-
DOS.

"This makes practi-
cal a library of binary

SCR #I
0 \ Two A s s e m b l e r s A r e B e t t e r t h a n One D. C. O l i v i e r 3-6-89
1
2 VARIABLE SIZE \ S i z e o f f i l e t o b e l o a d e d
3 VARIABLE BINSEG \ Segment
4 VARIABLE NAMES 11 ALLOT \ F i l e name s t r i n g
5 DVARIABLE REGS \ H o l d s r e g i s t e r c o n t e n t s
6
7 CODE CSEG \ L e a v e s c o n t e n t s o f t h e CS r e g i s t e r o n t h e s t a c k .
8 CS PUSH
9 NEXT JMP END-CODE

SCR 1 2
0 \ Two A s s e m b l e r s A r e B e t t e r t h a n One D. C. O l i v i e r 3-6-89
1 CODE CALLBIN
2 # REGS, BPMOV \ S a v e r e g i s t e r s
3 # REGS 2+ , S I MOV \ u s e d b y F o r t h .
4 203 C, \ I n t e r s e g m e n t r e t u r n i n s t r u c t i o n f o r 8088
5 END-CODE
6
7 CODE REENTRY
8 AX, CS MOV
9 DS, AX MOV \ R e s t o r e DS r e g i s t e r

1 0 BX, # REGS MOV
11 BP. lBXl MOV \ R e s t o r e r e a i s t e r s
1 2 B X . I N C - Bx INC \ u s e d b y FoGth
1 3 S I , [BX] MOV \
1 4 NEXT JMP END-CODE

1 routines ... 99
0 \ Two A s s e m b l e r s A r e B e t t e r t h a n One I I sc, # 3

D. C. O l i v i e r 3-6-89 I I
1 1 1 ; : READBIN I 1 1

The assembler routine to be adopted
into Forth must be written or modified to
conform to certain restrictions. It mustbe in
the COM format, with all code and data in
the same segment. The instruction ORG
1 0 0 h-usually included in a COM pro-
gram-is not used, because we want the
routine to begin at offset zero within its
segment. (Alternately, keep the ORG 1 0 0 h
instruction and subtract 10h from the seg-
ment value in the Forth defining word.) A
stack segment is not defined, and S S is not
used in the ASSUME statement. Input and
output parameters will be passed via the
Forth stack. When the routine executes, the
top two elements on the stack will be the
segment and offset of the Forth re-entry

3

4 EXIT
5
6 The name o f t h e b i n a r y f i l e is a t NAMES a s a c o u n t e d s t r i n g .
7 Use y o u r own DOS f i l e i n t e r f a c e t o o p e n t h e f i l e , d e t e r m i n e and
8 s to re i ts s i z e i n SIZE, r e a d t h e f i l e f r o m d i s k t o BINSEG:O,
9 c l o s e t h e f i l e , d o a n y a p p r o p r i a t e e r r o r c h e c k i n g .

SCR 1 4
0 \ Two A s s e m b l e r s A r e B e t t e r t h a n One D. C. O l i v i e r 3-6-89
1 : BINFILE
2 > I N @ \ S a v e s i n p u t stream p o i n t e r
3 BL WORD DUP \ Reads n e x t word f r o m i n p u t s t r e a m
4 C@ 1 + NAMES SWAP CMOVE \ Moves word t o v a r i a b l e NAMES
5 > I N 1 \ R e s t o r e s i m p u t s t r e a m p o i n t e r
6 CREATE \ Reads same word , creates h e a d e r
7 HERE 1 6 / 1 + DUP \ # o f p a r a g r a p h s t o HERE, + 1
8 CSEG + BINSEG 1 \ Segment f o r b i n a r y r o u t i n e
9 READBIN \ Read f i l e f r o m d i s k t o B1NSEG:O

1 0 1 6 SIZE @ + DP I \ A l l o t d i c t i o n a r y s p a c e
11 DOES> \ PFA o n s t a c k a t r u n t i m e
1 2 CSEG ' REENTRY \ Segment a n d o f f s e t o f r e e n t r y p o i n t
1 3 ROT 1 6 / 1 + CSEG + 0 \ Segment and o f f s e t o f b i n a r y r o u t i n e
1 4 CALLBIN ; \ I n t e r s e g m e n t RET i n s t r u c t i o n

I
Forth Dimensions 30 Volume XI, Number 2

point. These should be saved in variables
and restored before the final RET instruc-
tion. Define the routine as a ~~Rprocedure,
so that the final RET instruction will be
assembled as an intersegment return.

Figure One is a trivial example that
takes two numbers from the stack, adds
them, and places the result on the stack
before returning to Forth. Assemble the
source code and LINK as usual; use the
EXE2BIN utility to convert to binary for-
mat, then rename the file if you like. Its
Forth name will be the same as its filename.

B INF I LE in screen four is the defining
word. The syntax is:

where <name> is the name of the binary
file on disk. On line two, we save the value
of the input stream pointer on the stack. On
line three, we read the next word from the
input stream, which is <name>. Line four
moves <name> to a variable. Line five
restores the original value of the input
stream pointer so that CREATE can read
<name> also. Line six creates a dictionary
header for <name>.

The binary routine must start on the first
paragraph boundary within the parameter
field. (A paragraph boundary is any address
evenly divisible by 16.) On line seven, we
calculate the number of paragraphs from
the beginning of the Forth segment to the
parameter field. Line eight adds the value in
the CS register to this number and places
the result in the variable BINSEG. On line
nine, READBIN reads the file whose name
is in NAME $ from disk to B INSEG : 0. Line
ten allots dictionary space for the defini-
tion.

Line 12 begins the run-time part of the
defining word. It places on the stack the
address of the Forth re-entry point to be
used by the final RET instruction in the
binary routine. Line 13 places the address
of the beginning of the binary routine on the
stack. At first glance it might seem that this
is simply BINSEG: 0, but if the Forth
program has been compiled as a turnkey
system, it may be executed from a different
segment that the one in which it was com-
piled. That is why this address must be
calculated at run time. Line 14 executes an
intersegment RET instruction, which takes
the segment and offset from the stack and
jumps to it.

This technique makes practical a com-
mercial or public-domain library of binary
routines to be incorporated into Forth pro-
grams. These could be sorts, searches,
graphic routines, math functions, trans-
forms, etc. Of course, such a library would
not be portable across CPUs, but it wouldbe
portable across Forth dialects. Any im-
plementation dependencies would be hid-
den in the defining word BINFILE. Such a

library could greatly increase the produc-
tivity of Forth programmers. Why spend
time coding a quicksort routine in Forth,
for example, when you could buy a canned
assembly language version that had been
optimized, tested, and debugged? It is even
conceivable that, for some applications,
Forth could be used as "glue" to hold to-
gether packaged routines that did most of
the work.

TITLE PLUS
,
ASEG SEGMENT PARA PUBLIC
ASSUME CS:ASEG,DS:ASEG,ES:ASEG
I

START :
JMP ADDUP
RET ADDRl DW ?
RET-ADDR~ DW ?
A D D ~ PROC FAR
,
; Code and data in same segment.
MOV AX, CS
MOV DS, AX
I

; Save the Forth re-entry point.
POP RET-ADDR1
POP RET-ADDR2
,
; Perform the operation.
POP AX ; Get arguments from stack
POP BX
ADD AX,BX ; Add them.
PUSH AX ; Put result on the stack.
I

; Put the segment and offset of the
; Forth re-entry point on the stack.
PUSH RET-ADDR2
PUSH RET-ADDR1
I

; Jump to the re-entry point.
RET
ADDUP ENDP
ASEG ENDS
END START

Figure One. An assembly routine can perform its task and return to Forth.

Volume XI, Number 2 31 Forth Dimensions

THE BEST OF
GENIE

GARY SMITH - W'ITLE ROCK, ARKANSAS
=

A s promised in the last issue, 1 will
continue with recent on-line conferences
that featured George Shaw, Mike Perry,
Randy Dumse, and Wil Baden. As before,
I will feature the guests' opening remarks
from their respective conferences. These
remarks set the tone and direction of the
conference, and they serve that purpose
well. I hope most readers will note they also
serve to acquaint the attendees of the con-
ference--and now the readers of this col-
umn-with the guests' personal philoso-
phies.

This is no accident. When I have ap-
proached a prospective guest, I have al-
ways asked what they wish to talk about.
What is their personal point of wisdom they
wish to share? Without exception, those
who have accepted the invitation have also
accepted the opportunity to share their
personal point of view, as opposed to some
general subject. It is clear that weal1 benefit
from this unselfishness. I again wish to
thank all these gracious people for sharing
their insight as they have.

Now, on to the recaps.

George Shaw
December 1988
Owner of Shaw Laboratories.

<[George]> We (myself and others)
started the ACM SIG to bring Forth into the
professional computing arena. ACM is
very visible in the universities and colleges,
and is very well respected around the
world. We felt that having a SIG wouldgive
Forth a large boost in image as a language
for serious use by professionals.

Thanks to Alan Furman for starting the
whole thing and analyzing the situation to

give us direction and goals. I have a list of
our initial projects :

Education: Moving Forth into the uni-
versities and colleges to create an aware-
ness of Forth and a better supply of Forth
programmers.

Forthics: Research to create a basic set
of Forth programming ethics as well as
management metrics to increase the suc-
cess of Forth projects.

Marker A study of the job requirements
and the Forth programming skills available
to determine trends in the Forth job market-
place and skills required for the future.

"The immediacy is
lost, but the words
remain."

Successes/Failures: A study of the his-
torical applications of Forth to create an
awareness of Forth's widespread use and to
determine what the characteristics and
causes are for successes and failures.

ANS Forth: Participate through your
SIGForth representative in the ANS Forth
committee to produce an American Na-
tional Standard for Forth that everyone can
use.

State of the Industry: SIGForth periodi-
cally compiles suweysof theForth industry
to evaluate the status of the Forth product
market, job market, workplace, education
availability, job requirements, etc. Partici-
pate in these surveys and be one of the first
to reap their benefits through their publica-
tion in the SIGForth newsletter.

Mike Perry
January 1989
Owner of Even-Odd Designs.

<[mike]> I have benefitted enormously
from the work of many other people. I have
come to believe strongly in the value of
open systems. I want, and even need, to
have complete control over my tools. Shar-
ing code and avoiding secrets are essential
for productivity.

I am convinced that Forth will continue
to be interesting because so many new
techniques and ideas are explored here;
that is possible, in large part, because we
share our code and ideas.

Remember, we will only lose control of
our machines if we give it away.

Randy Dumse
February 1989
Owner of New Micros, Inc.

<[DUMSE]> Being somewhat isolated
here in Texas has its disadvantages. The
availability of other informed people to
bounce ideas off is limited, so most of my
opportunities for such interaction occur at
most twice a year: at FORML or Rochester.
On the other hand, not having anyone to
give guided direction to your thinking can
allow original thought to take some inter-
esting directions. How useful these
thoughts are often cannotbe determined by
the originator. It's a little like the male
complex where no baby is ever pretty-
until it's his own!

So it is with ideas: they are much like
the only child a male can bear, and there-
fore look pretty darn cute to Dada. It can be
a bit hard to be objective when there is that
feeling of self-investment in the thoughts.

(Continued on page 34.)

Forth Dimensions 32 Volume XI, Number 2

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 8231
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Terri Sutton, Secretary
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipientsof
the "FIGGY." Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
1980 Kim Hams
1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting
1987 Marlin Ouverson
1988 Dennis Ruffer

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable (ForthNet link*)
Call GEnie local node, then type M7 10
or FORTH
SysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S.W.SQUIRES), Leona
Morgenstern (NMORGENSTERN),
Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type
j forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)

LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products
Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colburn, Zach Zachar-
iah, Ward McFarland, Jon Bryan,
Greg Guerin, John Baxter, John
Jeppson
Computer Language Magazine Con-
ference
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with Forth conferences
(Fortmet links*)

WELL Forth conference
Access WELL via CompuserveNet or
415-332-6106
Fairwitness: Jack Woehr (jax)
Wetware Forth conference
415-753-5265
Fairwitness: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703-442-8695
SysOp: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board , 303-278-0364 , SysOp: Jack Woehr

--

Volume XI, Number 2 33 Forth Dimensions

Other Forth-specific BBS's
Laboratory Microsystems, Inc.
213-306-3530
Sysop: Ron Braithwaite

This list was accurate as of March 1989. If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith
P. 0. Drawer 7680

Little Rock, Arkansas 72217
Telephone: 501-227-7817
Fax: 501 -228-0271
Telex: 6501 165247 (store and forward)
GEnie (co-Sysop, Forth RoundTable):

GARY-S
BIX (Bytenet): GARY S
Delphi: GARY-S
MCIMAIL: 1 16-5247
CompuServe: 71066,707
Wetware Diver. (Fairwitness, Forth Con

1
ference): gars

Usenet domain.: gars@well.UUCP or
gars@ wet.WCP

Internet: well!gars@lll-winken.arpa
WELL: gars

*Fortmet is a virtual Forth network that

I (Continuedfrom page 29.) 11

(Screen continued from page 28.)

There isn't even a mother on which to
blame half of the genes.

With those thoughts, I begin.

Forth as a Standalone Operating System
Both the R65F11 and F68HC 1 1 single-

chip computers have been designed as-
standalone computer systems. They use
Forth as their operating system. In this
regard, they follow in the tradition of mi-
cros like the KIM- 1, SYM- 1, and the AIM-
65. Each of these had a built-in monitor to
allow user interaction with the system.
Similarly, other systems used BASIC as
their power-on operating system, such as
the (if my memory serves) OSI, TRS-80,
and Apple.

Something to keep in mind: "operating
system" hasn't always meant "disk operat-
ing system."

As most of us have heard, Forth is
nearly its own operating system. In fact, it

2. Formatting must show logical structure.
3. Use short definitions, short lines, short

phrases.
4. Don't mumble-your program should

pass your spelling checker.
5. Mix upper and lower case-all lower

case is just as bad as all upper.
6. Write comments in the English language.

is often stated that Forth is difficult to
install under an existing operating system
because it is not well behaved. These
comments really have nothing to do with
Forth as a general language, but come out of
the difficulty of doing blocks under another
0s.

Wil Baden
March 1989
Owner of Paleotaurus, Inc.

<[Will> Let's stop kidding ourselves.
Forth deserves its reputation as a write-only
language. 99 percent of published Forth
programs prove this. Until Forth improves
its reputation, it will be scorned. Tonight I
want to investigate the evil forces that
cause this and discuss six necessary but
insufficient rules for mort: readable pro-
grams.
1. The stack state must be given for every

line.

Are there better rules? What else must be
done?

If you are grinding your teeth and wish-
ing you had participated in one of these
temfic guest conferences, all is not lost.
The immediacy is lost forever, but the
words remain for you to capture and study
at your leisure. They are posted in the
GEnie Forth RoundTable, Library 1.

SCR # 9
0 \ RESTORE AN IMAGE FROM DISK FILE
1 decimal
L

3 : DISK>IMAGE (--) \ Copy an open disk file to video.
4 480 0 do \ For 480 lines of a video image,
5 vidline 512 handle# \ set up array's address, size, file;
6 read-bytes drop \ load array from file, drop status;
7 i !current-vline \ find address in imge of this line,
8 dict>vline loop ; \ and move the line to image buffer.
9
10 : RESTORE (filename) (--) \ Open & load file to video.
11 freeze open (filename) \ Stop live video, open file;
12 disk>image close ; \ copy file, close it.
13

Forth Dimensions 34 Volume XI, Nwnber 2

such as 00 3B for function key one). Using
this trivial definition makes it much easier
to avoid such problems as the user pressing
an extended key after "Press any key ..."

%QUIT in screen 33, in conjunction
with the main editor loop (E) in 57, shows
how to force an exit, regardless how many
levels of calling words (return addresses on
the return stack) there are.

In the mainline word (E) , we note the
position of the return stack (RP@), which
we save in our variable & RP 0. This notes
the point on the return stack with the ad-
dress to which we ultimately want to exit.

Then, when a word like ABANDON or
EXIT-SAVE wants to exit PDE, it uses
%QUIT to reset RP (&RPO @ RP!) and
then returns to that higher-level return
address. This approach is more general
than a series of R> DROPS, particularly
when you consider that ABANDON is nested
four levels deep when invoked through "Z,

but only three when Alt-Fl is used.

Footnotes
1. "Screen-Oriented Editor in Forth," by

Henry Laxen. Dr.Dobbls Journal, vol. 6,
no. 9, pg. 27.

2. VED (Craig Lindley) and FSED (Gene
Czarcinski), September 1986. Credit also
to John A. Peters and R.F. Buchanan.

3. F83 is a public-domain implementation
of Forth-83 by Henry Laxen and Michael
Perry, with many, many fine added fea-
tures. F83 is available on disks from
SIGM (154) or, better yet, from Laxen
and Perry's No Visible Support Software
for $25. Go ahead, make their day.

4. "Fast SEARCH for F83," by Bill
Zimmerly. Forth Dimensions VIII/4, pg.
5. [Also IX/2,4, and XI1 . --Ed.]

5. "Debugging from a Full-Screen Editor,"
by Tom Blakeslee. Forth Dimensions V/
2. pg. 30.

Frms van Duinen is regional man-
ager of Micro-expertise Inc., a cus-
tom software house that specializes in
networked database systems. A
slightly more recent version of the
code may be downloadedfrom GEnie
and from Canada Remote System
(416-629-0136) as PDE202 .ARC.

(Eggs, continued from page 6.)

where D-Rl I x I D+Rl. The equivalent
(unoptimized) BASICA program for the
explicit oval function might be written as
shown in Figure Five.

If you ay both approaches, you will find
the latter explicit method unsatisfactory for
drawing ovals without some modifications
for angles close to the horizontal axis. The
0VALS.HSF demo can be downloaded
from the GEnie Forth RoundTable and
from the East Coast Forth Board [see Ref-
erence Section. --Ed.].

Robert Garian is a technical information and language specialist at the Library of
Congress, specializing in Soviet computing. He has written an AI program called
Block Solver that rearranges one multistack configuration of blocks into a
specified goal configuration under constraints; and he has worked on automating
both software verification and code generation. His current interests include
simulation of complex systems, cellular automata, and genetic algorithms.

(Letters, continued frompage 5.)

ture. When someone adds another stack,
they enter the realm of extended-rather
than standard-Forth, even though the
standard does not explicitly disallow extra
stacks. However, I personally favor exten-
sions such as extra stacks, particularly if I
don't have to manipulate the extra stacks
while they give me the features of an OOL.

While it may be better to implement the
features of an OOF in assembly language,

the Forth community is better served by
first offering algorithms expressed in Forth
so the explanations that accompany the
code can be more readily understood. Once
care is taken to provide such information,
assembly-language implementations
might be appreciated.

I hope information about object-ori-
ented languages piles up for Forth Dimen-

sions. Aren't Forth programmers more
likely to appreciate creative approaches to
the problem of programming computers?
Before C++ takes off, perhaps FORTH++
can step in.

Mike Elola
San Jose, California

Volwne XI, Number 2 35 Forth Dimensions

It Rains-
Chapter Coordinator Muses

H r e in the high-altitude desert
that is Colorado on the &tern side of the
Rockies, it is drizzling a drizzle that would
do credit to the Pacific Northwest. The dif-
ference is that when the spring soddenness
arrives in thecascades, the air is heavy with
a primeval green scent, whereas here in
Golden, at the foot of the Foothills, there is
the tangy aroma of fields of damp straw.

Soon the bull snakes will hatch and
warm their coppery beauty in the sunshine
of early June. Already it has become a
questionable enterprise to climb North
Table Mountain; unseasonable eighty-de-
gree weather in late April has the rattlers
already emerging from their hibernation to
bedevil suburbanites engaged in lawn care
in the upscale development injudiciously
located on the side of that prominence.

Colorado is like the bull snake fresh
from the shell, a coiled potency awaiting
exercise. The end of the petroleum boom
left many high and dry economically. Last
year, mortgage foreclosures surpassed new
mortgages for the first time. Thereis asense
of lack of permanence among the high-tech
employed. Miniscribe, for instance, for-
merly the Boulder-area wunderkind, has
been steadily cutting back.

Yet the improbable obtains: Colorado is
a hotbed of Forth. Ball Aerospace is here,
those arbiters of the final configuration of
the RTX-2000. The red brick w a s of
IBM's city-sized fortress in Longrnont
reputedly conceal several ongoing Forth
efforts. Applied Energy in Ft. Collins has
periodically gone to great lengths to obtain
qualified Forth assistance. Charles
Johansen is working on finishing and foun-
drying an inexpensive Forth chip while
Cliff King, president of Denver FIG, is in

JACK WOEHR - 'JAX' ON GEnie
rn

the process of releasing the first revision of
his 32-bit AT&T DSP-chip Forth develop
ment system.

The local chapters of the Forth Interest
Group have been only partially successful
in tying together the disparate practitioners
ofForth in a functioning fraternity. Boulder
Forth Interest Group seems to have disap-
peared, its members swallowed but not
digested by Denver FIG. The latter organi-
zation meets sporadically, usually when a
speaker is in town. Since the meeting place
moved to Golden, between Denver and
Boulder, we have been more successful in
"trapping" members of both communities
at meetings.

"This small event de-
fies the mortality statis-
tics."

Our most successful recent meeting was
at the National Institute of Standards and
Technology at the Commerce D e p m e n t
facility in Boulder. We gathered from all
over the state to see Dr. JeMey Fox demon-
strate software he wrote in Forth on various
architectures to demonstrate chaotic sys-
tems and the Monte Carlo method.

Subsequent to that meeting, we had
another well-attended meeting in which we
agreed to really get Denver FIG going
again. There hasn't been a formal Denver
FIG meeting since. Are we unusual?

Our Forth-83 class still meets once a
week. Three to seven people attend to learn,
gripe, bring incomplete and ailing Forth
projects for the Forth Doctor to diagnose,

They-still talk about the time three
years back when Charles Moore came to
town to show off the Novix [Forth chip].
One gets the sense that, more than any-
thing, our chapter awaits the founding of a
FIG Speaker's Bureau that would track
Forthers willing to address local groups
and to publish their travel itineraries for
the benefit of interested chapters.

Speakers at FIG meetings do not have
to be celebrities; a new face would be
worth ten clever newsletters, in terms of
drawing a crowd at Denver FIG. Fortu-
nately for the continued vitality of our
chapter, Gary Betts of the ANSI Forth
Technical Committee (X3J14) is in the
area and has agreed to address us. Charles
Curley should be out for a visit sometime
soon, and when Wil Baden comes to Colo-
rado around January of next year there will
be an eager and attentive audience await-
ing his presentation. Any other Forthers
visiting Colorado are invited to address the
chapter on their doings; please give us
some advance notice.

I

I
Forth Dimemions 36 Volume XI, Number 2

show off fancy new toys such as the
MC68HCll with New Micros' Forth on
board. Members will indeed gather if they
can sense some purpose in doing so. In the
case of the Forth class, for instance, some
members' purpose is to get consultation
help for $2.50 an hour that they used to pay
$30 an hour to obtain. Isn't FIG for helping
people not only with Forth in the abstract,
but also with Forth in their specific appli-
cation? In any event, this small weekly
event has defied the mortality statistics of
local chapter activity to run for about a
year now, with only two blizzards and one
Florida vacation having interrupted its
continuity.

Our chapter bulletin board, the RCFB,
is now on the ForthNet. ForthNet messages
bounce around the continent from local
BBS to local BBS, sometimes even coming
back to reinsert themselves accidentally in
the conversational threads of the board of
origin. The Forth community has never had
such a communications resource at its fin-
gertips before. What is needed now is some
creative use of same.

Wouldn't it be nice if every chapter had
a BBS on the ForthNet? In such a situation,
no formal Speaker's Bureau wouldbe nec-
essary. There is already a FIG Conference
that is exchanged on the ForthNet. (Cur-
rently we are discussing just what is a FIG
Chapter. You should log in just to see Bnt-
ish Colurnb&~~G's electronic newsletter!)
Forthers can post their travel dates in the
ForthNet FIG Conference, or in a separate
Speaker's Conference. We might actually
get to meet one another. Hibernating chap-
ters might have cause to dust off the gavel
more often than quarterly.

But these are dreams one has only on
rainy days ...

(Code continuedfrom page 9.)

: DOZEN-EGGS 35 I S R1 CR CR \ Assumes R1 has b e e n p r e s e t .
WIPE ." P o i n t height is i n c r e a s i n g . E q u a t o r i a l r a d i u s i s ' R1 .
6 IS #COLS
2 I S #ROWS
R 1 2* 1 0 + I S HJUMP
2 0 0 #ROWS / 2 / 1 0 + IS VJUMP
#COLS 1+ 1 DO

#ROWS 1 + 1 DO
HJUMP J * I S D
VJUMP I * I S C
F 1 J * I S R2
F 2 I * IS R3
OVAL

LOOP
LOOP ORIGIN ;

I CASE: CCXMANDS DOZEN-EGGS NEST-OF-EGGS ONE-EGG BYE ; CASE I
: DEMO (--)
BEGIN
CR ." 1 -- Dozen eggs '
CR ." 2 -- N e s t of eggs '
CR ." 3 -- Draw a n oval "
CR ." 4 -- Q u i t '
CR ." Your choice: ' #IN 1- ABS 3 MIN 0 MAX
COMMANDS CR ." P r e s s any k e y ' KEY DROP WIPE
AGAIN ;

i I . (E n t e r DEMO a n d a carriage r e t u r n)

\ - - - - - - - - - - - - - - - - -

1 6 1024 * CONSTANT 16K

i 1)16K 1 0 + SEGMENT PICTURE \ set u p a b u f f e r i i
: CLRBUF \ clear t h e b u f f e r

PICTURE DUP @ 0 OVER 21@ 3 2 FILLL
0 PICTURE 41! ;

Bryte . . I2
Concept 4 . 27
FORML. 13
w a r d Softworks . 7
Inner Access. 22
InerSystems.. 18
Laboratory Microsystems 20
Miller Microcomputer Services17
Mountain View Press.. 9

Next Generation Systems. 21
SDS Electronic, . 15
Silicon Composers. 2.29

\ T a k e a s n a p s h o t of s c r e e n . S a v e it i n TEMP.PIC
: SNAP (--)

16K PICTURE 41! \ make s u r e e n t i r e screen is saved
C-OFF \ c u r s o r off
CRT-BASE 0 PICTURE @ 0 16K CMOVEL \ SCREEN t o PICTURE s e g m e n t
PICTURE $" TEMP.PICW PUT-FILE C-2 ; \ PICT. t o TEMP.PIC f i le , c u r s o r

I On

: QD PICTURE @ 0 CRT-BASE 0 16K CMOVEL ; \ PICTURE t o SCREEN

\ Look a t s n a p s h o t k e p t i n TEMP.PIC.
:LOOK (- -)

CLRBUF
PICTURE $" TEMP.PIC1' GET-FILE \ TEMP.PIC t o PICTURE
QD ;

\ I l l u s t r a t i o n

: DEMO2 NEST-OF-EGGS SNAP WIPE CR ." S c r e e n saved."
CR ." P r e s s a n y k e y t o display screen stored i n f i le" KEY DROP

LOOK ;

Volume XI, Number 2 37 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 881 -6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak. Alaska 99615

ARIZONA
Phoenix Chapter
4th Thus., 7:30 p.m.
AZ State University
Memorial Union. 2nd floor
Dennis L. Wilson
(602) 956-7578

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat., 2 p.m. &
4th Wed., 7 p.m.
Jungkiid Photo, 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.
Hawthorne Public Library
12700 S. Grevillea Ave.
Phillip Wasson
(213) 649-1428

North Bay Chapter
2nd Sat., 10 a.m. Forth, A1
12 Noon Tutorial, 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Tom Ghormley
(916) 444-7775

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Barr (408) 435-161 6

Stockton Chapter
Doug Dillon (209) 93 1-2448

COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed., 8 p.m.
Herman B. Gibson
(305) 855-4790

Southeast Florida Chapter
Coconut Grove Area
John Forsberg (305) 252-0108

Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725-1245

GEORGIA
Atlanta Chapter
3rd Tues., 6:30 p.m.
Western Sizzlen, Doraville
Nick Hennenfent
(404) 393-3010

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(312) 386-3147

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
UP Univ. Campus, B71 Neff
Hall
Blair MacDermid
(219) 749-2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ., 214 Comp.
Sci.
Rsdrick Eldridge
(5 15) 294-5659

Fairfield FIG Chapter
4th Day, 8: 15 p.m.
Gudy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth
(301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord. Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitlAnn Arbor Area
4th Thurs.
Tom Chrapkiewicz
(3 13) 322-7862
Fred Olsen (612) 588-9532

MINNESOTA
MNFIG Chapter
Minneapolis

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
9 1 Weis Drive
Ellisville, MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ., Piscataway
Nicholas Lordi
(201) 338-9363

Forth Dimensions 38 Volume XI, Number 2

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

* NEW YORK
FIG, New York
2nd Wed., 7:45 p.m.
Manhattan
Ron Martinez (212) 866-1 157

Rochester Chapter
Odd month, 4th Sat., 1 p:m.
Monroe Cornrn. College
Bldg. 7, Rm.102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues., 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(21 6) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
5 115 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#6 12
Gary Ganger (513) 849-1483

OREGON
Willamette Valley Chapter
4th Tues., 7 p.m.
Linn-Benton Comrn. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. FIG Chapter
Bryan Stueben
321-C Willowbrook Drive
Jeffersonville, PA 19403
(215) 265-3832

, TENNESSEE
1 East Tennessee Chapter

Oak Ridge
2nd Tues., 7:30 p.m.
Sci. Appl. Int'l. Corp., 8th F1
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

Volume XI, Number 2

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon.. 7:45 p.m.
Intro Class 6:30 p.m.
Univ. at St. Thomas
Russell Harris (713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 898-4099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy.. Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 Business School
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/29-2600
BBS: 61 3 299 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LC19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd., Yowie Bay
2228
0215247490

BELGIUM
Belgium Chapter
4th Wed.. 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nalinnes
071/213858

CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown (604) 596-
9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat.. 10a.m.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat., Mar., Jun.,
Sep., Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(416) 525-9140 x3443

Toronto Chapter
John Clark Smith
PO Box 230, Station H
Toronto, ON M4C 5J2

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Suny SM4 4DS

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-31-184246

HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
3831 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolarno Forni 48
20161 Milano
021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 1 1 ~ 7 0 7 3

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFIG
Per Alm
46/8-92963 1

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfiion
01 810 9289

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View, CA 94041
(415) 960-1256 (eves.)

Forth Dimensions

NEW PUBLICATIONS
'1

..:::.,
SILICON COMPOSFKS

SC/FOX PCS

Parallel Coprocessor System

User Manual
De'.,"h, uxx

Sdcrn compalr . I"
2 1 1 0 rorn.*rinu, eu,. K Pd * l o CA l,"

$35 EACH

NOW AVAILABLE
FROM THE FORTH INTEREST GROUP

Forth Interest Group
P.O.Box 8231 Second Class
S an Jose, CA 95 155 Postage Paid at

San Jose, CA

