

S C ~ F ~ X ~ o o o ~ o 5 0 0)
O ~ ~ ~ ~ ~ O ~ , , S B C ~ ~ , ~ O O O O O O O O O O O O O O O O O ~ ~ O O O O O ~ ~ ~ O

EPROM

SRAM

SRAM

0 0 0 0 0 0

SILICON COMPOSERS
Introduces the

SC/FOXm Single Board Computer32
Using the SC32'" Forth Chip

SC/FOX SBC32 (Single Board Computer32) SC/Forth32 Interactive Language
-16, 20, or 24 MHz lnput clock operation. *Forth 83 standard with 32-bit extensions
-64K to 512K bytes 0-wait-state SRAM *Vectored I/O and recursion.
-64K bytes of shadow EPROM. *Supports ASCII text file or block source code.
*SC/Forth32 in EPROM included. -Double number (64-bit) support.
-56-Kbaud RS2.32 serial port. .Extended control structures.
*Two 50-pin applicat~on headers. *Byte, word, and long word access
- 4 Layer, Eurocard size lOOmm by 160mm. *Microcode support for custom SC32 instructions
*Optional prototyping plug-on board *Easy turnkey system generation
.Retall from $995 wyi SC/Forth32 *Compatible with SC/Forth for RTX 2000

SC32 Forth Chip SC/FOX Development System
-32-bit CMOS nucroprocessor in 85-pin PGA. *MS DOS screen editor with pull-down menus
.I-cycle instruction execution. *Load and run from editor capabil~ty
.Nan-multiplexed 32-b~t adr bus & data bus .Program spawning wth exit back to editor
16 Gbyte contiguous data space. .Multiple file loading.

- 2 Gbyte non-segmented code space -Advanced block copy and move feature

Ideal for embedded-systems control, high precision numercial processing, data acquisition,
and process control applications. For additional information, please contact call us at:

SILICON COMPOSERS INC, 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

Forth Dimensions 2 Volume XII, Number 3

F O R T H
D I M E N S I O N S

rn
DYNAMIC VIRTUAL MEMORY MANAGEMENT - ANTERO TANALSAARI

7

With these virtual memory management extensions to Forth, persistent storage space for data items can be allocated
and deallocated dynamically. A simple heap-based memory compaction mechanism is used, and the extensions are
proven functional in F83 (but they should be quite portable).

rn
DYNAMIC MEMORY ALLOCATION - DREAS NIELSEN

f
17

Many programs handle data elements of indeterminate size or number, but you needn't statically allocate a buffer
capableof holding the largest possible datum. Explicit control of dynamic memory allocation is a powerful tool. Many
algorithms-and data structures like linked lists, queues, and trees-are difficult to implement efficiently without it.

m
SMART RAM -ROB CHAPMAN

28

t
The concept of smart RAM can be applied in many other areas. When developing a new Forth, the author used it to
interactively and incrementally test the Forth, monitor the performance of each word, and tune it for the 68000. It could
also be used to speed up slow RAM, even to intercept slow instructions or data moves and do them while the processor
is not using memory.

m
TESTING TOOLKIT - PHIL KOOPMAN, JR.

31

Forth supports interactive development and testing, but interactive testing isn't always enough. Sometimes we want
a permanent record of test cases for Forth words to serve as documentation. A full suite of test cases ensures that a
change in one part of the program does not disturb other parts.

m
FORST: A 68000 NATIVE-CODE FORTH - JOHN REDMOND

34

This is the second in a three-part series about a 32-bit, subroutine-threaded Forth for the Atari ST, whose OS "...is
pretty much a 68000 clone of MS-DOS." The system has a number of interesting and unique characteristics, but
attention has been given to compatibility with existing source code. This installment may cure your C envy!

Editorial
4

Letters
5

Best of GEnk
3 7

m
Reference Section

39

Ad Index
41

FIG Chapters
42-43

Volume XII, Number 3 3 Forth Dimensions

I f you haven't paid close attention to
the growth of on-line Forth activity, you
may be surprised. Forth programs, debates,
questions, news, and insights are being
shared between several BBSs and larger
communication systems-including some
international ones-thanks to their respec-
tive sysops and to both electronic and
manual gateways between systems. There
is more reason than ever to tune in to the on-
line Forth community. FD's "Reference
Section" lists the electronic resources we
find and, despite some past problems, we
try to keep it both current and complete.
(You can help by informing us of changes
and additions.)

If you didn't log on in August, you
missed meetings scheduled with Bill
Ragsdale and Glen Haydon. To further
encourage your virtual presence on at least
one of these electronic venues, upcoming
guest conferences on GEnie's Forth
RoundTable include:

Dick Miller, President of Miller Micro-
computer Services

"To DOS or Not to DOS"
Thursday, September 20
9:30 p.m. Eastem/6:30 p.m. Pacific

JefRaskin, originator of the Apple Mac and
the Canon Cat

"What Happened to the Cat?"
Wednesday, October 17
9:30 p.m. Eastern/6:30 p.m. Pacific

(Note that the October conference is on
Wednesday instead of the usual Thursday.)

Speaking of Glen Haydon (of MVP-
FORTH, WISC, etc.), he has completed a
significant revision of his book All About
Forth. It has long been popular as the
working reference volume of definitions,
implementation examples, and relevant
details about a widely used set of Forth
words. But the recent, greatly revised and
expanded version makes the book an anno-
tated glossary of practically allForth words
in common usage, in all the primary dia-
lects. Implementation examples are given
in high-level Forth or 8086/88 assembly
language to help clarify the text of a word's
definition. When in doubt, just look it up!
This essentially new book is, in my opin-
ion, an important contribution to every
Forth programmer's workbench. Look for
it on the FIG Mail Order Form.

If you live in Memphis,
don't blame us.. .

Publishing News reported that seventy-
five percent of monthly magazines were
delivered late in early 1990, an increase
over last year. Memphis, Tennessee had the
worst record (none delivered on time) and
San Mateo, California had the best record
(one hundred percent).

-Marlin Ouverson
Editor

Forth Dimensions
Published by the

Forth Interest Group
Volume XII, Number 3

Septernber/October 1990
Editor

Marlin Ouverson
Advertising Manager

Kent Safford
Design and Production

Berglund Graphics

Forth Dimensions welcomes editorial mate-
rial, letters to the editor, and comments from its
readers. No responsibility is assumed for accu-
racy of submissions.

Subscription to Forth Dimensions is in-
cluded with membership in the Forth Interest
Group at $30 per year ($42 overseas air). For
membership, change of address, and to submit
items for publication, the address is: Forth Inter-
est Group, P.O. Box 8231, San Jose, California
95155. Administrative offices and advertising
sales: 408-277-0668.

Copyright O 1990 by Forth Interest Group,
Inc. The material contained in this periodical
(but not the code) is copyrighted by the individ-
ual authors of the articles and by Forth Interest
Group, Inc., respectively. Any reproduction or
use of this periodical as it is compiled or the ar-
ticles, except reproductions for non-wmmer-
cia1 purposes, without the written permission of
Forth Interest Group, Inc. is a violation of the
Copyright Laws. Any code bearing a copyright
notice, however, can be used only with permis-
sion of the copyright holder.

About the Forth Interest Group
The Forth Interest Group is the association

of programmers, managers. and engineers who
create practical. Forth-based solutions to real-
worldneeds. Many research hardware and soft-
ware designs that will advance the general state
of the art. FIG provides a climate of intellectual
exchange and benefits intended to assist each of
its members. Publications, conferences, semi-
nars, telecommunications, and area chapter
meetings are among its activities.

"Forth Dimensions (ISSN 0884-0822) is
published bimonthly for $24/36 per year by the
Forth Interest Group, 1330 S. Bascom Ave.,
Suite D, San Jose, CA 95128. Second-class
postage paid at San Jose. CA. POSTMASTER:
Send address changes to Forth Dimensions,
P.O. Box 8231, San Jose, CA 95155."

Forth Dimensions 4 Volume XII, Number 3

Volume XII, Nwnber 3 5 Forth Dimensions

the "Forth Dictionary" tends to be-
come a dialect of the programmer,
making it almost impossible to read and
be maintained by any other program-
mers.. .

It does seem that embedded systems,
withoutakernel, that can beused to mecha-
nizeoperations for well-defined situations,
could help. With enough systems or parts
available that can easily be used with all
CPUs, use could not help mutl increase
acceptance.

It's not the whole answer.. .

Phil Chadwick
358 Thompson Mill Road
New Hope, Pennsylvania 18938

Standards Notwithstanding
I have been using Forth continuously

(but not exclusively) since 1975. I started
with my own creation, which has grown
into a very viable system. I have also used
the most notable commercial versions.
Chuck Moore's statement ("Best of
GEnie," FD XI/5) inspires the following
comments based upon experience:

1. Classic Forth consists of a few ele-
mentary definitions (' is tick an address, !
is store a word, etc.), a philosophy of pro-
gramming tasks, and a definite form in
which the program is expressed (numbers
precede commands, names follow, and
space is the only delimiter). The philoso-
phy seems to be the hard part to grasp for
the uninitiated, perhaps because it is al-
ways cryptically demonstrated and is sel-
dom simply expressed.

2. Complex operations do not survive
the test of time. Simpler ways evolve, or
they are returned to the vocabulary.

3. VOCABULARY has a purpose only if

Language of Choice
Dear Sir,

Iagree with Philip Koopman Jr.'s call to
market Forth for what it is, the premier
controller language (FD XII/l). I'm not a
professional programmer, but I am a fan of
Forth.

Koopman hits the mark by spotlighting
the perception of Forth. I'm looking at a
well-balanced article written by Dara
Pearlman and published in the September
1983 issueof Popular Computing. It led me
to send for the fig-FORTH listing years
ago, But the article's title says it all: "Forth
Inspires a Fanatic Following-But Why
Hasn't It Taken the World by Storm?"Next
to it is a color photograph of the original
FIG five in their FIG t-shirts and waving
copies of Forth Dimensions. I fear that, in
the public's mind. Forth is a strange lan-
guage promoted by even stranger fanatics.

The perception of a language is its
theme, the one-sentence statement that
defines the problem it solves for the com-
puting public (preferably a large segment
of it). BASIC, for example, was created to
introduce computers to Social Science stu-
dents at Dartmouth. It fulfilled the need of
the novice for an easy way to learn to use a
computer. That BASIC can now be found
as a complex, structured, compiled lan-
guage is beside the point.

The result, Koopman points out, is a
lack of marketing focus in promoting
Forth. This has caused Forth to lose the
synergism from a strong, consistent mar-
keting sponsor. Where would BASIC be if
not for Dartmouth, Microsoft, Apple, and
all the other home computer companies and
universities who found in BASIC an ideal
vehicle to sell their products and services?
Forth has to be marketed for what it is, the
ideal way for a business to save time and
money programming controllers. That it

can do much more is beside the point.
Koopman's request for programmers to

go public with their experiences in Forth
projects is good. We may think Forth is
great, but it would help a lot if some hard
facts about time and money would back up
that opinion for businesses to act upon.

For publicity, I believe a Forth version
of Steve Ciarcia's "Circuit Cellar, Ink."
would be an ideal showcase. The Forth
chips are out there. So why not encourage
the Forth hackers? The Forth hardware
people should take a good look at this.

Koopman calls us to actively promote
Forth now. The expansion of microcompu-
ters into everything gives Forth a rare o p
portunity to be like those caterpillars that
march around in a circle until they die. It
does need to focus on a single marketing
goal. Why not the one for which it was
created?

Yours truly,

Walter J. Rottenkolber
P.O. Box 936
Visalia, California 93279

Dear Editor,
I agree with most of Philip Koopman,

Jr.'s article. To me, additional definitions
are so logical and not too hard to follow, but
others seem to consider it witches' brew.
Consider the Forth definition in Gespac's
Glossary of Technical Terms (1989):

Forth is a high level language that is
based on a very small kernel. It allows
user[s] to define instructions which can
then be used to define other, higher level
instructions, which can be used to define
higher level instructions and so on
Experienced Forth users worship that
language. Forth, however, has been
banned by most corporations because

it speeds up compilation and FORGET^^^.
It is great for task management. Other uses
are probably abuses.

4. My Forth has been recreated just
about every year. Little has gone untried,
and useless things have fallen by the way-
side. This is an inherent part of the life of
Forth.

5. Forth and Standard Forth are contra-
dictions of definitions (terms). Any par-
ticular Forth contains only the necessary
common definitions, adaptations, and ex-
tensions to do a particular job. A Standard
Forth would require all definitions to be
common, even adaptations and extensions
(as do BASIC, Modula 11, etc.).

6. Some programmers cannot compre-
hend the philosophy of Forth; this relegates
them to use other languages and lose the
benefits of Forth, or to use aForth compiler
that does not require such understanding (if
somebody can invent one).

7. The ideal Forth machine has not yet
been demonstrated. Much of Forth can be
parallel processed (but mostly not in the
commonly thought-of way).

8. QWERTY keyboards (or some sub-
stitute) are necessary for common editing
(data-entry stage). All other needs are man-
aged better by a logic tree and a very few
keys. Forth is a natural at executing logic
trees.

9. IBM-type PCs are a collection of
design compromises incorporated to lock
customers into a commercial operation that
continuously requires additional expendi-
ture for both software and hardware. Ex-
tremely expensive, high-speed processors
are required to overcome this burden. The
efficiency of Forth permits a very inexpen-
sive, moderate-speed processor to outper-
form the IBM type.

10. Experiment until you fully under-
stand, and program only what you do fully
understand. This demonstrates the defini-
tion of "smart." Forth is the most natural
execution of this philosophy.

11. Because of its adaptability and ex-
tensibility, real Forth is master of what it
has to do. Standard Forth would be master-
of-none, but it could become acommercial,

I general-purpose master-of-none like most 1 other standard languages.
12. PUSH and POP are longer words for

ation (in a conniving sense). Methods using
logic operations are often much more
efficient. SHIFT and 2". 2 / , 4*, 4/ , 8*,
8 /, etc. are often better choices if you
understand what you are doing.

14. Floating-point arithmetic is bad.
But it is no joke if its abuses are not ac-
counted for when calculating something
like the strength of the floor you are stand-
ing on. Errors can far exceed tolerances.

15. Source code is withheld because of
mass commercial intent or because it is not
presentable (often both). Forth is best used
for customized adaptations which have
little mass commercial appeal. However,
publish the source code of an interesting
Forth program-no matter how unpre-
sentable-and the Forth community will
correct it, improve it, adapt it, and return it
for little or no cost. Beat that, if you can.

Forth is thebest programming language
for those who can master it and bend it to
their needs. I will be using a flexible, adapt-
able version of Forth for the rest of my life
(standards committee notwithstanding).

Fred F. Kloman
3533 DeLeone Road
San Marcos, California 92069

He Wants a New View
In the interest of software quality,

wouldn't it be nice if there were a utility
which would help in the data-flow analysis
of a colon definition? Perhaps a modifica-
tion to V I E W in F-PC. The idea is to have

EMIT (C --)

ELSE (--)

DROP (c - -)
THEN (- -)

I (-- 1

The stack comments could be checked to
see that all inputs and outputs were prop-
erly matched, a big time saver; and it would
encourage the use of stack comments.

Yours uuly,

Ken Kupisz
Ontario Hydro
700 University Avenue
Toronto. Ontario
Canada MSG 1x6

[And remember to account for words that
leave a varying number of stack items,
depending on run-time conditions. . .--Ed.]

Return to DO-FOREVER
Dear Marlin,

Oops, DO-FOREVER as printed in
Forth Dimensions XIVl won't even load,
much less run. Somewhere in all the
changes it correctly acquired an IF but
failed to acquire a matching ENDIF. The
minimal correction would be to insert an
END IF immediately before the semi-co-
lon. In my letter of January 23, I tried to be
more elegant and added an error message in
case the user types an undefined word. [See
Figure One.]

Best wishes,

?EMIT (C --)
DUP (C -- c C)
I F (f -- C)

the colon definition displayed, one word
per line, with its stack comment. E.g.,

) North Wales, Pennsylvania

Tom Napier
One Lower State Road

: DO-FOREVER (r epea t next word u n t i l keyboard i npu t)
-FIND
I F DROP CFA (t h i s i s FORTH)

BEGIN DUP EXECUTE ?TERMINAL
U N T I L DROP

ELSE CR ." Do what?"
ENDIF ;

>R and R>. Long natural words are for I

users of applications; short, cryptic sym- I Figure One. DO-FOREVER as it ought to be.

bols are for programmers.
13. Multiply and divide are overused,

but require less understanding of the situ-

I

Forth Dimensions 6 Volume XII. Number 3

DYNAMIC
VIRTUAL MEMORY

MANAGEMENT

I n this article we shall present dy-
namic virtual memory management exten-
sions to Forth. With the extensions, persis-
tent storage space for data items can be al-
located and deallocated dynamically in
Forth's virtual memory, and the sizes of the
data items can be changed at any time. A
simple heap-based memory compaction
mechanism is used in order to keep the
blocks unfragmented. The extensions are
proven functional in Laxen & Perry's F83,
but they should be quite easily portable to
other Forth models, too.

Introduction
Forth is a multidimensional program-

ming language which has many character-
istics that are normally related only to the
operating system. One of the special char-

ANTERO TAIVALSAARI - TAMPERE, FINLAND
rn

acteristics of Forth is its unique way to
handle virtual memory. In Forth, a virtual
memory device-typicall y a disk drive-is
accessed in 1K blocks by using a very
limited but powerful set of words. Disk
blocks can be loaded to main memory buff-
ers by giving a block number and the
command BLOCK. The buffer can then be
examined and modified; the Forth system
will automatically save the buffer into the
disk if the user marks the buffer updated.

. . .can also be used for
dynamic databases
not tied to traditional
models.

With the basic virtual memory com-
mands of Forth, different kinds of database
systems are quite easily implemented.
However, as typical of most database man-
agement systems based on traditional stor-
age models (hierarchical, network or rela-
tional), these database systems tend to be
rather dependent on physical aspects of the
storage system and data. Such things as file
sizes, data item sizes, and physical loca-
tions of data must occasionally be taken
into serious consideration at the
programmer's level. Also, traditional stor-
age models resmct the modifiability of the
database. For example, the sizes of data
items must usually be determined during
the creation of the database, which can be
very inconvenient if the description
(schema) of the database is to be changed

Screen 0
.

Ante ro T a i v a l s a a r i
* Ruovedenkatu 1 3 D 54
+ SF-33720 Tampere
* FINLAND
* E l e c t r o n i c m a i l : t s a a r i @ t u k k i . j y u . f i (128.214.7 .5)
.

FILE... . . : DISKHEAP.BLK
* PURPOSE..: Dynamic v i r t u a l memory management e x t e n s i o n s
* : t o Fo r th -83 .

* REQUIRES.: F83.COM
* AUTHOR.. . : A n t e r o T a i v a l s a a r i
* DATE.....: 29.10.1989
.

Screen 1
\ C o n s t a n t s , a d d r e s s e s , v a r i a b l e s

S c r e e n 20
\ DISKHEAP.BLK Apt 29.10.89

Dynamic v i r t u a l memory management.

Example:

v a r i a b l e v a r l \ d e f i n e s v a r i a b l e s f o r s t o r i n g i n d e x e s
v a r i a b l e v a r 2 \ t o h a n d l e s .
c r e a t e H e a p t e s t . b l k \ c r e a t e s a new d i s k h e a p ' t e s t - b l k ' .
20 a l l o c a t e v a r l ! \ a l l o c a t e s 20 b y t e s r e f e r r e d by v a r l .
v a r l @ a r e a / a r e a t y p e \ t y p e s c o n t e n t s o f v a r l .
40 a l l o c a t e v a r 2 ! \ a l l o c a t e s 40 b y t e s r e f e r r e d by va r2 .
50 v a r l @ r e s i z e \ r e s i z e s d a t a - a r e a o f v a r l t o 50 b y t e s .
v a r 2 @ f r e e \ d i s p o s e s d a t a - a r e a o f v a r 2 .

S c r e e n 21
Apt 29.10.89 \ C o n s t a n t s , a d d r e s s e s , v a r i a b l e s Apt 29.10.89

0 CONSTANT p o i n t e r B l k \ b l o c k f o r p e r s i s t e n t p o i n t e r s
6 CONSTANT / h a n d l e \ s i z e o f h a n d l e (= 6 b y t e s)
170 CONSTANT h a n d l e s / b l k \ maxf o f h a n d l e s p e r b l o c k
1020 CONSTANT maxBytes /b lk \ maxf o f d a t a b y t e s p e r b lock
0 CONSTANT f i r s t H a n d l e \ i n d e x o f f i r s t h a n d l e

: l a s t H a n d l e p o i n t e r B l k b l o c k ; \ i n d e x o f l a s t h a n d l e
: f i r s t D a t a B l k p o i n t e r B l k b l o c k 2 t ; \ b l k f o f f i r s t d a t a b l k
: l a s t D a t a B l k p o i n t e r e l k b l o c k 4 + ; \ b l k l o f l a s t d a t a b l k
: f o f F r e e H a n d l e s p o i n t e r B l k b l o c k 6 + ; \ # o f f r e e h a n d l e s

VARIABLE reUseHandles \ d e t e r m i n e s whe the r h a n d l e s may b e
reUseHandles on \ r e u s e d a f t e r t h e y a r e f r e e d .
-->

DiskHeap c o n t a i n s t h r e e d i f f e r e n t memory a r e a s : p o i n t e r b l o c k ,
h a n d l e b l o c k (s) , and d a t a b l o c k (s) . Block 0 (p o i n t e r B l k)
c o n t a i n s p e r s i s t e n t p o i n t e r s t o h a n d l e s and d a t a . Hand le s ,
which a r e s t a t i c r e f e r e n c e s t o t h e d a t a - a r e a , b e g i n f rom b l o c k
1. Handle b l o c k s a r e f o l l o w e d by d a t a b l o c k s which c o n t i n u e
t o t h e end o f f i l e . S i n c e o n e h a n d l e b l o c k c a n c o n t a i n o n l y 170
h a n d l e s , d a t a b l o c k s must o c c a s i o n a l l y b e moved. When f o f
h a n d l e s i n t h e l a s t h a n d l e b l o c k e x c e e d s 170, a new b l o c k is
r e q u e s t e d f rom DOS and t h e f i r s t d a t a b l o c k is moved t o t h i s
new b l o c k . The o r i g i n a l f i r s t d a t a b l o c k c a n t h e n b e used
f o r s t o r i n g h a n d l e s .

Volume XII, Number 3 7 Forth Dimensions

S c r e e n 2
\ V a r i a b l e s , o f f s e t s

VARIABLE c u r r e n t e l k \ b l k # o f c u r r e n t d a t a b l o c k
VARIABLE c u r r e n t H a n d l e \ i n d e x # o f c u r r e n t h a n d l e
VARIABLE a r e a s i z e \ s i z e o f c u r r e n t , d a t a a r e a

Apt 29.10.89

: ' b lk ; immed ia t e (hand leAddres s -- * b l k)

: ' o f f set 2 t ; (hand leAddres s -- ' o f f s e t)

: ' s i z e 4 t ; (hand leAddres s -- ' s i z e)

S c r e e n 22
\ V a r i a b l e s , o f f s e t s

: f r e e / b l k (-- ' f r e e s i z e)

c u r r e n t e l k @ b l o c k :

S c r e e n 3
\ h a n d l e > v i r t u a l inHandleRange? v i r tua l>memory Apt 29.10.89

Defer d o E r r o r
' a b o r t is d o E r r o r

: h a n d l e > v i r t u a l (h a n d l e I n d e x -- o f f s e t b l o c k)

h a n d l e s / b l k /mod swap / h a n d l e swap 1t ;

: inHandleRange? (h a n d l e I n d e x --)

f i r s t H a n d l e l a s t H a n d l e @ 1- be tween n o t
I F ." - Not i n h a n d l e r a n g e " d o E r r o r THEN ;

: v i r tua l>memory (o f f s e t b l o c k -- a d d r e s s)

b l o c k t ; I -->

Apt 29.10.89

Handles a r e r e f e r r e d w i t h a s i m p l e 1 6 - b i t i n d e x , s t a r t i n g I
f rom 0. Hand le indexes must b e betweeflfirstHandle-1astHandle'.
Each h a n d l e c o n t a i n s t h r e e 2-byte f i e l d s , which a r e :

- ' b lk b l k l o f d a t a - a r e a ,
- ' o f f s e t o f f s e t t o t h e b e g i n n i n g o f d a t a i n t h e b l o c k ,
- ' s i z e c u r r e n t s i z e o f d a t a - a r e a .

I n t h e b e g i n n i n g o f e a c h d a t a b l o c k t h e r e a r e f o l l o w i n g f i e l d s :
- f r e e / b l k I o f f r e e d a t a b y t e s i n t h i s b l o c k ,
- r e f s / b l k r e f e r e n c e c o u n t t o t h i s d a t a b l o c k (t e l l s

how many h a n d l e s r e f e r t o t h i s d a t a b l o c k) .

S c r e e n 23
\ h a n d l e > v i r t u a l inHandleRange? v i r tua l>memory Apt 29.10.89

d o E r r o r v e c t o r e d e r r o r h a n d l i n g .

h a n d l e w i r t u a l r e t u r n s v i r t u a l a d d r e s s o f a h a n d l e .

inHandleRange? e n s u r e s t h a t h a n d l e i n d e x is between t h e
v a l u e s o f v a r i a b l e s ' f i r s t H a n d l e l and
' l a s t H a n d l e f .

v i r tua l>memory f e t c h e s a v i r t u a l b l o c k t o memory and r e t u r n s
t h e sum o f i t s a d d r e s s a n d t h e p a r a m e t e r
' o f f s e t ' .

: h a n d l e (h a n d l e I n d e x -- hand leAddres s) h a n d l e f e t c h e s a h a n d l e f rom v i r t u a l memory and
dup inHandleRange? h a n d l e > v i r t u a l v i r tua l>memory ; r e t u r n s i t s a d d r e s s i n a d i s k b u f f e r . I

S c r e e n 4
\ h a n d l e f r e e ? roomForNewHandle? t o o B i g ? Apt 29.10.89

: f r e e ? ' b l k @ 0- ; (hand leAddres s -- f l a g)

S c r e e n 24
\ h a n d l e f r e e ? roomForNewHandle? t o o B i g ? Apt 29.10.89

: roomForNewHandle? (-- f l a g)

1 a s t H a n d l e @ h a n d l e > v i r t u a l n i p f i r s t D a t a B l k @ C ;

: t ooBig? (s i z e -- 1
maxBytes /blk >
I F ." - Cannot a l l o c a t e o v e r 1020 b y t e a r e a s '

d o E r r o r
THEN ;

-->

S c r e e n 5
\ c o n v e r t H a n d l e s

: c o n v e r t H a n d l e s (o ldBlock l a s t B l o c k --)

o v e r c u r r e n t e l k !
1 a s t H a n d l e @
r e f s / b l k @ 0 ?DO

BEGIN 1- dup
h a n d l e dup c u r r e n t H a n d l e !

' b lk @ 3 p i c k =

UNTIL
o v e r c u r r e n t H a n d l e @ ' b l k ! u p d a t e

LOOP d r o p 2 d r o p ;
-->

Apt 29.10.89

f r e e ? t e s t s whe the r h a n d l e i s f r e e
(t h a t is: f i e l d ' b l k i s z e r o) .

roomForNewHandle?
t e s t s w h e t h e r c u r r e n t h a n d l e b l o c k h a s room
f o r o n e more h a n d l e .

t ooBig? e n s u r e s t h a t we s h a l l n o t t r y t o a l l o c a t e
d a t a - a r e a s o f o v e r 1020 b y t e s .

S c r e e n 25
\ c o n v e r t H a n d l e s Apt 29.10.89

c o n v e r t Hand le s t h i s word i s used when a d a t a b l o c k i s
moved t o a n o t h e r b l o c k . A l l r e f e r e n c e s
t o ' o ldBlockf a r e changed t o r e f e r t o
'newBlockf .

Forth Dimensions 8 Volume XII, Number 3

Screen 6
\ firstDataBlk>newBlk makeNewHandle

Screen 26
Apt 29.10.89 \ firstDataBlk>newBlk makeNewHandle Apt 29.10.89

: firstDataBlk>newBlk (--)

1 more
1 1astDataBlk +! update
firstDataBlk @ 1astDataBlk @ 2dup copy convertHandles
1 firstDataB1k t ! update
firstDataBlk @ currentelk ! ;

: makeNewHandle (-- handlerndex)

roomForNewHandle? not
IF firstDataBlk>newBlk THEN
lastHandle @

1 1astHandle + ! update ;
-->

Screen 7
\ findOldHandle giveHandle Apt 29.10.89

: findOldHandle (-- handleIndex)

1astHandle @

BEGIN 1- dup
handle free?

UNTIL
-1 lofFreeHandles +! update ;

: giveHandle (-- handleIndex)

XofFreeHandles @
reUseHandles @ and
IF findOldHandle
ELSE makeNewHandle
THEN ;

-->

Screen 8
\ roomInCurrentBlk? makeNewDataBlk >endOfData Apt 29.10.89

: roomInCurrentBlk? (size -- flag)

free/blk @ > not ;

: makeNewDataBlk (--)

1 more
1 1astDataBlk t! update
1astDataBlk @ currentBlk !

maxBytes/blk free/blk !
0 refs/blk ! update ;

: >endOfData (-- address)

b/buf free/blk @ - ;

Screen 9
\ findNextBlk allocateRoorn Apt 29.10.89

: f indNextBlk (s i z e - -)

false lastDataBlk @ currentBlk @ ?DO
i currentBlk !

over roomInCurrentBlk?
IF drop true leave THEN

LOOP nip
not IF makeNewDataBlk THEN ;

: allocateRoom (size -- offset blk)

>endOfData >r r@ currentelk @ virtual>memory
over erase negate free/blk t!
1 refs/blk t! update

firstDataBlk>newBlk requests a new block from DOS and copies
the first data block to this new block.
This word is used when old data blocks are
changed to handle blocks.

makeNewHandle creates a new handle. If there is no room
for a new handle in the current handle
block, then 'firstDataB1k>newBlk1 is
executed.

Screen 27
\ findOldHandle giveHandle Apt 29.10.89

f indOldHandle finds a free handle from existing
handles. This word is used if 'reUseHandles
is ON, and lofFreeHandles is > 0.

giveHandle gives a free handle. If IreUseHandles' is
OFF or (ofFreeHandles = 0, then a new
handle must be created.

Screen 28
\ roomInCurrentBlk? makeNewDataBlk >endOfData Apt 29.10.89

roomInCurrentBlk? tests whether current data block has room
for 'size' more bytes.

makeNewDataB1 k creates a new empty data block and sets
the relevant pointer values. Initially
there are no handles referring to this
block ('refs/blkl = 0) and the free space
in the block is 'maxBytes/blkl.

>endOfData returns the address of the first free byte
in the current data block.

Screen 29
\ findNextBlk allocateRoom Apt 29.10.89

findNextBlk finds the next data block having room
for 'size' bytes. This block is then made
current. If existing blocks do not have
enough room, a new block is created.

allocateRoom allocates 'size' bytes from current data
block and returns the virtual address
of this new data-area. 'free/blk' and
'refs/blkl are updated. The allocated
area is erased to all zeros.

1 1
Volume XII, Number 3 9 Forth Dimensions

S c r e e n 10
\ findRoom A l l o c a t e

: findRoom (s i z e -- o f f s e t b l k)

dup roomInCur ren tB lk? n o t
I F dup f indNex tBlk THEN
a l loca t eRoom ;

: A l l o c a t e (s i z e -- h a n d l e I n d e x)

dup t o o B i g ?
g iveHand le > r
dup findRoom
r@ h a n d l e > r r@ ' b l k 2 !
r > ' s i z e ! u p d a t e
(s a v e - b u f f e r s) r > ;

-->

s c r e e n 11
\ h a n d l e u p d a t e

Apt 29.10.89
S c r e e n 30
\ findRoom A l l o c a t e Apt 29.10.89

f indRoom l o c a t e s t h e n e x t d a t a b l o c k t h a t h a s enough room
f o r ' s i z e ' b y t e s and r e t u r n t h e v i r t u a l a d d r e s s
o f t h i s new d a t a - a r e a .

A l l o c a t e a l l o c a t e s ' s i z e ' b y t e s f rom d i skHeap and r e t u r n s
* * * * * * * * * * * * * * t h e h a n d l e i n d e x o f t h i s new d a t a - a r e a . The

new d a t a - a r e a is e r a s e d t o a l l z e r o s .

T h i s i s o n e o f t h e b a s i c commands i n dynamic
v i r t u a l memory management.

S c r e e n 3 1

~~t 29.10.89 \ h a n d l e u p d a t e

: h a n d l e u p d a t e (+/-n o f f s e t --)

1 a s t H a n d l e @
r e f s / b l k @ 0 ?DO

BEGIN 1- dup
h a n d l e dup c u r r e n t H a n d l e !

' b lk @ c u r r e n t B l k @ =

UNTIL
o v e r c u r r e n t H a n d l e @ ' o f f s e t @ > n o t
I F 2 p i c k c u r r e n t H a n d l e @ ' o f f s e t t ! u p d a t e THEN

LOOP d r o p 2 d r o p ;

Apt 29.10.89

h a n d l e u p d a t e i n c r e m e n t s o r d e c r e m e n t s t h e ' o f f s e t ' f i e l d s o f
h a n d l e s p o i n t i n g t o t h e c u r r e n t d a t a b l o c k
a c c o r d i n g t o t h e p a r a m e t e r 'n' i n c a s e
t h e ' o f f s e t ' o f a h a n d l e i s >= t h a n t h e p a r a m e t e r
' o f f s e t ' . T h i s word is u s e d when t h e s i z e o f
a n e x i s t i n g d a t a - a r e a changes .
Note t h a t t h a n k s t o r e f e r e n c e c o u n t e r ' r e f s / b l k l
w e d o n ' t n e c e s s a r i l y h a v e t o l o o p t h r o u g h a l l
t h e h a n d l e s .

Sc reen 12
\ moveData Apt 29.10.89

: moveData (+/-n hand leAddres s --)

dup ' o f f s e t @ swap ' s i z e @ t

2dup h a n d l e u p d a t e
>endOfData o v e r - > r
c u r r e n t B l k @ v i r t u a l > m e m o r y
t u c k + r > move u p d a t e ;

Screen 1 3
\ F r e e Apt 29.10.89

: F r e e (h a n d l e I n d e x --)

dup h a n d l e > r r@ f r e e ?
I F r > 2 d r o p ." - Handle a l r e a d y f r e e " d o E r r o r THEN
r@ 'b lk @ c u r r e n t B l k !
r@ ' s i z e @ n e g a t e r > moveData
h a n d l e dup ' b l k o f f u p d a t e
' s i z e @ f r e e / b l k t!

-1 r e f s / b l k t! u p d a t e
1 XofFreeHandles t! u p d a t e
(s a v e - b u f f e r s) ;

S c r e e n 32
\ moveData Apt 29.10.89

moveData moves t h e d a t a - a r e a s above t h e d a t a - a r e a r e f e r r e d
by ' hand le1ndexf i n t h e c u r r e n t d a t a b l o c k
upwards o r downwards i n t h e b l o c k a c c o r d i n g t o
t h e p a r a m e t e r 'n' (p o s i t i v e n = upwards , n e g a t i v e
= downwards) . The ' o f f s e t ' f i e l d s i n h a n d l e s a r e
a l s o u p d a t e d (h a n d l e u p d a t e) . T h i s word is used
when t h e s i z e o f a n e x i s t i n g d a t a - a r e a changes .

S c r e e n 33
\ F r e e Apt 29.10.89
* * * * * * * * * * * * * *
F r e e f r e e s e x i s t i n g d a t a - a r e a s . The d a t a b l o c k is
+*** * * * * * * * * * * compressed by moving t h e r e s t o f d a t a i n t h e

b l o c k downwards; t h e c o u n t e r ' f r e e / b l k ' is
i n c r e m e n t e d w i t h t h e s i z e o f f r e e d d a t a - a r e a ,
and t h e r e f e r e n c e c o u n t e r ' r e f s / b l k f i s
dec remen ted by one . The h a n d l e t o t h e
d e a l l o c a t e d d a t a - a r e a is marked f r e e by s t o r i n g
'0' i n t o t h e ' b lk ' f i e l d o f t h e h a n d l e . Then t h e
number o f f r e e h a n d l e s i s i n c r e m e n t e d by one.

T h i s is o n e o f t h e b a s i c commands i n dynamic
v i r t u a l memory management.

I
Forth Dimensions 10 Volwne XII, Number 3

S c r e e n 14
\ a r e a / a r e a Apt 29.10.89

: a r e a (h a n d l e l n d e x -- a d d r e s s)

h a n d l e dup f r e e ?
I F d r o p ." - Handle n o t i n u s e " d o E r r o r THEN
dup ' s i z e @ a r e a s i z e !
2@ v i r tua l>memory ;

-->

s c r e e n 1 5
\ expandCurrentB1 k Apt 29.10.89

: e x p a n d c u r r e n t e l k (s i zeMore h a n d l e I n d e x --)

dup h a n d l e > r r@ ' s i z e @
I F o v e r r > moveData
ELSE >endOfData c u r r e n t e l k @ r > 'b lk 2!
THEN
o v e r n e g a t e f r e e / b l k + !
dup a r e a / a r e a + 2 p i c k e r a s e u p d a t e
h a n d l e ' s l z e t! u p d a t e ;

Screen 16
\ moveToOtherBlk Apt 29.10.89

: moveToOtherBlk (s i zeMore h a n d l e I n d e x --)

2dup h a n d l e ' s i z e @ + d u p
f indNex tBlk a l loca t eRoom \ a l l o c a t e new room
2dup > r > r v i r tua l>memory \ f e t c h t o memory
o v e r a r e a swap / a r e a cmove u p d a t e \ move t o new room
dup h a n d l e > r re ' b l k @ c u r r e n t e l k ! \
r@ ' s i z e @ n e g a t e r > moveData \ f r e e e x i s t i n q s p a c e
h a n d l e > r r@ ' s i z e @ f r e e / b l k + ! \ i n t h e o r i g i n a l
-1 r e f s / b l k t! u p d a t e \ b lock
r@ ' s i z e + !
r > r > r > r o t ' b lk 2! u p d a t e ; \ u p d a t e h a n d l e

--> (huh, b u t i t works!)

Screen 17
\ e x p a n a r e a

: e x p a n a r e a (s l zeMore h a n d l e I n d e x --)

swap 0 max o v e r
h a n d l e > r re ' s i z e @ o v e r + t o o B i g ?
r > ' b l k @ c u r r e n t B l k !
t u c k roomInCur ren tB lk?
I F expandCur ren tB lk
ELSE moveToOtherB1k
THEN (s a v e - b u f f e r s) ;

Apt 29.10.89

S c r e e n 34
\ a r e a / a r e a
.t*tt

Apt 29.10.89

a r e a t h l s word is used t o f e t c h a d a t a - a r e a from v i r t u a l
* * * * * * * * * memory i n t o a d i s k b u f f e r . The word r e t u r n s t h e

a d d r e s s o f t h e f i r s t b y t e o f d a t a i n t o t h e p a r a m e t e r
s t a c k . A p o i n t e r t o t h e s i z e o f t h e d a t a - a r e a i s
s t o r e d t o t h e v a r i a b l e ' a r e a s i z e ' f o r t h e word ' / a r ea

/ a r e a r e t u r n s t h e s i z e o f t h e c u r r e n t d a t a - a r e a .
.*.

These a r e b a s i c commands i n v i r t u a l dynamic memory
management.

S c r e e n 35
\ e x p a n d c u r r e n t e l k Apt 29.10.89

expandCur ren tB lk e x p a n d s t h e d a t a - a r e a r e f e r r e d by t h e
' h a n d l e I n d e x r ' s izeMore1 b y t e s .
The e x p a n s i o n i s accompl i shed by moving
a l l t h e d a t a - a r e a s t h a t a r e l o c a t e d h i g h e r
i n t h e b l o c k ' s i zeMoree b y t e s upwards i n
t h e b l o c k . The r e s e r v e d new d a t a s p a c e i s
e r a s e d t o a l l z e r o s .

S c r e e n 36
\ moveToOtherBlk Apt 29.10.89

moveToOtherB1 k moves a n e x i s t i n g d a t a - a r e a t o a n o t h e r
b l o c k and a t t h e same t i m e e x p a n d s t h e
d a t a - a r e a ' s izeMore ' b y t e s .
T h i s command is u s e d when t h e f r e e s p a c e
i n t h e o r i g i n a l b l o c k i s i n s u f f i c i e n t
f o r ' s izeMore ' b y t e e x p a n s i o n . The d a t a
s p a c e i n t h e o r i g i n a l b l o c k is f r e e d .

S c r e e n 37
\ expandArea Apt 29.10.89

expandArea e x p a n d s t h e d a t a - a r e a r e f e r r e d by t h e
h a n d l e ' h a n d l e I n d e x l ' s i zeMored b y t e s . I f
t h e r e is n o t enough f r e e s p a c e i n t h e
o r i g i n a l b l o c k , t h e d a t a - a r e a 1s moved
t o a n o t h e r b l o c k . When needed, a comple t e ly
new b l o c k i s r e q u e s t e d from DOS.
Remember t h a t t h e s i z e o f a d a t a - a r e a cannc
e x c e e d 1020 b y t e s .

I J

Volume XII, Nwnber 3 11 Forth Dimensions

Screen 1 8
\ s h r i n k A r e a R e s i z e

: s h r i n k A r e a (s i z e L e s s h a n d l e I n d e x --)

swap 0 max o v e r
h a n d l e > r r@ ' s i z e @ min n e g a t e swap
r@ 'b lk @ c u r r e n t B l k !
o v e r r > moveData
o v e r n e g a t e f r e e / b l k t!

h a n d l e ' s i z e +! u p d a t e (s a v e - b u f f e r s) ;

: R e s i z e (news ize h a n d l e I n d e x --)

> r r@ h a n d l e ' s i z e @ 2dup <>
I F Zdup > I F - r > expandArea

ELSE swap - r > s h r i n k A r e a THEN
ELSE 2drop r > d r o p THEN ;

-->

S c r e e n 1 9
\ c r e a t e H e a p useHeap

Apt 29.10.89

Apt 29.10.89

: c r e a t e H e a p (--) \ usage : c r e a t e H e a p f i l e n a m e
3 c r e a t e - f i l e
0 1 a s t H a n d l e !

2 f i r s t D a t a B l k !

2 l a s t D a t a B l k !
f i r s t D a t a B l k @ c u r r e n t e l k !

0 XofFreeHandles ! u p d a t e
maxBytes /blk f r e e / b l k !

0 r e f s / b l k ! u p d a t e s a v e - b u f f e r s ;

: useHeap (--) \ usage : useHeap f i l e n a m e
open
f i r s t D a t a B l k @ c u r r e n t B l k ! ;

S c r e e n 38
\ s h r i n k A r e a R e s i z e Apt 29.10.89

s h r i n k A r e a s h r i n k s t h e d a t a - a r e a r e f e r r e d by t h e
' hand le Index ' ' s i z e L e s s f b y t e s . T h i s i s
a c c o m p l i s h e d by moving a l l t h e d a t a - a r e a s
h i g h e r i n t h e b l o c k downwards ' s i z e L e s s f
b y t e s i n t h e b l o c k .

* * * * * * * * * * * * * * * * * * *
R e s i z e resizeahedata-areareferredbythehandle
* * * * * * * * * * * * * * * * * * * ' h and le Index l t o 'newsize ' b y t e s .

T h i s is o n e o f t h e b a s i c commands i n
dynamic v i r t u a l memory management.

S c r e e n 39
\ c r e a t e H e a p useHeap

Apt 29.10.89

c r e a t e H e a p c r e a t e s a new diskHeap. The s i z e o f a new heap
* * * * * * * * * * * * * * is t h r e e b l o c k s (0 = p o i n t e r b l o c k , 1 = hand le

b l o c k , 2 = d a t a b l o c k) .
* * * * * * * * * * * * * *
useHeap t a k e s an e x i s t i n g d i skHeap i n u se .
* * * * * * * * * * * * * *

frequently later.
Our original intention in the develop-

ment of these dynamic virtual memory
management extensions has been to create
persistent object storage for the author's
object-oriented, Forth-based language
Kevo [Tai89, Tai901 (the language was
previously called Cool, but was renamed
because other languages under that name
appeared to exist already). In the develop-
ment of such a storage system the following
design goals were listed:

Allocated data items (objects) should
persist between different sessions and
programs.
The objects should be referred to by
using only a simple identifiers (values)
that canbe easily passed as parameters or
stored to other data structures.
Physical aspects such as file sizes, loca-
tions of objects, and sizes of objects
should be unimportant to the user.
Data objects could be allocated and deal-
located dynamically "on the fly."
The sizes of objects must be able to
change dynamically.
A simple but effective garbage collection
mechanism must be provided to keep the

data blocks unfragmented and the size of
the database moderate.

In the literature, many different ap-
proaches to object-oriented database sys-
tems have been presented (see, for ex-
ample, MS086, Bee87, LiS88, and
Low88). By analyzing several alternatives,
we concluded that a simplified version of a
heap-based storage system [ACCS 1, Har88
p.261 would be quite sufficient for our pur-
poses. For main memory management,
heap extensions to Forth have already been
presented by Dress [me861 and Pountain
[Pou87]. Therefore, our main task has actu-
ally been to modify the existing heap
mechanisms to work with virtual buffers
instead of main memory.

These extensions have proven to be
functional as persistent object storage.
However, they should be useful in any
application where the sizes of virtual data
items are to change frequently. Such sys-
tems include, for example, textual data
bases or hypertext applications. The exten-
sions can also be used as a kernel for new
kinds of dynamic databases not bound to
any of the traditional database models.
Other interesting application areas might

be operating system extensions to Forth;
older overlay systems, for example, could
be rather easily and more elegantly reim-
plemented with dynamic virtual memory
extensions. One of our future visions has
also been to build a dynamic persistent
Forth, completely based on dynamic vir-
tual memory.

Main Ideas
We shall not explain the function of the

extensions very carefully. The basic prin-
ciples of heap memory management are
quite well documented already [Dre86].
Furthermore, our code is rather well com-
mented and thereby should be easy to
understand. A brief description of the main
technical details is given, though.

Storage areas
In a heap memory management system,

the storage space is usually divided into
two different regions. The first one con-
tains handles: statically located references
to the data items. The actual data items are
located in another memory region called
the data area. The locations of items in the
data area may vary, since access to the
items takes place indirectly via handles.

1
Forth Dimensions 12 Volume XII, Nwnber 3

B l k # 0 B l k # 1 B l k I B l k - f f (~ + l) B l k n

In a virtual heap system ("diskheap"),
both the handle and data areas must be
located in virtual memory. In addition to
these memory areas, some persistent point-
ers and indexes to the handle and data
blocks are also needed. Therefore, in our
system the disk file (heap) is divided into
three different regions: pointer block,
handle blocks, and data blocks. The pointer
block is located at block zero and is fol-
lowed by the handle blocks and data blocks,
whichcontinue to theendof file (seeFigure
One).

Handles
Handles are references to the data area.

The location of a handle is always static, so
the handles can be safely referenceddespite
the fact that the actual locations of data may
vary. In our extensions, the handles are
referenced via simple two-byte indexes.
When a new data area is allocated, an index
to that new data area is returned. This index
must thereafter be remembered somehow,
since it will be the only way to access the
data area. Because handle indexes are
simple values, they can be easily stored as
variables or passed as parameters. In order
to create complex persistent data struc-
tures, the handle indexes can. of course, be
stored to other data areas in the heap. Val-
ues of handle indexes range from zero (the
constant f i r s t Handle) to the current
maximum handle index value, which is
kept in the persistent variable l a s t -
Handle.

Handles are six bytes long. Each handle
consists of a four-byte virtual address field
(block, offset) telling the location of the
data area, and of a two-byte field holding

Pointer b lock Handle b l o c k s Data b locks
(max 1 70 handles/block) (Contents

* f ree byte count
* reference count
* 1020 bytes of data)

b l o c k n u m b e r

o f f se t

data a rea s i ze

the current size of the data area (see Figure
Two). If the data area referred to by a
handle is deallocated, a zero value is stored
to the block number field (first two bytes) to
mark the handle free. The special variable
reUseHandles can be used to specify
whether free handles may be reused. When
reUseHandles is turnedoff,thesystem
may work a bit faster but, at the same time,
will need more space for the handles. The
default is reUseHandles on.

Since one Forth disk block is 1024
bytes, it can contain a maximum of 170
handles. In case the number of handles in a
handle blockexceeds 170,anew disk block
is automatically requested from DOS and
the first data block is moved to the new
block; the original data block then becomes
a new handle block.

Data areas
Data blocks are located after the handle

blocks. In the beginning of each data block,
four bytes are reserved for system usage.
The first two bytes (£ r e e / b l k) tell the
number of free bytes currently in the block.
The next two bytes (r e f s / b l k) hold a
reference count telling how many handles
are currently refemng to this data block.
This simple reference count mechanism is
used to rev up theresizing of data areas. The
rest of the block (1020 bytes) is used for
storing data.

To avoid the need for complex garbage
collection mechanisms, the data blocks are
kept compacted all the time. Each time the
size of a data area changes or a data area is
deallocated, the rest of the data in the block
is moved upwards or downwards in the
buffer, so the free space in a data block is

Figure One. Structure of a diskheap Figure Two. Structure of a

Volume XII, Number 3 13 Forth Dimensions

always located in the end of the block.
Since the size of adata block is only 1Kand
the compaction is done in a main memory
buffer, the compaction can be done very
quickly. Of course, when moving data, the
virtual data addresses (blocks, offsets) of
the handles referring to the affected blocks
must also be changed, and that is more
time-consuming.

When a data area is expanded, it may
happen that the free space in the data block
becomes inadequate. In that case, free
space will be searched for in the blocks
following the current data block (cur-
r e n t ~ l k) . If a data block that has room
for the expanded data area is found, the data
area is moved and expanded into that data
block. The storage space in the original
data block is then freed and compacted. In
case no data blocks having enough room
exist, a new block is requested from DOS.
Note that we have not implemented any
special mechanisms for finding free space
in the existing data blocks. A heap opera-
tion (allocation, deallocation, or resizing)
always leaves the latest affected block cur-
rent, and free space is then searched up-
wards beginning from this current block.
For our purposes, this mechanism has
proven to be fair and fast enough.

The extensions do have some restric-
tions. Since virtual memory handling is
done in 1K buffers, the size of a data area
may not exceed 1020 (maxByt e s / ~l k)
bytes. This restriction can, though, be
avoided by defining higher-level words
that will automatically allocate two or
more handles when the size of a data area
exceeds 1020 bytes. One data area may
then be physically composed of several

Embedded Controller FORTH for the 8051 Family
W.H. Payne

This book presents the technology required to develop hardware and software
for embedded controller systems at a fraction of the cost of traditional methods.
Included are hardware schematics of 805 1 family development systems (single
board and bussed 805 1 microcontroller), as well as source code for both the 8086

I and 805 1 family FORTH operating systems. Binary images of the operating
systems can be generated from the source code using the metacompiler also
contained in the book.

The book can be seen as a "toolbox" including all the necessary hardware and
software information to be used in constructing 805 1-based controller systems.
September 1990, 528 pp., $49.95/ISBN: 0-12-547570-5

Order from your local bookseller or directly from

D AC AD EM IC PRESS Harcourt Brace Jovanovich, Publishers @ Book Marketing Dept. #35090,1250 Sixth Avenue, San Diego, CA 92101

CALL TOLL FREE 1 -800-321 -5068 FAX I -31 4-528-5001
Quote this reference number for free postage and handling on your prepaid order b 35090

Prices sublecl to change wlthout notlce 81990 by Academlc Press. lnc. All Rlghls Reserved TCIMJD -35090.

separate data areas. This kind of mecha-
nism has been implemented in the author's
Kevo system, but since the mechanism is
more application dependent, we will not
discuss it here. When implementing such
extensions, we must of course keep in mind
that in Forth the virtual memory blocks will
not necessarily be loaded to a contiguous
memory area.

Example
A new diskheap is created simply by

saying

c r ea t eheap t e s t . h e a

This creates a new disk heap called
tes t . hea which is initially three disk
blocks long. Data areas can now be allo-
cated by using the command a l l o c a t e .
In this simple example, we shall at first
create two Forth variables and allocate data
areas of 20 and 40 bytes. The handle in-
dexes of the data areas are stored to the
variables.

v a r i a b l e d a t a l
20 a l l o c a t e d a t a l !

v a r i a b l e da t a2
40 a l l o c a t e da t a2 !

The allocated data areas are initially erased
to all zeros. To fill a data area with text we
can use, for example, the standard Forth
input word EXPECT which takes two para-
meters: the address where the string is to be
stored and the maximum number of input
characters. These parameters are provided
by the extension words a r e a and /area.

d a t a l @
a r e a / a r e a expec t
update

da t a2 @
, a r e a / a r e a expec t

update f l u s h

To see the contents of the data areas we
can use,for example, theForth word TYPE:

d a t a l @
a r e a / a r e a t y p e

da ta2 @
a r e a / a r e a t ype

ForrhDirmnrionr 14 Volume XII, N u d e r 3

The data areas were originally 20 and40
bytes long. If we now want to change the
first data area to be 50 bytes long and the
second data area to be 30 bytes, we can
simply use the word RES I ZE:

50 d a t a l @ r e s i z e
30 d a t a 2 @ r e s i z e

Existing data areas can be deallocated
by using the word FREE:

d a t a l @ f r e e
d a t a 2 @ f r e e
f l u s h

Note that we must remember to use the
word UPDATE to mark the buffer updated
whenever the contents of an existing data
area are changed; the words FLUSH or
SAVE-BUFFERS CtIUSt also be occasion-
ally used. Before ending the use of a
diskheap, FLUSH should always be exe-
cuted.

An existing diskheap can be reopened
with the command USEHEAP, e.g.:

useheap t e s t . h e a

About Coding
Our code should be standard Forth-83.

Only a few F83-specific words are used.
Such words are MORE which is used to
request more disk blocks from DOS, and
COPY which is used to copy a disk block to
another. Other non-standard words are
CREATE -F I LE to Create a new DOS file
and OPEN to open existing files. Of course,
the underlying Forth system must support
block-oriented 110.

In some definitions, the return stack is
used heavily; the code could perhaps be
made more readable if more variables were
used. However, we have tried to minimize
the number of potentially shared variables
in order to keep the definitions re-entrant.
This is to allow the extensions to be used in
future multiprogramming environments.
In the present form, however, multipro-
gramming is not supported.

Efficiency
For our purposes, the extensions have

proven to be efficient enough. Accessing a
data area requires at most two physical disk
reads: reading the handle and the data
block. Data area allocation, deallocation,
or resizing, in turn, may take more time-

especially deallocation and resizing, if the
disk heap is large. This is mainly because
heap compaction may require going
through all the handles in order to find the
ones whose respective data areas are to be
moved during the compaction; more intel-
ligent algorithms for handle management
might be worth investigating. However, the
efficiency can be much improved by adding
more resident disk buffers to the Forth
system, thus decreasing the need for physi-
cal disk operations. A minimum of four
buffers is needed, but when using very
dynamically changing disk heaps the rec-
ommended number of buffers is at least
eight. Since the extensions use the disk
heavily. the speed of the disk device is also
crucial. Although the extensions work cor-
rectly on floppy disk files, a hard disk-
preferably a fast o n e i s recommended.

The main reason for implementing
these virtual memory management exten-
sions has been to create a persistent object
storage kernel for the Kevo system; I have
had neither time nor the interest to optimize
this low-level code yet. I would, however,
be grateful to receive any suggestions to
improve the code.

Acknowledgements
Many thanks to Mike Elola and Michael

Perry for reading and commenting on the
previous version of this article at
FORMLY89. Without their encouragement
I may not have sent this article for publica-
tion.

References
[ACC81] Atkinson, M.P., Chisholm, KJ.,

Cockshott, W.P. "PS-Algol: An Al-
gol with a persistent heap." ACM
SIGPLAN Notices Vol. 17 no. 7,
1981, pp.24-31.

[Bee871 Beech, D. "Groundwork for an
object database model." In Shriver.
B., Wegner, P. (eds): Research direc-
tions in object-oriented program-
ming, MIT Press, 1987, pp.317-354.

[Dre86] Dress, W.B. "A Forth implementa-
tion of a heap data structure." Journal
of Forth Application and Research
Vol3. no. 3, 1986, pp.39-50.

[Har88] Harper, R. "Modules and persis-
I tence in standard ML." In Atkinson,

M.P., Buneman, P., Morrison, R.
(eds): Data Types and Persistence,
Springer-Verlag , 1988, pp.2 1-30.

[LiS88] Linds~irn, Y., Sjibrg, D. "Data-
base concepts discussed in an object-
oriented perspective." In Gjessing,
S., Nygaard, K. (eds): Proceedings of
ECOOP'88 European Conference
on Object-Oriented Programming
(Oslo, Norway), 1988, pp.300-3 18

ILow881 Low, C. "A shared, persistent
object store." In Gjessing, S.,
Nygaard, K. (eds): Proceedings of
ECOOP'88 European Conference
on Object-Oriented Programming
(Oslo, Norway), 1988, pp.390-408.

[MS086] Meier, D., Stein, J., Otis, A.,
Purdy. A. "Development of an ob-
ject-oriented DBMS." In Meyrowitz,
N. (ed): OOPSLA'86 Conference
Proceedings (Portland, Oregon),
1986, pp.472-482.

[Pou87] Pountain, D. Object-oriented
Forth: implementation of data struc-
tures. Academic Press, 1987.

[Tai89] Taivalsaari, A. "Cool - unifying
class and prototype inheritance." To
appear in Proceedings of FORML'89
Conference on Forth and object-ori-
ented programming (Pacific Grove,
California), 1989.

[Tai89] Taivalsaari, A. "Implementing
class inheritance without explicit
classes." Submitted paper, 1990.

Antero Taivalsaari is a Ph.D. student
of computer science at the University
of Jyvaskyla, Finland. He has been
an avid Forth programmer for seven
years, the last two of which have
found him interested in object-ori-
ented programming, the theme of his
doctoral dissertation.

Volume XII, Number 3 15 Forth Dimension!

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

(MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!
Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Yes, it is faster than optimized C!
Compile 40,000 lines per minute!
Stay totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!
Alter routines without recompiling!
Use source code for 2500 functions!
Use data structures, control
structures, and interface protocols
from any other language!
Implement borrowed feature, often
more efficiently than in the source!
Use an architecture that supports
small programs or full megabyte
ones with a single version!
Forget chaotic syntax requirements!
Outperform good programmers
stuck using conventional languages!
(But only until they also switch.)

HSIFORTH with FOOPS - The
only flexible full multiple
inheritance object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend
all tasks to their noble mold. Add on
OOL's provide a better solution, but
only Forth allows the add on to blend
in as an integral part of the language
and only HSFORTH provides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightAnn
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's RightArm RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
Now that is a null learning curve!

Forth Dimensions

WAKE UP ! ! !

Forth is no longer a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple
tools expected in any commercial
language.

HEYFORTH Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics,
they fail to show its true potential.
Not to mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the
ideas that you now see sprouting up
in other Forths. We won't throw in
the towel, but the drain on resources
delays the introduction of even better
tools. Don't kid yourself, you are not
just another drop in the bucket, your
personal decision really does matter.
In return, well provide you with the
best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to
fossilized compilers. You are a t the
mercy of that language's vendor. You
can easily add features from other
languages to HS/FORTH. And using
our automatic optimizer or learning a
very little bit of assembly language
makes your addition zip along as well
a s in the parent language.

HS/FORTH runs under MSDOS or
PCDOS, or from ROM. Each level
includes all features of lower ones. Level
upgrades: $25. plus price difference
between levels. Sources code is in
ordinary ASCII text files.

All HSlFORTH systems support full
megabyte or larger programs & data, and
run faster than any 64k limited ones even
without automatic optimization -- which
accepts almost anything and accelerates to
near assembly language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

STUDENT LEVEL $145.
text & scaledlclipped graphics in bit blit
windows,mono,cga,ega,vga, fast ellipses,
splines, bezier curves, arcs, fills, turtles;
powerful parsing, formatting, file and
device 110; shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; formats into strings.

PERSONAL LEVEL $245.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer-machine code speed.

PROFESSIONAL LEVEL $395.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic l i i e r
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $495.
Metacompiler: DOS/ROMldiredlindirect;
threaded systems start at 200 bytes,
Forth cores at 2 kbytes; C data
structures & stmct+ compiler;
Turbowindow-C MetaGraphics library,
200 graphidwindow functions, Postscript
style line attributes & fonts, viewports.

Speaking of assembly language,
learning i t in a supportive Forth
environment turns the learning curve
into a light speed escalator. People
who failed previous attempts to use
assembly language, conquer it in a
few hours or days using HSLFORTH.

Volume XII. Number

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

POOPS+ with multiple inheritance$ 75.
286FORTH or 386FORTH $295.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit address.operand range with 386.

BTRIEVE for HSIFORTH (Novell) $199.
ROMULUS HSIFORTH from ROM$ 95.
FFORTRAN translatorlmathpak $ 75.

Compile Fortran subroutines! Formulas,
logic, do loops, arrays; matrix math,
FFT, linear equations, random numbers.

DYNAMIC MEMORY
ALLOCATION

M a n y programs require the ability
to mani~ulate data elements of indetermi-
nate size or number. Text strings are an
example of one such type of data: each
string may be a different length, and it is
usually neither feasible nor economical to
statically allocate (at compile or assembly
time) a buffer capable of holding the largest
possible string. Programs that manipulate
arrays of numbers often need to establish
their memory requirements dynamically-
that is, at run time, without the use of a
statically allocated buffer. Creation of
linked lists, trees, and other more complex
data structures also typically cannot be
carried out with statically allocated mem-
ory. The solution to this problem is to
provide the program with a means to dy-
namically allocate memory at run time.
Dynamically allocated memory is drawn
from the pool of main memory remaining
after a program has been loaded and the
stack (and other language-specific data
structures) has been established. Dynamic
memory allocation requires more complex
run-time support than static buffers (which
require none), but provides greater flexibil-

DREAS NIELSEN - BELLEVIEW, WASHINGTON

example, are difficult to implement with-
out it.

This article provides an introduction to
the implementation of dynamic memory al-
location, covering a few of the principles
and providing examples for illustration.
This is a topic that does not seem to be well
covered in the literature; indeed, Knuth
(1973) and Aho, Hopcroft, and Ullman
(1983) seem to be the only commonly
available references that treat it in depth.
On the other hand, why would you want to
know anything more about the implemen-
tation of such an arcane feature, particu-
larly if you are not writing a compiler or
operating system? First of all, you may
need (or want) to use a language which does
not intrinsically provide this feature but
does have the systems-programming capa-
bility to implement it. Secondly, the mem-
ory allocation functions provided by a lan-
guage or standard library may not exactly
suit your needs. Curiosity, of course, may
be sufficient reason in and of itself.
- -

The heart of any mem-

General Principles
A prerequisite for dynamic memory al-

location is a pool of contiguous available
memory from which smallerblocks can be
allocated. This free memory space is gen-
erally called the heap; dynamically allo-
cated subsets of it commonly are referred
to as blocks. The physical location of the
heap and the way in which it is isolated
from other features of the run-time envi-
ronment are dependent on the language in
use and, often, its implementation. These
details will not be considered here. (Dy-
namic allocation of space for local vari-
ables, which typically uses the stackrather
than a heap, will also not be considered.)
Other issues related to dynamic memory
allocation, such as the identification of
free blocks within the heap, the applica-
tion interface, and efficiency considera-
tions, are more general. The following
discussion will address these topics. Note
that although the principles described may
apply, for instance, to BASIC's dynamic
string handling, they will not necessarily
allow you to add new dynamic memory
functions to BASIC or some other lan-

statically allocated block may beequiva-
lent in size and complexity to that for gen-
eral-purpose dynamic memory allocation.

ity. 1f the available memotis to be re-used
repeatedly for different purposes, the spe-
cial-purpose code needed to manipulate a

Dynamic memory allocation is used by
many common languages. In some of these,
it is solely under the control of the language
itself (e.g., strings in BASIC and dBase, all
objects in Smalltalk and Lisp); in others,
partial or complete control is given to the
programmer (e.g., Pascal, C, and Modula-
2). Explicit control of dynamic memory
allocation is a powerful tool, and funda-
mental to effective implementation of
many useful algorithms. Data structures
such as linked lists, queues, and trees, for

- - - -

Despite the relative paucity of informa-
tion, dynamic memory allocation is not as
complex as it may seem. Furthermore, an
understanding of the techniques and costs
involved can help you decide when a gen-
eral-purpose routine is suitable, when a
specialized routine may be better, and
when to do without dynamic memory allo-
cation. Source code for both a simple gen-
eral-purpose routine and a more efficient
specialized routine is provided for illustra-
tion. The implementation of dynamic
strings is used as an example application of
the general-purpose routine.

ory allocation io utine
a data structure.

The heart of any memory allocation
routine is a data structure that identifies
the location of all free blocks of memory;
this is conventionally called the "free list."
Typically it takes the form of a singly
linked list in which each node identifies
the location of a block of available mem-
ory, the size of the block, and the position
of the next node in the list. At first glance,
allocation of storage space for the free list
itself would seem to be a problem. Ini-
tially, all free memory would be in one
block, requiring only one node-but after
a series of allocations and de-allocations,
the list may contain any number of nodes.

guages.

The Free List

Volume XII, Number 3 17 Forth Dimensions

Where and how, then, is the free list stored?
One answer is to store the pointers to

free memory in the free memory itself. This
sounds a bit like a snake swallowing its own
tail, but is actually quite simple and
straightforward to implement. A small
portion of each free block is used to store
the block size and pointer to the next node,
as shown in Figure One (page 23). The
pointers to the free blocks are therefore im-
plicit--the address of each node is itself the
address of a free block. One consequenceof
this method of storage is that free blocks
cannot be smaller than a node of the free
list. In Figure One the nodes are shown
sorted from low to high addresses. This ar-
rangement makes ddlocation easier, as
shown below, but it is not the only scheme
that can be used. Nodes may be sorted by
block size, for example, to make allocation
simpler.

Other methods may also be used to store
the free list. The second example shown
below uses a bit map, an approach made
possible by the fact that blocks are of a fixed
size and the total number of blocks is
known.

Types of Dynamic Memory Allocation
There are several important distinctions

among memory allocation systems. As
mentioned previously, one of these is the
issue of implicit versus explicit control-
whether language features alone can make
use of this resource or whether the pro-
grammer can use it too. Although implicit
and explicit control of memory allocation
are not generally found together, they are
not mutually exclusive. The dynamic string
package presented here, for example, auto-
matically allocates and de-allocates mem-
ory to carry out its functions, but can coex-
ist with user programs that make explicit
use of the same functions.

When a language has sole access to
memory allocation functions it can control
all pointers to allocated space, and so need
not replace each deallocated block back
into the free list as soon as the application
program releases it. This technique of de-
layed reclamation of de-allocated space
("garbage collection") allows programs to
run faster, as long as there is sufficient free
memory in the heap, at the expense of a
relatively lengthy delay for garbage collec-
tion whenever the heap becomes ex-
hausted. Lisp is an example of a language
that manages memory using garbage col-

Listing One
Screen 1
0. (Dynamic Menwry A l l o c a t i o n -- Screen 1)
1. (Each block o f f r e e space beg ins wi th a 4-byte c o n t r o l b lock.

The f i r s t word c o n t a i n s t h e addres s o f t h e n e x t f r e e b lock
[o r 0 i f none] and t h e second c o n t a i n s t h e number o f b y t e s i n
t h e c u r r e n t block [inc lud ing t h e c o n t r o l b lock] .)

(Crea te p o i n t e r t o b e g i ~ i n g o f f r e e space, w/ size=O.)
2VARIABLE FREELIST 0 0 E'REELIST 2!

(I n i t i a l i z e memory pool .)
: DYNAMIC-MEM (s tar t -addr l e n g t h --)

OVER DUP FREELIST ! (Save s t a r t i n g addr .)
0 SWAP ! (S e t n u l l p o i n t e r .)
SWAP 2+ ! (Save l e n g t h i n 1st c o n t r o l b lock.)

Screen 2
0. (Dynamic Memry Al loca t ion , Screen 2: MALtOC)
1. (Returns p o i n t e r t o n f r e e by te s , o r 0 i f t h e r e is no space.
2. Word b e f o r e r e t u r n e d addres s h o l d s s i z e o f b lock. No f r e e
3. b locks o f less t h a n 4 bytes a r e al lowed.)
4. :MALLCC (n - - n)
5. 2+ FREELIST DUP
6. BEGIN
7. WHILE DUP @ 2+ @ (S i z e) 2 PICK U<
8. IF @ @ DUP (g e t new l i n k)
9. ELSE DUP@ 2 + @ (s i z e) 2 P I C K - 4MAX DUP 4 =
l o . I F DROP DUP @ DUP @ ROT !
11. ELSE 2DUP SWAP @ 2+ ! SWAP @ +
12. THEN 2DUP ! 2+ 0 (s t o r e s i z e , bump p o i n t e r ,)
13. THEN (and set e x i t f l a g)
14. REPEAT SWAP DROP (dump #by tes) ;

Screen 3
0. (Dynamic Memory sc reen 3: FREE)
1. (Dea l loca te s memory . P o i n t e r pas sed mst be from MALUX:)
2. : E'REE (p t r --)
3. 2-DUP @ SWAP 2DUP 2+ ! FREELISTDUP
4. BEGIN DUP 3 PICK U< AND
5 . WHILE @ DUP @
6. REPEAT (a t e x i t : (s i z e b lock p t r l)
7. DUP @ DUP 3 PICK ! ?DUP (s z b l k p t r l 0 -or- p t r 2 p t r 2)
8. I F DUP 3 PICK 5 PICK + - (s i z e b l k p t r l p t r 2 t / f)
9. I F DUP 2+ @ 4 PICK + 3 PICK 2+ ! @ 2 PICK !
10. ELSE DROP THEN (s z b l k p t r l)
11. THEN (s z b l k p t r l)
12. D U P 2 + @ O V E R + 2 P I C K - (s z b l k p t r l t / f)
13. I F OVER2+ @ OVER2+DUP @ ROT + SWAP ! S W @ SWAP !
14. ELSE !
15. THEN DROP ;

I

Listing Two
--

Screen 1
0. (ASCII2 s t r i n g manipula t ion r o u t i n e s)
1. : TEXT (c --) (P a r s e t e x t t o m t c h i n g cha r , p u t i n PAD)
2. >IN @ TIB @ + C@ OVER = I F DROP 0 PAD C! 1 >IN +! PAD
3 . ELSE WORD THEN COUNT DUP PAD + 0 SWAP C! PAD SWAP CMOVE ;
4.
5. : SCAN0 (s -- z) (Returns a d d r e s s o f t e r m i n a t i n g n u l l .)

Forth Dimemiom 18 Volume XII. Nwnber 3

Listing Two, continued

6. BEGIN DUP C@ WHILE 1 + REPEAT ;
7.
8. : STRISN (s -- n) (R e t u r n l e n g t h of s t r i n g i n bytes)
9. DUP SCAN0 SWAP -- ;
10 .
11. : CHARS (n --) (D e f i n e a s t r i n g b u f f e r of n chars.)
1 2 . CREATE 0 C, ALLOT DOES> ;
13.
1 4 . : STRCPY (sl s 2 --) (C o p i e s f r o m sl t o s 2)
15. OVER STRLEN 2DW + 0 SWAP C! CMOVE ;

S c r e e n 2
0 . (ASCIIZ s t r i n g e x t e n s i o n s)
1.
2. (R e t u r n t h e address of a s t r i n g l i te ra l c o m p i l e d i n t o
3 . t h e d i c t i o n a r y .)
4.
5 . : (") (- - s)
6. R> DUP BEGIN D W C@ WHILE 1 + REPEAT 1 + >R ;
7.
8. : " (-- s) (Example: ' T h i s s t r i n g . " S t a t e - s m a r t .)
9. 3 4 TEXT PAD STATE @ I F COMPILE (")
1 0 . DUP STFUEN 1 + HERE SWAP ALLOT STRCPY
11. THEN ; IMMEDIATE
12 .
13. : PRINT (s --) (P r i n t the ASCIIZ s t r i n g a t the addr.)
1 4 . BEGIN DUP C@ DUP WHILE EMIT 1 + REPEAT 2DROP ;

S c r e e n 3
0 . (More char and ASCIIZ s t r i n g e x t e n s i o n s)
1. : UCASE (c -- c) (U p p e r c a s e s character.)
2 . DUP 96 > OVER 1 2 3 < AND I F 2 2 3 AND THEN ;
3.
4. : CFROM (a1 a 2 -- a1 a 2 c) (G e t s char f r o m p o i n t e r u n d e r .)
5 . oVER C@ ;
6. : CFROM+ (L i k e CFROM, b u t i n c r e m e n t s p o i n t e r)
7 . CFROM ROT 1+ -ROT ;
8. : CTO (a1 a 2 c -- a1 a 2) (P u t s char a t top p o i n t e r .)
9. OVER C! ;
1 0 . : CTW (L i k e CTO, b u t i n c r e m e n t s p o i n t e r .)
11. CTO 1 + ;
1 2 . : C W S + (a1 a 2 -- a l + l a 2 + 1) (T r a n s f e r s a char.)
13. CFROM+ CTW ;
1 4 .
1 5 . : EOS? (a1 -- f) C@ NOT ;

S c r e e n 4
0 . (More character and ASCIIZ s t r i n g e x t e n s i o n s .)
1. : C @ C = (c a d d r - - f) C @ = ;
2.
3. : STRPOS (c z s t r -- n) (R e t u r n s p o s i t i o n of c i n z s t r ,)
4. 0 >R BEGIN 2DUP C@C= NOT (0-based , or -1 i f n o t f o u n d .)
5. OVER EOS? NOT AND WHILE 1+ R> 1+ >R REPEAT
6. C@C- I F R> ELSE R> DROP -1 THEN ;
7.
8. : INSTR (c z s t r -- f) (T i f c i n zs t r , F o t h e r w i s e)
9. STRPOS -1 = NOT ;
10.
11. : STRCAT (z s t r l z s t r 2 --) (a p p e n d s z s t r l t o z s t r 2)
1 2 . SCAN0 STRCPY ;
13.
1 4 . : TOUPPER (z s t r -) BEGIN DUP EOS? NOT WHILE
1 5 . DUP C@ UCASE OVER C! 1 + REPEAT DROP ;

lection. The technique is particularly ap-
propriate for programs that require dy-
namically allocated memory but are ex-
pected to ordinarily require less than the
total amount of memory available. This
article describes only immediate recla-
mation of de-allocated memory; Knuth
and Aho et al. should be consulted regard-
ing strategies for garbage collection.

Another important distinction be-
tween memory allocation schemes is re-
lated to the need for fixed- or variable-size
memory blocks. An application that cre-
ates and destroys only a single type of
uniformly sized structure may use a dif-
ferent strategy than one which manipu-
lates structures of many different sizes.
Implementations satisfying these differ-
ent needs may vary greatly in complexity
and efficiency. Some of these differences
are illustrated by the examples described
below.

A third important factor is the se-
quence of allocation and de-allocation
requests that will be generated by an

1 application. If de-allocation proceeds in
the inverse order of allocation (i.e., like a
stack), specialized routines tailored for
the purpose may be made much more
efficient than general-purpose memory
allocation functions. Other patterns of
allocation and de-allocation requests can
lead to varying fragmentation of the free
list; memory allocation routines can also
be optimized to cope with a high or low
degree of fragmentation.

Application Interface
A simple example of dynamic mem-

ory use is a program which sorts or counts
values in an input file by constructing a
binary tree in memory as the file is read. A
new node of the tree would be allocated
every time a new item is found in the file.
The sorted output can then be written to
another file during an in-order traversal of
the tree. A simple application such as this
needs only to be able to allocate additional
memory as needed. Any application
much more complicated than this, how-
ever, will generally need to de-allocate
memory as well. If the program described
above is extended to read several files in
succession, the tree should be de-allo-
cated before the next file is read, to reduce
the risk of running out of memory. This
application is still simple enough, how-
ever, that performance can be improved
by reclaiming the entire heap at once

I I

Volume XlI, Number 3 19 Forth Dimensions

rather than de-allocating the tree node-by-
node. 1 Listing Three

Application programs generally make
use of dynamic memory allocation, there-
fore, via two routines: one to allocate
memory and one to release it. These rou-
tines are known to C programmers by the
names "malloc" and "free" and to Pascal
programmers as "new" and "release." Ini-
tialization of the dynamic memory buffer
and routines is performed by the standard
run-time code for these languages. If you
writ. your own memory allocation rou-
tines, you will have to take care of this
detail yourself, providing a third (initializa-
tion) interface to application software. The
initialization routine is responsible for
marking the entire contents of the heap as
available; it may carry out other tasks also,
depending upon the needs of the allocation
and de-allocation routines.

Efficiency
The efficiency of dynamic memory al-

location is principally a function of the time
required to grab and release a chunk of
memory. The amount of overhead space
(i.e., the number of extra bits required for
each allocated block) is also an efficiency
consideration, but one that is likely to be
less important than that of time. Factors that
can affect the time required to allocate or
free a block of memory are:

Amount of free space available.
Pattern of previous allocation and de-
allocation requests; that is, the degree of
fragmentation of the free space.
Size of the block(s) to be allocated.
Algorithms used.

Clearly, these all interact in ways that
may differ from one application to another
and even from one data set to another. If
you are concerned about efficiency, your
best approach is to evaluate the first three
factors as best you can and use them to
select appropriate algorithms. Generally
applicable analyses of these interactions
are probably not possible, although the in-
dividual factors may be examined (see
Knuth, for example, for a discussion of the
effect of memory fragmentation).

Choice of an appropriate algorithm can
greatly affect the efficiency of an applica-
tion. The two techniques presented here
provide an illustrative contrast. The gen-
eral-purpose routine requires two bytes of
overhead per block, and the time required
to allocate or de-allocate a block depends

S c r e e n 1
0 . (Dynamic s t r i n g s , s c r e e n 1. DYNAMEM p a c k a g e m u s t be l o a d e d .)
1. : STRVAR (C r e a t e p o i n t e r t o dynamic string.)
2 . CREATE 0 , ; (a VARIABLE by a n o t h e r name)
3.
4 . STRVAR -SYSSTR (S a v e p t r t o c r e a t e d / m o d i f i e d strings.)
5.
6. : LEN (dstr --) @ STRLEN ;
7.
8. : RELEASE (dstr --) DUP @ ?DUP I F FREE THEN 0 SWAP ! ;
9.
1 0 . : STRSAVE (z s t r dstr --) (A s s i g n s z s t r t o dstr)
11. SWAP DUP STRLEN 1t MALLOC (dstr z s t r mem)
1 2 . SWAP OVER STRCPY SWAP DUP RELEASE ! ;
13.
1 4 . : S! (dstrl d s t r 2 --) (S t o r e s 1 i n 2 , m a k i n g a c o p y)
15. SWAP @ SWAP STRSAVE ;

S c r e e n 2
0 . (Dynamic s t r i n g s , s c r e e n 2)
1.
2 . : LEFT (dstrl n -- d s t r 2) (R e t u r n s left n chars of d s t r l)
3. OVER LEN OVER MIN 1t MALLOC DUP >R ROT @ SWQ ROT
4 . (z s t r m e m n --) 2DUP t 0 SWAP ! CMOVE
5. - SYSSTR RELEASE R> S Y S S T R ! - SYSSTR ;
6.
7 . : RIGHT (dstrl n -- d s t r 2) (R e t u r n s r ight n chars of d s t r l)
8. OVER LEN SWAP -- 0 MAX SWAP @ + S Y S S T R STRSAVE S Y S S T R ;
9.
1 0 . : SUBSTR (dstr l n l n 2 -- d s t r 2)
11. (S u b s t r i n g of dstrl s t a r t i n g a t char n l , of l e n g t h n 2)
1 2 . ROT @ ROT 1- OVER STRLEN MIN t -SYSSTR STRSAVE
1 3 . - SYSSTR SWAP LEFT ;

S c r e e n 3
0 . (Dynamic strings, s c r e e n 3 . S+ SAY UPPER)
1.
2 . : S t (dstrl d s t r 2 -- dstr3) (Appends 2 t o 1)
3. OVER LEN OVER LEN t 1+ MALLOC DUP >R ROT @ OVER
4 . STRCPY SWAP @ SWAP STRCAT S Y S S T R RELEASE I0 -SYSSTR !
5. - SYSSTR ;
6.
7 . : SAY (dstr --)
8. @ PRINT ;
9.
1 0 . : UPPER (dstrl -- d s t r 2) (Makes a n u p p e r c a s e d c o p y)
11. - SYSSTR S! -SYSSTR @ TOUPPER S Y S S T R ;

S c r e e n 4
0 . (Dynamic s t r i n g s , s c r e e n 4 . S")
1.
2 . STRVAR -SYSSTR2

(s") (F o r p r e - i n c r e m e n t i n g NEXTs)
I0 DUP BEGIN DUP C@ WHILE 1t REPEAT 1+ >R -SYSSTR2
STRSAVE S Y S S T R 2 ;

S" (-- dstr) (A c c e p t s text f r o m i n p u t s t r e a m)
(i n t o a n o n p u s d y n a m i c s t r i n g .)

34 TEXT PAD STATE @ I F COMPILE (S")
DUP STRLEN 1 + HERE SWAP ALLOT STRCPY

ELSE

- SYSSTR2 STRSAVE - SYSSTR2
THEN ; IMMEDIATE

Forth Dimensions 20 Volume XII, Number 3

Listing Four
Screen 1
0. (Dynamic mem. alloc. for f i x e d node s i z e , s c r e e n 1.)
1.

2 . VARIABLE NODESIZE (S i z e of e a c h node)
3 . VARIABLE NODEMAP (P o i n t e r t o b i t map o f nodes)
5. VARIABLE NODEBUF (P o i n t e r t o m e m o r y b u f f e r)
6. VARIABLE SRCHPTR (Node # a t which t o start s e a r c h for free)
7.
8. : >MASK (-l<n<8 -- m s k)
9. 1+ DUE' 2 > I F 1 SWAP 1- 0 DO 2* LOOP THEN ;
10.
11. : NODE (n -- m a) (n=node #, m-sk, a=address)
12. 8 /MOD NODEMAP @ + SWAP >MASK SWAP ;
13.
14.
15.

Screen 2
0. (Dynamic mem. a l l o c . f o r f i x e d s i z e nodes , s c r e e n 2.)
1.

2. : >BYTES (n -- n2) (C o n v e r t s b i t s t o bytes.)
3. 8 /MOD SWAP O= NOT ABS + ;
4. HEX
5 . : CLEARNODES (--)
6. #NODES @ >BYTES 0 DO FF NODEMAP @ I + C! LOOP
7 . 0 SRCHPTR ! ; DECIMAL
8.
9. : NODEBUFSIZ (n l n 2 n 3 --) (n l = address o f b u f f e r)
10 . DUP NODESIZE ! (n2 = s i z e o f b u f f e r , b)
11. 1+ / DUP #NODES ! (n 3 = s i z e o f node, b)
12 . >BYTES OVER + NODEBUF !
13 . NODEMAP !
1 4 . CLEARNODES ;
15.

S c r e e n 3
0. (Dynamic mem. a l l o c . f o r f i x e d s i z e nodes , s c r e e n 3 .)
1. HEX
2. : GETNODE (-- a (a = 0 i f n o s p a c e a v a i l a b l e)
3. 0 (a c c u m u l a t o r) #NODES @ 0 DO I SRCHPTR @ +
4. #NODES @ MOD DUP NODE C@ SWAP AND (f r e e ?)
5. I F DUP 1 + #NODES @ MOD SRCHPTR !
6. DUP NODE DUP C@ ROT FF XOR AND SWAP C!
7 . SWAP DROP NODESIZE @ * NODEBUF @ + LEAVE
8. ELSE DROP
9. THEN LOOP ;
10.
11. : RELEASENODE (a --) (a as r e t u r n e d by GETNODE)
12 . NODEBUF @ - NODESIZE @ /
13. DUP SRCHPTR !
14. NODE DUP C@ ROT OR SWAP C! ;
15. DECIMAL

upon the pattern of previous requests. The
specialized routine for fixed-size blocks
requires only one bit of overhead per
block (approximately), in many cases re-
quires near-constant (and minimum) time
to allocate a block, and constant time to
de-allocate a block.

General-Purpose Memory Allocation
The most important feature of a general-

purpose memory allocation scheme is the
flexibility to satisfy an indeterminate num-
ber of requests for blocks of varying sizes.
The most appropriate structure for main-
taining the free list under these conditions is

a linked list. Each node of the list identifies
the position of a free block, its size, and the
location of the next block in the list. Gener-
ally, this linked list is stored within the free
space itself, as shown in Figure One. The
address of each node therefore identifies
the position of the associated free block,
and this information need not be explicitly
stored.

For the sake of efficiency during de-al-
location, the free list is generally kept
sorted in order of increasing addresses. By
using a doubly linked list, it is possible to
make de-allocation slightly more efficient
yet (the typical de-allocation strategy is
discussed below).

Because each allocated block may be of
a different size, and because de-allocation
routines are typically passed only the ad-
dress of an allocated block, the size of each
block must be stored when it is allocated.
(Modula-2, however, requires the size of
the block to be passed to the standard deal-
location routine.) It seems that the extra
space needed to store the size could be
eliminated if the de-allocation routine were
passed the size as well as the address but, as
discussed below, in some cases more space
is actually allocated than is requested,
unknown to the calling routine. For this
reason, it is important m store the amount
of space actually allocated rather than that
requested.

Fitting Strategies
When searching for a free block to sat-

isfy an allocation request, the memory allo-
cation routine can select either:

the first free block that is large enough
(first fit) or
the block that is closest in size to that
needed (best fit).

The first-fit strategy is generally re-
garded as superior, as the number of small
blocks tends to proliferate when using the
best-fit method. In addition, because it
usually must examine more (often all) of
the free list for each allocation request, the
best-fit method is slower.

If allocation requests fall into a known
pattern, however, you may find that the
best-fit method, or some variant of it, is
more memory efficient. For example, sup-
pose that your application most often re-
quests blocks of 30,50, or 70 bytes. After
some period of use, most of the free blocks

I 1

Volume XII, Nwnber 3 21 Forth Dimensions

,
Forth Dimensiom 22

are likely to also be of these sizes. In such
a case, your best strategy may be to choose
the first free block of appropriate size, re-
ducing the number of useless 20-byte
(approximately) free blocks created.

Eliminating Small Blocks
Wasted space is created whenever a free

block is created that is smaller than the
application is likely to request. The exis-
tence of too-small free blocks slows down
the memory allocation routines, as their
nodes must be examined each time the free
list is traversed. Although it is not always
possible to prevent this waste of space, it is
possible to eliminate its effect on perform-
ance. This is done by including the "extra"
space with the allocated block that would
otherwise have left the bytes behind. The
actual size of the allocated block, including
the extra bytes, must be recorded in its
reference cell, and the troublesome node
can then be eliminated.

An Example of General-Purpose
Memory Allocation

An implementation of a general-pur-
pose memory allocation scheme is shown
in Listing One. Forth encourages the con-
struction of application-specific languages
of arbitrarily high level, yet is unsurpassed
for the direct memory manipulation needed
to implement system routines. In keeping
with the Forth philosophy of providing
simple tools to build custom applications,
there are no standard Forth words for dy-
namic memoryal1ocation.Theexamplesin
these listings are presented in the same
spirit: although they are fully functional,
they should be regarded as examples only.
You should modify, improve, or replace
them as appropriate to the needs of your
own applications. Heed the dictum about
not reinventing the wheel, but be advised to
trade in your standard steel-belted radials
for racing slicks when the competition gets
hot.

The two principal interface words,
MALLOC and FREE, are shown in screens
two and three of Listing One. These rou-
tines have the same calling conventions, as
well as the same names, as their C counter-
parts, so even if you know nothing but C ,
you should be able to make some sense of

1 the Forth code. (Some of the more avid pro-
ponents of other languages would say that
if you know nothing but C, you know noth-
ing at all; that'sarather harsh judgment, but
I would agree that users of languages of the

NGS FORTH

PL-1 family-<, Pascal, Modula-2, and
Ada-could profitably broaden their hori-
zons by learning something different:
Forth, Lisp, Prolog, APL, and Smalltalk all
embody unusual approaches to comput-
ing.) This code is written for a 16-bit Forth-
83 Standard system.

The free list in this implementation is a
singly linked list in which each node occu-
pies four bytes. Each node contains a link to
the next, followed by the sizeof the block in
bytes. No free blocks smaller than four
bytes are allowed. If satisfying a request
from an available block would leave fewer
than four bytes, the extra bytes are included
in the block being allocated. Except for this
limitation, there is no minimum size im-
posed on either the allocated or free blocks.
Free blocks are selected by the fust-fit strat-
egy.

The word DYNAMIC-MEM, in screen
one, is used to initialize the heap. It should
be passed the starting address and size of the
heap in bytes. The heap itself may either be
compiled directly into the Forth dictionary
or placed in free memory above the diction-
ary. (If you choose the latter course, take
care to avoid conflicts with PAD, TIB,
block buffers, and the parameter and return
stacks,)

DYNAMIC-MEM creates a single node or
control block at the beginning of the heap
space, setting its size to that of the entire
heap. The address of this fust node is stored
in the double variable FREELIST, which
has the same format as a node but, having a
fixed address, serves as the root, always
pointing to the first real node in the free list.
The size cell of FREELI ST is always zero;
it exists so that FREE does not have to treat
the root node as a special case.

Each block of allocated memory is pre-
ceded by a cell containing the block's size.
This information is needed to de-allocate
the block. Each allocated block is therefore
actually two bytes larger than its nominal
size. This overhead cost should be consid-
ered if you wish to use the smallest possible
heap, based upon your knowledge of the
number and size of blocks needed.

The word MALLOC is used to reserve a
block; it is passed the numbei of bytes
desired and returns the address of an appro-
priately sized block, or zero if the request
cannot be satisfied. The first thing this word
does is increase the requested size by two
bytes to allow for the sizecell. A sequential
search of the free list is then performed,
which is terminated when a block of suffi-

A FAST m m ,
OPTIMIZED FOR THE IBM
PERSONAL COMPVTER AND
MS-DOS COMPATIBLES.

STAM)ARD FEATURES
INCLUDE:

079 STANDARD

I .DIRECT 1/0 ACCESS I (
.FWLL ACCESS TO MS-DOS I FILES AND FUNCTIONS I I

I .ENVIRONMENT SAVE
& IDAD 1 1

I .MULTI-SEGMENTED FOR
LARGE APPLICATIONS I I I .EXTENDED ADDRESSING I I
.MEMORY ALLiOCATION I CONFIGURABLE ON-LINE I 1

I .AUTO LOAD SCREEN BOOT 1 1
I .LINE P SCREEN EDITORS I 1
ODECOMPILER AND
DEBUGGING AIDS

e8 08 8 ASSEMBLER

GRAPHICS & SOUND

I ONGS ENHANCEMENTS I I I ODETRIIED MANUAL I I I .INEXPENSIVE UPGRADES I I I oNGS USER NEWSIEITHl I I
A CrmPLETE mmH
DEVEIX)PMEXV SYSTEM. I I / PRICES S n a T AT $70 I I

I NEW-HP-150 & BP-110
VERSIONS AVAILABLE I /

NEXT GENERATION SYSTEM8
P-0.BOX 2987
BANTA CLARA, CA- 95055
(408) 241-5909

Volume XII, Nwnber 3

Free
list
links

I I Allocated memory

Root
pointer

1 Figure One. Linked list in the heap.

-1 Free block
Allocated block
Block to be de-allocated

-

-

I

Volume XII, Nwnber 3 23 Forth Dimensions

cient size is found or the end of the free list
is reached. Either of these conditions is
signaled by a zero on the stack; the test for
this value occurs at the beginning of line
seven. During this search, two values are
kept on the stack: the number of bytes
needed and the address of the node that
contains the address of the node currently
being examined. The address of the node
"one back" must be maintained so that its
node's link address can be adjusted in case
the current node is entirely allocated and
must be dropped from the free list.

Line seven of screen two fetches the
size of the current block and tests it against
the request. Line eight performs two
fetches to get the link to the next block if
the size is insufficient. Line nine evaluates
whether the entire block should be allo-
cated; if so, the pointers are adjusted in line
ten, otherwise the size of the current block
is reduced in line 11. In either case, the
address of the block is left on the stack.
Line 12 stores the size for later use, incre-
ments the pointer past thesizecell, and sets
a zero flag on the stack to terminate the
loop.

Release of an allocated block may or
may not result in the addition of another
node to the free list. Blocks above and
below the one to be de-allocated may
themselves be either free or reserved. The
four possibilities are shown in Figure Two.
Only when the memory configuration is as
shown in Figure Two-a will a new node be
added to the free list. The situation shown
in Figure Two-b will result in the creation
of a new node within the newly de-allo-
cated block, and the removal of the node
above, for no net change. The link address
previously pointing to the node to be re-
moved must also be modified. When the
situation isas shown in FigureTwo-c,only
the size of an existing node need be
changed. If free memory bounds the de-
allocated block on both sides, as in Figure
Two-d, then the size of the lower node
must be changed and the upper one elirni-
nated.

The need to examine the blocks on both
sides of the one to be de-allocated is why
the free list is kept sorted by address. To
find the address of the preceding free node,
a sequential search is performed for a node

L- - /
Figure Two. De-allocating a block; surrounding memory.

which has an address lower than that of the
one to be de-allocated, but a link address
that is higher. If the size and address of the
lower node sum to the address of the one to
be de-allocated, then the situation in either

Figure Two-c or Two-d applies. To find the
address of the following block (which will
have a free-list node if empty), it is only
necessary to sum the sue and address of the
block to be de-allocated, if the resulting ad-
dress appears in the free list, then the situ-
ation in either Figure Two-b or Two-d
applies.

Evaluation of the memory configura-
tion and removal of the indicated node are
performed by the word FREE in Listing
One, screen three. This word begins by
fetching the size of the node and storing it
in the second cell, creating the size cell of a
valid node header. A sequential search of
the free list is then performed (lines 3 4 ,
ending with the address of the free node
below the one to be de-allocated. Note that
this may be the root (FREELIST) which,
because of the extracell allocated to it, may
be treated exactly like any other node
header.

In line nine, the link address held by the
next-lower free node is stored in the block
to be de-allocated, completing the valid
node header for this block. Nothing yet
points to this header, and it may eventually
be abandoned. Construction of the header
at this step is more efficient, however, if the
node is not to be abandoned. Lines eight

1 through ten evaluate whether the node to be
de-allocated is immediately followed by a
free node; if so, the size cell of the newly ' created node header is increased by the size
of the following free block and the link
address is set to that contained in the fol-
lowing header. Lines 12-14 evaluate
whether the block to be de-allocated is
precededby a free block; if so, the link and
size cells of the preceding header are modi-
fied appropriately, and if not, the link ad-
dress of the preceding header is set to that of
the de-allocated block.

An Example Application
The use of these words is illustrated by

a set of routines for manipulation of dy-
namic strings. Listing Two contains a set of
static string-handling words, and Listing
Three ties these together with the dynamic
memory words in Listing One.

Strings are generally stored in memory
in one of two ways: with the string length in
the first byte or word, or with the end of the
string marked with a sentinel character,
usually an ASCII zero. For simplicity, I
will refer to these alternatives as counted

contains several standard words for ma-
nipulating counted strings (using a single
byte for a count), but is not limited to this
form of storage. I prefer to use zstrings, as
they allow you to scan a string more easily;
the remainder of the string can always be
represented by a single stack element rather
than by an addresscount pair, as is neces-
sary with counted strings. The words in
Listing Two are therefore designed to cre-
ate and manipulate zstrings rather than the
more usual (for Forth) counted strings.

Because this is an illustration and not
central to the point of this article, the words
in Listing Two will not be described in
detail. A few points are worth noting,
however. In particular, the words TEXT
and (") may be found in existing Forth sys-
tems with slightly different actions. Typi-
cally these create and return counted
strings, whereas the versions shown here
are designed for zstrings. If possible, you
should rewrite SCAN0 in your native as-
sembly language, as it may amount to only
a single instruction. The words in Listing
Two do not form a complete set of tools for
handling static strings, but they include all
those used to illustrate dynamic smng han-
dling in Listing Three as well as a few
others.

The words in Listing Three integrate
those in Listings One and Two. They allow

strings of any length (within the limits of
the heap space) to be stored or modified
without any concern on your part about
overrunning a statically allocated string
buffer. These words mimic some of the
string-manipulation functions of dBase in
name and application.

Dynamic strings are represented by a
pointer to a zstring; the zstring itself is
stored in the heap, rather than in the Forth
dictionary. A dstring can be converted to a
zstring simply by a fetch (@) operation.
With that in mind, andan explanation of the
role of S Y S S T R , the words in Listing
Three should be easy to interpret.

Several of the dynamic string manipula-
tion routines create new unnamed
dstrings-that is, ones which do not di-
rectly replace one of the dsmngs passed as
aparameter. The words LEFT, RIGHT, and
S+ are examples. This new, unnamed
dstring is left on the stack, where you may
save it (with S !), display it (with SAY), or
otherwise dispose of it. The pointer to the
heap space allocated for this smng must not
be lost, however, or the space will be unre-
coverable. -S YS S TR is used to store this
pointer. Note that the pointer is stored only
until the next operation which creates anew
unnamed dsuing; at that point, the space is
de-allocated and the pointer reassigned. In
some situations, this limits the operations

strings and zstrings. Dynamic strings will
be referred to henceforth as dstrings. Forth

1

Forth Dimensions 24 Volume XII, Number 3

Volume XII, Number 3 25 Forth Dimensions

that can be successively carried out on an
unnamed dstring. Consider the following
sequence of commands:

STRVAR COMPOST
Gardeners rarely grow cabbage. "

COMPOST STRSAVE
COMPOST 3 LEFT
COMPOST 5 RIGHT

st

The result of this would be garbage, but
not the "Garbage." that you might expect.
Both of the phrases COMPOST 3 LEFT
and COMPOST 5 RIGHT lc?ave a pointer
to an anonymous zstring, but only one
anonymous pointer (SYSSTR) is al-
lowed. Thus, the two arguments passed to
st will both b e S Y S STR, and the result
will always be toconcatenate the rightmost
five-character substring of COMPOST with
itself. The solution to this problem is to use
another dstring defined with STRVAR for
intermediate storage of the lefunost sub-
suing.

Any number of successive operations
on a single, unnamed &ring may be car-
ried out, however. For example:

COMPOST 6 LEFT UPPER SAY

These routines are written so that
SY s STR maybe one of their arguments,

and space for the resulting shng will be
allocated before -SYSSTR is de-allo-
cated.

Another way of reducing conflicts be-
tween of -' STR is to use a differ-
ent system string for each routine. This ap-
proach is sen with the word s" (Ihe
dsuing counterpart to "), simply to allow
the convenience Of ente'ng a sbing
an unnamed dstring resides on the stack.
The drawback is that heap space may re-
main allocated long after the unnamed
dstring 's no longer needed by the applica-
tion.

The technique of implementing dy-
namic strings shown in Listing Three is
only an example. Counted strings could be
used instead of zstrings. The count could
also be kept in the dstring header, whether
counted strings or zstrings are used. This
last approach may be most suitable when
you want to use zstrings for mostpurposes
but your application frequently needs to
evaluate the length of strings; the extra
space devoted to storage of the string size,

although unnecessary, may save computa-
tion time. Tailor the tools to the task.

Special-Purpose Memory Allocation
If there is anything Systematic about the

size that be needed* the
number Of allocation requests* Or the pat-
tern of allocation and de-allocation, you
may be &'I? performance and
save memory by using a sWCial-~urpose
memory a ~ ~ ~ t i o n routine- Whereas
general-purpose rou-
tines probably be based on a
somewhat like that presented above, you
afepretty muchon~ourown when it comes
to designing a sp=ial-purpose
Knuth and Aha, Hopcroft* and Ullman
describe a technique known as the
system? which isasortof general-purpose
s~ec ia l -~ur~ose system* suitable when
only a limited number of sizes of blocks
will be ~~eeded. Its advantage is that it can
be customized for different combinations
of sizes of blocks.

Considerations of fitting saategies and
the~roblemso~ smallblocksdonotpertain
when a11 blocks are the Same size. It is, in
fact, easier to design an appropriate solu-
tion for a single s ~ i a l - ~ u r ~ o s e a ~ ~ l i c a -
tion than it is to design a good general-
purpose memory allocation routine.

The technique described here is One

that is suitable only when blocks of asingle
size will be needed. But for this limitation,
it has a number advantages Over the
general-purpose routine described above:

The time required to allocate a node is
likely to be much less. . ne rime required to de-allocate a node
is constant.
The overhead is only one bit per block,
rather than two bytes.

These advantages are conferred by the
representation of the free list as a bit map
rather than as an actual linked list. The bit
map consists of a series of bytes long
enough so that their total number of bits is
at least as great as the number of nodes that
can be accommodated by the heap. The
state of each bit (set or reset) indicates the
availability of a corresponding node. The
code for this implementation is shown in
Listing Four. The words NODEBUFS I Z,
GETNODE, and RELEASENODE are
~ M ~ O ~ O U S to DYNAMIC-MEM, MALLOC,
and FREE in Listing One.

A free block is indicated by a set (1) bit

in the map. To allocate a block, it is neces-
sary to scan the map for such a bit and
calculate the address to which it corre-
sponds. To increase efficiency when a
sequ,nce of successive allocation requests
may be performed, each search of the map
begins where the previous one left off. To
increase efficiency when an altaating se-
quence of allocation and de-allocation
requests is performed, a pointer is set
whenever ablock is de-allocated so that the
next search will begin with that block and
so will be satisfied immediately. In some
c=s,only one of these fine-tuning mecha-
nisms may be appropriate; both are shown
here for illustration.

The housekeeping information is kept
in the five variables shown in Listing Four,
screen one. The first three words (>MASK,
NODE, and >BYTES) manage the conver-
sion between the bit map and actual ad-
dresses. The word >MASK ("to-mask")
takes a bit number and converts it into a
mask that can be used to test or set the bit
with AND Or OR. hi^ is a good candidate
for coding in assembly language.

Initialization of the bit map and house-
keeping infomation is performed by the
word NoDEBUFS I Z. The beginning of the
memory buffer is set aside for the bit map;
this routine calculates the number of nodes
that will fit and the size of the map needed.
~h~ map always occupies an integral
number of bytes. ~ ~ ~ ~ ~ d i ~ ~ upon the
buffer and node sizes, up to seven bits of the
last byte of the map may be unused. ~h~
overhead per block may therefore be
slightly more than one bit.

The word CLEARNODES has been fac-
tored out of NODEBUF S I Z so that it may
be used to re-initialize the buffer without
the need to use RELEASENODE to de-
allocate each block. This word must be
used with great care, and subsequent refer-
ence to dangling pointers should be
avoided.

GETNODE (Listing Four, screen three)
allocates space by looping over the total
number of nodes; the phrase

I sRCHPTR @ +

#NODES @ MOD

translates a relative node number into an
actual node number based upon a non-zero
starting position. If a free block is found,
the starting point for the next search is set
(line five), that entry in the map is marked
as allocated (line six), and the actual ad-

I I dress of the block calculated (line seven). I
PROCEED!
(1 1989 Rochester Forth Conference

June 20 - 24th, 1989 *I

I N D U S T R I A L
A O A I O

+ SwissForth, A Development and
Simulation Environment for Industrial
and Embedded Controllers

Klaus Flesch, FORTH System - Angelika

on IndustriulAutomatwn . . . $25.
6 invitedpapers and Slpresentedpapers on all
mpec, of Forth processors, applications and
object oriented technology, including:

+ Forth-based Control of an Ion Implanter

Don Berrian, VarianlExaion

+ : Cel lmate/TOOLBOX Hardware/Software
WorkstationILanguage DOES7
Autmtive/Aerospace
PowertrainIVehicle
Development/Testing ;

Bob McFarland, Diplos, Inc.

+Events and Objects: Industrial Control
by Hierarchical Decomposition

Dean Sanderson, Forth, Inc.

+ Brraklhrough in Knowledge Management

Bjorn J. Gruenwald, ACA, Inc.

I
" - .

1 com~akons o f d, ADA and Forth for em':

" E M B E D D E D
S Y S T E M S

bedried syst-, ahd eleven papers &om the
Soviet Union.

+ ShBoom on ShBoom: A Microcosm of
Hardware and Software Tools

Mr. Charles Moore, Computer Cowboys

+Using Forth to Analyze and Debug
Kernel-less Embedded Systems

Mr. Darrel Johansen, Orion Inmumoly Inc.

+Active Messages and Passive Objects:
An Object Oriented View of Forth

Mr. Rod Crawford, MPE, Ltd

1990 Rochester Forth Conference
on EmbeddedSystems $30.
Over 7Opapers on the state of the art in Forth
and threaded inrmretive lanmtaaes, inchidinn

+The Forth System Behind VP-Planner:
JUNE 12 - I ~TH, 1 9 9 0 Designing for E ~ c i e n c y

UN\VERSITY OF ROCHESTER in the Face of Compkxity
Dr. Kent Brothers, Stephenson SofSwore

+The Future of Forth in Astronomy

Please add $5 shipping & handling for each Dr. Arne Henden, Ohio State Univ.
book ordered. Send name, full address and
phone number. Check or money order in US *Ada and Forth: How Do Stnck

funds, or, VISAMC # and exp. date. Dr. James D. Basile, Long Island Univ.

To:
Institute for Applied Forth Research EMail: GEnie L.Forsley
70 Elmwood Avenue BIX LForsley
Rochester, NY 14611 USA Delphi LFORSLEY
(716) 235-0168 (716) 328-6426 fax

The word RELEASENODE de-all&
cates space by calculating the node nurn-
ber (screen three, line 12) and setting the
appropriate bit (line 14). In addition, it sets
the starting point of the next search to the
node just de-allocated (line 13).

Because of the uniform block size, this
approach lends itself to compressed dis-
plays of the allocation map more easily
than does the first. A simple word to dis-
play this map may be defined as follows:

: SHOWMAP
#NODES @ o DO
I NODE C@ AND I F

. " 1 "
ELSE
,, - r t

THEN
LOOP ;

Summary
The examples shown in this article, al-

though useful in their own right, are in-
tended principally to illustrate a point.
That is: you can improve the performance
of your application programs by tailoring

, memory allocation routines to their sw-
cific ne-eds.

Several changes could be made in the
general-purpose routine which might im-
prove its suitability for certain applica-
tions. For example, each search could be
started wherever the previous one termi-
nated, as is done with the specialized rou-
tine. Also, backward links in each node
header would eliminate the need for a se-
quential search when a block is to be de-
allocated.

If the size of blocks is known at com-
pile time (which is very often the case), the
special-purpose routine could be im-
proved by making NODES IZE a constant
rather than a variable. Depending upon the
actual block size (e.g., for powers of two),
other changes may also increase perform-
ance. See the references.

Other special cases of memory alloca-
tion, such as a series of LIFO requests, may
be handled by techniques very different
from either of the examples shown here.

Although the standard libraries of most
conventional languages provide routines
only for general-purpose memory alloca-
tion, you can still take advantage of oppor-
tunities to create special-purpose routines
as needed. If you cannot supplant the stan-
dard routines, they can at least be used to

L

Forth Dimensiom 26 Volume XII, Nwnber 3

permanently allocate a heap large enough

own heap. Consider the needs of your
application carefully, use the techniques
shown here and in the references as guides,
and you can design memory allocation
routines that provide optimum perform-
ance.

I
for your own routines. For some applica-
tions, you may even wish to have two or
more different memory allocation tech-
niques in use simultaneously, each with its

References
Aho, A.V., J.E. Hopcroft, and J.D. Ullman.

1983. Data Structures and Algorithms.
Addison-Wesley, Reading, Mass. 427
PP.

Knuth, Donald E. 1973. The Art of Com-
puter Programming. Vol. 1, Fundamen-
tal Algorithms. Second Edition. Ad-
dison-Wesley, Reading, Mass. 634 pp.

SUBSCRIBE!

Reprinted with the kindpermission of
The Computer Journal, 190 Sullivan
Crossroad, Columbia Falls, Mon-
tana 5991 2.

JFAR Volume 6 Number I
+The Harris RTX 2000 Microcontroller

Tom Hand, llarrk Semiconductor

+A User Definable Language Interface
for Forth
T. k Ivanco & G. Hunter, York University
Institute for Space and Terresbial Science APPLICATION AND

+ Marsaglia Revisited: Rapid Generation
of Fitted Random Numbers
Ferren MacIntyre, Univ. of Rho& Island

+Data Structures for
ScienW~c Forth Programming
J.V. Noble, University of Viwginia

+ Handling Multiple Data Types In Forth
John J. Wavrik, Univ.of Calif: at Sun Diego

JFAR Volume 6 Number 2
+The Cost of User-Friendly Programming:

MacImage as Example
Ferren MacIntyre, Univ. of Rho& Island

+Little Universe:
A Self-referencing Slate Tabk
Karl-Dietrich Neubert, Physikalkch-Tech-
nkche Bunahmalt, Berlin, FRG

+ A FORmula TRANslator for Forth
J.V. Noble, UniverslerSliry of V i i a

+ A Generalized EXIT
Carol Pruitt, University of Rochester

+ Strings, Associative Access,
and Memory Allocation
N. Solntseff, McMaster University

Volume VI Subscriptions TO:
Individual Corporate Institute for Applied Forth Research

USA $60.00 $145.00 70 Elmwood Avenue
Rochester, NY 14611 USA

Canada/Mexico $65.00 $145'00 (716) 235-0168. (716) 328-6426 fax
EuropeIAsia $75.00 S160.00 EMail: GEnie L.Forsley
Send name, full address and phone number. BIX LForsley
Check or money order in US funds, or, Delphi LFORSLEY
VISAJhiC # and exp. date.

L

Volume XII, Number 3 27 Forth Dimensions

SMART
RAM

ROB CHAPMAN - EDMONTON, ALBERTA, CANADA

1 first heard of smart RAM from Bob La
Quey. It was one of those amusing things to
throw out for discussion when you sat
down to chew the fat. We tossed the idea
around a lot but never had an application for
i t Until now.

Breeding Forths
After spending six months creating and

tuning a real-time kernel for the RTX-
2000, I wanted to port it to other processors.
Since we had a lot of 68000s kicking
around at work, I decided that the first port
would be to a familiar processor: an 8 MHz
68000. The traditional, well-known
method of building a 68000 system of
ROM, RAM, SIO, and a processor with the
burn-EPROM-plug-it-in-doesn't-work-
edit-swear-try-again method didn't really
appeal to me, so I figured there must be a
better way. A bolt of lightning struck and I
thought, maybe this is an opportunity to use
smart RAM. That would allow me to inter-
actively and incrementally test the Forth,
monitor the performance of each word, and
tune it for the 68000.

68000 and Smart RAM
Being a Forth-bred minimalist, I didn't

want to build a lot of hardware (or software)
to achieve a smart RAM system. The result-
ing hardware configuration consists of a
68000, interface logic, a bot, and a laptop.

The laptop connected to the bot pro-
vides file storage, an editor, and a terminal.

The bot (bundle of technology) is a
concept that, in itself, is worth another
paper. For the scope of this paper, though,
a bot is a minimal RTX-2000 system,
which consists of an RTX-2000, RAM,
SIO, 96-pin expansion connector, and a
Forth. This, bundled with some software,
emulates smart RAM.

The interface logic maps the 68000
address bus, data bus, and the control sig-

nals onto the RTX-2000 gio bus, where a
data exchange protocol takes care of mov-
ing data between the 68000 and RAM.

Developing a smart RAM language
required a lot of fiddling (as is usual, and
very much apart of Forth), but it eventually
broke down into primitives to deal with the
68000 signals; words to transfer data be-
tween RAM and the 68000, and a debug-
ging language which would allow for
single-stepping, peeping and poking into
the 68000 registers, and monitoring the
68000 transactions.

Smart RAM concepts
can be applied in
many areas.. .
Data Exchange Protocol

All data exchanges are initiated by the
68000 asserting address strobe low. This
qualifies all the signals. All data exchanges
are then terminated by the smart RAM
asserting dtack low.

There are three types of exchanges:
instruction-read, data-read, and data-write.
If r/-w is high and p/-d is high, the 68000 is
doing an instruction read. If pld is low, it is
doing a data read. If r/-w and p/-d are low,
it is doing a data write.

During a data write, a check is per-
formed to make sure it falls within the area
reserved for the 68000 Forth. During an
instruction read, the instruction doesn't
have to come from RAM, it can come from
the stack. Feeding the 68000 instructions
from the stack allows instruction sequences
to be inserted, and if followed by a jump
back to the original address these se-
quences are essentially transparent. This
technique is used for unobtrusive register

peeps and pokes.
As well, data reads and writes may be

ignored by just asserting dtack. Instruction
reads may be skipped by writing a no-op to
the data bus and asserting dtack.

Debugging Tools
The debugging tools consist of a trans-

action monitor with single-stepping and a
register content editor.

The transaction monitor displays each
transaction between the 68000 and smart
RAM. The status is displayed before each
dtack. Filters allow selective viewing of
instruction reads, data reads/writes, or
both. There are also filters for disassem-
bling and decompiling. If the disassembler
is enabled, each 68000 instruction is dis-
played.

If the decompiler is enabled, the high-
level Forth words being executed are dis-
played. The monitor can be adjusted to
show any depth of nesting. After a word is
tested, a summary of the transaction and the
status of the Forth registers is displayed.
This summary and status may also be
turned off. The monitor output may be
stopped by touching any key. An escape
will then abort the execution of the current
word, while any other key will resume
status display.

When single-stepping is enabled, either
by an out-of-bounds readlwrite or by user
selection (SSTEP), execution is stopped
just before each dtack. Execution may be
aborted by pressing the escape key, or
continued by pressing any other key.

The register content editor serves two
purposes. The seven registers used by the
virtual Forth machine may be viewed, and
any of the registers may be altered. This
basic peeking and poking is accomplished
by feeding instruction sequences to the
68000 followed by a jump back to the
address it started from.

Forth Dimensions 28 Volwne XII, Number 3

index. 7%; previous contents of the index
register is pushed onto the return stack by
FOR and is restored by NEXT. This model,
coupled with a good peephole optimizer to
minimize off-chip stack flow, should run
fast. All the stack primitives are one or two
opcodes (except ROT), which means that it
is cheaper to in-line them than to do a sub-
routine call.

68000 Forth Model
I chose a Forth model for the 68000

which is similar to the RTX-2000. Techni-
cally, it is a 16-bit, subroutine-threaded,
stack-cached Forth.

The top two parameter stack items are
cached on chip in registers, just like the
RTX-2000. The top of stack is an address
register to allow for quick fetches and
stores. The next stack item is keptin adata
register for quick ALU operations.

Since subroutine threading is used, it
allows the mixing of assembler and Forth
within the same definition (the mini-as-
sembler was written to support this by
making the assembler words immediate).
Subroutine threading also allows for in-line
optimization of assembler instructions.

One interesting dilemma resulted from
using subroutine threading and 16-bit
stacks: every subroutine call pushes a 32-
bit address onto the return stack and, like-
wise, every exit pulls a 32-bit address from
the return stack. Since Forth allows for
modifying control flow via direct access to
the return stack (R>, R, and R>), there was
an immediate compatibility problem. This
is solved by allowing the return stack be
32 bits, while keeping the parameter stack
as 16 bits. R>, R, and R> take care of the
translation.

The model uses five other registers, as
well as the two top parameter stack items.
Two address registers are used for the stack
pointers. Adata register is used for interme-
diate results. An address register is used for
some pointer operations. The FOR ...
NEXT loop uses a data reaister to hold the

Interactive Development
I started with the Forth I wrote for the

RTX-2000, or 2K-Forth, and defined eve-
rything in high level except about 20 primi-
tives. These include stack and mathflogic
operators, memory access, and a test opera-
tion:

Figure Three. Exchanges between the 68000 and smart RAM are initiated by the 68000
asserting address strobe and terminated by smart RAM asserting dtack.

Figure One. The smart RAM system consists of a laptop, an RTX-2000 bot, and aprototype
board. The laptop serves as a terminal, an editor, and provides file storage. The RTX-2000
bot emulates smart RAM and runs Forth. The prototype board contains the 68000 and the
interface logic which multiplexes the 68000 signals onto the RTX-2000 16-bit gio bus.

Ymoyn*p IF
OlO mp

:F~~,r\.",.x*.i".-r.* T r % w - s v * * > ! . ; r) m l s - r *

Smart RAM 1

Figure Four. The 68000 Forth uses seven out of 16 registers. The top two data stack items
(top and next) are kept in registers to quicken most Forth operations. Two pointers are
needed to keep track of the stacks in memory. The index register is only used for FOR . . .
NEXT loops. When it is used, the previous contents are pushed onto the return stack. Two
extra registers (spare data and spare addr) are needed for some intermediate calculations.

FFFF~

WOO

1

Volume XII, Number 3 29 Forth Dimensions

Figure Two. All the 68000 signals are mapped onto the RTX-2000 gio data bus. Only the
15 least significant address lines are used. This, with -uds and -Ids, gives an effectiveaddress
range of 64K bytes. dtack is the output of a flip-flop which is set by the address strobegoing
low, and is reset through the gio bus. Address, data-read, data-write, control signals, and
dtack map to five out of the possible eight addresses on the gio bus. The signal p/-d (actu-
ally FCl) allows differentiation between opcode and data fetches. The boot pin is used to
control reset and halt. The clock input is fed tclk divided by two, so that the 68000 receives
a 5 MHz clock.

@&m smart RAM @Q!a Yd.k smart RAM

addr status -as addr, status. -as s -
ADDR @ >DATA > A DATA ADDR I

dtack / DTACK A DTACK

-
\

Is

*npc,

Mstw
enlulstw

68k ~ ~ r (h

21, Form

ta --+Y&- bwt p(n r"d.wwd

not Wed

notused

dtack

dam mlle

dam ned

d w d

status 4.:1-a.4"hd4

dtack
-1.

address bus

data bus -1s

R t
- AND

OR XOR
NOT 2*
2 / @
C@ !
C! o=

The modified 2K-Forth was tested by meta-
compiling it on the bot.

Once I had pared the Forth down to a
few primitives, it was very simple to rede-
fine them for the 68000. Adjustments had
to be made to the metacompiler to compile
the 68000 subroutine calls and returns.
Headers, byte ordering, and word align-
ment stayed the same. The metacompiler
kept track of which definitions consistedof
fewer than four words, so that they could be
in-lined (this mega-simplified the return
stack definitions). Since there were very
few primitives, a mini-assembler was built
(they could have been hand coded, but the
assembler provided a creative outlet).

Development proceeded rapidly by
executing each primitive on the 68000,
monitoring bus activity, and checking the
Forth registers when done. Operations like
SWAP took one opcode and no memory

Figure Five. This is a listing of four Uace monitor outputs of ROT with different filters
selected. All input has been highlighted [and follows the ok: prompts]. Initially, the status
of the Forth registers is shown by the command S. ROT is then run with aU output filtered.
The summary that comes back displays how deeply nested the calls got (in this case zero,
since ROT is just four instructions); how many subroutine calls were made; how many
opcodes were fetched; how many stores to RAM; how many data fetches from RAM, and,
finally, how many dtacks (one for each memory cycle). The third run has disassembling and
decompiling enabled, for a maximum trace depth of one. The code is displayed first and the
Forth code is displayed after it. The decompiler considers the four opcode instructions to
be ROT. In the fourth run, RAM accesses are traced as well, and we can see the fetch from
stack and the store back to stack (the fetch and store don't happen right away, because of
the internal architecture of the 68000). The display on the right is theactual signals that exist
on the 68000 busses before a dtack. Non-zero values represent a logical one, while zero

ok: S
top 0000 4271 -0 0000 5472

next 0000 48?8
sp0 - 4816

o*: rm mn!
S-ry: depth 0 calls 0 coda* 4 storst 1 fetches I dtacka 6

top 0000 48?6 -0 0000 5 0 2
next 0000 4271
~ p e - 4sr8

o L : W Y I l l S I 1 - M a c l !

access. I represents a logical zero. 1 Once I had the twenty primitives work-

ap0 alu --a ROT

top next move
a1u top w v e

11 M lp(

ing, I started testing the other definitions.
Since I was monitoring bus activity, I could
see just how long it took to execute the
words. This motivated me to code some of
these words in assembler. When I needed
more 68000 instructions, I added them to
my assembler and disassembler as well.

The development actually was done in
parallel. When a problem occurred in the
68000 Forth, I created a new tool to solve it
on the smart RAM. Sometimes this made
matters worse, since one bug can some-
times hide another. But perseverance paid
off, since I now have most of the tools I
need.

Finally came the steak dinner test: does
it work? To test the whole kernel, I con-
nected the input and output queues from the
68000 Forth to the 110 port of the bot. The
2K-Forth serviced the 110 port and took
care of RAM transactions. The euphoria
came when it all worked.

Prospects
The next few processors to be con-

nected to the smart RAM are the 68020, a
microcontroller from National Semicon-
ductor and, possibly, apopcorn part like the

P/-D 8 R / d 2 -AS 0 .:34C6 d:3016
P/+D 8 R / i r 2 -AS 0 a:34C8 d:3C87
P/-D 0 R/+ 2 -AS 0 a:34CA d:3EOD
P/-D 8 R/-W 2 -AS 0 a:34CC d:3A40

s-ry: depth 0 calls 0 codes 4 scorer 1 fetches 1 dtaska 6
cap 0000 48?8 rp0 0000 5472

next 0000 48?6
rp0 - 4211

ok: Mu rm acl!

olr: T r n wrr-moz
: %SSET-INOVI (?) keyq oa NO in ! tib 2 + tib ! No M P o l C!

keyq sro-in ! emitq 3ioaut ' ' COLLECTOR D m ULL >BARON ;
ok: -)9(UST -11l1 1 +IY3 -ST PIS--INPW

Forth Dimensions 30 Volume XII, Number 3

spe .in W W ~ ROT
next sp0 move

fetch
top next move

store
alu tap more

keyq

09

NO

in

68 1 1 from Motorola.
The concept of smart RAM can be ap-

plied in many other ateas as well. It could
be used as a way to speed up slow RAM in
a system, with the addition of some fast
latches (one for the data stack, one for the
return stack, and one for instructions). The
smart RAM would prefetch the next needed
value from RAM before the processor actu-
ally requests it, and store it in the latch.

91-D B R1-W 2 -AS 0 a:34C6 d:3016
9 1 - 0 8 R/-w 2 -AS 0 a:34C8 d:3C87
P/-D 0 R/-W 2 -AS 0 a:330C d:4271
P/-D 8 R/-w 2 -AS 0 a:34CA d:3IOD
P/-D 0 R / d 0 -A3 0 a:330C d:48?6
P/-D 8 R / d 2 -AS 0 a:34CC d:3A4O

P/-D B R/-w 2 -AS o .:5426 d:3D07 *.-I 0 0
P/-D 8 R / d 2 -AS 0 .:5428 d:3EOD -17,-L 0 0
P/-D 8 R/-W 2 -AS 0 .:542A d:3A7C Q,-L 0 0
P/-D 8 R/-W 2 -AS 0 a:542C d:439A +,-I 0 0
P/-D 8 R/-w 2 -AS 0 .:5422 d:4EB8 +I,-L 0 0
P/-D 8 R / - U 2 -AS 0 .:3176 d:4E75 *,-I 0 0
P / - O 8 R/-+ 2 -AS 0 a:3?78 d:0034 -0,-L 0 0
P/-D 8 R/-w 2 -AS 0 .:5432 d:3D07 -17,-L 0 0
P/-D 8 R/-Y 2 -AS 0 a:5434 d:3EOD -w,-L 0 0
P/-D B R/-W 2 -AS 0 .:5436 d:3A7C -Q.-L 0 0
P/-D B R/-W 2 -AS 0 a:5438 d:OOOO -0,-L 0 0
P/-D 8 R/-W 2 -AS 0 02543A d:3D07 - U , - L 0 0
P/-D 8 R/-W 2 -AS 0 .:543C d:3EOD -0.-L 0 0
P/-D 8 R/-W 2 -AS 0 *:543E d:3A7C -0,-L 0 0
P/-D 8 R / - n 2 -AS 0 .:5440 d:495C -0,-L 0 0
P/-D 8 R / d 2 -AS 0 a:5442 d:4E88 -0,-L 0 0
P/-D 8 R/-W 2 -AS 0 a:3642 d:4E75 -0.-L 0 0

When the processor requests the data, it is
already in the latch. The stacks are easy to
predict, but programs wouldbe harder. But
by knowing what the branch or jump in-
structions are ahead of time, the smart
RAM could make an intelligent choice for
what to put into the latch.

To take things to an extreme, the smart
RAM could intercept slow instructions or

(Continued on page 36.)

5rrmmary: depth 0 calls 0 codes 4 stores 1 fetches 1 dtacka 6
tap 0000 4E71 rp@ 0000 5472

next 0000 4818
3 ~ 0 - 48?6

(- SPACE t o proceed ISC to abort. -)

Figure Six. RESET-INPUT is decompiled with TSEE and then the first five Forth words
are traced. The output has been temporarily halted to view the results. In this tram, we are
only interested in the highest-level calls.

be left on the return stack, and generates an
error message if this is not the case. The
fifth line specifies that two values of the
number 11 11 should be returned from the
test, again generating an error message if
this is not the case. It is very important that
the test cases be written in exactly this
order, with no missing items, for proper
operation.

The body of the test case between
TEST : and ;DONE can be any sequence of
Forth words, including primitives that ma-
nipulate the return stack. The words
INIT-TEST and FINISH-TEST are
automatically compiled with the test case to
handle the data and return stacks for proper
execution.

In order to be sure that a word is working
properly, it is not enough to simply place
the required number of parameters on the
stack and then see if the correct results are
returned. The problem is that a word may
cause unexpected side effects (such as cor-
ruption of elements on the data and return
stacks) that are not detected immediately.
In order to handle this case, the test words
place two "sentinel values" onto both the
data stack and the return stack. then check
to ensure that no corruption h& occurred.
While side effects are usually not a problem
in high-level code, they can easily create
problems when dealing with assembly lan-
guage or microcode word implementa-
tions.

Ideas for Further Refinements
The test capability presented here is

rather simple, in order to keep the code
(somewhat) understandable. Features that
could be added to improve its usability
include: allowing RS () RS to be optional,
so tests that deal only with data stack opera-
tions could automatically generate and test
return stack sentinel values; more sophisti-
cated error messages that show exactly
what is wrong with a stack when an error
does occur; methods to ensure that only
desired memory locations are modified for
words that perform fetches and stores; and
methods to ensure that only desired on-chip
registers are modified for assembly lan-
guage definitions.

The code is written for F-TZ, a version
of F-PC, developed by Tom Zimmer. F-PC
is a descendent of F-83, but allows using a
dictionary space of greater than 64K bytes.
The code presented should be relatively

CR . " TEST-"
#STACK @ O< ABORT" You mst specify both DS (and RS (."
R> R-SAVE ! FD R-SAVE 2+ ! \ Save return address
#STACK @ REVERSE
BEGIN #STACK @ O> WHILE >R -1 #STACK +! REPEAT
R-SAVE 2+ @ >R R-SAVE @ >R ; \ Restore return address

: FINISH-TEST (. . DS. stuff . . -- ..DS.stuff.. ..reversed.RS.stuff..)
(RS: ..RS.stuff.. --)

R> R-SAVE ! FD R-SAVE 2+ ! \ Save return address
\ Transfer return stack contents onto data stack for later compare
0 >R
BEGIN FD FD SWAP 1+ >R DUP $BAD3 = UNTIL
R> REVERSE
R-SAVE 2 t @ >R R-SAVE @ >R \ Restore return address

\ TEST and DONE use F-TZ specific words to compile a short
\ definition containing the word to be tested, execute that
\ definition, then FORGET it from the dictionary.
\ This borrows a compilation idea from Rick van Norman's RTX test code
CREATE MARKER 4 ALLOT
: TESTER ;
: TEST: (--)

XHERE 2DUP MARKER 2! PARAGRAPH + DUP XDPSEG ! 0 XDP !
XSEG @ -- ['1 TESTER >BODY !
COMPILE INIT-TEST] ;

: ;DONE
COMPILE FINISH-TEST COMPILE EXIT
STATE OFF TESTER MARXER 2@ XDP ! XDPSEG ! ;

IMMEDIATE

\ Test ROT for proper operation
DS(1111 2222 3333 --
RS (--
TEST: ROT ;DONE
--)RS
-- 2222 3333 1111)DS

\ Test >R for proper operation
DS (5555 --
RS (--
TEST: >R ;DONE
-- 5555)RS
--)DS

\ Any combination may go between TEST: and ;DONE
DS(1111 2222 3333 --
RS(7777 2222 9999 --
TEST: SWAP FD ROT >R ;DONE
-- 7777 2222 3333)RS
-- 1111 2222 9999)DS

\ Null test to be sure it works
DS(--
RS(--
TEST: ;DONE
--)RS

(Continued on page 41 .) 1 I
Forth Dimensions 32 Volume XII, Number 3

Twelfth Annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 23-25, 1990

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U.S .A.

Conference Theme: Forth in Industry
Papers are invited that address relevant issues in the development and use of Forth in
industry. Papers about other Forth topics are also welcome.

Mail abstract(s) of approximately 100 words by October 1, 1990 to FORML, P.O. Box
8231, San Jose, CA 95155.

Completed papers are due November 1, 1990.

Conference Registration
Registration fee for conference attendees includes conference registration, coffee breaks, and note-
book of papers submitted, and for everyone rooms Friday and Saturday, all meals including lunch Fri-
day through lunch Sunday, wine and cheese parties Friday and Saturday nights, and use of Asilomar
facilities.

Conference attendee in double room-$285 Non-conference guest in same room--$I60 * Children
under 17 in same room-$120 Infants under 2 years old in same room-free Conference attendee in
single room-$360

Register by calling the Forth Interest Group business office at (408) 277-0668 or writing to: FORML
Conference, Forth Interest Group, P.O. Box 8231, San Jose, CA 95155.

About Asilomar
The Asilomar Conference Center combines excellent meeting and comfortable living accommodations.
It is situated on the tip of the Monterey Peninsula overlooking the Pacific Ocean. Asilomar is part of
the California State Park system; it occupies 105 secluded acres of forest and dune. If you like, you
may jog on the beach before breakfast, join an informal discussion under a cypress tree after lunch, and
exchange stories in front of a fireplace at the nightly wine and cheese parties. Guests of conference at-
tendees may enjoy sightseeing along the beautiful Big Sur coast, visiting the new Monterey Aquarium,
or shopping in nearby Carmel.

Volume XII, Nwnber 3 33 Forth Dimensions

Part Two I
FORST: A 68000

NATIVE-CODE FORTH

Ihave very mixed feelings about using
C. The syntax is dense and helps maximize
typing errors, but the statements are power-
ful. As normally used, it falls far behind
(say) Pascal as an algorithmic language,
but it is used much more often. It seems to
be the most popular applications language,
despite the flab which most systems insist
on adding to the code. Finally, the code is
usually tolerably fast and, for Forth pro-
grammers, it is the language to beat!

In their enthusiasm to push the
enormous advantages of their own lan-
guage, Forth programmers opt for a system
which is at once powerful, malleable,
comfortable and primitive. And they con-
demn themselves to forging, for the most
part, their own tools while the Unix/C
environment has all thosepowerful utilities
with the ridiculous names. And, above all,
C has access to enormously powerful and
flexible 110 functions. As ForST took
shape, I decided that it just had to include
the I10 functions, its best feature, from C.

Much has been written, many times,
about Forth blocks and screens. Disk I/O is
based on (usually) 1024-byte chunks of
disk space. No operating system directory
is used and there is often a problem of
reconciling Forth's use of the disk with that
of the resident system. The F83 use of
blocks within DOS files, for instance, is
rather contrived.

ForST's approach is to use buffered
TOS files, which permits fully redirectable
110 basedon (wait for it!) GETC and PUTC.
Once these functions are incorporated, it is
extremely simple to cany out file copy and
filtering functions.

System File Usage
As normally configured, ForST has

eight file structures available for its own
use. When source code is compiled from

I thedisk(using LOAD <f ilename>),the
source code can include nested LOAD in-

JOHN REDMOND - SYDNEY, AUSTRALIA.
m

structions to a nesting level of seven. This
is a powerful and convenient approach,
analogous to that of standard Forth, but it
uses a special system stack to keep track of
the nesting. If a compilation error occurs,
all open files are automatically closed.

File Structure
FILE is a very simple defining word:

: FILE
CREATE 2 4 ALLOT DOES> ;

The six 32-bit fields within the structure it
creates are used in the following way:

offset 0: #chars in buffer
4: character pointer
8: buffer pointer

12: system file handle
16: file mode

(O=input,l =output)
20: #chars read or written from/

to buffer so far

(Using 32 bits for each field is wasteful, but
simple to follow.)

Opening a File
When FOPEN is used, it expects on the

stack the address of a file structure and the
operating mode. If the mode is non-zero, a
file will be created using FMAKE; other-
wise, the low-level word OPEN is used to
open an existing file for reading. If success-
ful, it will return asystem file handle, which
is then kept in the file structure. Then MAL-
LOC is used to allocate a 1024-byte buffer
in heap memory. The buffer address is
returned and stored in the two pointer fields
of the file structure. Finally, the #chars
fields are cleared ready for a read or write.

When a file is accessed with GETC for
the first time, it attempts to fetch a character
from the allocated buffer. When it fails, a
1024-byte disk READ into the buffer is

attempted. READ retums the actual num-
ber of characters read successfully and the
#chars fields are set appropriately. Then a
character is fetched from the buffer, the
character pointer advanced and the #chars
decremented. This will be continued until
#chars is zero, when another READ will be
necessary. In the event that the buffer is
empty and READ returns 0 characters,
GETC returns -1 instead of a character.

PUTC carries out its operations in a
very similar way. Whenever the buffer is
full, it is flushed to the disk before insert-
ing a new character. When FCLOSE is
used, it will flush the buffer contents to the
disk before using the lower-level MFREE
to deallocate the memory buffer and
CLOSE to close the file and free the system
file handle for further use. Using this ap-
proach, forty (!) disk files can be open at
any one time.

TOS File Handles
The available handles number 0-45, of

which 6 4 5 may be allocated to disk files.
These are the non-standard handles. Stan-
dard handles 0-5 are allocated to hardware
devices by ForST, in accordance with the
TOS designations:

handle 0: console input
1 : console output
2: serial port (AUX)
3: parallel port (PRN)

4 & 5: dummies

It is easy to confuse the different labels
associated with files. The file 'handle' is
the file descriptor of C and is stored in the
array (structure) at the address returned by
a named file, e.g..

F I L E F I L E 1 (define the file)
FILE1 0 FOPEN (openitforinput)

Forth Dimensions 34 Volume XII. Nwnber 3

WE'RE LOOKING
FOR A FEW GOOD

From this point, the address given by
 FILE^ + 12 will hold the descriptor, for
later use; but most programs will not need
to use it. At the user level, FILEl is the
only file label used.

Block Operations
Although byte-buffered operations are

usually the most convenient, block opera-
tions are also available with READ and
WRITE. To keep their use intuitive for
Forth programmers, their parameters are as
for CMOVE, e.g.,

F I L E 1 LINEBUFFER LINELENGTH
READ
LINEBUFFER FILE2 LINELENGTH
WRITE

These functions are much faster than byte-
buffer YO, but GETC and PUTC still oper-
ateat upwards of 30 Kbytes per second with
a hard disk.

System Redirection
BLK holds the source descriptor in a

standard Forth system. ForST replaces this

I

A S S O C I A T E S

Forth Recruiters

I 70 Elmwood Ave./ Rochester, NY 1461 1 /(716) 2354168 I

with SRC and adds DEST to redirect normal
output. When the system looks for input and
BLK contains zero, it will go to the key-
boardbuffer; butif ~~Cconta ins two,itwill
fetch a character from the serial port. Simi-
larly, if DEST contains a non-zero value
less than six, it will direct output to a hard-
ware device. If the value in SRC or DEST is
six or higher, it will be interpreted as a file
structureaddress(eg,~1~~1)anddiskI/O
will be carried out.

LOAD is an important user word which
uses system file stuctures:

LOAD <filename>

The system responds by pushing the value
in SRC onto the input stack and replacing it
with the address of the file structure it has
allocated to the source file. If the file, in
turn, contains LOAD commands, the proc-
ess is repeated.

ForST allows access to other TOS file
utilities. LSEEK allows a buffer to be set to
any point in the input file:

FILE1 0 0 LSEEK
is equivalent to rewind,

1

Total control

F ILE2 - 1 0 1 LSEEK
winds the access position back 10 bytes,
FI LEI - 4 5 2 LSEEK
sets the access position input to 45 bytes

back from the end.

FTELL returns the present access posi-
tion of the input or output file. FDUP dupli-
cates a standard handle with a disk file
handle, and a non-standard handle and
FORCE forcibly redirects I/O.

Finally, a point about string
compatibility: TOS expects a pointer to an
uncounted, null-terminated string for any
of its arguments. A terminal space-such
as is added by WORD-has been acceptable
for all cases SO far tried, but ForST users
should be aware (see NAMEARG in the code
below).

A few simple file utilities are given to
illustrate use of the primitives. COPY is a
good model for more complex filter func-
tions, such as case conversion and charac-
ter substitution. The conversion between a
hybrid F83 file and a normal text file, for
example, is trivial.

Next time, the final chapter of this se-
ries: the use of named, automatic stack

with LMI FORTHTM
b r Programming Professionals:
an expanding family of compatible, high-
performance, compilers for microcomputers
For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, OSl2, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
S u ~ ~ o r t for araphics.floatina mint, native code generation

1 . . - . - . - 1

I For Applications: Forth-83 Metacompiler
~nicqietable-driven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

r Laboratory Microsystems Incorporated
Ftst Office Box 10430, Marina del Rg: C4 90295

Phone Credit Card Orders to: (213) 306-7412
F I X : (213) 3014761

I
Volume XI!, Number 3 35 Forth Dimensions

variables and an analysis of their advan-
tages in writing a floating-point package.

John Redmond is an Associate Pro-
fessor of Organic Chemistry at
Sydney's Macquarie University. He
is a ". . .sometimes-evenings-when-I-
have-time programmer" whose chief
disappointment of 1988 consisted of
attending a plant pathology confer-
ence in Acapulco while Forth's own
Charles Moore was visiting Sydney.
Mr. Redmond welcomes letters from
FD readers: 23 Mirool Street, West
Ryde, NSW2114, Australia.

(Continued from page 30.)

data moves, and be doing them during the
time that the processor is not using mem-
ory-

As a poor man's emulator, it is aproven
concept. Since not all of us have access to a
$40,000 analyzer or emulator, the smart
RAM is a very powerful way to debug a
system. One thing that would be interesting
would be to unplug the RAM from a normal
system and plug in the smart RAM (along
with the appropriate handshake signals).
This is the inverse of what most emulators
do, since they unplug the processor and
emulate it. I think RAM is easier to emu-
late.

Rob Chapman is a software engineer
at IDACOM. He has used a 32-bit
Forth in several large projects over
the last twoyears, but now he ismuch
happier witha simpler Forth running
on a Forth engine.

0 CONSTANT RD
1 CONSTANT WR
FILE F I L E l
FILE FILE2

: NAMEARG 3 2 WORD 0 OVER COUNT + C! l+ ; I I
(File dump utility which uses unbuffered file i/o) I I
: .HEX <# # # #> TYPE SPACE ;
: .ADDR CR <# [ASCII] : HOLD

#> TYPE 2 SPACES ;
: .BYTES PAD SWAP 0

DOCOUNT.HEx 1 7 . .
I F SPACE THEN LOOP DROP ;

: .CHAR DUP 3 2 < I F DROP [ASCII] . THEN EMIT ;
: .CHARS PAD SWAP 0 DO COUNT .CHAR LOOP DROP ;
: DLINE DUP .BYTES SPACE SPACE .CHARS ;

(Dump a file of any type, opened by low-level OPEN)
: DUMP NAMEARG RD OPEN CLS HEX 0 (offset)

BEGIN DUP (off set) .ADDR 1 6 + (bump offset)
OVER (file handle) PAD 1 6 READ
DUP (bytes read) DLINE
16 = NOT (last block) KEY 3 = OR UNTIL
DROP (off set) CLOSE ;

(example dump a:\forth\forst.tos)

(Utilities which use buffered file i/o) I I
(list a text file)
: LIST F I L E l RD NAMEARG FOPEN CR

BEGIN F I L E l GETC
DUP O< (EOF) NOT WHILE EMIT REPEAT
DROP (EOF char) F I L E l FCLOSE ;

(example: LIST <£name>)

(copy any file)
: COPY F I L E l RD NAMEARG FOPEN

FILE2 WR NAMEARG FOPEN
BEGIN F I L E l GETC D W O< (EOF) NOT
WHILE FILE2 PUTC REPEAT DROP
F I L E l FCLOSE FILE2 FCLOSE ;

(example: COPY <sourcefile> <destfile>)

: CD NAMEARG CHDIR CU I F ." cannot set up path ' THEN ;
(example: cd a:\forth\examples)

: BLKNAME CXTDTA 30 + 1 2 3 2 F ILL ;
: FIRST NAMEARG 47 SFIRST ;
: .FNAME GETDTA 1 2 TYPE ;

: DIR BLKNAME FIRST CU (error) NOT
I F CR .FNAME

BEGIN BLKNAME SNEXT O< (error) NOT
WHILE .E'NAME REPEAT

THEN ;
I (example: dir a:*.tos)

I

Forth Dimensions 36 Volume XII. Number 3

BEST OF
GENIE

N e w s from the GEnie Forth
RoundTable-As the working BASIS
being modified by the X3/J14 ANS Forth
Technical Committee comes closer to a
final document, some of the debate sur-
rounding Forth's future standard seems to
be heating up. Recently, one of the hot
potatoes has been dynamic memory allo-
cation. There are those who think the cur-
rent tools used in Forth are more than
sufficient, and there are those who would
'borrow' concepts incorporated in C.

Read along in the two topic areas de-
voted to this exchange, and once you have
drawn your own conclusions, make them
known. You have only yourself to blame if
acourse is followed you do not agree with.

Category 10
Forth Standards

Topic 36
~ e m o r y spaces and position-independent
code

Message 11 (Ported from xCFBs)
From: DAVID BREEDING
Subject: Dynamic allocation

Although 1 consider dynamic alloca-
tion to be one of the highest priorities in the
new standard, I have yet to read anything
about it. I keep waiting for someone to
bring it up, but somehow no one ever does,
so I've finally gotten down to writing
myself. All of the so-called "modem" lan-
guages support some form of dynamic allo-
cation within the language itself. This
memory can be called from fast RAM,
cache, or even disk. All of this is transpar-
ent to the user.

One of the reasons, I heard, why col-
leges don't use Forth for teaching is that it
leaves out this very thing. I'm not saying
that adding DA will make colleges and uni-
versities start teaching Forth, but I bet
they'll sit up and notice.

Volume XII, Nwnber 3

Now, how to implement it.. .
First, let's keep it simple. Two words,

DALLOT and UNALLOT. All this does is
return an address of n items and then returns
this address to a pool. Most of the work in
DA is easily accomplished using RAM past
HERE, and then feeding the memory back
(keeping a linked list of deallocated mem-
ory chunks) to HERE after UNALLOT.

Any specialized memory management
could be handled by the individual system,
only the standard words need to be there for
the programmers.

forms of alloc. Enlightenment please?)
Let me make one further suggestion: in
real-time environments it is beneficial to
force compactionlgarbage collection at a
convenient (idle) time, rather than at the
usually critical moment when an alloca-
tion runs out of room. (Assuming here that
your system needs compaction or garbage
collection, and you're desperate enough to
use such in a real-time problem.) Perhaps
a third word, COLLECT, should be de-
fined. Easy to makeitano-op when it'snot
needed.

But.. . this should not be bound up with
the notions of "what is theForth language"

1 leaves out dynamic

Colleges may not
teach Forth because it

/ memory allocation. 1 Message 13 (Ported from XCFBS)
To: DAVID BREEDING

(like Lisp). This should be a standardized
libraryfunction. Morepower totheX3J14
TC for moving in this direction!

3 7 Forth Dimensions

Message 12
From: B.RODRIGUEZ2

Huh. I guess C and Pascal aren't "mod-
em" languages. Certainly there is no dy-
narnic memory allocation "within the lan-
guage itself' in C; it's part of the function
library. A distinction with a difference!
And, while it's been years since I dusted off
my Jensen & Wirth, I seem to recall static
allocation in Pascal, too.

Local variables are dynamically allo-
cated in both languages, but this topic is
called "local variables" in X3J14 circles.

Not to say that dynamic allocation is
unnecessary. Nick Solntseff and I recently
implemented such a system for our Forth
work, using the same words with different
names: ALLOC and RELEASE. Soon to be
published in JFAR, we're told.

I agree, these seem to be the essential
primitives. (Damfino why C has so many

From: DARRYL BIECH
Subject: Dynamic allocation

Maybe I'm getting a little technical
here, but I'm wondering if you were im-
plying that theapplication will take careof
shrinking its claim on system memory
(say .COM files, for example) and moving
the stack out of the way, etc., prior to deal-
locations?
--d.b.
NET/Mail: British Columbia Forth Board
Burnaby, B.C.. Canada
604-434-5886

Message 14 (Ported from xCFBs)
To: DARRYL BIECH
From: DAVID BREEDING
Subject: Dynamic allocation

That could all be handled on a system
level and does not need to be addressed at
the "standards" level. There are a lot of
ways to implement DA, but a lot of it
depends on the hardware setup of the sys-

wait until BASIS12 is put online.)
-Doug
P.S. This reminds me somewhat of the al-
loca controversy for C. (Allocate memory
on the stack so that procedure exit/
longjmp will automatically reclaim it.)

tem. All I am proposing is a standard way
of doing DA. All of the particulars (like
caching and extended memory use) could
be handled by the programmers of the
compiler. The only thing that makes sense
to me is the inclusion of the two words
DALLOT and UNDALLOT. Which returns
an address for use, or returns it to the
"hap."

It is a truly exciting subject ... when I
was in college, we used DA extensively
(this was about five years ago). Using DA
and recursion, you can do some truly great
things that deal with huge amounts of data.
I have always regretted not having DA as a
part of the Forth language.

Message 15 (Ported from xCFBs)
To: B RODRIGUEZ2
From: RAY DUNCAN
Subject: Memory and PIC

Dynamic memory allocation is very
useful. All of the LMI Forth systems have
had this for several years. But I agree that it
should be viewed as an extension to the
language rather than part of the core lan-
guage (similar to its implementation as part
of the RTL in C) -it doesn't make any
sense to require that this be supported in a
ROMmed ANSI Standard Forth kernel, for
example.
NET/Mail : LMI Forth Board
Los Angeles, California
213-306-3530

Message 16 (Ported from xCFBs)
To: JEFF CYNX
From: RAY DUNCAN
Subj: Comment

My injunction against this is both
worldly and spiritual. If you want your
program to run properly under multitasking
environments such as DesqView, Win 3,
OS12's DOS box, etc., you should be well-
behaved in your use of memory. Not using
MALLOC means that you will not be able to
use new capabilities such as SHELL" and
that your program will not be easily port-
able to the higher-performance UR/
FORTH systems for DOS, OSl2, or 32-bit
80386 protected mode.
NET/Mail: LMI Forth Board
Los Angeles, California
21 3-306-3530

Message 17 (Ported from xCFBs)
To: DAVlD BREEDING
From: DARRYL BIECH
Subject: Dynamic allocation

Message 2 (Ported from UseNet)
From: gary@sofnuay.oz (Gary Corby)
Newsgroups: comp.lang.forth
Subject: Re: C memory allocation

Why not have dynamic allocation as an
extension or "standard option," which
would be palatable to both small and large
implementations of the language?
--d.b.
N E T N l : British Columbia Forth Board
Burnaby, B.C., Canada
604-434-5886

Category18
'comp.lang.forth

Topic 86
Subject: Dynamic memory allocation

Message 1 (Ported from UseNet)
Path: willett!dwp
From: dwp@willett.UUCP (Doug Philips)
Newsgroups: comp.lang.forth
Subject: Re: global storage of setjmp()l

lonimpo

Mitch Bradley writes:
"(. . .personally I find a "mal1oc"ed army
of jmp-buf s treated as a stack of recov-
ery points more useful than the potential
uses of "foo," but that's just me.)"

Which is exactly the point. ANS Forth
CATCH and THROW implicitly perform this
stacking action for you, for free. You don't
have to synthesize your own stack. The
nested handlers go on the return stack in a
very natural and easy-to-implement fash-
ion, and they are automatically removed
without any special care on the part of the
programmer.

For free?
Catch frames must interfere with uses of

the return stack in the same way that DO
LOOP indices do.

There must either be:
1) A pointer to the top-most catch b e .
2) A unique tag to mark catch frames on the

return stack.

Since no special care on the part of the
programmer is required, the first option
would require support in NEXT and the
second option would restrict the kinds of
temporaries shoved on the return stack.

I don't see how it is free. Still, I suppose
that having a separate CatcNThrow stack
wouldbe exceeding thecharter of X3J 14. In
fact, the scheme you describe must have
had some "common practice" to be
adopted, or is this not true?

I would like to hear more details about
how it's supposed to work. (Maybe1 should

Mitch Bradley writes:
"(Damfino why C has so many forms
of alloc. Enlightenment please?)"

Some reasons:
1) History.
2) C library functions are not arbitrarily

constrained to be the "most primitive
possible" functions.

3) Different alignment requirements for
different data types.

Another reason: The actual system
calls used to change data segment space
allocation are brk(2) and sbrk(2). The first
sets an absolute boundary and the second
alters the boundary relative to the current
one. MallocO, calloc0, talloc0, free(),
and friends all come down to brko and
sbrk() in the end. There are "most primi-
tive possible" functions. So primitive, in
fact, that nobody in their right mind wants
to use them if malloco or something like it
is available.
--Gary
Gary Corby (Friend of Elvenkind)
Softway Pty Ltd
ACSnet: gary@softway.oz
UUCP: . . . !uunet!softway.oz!gary

Message 3 (Ported from UseNet)
From: wmb@MITCH.ENG.SUN.COM

(Mitch Bradley)
Newsgroups: comp.lang.forth
Subject: C memory allocation
Sender:

daemon@ucbvax.BERKELEY.EDU

Gary Corby writes:
Another reason: The actual system calls

used to change data segment space al-
location are brk(2) and sbrk(2). The
first sets an absolute boundary and the
second alters the boundary relative to

1 (Continued on page 41 .;
i

Forth Dimensions 38 Volume XII, Nwnber 3

REFERENCE SECTION

Forth Interest Group
The Forth Interest Group serves both

expert and novice members with its net-
work of chapters, Forth Dimensions, and
conferences that regularly attract partici-
pants from around the world. For member-
ship information, or to reserve advertising
space, contact the administrative offices:

Forth Interest Group
P.O. Box 823 1
San Jose, California 95155
408-277-0668

Board of Directors
Robert Reiling, President (ret. director)
Dennis Ruffer, Vice-President
John D. Hall, Treasurer
Wil Baden
Jack Brown
Mike Elola
Robert L. Smith

Founding Directors
William Ragsdale
Kim Harris
Dave Boulton
Dave Kilbridge
John James

In Recognition
Recognition is offered annually to a

person who has made an outstanding con-
tribution in support of Forth and the Forth
Interest Group. The individual is nomi-
nated and selected by previous recipients of
the "FIGGY ." Each receives an engraved
award, and is named on a plaque in the ad-
ministrative offices.

1979 William Ragsdale
I 1980 Kim Harris
1 1981 Dave Kilbridge
1982 Roy Martens
1983 John D. Hall
1984 Robert Reiling
1985 Thea Martin
1986 C.H. Ting

1987 Marlin Ouverson
1988 Dennis Ruffer
1989 Jan Shepherd

ANS Forth
The following members of the ANS

X3J 14 Forth StandardCommitteeareavail-
able to personally carry your proposals and
concerns to the committee. Please feel free
to call or write to them directly:

Gary Betts
Unisyn
301 Main, penthouse #2
Longmont, CO 80501
303-924-9193

Mike Nemeth
CSC
10025 Locust St.
Glenndale, MD 20769
301-286-8313

Andrew Kobziar
NCR Medical Systems Group
950 Danby Rd.
Ithaca, NY 14850
607-273-5310

Elizabeth D. Rather
FORTH, Inc.
11 1 N. Sepulveda Blvd., suite 300
Manhattan Beach, CA 90266
213-372-8493

Charles Keane
Performance Packages, Inc.
5 15 Fourth Avenue
Watervleit, NY 121 89-3703
5 18-274-4774

George Shaw
Shaw Laboratories
P.O. Box 3471
Hayward, CA 94540-3471
4 15-276-5953

David C. Petty
Digitel
125 Cam bridge Park Dr.
Cambridge, MA 02140-23 1 1

Forth Instruction
Los Angeles-Introductory and inter-

mediate three-day intensive courses in
Forth programmingare offered monthly by
Laboratory Microsystems. These hands-
on courses are designed for engineers and
programmers who need to become profi-
cient in Forth in the least amount of time.
Telephone 213-306-74 12.

On-Line Resources
To communicate with these systems, set
your modem and communication software
to 300/1200/2400 baud with eight bits, no
parity, and one stop bit, unless noted other-
wise. GEnie requires local echo.

GEnie
For information, call 800-638-9636

Forth RoundTable
(Fortmet link*)
Call GEnie local node, then type M710
or FORTH
S ysOps: Dennis Ruffer (D.RUFFER),
Scott Squires (S.W.SQUIRES), Le-
onard Morgenstern (NMORGEN-
STERN), Gary Smith (GARY-S)
MACH2 RoundTable
Type M450 or MACH2
Palo Alto Shipping Company
SysOp: Waymen Askey (D.MILEY)

BIX (ByteNet)
For information, call 800-227-2983

Forth Conference
Access BIX via TymeNet, then type j

I forth
Type FORTH at the : prompt
SysOp: Phil Wasson (PWASSON)
LMI Conference
Type LMI at the : prompt
Laboratory Microsystems products

Volume XII, Nwnber 3 39 Forth Dimensions

Host: Ray Duncan (RDUNCAN)

CompuServe
For information, call 800-848-8990

Creative Solutions Conference
Type !Go FORTH
SysOps: Don Colburn, Zach Zachariah,
Ward McFarland, Jon Bryan, Greg
Guerin, John Baxter, John Jeppson
Computer Language Magazine Confer-
ence
Type !Go CLM
SysOps: Jim Kyle, Jeff Brenton, Chip
Rabinowitz, Regina Starr Ridley

Unix BBS's with forth.conf (ForthNet
links* and reachable via StarLink node
9533 on Tyrn.Net and PC-Pursuit node
casfa on TeleNet.)

WELL Forth conference
Access WELL via CompuserveNet
or 415-332-6106
Fairwitness: Jack Woehr (jax)
Wetware Forth conference
415-753-5265
Fairwimess: Gary Smith (gars)

PC Board BBS's devoted to Forth
(ForthNet links*)

East Coast Forth Board
703-442-8695
StarLink node 2262 on TyrnNet
PC-Pursuit node dcwas on TeleNet
SysOp: Jerry Schifrin
British Columbia Forth Board
604-434-5886
SysOp: Jack Brown
Real-Time Control Forth Board
303-278-0364
StarLink node 2584 on TymNet
PC-Pursuit node coden on TeleNet
SysOp: Jack Woehr

Other Forth-specific BBS's
Laboratory Microsystems, Inc.
21 3-306-3530
StarLink node 9184 on TymNet
PC-Pursuit node calm on TeleNet
SysOp: Ray Duncan
Knowledge-Based Systems
Supports Fifth
409-696-7055
Druma Forth Board

UPPER DECK FORTH $49

Based on Forth-83 Standard
Fully segmented architecture
Uses ordinary ASCII text files
Direct threaded code with top of stack in
register for fast execution
Compiles 32K file in 6 seconds on 4.77 MHz
IBM PC
Built-in multi-file full screen editor
Assembler, decompiler, source-level debugger
Turnkey application support, no royalties
Complete documentation
For IBM PCIXTIAT and compatibles with 256K,
hard disk or floppy, DOS 2.0 or later

Add $3 for shipping and handling (outside USA $15).
CA residents add sales tax.

-
P.O. Box 263342, Escondido, CA 92026

(619) 741-1075

5 12-323-2402
StarLink node 1306 on TymNet
S ysOps: S. Suresh, James Martin, Anne
Moore
Harris Semiconductor Board
407-729-4949
StarLink node 9902 on TymNet (toll
from Post. St. Lucie)

Non-Forth-specific BBS's with extensive
Forth Libraries

Twit's End (PC Board)
501-771-0114
1200-9600 baud
StarLink node 9858 on TymNet
SysOp: Tommy Apple
College Comer (PC Board)
206-643-0804
300-2400 baud
SysOp: Jerry Houston
Psymatic BBS
Sunnyvale, California
408-992-0372
300 - 2400 baud
This is a programmer's board with a
large Forth area.

The development sys-
tem consist's of a t\;o-
board set. The target
board can be used in
a stand alone mode as
asin e c h ~ unitwith
a FO%TH'&mel and
u to 32K byte on-
clip eprom and 2K
ram or with a piggy-
back memory expan-
sionboardanth either
64K bytes of 16 bit
ramlrom memory,
64K bytes of 8-bit
ramlrom f32W32K)

of 8-bit ram memory.
-- -

MmUBIsM m-
The target board has
two RS232/RS422 serial ports, sockets for 8 buffer IC's, two40 in headers for
UO or expansion, and batterybackup for both the memow on tRe CPU and all
of the expansion board ram.-
The 16-bit single chi Mitsubishi M37700 family has eight 16-bit timers, a
watchdog timer, 68 1/8 lines, two UARTS (synch or asynch), hardware multip-
ly and divide, nineteen interrupts, and an 8-bit A-D converter with an 8 chan-
nel multi lexer, all with a typical power dissipation of 30 mW.They are available
in both 8Rhz and 16 Mhz versions and with 512 to 2K bytes of onchip ram and
up to 32K bytes of on-chip ROM or EPROM.
Also available is a very low cost ($125) prom programmer that can be used with
the development system to bum either 27xx series of EPROM's or, with an
ada ter, the eprom version of the 7700 chips. Full development systems with
F O ~ source code for assembler, disassembler, editor, prom prommmer . * - -
and many other utilities as well as
a 6K FORTH kernel in rom are
available NOW! Tareet Board 33122 181st. Ave. S.E.
prices start at $200.00: Package
prices and quantity discounts
available also. I /

Forth Dimemiom 40 Volume XII, Nwnber 3

International Forth BBS's
Melbourne FIG Chapter
(03) 809-1787 in Ausualia
61-3-809- 1787 international
SysOp: Lance Collins
Forth BBS JEDI
Paris, France
33364315 15
7 data bits, 1 stop, even parity
Max BBS (ForthNet link*)
United Kingdom
0905 754157
SysOp: Jon Brooks
Sky Port (ForthNet link*)
United Kingdom
44-1-294- 1006
SysOp: Andy Brimson
SweFIG
Per Alm Sweden
46-8-7 1-3575 1
NEXUS Servicios de Informacion,
S. L.
Travesera de Dalt, 104-106, Entlo.
4-5
08024 Barcelona, Spain
+ 34 3 2103355 (voice)
+ 34 3 2147262 (modem)
SysOps: Jesus Consuegra, Juanma
Barranquero
barran@nexus.nsi.es (preferred)
barran@ nsi.es
barran (on BIX)

This list was accurateas of August 1990. If
you know another on-line Forth resource,
please let me know so it can be included in
this list. I can be reached in the following
ways:

Gary Smith
P. 0. Drawer 7680
Little Rock, Arkansas 72217
Telephone: 501-227-78 17
GEnie (co-SvsOv. Forth RT and Unix

(Continued from page 32 .) (CoMinued from page 38.)

portable to other 83-Standard Forths, as the current one. Malloc(), calloco, tal-
long as the return-address-save sequences lot(), free() and friends all come down
in INIT-TEST and FINISH-TEST are
changed to save and restore only a single
return stack element for most other Forths.
Also, TEST : and ;DONE should be rede-
fined for use with other dictionary struc-
tures.

Interactive testing is important and use-
ful (and, in fact, there is no reason why
these tools cannot be used as an interactive
testing format). However, once initial test-
ing is done, it is often useful to have a
permanent test suite in a consistent and
readable format. Portions of many pro-
grams are so crucial to system operation
that they merit a full validation suite to
prove correct operation. At Harris, valida-
tion suites are being used on the instruction
sets of some of the RTX processors. The
tools presented here provide astarting point
for creating a validation suite for a variety
of applications.

Philip Kooprnan Jr. is a senior scien-
tist at Harris Semiconductor and an
adjunct professor at Carnegie Mel-
lon University. The opinions in this
article are his, and do not necessar-
ily reflect the views of Harris Serni-
conductor.

to brk() and sbrk() in the end. So there
are "most primitive possible" func-
tions. So primitive in fact that nobody
in their right mind wants to use them if
malloc() or something like it is avail-
able.

Note that, while this is true in Unix, it is
not necessarily true in other operating sys-
tems. Consequently, while sbrk() is cer-
tainly the primitive memory allocation
operation for Unix, it does not necessarily
even exist on all C implementations. In
particular, I would expect that it would be
difficult to properly implement sbrko on
the Amiga (probably the Amiga C library
simulates it with some restrictions). sbrko
assumes that each process has its own ad-
dress space, which is not generally true. Use
of sbrk() is not necessarily portable.

By the way, since brk() can be imple-
mented in terms of sbrk(), sbrk() is the true
primitive on Unix systems. In many Unix
implementations, sbrk() is the true system
call, and brk() is implemented as a library
routine, a thin veneer around sbrk().
-Mitch Bradley

To suggest an interesting on-line
guest, leave e-mail posted to GARY-S
on GEnie (gars on Wetware and the
Well), or mail me a note. I encourage
anyone with a message to share lo
contact me via the above or through
the offices of the Forth Interest
Group.

... --.. a- -
1 (1 Academic Press, Inc. 14 Institute for Applied 26,27 1 I

*ForthNet is a virtual Forth net-
work that links designated message
bases in an attempt to provide
greater information distribution to
the Forth usersserved. It is provided
courtesy of the SysOps of its various

3 5
Forth ~esearc h-

Dash, Find Associates

44
Laboratory Microsystems

Forth Interest Group
3 5

FORML 33
Miller Microcomputer Services 24

40
Next Generation Systems

Home Electonics, Inc.
22

16
Silicon Composers

Harvard Softworks
2

Upper Deck Systems 40

Volume XII, Number 3 41 Forth Dimensions

FIG
CHAPTERS

The FIG Chapters listed below
are currently registered as active
with regular meetings. If your
chapter listing is missing or incor-
rect, please contact Kent Safford at
the FIG office's Chapter Desk.
This listing will be updated in each
issue of Forth Dimensions. If you
would like to begin a FIG Chapter
in your area, write for a "Chapter
Kit and Application." Forth Inter-
est Group, P.O. Box 8231, San
Jose, California 95155

U.S.A.
ALABAMA
Huntsville Chapter
Tom Konantz
(205) 88 1-6483

ALASKA
Kodiak Area Chapter
Ric Shepard
Box 1344
Kodiak, Alaska 99615

ARIZONA
Phoenix Chapter
4th Thurs., 7:30 p.m.
Arizona State Univ.
Memorial Union. 2nd floor
Dennis L. Wilson
(602) 381-1 146

ARKANSAS
Central Arkansas Chapter
Little Rock
2nd Sat.. 2 p.m. &
4th Wed.. 7 p.m.
Jungkind Photo. 12th & Main
Gary Smith (501) 227-7817

CALIFORNIA
Los Angeles Chapter
4th Sat., 10 a.m.

North Bay Chapter
2nd Sat., 10 a.m. Forth, A1
12 Noon Tutorial. 1 p.m. Forth
South Berkeley Public Library
George Shaw (415) 276-5953

Orange County Chapter
4th Wed., 7 p.m.
Fullerton Savings
Huntington Beach
Noshir Jesung (714) 842-3032

Sacramento Chapter
4th Wed., 7 p.m.
1708-59th St., Room A
Bob Nash
(916) 487-2044

San Diego Chapter
Thursdays, 12 Noon
Guy Kelly (619) 454-1307

Silicon Valley Chapter
4th Sat., 10 a.m.
H-P Cupertino
Bob Ban (408) 435-1616

Stockton Chapter
Doug Dillon (209) 93 1-2448

* COLORADO
Denver Chapter
1st Mon., 7 p.m.
Clifford King (303) 693-3413

CONNECTICUT
Central Connecticut Chapter
Charles Krajewski
(203) 344-9996

FLORIDA
Orlando Chapter
Every other Wed.. 8 p.m.

, Herman B. Gibson
(305) 8554790

Tampa Bay Chapter
1st Wed.. 7:30 p.m.
Terry McNay (813) 725-1245

Hawthorne Public Library
12700 S. Grevillea Ave.

I Phillip Wasson
(213) 649-1428

GEORGIA
Atlanta Chapter
3rd Tues., 7 p.m.
Emprise Corp., Marietta
Don Schrader (404) 428-081 I

Southeast Florida Chapter
Coconut Grove k e a
John Forsberg (305) 252-0108

ILLINOIS
Cache Forth Chapter
Oak Park
Clyde W. Phillips, Jr.
(708) 713-5365

Central Illinois Chapter
Champaign
Robert Illyes (217) 359-6039

INDIANA
Fort Wayne Chapter
2nd Tues., 7 p.m.
up Univ. Campus
B71 Neff Hall
Blair MacDermid
(219) 749 -2042

IOWA
Central Iowa FIG Chapter
1st Tues., 7:30 p.m.
Iowa State Univ.
214 Comp. Sci.
Rodrick Eldridge
(515) 294-5659

Fairfield FTG Chapter
4th Day, 8:15 p.m.
Gurdy Leete (5 15) 472-7077

MARYLAND
MDFIG
Michael Nemeth

1 (301) 262-8140

MASSACHUSETTS
Boston Chapter
3rd Wed., 7 p.m.
Honeywell
300 Concord, Billerica
Gary Chanson (617) 527-7206

MICHIGAN
DetroitIAnn Arbor Area
Bill Walters
(313) 731-9660
(313) 861-6465 (eves.)

MINNESOTA
MNFIG Chapter
Minneapolis
Fred Olson
(612) 588-9532

MISSOURI
Kansas City Chapter
4th Tues., 7 p.m.
Midwest Research Institute
MAG Conference Center
Linus Orth (913) 236-9189

St. Louis Chapter
1st Tues., 7 p.m.
Thornhill Branch Library
Robert Washam
91 Weis Drive
Ellisville. MO 6301 1

NEW JERSEY
New Jersey Chapter
Rutgers Univ.. Piscataway
Nicholas Lordi
(201) 338-9363

NEW MEXICO
Albuquerque Chapter
1st Thurs., 7:30 p.m.
Physics & Astronomy Bldg.
Univ. of New Mexico
Jon Bryan (505) 298-3292

I
I

Forth Dimensions 42 Volume XII, Number 3

NEW YORK
Long Island Chapter
3rd Thurs., 7:30 p.m.
Brookhaven National
Laboratory
AGS dept., bldg. 91 1, lab rm.
A-202
Irving Montanez
(5 16) 282-2540

Rochester Chapter
Odd month, 4th Sat., 1 p.m.
Monroe Cornrn. College
Bldg. 7, Rm. 102
Frank Lanzafame
(716) 482-3398

OHIO
Cleveland Chapter
4th Tues.. 7 p.m.
Chagrin Falls Library
Gary Bergstrom
(216) 247-2492

Columbus FIG Chapter
4th Tues.
Kal-Kan Foods, Inc.
51 15 Fisher Road
Terry Webb
(614) 878-7241

Dayton Chapter
2nd Tues. & 4th Wed., 6:30
p.m.
CFC. 11 W. Monument Ave.
#612
Gary Ganger (513) 849-1483

OREGON
Willarnette Valley Chapter
4th Tues.. 7 p.m.
Li-Benton Comm. College
Pann McCuaig (503) 752-51 13

PENNSYLVANIA
Villanova Univ. Chapter
1st Mon.. 7:30 p.m.
Villanova University
Dennis Clark
(215) 860-0700

TENNESSEE
East Tennessee Chapter
Oak Ridge
3rd Wed.. 7 p.m.
Sci. Appl. Int'l. Corp.. 8th F1.
800 Oak Ridge Turnpike
Richard Secrist
(615) 483-7242

TEXAS
Austin Chapter
Matt Lawrence
PO Box 180409
Austin, TX 78718

Dallas Chapter
4th Thurs., 7:30 p.m.
Texas Instruments
13500 N. Central Expwy.
Semiconductor Cafeteria
Conference Room A
Clif Penn (214) 995-2361

Houston Chapter
3rd Mon., 7:30 p.m.
Houston Area League of PC
Users
1200 Post Oak Rd.
(Galleria area)
Russell Harris
(713) 461-1618

VERMONT
Vermont Chapter
Vergennes
3rd Mon., 7:30 p.m.
Vergennes Union High School
RM 210, Monkton Rd.
Hal Clark (802) 453-4442

VIRGINIA
First Forth of Hampton
Roads
William Edmonds
(804) 8984099

Potomac FIG
D.C. & Northern Virginia
1st Tues.
Lee Recreation Center
5722 Lee Hwy., Arlington
Joseph Brown
(703) 47 1-4409
E. Coast Forth Board
(703) 442-8695

Richmond Forth Group
2nd Wed., 7 p.m.
154 ~us iness school
Univ. of Richmond
Donald A. Full
(804) 739-3623

WISCONSIN
Lake Superior Chapter
2nd Fri., 7:30 p.m.
1219 N. 21st St., Superior
Allen Anway (715) 394-4061

INTERNATIONAL
AUSTRALIA
Melbourne Chapter
1st Fri., 8 p.m.
Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
03/889-2600
BBS: 61 3 809 1787

Sydney Chapter
2nd Fri., 7 p.m.
John Goodsell Bldg., RM
LG19
Univ. of New South Wales
Peter Tregeagle
10 Binda Rd.
Yowie Bay 2228
02/52-7490
Usenet
tedr@usage.csd.unsw.oz

BELGIUM
Belgium Chapter
4th Wed.. 8 p.m.
Luk Van Loock
Lariksdreff 20
2120 Schoten
031658-6343

Southern Belgium Chapter
Jean-Marc Bertinchamps
Rue N. Monnom, 2
B-6290 Nal i ies
0711213858

= CANADA
BC FIG
1st Thurs., 7:30 p.m.
BCIT, 3700 Willingdon Ave.
BBY, Rm. 1A-324
Jack W. Brown
(604) 596-9764
BBS (604) 434-5886

Northern Alberta Chapter
4th Sat., 10a.m.-noon
N. Alta. Inst. of Tech.
Tony Van Muyden
(403) 486-6666 (days)
(403) 962-2203 (eves.)

Southern Ontario Chapter
Quarterly, 1st Sat.. ~ a r . : lun.,
Sep.. Dec., 2 p.m.
Genl. Sci. Bldg., RM 212
McMaster University
Dr. N. Solntseff
(41 6) 525-9140 x3443

ENGLAND
Forth Interest Group-UK
London
1st Thurs., 7 p.m.
Polytechnic of South Bank
RM 408
Borough Rd.
D.J. Neale
58 Woodland Way
Morden, Surry SM4 4DS

Volume XII, Number 3 43

HOLLAND
Holland Chapter
Vic Van de Zande
Finmark 7
3 83 1 JE Leusden

ITALY
FIG Italia
Marco Tausel
Via Gerolarno Forni 48
20161 Milano

1 021435249

JAPAN
Japan Chapter
Toshi Inoue
Dept. of Mineral Dev. Eng.
University of Tokyo
7-3-1 Hongo, Bunkyo 113
812-21 11 x7073

NORWAY
Bergen Chapter
Kjell Birger Faeraas,
47-5 18-7784

REPUBLIC OF CHINA
R.O.C. Chapter
Chin-Fu Liu
5F, #lo, Alley 5, Lane 107
Fu-Hsin S. Rd. Sec. 1
Taipei, Taiwan 10639

SWEDEN
SweFLG
Per Alm
46/8-929631

SWITZERLAND
Swiss Chapter
Max Hugelshofer
Industrieberatung
Ziberstrasse 6
8 152 Opfion
01 810 9289

WEST GERMANY
German FIG Chapter
Heinz Schnitter
Forth-Gesellschaft C.V.
Postfach 11 10
D-8044 Unterschleissheim
(49) (89) 317 3784
Munich Forth Box:
(49) (89) 725 9625 (telcom)

SPECIAL GROUPS
NC4000 Users Group
John Carpenter
1698 Villa St.
Mountain View. CA 94041

FINLAND
FinFIG
Janne Kotiranta
Arkkitehdinkatu 38 c 39
33720 Tampere
+358-31-184246

Forth Dimensl

NEW FROM THE FORTH INTEREST GROUP

All About
FORTH

An Annotated Glossary
Glen 6. Haydon

Third Edition

REVISED AND UPDATED
Includes

COMMON USAGE
STANDARDS DOCUMENTATION

FOUR IMPLEMENTATIONS

STACK COMPUTERS ALL ABOUT FORTH
the new wave the 3rd Edition

by Philip J. Koopman, Jr. by Glen B. Haydon

This book presents an alterna- An Annotated glossary of most
tive to Complex Instruction Set Forth words in common usage,
Computers (CISC) and Re- including Forth-79, Forth-83,
duced lnstruction Set Comput- F83, F-PC, MVP-FORTH. Im-
ers (RISC) by showing the plementation examples in high-
strengths and weaknesses of level Forth and/or 808618088
stack machines. assembler, and useful com-

mentary, are given for each

$62.00
entry.

$90.00
NOW AVAILABLE!

SEE ORDER FORM INSIDE

Forth Interest Group
P.O.Box 8231
San Jose, CA 95 155

Second Class
Postage Paid at
San Jose, CA

