
$10 Volume XIV, Number 1 May 1992 June

rure

REA OES

SILICON COMPOSERS INC

Announcing the SCIFOX DRAM1032 Board

. . U9 SCSI . .
..........

SCIFOX DRAM1032 Board (actual size)

The DRAM1032 is a plug-on daughter board which Wristwatch chip keeps correct time and date (battery
attaches directly to either the SBC32 stand-alone or included) with or without system power.
PCS32 PC plug-in single board computers. 24 bytes of keep-alive CMOS RAM, powered by
Up to 16 MB on-board DRAM. wristwatch battery.

B 5 MBisec SCSl controller supports up to 7 SCSl Source code driver software and test routines for
devices. SCSI, parallel and serial ports, DRAM, timers, CMOS
Id-bit bidirectional parallel port, may be configured as RAM and wristwatch chip included.
two 8-bi ports. Interrupts available for all I10 devices.
4 Serial ports, configurable as 4 RS232 or 2 RS232 No jumpers, totally software configurable.
and 2 RS422. Hardware support for fast parallel to SCSl transfer.
Each serial port is separately programmable in 33 Multiple boards may be stacked in one system.
standard baud rates up to 230K baud. I Two 50-pin user application connectors.
4 input handshaking and 6 output control lines. Single +5 Volt low-power operation.
7 general purpose latched 'TTL level output lines. Full power and ground planes.
11 general purpose 'TTL level input lines with Input for external +5 volt supply to keep DRAM data
interrupts available on either transition. in case of loss of main power.
2 programmable counterltimers, may use internal or 6 layer, Eurocard-size: 100mm x 160mm.
external event trigger and/or time base. User manual and interface schematics included.

See application article in this issue.
For additional product and pricing information, please contact us at:

SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (41 5) 322-8763

May 1992 June 2 Forth Dimensions

Features s
6 A Single=Step Debugger Rick Grehan

& Other fools for the SC32
The technical director of BYTE Labs produced a "massive amount of code" on Silicon
Composers' PCS32 system. Here he shares the debugger he wrote to speed development.

f 2 Designing Soft ware-Contmlled Devices Carol Gddsmith
The Sales Manager of The Saelig Company explains Forth's advantages when doing product
development, and descrl'bes the use of two on-board-Forth controllers offered by that firm.

f 4 JForfM2-bit Forth for the Arniga Phil Butk
The co-author of Forth advocates big Forth for big microcomputer systems, and his company's
Forth offers such an alternative applications-development environment. Also discussed is
I-IMSL, the "hierarchical music specification languagen extension.

i 6 dbject=Oriented Forth Markus Dahm
From a European group that develops workstations for medical imaging comes this
description of their Forth. The principles and benefits of its object-oriented design are
discussed, including performance considerations.

23 The Curly Contml Structure Set Kourtis Giorgio
Searching for a set of control structures with good performance, ease of use, generalization,
flexibility, and teachability without sacrificing too much historical continuity? The code,
examples, and text given here conclude the discussion begun in our last issue.

35 Working with Create .,, Does> Leonard Morgenstern
This word pair trips up many who are learning Forth. The basics of writing a new defining
word are demonstrated for the hesitant, more-advanced uses for the bold, and a caution is
given to the over-confident.

42 Space Application of SC32 Forth Chip Silicon Composers
Developing, acquiring data from, and controlling a suborbital solar telescope via a system
confgured around Silicon Composers' SC32 Forth RISC chip. Using a single on-board
computer reduces complexity and development time.

4 EditorialNew in FD, call for tutorials, time of renewal.

5 Letters No commerce, no Forth; ideal time for an 'end run'; ten Forth
commandments.

27 Advertisers Index

......... 38-39 Fast Forthward Promoting trade, product watch, vendor spotlight.

4 M f resource Listings Revised and expanded "On-line Resourcesn-extensive listings
for RIME network Forth access to appear soon.

... I 43 On the Back Burner Demonstrating competency. I
I I

Forth Dimensions 3 May 1992 June

Forth Dimensions
Volilrne XIV, Numhcr 1

May-June 1992

Published by the
Forth Interest Group

ever, he asked, be publish-
ing more tutorials? I told him
the truth: we'd love to, but
they are too rarely seen
crossing the editor's desk.

Please consider this a call
for tutorials. Perhaps a topic
springs to your mind even
now-chances are, some of
our readers need to hear
about it. And a FIG Chapter
looking for a group project
should consider putting its
collective genius to work
developing a list of such likely
topics and jointly developing
a series of short, wriwn m-
torials with succinct coded
examples.

As many of you have
notedover the years, there is
a dearth of Forth learning
resources. Won't you help to
relieve this need? After all,
Forth's success will ultimately
depend on new people
learning to use it. (And ifyou
know of any Forth classes
and workshops, let us know
so we can add them to our
"resource Listings.")

Have You
Renewed Iately?

A. a final note, check to
be sure you have renewed
your FIG membership re-
cently. This issue may have
been sent as a courtesy even
if your membership expired
with the last issue. We value
your continued participation
and are looking forward to
an exciting year ahead. So,
please, don't let thisissue be
your last.. .

-Marlin Ouvetson
Editor

P.S. See our call forpapen
andcontest announcement
on page 22!

So What's New?
Welcome to a new vol-

ume-year of Forth Dimen-
siom. To commemorate this
new beginning, we have
been preparing-in con-
junction with our dented
anddedicated contributow
an infusion of fresh material.

"On the Back Burner," a
new department, is engineer
Russell Harris' forum for
hardware-software projects
that readers can build and
program. Its intent, apart from
the enjoyment andeducation
inherent in building pro-
grammable devices that
work, is to offer proof (e.g.,
to prospectiveemployer sand
project managers) that Forth
and the programmer can get
the job done. (The clever
"gizmon from the World's
Fastest Programmer contest
several years ago is but one
example of the genre.)
Russell's first installment,
"Demonstrating Compe-
tency," explains the ra&m
d'ete for the department,
and invites ideas and sub-
missions from readers-the
success of this undertaking
will rely greatly on the re-
sponse and participation of
you, the reader.

"Fast Forthward is an-
other new feature to appear
regularly. It offers space for
product news and an-
nouncements, short profiles
of Forth companies, and es-
says about what makes a
Forth business/programmer
successful and about the
nature of Forth. This synergy
of Forth users, vendors, and
developers should helpus to
to collaborate more closely,
to communicate about Forth
more effectively with the rest

I

Editor
Marlin Owerson of the world, and to focus

special attention on the things
Forth does well.

We are doing our best to
encourage Forthvendon and
developers to participate in
FD in other ways, too. Add-
ing to the valued presence of
our advertisers, this issue
welcomes editorial contri-
butions from three busi-
nesses. A number of readers
requested this kind of per-
spectiveinFD,andtheForth-
business community has re-
sponded well. We look for-
ward to hearing from other
companies about their Forth
products and their experi-
ences in the commercial
world If your Turn would
likc to participate, get in touch
with me soon to discuss the
options. And remember to
send us your press releases
about upgrades, new prod-
urn, and your company's
background. Our readers
want to hear from you!

Tutorials Wanted!
Some things bear repeat-

ing, like the basics of CRE-
ATE . . . DOES>. Leonard
Morgenstern's article in this
issue tackles that perennial
nightmare of Forth neo-
phytes. If someone once
helped you by explaining a
particularly thorny topic, why
not return that favor for the
upandcoming generation of
Forth programmers?

I recently got a phone call
from a gentleman in the
Midwest; he appreciates
Forth over other languages,
but hasn't yet achieved the
degree of proficiency re-
quired to benefit from many
of FD's intermediate and
advanced articles. Would we

Circulation/Order Desk
Anna Brerelon

Forth Dimensions welcomes
editorial material, letters to the
cditor, and comments from its
readers. No responsibility is as-
sumed for accuracy of submissions.

Subscription to Forth D i m -
sionsis included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publication,
the addres is: Foahlnterest Group,
P.O. Box 8231, SanJose. California
95155. Administrative offices: 408
277-0668. Fax: 408-286-8988

Copyright O 1992 by Forth In-
terest Group, Inc. The material
contained in this periodical (but
not the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is com-
piled or the articles, except repro-
ductions for non-commercial pur-
poses, without the written per-
mission of Forth Interest Group,
Inc. is a violation of the Copyright
Laws. Any code bearing a copyright
notice, however, can be used only
with permission of the copyright
holder.

The Forth Interest Group
The Forth Interest Group is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the an. FIG provides a dimate of
intellectual exchange and benefits
intended to assist each of its mem-
bers. Publications, conferences,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"Foflb LXmensions (ISSN 0884-
0822) is published bimonthly for
$40/46/52 per year by the Forth
Interest Group, 1330 S. Bascom
Ave., Suite D, San Jose, CA 95128.
Second-dass postage paid at San
Jase, CA. POSTMASTER: Send ad-
dress changes tofirth Dimemiom,
P.O. Box8231, SanJose,CA95155."

I
Forth Dimensions May 7992 June 4

Letters to the Editor-and toyour felbwreaders~re always welcome.
Respond to am;ces, describe yovr latestprojects. ask for input, advise
the Forth cmmunity, or s~mply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarify and length.
We want to hear from you!

No Commerce, No Forth
Dear Editor,

lfthere is no ~ ~ ~ ~ h , no hype, and
no commercials, the^ is no Forth. I would like to hear about
the of the fKm who use F ~ A for their ~velihood
or provide Forth development systems for a fee. ~f such
fmms succeed, Forth will also; if FIG'S aim is to promote Forth,
then it must promote those who use it. ~ o r t h mmemJ0n.s is
a bit of a bore, lots of articles on ideas that have little to do
with commercial reality.

charla &on
cvs

11 Park Street, Bacchus Marsh
Victoria 3340, ~ ~ ~ m l i ~

Ideal Time for an 'End Run'
Dear Marlin,

Forth does what no other language can d ~ . ~t the
user to map his or her working environment to a computer
in a direct and consistent fashion. This allows the user to

I J

Forth Dimensions

solve problems using familiar models and terms.
This is of little or no value to professional programmers.

They prefer C and C++ because they recognize this language
matter what the environment or problem That is why they

do not and not use F~rth- However, using t e ~
in a familiar environment is very valuable to everyone else.
Therefore, I propose that the Forth community do an end run
around other programmers.

This maneuver would have two stages. In the f i t stage,
using ANS Forth, we build a graphic, and possibly object-
based Forth. Instead of using graphics to hide the machinery
of Forth, we use the graphic interface to make the simple
Forth machinery vishle, accessible, and understandable.
Users will be able to assemble small Forth pieces into their
Own applications and will learn to modify their environment

they get more comfortable. c his environment is ~or ted to
Mas, DOS, OS/2, and Unix machines, dowing the user to
Opeate in the same way and with the same a~vi ronmento~
all of the operating systems.

The second stage builds on the first stage, using the Forth
chips now available to build expandable Forth computers
that nlrl this environment quickly and more efficiently than
existing machines can run it. Since Forth lends itself to
multitasking and multiprocessing, a basic unit with one Forth
chip could be bumped to, say, four or eight chips as more
power became necessary. The additional chips would be-
have = coprocessors or as d e d i c a t e d ~ ~ devices. could
be both since they be switched from One of task to
another by changing the they run.

Now is an ideal time to pursue this approach. The new

by Tom Napier North Wales, PA

1. These commandments are not carved in stone; thou mayst
change them if thine application demandeth.

2. He who changeth these commandments shall not do so lightly,
and shall document the change in his program.

3. Thoushalt putthineappl~cation into words, and these wordsshall
be thy program.

4. The lord Moore has given thee many of

May 1992 June

require s~rnple, easy to use, low-memory methods of pro-
gramming. Sounds like Forth to me.

So let's get started I've been playing around with ways to
do what I've proposed and I'm eager to take it further.
Remember, "the Future Stam tomorrow."

Regards,
Mark Martino

170-1 1th Avenue
Seattle, Washington 98112

wave of consumer electronics provides a lot of opportunities

the words of thy program. and the re-
mainder shalt thou create.

5. Thou shalt use no word rn thy program
before that word has been defined.

6. Thy parameters shall precede thine op-
erations, and thine operations shall
remove thew parameters from thestack.

7. Thou shalt be sparing in thy use of the
return stack and shall at all times keep it
balanced, lest thy program depart for
the land of thy fathers.

8. Thereshall benogotofound inthy code.
Thy program shall use if-else-endif,
counted loops, repeat-while, and re-
peat-until.

9. If thine applicabon needeth a structure
or adatatype wh~ch does not ex@ thou
mayst create anewstructure or datatype.

10. Thou shalt tell thy fellow programmers
what new structures and data types
thou hast created, that the wheel shall
not too often be invented.

10 Forth Commandments
to make inroads into the non-programming world The
multimedia devices that are being introduced this year

and Other Tools for the SC32 Processor

Rick Grehan
Peterborough, New Hampshire

The SC32 is a 32-bit, stack-based processor designed
specifically for executing high-level, Forth-like languages. It
can directly execute two gigabytes of code memory and 16
Gb of data memory. Good descriptions of the SC32 can be
found in the March-April 1990 issue of Forth Dimensions
("SC32: A 32-Bit Forth Enginen by John Hayes) and in Philip
J. Koopman Jr.'s book Stack CoqiWen, i%eNau Wave(1989,
Ellish Horwood Ltd., Chichester, West Sussex, England).

Silicon Composers' SC/FOX parallel coprocessing system
@CS32) offers an SC32 on a PC XT/AT-compatible plug-in
card. The PCS32 runs the SC32 at 10 m z , achieving
execution speeds of 10 to 15 MIPS. Thanks to the SC32's
pipelined design, the system can execute an instruction per
clock cycle. Furthermore, since multiple Forth primitives can
be combined into a single SC32 instruction, a PCS32 oper-
ating with a 10 MHz dock can hit "burstn execution speeds
of up to 50 MIPS.

On the software side, the PCS32 is supported by Silicon
Composers' SCRorth32, a Forth-83compliant system with
32-bit extensions added to harness the capabilities of the
SC32. The PCS32 uses the host PC as an elaborate I/O server;
the host PC gives the PC32 disk storage, keyboard, and video
I/O.

Working on a recent project, I produced a massive
amount of code on the PCS32 system. As the number of
words and their interactions grew, it became obvious to me
that some sort of debugger would speed the development
process. In spite of all my Forth coding abilities, bugs
inevitably crept into my work and the system would crash
during a testing cycle. A debugger would help me home in
on the crash site more rapidly. Unfortunately, SC/Forth32
included no debugger. I had to build one. (The source code
for the debugger is shown in Listing One.)

Requirements
My needs were not mvagant; I didn't require breakpoints

or multi-step executions. I simply wanted a way to single-
step through a word's component instructions and watch the
stack effects. I also needed to be able to exit to Forth to check
the states of variables.

I wanted the debugger to display, at each instruction step,
the name of the word it was about to execute. In some sense,

you could say that the SC32 supports subroutine-threaded
Forth; thc SC32's "calln instruction (which works much like
any other CPU's subroutine call) does the nesting job of the
inner interpreter. This meant the debugger had to extract the
call's destination address-which pointed to the body of h e
word being callect-and "back upn to the name field address.
This is handled by the word HISNAME in Listing One.

Debugger Internals
The main debugging loop is within the word DLOOP (see

Listing One). DLOOP is simply a large BEGIN ... AGAIN
struaure that endlessly fetches instructions and executes
them in a controlled fashion. The only way out of DLOOP is
when the debugger executes the fmal instruction of whatever
word is being debugged. Execution of the fmal instruction
will inevitably cause the return stack to be popped, which has
the effect of exiting DLOOP and the debugger.

While I have some complaints about the SC32's cell-based
architecture (it makes string handling a nightmare), it became
a real blessing as I struggled to build the debugger. Unlike
processors wih instructions of varying length, the SC32's
instructions are all 32 bits (one cell) long.

The SC32 instruction types fall into eight categories (see
Figure One on page 11). The top three bits of an instruction
determine its type. It turns out that it was sufficient to have
the debugger treat instructions as though they fell into one
of four categories: call, unconditional branch, conditional
branch, and everything else. Although the debugger handles
several different instruction types identically, the system will
nonetheless tell the user what the instruction type is.

Call
To handle a l l instructions, the debugger first fetches the

instruction that would ordinarily execute. It masks out the
upper three bits, leaving the destination address in that
instruction's lower 23 bits. This value is placed on the
parameter stack, and the debugger can simply use the Forth
word EXECUTE to go where the call would have gone.

The debugger keeps track of where it is inside a word
being debugged via the global variable HIS ILJ (short for "his
instruction pointern). HIS IP serves as a simulated instruction
pointer; upon each loop through the debugger, the system

May 1992 June Forth Dimensions

I Listing One. Single-step debugger. I
(**)
(* * S i n g l e - s t e p debugge r f o r SC/Forth32)
(** Copyr igh t , 1991)
(* * Rick Grehan 1
(* * Hancock, NH 1
(**)

(* *
(** S t o r a g e
(**

VARIABLE HISIP (H i s i n s t r u c t i o n p o i n t e r)
VARIABLE HISFLAG (H i s EL b i t)
VARIABLE HERELOC (L o c a t i o n f o r i n l i n e e x e c u t i o n)
CREATE NUMBUF 4 ALLOT (B u f f e r f o r number i n p u t)

I :;:824ZC uCODE GFLAG (P u t EL on s t a c k)

(** INSTRUCTION TYPES **)
00000000 CONSTANT ISCALL
20000000 CONSTANT ISBRAN
40000000 CONSTANT IS?BRAN
60000000 CONSTANT ISALUS
80000000 CONSTANT ISLOAD
A O O O O O O O CONSTANT ISSTORE
C O O O O O O O CONSTANT ISLAL
EOOOOOOO CONSTANT ISLAH

I DECIMAL

(C a l l)
(U n c o n d i t i o n a l b r a n c h)
(C o n d i t i o n a l b r a n c h)
(shift)

(Load)
(S t o r e 1
(Load a d d r l o w)
(Load a d d r h i g h)

(* *
(** Improved dump)

(**)
(Dump 16 b y t e s i n hex s t a r t i n g a t b y t e a d d r e s s badd r)
: 16HEXBYTES (b a d d r --)

DUP 8 HEX .R DECIMAL ." : "
16 0 DO

I OVER + C@ 2 HEX .R DECIMAL
SPACE

LOOP
DROP ;

(Dump 1 6 b y t e s i n a s c i i s t a r t i n g a t byte a d d r e s s b a d d r)
: 16ASCIIBYTES (b a d d r --)

1 6 0 DO
I OVER + C@
127 AND
DUP 32 < (P r i n t a b l e ?)

I F DROP ASCII .
THEN
EMIT

LOOP
DROP ;

(Supe r b y t e dump f rom b y t e a d d r e s s b a d d r)
: SDUMP (b a d d r n --)

CR
BEGIN

OVER 16HEXBYTES 4 SPACES
OVER 16ASCIIBYTES CR
1 6 - DUP
0 >

WHILE

Forth Dimensions 7

uses the address stored in
H I SIP to determine the lo-
cation of the next instruc-
tion.

Consequently, the portion
of the debugger handling
call instructions increments
HIS I P by one before exiting.

Unconditional Branch
The debugger takes care

of uncondtional branch in-
structions by simply mask-
ing out the high three bits of
the instruction, thereby
leaving only the jump's des-
tination address. The un-
conditional branch handler
then places this address in
HIS IP and passes back to
the start of the loop.

CondttionaI Branch
On the SC32, a condi-

tional branch instruction will
take the branch if the FL bit
is set to zero. This is a proces-
sor flag that can be modifled
by ALU shift instructions.
Consequently, for the
debugger to know whether
a conditional branch should
be taken or stepped over, it
has to simulate the setting of
the processor's FL bit

I accomplished this by
creating a machine-code in-
struction called GFLAG (for
"get flag") that places the
contents of the FL bit on h e
parameter stack. After the
debugger executes any in-
struction in the target code
that may affect FL, it calls
GFLAG and stores the pa-
rameter stack in the variable
HISFLAG.

So, when the debugger
encounters a conditional
bt-dnch, it simply examines
the contents of HISFLAG. If
HISFLAG is zero, the
debugger treats the instruc-
tion as an unconditional
branch and the branch is
taken. Otherwise, the
debugger merely increments
HISIP by one to skip to the
next instruction.

May 1992 June

Everything Else
The debugger executes

all other instructions-arith-
metidlogical, shift, andload1
store-as is. It does this by
fetching the instruction pointed
to by HIS IP and placing that
instruction in-line. The fol-
lowing is the SC/Forrh32 code
fragment for doing this:
VARIABLE HERELOC
...
IFETCH HERELOC @ !
(Put t h e i n s t r u c t i o n
(i n - l i n e)

[HERE HERELOC !
(S e t HERELOC)

O f I
(Make room i n t h e
(d i c t i o n a r y)

The word IFETCH re-
trieves the instruction pointed
to by HISIP. The debugger
stores that instruction at the
address stored in HERELOC.
As you can see by the code
between [and I , HERELOC
is set to point to an initially
empty cell within the debug-
ger's stream of execution.
Simply put, the debugger
patches itself on the fly, the
patch being the instruction
fetched from the location
given by HISIP.

Finally, after the in-line
instruction has executed, the
debugger uses the GFLAG
word mentioned earlier to
save the state of the FL bit.

User Input
While you're in the

debugger, the system gives
you the option of entering a
variety of single-character
commands at each execution
step. These commands are:

F Allows the user to tem-
porarily suspend the debug-
ger and go to Forth. This
command simply calls the
SCRorth32 word INTER-

PRET. The debugger defines
an additional word, RESUME,
May 1992 June

SWAP 1 6 + SWAP
REPEAT
%DROP ;

(**
(** Debugger)

(* *)
HEX
(F e t c h h i s n e x t i n s t r u c t i o n)
: IFETCH (-- n)

HISIP @ @ ;

(Mask o u t jump a d d r e s s f o r c a l l s and b ranches)

: JADDR (- - n)
IFETCH lFFFFFFF AND ;

(Mask o u t i n s t r u c t i o n t y p e)
: ITYPE (-- n)

IFETCH E O O O O O O O AND ;

DECIMAL

(S a f e l y p r i n t t h e s t a c k . T h i s won't bomb i f t h e s t a c k
(h a s undeflowed.)
: SSTACK

DEPTH O<
I F ." Underflow "
ELSE . S
THEN ;

(Given t h e b y t e a d d r e s s of a name f i e l d , p r i n t it)
: SHONAME (baddr --)

DUP C@ 127 AND (G e t coun t)
?DUP (Anything t h e r e ?
I F

0 DO
1+ DUP C@ 127 AND EMIT

LOOP
SPACE

THEN
DROP ;

(Given t h e cel l a d d r . of a code f i e l d , do your b e s t t o l o c a t e)
(t h e a s s o c i a t e d name f i e l d and p r i n t i t . Works i n most c a s e s . 1
: HISNAME (a d d r --)

BYTE (Convert t o b y t e a d d r e s s)
0 (S t a r t a c o u n t e r)
BEGIN

SWAP 1- DUP C@ 127 AND (F e t c h a c h a r a c t e r)
DUP 32 <> (Nul l?)
I F 32 < (P r i n t a b l e ?)

I F DUP C@ 127 AND (F e t c h it a g a i n)
2PICK = (Equal t o o u r coun t?)
I F SWAP DROP

S HONAME (W e g o t it!)
E X I T (Go home)

THEN
THEN
SWAP 1+ (Increment c o u n t e r)

ELSE DROP SWAP (Donr t increment)
THEN
DUP 33 =

U N T I L
(Name c a n r t b e t h i s b i g)

8 Forth Dimensions

(D i s p l a y t h e c u r r e n t i n s t r u c t i o n type)
: SHOTYPE

I T Y P E
SELECT

CASE ISCALL = OF . " CALL : " BREAK
CASE ISBRAN = OF ." BRANCH: " BREAK
CASE IS?BRAN = OF . I' ?BRANCH: " BREAK
CASE ISALUS = OF . li ALU/SH: BREAK
CASE ISLOAD = OF . " LOAD: " BREAK
CASE ISSTORE = OF ." STORE: " BREAK
CASE I S L A L = OF ." LAL: " BREAK
CASE ISLAH = O F ." LAH: " BREAK

NOCASE BREAK ;

(G e t a h e x a d e c i m a l number f r o m t he k e y b o a r d)
: NUMIN (- - n)

0 NUMBUF ! (C l e a r receiving b u f f e r)
NUMBUF BYTE 10 EXPECT (U s e r i n p u t s number here)
BASE @ HEX (S e t base t o h e x a d e c i m a l)
NUMBUF BYTE I- NUMBER (C o n v e r t)
2DROP SWAP BASE ! ; (R e s t o r e base)

(E x i t t o f o r t h f r o m debugger)

: TOFORTH (--)
." TO FORTH " CR
INTERPRET
." BACK TO DEBUG " CR ;

(R e t u r n t o t h e debugger)
: RESUME R> DROP ;

(G e t u s e r i n p u t a t each d e b u g g e r s tep)

: USERIN
BEGIN

0
KEY
SELECT

CASE A S C I I F = O F (S h e l l ou t t o F o r t h)
TOFORTH BREAK

CASE A S C I I Q = OF (A b o r t)
1 ABORT" * * ABORTED! " BREAK

CASE A S C I I I = OF (D i s p l a y c u r r e n t i n s t r u c t i o n)
BASE @ IFETCH . " (" HEX
. BASE ! .") " CR BREAK

CASE A S C I I D = OF (Dump)
." ADDR:" NUMIN (A d d r e s s)
." LEN:" NUMIN (N u m b e r of bytes)

SDUMP BREAK
NOCASE DROP 1 BREAK (A n y t h i n g else con t inues)

UNTIL ;

(M a i n debugger l o o p)
: DLOOP

BEGIN
SHOTYPE
I T Y P E
ISCALL = IF

JADDR HISNAME
SSTACK
USERIN
JADDR
EXECUTE
1 H I S I P +!

(S h o w i n s t r u c t i o n type)

(F e t c h it and select)
(** CALL **)
(Show w o r d ' s n a m e if poss ib le)
(S h o w t h e s t a c k)
(G e t u s e r i n p u t)

(G e t c a l l ' s d e s t i n a t i o n address)
(E x e c u t e t h e w o r d)

(Bump i n s t r u c t i o n p o i n t e r)

Forth Dimensions 9

that returns the user to the
debugger where he left off.
Currently, these words make
no auempt to save and restore
the parameter and return
stacks. It's up to you to make
sure the stacks are in the
same state wnen you execute
RESUME as when you left the
debugger.

I Displays in hexadeci-
mal the instruction the
debugger is about to execute.
I found this handy for AI;U/
shift instructions, since the
debugger simply announces
them as "ALU/SH." With the
I command, you can disas-
semble an instruction whose
operation you are unsure of
(provided you have the
manual of SC32 instruction
formats handy).

D Provides quick access
to a memory dump. The de-
bugger will prompt you for
the starting cell address and
the number of cells to dump.

Q Executes an ABORT,
quitting the debugger and
returning to Forth.

Entering any other charac-
ter at the exeation steps will
cause the debuggerto prcceed
with the next instruction.

Problems and
Improvements

Recognizing SC/Forth
Primitives

Since the SC32 was de-
signed from the ground up
to execute Forth (and thanks
to the optimization of the
SCForth32 compiler), some
of the more complex Forth
primitives are compiled into
a series of obtuse SC32 in-
structions. For example, if
you encounterthe Forth word
DOin the debugger, you won't
see a call to the location of
DO, you'll see a series of SC32
instructions that load the re-
turn stack with initial and ter-
minal loop index values.
(Aaually, the values loaded on

May 1992 June

the returnstackare not the initial
and final loop &es. 7he effect
is the same, however..)

step Into
In its current incarnation,

the debugger handles call
instructions using the SC/
Forth32 word EXECUTE.
Consequently, there is no
way to "nest downn a level
and step into a word. In
order for the debugger to
perform that feat, you would
have to add code that kept
the variable H I S I P properly
tracking the instruction
pointer of the debugged
code. The debugger would
also have to take over the
responsibility of managing
the return stack. Specifically,
whenever the debugger en-
countered a call instruction,
it would push the
incremented value of H I S I P
onto the return stack, extract
the destination address from
the instruction, and store that
address into H I S I P .

Handling a return from
subroutinc is more diffi-
cult, since the SC32 actually
embeds the return operation
in ALU/shifi or load/store
instructions. Bit 28 of such
instructions is called the
"nextn bit. If it is set, it loads

ELSE
ITYPE
ISBRAN = I F

SSTACK
USERIN
JADDR
H I S I P !

ELSE
I T Y P E
IS?BRAN = I F

SSTACK
USERIN
HISFLAG @
I F

1 H I S I P +!
ELSE

JADDR
H I S I P !

THEN
ELSE

S S TACK
USERIN
IFETCH HERELOC @
[HERE HERELOC !
GFLAG HISFLAG !
1 H I S I P +!

THEN THEN THEN
CR

AGAIN ;

(** UNCOND. BRANCH **)
(S h o w t h e stack)
(G e t u s e r i n p u t)
(G e t j u m p address)
(New i n s t r . p o i n t e r)

(* * COND . BRANCH **)
(S h o w t h e s tack)
(G e t u s e r i n p u t)
(G e t h i s FL b i t)

(B r a n c h not t a k e n 1

(B r a n c h t a k e n)

(* * ALL OTHERS **)
(S h o w t h e s t a c k)
(G e t u s e r i n p u t)

! (P u t i n s t r . i n l i n e)

0 , l
(S a v e f lag a f te r operation)
(I n c r . h i s address)

(T h e o u t e r m o s t w o r d . T o u n l e a s h t h e debugger on a w o r d ,)
(s i m p l y enter DEBUG < w o r d n a m e >)
: DEBUG

BL WORD CELL F I N D NOT (Is w o r d i n d ic t ionary?)
I F ." ** NOT FOUND **" CR Q U I T (B a i l ou t i f not)
E L S E H I S I P ! (S e t i n s t r . po in te r i f so)

." WORD AT:" H I S I P @ HEX . (Show w o r d ' s body address)
DECIMAL CR
DLOOP (E n t e r t h e loop)

THEN ;

the top value on the return I

I

stack into the instruction I Listing Two. Execution trace. 1
pointer. Bits 16 through 19 I

&e called the "stack" bits:
They determine whether the
parameter and return stacks
are pushed or popped. If the
next bit is set and the stack
bits specify that the return
stack is to be popped, the
effect is a return operation.

So, for the debugger to
manage a return, it would
have to watch for a set "nextn
bit within ALU/shift and load/
store instructions. Whenever
it sees a set bit, it would mask
the bit out, transfer the top of
the return stack into H I S I P ,
and execute the modified
instruction.
May 1992 June

I
: TRACE

R@ 1- (B a c k up t o code f i e ld)
HISNAME CR ; (D i s p l a y n a m e)

: >>TRACE
[' 1 TRACE , (C o m p i l e TRACE i n t o d ic t ionary)
fCOMPILE1 1 ; (M a k e colon happy)

: TRACEON
[' 1 >>TRACE
[' I :
8 + (A d d r e s s w h e r e] w a s)
! ; (O v e r w r i t e it)

: TRACEOFF
[' I 1
[' I :
8 + ! ; (P u t] b a c k w h e r e he w a s)

Forth Dimensions

F d y , you would want to add an additional m-input choice
that would allow the user to seled whether the debugger step@
into the called word, or executed it as a whole, as it does now.

Last CaUs To Jumps
SC/Forth32 is an optimizing compiler. Among other things,

this means that the compiler is intelligent enough to recog-
nize that if the last instruction in the &ition of a word is a call
instruction, that call can be converted ro an unconditional jump.
This saves return stack space, as well as reduang some execution
time that would ordinarily be unnecessarily consumed moving
addresses between the retum stack and the instruction pointer.

From the debugger's point of view, the jump imtruction
is just a jump; there's no indication that this was a call optimized
into a jump. If you single-step into this situation, itwill appear
that you have nested down into a word, and in some severe
cases this nesting can go on for several levels as you repeatedly
encounter the last instruction of each word. Ultimately, of course,
you will encounter a Forth primitive and pop out the end

Trace
As a final tool, I built a simple execution trace facility. I

based the execution trace words on the trace commands

Figure One. SC32 instruction types. 1

found in old, reliable, interpreted BASIC. To refresh your
memory, executing TRACEON in BASIC would cause the
system to display the number of the current line BASIC was
executing. This was handy for locating exactly where the
system either did a belly-flop or hung in an infi te loop. I
wanted a similar construct for my Forth work. I wanted words
to tell me when they were about to execute, and I wanted to
be able to turn this behavior on and off. As in BASIC, this
would make it easier to pinpoint where the program died.

My solution was a pair of words-TRACEON and
TRACEOFF-thal you could use as brackets. That is, words
compiled after TRACEON would display their names when
executed. TRACEOFF would disable tracing; subsequent
words would act normally. I was satisfied to have only colon
words be affected by TRACEON and TRACEOFF. (I could have
extended the trace word to cover defining words, but I didn't
need that particular feature.)

Trace Operation
~~AcEONworks by patching the : (colon) word. The last

word in SCfiorth32's definition of : is 1, which puts Forth
inthe compiling state. The SC32 instruction that calls] is located

eight cells into the definition
of : . TRACEONoverwrites that

Call 000 The SC32 places the return address on the return stack,
and jumps to the location given by the instruction's
remaining 29 bits.

. .
I

Branch 001 Same as a call instruction, only the SC32 doesn't
place anything on the return stack.

Instruction Top 3 bits of
Type Description instruction

Conditional 010 If the SC32's FL flag is zero, this instruction performs
branch a branch. Otherwise, the processor proceeds to the

next instruction.

location with a call to the
word >>TRACE.

So, after you execute

Load

Store

Load address
low

Load address
high

L-
Forth Dimensions

01 1 Executes a variety of arithmetic, logical, and shift
operations, depending on the remaining 29 bits.

100 Adds an offset (encoded in the lower 16 bits of the
instruction) to the contents of a designated source
register. The contents of the resulting address are
loaded into a designated destination register.

10 1 Adds an offset (encoded in the lower 16 bits of the
instruction) to the contents of a designated source
register. The contents of a designated destination
register are stored at that address.

110 Adds an offset (encoded in the lower 16 bits of the
instruction) to the contents of a designated source
register. -The result is placed in a designated
destination register.

111 Adds an offset (encoded in the lower 16 bits of the
instruction) to the contents of a designated source
register aeshi f t ing that offset to the left 16 bits. The
result is placed in a designated destination register.

TRACEON, whenever : ex-
ecutes, it calls >>TRACE as
its last instruction. >>TRACE
will compile the word TRACE
into the dictionary. Hence,
TRACE becomes the first
word executed by whatever
word : has just defined.
>>TRACE then executes] so
that the compiler enters the
proper state at the end of : .
(A sideeffect is that words
compiled after TRACEON are
one cell longer than they
would ordinarily be.)

Now, whenever the co-
lon-defined word executes,
it immediately calls TRACE.
TRACE fetches the return
address from the returnstack
and decrements that address
by one cell. The resulting
cell address points to the
body of the calling word,
and TRACE can unleash
HISNAME (described above)
to print the name field.

TRACEOFF simply un-
patches :, overwriting the
call to >>TRACE with a call
to 1. The source to the TRACE
system is shown in ListingTwo.

May 1992 June

Designing Soft re-
Controlled Devices
Carol Goldsmith
Victor, New York

When software is involved in product development, the
step of integrating hardware and software is fraught with
difficulty. Sophisticated development systems, emulators,
and logic analyzers exist to help the debugging process. In
the conventional approach to embedded system design, a
PC is used to write, cross-compile, link, and load code into
emulation memory on the target system. One iteration of
the laborious and oft-repeated edit, compile, link, and load
cycle can easily take ten or 15 minutes for a complex
project. This sequence must be enacted for one error in one
line of code or many. The agony really begins if the errors
are interactive with the hardware--the correction of one
exposes another. System debugging is often done via an in-
circuit emulator (another expense) that provides breakpoints
and other software debugging support. Ever wonder why
project managers go gray at an early age?

Forth to the Rescue.. .
The solution--familiar to most readers of this magazine

but largely unknown to most designers-is to include Forth

Embedded control is a place
where Forth can make a
significant impact and become
more widely known.

on the controller card, giving users the ability to deal with
code on a word-by-word, or line-by-line basis interactively
with the target system. Forth's primary benefit for the
developer is that it eliminates the middle-man. Both a
language and a programming environment, Forth can be
developed and executed directly on the target system, so
there is no need for the traditional cross-development
system required by C or assembler. Forth is interpretive and
highly interactive, giving developers the ability to proto-
type applications swiftly. It offers the designer the unique
opportunity to write, test, and run software in real time and
avoid the time-consuming steps of the edit, compile, test,
debug loop for each single modification. On-board Forth
offers in one entity a real-time programming language, an
operating system, and a development environment. The

natural extensibili~y of Forth leads to application-specific
words that are self-documenting as they are used. Engineers
using Forth can design words to suit their specific work.
Embedded control is definitely a place where Forth can
make a significant impact and become more widely
known.

Compilation occurs one word at a time on the target
system itself. Each Forth word can be tested as soon as it
is entered; if it does not produce the desired result, you can
quickly change the word and recompile. This encourages
thorough testing of each piece of code as it is written. In
contrast, C and assembler have long e l t , compile (or
assemble), link, and load cycles that make it difficult to test
fragments of code. Debugging can't start until most of the
framework is in place. Incremental testing speeds project
development, because there is a higher probability that the
design will work the first time.

Not at all Tedious.. .
Two economical and easy-to-use controllers which

offer extensive on-board Forth are the TDS2020 and the
TDS9092 from The Saelig Company (Victor, NY). Well-
known in Europe, and becoming recognized in the U.S.A.
and Canada, these boards from Triangle Digital Services
Ltd. of London (U.K.) have been sold worldwide in their
thousands. Both of these nearly-pin-compatible 4" x 3"
boards provide a complctc Forth dcsign environment--the
TDS2020 operating at 20 MHz comes complete with eight
channels of A/D, and the slower and cheaper TDS9092
runs at 1 MHz, more suited to simpler control situations.
The TDS2020 is a powerful CMOS controller card, based on
the Hitachi 16-bit H8/532 microprocessor, and runs at
about 3 MIPS. It has 16 Kbytes of Forth as well as a full
symbolic assembler, eight channels of ten-bit AID, three
channels of D/A, serial RS232 and 1% protocols, too. There
is 4 5 K for program storage, and up to 512 K NVRAM space
on-board, as well as timers, interrupts, and 33 I/O lines.

Ute Programming
Programming is accomplished by downloading suitable

words from the PC software provided with the boards. The
TDS2020 starter pack includes lots of utility routines to

May 1992 June Forth Dimensions

make life easier for the designer. Included are serial input/
output, timer, I.CD/keyboard driver, memory test, and
many other routines. Also available are string-handling
routines, trig functions, graphics LCD display, interrupt-
driven serial I/O, and round-robin multitasking.

Embed the TDS2020 in a product, talk to it from a PC-
compatible down an RS-232 se-:,-,I line, debugging each
segment as you go, and the final code can bc stored in
NVRAM, with no need for PROM burning. You have very
fast development time with no need lor in-circuit emulators
or test s l b s for developing fault-free code. The application
also runs at full speed, and the full resources of the
development environment are available for use in debugging
the application. In the Forth environment, any portion of
the code can be exercised at full speed, and breakpoints
can be introduced for snapshots, or single stepping.

"Advantage TDSn
When you have developed your product using the

TDS2020 or TDSW92 and are now manufacturing it, that is
not the end of the story for Forth. It can be used for repair
and maintenance because the language is on-board. A
connector can be built into the product which gives serial
access to the TDS board in your instrument. With a PC or
hand-held terminal, you can now gain access to the system.
The command ctrl-C allows you to break out of your
program and individually exercise all the procedures that
make up the software. For instance, you can drive the

printer, LCD, keyboard, or A/D routine to determine fault
condtions. On-board Forth is very useful during design
and debugging, but the ability to access individual software
procedures in a finished product is invaluable. This also
saves writing lots of "service routines," often requested by
scrvicing departments, and frequently some options get
forgotten, requiring new routines to be written. With on-
board Forth, iL's all there anyway.

Thanks for the Memory.. .
The 'IDS2020CM is a useful module which sandwiches

on top of Ihe TDS2020 and allows storage of up to 8 Mbytes
of non-volatile data on industry-standard JEIDADCMCIA
card memory, including Flash types. In an application, this
removable card can be brought back to base from field data
collections and read in another TDS2020 or by a PC with
a card memory drive. Meanwhile, the datalogger is storing
information on a new card. Datalogging for over a year on
a single 9-volt battery is possible, since the TDS2020 only
draws 300 pa in standby mode. A complete datalogging
program is included with TDS2020 starter pack. In addition
to standard fig-Forth, 200 words are supplied with the
'IDS2020 for simplifying tasks such as data-logging, key-
pad and LCD control, stepper-motor driving, interrupt
control, etc. The +IDS2020 starter pack is $ 4 9 and the
TDS9092 starter pack is $249, in stock from The Saelig
Company (716-425-3753; fax 716-425-3835).

Carol Goldsmith is the Sales Manager for The Saelig Company.

Forth Dimensions

t 5

20MHz Forth Controller
76-bit pP, 8ch 70-bit A D , 3ch 8-bit D/A

TDS2020
CONTROLLER

AND DATA-LOGGER

4" x 3" board uses Hitachi
1 6-bit H8/532 CMOS p P.
Screams alon at 3MIPS, but runs on 30ma. On-
board ~ 0 ~ ~ t f a n d assembler - no need for in-circuit
emulation! U to 512K NVRAM, 45K PROM. Attach
keyboard, l e a I2C peripherals. Built-in interrupts,
multi-tasking, watchdog timer, editor and assembler.
33 I/O lines, two RS-232 poris. 6 - 16 volts 30o.u~
data-logging: on-chip 8-ch 10-bit AID, 6 ch D/A.
Datehime clock -- /ow ower mode lasts over a year
on 9, battery ! rots of ready-made software
solutions free. Program with PC. Man in use world-
wide for machine control, data-loggbg, fnrpecfion,
factory automation, robotics, remote monitoring, etc.
Specials: -40°+85~c; or I MHZ - full functions 4ma!!
STARTER PACK $499 ale-~r-ret~rn.

CALL NOW FOR DETAILS !

May 7992 June

f \

? making a DATA LOGGER ?

CONTROLLER
& DATA-LOGGER

8ch 10-bit 20 MHz 3 MIPS
Store data on 4M JEIDA cards.

* Easy-use keyboard / Icd.
33 x 1/0, 2 x RS-232 ports.

* 300pA data-logging!
Lots of ready-made software
solutions free. Program with PC.

Saelig Comp CALL FOR DETAlLS ! $369 (25's)
European lechttolbgy Saelig Company

tet: (716) 425-3753 tel: (716) 425 3753
fax: (716) 425-3835 fax: (71 6) 425 3835

JForth
A 32=bif, Subrouf ine-Threaded
Forth for the Amiga
Phil Burk
San Rafael, California

JForth falls into the category of "big Forths." We at Delta
Research believe that Forth development systems should
offer the same facilities that C programmers enjoy. While
minimal Forths are perfect for small embedded systems,
they are inappropriate on larger computer systems. We feel
that one of the reasons Forth has not sold as well on large
systems is because many Forths adhere to a minimalist
philosophy. We feel that Forths for large systems should
have all of the file I/O routines, memory allocation, floating
point, complex data structures, and other tools that are
standard in competing languages. We applaud the ANS
standardization efforts that include these facilities.

One of the areas that Forth does not usually compare
well with C is in the generation of smallexecutable images.
We, therefore, added Clone which can generate standa-
lone images as small as 3K. Clone starts at the top word
in an application and disassembles its 68000 machine code,
then disassembles all the words called by that word, and
so on. It then reconstructs an image without headers and
with only the words and data needed by the application.

We wanted JForth programmers
to be able to call
Amiga system libraries
as easily as C programmers.
It also performs some optimizations made possible by the
smaller image, such as converting absolute subroutine calls
to PC relative. An executable image is then written to disk
with an icon. Clone-able programs have a few restrictions
related to storing addresses in variables at compile time.
These are easily handled, however, by using run-time
initialization, or by using DEFER for vectored execution.

We wanted JForth programmers to be able to callAmiga
system libraries as easily as C programmers. To call Amiga
system routines, JForth uses a simple CALL by name syntax
that automatically builds code to move parameters from
the data stack to the appropriate 68000 registers.

Since the Amiga relies heavily on passing structures, we

Phil Burk is a co-author of JForth and HMSL. His current interests include

implemented a C-like structure facility that automatically
handles variously sized structure members. Thus, onc can
fetch a signed byte member or a 32-bit-long member using
the same S@ word. Signed versus unsigned members and
address relocation is also handled. Here is an example
structure definition plus some code to access it:

\ Def ine s t r u c t u r e t e m p l a t e
:STRUCT FOO

LONG FOO-SIZE
APTR FOO-BUFFER
LONG FOO-INDEX

I SHORT FOO-SCRATCH
I

; STRUCT

\ c r e a t e a FOO s t r u c t u r e
FOO MY-FOO
: TEST.FO0 (-- i n d e x s c r a t c h)

MY-FOO S@ FOO-INDEX
MY-FOO S@ FOO-SCRATCH

If we use the JForth disassembler to examine TEST . FOO
we will see that it built the following code:

BSR-L MY-FOO
M0VE.L $8 (A4,D7.L) ,D7
BSR.L MY-FOO
MOVE. W $C (A4, D7. L) , D 7
EXT.L D7 \ s i g n e x t e n d
RTS

Notice that it used MOVE. L for the long member, and
MOVE. w and a sign extension for the short member. The
top of the Forth data stack is cached in D7, so the results
of the fetches are left there. A4 is a register that points to
the base of the Forth dictionary and allows us to build
relocatable code.

Forth provides other tools, including a Source-Level
Debuggerwith single step and multiple breakpoints. The

electronic music, animation, and 56Wbased digital signal processing. - I debugger also works with cloned images. A codcpefor- 1
May 1992 June 14 Forth Dimensions

rnance analyzer in JForth will periodically interrupt an
executing program and gather statistics on where it is
spending its time. Forth also provides local variables that
use the following style:

: TYPE/2 (addr cnt -- }

CNT 2/ -> CNT
ADDR CNT TYPE

A new feature of JForth is support for IFF ANIM and
ANIMBrush files. This utility lets you load animation
images from other programs to create animated displays.
The output of the Amiga can be plugged directly into a VCR
for simple home video.

These, and other features, combine to creak a powerful
Forth-based application development environment that
offers a real alternative for commercial developers.

HMSL
Hierarchical Music Specification Language

HMSL is an extension to Forth that provides MIDI
support, and object-oriented compositional tools. The
object classes include Shapes which are a general purpose
array of N-dimensional points. The data can represent a
melody, a tuning, a trajectory, or any user-defined parameter.
Another class, called Playen, schedules the conversion of
Shape data into musical or other forms of output. Jobs

-

Tap the Power of Your AMIGA "

a 32 bit Subroutine Threaded Forth
generates small, royalty free applications
complete Amiga DOS 2.0 toolbox support
simple IFF, ILBM and ANIM tools
source level debugger with breakpoints
object oriented dialect, ODE
hashed dictionary for fast compilation
local variables for more readable code
integrated, file-based, text editor
ARexx support for inter-application VO
FVG standard floating point support
Profile - code performance analyser
global, register-based optirniser
integrated assembler and disassembler
numerous examples and tutorials in manuals

Sorth was created by Delta Research:
serving Amiga developers since 1986.

Find out more about JForth or HMSL by callin{
Amiga is a registered trackmark of Commodore Business Ma

schedule user-written functions for repeated execution
Collections can contain Players, Jobs, or other Collections,
and allow you to create a complex hierarchy of music
objects.

HMSL supports standard MLDIfiles. Thus, you can use
HMSL to algorithmically create sequences for use with
other commercial music programs. An event bufferprovides
low-level scheduling of MIDI events and supports a text-
based Score Entry System. Here is an example of a simple
score:

HMSL provides a toolbox for building interactive screens
out of control grid objects like check boxes and faders.

The Amiga version of HMSL uses Forth. The Macintosh
version has its own built-in Forth. HMSL pieces are
generally portable between the Amiga and Macintosh
versions.

A number of the other features ofForth and HMSL are
mentioned in the accompanying advertisement, so I won't
list them here. If you are interested in JForth or HMSL, give
us a call and we can direct you to a discount retailer.

Experimental music for Macintosh and Amiga
HMSL is an object oriented extension to Forth with:

extensive MIDI toolbox, MIDI File support
tools for building your own user interfaces

, Markov chains, 1/F noise, graphical shape editor
I hierarchical scheduler for playing abstract data

tools for complex algorithmic composition
I support for Amiga local sound and samples
1 complete source code provided with manual

If your music is too unusual to create using
traditional music applications, write your own
using the tools HMSL provides. HMSL is being
used in hundreds of studios and colleges worldwide
by some of the today's most creative composers.
HMSL was developed by Frog Peak Music.

, or writing: PO Box 151 051, San Rafael, CA
:hines 94915-1051 USA (415) 461-1442

Forth Dimensions 15 May 1992 June

Markus Dahm
Aachen, Germany

At the Institute for Measurement Techniques at the
University of Technology RWTH Aachen, we have used
Forth since 1987. Our interdisaplinary workgroup has
developed medical image workstations. We have wrilten a
lot of software including memory management, image-
processing algorithms, fibre optics network coupling, and a
graphical user interface in our proprietary 32-bit Forth. The
psychologists in our workgroup conduct experiments con-
cerning the software- and hardwareergonomical aspects of
the design and functionality of the workstations using the
prototype image workstation.

Some of the student laboratory work in image processing
is done in Forth, which is picked up by the students usually
within half an hour. Within this short amount of time, they
learn enough to program image-processing algorithms.

So, for various reasons, the ease of understanding and
getting access to a complex system is of high priority for us.
For t h ~ ~ purpose, our existing 32-bit Forth did not provide
enough programming support and transparency, so we
conceived a new and object-oriented Forth.

Within one-half hour,
students learn enough Forth

to program image-processing
algorithms.

easily and directly via the keyboard, which makes debugging
easy. Forth supports--almost forces-the method of factoring,
which greatly enhances the clarity of programs and thus the
programmer's productivity and content.

Our main interest is to work with a programming
language that supports fast and easy understanding and
debugging, and thus allows rapid prototyping of user
interfaces by both engineers and, on a higher level, by
psychologists.

OOF strives to achieve this by combining the best of both
worlds by extending Forth following the paradigm of object
orientation in a strict sense. It provides all its amenities, such
as security, inheritance, and late binding. Thts is achieved by
strictly adhering to the concepts of data encapsulation, strong
typing, and message passing rather than direct procedure
calls. The system still has a small kernel that performs
everything from interpreting to compiling the source code in
a simple but smart fashion.

The principles of OOF and their consequences are best
explained by examples. The use of OOF is therefore
described step by step, from simple definitions of objects to
the creation andextension of classes and methods, explaining
the nomenclature and buzzwords of object-oriented lan-
guages en passant.

Here's How
Everything in OOF is an object. Every object is an object

The work was fUnded German for
Research and Technology, grant no. BhtFT/AuT-01HX577-
03, as part of the DIBA-project. Thanks to Maria Irene
Reis Lourengo-Kaierle for her work on the implementation

An Object-Oriented Forth
The paradigm of object orientation has been around for

quite a while but has recently received a lot of attention Apart
from the hype-it was even called the "silver bullet" to Shoot
~ ~ ~ ~ g t r o u b l ~ ~ t i s a ~ c a l a d v a n c e f o r ~ r o ~ ~
in terms of structure, clarity, readability and, thus, useability
of both the programming and the Program =ode,

Foldh's advantages are b e interactivity of the interpreted
language and the extensibiliV which allows the language to
be fitted to a special application, which make it suited for
non-expert users. Moreover, it enables you to test everythmg

of some class (e.g., integer or character); it consists of a data
field and a set of methods to manipulate the data. For
example, when you want to create an integer object s t a r t
or two character objects cl and c2, you write:

i n t e g e r : start ;
c h a r a c t e r : cl , c2 ;

ms shows one of the basic syntax elements, the
hcIaration, which in ~ ~ ~ t h only declares ~ ~ ~ ~ ~ d i ~ ~
to one of my favorite guidelines, simplification by generali-
ation, the colon is used in OOF as the general method of
declaration. It can be applied to any class that is known in
th, system in or&r to create objects (or instames) of t f i
class. If you want to declare more than one object of the same
class, the names of the objects separated by form a
list of objects to be kclared, terminated by a semicolon.

May 1992 June 16 Forth Dimensions

Figure One. Defining an instance method. I
i m : s i z e
((image : i ; -- i n t e g e r : s ; 1 1 i n t e g e r : p i x e l s ;))

i -> xdim i -> ydim * p i x e l s !
i -> b i t s / p i x e l p i x e l s * s !;

1 Figure Two. Usina individua! instance methods. I
o b j e c t s u b c l a s s : s t a t e ; \ d e f i n e c l a s s s t a t e
s t a t e i i m : keypres sed ((s t a t e : s ; -- 1)

A key was p re s sed" p r i n t ; \ d e f i n e d e f a u l t - r e a c t i o n
s t a t e : idle , i n p u t ; \ d e f i n e s t a t e s f o r s ta te -machine
id le i i m : keypres sed ((s t a t e : s ; --) I ., I d l e s t a t e : key" p r i n t ; \ d e f i n e i n d i v i d u a l r e a c t i o n

Actually, the comma is exactly the same method as the colon.
In some cases, the colon method needs some more parameters;
e.g., when defining a string, you want to give the maximum
number of charactes in the string:

30 s t r i n g : text1 ;

If, as a more elaborate example, you want to handle
images in your system, you defme the new class image. You
do not want to invent the methods anew for creation,
deletion, or debugging methods of objects every time you
define a new class. So you let image inherit all these prop
erties by declaring image a subclass of ob j ec t , the most
basic class of all classes, which already provides these
properties:

/ o b j e c t s u b c l a s s : image ;

image is now defined as an object of the class subc l a s s
and, at this moment, has exactly the same properties as the
class ob jec t . The subclass image is now going to be
extended in order to fulfill the purpose we defined it for. For
every image, you need to know, for example, its dimension
in x and y and how many bits are in a pixel. These data are
part of every object of the class image, i.e., that is an instance
of image. Thus, we have to define instance variables (i.e.,
instance objects, but "instance variablesn in the typical
nomenclature of object-oriented languages; in OOF it is
abbreviated as "IVn) of image:

image IV i n t e g e r : b i t s / p i x e l ;
image IV i n t e g e r : xdim , ydim ;

When you want to declare two new images i m l and im2,
you write:

image : i r n l , im2 ;

using the general colon declaration. Now you have two
image objects, each containing one set of the above-defined
instance variables. In order to achieve h e desired security
and consistency, the instance variables of any object may
only be modified by the methods that have been declared for

Forth Dimensions

its class, the instance methods (abbreviated as "im"). No
method defined for any other class may alter, or even read,
these instance variables. One method for the class image
might, for example, compute the size of an image in bits. You
can define h s method as in Figure One.

So s i z e is defined as an object of class i m What is known
as the stack comment (--) in Forth, has evolved to a full
declaration of input and output parameters as well as local
variables in 00F: ((-- I I) .

The parameters are defined in the same way as any object:
by the colon declaration. The method s i z e can refer to the
object hat was passed to it on TOS as i , the object that is to
be passed as the result can be referred to as s, and p i x e l s
is a local object. It goes without saying that you can define
as many of these temporaly objects (here: s , i , and p ixe l s)
a s you like. Their scope is only within the definition of this
method, they cannot be accessed from outside the method
They make possible clear and readable programming without
stack juggling, and they ensure that only the values declared
are popped off the stack and only the values declared are
pushed onto the stack as results. This is performed auto-
matically when entering and exiting the method according to
these declarations, thus enhancing security.

The instance variables xdim, ydim, and b i t s / p i x e l of
the image objjct i are accessed by the method ->, which
may only be called inside an instance method for that
particular class (here: image). This is called data encapsu-
lation and ensures that these operations can only be
performed on object data that you have explicitly allowed
and defmd to do so, again enhancing program security.

Note that, in order to push the value of, for example,
p i x e l s onto the stack, there is no method @ involved (and
thus cannot be forgotten any more). Every object lays itself
onto the stack when invoked. The low-level difference
between the object's value and its location is no longer
visible-there are only objects.

Making Passes
The above-defmed method s i z e for the class images

can now be applied to the previously declared image-object
(i m l by:

i m l s i z e

17 May 1992 June

Figure Three. Using shallow objects.

s t a t e A : a c t i v e ; \ c r e a t e s t h e sha l low s t a t e - o b j e c t " a c t i v e "
idle a c t i v e <- \ makes t h e sha l low s t a t e - o b j e c t " a c t i v e " a c t

\ a s i f it were t h e s t a t e - o b j e c t " i d l e "

Figure Four. Using shallow objects in individual instance methods. (
I

idle i i r n : keypres sed ((s t a t e : s ; --))

" Idle s t a t e : key, e n t e r i n g i n p u t s t a t e " p r i n t
i n p u t a c t i v e <- ; \ now make " inpu t " t h e a c t i v e s t a t e

Figure Five. Using the Do . . . Loop. I
i m : l o o p t e s t
((i n t e g e r : from , t o ; -- I I i n t e g e r : end , run ;))

from run ! t o 1 + end ! \ set l i m i t and index v a r i a b l e s
end run do

run p r i n t \ p r i n t t h e i n d e x v a l u e

l o o p ;

Non-object-oriented languages, such as Forth, call methods
directly: they compile the address of the code to be executed.
OOF instead sends a message to the object on top of the stack
00s). In its essence, a message is the name of a method to
be called. When a message is passed to the object 0 on TOS,
a method of that name is searched at run time in the list of
all methods available for objects of 0's class. When it is found,
the method is executed; if not, an error method is called. This
ensures that only valid code meant for objects of the given
class is run.

This mechanism also makes it possible to have the same
message sent to objects of different classes, where different
methods of the same name are called. This property is called
poIupmotphism. It saves inventing new names (e.g.,
print-integer, print-slring, etc) for the same function (print
an object) applied to objects of different classes. In particular,
it enables you to send the same messages that can be sent to
objects of class c, to objects of all subclasses of C that in-
herited the methods from c.

will be the individual response to still the same message.
W F code for this example might look like in Figure Two.

Shallow Objects
In almost every language, there is the notion of pointers.

A pointer is not an object itself but keeps only a reference to
an object. In Forth, every address can be interpreted as a
pointer to a data field. The syntax for dealing with pointers
can become very confusing (just think of C pointer puzzles)
and error prone. I abandoned the idea of a class pointer for
these reasons. Instead, Smalltalk inspired me to define
shallow objects. They are disguised as normal objects of a
class, but only bear a reference to another object. 'Ihey be-
ham exact@ as iftbgtwew the objects they keep the ~ f m e
to, you do not have to worry about their shallow nature. An
example is a shallow object of class s t a t e (see above) that
represents the active state of the state machine. It is created
and handled as shown in Figure Three.

Now, in order to send the message keypressed to the
momentarily active state, you write:

Methods for Individuals
Instance methods of a class have the same effect on every

object of that class, which is very desirable for consistency.
But sometimes you want to have different objects ofthe same
class to react differently to the same message. This is very
useful when you want to program, for example, a finite state
machine. There ate a number of states the machine can enter
and a number of possible events that can occur. rhis can be
implemented by modelling each state as an object of class
s t a t e , where each object is supposed to react specifically
to a message, such as "a key was pressed." This behaviour
could be achieved by means of a reaction table, but there is
a more elegant way which is an evolution of the concept of
message passing. OOF provides you with individual instance
methods(iin3. Adefault iimfor all instanes (objects) of the
class is defined when the class is declared. For every
individual object, a specific i i m can now be declared which

a c t i v e keypressed

which, at th~s point, sends the message keypressed to the
state object idle. Note that you need not perform some sort
of pointer-indirection-operation, the shallow object a c t i v e
automatically pushes the referenced state-object idle onto
the stack. The i i m keypressed of idle now can be ex-
tended, as shown in Figure Four.

Looping
The control structures are quite the same as in Forth. The

do . . . l e a v e . . . loop, however, was modified it still takes
Limit and index as parameters, but they must be given in the
form of local integervariables. This offers you the opportunity
to name the "functionsn that access the index and limit of the
loop (the former i and j) the way you like (and spares the
implementation to clobber the return stack with looping

May 1992 June 18 Forth Dimensions

/ Figure Six. Header of an object.]

name of object, terminated by 0, followed by a count-byte
object number of next object in list, e.g., vocabulary, etc.
object number of next object in list of all objects
object number of owner-object, e-g., owner of instance object
object number of module-object = vocabulary + source file

offset in source file
e.g., shallow/deep object, private/public, allocated/deleted

body size of object
object number of the class the object belongs to
object number of the object itself
object number of the object that holds the object's body
offset within the body

example, the body of an
image object is shown in
Figure Seven.

Objects may not be ac-
cessed directly by an ad-
dress, only via (16-bit) objeci
numbers (sometimes called
ha&). An object number
can be converted into a
memory address via the
Object Table, an array that
holds the memory address
of every object that exists in
the system. The address of
an o b j e ~ is determined by
using the object number as
an index into the Object
Table. Thus, it is possible to

information). The example in Figure Five shows how to use
this feature.

Implementation
OOF is not implemented by extending an existing Forth.

It is not based on clever use of vocabularies and create . . .
does> constructs. I did start defining it that way, since it Ls
the first and obvious way to any Forth programmer. But it
soon turned out that, if I used a standard Forth as a basis to
program OOF, the underlying Forth would either not be in
use any more when running OOF or it would induce
intolerable speed penalties. So the variety of new concepts
forced an entirely new kernel for O F . In the process, some
wrinkles in Forth were ironed out by strictly adhering to the
paradigm of object orientation. As with any Forth, the kernel
consists of some assembler primitives for arithmetic, I/O, and
special kernel functions-comprising the virtual machine
WM) of OOF-and the lion's share of the kernel is written
in OOF itself. This OOF source code is translated by a
metacompiler into the kernel's threaded code.

To make porting as fast and easy as possible, C source
versions of all VM functions exist Existing programs (e.g.,
image-processing libraries) written in C or other languages
can easily be linked to OOF. The metacompiler itself is
written in C as well. So, in order to port OOF to another host,
all you need for the beginning is a C compiler for that
machine.

In the following sections, I will describe in detail the
structure of objects, the concept of object storage, and the
consequences concerning access by the virhlal machine of
objects, the stack, and the execution of secondaries.

Handle with Care
Each object comiss of a header and a body. '& stru-

of the header is shown in Figure Six. It contains various
information about the context and mture of an object, as well
as information for debugging and the source of the definition
of the object The body of the object that contains its data is
located anywhere else in memory, in a contiguous memory
block. The body of a compound object that is built of instance
objects consists of the bodies of its instance objects. As an

Forth Dimensions

relocate an object without having to change every reference
to this object, only the entry in the Object Table must be
updated. Zhis is very important in an object-oriented system,
where objects are constantly created and deleted at run time,
causing the need for garbage collection and relocation of
objects.

Every objea has a unique object number. The corre-
sponding address from the Objjct Table points to the header
ofthe object, and the nature and state of the object can now
be deduced. However, since the body of the objea can be
stored anywhere else in memory, we need more information
in the object's description: a further object number gives the
address of the memory block w h e ~ the body is located. An
offset within the block must be added to this address to arrive
at the complete body address of the object. This process is
shown in Figure Eight Thus, a complete description of an
object consists of a reference to the header and a reference
to the body of the object.

This concept has great impact on the format of stack
entries. It makes sense to push onto the parameter stack not
only an address, as in Forth, but a complete object descriptor.
In order to speed up message passing, the object number of
the class of the object is added. When primitive arithmetic or
logical functions are executed, it would cause an enormous
overhead when a new object would have to be created each
time a result is returned. So, in the stack entry, there is a
value field that can hold the result of operations on basic
classes, such as integer, character, or even float. The com-
plete format of a stack entry on the parameter stack is shown
in Figure Nine.

Because the description of an object is divided into a
reference to the header and a reference to the body, one

Figure seven= Body of an image object. I
offsets

body of instance-object bits/pixel
+8 body of instancwbject xdim

body of instance-object ydim

19 May 1992 June

header can be used to de-
scribe many bodies. This b
the case for~instance objects.
E.g., every time an image
object is created, its body
contains the bodies of its
lhree instance objecfs: bits /
pixel, xdim, and y d i m
(Figure Seven). But a new
header is created only for the
new image object---there is
no need to create a new

Figure Eight. Accessing the body of an object. 1
objest-task = array -1 of memory addresses

object

= inde

nun

!x in

nber of

object

body

table

start

/

of block

header for each instance
object. The one header that
was built during the definition of the class image for each
instance object, describes the nature of the instance objects
completely. OUT and LOCAL objects of a secondary are
treated similarily: every time a secondary is entered, only
space for the bodies of these objects is allocated on the
parameter stack, no new header is created. So, in most cases,
no new header is constructed for new objects. This savcs
considerable amounts of both time and memory space.

Additionally, it turns out, access to the body of an object
is accelerated a great deal because there is only one
mechanism to arrive at the body address. No testing of flags
or considering of special circumstances at run time-which
takes longer than it takes to actually access the Object
Table--are necessary. The latter is especially impoftant for
the primitives, which should be as fast and efficient as
possible.

Once again, the principle of simplification by generaliza-
tion proves useful. Here, it saves space and time when
creating new objects, and simplifies and, therefore, speeds
up access to the body of an object. The next paragraph
describes how the appropriate stack entries are composed
according to the special nature of each object.

The Virtual Machine
The virtual machine (VM) of OOF consists of a number

of Body Evaluation Codes (BECs), the inner interpreter, the
primitives, internal registers, and the available RAM. It is the
machinedependent part of an OOF system.

A BEC is a piece of assembler code that performs a basic
hnction, such as pushing an object descriptor onto the stack,
sending a message to the objjct on TOS, and calling or
returning from a secondary. They are the counterparts of
Forth's CFA primitives.

The imer interpreter works similar to most Forths' inner
interpreters: a register of the virtual machine called OOFPC
points inside the body of a secondary, where the next entry
shall be interpreted. Each entry in a secondary consists of the
object number of a BEC followed by parameters for the BEC.
In order to speed up the interpretation, OOF compiles
references to the codes that evaluate the entries of the body,
daectly into the body rather than just storing a reference to
the object. Everyhng that is known at compile time about
an object to be compiled i s stored as the appropriate BEG and
the necessary parameters; so that, at run time, a BEC does not

--

u I
object numbers short

Figure Nine. Format of a stack entry. I --

-
object descriptor

have to test flags or search for its parameters somewhere else.
Since lots of kilobytes of memory are no big deal anymore,
space is no problem in most development systems. OOF
makes inaemental development and compilation possible,
so compilation speed is not critical. The emphasis in the
design of OOF's kernel is on execution speed, which is
always a critical issue in object-oriented systems. So, in OOF
compilation takes a bit longer and the code size grows, but
execution is sped up a great deal.

One by one, each entry of a secondary is evaluated by
calling the BEC that the OOFPC points to. At the end of every
BEC, the OOFPC is set to the next entry, the processor jumps
back to the inner interpreter, and the next entry in the body
of the secondary is evaluated.

The execution of a secondary shall now be explained in
detail. When a secondary is entered, the VM registers
SDELTq SFRAME, and OOFPC, and the objed number of the
secondary are saved on the return stack. Then SFRAME is set
below the Fist input parameter within the parameter stack;
now the stack frame starts with the stack entries of the input
objects for the secondary. SDELTA is calculated as SFRAME
- S~oT~OM(b0ttom of stackj, and space for the bodies of the
OUT and LOCAL objects is reserved on the stack by
decrementing TOS. After OOFPC is set to the first entry in the
body, the inner interpreter is ready to interpret the secondary.
Figure Eleven shows the contents of the parameter stack at
that time.

To explain the functions of the BECs, the evaluation of a
sample part of the secondary that was called when the
message s i z e was sent to the global image object iml, shall
now be traced Figure Ten shows both a sample of the body
of the method size and the appropriate contents of the
parameter stack after the execution of each BEC.

value (64 bit) class

May 1992 June Forth Dimensions

self body offset

I
- --

Figure Ten. Body of a secondary and parameter stack during execution
the method size sent to the global object iml).

I offset = o 1

pixels r l *

integer

bits/pixel

BEC LOCAL

offset = 20

offset = 16

BEC IM

pixels

class self body offset value

r image I iml 1 iml 1 0 I b

linteaer 1 bits/nixel I iml 1 4 1 b

[integerlimmediate I SBO'ITOM I SDELTA-32 1 product I
integer 1 immediate] SBOTTOM I SDELTA-32 I product

I SBOTTOM 1 SDELTA-16 I

BEC I N takes the offset parameter as an offset into the
stack frame and copies the stack entry at that location toTOS,
effectively pushing the current input parameter i r n l onto the
parameter stack. This is an example of the behaviour of
shallow objects: they do not appear on the stack themselves,
only the object they refer to.

BEC I V manipulates the stack entq on TOS as follows:
it adds the offset tothe o f f set onTOS, replaces c l a s s with
in teger , and s e l f with b i t s / p i x e l . The body object
remains the same, as explained above. Now the instance
object b i t s /p ixe l of the input object is on 'I'OS.

In order to push pixels onto the stack, BEC LOCAL

creates a new stack entry. Then it takes the parameter offset
as an offset into the stack frame, subtracts it from the contents
of the VM register SDELTA (equal to the stack frame- bottom
of stack) and places the result as the off set into the new
stack entry. The pseudo-object SBOTTOM (bottom of pa-
rameter stack) becomes the new body, c l a s s is set to
in teger , and s e l f is set to pixels.

The parameter of REC IM is a token that represents the
message *. The message is sent to the object on TOS, which
is now pixels . In the list of instance methods of the class
of the object on TOS (here: integer) , a method is searched
that matches this token. In order to speed up the search, this
list is 32-fold hashed. When the method is found, it is called;
if not, an error message that is guaranteed to be understood
by all objectssince it is defined in the kernel-+ sent to the
object.

The primitive for integer multiplication takes the two
integer objects off the stack and pushes an integer object with

Forth Dimensions

the product in thc value field of the stack entry. Self is set
to the pseudoobjjct-number imnediat e, indicating that there
is no valid header available for this object.

The OUT object s is pushed by BEC OUT the same way
p i x e l s was pushed.

The result of the multiplication is stored in s by the method
that was found when BEC IM sent the message ! to s.

Finally, thesecondary s i z e isexitedby BECEXIT, which
cleans the parameter stack by setting TOS to SFRAME, ef-
fectively freeing the space of OUT and LOCAL bodies in the
stack frame and taking the IN objects off the stack. Then it
pushes the OUT objects (here: s) onto the stack, rcstores the
VM registers SFRAME, SDELTA, and OOFPC from the return
stack, and resumes where s i z e was called.

Experiences with OOF
and Future Work

OOF was utilized to write a toolbox for graphical user
interfaces for image workstations. Since the OOF kernel will
be finished real soon now, we still have to gain experience
about how the system behaves in terms of speed. However,
early experiences about the impact on the style, clarity, and
ease of writing programs in W F are promising.

A very important lesson is that the way you tackle
problems changes when using OOF. You no longer think
about some data structure in the beginning and then write
lots of code manipulating it independently. After having
analysed your problem, you uy to build a hierarchy of class@§
that can represent the solution. Here you use the well-known
techniques of factoring and decomposition, which are

2 1 May 1992 June

I Figure Eleven. parameter stack at entqof secondai skq
- - .

1

Some words concerning standards: we have worked with
more-or-less standard Forths and were less than happy with
the environments and the support for non-trivial programs
written by more than one engineer. OOF might not be
suitable for tiny target applications or not fast enough for real-
time applications (which is still to be decided, thee is enough
room for optimization). However, OOF points out how to

SBO-ITOM= bottom of stack

not reachable by size SDELTA

SFRAME= stackframe
stackentries of INPUT objects -

resewed space on stac

TOS = top of stack

Markus Dahm received his Dipl. Ing. (electrical engineering) in 1987 at RWTH
Aachen, University of Technology, Aachen, Germany; abd his M.Sc. (Computer
Science) in 1988 at Imperial College, London, U K. He has been a research
assistant since 1989 at Lehrstuhl fuer MeBtechnik, R W W Aachen, DIBA-project,
working on user interfaces for medical imaging workstations. He can reached at
the following:

Lehrstuhl fuer Messtechnik, RWTH Aachen, Templergraben 55, D-5100
Aachen. Germany. Phone: +241- 80 78 64. Fax: +241- 80 78 71.
E-mail: SEG4DACTH51 .BITNET

tackle problems differently
but still in the good 01' Forth
style of writing and tcsting
small chunks of code incrc-
mentally and interactively. It
supports the programmerby
providing the integral order-
ing mechnisms of object-ori-
ented languages and by
adding security-by means
of strong type checking and
local parameters-to the ad-
vantages of Forth. Thus, W F
could show a way towards a

$ Contest Announcement $

Call for Papers!
Forfh Dimensions is sponsoring a contest for articles about

"Forth on a Grand Scalen
Write about large-scale Forth appl ica t ions , s y s t e m s , or . . .

"This theme applies equally to projects requiring multiple
programmers, and to applications or systems consisting of Cash awards to authors:
large amounts of code andlor of significant complexity."
("Editorial," FD X11116) Papers will be refereed. 1st pbce: $500
Mail a hard copy and a diskette (Macintosh 800K or PC 2nd place: $250
preferred) to the: 3rd place: $100

Forth Interest Group
P.O. Box 8231 San Jose, California 95155 Deadline for contest entries is August 3, 1992.

-- - .--

May 1992 June 22 Forth Dimensions

modernized, extended, sup-
already recognised good style in Forth and elsewhere. Data
structures and methods working on the data are tightly
coupled now. When you write a function in W F , fmt you
have to consider to which object you will be sending a
message to do the job.

Since OOF does a lot for you in terms of factoring or
deciding what to do in special cases, which is done by
inheritance, polymorphism, and message passing, code
tends to bc tighter and more to the point. You have more
control over what is going on in your program and you don't
get lost in an unordered heap of data and words. Last but not
least. it is more fun!

portive Forth living side by side with the current standard,
minimalistic, compact Forth.

The future will see an OOF system running all described
features, with optimized code for the kernel, more dasses,
ported versions on hosts such as PCs, Macs, and Unix
machines, and a full debugging cnvironrnent to make life even
casier. We will mn laboratory work for image processing and
protoyping of medical image workstations using OOF. Any
comments, annotations or additions are welcome. Stay tuned.

We hope our mnt! will not be misused for militarypurposes.
We will not take part in any militaryprojects.

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this fonn and send with your paymcnt to the Forth hterest Group.
Most items list lhree different price categories: USA, Canada, and Mexico 1 Orher countries via surface mail I Other ccuntrics ria air mail

Note: Where only two prices are listed, surface mail is not available.

I 'Were Sun You Wanted To Know ..."
Forth Dimensions, Article Reference 15.l - $415

An index of Forth articles, by keyword. from Forth L3im~nsions
Volumes 1-12 (1978-91).

FORML Article Reference 152 - $415
~n hdex of Forth articles by keyword, author, and date from the
FOKML Conference Proceedings (1980-89).

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May-April)

Vdume 1 Forth Dimensions (1979-80) 101 - $15/16118
Invoduction to FIG. threaded code, TO variables. fig-Forth.

Volume 2 Forth Dimensions (1980-81) 102 - $15116118
Recursion, file naming, Towers of Hanoi CASE contest, input
number wordset, 2nd FORML report, FORGET, VIEW.

Volume 3 Forth Dimensions (1981-82) 103 - $15116118
Forth-79 Standard,Stacks. HEX, database, music, memory man-
agement, high-level intermpcs, string stack, BASIC compiler,
recursion. 8080 assembler.

Volume 4 Fonh Dimensions (1982-83) 104 - $15/16/18
Fixed-point trig., fued-point square root, fractional arithmetic,
CORDIC algorithm, interrupts, stepper-motor control, swrce-
screen documentation tmls, recursion, recursive decanpiler, file
systems, quick text formatter. ROMmable Forth, indexer, Forth-
83 Standard, teaching Forth, algebraic expression evaluator.

Volume 5 Forth Dimensions (1983-84) 105 - $15116118
Computer graphics. 3D animation, double-precision math words,
overlays, recursive sort. a simple multi-tasker. metacompilation.
voice output. number utility. menudriven software, vocabulary
tutorial, vectored execution, data acquisition, fucd-point
logarithms. Quicksort, fixed-point square root.

Volume 6 Foxth Dimensions (1984-85) 106 - $15116118
Interactive editors, anonymous variables, list handling, integer
solutions, control structures, debugging techniques, recursion,
semiphores, simple UO words, Quicksorf high-level packet
communications. China FORML

Volume 7 Forth Dimensions (1985-86) 107 - $20m/25
Generic son. Forth spreadsheet, control structures, psuedo-
intermps, nmnber editing. Atari Forth, pretty printing, mde
modules, universal stack word, polynomial evaluation. F83
strings.

Vdume 8 Forth h e n s i c a s (1986-87) 108 - $20~2m
Interrupt-driven serial input, data-base functions. TI 991A.
XMODEM, on-line documentation, dual-CFAs, random
numbers, anays. file query. Bacher's son, screenless Forth,
classes in Forth. Bresenham linedrawing algorithm, unsigned
division, DOS file IEO.

Vdume 9 Forth Dimensions (198748) 109 - $20/22125
Fractal landscapes, stack error checking, perpetual date routines,
headless compiler. execution security, ANS-Forth meeting,
computer-aided inst~udion, local variables, transcendental iunc-
tions, educstim. relocatable Forth for 68000.

Volume 10 Forth Dimensions (1988-89) 110 - $20/22/25
dBase f i e access, string handling. local variables, data structures,
object-oriented F o d , linear automata, standalone applications,
8250 drivers. serial data compression.

Volume 11 Forth Dimensions (1989-90) 11 1 - S25122Ll.5
Local variables, graphic filling algorithms, 80286 extended
memory, expert systems, quaternion rotation calculation,
multiprocessor Forth, double-entry bookkeeping. binary table
search. phase-angle differential analyzer. sort contest.

Volume 12 Forth Dimensions (1990-91) 112 - 320f22125
Floored division, stack variables, embedded conml. Atari Forth,
optimizing compiler, dynamic memory allocation. smart RAM,
extended-precision math, intermpt handling. neural nets, Soviet
Forth. arrays, metacompilation.

FORML CONFERENCE PROCEEDINGS
F O W L (Forth Mdcation Laboratory) is an educational
forum for sharin and discussing new or unproven
intended to b e n e i ~or th , and is an educational forum &:%%
sion of the technicai as cts of applications in Fonh. Proceedin s
are a compilation of g e ape.rs and abstracts presented at J e
annual conference. FO& is part of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - $3001140
Address binding, dynamic memoly allocation, local variables,
concurrency, binary absolute 8 relocatable loader, LISP, how to
manage Forth pro'ects, n-level file system, documenting Forth,
~ o r t h structures, dorth strings.

1981 FORML PROCEEDINGS 3 11 .- $45148155
CODE-less Forth machine, quadruple- recision arithmetrc,
overlays, executable vocabul stack, Iata typing in Forth,
vectored data structures, usinzorth in a classroom, pyramid
files, RASIC,LOGO, autanaticcueinglanguage formultimedia,
NEX0S-a ROM-based multitasking operating system.

1982 FORML PROCEEDINGS 3 12 - $300 1/40
RockweUForthprocessor, virtualexecution,32-bit Forth, ONLY
for vocabularies, nci-IMMEDIATE looping words, number-
input wordset, VOvectoring, recursive data structures, program-
mable-logic oompder.

1983 FORML PROCEEDINGS 3!3 - $30/32!40
Non-Von Neuman machines Forth instruction set, Chmese
~ o n h , ~83,cornpiler & interpdter co-routines, log & exponential
function, rational arithmetic, transcendental functions in
variable-precision Fob, portable file-systcm interface, Forth
coding conventions, expert systems.

1984 FORML PROCEEDINGS 3 14 - $30/33/40
Forth expert systems, consequent-reasoning inference enFme,
Zen floating pint .pr table graphics wordset. 32-bit Eorth.
I!P71B Forth, NEO --objea-onented programming, decom-
pder design, arrays and stack variables.

1985 FORML PROCEEDINGS 3 15 - $30/32140
Threaded binary t w s natural language rsing small learnin
expen system, USP.~- in Forth. Ekg ~x;terpreter. ~d
parser m Forth, formal rules for phrasln Forth codlng
conventions, fast high-level floating point. krth component '

library. Forth & artScial intelligence, electrical network
analysis, eventdriven multitasking.

1986 FORML PROCEEDINGS 316 - $300U40
Threading techniques. Prolog, VLSI Forth microprocessor.
natural- u a p interface, expert system shell.inferenceen@ne,
multiple% entance system, automatic programming envlm-
ment.

1987 FORML PROCEEDINGS 3 17 - $40/43/50
Includes papem fmm '87 euroFORML Conference. 32-bit Forth.
neural networks, control structures, AT, op thkhg compders.
hypertext, field and record smctures, CAD command language,
object-oriented lists, trainable neural nets, expert systems.

1988 FORML PROCEEDEEDINGS 318 - $24E5/34
Human mterfaces, slrnple robotics kernel, MODUL Forth,
language topics, hardware, Wil's workings & Ting's philoso hy,
Forth harddw? applications, ANS Forth sesskm. funm of Arth
in apphcahons.

l988 AUSTWLIAN PROCEEDINGS. 380 - $24m134
Procehgs from the first Aus- Foah Symposium, held

1988 at the University of Technology in Sydney. Sub'ects
2 u d e training. padel pmpmmable contmhers.
Pmlog, simuldons, and applications.

1989 FORML PROCEEDINPS 3 19 - $40/43/50
Includes papers from 89 euroFORML. Pascal to Forth,
extensible optimizerforcampiling, 3Dmeanuement withob+-
oriented Forth, CRC polynomials, F-PC. Hams C cross-
compil~, modular approach to robotic control. RTX re~mpiler
for on-he maintenance, modules, mumble nwral nets.

1990 FORML PROCEEDINGS 320 - $40/43/50
Fonh in in dust^^, communicatims monitor. 6805 development
3-key keyboard. documentation techniques, object-oriented
programming, simplest Forth decompiler, error recovery. stack
operauons, process control event management, control structure
analysis, systems design course, group theory using Forth.

BOOKS ABOUT FORTH

ALL ABOUT FORTH. 3rd ed.. June 1990. Glen B. Haydon 201 - $9@'92/105
Annotated glossary of most Foxth words in common usage,
includingFonh-79. Forth-83. F-PC.MVP-Forth. Implementation
examples in high-level Fotth and/or 8086188 assembler. Useful
commentary given for each entry.

THE COMPLmE FORTH. Alan Wmfield 210 - 314/15119
A wmprehensive mtmduction, including prcblems with answers
(Forth-79).

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25/26/35
eForth is the name of a Foah model designed to be pomble to a
large number of the newer, more powerful p-sors available
now and becoming available in the near future. (wldisk)

F83 SOURCE. Henry Laxen &Michael Peny 217 - $20fZ1/30
A complete listing of F83, including source and shadow screens.
Includes introduction on getting started.

FORTH: A TEXT AND REFERENCE 219 - $31/32/41
Mahlcn G. Kelly & Nicholas Spies
A textbook a roach to Forth with can rebensive references to
MMS-~0~'IjEPand the '79 a& '83 F O ~ standards.

THE FORTH COURSE, Richard E. Haskell 225 -
This set of 11 lessons. called the Forth Cwne. is designed tomake
ir easy for you to learn Forth. The material was developed over
several years of teaching ~o r th as part of a senior/graduate uwrse
in design of embedded software computer systems at Oakland
University in Rochester, Michigan. (w/diik)

FORTH ENCYCLOPEDIA, Mitch Derick & Linda Baker 220 - $30/32/40
A detailed look at each fig-Forth instruction.

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25R6/35
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Same omversim advice is included.
Code is well documented.

FORTH NOTEBOOK II. Dr. C.H. Ting 232a - 325126B5
Colledion of research papers on various topics, such as image
processing, parallel p s s i n g , and miscellaneous applications.

INSIDE F-83, Dr. C.H. Ting 235 - $25/26f35
InvaluabIe for those using F-83.

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Terry 237 - s23n5ns
Comprehensive collection of professional quality computer code
for Fonh; offers mutines that can be put touse in almost any Forth
application, including expert systems and natural-language
interfaces.

OBJECT ORIENTED FORTH, Dick Pounrain 242 - $28/29/34
Implementation of data sttuctures. F i t book to make object-
oriented programming available tousers of even very small home
computers.

mACK COMPUTERS, THE NEW WAVE 244 - $62165fl2
Philip J. Koopman, Jr. (hardcover only)
Presents an alternative to Complex Instmction S d Com uters
(CISC) and Reduced Instruchm Set Computers (RISE) by
showing the strengths and weaknesses of stack machines (hard-
cover d y) .

STARTING FORTR (2nd ed), Leo Bmdie 245 - $29/30/38
In this edihn of Starting Fortk-the most popular and complete
introduction to Forih-syntax has been expanded to include the
Forth-83 St~dard.

TOOLBooK OF FORm v1 267 - $23KiL35
(D~Dobb's) Edited by Marlin Ouversm
Expanded and revised versions of the best Forth artides collected
in the ges of Dr.Dobb's Journal.
T O O ~ O O K , Vl with DISK (MS-DOS) 267a - W42150

TOOLBOOK OF FORTH, V2, (Dr. Dobb's) 268 - $30/32/40
lete anrhology of FORTH programrninmg techniques and

d20pments. picks up where V.1 left off. Topics include pmg-
ramming windows, extended control structures, design of a F d
target compiler, and more.
TOOLBOOK, V2 with DISK (MS-DOS) 268a - $46148156

WRKE YOUR OWN PROGRAMMING LANGUAGE USING C++.
Norman W t h 270 :$15/16/18
This book 1s about an application language. More -calIy, it
is about how to write your own custom application language. The
book contains the tools necessary to begin the pnxzss and a
canplesamplelansuage implmenta [Guess whatlanyage!l
Includes disk with complete source.

REFERENCE

FORTH-83 STANDARD 305 - $15/16/18
A~thori~tative description of Forth-83 Standard. For reference, not
mstmctlon.

SYSTEMS GUIDE TO fr -FORTH 308 - $25/28/30
C. H. Tin (2nd ed 8989)
HOW'S an%why'so?hefig-~orth~odel by~iU~agsdale,internPl
structure of fig-Forth system.

BIBLIOGRAPHY OF FORTH REFXRENCES 340 -$18/19/L5
3rd ed., January 1987) & r 1900 references to Forth articles thrwghout computer liter-

ature.

F-PC USERS MANUAL (24ed.. V 3 9 350 - 52OtZlt27
Users manual to the pubhcdomam Forth system opbmized for
IBM FCiXTlATcomputers. A fat, fast system with many tools.

F-PC TECHNICAL REFERENCE,MANUAL 351 - $30/32/40
A must fi you need to know the Inner worlongs of F-PC.

MORE ON FORTH ENGINES
Volume 10 January 1989 81.0 - $15116118

RTX rints from 1988 Rochester Forth C o d e m e , obJect-
orient?an~onh, lesser Forth engines.

l1 lul 1989 811 - $15/16/18
RTX suPPkenf to Foots~eps in on Empty YalIey. SC32.32-bit
Forth engine. RTX intempts utihy.

Volume 12 A rq 1990 812 - $15/16/18
S~B- b u architecture and instructions, Neural C
~ o d u l e ~ ~ h P 3 2 3 2 . ~ i ~ ~ o a h , binary radix sort on 8 0 2 8 T g t
and RTX2000.

Volume l3 October 1990 813 - $15/16/18
PALS of the RTX2000 Mini-BEE, EBForth, A Z F d , RTX-
2101 8086 eFoah, 8051 eFonh.

Volume 14 814 - $15/16/18
RTX Pocket6 eForth for muP20. ShBoom, eFolth forCP/
M & 280. X M ~ E ' M for e~orth.

Volume 15 815 - $15/16/18
Moore:New CADSystemfor Chi Design A portrait of the P2@
Rible: QSl. Forth Processor. Q S ~ RISCi;lg it all; P20 CF&
Software S~~nulatorlDebugger.

MISCELLANEOUS
T-SHIRT "May the Forth Be With You" 601 - $12/13/15

SIZC Small,Medium. Large, Extra-Largeonorderform)
m e s i on a dark blue shh.

POSTER (~u~fncwer) 602 - S5/6fl
FORTH-83 HANDY REFERENCE CARD 683 - free

i

DISKS: Contributions from the Forth Community F-PC ~3.53 , Tom h e r a00 - (5)
A full Forth system withpulldownmenus, sequentialfiles,editor,

The "Contributions from the Forth Community" disk library ccntains forward assembler, mctacanpiler. floating point Complete
author-submitted donations, genemu including source. for a variety source and he1 fdes. ManualiorV3.5 ayailable se rately (items
of compurers & disk formats. Each f& is determined by the author as 350 & 351). i ase for other F-PC applications. G. hard disk.
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" a lications. To s W your own conln-

IBIM, 83.

buiom, send them to the ~~C!sublicafions Committee. F-PC TEACH V3.5. Lessons 0-7 Jack Brown C201 a - (2)
Forth classroom on disk. First seven lessons on learning Forth,

Prices: Each item below comes on one or more disks, indicated in from Jack Brown of B.C. Institute of Technology. IBM, F-PC.
parentheses after the item number. The price of your order is per
disk, or $25137 for any five disks.

- VP-Planner Float for F-PC, V1.O1 Jack Brown C202 - (1)
Software floating-point engine behind the VP-Planner

FLOAT4th.BLK V1.4 Robert L Smith COO1 - (1) spreadsheet. 80-bit (temporary-real) routines with transcendental
Software floating-point for fig-, poly-, 79-S.td., 83-Std. functions, number UO su rt, vectors to sup
Foorths. IEEE short 32-bit, four standard funchons, square processor overlay & user EN checking. I B $ ~ & ! ~ ~ cc-
root and log. IBM.

F-PC Gra hics V4.2f. Mark Smiley C203a - (3)
Games in Forth CooZ - (1) The Patest versions of new graphics routines, including CGA,

Misc. games. Go. TETRA, Iife ... Source. IBM EGA, and VGA sup rt, with numerous im rovements over
earlier versions c rea t ror supported by Mark smiley. IBM, F-

A Forth Spreadsheet V2. Craig Lindley COO3 - (1) PC.
This model spreadsheet first apgeared in Forth Dimensions
W, 1-2. Those issues contain ocs & source IBM PocketForth V1.4. Chris Heilman q o o - (1)

Smallest complete Forth fortheMac. Access toallMacfunctlons,
Automatic Structure Charts V3, Kim Harris 004 - (1) files, graphics, floating int, macros, create standalone

' h l s for analysis of large Forth programs, first presented at applications and DAs. ~ a s e g fig & ~ f a r t i n ~ ~ o r t h . Incl. source
FORMLconference.F~ll1 source; docsinc1.h 1985 FORML and manual. MAC
Proceedings. IBM

Yerkes Forth V3.6 (350 - (2)
A Sim le Inference Engine V4, Martin Tracy COO5 - (1) Complete object-oriented Forth for the Mac. Object access to all

&sed on inf. engine in Winston & Horn's book on IJSP. Mac functions, files, gra cs. floating point, macros, create
takes you from pattern variables to canplete unification standalone ap ,cations. P" ncl. source, tutorial, assembler &
algorithm, with runnin commcntaryonForth philosophy 8c manual. MAE system 7.01 Canpatable.
style. ~ncl. source. I B ~

JLISP V1.O, Nick Didkovsky C401 - (1)
The Math Box V6, Nathaniel Grossman COO6 - (1) LISP interpreter Invoked from Amiga JForth. The nucleus of the

Routines by foremostmath authorin Forth. Extendeddouble- inte reter is the result of Martin Tracy's work. Extended toallow
precision arithmetic, complere 32-bit fmed-point math, & the ESP interpreter to link to and execute JForth words. It can
auto-ranging text. Incl. graphics. Utilities for rapid communicate with JForth's ODE (Object-Development

lynomal evaluation, conhnued fractions &Monte Carlo P " - . Environment). AMIGA, 83.
actonzatlon. Incl. source & docs. IBM

Pygm V1.3, Frank Sergeant csoo - (1)
AstroForth & AstroOKO Demos. LR. Agumirsian COO7 - (1) 1 lean, fast Forth with full source code. Incl. full-screen editor,

AstroForth is the 83-Std. Russian version of Forth. Incl. assembler and metacompiler. Up to 15 files qxn at a time. IBM.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in Worth. Gu Kelly C600 - (3)
AstroForth, calculates sky position of several objects from A full gorth s stem with windows, mouse, drawing and modem
different earth positions. Demos only. IBM packages. 1ncr source & docs. IBM, 83.

Forth List Handler V1. Martin Tracy COO8 - (1) ForST, John Redmond C700 - (1)
List rimitives extend Forth to provide a flexible, high- Forth for the Atari ST. Incl. source & docs. Atari ST. 1 environment for AI. Incl. ELISA and Winston & Mops V2.0, Michael Hore C710 - (1)
'Em's r n i c r c - ~ ~ ~ as examples. Incl source & docs. IBM ClosecousintoYerkesandNeon. Very fast, c a n iles subroutine-

threaded & native code. Object oriented. Uses !-P co-processor
8051 Embedded Forth, William Payne C050 - (4) if resent. Full access to Mac toolbox & s stem. Supports S stem

8051 ROMmable Forth operating system. 8086-to-8051 7 re.g., AppleEvents). Incl. assembler. dbcs & source. .d~
targetcompiler.Ind. source. Docs arem thebookhbedded
Controller Forfh for fhe 8051 Family. IBM BRL & Abundance, Roed Green C800 - (4)

~B~~ubl ic -domain , 12-bit ~orthwith extensive support of WS,
F83 V2.01, Mike Peny & Henry Laxen C100 - (1) meticulously o timized for execution speed. Abundance is a

The newest version rted to a variety of machines. Editor. $lic-domain 8atahsrlan uage written m BBL. Req. hard disk.
assembIer, d e m m s , metammpiler. Source and shadow cl. source & docs. IBM AD hard disk reequired
screens. Manual available separate1 (items 217 & 235).
Base for other F83 applications. I B ~ 83.

ACM - SIGFORTH
The ACM SIGForth Newsletter is published uarterly by the Volume 2, #3 905 - $617/9
Association of Computing Machinely, Inc. ~1C?Forth's focus is Tethered Forth model, abstracts 1990 SIGForth conf.
on the development and refinement of concepts, methods, and Volume 2, #4 90h - %flI"
techniques needed by Forth professionals. Target-meta-cross-: an engineer's viewpoint, single-instruction

Volume 1 S ring 1989 can uter - S6"'P
volume $#I Summer '91 F-PC, &ssary utility, Eurofonh. SIGFotth '89 Workshop 9G' - $6171'9

summa? (real-time software engineering). Intel 80x8~. Co-routines and recursion for tree balancing, convenient number
Volume 1 ummer 1989 handlin 901 - $6n'P

volume 3, d . ~ a l l ' 9 1 Metacompiler in cmForh. Forth exception handler, string case 908 - $6ff'P
statement for UFForrh. Postscript Issue, Whatis Posucript?. Fonh in Postscript, Review:

Volume 1, #3 Fall 1989 902 - $6fli9
1802 simulator, tutorial on multiple threaded vocabularies. PS-Tutor.

Volume 1, #4 Winter 1989 903 - $617l9 1989 SIGForth Workshop Praceedings 931 - $20L!lt26
Stack frames, duals: an alternative to variables, PocketForth. Software engineering, multitasking, intemptdriven systems,

Volume 2 ItZ December 1990 904 - $61W object-oriented Forth, errorrecovely andcontrol,virtualmemory
~ l d ~ a r s e r , abstracts 1990 Rochester conf.. F-PC Teach. suppott, signal processing.

MEMBERSHIP IN THE FORTH INTEREST GROUP
The Folth Inrerest Gmup (FIG) is a world-wide, nm-profit, manber- When you join. your first isme wiU arrive in four to six weeks: subsequent

supported organization with over 1,500 members and 40 chapters. Your issues wiU bemailedto you every othermonth as they arepublished-sixissues
membershipincludes asl~bscripim tothebimonthly magsdneFmfhDhmwm. in all. You will also receive a membership card and number which entitles you
FIG also offers its members an on-line data base, a large selection of Forth to a 10% discount on plblications fran FIG. Your member number will be
literature and o t k r s e ~ c e s . required to receive the discormt, so keep it handy.

Cost is $40.00 per year for U.S-A. & Canada surface mail, $46.00 Canada Dues are not deductible as a charitable contribution for U.S. federal income
air mail; all other countries $52.00 per year. No sales tax, handling fee, or tax purposes, but may be deduaible as a business expense where applicable.
dismun~ on membership.

FORTH INTEREST GROUP
P.O. BOX 8231 SAN JOSE, C M O R N I A 95155 408-277-0668 408-286-8988 (FAX)

Name I I OrPlCEUSDONLY 1
Company I I By- Date Tw- I I
Street Date I
City I I USPS XRDS

State/Prov. Zip I I wt. Amt I
Country

Day time phone

Item # Title QrY. I Unit Price

I 'MEMBERSHIP -* 1 SEE BELOW I

Sub-Total
CHECK ENCLOSED (Payable to: Forth Interest Group)

10% Member Discount
VISA MasterCard Member #

Sub-Total
Card Number

**Sales Tax (CA only)
Expiration Date

Mail Order Handling Fee $3.00
Signature
($15.00 minimum on a l l VISAIMasterCard orders) *Membership in the Forth Interest Group

New Renewal $40146152

* Enclosed is $4014662 for 1 full year's dues.
This indudes 534140146 for Forth Dimemwns.

PAYMENT MUST ACCOMPANY ALL ORDERS
MAIL ORDERS PHONE ORDERS PWCES
Send to: CP11408-2776668 AH orders muQt be prepid. Prim are
Forth Interest Gray, ta pkoe aedh card s u b j j to change without nor~ce. Crda
P.O. Box 8231 orders or for cud- card orden will be sent and billed at cur-
San Jose. CA 95156 omer service. rent prke6. $15 minimum on charge or-
U.S.A. Hours: Mon.-Frl.. ders. Checks must be In U.S. dollars.

Orm.4p.m.PST. drawnonaU.S.bankA$lOchargewiRbe
added for returned the.

POSTAGE & SUPPING TIME
HANDUWG Books in stock are shipped
Prices include within seven days d ol
shipping. The the order. Please allw 4-6
$3.00 handling weeks for out&-stock b h
fee ta required (d e l i i k In mwt will be
with all orders. much sooner).

** CAUFORETA SALES TAX BY COUNTY
7.Wb:Som; 7.75%: Frmno. Inperial. Inyo.
Madera Monterey. Orange. Riverside. Sacra-
mento. San Benito, Santa Barbara San Bernar-
dim. and San Joaquln; 825% Alameda Contra
Costa. Los A m p k . San Diego, San Mateo.
San Frandsm. Santa Clara, and Santa CNZ;
7 S % other counties.

XIV-

I P A ~ Two 0 F Two

I

The Curly Control
Structure Set

i Genoa, Italy

/ [Cont~nued from the previous issue . . . I

would mean ABORT, while COLD-CS AGAIN-TO would mean 1 10 20 3 LOOP{ I . LOOP) COLD-START. Additionally, OUTMOST-CS LEAVE-TO would
j types (20-10)/+3 = three numbers. These are: 10 13 16. 1 mean BYE.

Ceate a very large table. ?he available mmoty couki consist
of a non-integer part of celir. Nevenheless, the definiiim

words like BRANCH, TBRANCH, FBRANCH, and similar tech-
niques.

! For efficiency purposes when programming in machine

wont? correctly and do not cormpr unavailable tnemoty (this Additionally, an excellent idea appeared in the article, I depa?ds on the choice =iim:=di@step). 1 uLIfi\rrablc DO LOOPS: a return stack approach" by George

20 10 -3 LOOPI I . LOOP)
types (10-20)/-3 = three numbers. These are: 20 17 14.

Subtle txenise
i What gets typed by this phrase:
10 2 0 3 END BACK LOOP{ I . LOOP)

(Solutio+the same numbers, but in reverse order, as
10 2 0 3 END LOOP{ I . LOOP}. Tnatis, 16 13 10.)

MaxAvailableChunk (addr s i z e)

cons t an t Logossize cons t an t Logos
: LogosIni t

Logos Logossize C e l l SIZE

language for typical processors like 68xxx and 80x86 and
using assembler control structures, it may be necessary to use
the usual xBRANCH words, providing a less powerful set of
control structures Gut probably more than enough for

! assembler needs).
Forth processors, on h e other hand, are easily adaptable

to variations of the more power-ful solution, sometimes with
gains in efficiency.

In this article, I provide two implementations. One is a

Lyons (FORML 13-oceedings 2582, page 132). It is a pity that
such a good idea hasn'tbcen considered much in subsequent
works. Briefly, that idea consisls of compiling after the
kcginning of the control structure a pointer to the end of the

/ 68xxx implementation of the more powerful solution for
Implementation Preliminaries

1 I
Forth control structures. Ikcausc the code presented must be

It's possible to implement the above x t of control-flow readable by people using processors, pseudo-assem-
words in at least two different ways. First is by using the usual bier code is given where appropriate. so ifyou are interested

Forth Dimensions 23 May 1992 June

LOOP{ I o f f LOOP) ; ! controlstnlcture (and to o~her relevant pints, like 1 LEAVING {,

etc.). Afterwards, at run time, when we enter a control
: LogoBackSearch (logo -- f a l s e I addr t r u e) structure we have to push the address or the beginning onto

! Logos LogosSize c e l l SIZE BACK the return stack, along with other things like the irdex and
LOOP { ; step values, where applicable. Then any word, without need

dup I @ =

WHEN {

drop I t r u e
WHEN 1

of pointers compiled later, can jump to the beginning of the
control structure or, by using the pointer compiled at the
beginning, can jump to the end or to other relevant points.

The above solution, a little more refined, is very powerful
)COMPLETED{ drop f a l s e and provides really new possibilities, like the words AGAINS

I LOOPI ; 1 and LEAVES. 1 LEAVES is like LEAVE, 2 LEAVES leaves two
levels of nested control structures, 3 LEAVES leaves three

Siwle examfiles
10 19 3 End LOOP{ I . LOOP)

levels, etc. The concept of what is sttucnired and what is not
is cleaned up and some clarity is achieved.

types (1910)/+3 = three numbers. These are: 10 13 16. , pascal, C, and standard Forth dc not offer such po~~ibili-
ties. Besides (although the code isn't actually provided), it is

19 10 -3 End LOOP{ I . LOOP} possible to defined "named" control structures like LEAVE-
types (10-19Y-3 = three numbers. Th- are: 19 16 13. TO and AGAIN-TO. SO ttie sequence ABORT-CS AGAIN-TO

in the precise implementation but do not know the 6 8 m ,
please don't panic. (I found I am able to read 80x86
assembler easily without knowing the processor.)

Due to lack of time, I have been unable to present code
for the less powerful solution. For a preview, please refer to
the code provided in the article "Stack Variables (FDXII/I).
Sorry!

Implemen~on Explanation
The generic control structure has the following format:

xxxx(Maincode }ppppl{ somecodel
)pppp2{ someCode2
...
}ppppN{ someCodeN

xxxx !

xxxx may be any one of CONTROL, REPEAT, CASE, FOR,
TIMES, LOOP, and RECOVERABLY while ppppl, pppp2, etc.
can be any one of LEAVING, COMPLETED, ONERROR, etc.
Not every ppppx is applicablc to every xxxx.

So only some combinations are valid. Actually, the
maximum number of pppp's is two (LEAVING and CoM-
PLETED together or LEAVING and ONERROR together).

The position of reference points (pppp's) must be re-
corded at the beginning of the control structure, along with
the position of the end of the structure.

The control structures CONTROL, REPEAT, CASE, and FOR
can only use LEAVING, while TIMES and LOOP can also use
COMPLETED. The RECOVERABLY structure can use LEAV-

I N G and ONERROR
So with CONTROL, REPEAT, CASE, and FOR two pointers

are necessary-ne for the optional LEAVING p i n t (if the
 LEAVING^^^^^ doesn't exist, a -1 is storedin the pointer) and
another for the end of the control structure. See Figure Two
to understand the compilation effects of CONTROL, REPEAT,

CASE, and FOR
In TIMES and LOOP, three pointers are necessary-ne

for the havingpoint, one to the e d o f the control structure,
and one to the completed point (see Figure Three).

Upon entering a control structure, a "control-structure
return-stack framen is generated. A processor register CSF
(control structure framer) is reserved to point to the actual
frame, allowing access to index values from secondaries
called within the control structure or, more generally, while
using the return stack. The control-structure return-stack
frame is composed of both necessary and optional items, the
latter depending on the control structure. See Figure Four for
a description of the return stack frame in various cases.

The exact actions we have to take upon entering a control
structure are:
1. Dependng on the number of extra values needed (indcx,

step, and backcounter; or index only; or nothing), wc
have to adjust the return stack pointer to reserve space for
them.

2. We have to push onto the return stack the address
(absolute or relative) of the routine that will deallocate the
return stack andlor other resources related to the control
structure.

3. We have to advance the instruction pointer to skip over the
May 1992 June 24

pointers compiled after the beginning of the control
structure and let it point to the first word after the

b e w g .
4. We have to push the old contents of the CSF register onto

the return stack.
5. We have to push the contents of Ole adjusted IP to mark

the address of the beginning of the control structure.
6. Having completed the control structure stack frame, we

have to store into CSF the contents of the RP register,
letting CSF poinl to the new control structure frame.

On the other side, leaving the control struclure involves
the following actions:

1. Using the CSF register, recall the saved value of the IP
pointing lo the beginning of the control structure.

2. e t c h the pointer compiled at the beginning of the control
structure that points to the end.

3. Set the IP register to point to the first word after the end
of the control structure.

4. Use the address pushed onto the return stack that points
to the deallocating routine, and jump to that routine.
Standard cases are handled by three very similar routines
that deallocate the space used into the return stack, along
with the space occupied for extra data like the index, step,
and backcounter. Other control structures may have
much more complicated un-frarmng actions. Clhe flex-
ibility provided by pushing an address of an un-framing
routine, rather than a number of cells to deallocate, is
absolutely necessary for other control structures like
RECOVERABLY, TRACK, and LOCALS.)

Rationale for
Name and Notation Choices

The need to extend the set of control structures has been
described in many previous articles. What I'll describe here
are the choices peculiar to the set of control structures
proposed in this article.

The idea of using the same name at the beginning and end
of a control structure simplifies both the choice of names
when inventing control structures and their memorization by
the user when learning new ones.

I could have chosen, as in other languages, to write
REPEAT { . . . } or REPEAT begin . . . end without using a
REPEAT before the closing bracket. While this is possible
with very slight modifications to the presented code, I found
that readability and compile-time error checking are greatly
enhanced by specdying what is beginning and what is
ending, instead of asking the programmer to stack this in his
brain. If you try to program in C or Pascal, you'll soon realize
what I mean.

There isn't any real reason for selecting { and } for opening
and closing symbols instead of (and) , or [and] , or < and
>. The motivations are mainly aesthetical or practical ones
depending on the keyboard used: American, French, Italian,
Swedish, etc,

The choice to write xxxx { . . . xxxx) instead of xxxx {
. . .) xxxx, or [xxxx . . . xxxx), or { xxxx . . .) xxxx
depends on the fact that the word xxxx { could be written

Forth Dimensions

as xxxx CSbegin and that xxxx} could be written as xxxx
CSend.

In fact, I am uncertain of which to select:
TIMES { ... TIMES I
TIMES { ... TIMES }

TIMES{ ... 1
TIMES { ... I

Actually, the provided code allows TIMES { . . . TIMES 1
but also, while bcouraged, TIMES { . . .] and, sidarly, WHEN {

. . . WHEN] as well as WHEN [. . . } (useable for very short
WHENS).

So the { and) signs are read as "begin" and "end," while
the spehng used is postfur.

When you indent vertically, in my opinion
TIMES {

TIMES }

reads better than
TIMES {

}TIMES

Furthermore, locating the braces at the end of each word
helps indicate that the beginning of the control structure is
really outside the structure, so that in a loop it is only
executed once. I,ikewi.se, it helps indicate that the word
compiled at the end of the control structure is inside the
control structure, so it is executed repeatedly.

About the name choices, I haven't found anything better
for CONTROL (any ideas?). REPEAT and CASE are needed to
maintain historical continuity. FOR has been borrowed from
the C language, where it allows for the test of any condition
and the execution of any operation. The name FOR conflicts
with the established use of FOR NEXT, but I don't think that
is clear, either. (Wouldn't it be more appropriate as COUNT
BACK or FOR PREVIOUS, etc.?) Nevertheless, if someone has
a better name to propose, it is welcome.

TIMES is obvious, and reads well. WHILE has the same
meaningasbefore(andgainsmoreflexibility).WHENisshort
and could be renamed as ?LEAVE for clarity-but once used,
it is a good name.

In particular, I think WHEN [. . . WHEN} read very well.
}COMPLETED { is long and would be clearer if named
} ONCOMPLET I O N { , but I don't like typing so much.
]LEAVING{ means "while leaving.. ." and sometimes, but
not always, could be named }ELSE I .

Name choices depend mainly on personal taste, and the
discussion could go on forever without being really construc-
tive-so here it ends.

IF ELSE THEN
Forth's main control structure hasn't been changed for

several reasons:
Efficiency.
Code simplification (if the I F THEN structure generated a

return stack frame, a LEAVE embedded in it would have
the effect of leaving I F THEN instead of the outer control
structure).

Presumed psychological resistance from individuals (myself
Forth Dimensions

included) to so radical a change.

The main reason for leaving IF THEN unchanged is the
efficiency preserved. Nevertheless, many complaints have
been raised about its counter-intuitive syntax. While any
syntax becomes intuitive once it is learned, the time needed
to memorize a syntax depends on its relationship to previous
use (usually spoken language). New names for IF THEN that
follow the presented syntax guidelines are THEN [and THEN 1 ,
with the word IF acting like an optional comment word that
doesn't compile anythmg. So we could write:
IF 3 X @ > THEN{ ... THEN}

which is equivalent to
3 X @ > THEN{ ... THEN}

equivalent to the classic
3 X @ > I F ... THEN)

Thc syntax shown is probably more teachable than the
old one. But I resisted the temptation to rename it, because
my goal wasn't to offer new names for old words but to offer
new possibilities in a coherent, unitav frame.

Future Directions
I already have some ideas of how to expand the presented

control structure set, but I am still experimenting with these
extensions. When they become more stable, I will present
them. Meanwhile, here are some ideas to think about.

RECOVERABLY
RECOVERABLY {

code. t o . execute
}ONERROR[e r r o r . hand le r

RECOVERABLY }
(See provided code for more elucidations.)

MUL 7ZLOOP
((s t a r t 0 s tep0 s t a r t l s t e p l ... s t a r t N s t e p N))
#t imes
MULTILOOP{ ... I 0 I1 I 2 e t c .
MULTILOOP }

Iterate a loop that takes a variable number of starts and steps
and, at any iteration, moves all the indices together, eachwith
its own step. The loop must be executed #times.

7RACK
Every word that allocates a resource (e.g., files, memory,

windows, hardware, etc.) must place into a stack variable or
onto the stack an identifier for the allocated object and for the
deallocating routine. Leaving the TRACK structure for any
reason must have the effect of deallocating, in addition to the
return stack, all the resources allotted within the above
structure.

The LEAVE action may bc executed as the result of a
LEAVE, WHEN, WHILE, or simila r word, or due to an error that
happened inside a word called directly or ~ndirectly within
the TRACK structure. (Pay attention to the implementation of
LEAVES and ERROR)

25 May 1992 June

Articles on Control Structures

For& Dimensions
Vol. 1 No. 3 "D-Charts," Kim Harris.
Vol. 1 No. 5 Case statement contest.
Vol. 1 No. 5 "Forth45 Case Statement," Richard B. Main.
Vol. 2 No. 2 "A Generalized LOOP Construct for Forth," Bruce

Komusin (multiple WHILES).
Vol. 2 No. 3 Case contest
Vol. 2 No. 3 "The Kin Peak GOD0 Construct," David Kilbridge.
Vd. 2 No. 4 "Case Statement," Bob Giles (letter).
Vol. 2 No. 4 'The CASE, SEL, and COND Structures," Peter H.

Helmers.
Vol. 3 No. 1 "Compiler Security," George W. Shaw.
Vd . 3 No. 3 "Multiple 'WHILE' Solution," Julian Hayden (letter).
Vol. 3 No. 6 "Cases Continued," John J. Cassady.
Vol. 3 No. 6 "Eaker's CASE for 8080," John J. Cassady.
Vol. 3 No. 6 "Generalized CASE Structure in Forth," Edgar H. Jr. Fey.
Vol. 3 No. 6 TASE as a Defining Word," Dan Lemer.
Vol. 3 No. 6 "Eaker's CASE Augmented," Alfred J. Monroe.
Vol. 3 No. 6 'Transportable Control Structures with Compiler

Security," Marc Perkel (LEAVE discussion).
Vd. 4 No. 3 "Forth43 DO LOOP," Robert L. Smith.
Vol. 4 No. 3 "Forth-79compatible LEAVE for Forth-83 DO LOOPs,"

Klaxon Suralis.
Vol. 5 No. 3 "Yet Another Case Statement," Marc Perkel (letter).
Vol. 5 No. 3 "RPN Blues-Revisited," Horst G. Kroker.
Vol. 5 No. 3 "Forth43 Standard," Robert L. Smith.
Vol. 5 No. 3 *Forth-83: a Minority View."
Vol. 5 No. 4 "Forth43 Loop Structure," Bill Stoddard.
Vol. 5 No. 5 "Within WITHIN," Gary Nemeth.
Vol. 5 No. 5 "A More General CASE," Martin Schaaf Qetter).
Vol. 5 No. 5 "Just One Exit in Case," Ed Schmauch (letter).
Vol. 5 No. 6 "Do.. .When.. .Loop Construct," R.W. Gray.
Vd. 5 No. 6 "DO.. .LOOP 83 Caution," Nicholas Pappas.
Vol. 6No. 1 "Pamas' it;. .ti Structure," Kurt W. Luoto(subcases COR

CAND).
Vol. 6 No. 1 "More on WITHIN," Rich Leggit (letter).
Vol. 6 No. 2 "Forth Control Structures," David W. Harralson.
Vol. 6 No. 4 "ANDIF and ANDWHILE," Wendall C. Gates.
Vol. 6 No. 6 *Enhanced DO LOOP," Michael Hore (fallthrough).
Vd . 6 No. 6 "Techniques Tutorial: YACS," Henry Laxen.
Vol. 7 No. 1 "YACS, part two," Henry Laxen.
Vol. 7 No. 1 "Another Forth-83 LEAVE," John Hayes.
Vol. 7 No. 3 "Improved Forth-83 DO LOOP," Dennis Feucht.
Vol. 8 No. 4 "Second Take: Multiple Leaves by Relay," Richard

Miller (letter).
Vd . 8 No. 5 "Ultimate Case Statement," Wi Baden.
Vol. 12 No. 2 "Interactive Control Structures," John R. Hayes.

FORML Proceedings
1981 "Unravel and Abort. Improved Error Handling for Forth,"

David Boultoo.
1981 "A Generalized Forth Looping Structure," Robert Berkey

(COUNTS RANGE).
1981 "Comprehensible Control Structures," Howard Jr. Goodell

(new syntax).
1982 "Non-Immediate Looping Words."
1982 "LEAVEable DO LOOPs: a Return Stack Approach," George

Lyons.
1983 "Modem Control Logic," Wil Baden.

1983 "Error Trapping, a Mechanism for Resuming Execution at a
Higher Level," Klaus Schleisiek.

1982 "Proposed Extensions to Standard Loop Structures," Kim
Harris and Michael McNeil.

1983 "User-Specified Error Recovery in Forth," Don Colburn.
1984 "Doubling the Speed of Indefinite Loops," Michael McNeil.
1984 "An Improvement Proposal for DO +LOOP Structure," John

Bowling.
1984 "Yet Another CASE," John Rible.
19% *Error Trapping and Local Variables," Klaus Schleisiek.
1985 "Interpretive Logic," Wi Baden.
1985 "Improvements in Error Handling," Loring Cramer.
1985 "Error IIandling Using Standard Compiler Directives," Frans

Cornelis (definition of QUIT).
1985 "Extending Forth's Control Structures into the Language

Requirements of the Ws," David W. Harralson.
1986 "Charting, Escaping, Hacking, Leaping Forth," Wil Baden.
1986 "Extended Forth Control Structures for the Languages Re-

quirements of the lws," David W. Harralson.
1987 "Loops and Conditionals in LaForth," R o k r t L. Smith.
1987 "Interpreting Control Structures the Right Way," Milch Bra-

dley.
1987 "Forth Control Structures for the Language Requirements of

the 1990's," David Harralson.
1988 "GOTO: A Proposal," C.H. Ting.
1989 "Have Dot-if Dotelse Dot-then," Klaus Schleisiek-Kern.
1989 Control-Flow Words from Basis 9," Wil Baden.
1989 "Pattern-Matching in Forth," Brad Rodriguez (interaction

between control structures and pattern matching).

Rochester Forth Conference Proceedings
1981 "Transportable Control Structures," Kim Harris.
1982 "The Importanceofthe Routine QUIT," Hans Nieuwenhuijzen.
1982 'Techniques Working Group," Rieks Joosten.
1984 "Hello, a Reptil I AM," Israel Urieli.
1985 "REvised REcursive AND? 'REPTIL :ISn Israel Urieli.
1985 "Exception Handling in Forth," Clifton Guy and Teny

Rayburn.
1986 "Do-Loop Exit Address in Return Stack and ?leave."
198889 not available to author
1990 "Non-Local Exits and Stacks Implemented as Trees," R.J.

Brown (abstract).
1990 "Cryptic Constructs," Rob Spruit.

Dr. Dobb's Journal
9/83 "Nondeterministic Control Words in Forth," Louis L. Odette.
1/84 "Nondeterminism Revisited," Kurt W. Luoto.
11/86 "Extended Control Structures," Wil Baden (letter).

Miscellaneous Sources
"Adding GOSUB to Forth," Michael Ham. Computer Language 41

86.
"A Fast and Versatile Control System Using High-Level Program-

ming," I Ohel. Motorcon 81 Conf.
"Extensibility w-ith Forth," Kim R. Harris. Proceedings of the West

Ccuzst Computer Faire (date d a) .
"Data Structures Issue," James Basile. JournalofForth Application

and Research Vol. 2 No. 1.

May 1992 June 26 Forth Dimensions

xxxx{ SomeCodel
SomeCode2
SomeCode3
SomeCode4
SomeCode7

I
WHEN
WHILE

WHEN{ SomeCode5 WHEN)

WHILE{ Somecode6 WHILE)
}LEAVING{ CodeToInsert xxxx)

Figure Seven. /

Figure Eight.

xxxx(Somecodel WHEN { CodeToInsert WHEN)

Somecode2 WHILE{ CodeToInsert W H I L E)

SomeCode3 WHEN { Somecode5 WHEN)

SomeCode 4 W H I L E { SomeCode6 W H I L E)

SomeCode7

Such an error, besides resuming execution at the level of
the first error handler above the TRACK structure, will also
have the automatic effect of deallocating the resources
allotted within that structure without leaving open fdes,
unused memory, etc. In addition, if the TRACK) word is
reached, resources still left intact will be deallocated auto-
matically.

LOCAL9
The locals solutions can be viewed at the internal of the

control structure frame. The syntax could be:
(x l o)
L{ A B C -- ... code ... L)

Conclusions
I hope to have shown that the presented control structure

set is easy to use and learn, powerful, expandable, uniform,
and unifying. More work has to be done onthe RECOVERABLY
and TRACK structures, and on the pattern-matching problem
that is related to control structures. Is anybody willing to
implement the above structure set for the 8086 processor on
another system (F-PC, for example) and to present the
developed code? Does anybody have any new control
structure?

Has anybody encountered inconsistencies in the above
set of words? I would be very glad to discuss the positive and
negative issues of this wordset and any problems that remain
unresolved.

Speculating on the structure of Forth engines, I believe I
have found ways to render these control structures "pipelinc-
ablen and as efficient (or more so, due to pipelines) as normal

Does anyone have the ability to do benchmarks of various
solutions? Are modifications needed to achieve maximum
performance?

How does this wordset compare to other solutions in
Forth or, more generally, to the control structures of other
languages? Are there ideas to borrow from other languages?

If, as is the case, flexibility and freedom are the best
characteristics of Forth, let's use them to our best advantage.

And to conclude our story:

AUTHOR
(tired, observing the reader)

Do you like all this?

READER
(thinking)

Hmm! Have you got the code for this?

AUTHOR
(serious)

Sure, on the following pages!. (Becoming impatient) But
tell me, do you like it?

READER
(smiling)

Let me try, my friend. I'll ~ r y thc code and tell you.

AU'rHOK
(thinking silently)

.. .. .Forthers arc never satisfied. .. very, very strange people.
branch words. If fact, variations of thc abovc schcmc arc
easily adaptable on some Forth engines to nln as fast as thcair
branch equivalents. For structum like BEGIN WHILE RE- Delta Research 15
PEAT in particular, pushing the address of the beginning of

.............................. the structure onto the return stack means that, without Forth Dimensions .22

compiling offsets, the code is relocatable automatically while The Forth Institute 44
given the efficiency of subroutine return (or better program Miller Microcomputer Services .5
counter load from the top of the return stack); and we are able The Saelig Company 13
with "slightn processor modifications to execute an AGAIN
concurrently with some other data stack manipulation. L Silicon - -- Composers -- -- 2

Forth Dimensions 27 May 1992 June

\ W h e n t he s i z e is unspecified de fau l t is long.
\ B> W> L> mean respect ive l ly "byte move," "word move," "long move,"
\ The assembler chooses always best form f o r ins t ruc t ion .
\ That means t h a t add, may compile
\ addg (add general) addq (add quick) addi (add immediate)

\ and move may compile moveg (move general) moveq (move quick t o da ta reg 1
\ o r movei (move immediate) . For address r e g i s t e r s , s i z e is i n i n f l u m t
\ so a long immediate move may be c m p i l e d a s word inmediate move
\ and a long adda (add t o address r e g i s t e r) may be canpiled as w r d
\ immediate adda (i f t he immediate value is s m a l l mmgh 1.

1 : CodeAddrOf ("name"1nputStream - Pfa) ' c f a [compile] literal ;
irrmediate

macro : CSbeg ining CSF () macro; \ Observe f iqure 5 t o understand t o
, macro: OldCSF 04 CSF I) macro; \ what make reference t h e above words.

macro: r e l ease r IZ18 CSF I) macro; \ CSF I) means i n f o r t h pseudocode:
macro: Index 0f3 CSF I) macro; \ "CSF @ +"

macro: S tep 0E CSF I) macro; \ Step and counter are used by t h e
macro: Counter 12 CSF I) macro; \ loop s t ruc tu re .

macro: OldErrorCSF 0 E CSF I) macro; \ OldErrorCSF and OldSP are used
macro: OldSP 12 CSF I) macro; \ by t h e recoverably s t ruc tu re .

va r i ab le 1astErrorCSF 1astErrorCSF off \ Contains t h e value of tk CSF of t h e
\ l a s t FECDVERABLY s t ruc tu re .

macro: IPtoBegining, \ S e t t h e in s t ruc t ion poin ter t o polnt to the
CSbegining IP 1> \ begining of t h e control s t r u c t u r e while

CSF RP 1 > \ r e se t ing the re turn s t a c k to be as when t h e
macro; \ control s t r u c t u r e was entered. This is necessary

\ t o allow an AGAIN beeing executed by a
\ secondary ca l l ed within t h e control s t ruc tu re .
\ w i t h t f i l l i n g the RetStack with unnecessary addresses.

macro: IPbeg>end , - 2 I P I) IP w. add, macro;
\ Assuming the Ins t ruc t ion Pointer (IP) points t o t h e begining of t h e cont ro l
\ s t r u c t u r e make it point a f t e r t h e end of t h e control s t r u c t u r e (f igu re 3

macro: unframe, (#ofpxtra-cells-onRS --)

0 1 d W CSF 1> \ Restore t h e old contents of the W r e g i s t e r
c e l l s Q)CI + ## RP add, \ while freeing f ran t h e re turn s tack the space

mac ro ; \ used f o r t h e control s t ruc tu re .

c r e a t e r e l e a s e r s
code Fbmframe 0 unframe, rts,
code lunf rame 1 unframe, rts,
code 3unframe 3 unframe, rts,

code REcoGBELY re 1 ease
LastErrorC=SF QpcI) a0 l ea ,
oldErrorCSF a0 0 1>
3 unframe,
rts,

\ code otherf?eleaset-s ...

end-code \ Unframe a re turn s t a c k frame
end-code \ w h e r e t h e space occupied by
end-code \ e x t r a values (index s t e p ecc)

\ is of 0 , 1 o r 3 c e l l s .
\ More e labora te behaviwr to
\ unframe a recoverably cont ro l
\ s t r u c t u r e frame.

md-code
end-code

macro: frame, (re leaserMdr #extra-cel ls-onffi #of -cmpilerj-pointers)

>r (#extra-cells-onRS) cells ## W w. sub, \ Reserve space on RetStack f o r Extra c e l l s
(r e l e a s e r w d r) releasers - ## w. rpush, \ push o f f s e t of unframing routine.

r> (#of -compi l edp in te r s) 2% ## IP w. add, \ Wake t h e IP point t o t h e f i r s t word
\ a f t e r the control s t r u c t u r e start.

CSF rpush, IP rpush, W CSF 1>
macro; \ push o ld CSF push start IP addr set new CSF

May 1992 June 28 Forth Dimensions

macro : Resources.WtSrelease, \ execute the unframing routine
releasers A p c I) ALZ) lea, \ Load ALZ) with the base addr of unframing routines.
releaser A8 w. add, \ M d the unframing routine offset to the base addr.
40 (1 jsr, \ Jump subrartine to the routine.

macro;

code LENE IPtoBegining, IPbeg>md, Rescxlrces&RSrelease, next, end-cde
\ move IP to begining. Move it to end . Execute unframing routine.

code fromBeginingLeave IPbeg>md, R~rces&USrelease, next, end-code
\ special case more efficient L l3VE

\ Beeing at the mining of the control structure we want to jump to
\ the LWVIffi WrPLETED or similar points if they exist.
\ Ottwr wise tEAE the control structure directly.
macro: frcinEiegl\EXTtoReferencePoint, (offset-of-pointer-to-ref.point --)

(offset = -2,-4,-6) 1P I) d0 w> \ offset IP @ + w@ d0 w!
0<, CodeAddrOf framBeginingLeave CCabranch, \ No ccde provided for LEAVING

\ or COMILETED. LEA= out directly.
d0 IP w. add, \ m v e to the reference point: d0 w@ IP +!
next, \ and continue executim.

macro ;

macro: frwnBegNEXTtoleaving, -4 f romBegNEXTtoRef erencepoint , macro;
macro: f romBegNEXTtoCcmpleted, -6 f romBegNZXTtoRef erencePoin t , macro;
macro: fromBegNEXTTOChError, -6 f romBegNEXTtoRef erenceoint , macro;
\ Beeing at the begining of a control structure go to a specific reference point.

code NegError error", #times is negative" md-cde
\ from assembly issue an error -sage.

macro: NdUegativeTimes, 0 C , CadeFWdrOf NegError CCabranch, macro;
\ if the condition code flags signal a negative value issue an error message.

macro: ChlyPositive, NdUegativeTimes, 0=, if, next, then, macro;
\ If the Cond Code flags signal a negative number issue an error ,
\ If a they signal a 0 number stop here withbut doing nothing else.

code LEAVES (#timesToleave -)
dl pop, ChlyPositive, \ continue only if the #times is positive
dl wtimes<, IPtoBegining, IPbeg>end, Reuxlrces&RSrelease9 wtimes),
\ Unframe t b return stack for #timesToleave times.
next,

end-code

code CSGAIN (-- IPtoBegining, next, end-code \ Continue from the begining
\ of the control structure.

code F\GAINS (#timesToQgain -) \ Resume execution from the bqining of tl
dl pop, ChlyPositive, 1 ## dl sub, \ n-th outer control structure.
dl wtimes<, Rescxlrces&RSrelease, wtimes), \ So n-1 control structure frames
IPtoBegining, next, \ must be unframed.

md-code

code (SIPPLE() (-) \ It gets compiled by M 3 M W t - C or FiEPEATC .
CodeWdrOf 0unframe (releaser) 0 (extra values) 2 (#pointers) frame,
next, \ when we enter CONTROL or REPEAT we have only to make a control structure frame.

end-code

Forth Dimensions 29 May 1992 June

code (INDEXED0 (value -) \ It gets canpiled by FOR{ or CASE{ .
CodeFddrOf lunframe (releaser) 1 (extra value) 2 (#pointers) frame,
index pop, \ when we w ~ t e r FCR and CASE besides making a control structure frame
next, \ reserving space for the index we have t o set the i n i t i a l index value.

md-code

macro: ?Cwnplet&, (--) 0<, i f , fromBegEXTtoCompleted, t h , next, macro;
\ i f the backcounter i s negative the loop must go t o the CUPPLETED clause or
\ i f M3FPLEm doesn't exist i t must LEAVE the control structure.
code (TIMES{)

CcKJeAddrof lunframe (releaser) 1 (extra value) 3 (#pointers) fraine,
index pop, NonegativeTimes, \ issue error i f negative #times.
1 ## index sub, ?Completed, \ p r e d e c r m t the backCau7ter and i f i t i s

end-code \ 0 go to WFPLETED (of leave i f COMPLETED i s absm-tt)

code (TIMES))
IPtoBegining, \ set the IP to the m i n i n g of the control structure.
1 ## index sub, ?Completed, \ decr-t the backCcxlunter and i f exausted go

end-code \ t o COM)LETED (or leave i f MmETED doesn't ex is t)

code (LOP{) (begining #times step --)
CodeFMdrOf Junfrarne (releaser) 3 (extra values) 3 (#pointers) frm,
step pop, camter pop, NdVegativeTimes, index pop,
1 W counter sub, ?Completed,

end-code
\ make the control structure return stack frame reserving space for 3 extra
\ values. Set the step value set the backcounter value (checking that i t i s n ' t neqatlve)

\ set the index start ing value, p r e d e c r m t tk backcounter value
code (LM3P))

IPtoBegining, step d0 L> d0 index add, \ go t o the control structure star t .
1 ## camter sub, ?Completed, \ Add the step to the index , decrement

md-code \ the backcounter check i t ecc.

code (RE-Y C) (--)

CodeFMdrOf RECDVERABLYRelease (releaser) J (extra values) 3 (polnters) frame,
1astErrorCSF ApcI) AID lea, \ Save the o ld value of the varlable oldErrorCSF
AQ) () oldErrorCSF 1> \ on the return stack as an extra value.
SP old- 1> \ Save the Stack pointer poslt~.on on the RetStack.
CSF AQ) 0 1> \ Set the new value of the oldErrorCSF pint t o the actual
index c l r , next, \ return stack f ram. Set the l n l t ~ a l value of the lndex

end-code \ to 0 . The lndex counts the #tunes an error occured u n t l l
\ now.

code ERROR
repeat<, 1astErrorCSF FlpcI) CSF cmp, <>, whlle, \ Lhwlnd the return stack to

Resources&RSrelease, repeat>, \ reach the m r e recently
1 #W ~ndex add, IPtoBegining, fromBegbEXTtoOnerror, \ set error handler and

end-code \ s ta r t executing the
\ ONERROR clause.

code 3ERROR (f lag -) \ Do Error l f the f lag 1s
d0 pop, a<>, CodeAddrOf ERRGR CCabranch, next, \ true.

end-code

code ErrorPropagate \ BackPropagate the error to
Resources&RSrelease, always, CajeCMdrOf Ef?lXR CCaBranch,\ the p rev ias error handler.

end-code

code StackMark (--) SP oldSP L> next, end-code
code StackRestore (-) old= SP L> next, end-code \ reset the stack to the level

\ i t had when the error handler
\ had been set.

May 1992 June 30 Forth Dimensions

code lcHEN (f l a g --)

d0 pop, 0 0 , i f , IPtoBegining, frwnBegEXTtoleaving, then, next ,
end-code \ i f t h e f l a g is true go t o t h e LEAVING c l ause or i f it d o e s n ' t e x l s t B V E the CS

code WILE (f l a g -)
dB pop, 0=, i f , IPtoBeqining, fromBegNEXTtoLeaving, then, next ,

e n d i o d e \ same a s "0= IrMEN"

macro: ?enter , (condit ion --)

i f , 2 ## IP add, next , t h , \ " 2 ## IP add, " compiles addq,
IP)+ IP w. add, next ,

macro; \ a word pair beginner (l i k e WjEN{) has t o decide i f the code between
\ t h e word p a i r has t o be executed or skipped. I f t h e condit ion is true
\ we execute t h e c d e between the word pa i r .

code (W C) (f l a g --) d0 pop, 0 0 , ?enter , md-code
code (W I L E 0 (f l a g --) d 0 pop, 0=, ?enter , md-code

code (O F 0 (number-to-compare-against-index)
d0 pop, index d0 cmp, =, ?enter , \ execute t h e p a i r code i f t h e index

end-code \ equa l s tk? s tack a r g m t .

\ Forth d e f i n i t i o n of WITHIN is:
\ : WITHIN (value lower upper) over - >R - R> U< ;
\ That means: r e s u l t = (Up-lw) U< (va lue - lm)
\ I f you design numbers on a c i r c l e i n a counterclockwise manner
\ value is WITHIN lower and upper IF WD ON_Y IF s t a r t i n g from lower
\ and moving on the c i r c l e i n a counterclockwise manner you f ind Value
\ s t r i c t l y before t b Upper.
\ (t h e s t a r t i n g pos i t ion wst be checked f i r s t) .

\ So lower=Ql value=10 upper=23 is okay
\ lower=23 value=23 upper=- is okay
\ lower=10 value== uppet-30 isn' t okay
\ lower=JP) value=-10 upper=-1 is okay
\ lower=34 value=-= upper=- is okay
\ l w r = 0 value=-4 upper* i s n ' t okay

code (WITHIN{) (lower upper) d0:=lowerl dl:=index, dZ:=uppr)

index d l 1> d2 pop, (upper) d0 pop, (lower)
d0 d l sub, d0 d2 sub, \ s u b t r a c t lower from both index and upper.
d l d2 U<, compare, ?enter ,
\ above l i n e is equiva len t to: d l d2 cmp, CC, ?enter ,
\ That means i n f o r t h pseudocode : d l @ d2 @ - U< '?enter,

end-code
\ T h e rawIN is used as subroutine (t h e code is unnef ic ien t but d o e s n ' t m a t t e r) .
code rawIN (numl num;! ... numN N --) \ s u b j e c t on d0 r e s u l t on d l .

a0 pop, \ keep i n a 0 t h e r e tu rn address.
0 ## d l 1> d2 pop, (d2 con ta in s t h e counter)

\ Loop on r e g i s t e r d2. I f a t s t a r t d2 is 0 t h e Lwp i s n ' t done.
d2 w t i m e s < , \ d2 @ times<

SP)+ d0 cmp, \ S P @ @ d 0 @ - 4 S P + !
0=, i f , -1 ## d l L> then, \ 0= i f -1 d l ! then

wtimes>, \ times>
a 0 (1 jmp, \ return from subroutine.

md-code

code backIN (numl num2 . . . numN N sub jec t - f l a g \ \ group sub jec t - f l a g)

d0 pop, CodWdrUf rawIN Absr, d l plsh, next ,
end-code

-. -. - -... -

Forth Dimensions 3 1
I

May 1992 June

: IN (sub jec t numl num2 ... nuW N -- f l a g) (subjec t g r m p -- f l a g)

dup 1+ pick backIN nip ; \ Doing ROLL would have been unefficient.
code (IN{) (nun1 nun2 . . . n d N --)

index d0 1> CodeAddrOf rawIN Absr, d l tst, 0<>, ?enter,
end-code

\ To use IN{ IN? ecc consider to de f ine ((and 1) .
\ They may be defined a s
\ Svariable OldDepth
\ : (((-) depth OldDepth push ;
\ :) (--) depth OldDepth pop - ;
\ o r i f you a r e n ' t fami l iar with Stack Variables as described i n FD XI1 number 1
\ you may use t h i s a l t e r n a t i v e de f in i t ion (t h a t al lows f o r nested ((and)) :
\ VPRICIBLE OLDDEPTH
\ : ((- x) OldDepth @ depth oldDepth ! ;
\ :) (x n l n 2 ... n N - - n l n 2 ... nN N)
\ depth olddepth @ - dup I+ r o l l OldDepth ! ; \ "1 ROU" means SWPP

code I (- IndexValue 1
code TO-I (newvalue -)
code STEP (valueToAdd -)

pop,
code J (- IndexValue)

o ldCSFa01> \
MI a0 I) push, \
next, \

\
\

end-code

index push, next, end-code
index pop, next , end-code
\ "STEP" o r "+TO-I"

d0 index add, next , end-code \ add t o t h e index a value

reference t h e o ld Control s t r u c t u r e frame
Attention no information local isa t ion .
Value W4 is t h a t of the "index," macro.
Eietter but unef f i c i e n t de f in i t ion is:
CSF a0 I> OldCSF CSF 1> index, push, a0 CSF 1> next ,

\ Full campile t i m e e r r o r checking is provided.
\ &-I easy syntax is provided t o const ruct new c m t r o l s t ruc tu res .
s t ruc ture{ BegStruc t u r e

c e l l : >BegTokm \ t h e words >hegTokm >Begstarter
c e l l : >Begstarter c e l l : >BegEnder \ >BegEnder are equivalent to:
c e l l : >-#pointers c e l l : >Beg&pplicableMids \ 0 CELLS + 1 CELLS + 2 CELLS + ecc

s t r u c t u r e)
\ t h e above s t r u c t u r e i5 t i e d t o s t r u c t u r e beginer words l i k e CASE{ TIES{ ecc.
\ the f i e l d >BegToken conta ins the token of CASE{ o r TIMES{ o r what is t h e case.
\ t he f i e l d >Begstarter conta ins the token of t h e word to compile a t t h e s t r u c t u r e
\ begining ((SIM7LE{) (INDEXED} (TIES{)) . See f igures 3 and 4.
\ The f i e l d >BegEnder c m t a i n s the token to compile a t t h e contro l s t r u c t u r e end
\ (words l i k e LEAVE AGAIN (TIMES)) (LWP}))
\ T h e f i e l d >BegWointers conta ins t h e # of pointers t o reference points t o
\ compile a t the contro l s t r u c t u r e begining.
\ The f i e l d >BegApplicableMids is a b i t Array t h a t s p e c i f i e s wich c l auses
\ l i k e LEAVING COFPLRED CFERROR ecc are appl icable t o the considered contro l s t ruc tu re .

s t ruc ture{ mid){Stt-ucture
c e l l : >midMask c e l l : >midPointeroffset c e l l : >midEnder

s t ruc tu re)
\ The above s t r u c t u r e is re la ted to t h e c l ause words (l i k e)LEF\VIffi{ }M31VPLETU){ ecc)
\ t he >midMask f i e l d conta ins a b i t a r ray with t h e b i t associated to t h e c l ause
\ word on. The f i e l d midPointerOffset s p e c i f i e s the o f f s e t (-4 f o r LEAVING
\ and -6 f o r M3M?_ETED) of t h e pointer a t t h e begining of t h e contro l s t ruc tu re .
\ See f igure 3 and 4

va r i ab le Beg va r i ab le CSbegining va r i ab le m d e r
\ Tree va r i ab les t o hold t h e token of t h e start word of the last
\ control s t r u c t u r e under construction, t h e address of t h e w i n i n g of t h e
\ control s t r u c t u r e and t h e token of the word t o compile at the end of t h e
\ control s t r u c t u r e (l i k e LEFIM: AGAIN (TIMES)) ecc) .

May 1992 June 32 Forth Dimensions

: BegWdr (- addr) Beg @ >body ; \ Give the address of the Begstructure associated
\ with the las t control structure.

: Keep&! (W a l u e addr - OldValue) dup @ >r ! r> ; \ Store a new value in to a variable
\ holding the old one on the stack.

: ofspoints (offsetpf-pointer addr-togoint) \ Set the pointer compiled a t tk star t
CSbegining @ - swap CSbegining @ * w! ; \ of the cu-ttrol structure to point t o

\ the specified address.

: ofspoints? (offset-ofgointer -- f lag) \ Does the specified pointer point
CSbegining @ + w@ -1 <> ; \ a1 ready somewhere?

: CSbegin (BegToken -) \ given the token o f the ccntrol structure beginner
>body >r

r@ >BegToken @ Beq KEEP&! \ set ttw Beg variable accordingly
r@ >Begstarter @ token, \ compile the associated start ing word
r@ >Beq#pointers @ 0 Wold -1 w, LOWold \ set t o -1 the i n i t i a l pointers
here CSbegining KEEP&! \ set the CSbegining var to point k r e .
r@ >BegEnder @ ender KEEP&! \ set the ender variable.

r> drop ;

: CSend (--) ender @ token, \ Compile the ender token
-2 (endpf-structure) here ofsPoints \ make the pointer t o end point point t o the end.
ender ! CSbegining ! Beg ! ; \ Restor the o ld values of the 3 variables.

: cel ls, (values .. values #cellsToCompile -) \ canpile a certain number of cel ls.
here swap ce l l s a l l o t here ce l l - Wold Io ld ! -cel l +LOWold ;

\ The use of the sutKequent word i s l ike:
\ create CONTROL{ ' (XNTRCLC ' (SIPPLEC) ' L E M MidsC ' }LEAVII\W3C Mids} BegIs
: -1s (dataToFillElqStructure 1

5 cel ls, immediate does> ?comp >BegToken @ CSbeqin ;
\ compile the 5 structure parameters declare immediate the structure beginer
\ previously created, and declare i t t o DO the code a f ter does>

I : enderIs (correspandingBeg -- / / "name" -IS-)

create , immediate does> ?cmp @ Beg @ <> ? a b r t " Ender doesn't mac- Beg" Send ;
\ declare a control structure ender word associated to the beginner.

I : } 7cmp CSRld ; imnediate \ Generic ending word t o be used with any
\ c m t r o l structure s ta r t or leaving pair.

Clause words (as }LETWING{ and)CDFLETU>{) have a certain b i t number associated.
W h e n w e define a CLWSE word we must "a l lo t " the next free b i t number for the clause.
W h e n executed a clause during canpilation i t must check that we are i n t o compile
state, check that the CLALlSE is applicable t o the actual c m t r o l structure,
check that i t hasn't been already used , i t rus t compile the ender token set
by the control structure beginner, i t rus t set the associated pointer compiled a t
the control structure begining point t o lfRE and f i n a l l y i t must set i t ' s o m ender.

variable midFreeMask 1 midFredVlask !

: mid]{Is (midPointerOffset midender //IS "name")

create midFreeMask @ dup , 2t midFreeMask ! 2 cel ls, inwdia te does> (addr)

?cmp \ check compilation state.
dup >midmask @ begaddr'>BegFlpplicableMids @ and \ i s i t applicable t o t h i s CS ?

8= ?abortH midEnderBeginer i s n ' t applicable t o that c m t r o l structure"
dup >midPointerOffset @ ofsF'oints? ?abortn mid}{ already applied."

mder @ token,
dup >midpainteroffset @ here ofsPoints \ set the pointer point here
dup >midender @ ender ! \ set new ender

drop ;
.- . -. -- . . -. .- -- -

Forth Dimensions 33 May 1 1992 June

-4 (m i d p o i n t e r U f f s e t) ' LEAVE (m i d e n d e r) m i d) { I s)LEAVING{
-6 (m i d p o i n t e d f fset) ' LEAVE (m i d e n d e r m i d 1 C I s)a31'71-ETED{
-6 (m i d p o i n t e d f fset) ' E3WUWXPWTE (m i d e n d e r) m i d) { I s)a\EHRa7{

: M i d s { (- 0) 0 ;
: M i d s) (0 n l n2 ... n N -- 1 0 (# p o i n t e r s (a t - l e a s t - m e) a p p l i c a b l e F l a s k)

BEGI lVold r o t dup W I L E o l d > W y >midMask @ or swap 1+ swap REPEATold drop ;
\ M i d s { ... M i d s) i s used to construct the mask of the control structure applicable
\ C l a u s e words.

create CONTRCX_{ ' a3NTRa{ ' (S I P R E {) ' LEAVE M i d s { ')LEAVING{ M i d s) -1s
' CCNTROL{ E n d e r I s CDNTROL)

c r e a t e R E P E A T { ' REPEAT{ ' (S IMPLE{) ' W I N M idsC ')LEAVING{ M i d s) Beg15
' E R E A T (EnderIs REPEAT)

create CASE(' CASE{ ' (INDEXED{) ' LEAVE MidsC ')LEAVING{ M i d s } Beg15
' CASE{ EnderIs CASE)

create FOR{ ' FOR{ ' (INDEXED{) ' AGAIN M i d s C ')LEAVING{ M i d s) -1s
' FOR{ EnderIs FOR)

create TIMES{ ' T I E S { ' (T I E S {) ' (T I E S))
M i d s (' >LEAVING{ ')COWLETED{ M i d s) -1s ' TIMES{ EnderIs TIMES)

c r e a t e LM3P{ ' LM3P{ ' (L M 3 P O ' (L O P))
M idsC ')LEAVING{ ') c C W l E T E D { M i d s) BegIs ' LMP{ EnderIs LMP)

create RECUM3AELY{ ' REMWERABLYC ' (RECOVERA&LY{) ' L W V E
M i d s I ')LEFIVIf f i { ')ONERFKlFI{ M l d s) -1s ' REcDERABLY) Ender I s RECDJERABLY)

create WEN{ ' (WEN{) L E M MidsC M i d s) -1s
' W E N { EnderIs WHO\I?

create W I L E { ' W I L E { " (W I L E {) ' L E A E MidsC M i d s) BegIs
' W I L E { EnderIs WILE1

create ON{ ' ' (CM) ' LEAVE M i d s { M i d s) -1s
' ON{ EnderIs a\l)

create I N { ' I N { ' (I N {) ' LECIVE M i d s { M i d s) B e g I s
' IN{ EnderIs I N)

create WITHIN{ ' WITHIN{ ' (W I T H I N O ' LEAVE MidsC M i d s ? -1s
' WITHIN{ EnderIs WITHIN}

May 1992 June 34 Forth Dimensions

Working with
Create ... Does>
Leonard Morgenstern
Moraga, California

It has been well said that programs are not written in
Forth. Rather, Forth is extended to make a new language
specifically designed for the application at hand. An
important part of this process is the &Jining word, by which
one can combine a data structure with an action, and create
multiple instances that differ only in detail. One thinks of
a cookie-cutter: all the cookies are the same shape but have
different-colored icing.

The Basics
Defining words are based on the Forth construct

CREATE . . . DOES>. Beginners quickly learn to apply the
method mechanically, using two familiar steps: 1) Start a
colon definition, write CREATE, and follow by the actions
that lay down data or allot RAM. 2) Write DOES> and follow
by the action to be performed on the body of the word, the
address of which has been put on the stack by DOES>.
(Experienced programmers will please forgive certain
oversimplifications.) Although the CREATE . . . DOES> pair
is easy to use at this basic level, understanding the details
is hard because there are no fewer than three phases of
action. Words compiled in one are executed in another.

A simple example is 3CONSTANT, which creates the six-
byte analog of CONSTANT. (Screen One) It has two stack
diagrams; the Fist for creating an instance, and the second
for executing it. The Fist phase is in effect when 3CON-
STANT is def ied (Line One). It is a colon definition and
works in the usual way; that is, : sets up a header, after
which the CFA's of ordinary Forth words are compiled, and
immediate words such as DOES> are executed. The pro-
cess is ended by the semicolon.

In the second phase (Line Three), 3CONSTANT creates
an instance named 3F00. The CFA's that were compiled in
the first phase are now executed one at a time, as follows:
CREATE picks up the next word in the input stream, which
is 3F00, and makes a header from it. The commas lay
down the top three words from the stack; they become the
body. DOES> stops the action and sets the CFA of 3F00 to
execute the Forth words that follow it at Point A. These are
not executed until phase three, in which 3F00 is executed
(Line Four); the address of its body is put on the stack, and
the Forth words at Point A are executed, moving three

Forth words from the dictionary to the stack.

Using ;CODE
Just as it is possible to substitute assembler for high-

level Forth by starting an ordinary definition with CODE
instead of :, one can do the same for defining words by
substituting ;CODE for DOES>. In the alternate defmition
on Screen One, 3CONSTANT is rewritten in this way. ; CODE
is followed directly by the necessary assembler words, and
the definition is terminated by NEXT and END-CODE with
no semicolon (Line Five).

As another example (Screen Two), we construct number-
machines. The real ones look like rubber stamps, but print
sequence numbers. Their Forth equivalent simply puts the
next number on the stack. Note that commands can
precede CREATE. We can specify that the machines reside
in a vocabulary named #MACHINES. We could make all of
them immediate by writing IMMEDIATE just before DOES>.

What CREATE Does
In the Forth-83 Standard, CREATE will "define a word

that returns the address of the next available user memory
location." Hence, if we write CREATE FOO and then ex-
ecute FOO, an address is returned. Most existing Forths (fig-
Forth is the important exception) follow this rule, as does
the ANSI draft standard. Differences derive from the fact
that each implementation interprets "the next available
memory location" in its own way. For example, in F83 the
dctionary is confined to a 64K space, and the address

I returned by Foo immediately follows the CFA. In F-PC,
header and body are in separate spaces called the head
segment and the code segment respectively, and FOO
returns an address in the latter. The ANSI draft standard
adds specifications as to alignment. The casual user need
not be concerned with these details because words that
allot memory, such as , (comma), C, and ALLOT itself,
automatically do so in the proper place, namely, at the first

I
available memory location.

It is worthwhile to comment here that one should not
use 2+ to go from the code field to the body of a word. It
will work in F83, but may not in other versions. Porting

I from one Forth to another is never easy, and a shortcut of

Forth Dimensions May 1992 June

this kind merely aggravates the problem. The correct word
is >BODY.

CREATE can stand alone, either inside or outside a
colon definition, without an associated DOES>, and is so
used when the word to be created merely returns the
address of its body, for example, variables and non-
indexed arrays. Thus, we can write CREATE FOO and
follow it with 0 , . When FOO is executed, the address of
the zero will be returned, so the action is the same as a
variable. Or, we can use the predefined VARIABLE which
is defined as

: VARIABLE CREATE 0 , ;

and write VARIABLE FOO. The first method is preferred
when only one instance is wanted, as it avoids the
overhead entailed in writing a defining word, while the
second is better when multiple instances are (or might be)
needed.

What DOES> Does
DOES> is immediate, and is executed during phase one

of a definition. It lays down the word (; CODE) and some
assembler instructions. Therefore, if you decompile a Forth
word that includes DOES>, you will see (; CODE) , fol-
lowed by the possibly undecompilable assembler in-
structions. These will be followed by the address tokens of
the Forth words that are to be executed in phase three.

(;CODE) is actually executed in phase two. It sets the
CFA of the most-recently created header to point to the
assembler instructions. At this point, we can clarify the
imprecise statements made in earlier paragraphs. As a kind
of shorthand, it is convenient to attribute to DOES> actions
that are actually executed by (;CODE) . We also say that
DOES> makes the CFA of the word being &fined point to
the Forth words that follow DOES>, when it actually points
to certain assembler instructions that precede them.

Don't confuse ;CODE and (;CODE) . The latter is a
"primitiven laid down by both DOES> and ;CODE. It is
conventional in Forth to name a primitive by enclosing in
parentheses the name of the word that compiles it. Other
examples include (L I T) , (I') , (. 'I) , etc.

Separating CREATE and DOES>
CREATE . . . DOES> are nearly always seen together, but

unlike the halves of a pair of scissors, they can be useful
when separated. It is not well known that DOES> can stand
alone although it cannot be employed outside a colon
definition. When a word that contains DOES> is executed,
regardless of whether it is part of a defining word or not,
the CFA of the last-created header is set to execute the Forth
words that follow DOES>. Screen Three shows how to
defiine an indexed array with 125 eight-bit elements by
using an "externaln DOES>.

This trick is not often used because it is not often useful,
although Laxen and Perry did employ it in F83. It makes it
possible to define words in groups, for example, pairs that
vary slightly in spelling, or words with the same name in

different vocabularies. This can be done in Forth (for
example F83 and F-PC) that factor CREATE into two parts,
one to get a string from the input stream, and the olher to
create a new word from it. In F83, for example, CREATE is
defined as follows:

: CREATE BL WORD ?UPPERCASE "CREATE ;

BL WORD gets h e string and places it at HERE, leaving
its address on the stack. ?UPPERCASE converts it to
capitals if the variable CAPS is set, and "CREATE (a --)
uses the result to form a new word.

Suppose that we are writing an adventure game in
which we want compass directions to have two different
actions. In the GAME vocabulary, NORTH will move the
adventurer, while in the FORTH vocabulary, the same word
with an appended # will act as a constant and put a number
on the stack. With conventional methods, each direction
would need two defining words, one for NORTH and the
other for NORTH #. Screen Four shows how a single defining
word, DIRECTION, can create the two at the same time.

The first step is to factor out the DOES> action of all but
one of the words to be created. This is necessary because
the run-time action of (;CODE) which is laid down by
DOES> is to exit from the word that it is in, after setting the
CFA in the most recently laid-down header. In ourexample,
the game-word action is factored out into MOVE, which
fetches the direction number from the body, and moves the
adventurer. The defining word DIRECTION gets a string
from the input stream, converts it to upper case, and places
it in the buffer DBUF (Line One). In Line Two, the resulting
string is used to creatc NORTH in the GAME vocabulary. DUP ,
lays down its parameter field, and MOVE executes DOES>
to set the action. Lines Four and Five append a # to the
string in DBUF, and Line Six uses the modified string to
create NORTH# and set its action with DOES>.

Nested D e M n g Words
Seasoned Forth programmers know that defining words

can create defining words, which in turn can create other
defming words. The nesting can, in theory, be continued
indefinitely. Suppose that we want to define colors as a
series of arbitrary constants, numbered O,1,2, etc., and that
we also need shapes and other attributes defined in a
similar way. We proceed as on Screen Five. Here ATTRIBUTE
defines a word that contains the CREATE ... DOES>
sequence, and is therefore another defining word. This
idea is not merely a clever trick; it is the basis of most object-
oriented Forth systems.

RED, BLUE, and GREEN are effectively constants with
the values O,1, and 2, and ROUND, SQUARE, and OVAL are
constants with the same series of values. I leave it to the
reader to work out the detailed actions of the various
words.

Some Random Thoughts
Why is there a right angle-bracket in DOES>? It origi-

nated with certain eady Forths, where CREATE laid down

May 1992 June 36 Forth Dimensions

a header whose code-field
contained a pointer to the
next byte in memory instead
of an execution token. To
set up a defining-word, it
was necessary to follow
CREATE by the pair,
<BUILDS ... DOES>. The
Forth-83 Standard changed
the action of CREATE, so that
<BUILDS was no longer
needed, but did not change
the original action and
spelling of DOES>.

The action of defining
words ranges from simple
to complex. Simplest are
those that lack DOES>. At the
opposite pole are highly
specialized words, for ex-
ample, 1MI and lAMI, used
by the F-PC assembler to
generate 80x86 commands.
Beginners, camed away by
a sense of power and free-
dom, often create too many
defining words. Although
there is little cost in memory
or execution speed, doing
this can result in hard-to-
read source files. Most pro-
grams need only the built-
in set of definingwords and
a few novelties.

Conclusion
The easy formation of

defining words is one of the
features that makes Forth
powerful and enjoyable. At
the basic level, the technique
is easy to learn and apply,
but programs are always
better-written when a pro-
grammer is aware of what is
going on. A deeper under-
standing is also required to
create specialized exten-
sions, which, though not
often needed, can be very
useful.

Leonard Morgenstern is a retired pa-
thologist and computer hobbyist. His
interest in Forth goes back over ten
years. Currently, he is a sysop of the
Forth RoundTable on GEnie. His son,
David Morgenstern, is also an author
on computer-related subjects.

Forth Dimensions

SCREEN 1
: 3CONSTANT (n3 n2 nl --) (-- n3 n2 nl) (Line 1)

CREATE , , ,
DOES> (Point A) DUP 4 + @ SWAP 2 @ ; (Line 2)

1 2 3 3CONSTANT 3F00 (Line 3)
3F00 .S (Forth will display 1 2 3) (Line 4)

\ Alternate definition of 3CONSTANT using ;CODE
: 3CONSTANT (n3 n2 nl --) (-- n3 n2 nl)

CREATE , , ,
;CODE (Point A) POP BX PUSH 4 [BX] PUSH 2 [BX]

PUSH 0 [BXI NEXT END-CODE (Line 5)

SCREEN 2
: NUMBER-MACHINE (--) (-- n)

CREATE 0 ,
DOES> DUP @ 1 ROT + ! ;

\ First alternate definition uses ;CODE
: NUMBER-MACHINE (--) (-- n)

CREATE 0 ,
;CODE POP BX MOV AX, 0 [BXI INC 0 [BX] lPUSH END-CODE

\ Second alternate definition puts all number machines in
\ a special vocabulary
VOCABULARY #MACHINES
: NUMBER-MACHINE (--) (-- n)

ALSO #MACHINES DEFINITIONS CREATE 0 , PREVIOUS DEFINITIONS
DOES> DUP @ 1 ROT + ! ;

SCREEN 3
: MAKE-8 (i -- a) swap 8 * + ;

CREATE INDEX1 1000 ALLOT MAKE-8 \ 125 8-bit elements

SCREEN 4
VOCABULARY GAME \ Playerfs vocabulary
CREATE DBUF 33 ALLOT \ A buffer to hold the name
: MOVE DOES> @ (Write game action here) ;
: DIRECTION (n --)

BL WORD ?UPPERCASE COUNT DBUF PLACE (Line 1)
GAME DEFINITIONS DBUF "CREATE DUP , MOVE (Line 2)
FORTH DEFINITIONS (Line 3)
ASCII > DBUF COUNT + C! (Line 4)
DBUF C@ 1+ DBUF C! (Line 5)
DBUF "CREATE , DOES> @ ; (Line 6)

0 DIRECTION NORTH \ Create game word NORTH and constant NORTH#
3 DIRECTION EAST
: test [forth] north . [newstuff] north [forth 1 ;

SCREEN 5
\ Nested defining words
: ATTRIBUTE CREATE 0 ,

DOES> CREATE DUP @ 1 ROT +! ,
DOES> @ ;

ATTRIBUTE COLOR ATTRIBUTE SHAPE
COLOR RED COLOR BLUE COLOR GREEN
SHAPE ROUND SHAPE SQUARE SHAPE OVAL

37 May 7 992 June

A Forum for Exploring Forth Issues and Promoting Forth

In volume 13 of Forth Dimensions, many FIG members
requested more promotion of Forth. Here and elsewhere, we
should tout the advantages of Forth. Every cause has
benefitted from promotion at times. I think you'll agree that
the promotion of Forth and FIG should extend to several
areas.

One area is the promotion of trade or commerce. For-
profit activity is ultimately what has kept us fed, clothed, and
sheltered. At some point in the development of an industry,
commerce also spawns "trade magazinesn directed at fostering
better-mformed trade amongst the producers and consumers
in a particular industry. Often user groups are born because
of the widespread sale of one product.

Unfortunately for Forth, the trade magazines do not serve
Forth adequately (although they seek an occasional Forth
article). Worse, the number of people who are buying and
selling Forth-based goods and services is probably too few
to fund a Forth-dedicated trade magazine. Nevertheless, FIG
can help promote trade by making sure vendor names and
product information somehow appear in the pages of Forth
Dimensions. I hope we will be hearing from Forth vendors

FIG can help promote trade by
making sure vendor names and
product information appear in
the pages of Forth Dimensions.

in "Fast FORTHward," not as a means for them to provide
product-specific infornlation, but as a way for them to help
promote Forth generally. Beyond that, the Board of Directors
of the Forth Intemt Group wants to try to maximize the
advertising space sold (up to postal limits for this type of
journal). FIG intends to play its part to promote trade.

O hope that other parts of the magazine may soon feature
articles about various Forth products in hardware, firmware,
or software. We have taken steps to help ensure that this
takes place appropriately. Such articles should serve the
higher purpose of educating our readers about important
programming techniques, about practical ways to develop
su-hl applications, and so forth.)

Professional societies and standards efforts can promote
Forth in ways that would be difficult for individual vendors.

They can help ensure that consumers of a product or setvice
are getting the best that canbe made available. The ACM and
ANSI organizations are well known for their service in such
areas. Thanks to the dedicated efforts of Forth vendors and
enterprising Forth activists, Forth contingents have been
installed in each of those organizations, ACM SigFORTH and
ANSI X3J14. I expect "Fast FORTHward" to offer essays
describing standards and "open systems," and how they
should be able to benefit everyone in our industry, consum-
ers as weU as producers of Forth products.

(One related activity that FIG has supported is the China
Forth Examination project. It helped China determine the
level of competency of Forth programmers and it brought
guaranteed employment to the top performers on the test.
Dr. C.H. Ting will be translating portions of this test into
English so that we are better able to appreciate it.)

Publicity is another area of promotion that can help
further a cause. It also takes many forms. For FIG purposes,
publicity should help aeate visibility for Forth in as much of
the trade and general media as possible. Another way FIG
can help publicize Forth is to make sure educational
materials are readily available to anyone who is curious
about Forth. I promise to use "Fast FORTHward" as a forum
to publish analytical essays regarding the nature of Forth.
Such explorations can help educate newcomersand they
can hold the interest of the Forth pros, too. I will quote
liberally (or r e p ~ t where appropriate) the materials from
vendors, standards committees, Forth books, articles, and
just about any source that can help shed light on this thing
we call Forth. If Forth is a philosophy besides a language,
then words must be found to express it adequately.

A valuable marketing exercise is to consider a market-
place without regard to existing products. What does a
market composed of software and hardware developers
need7 Once that is known, perhaps we can state how Forth
uniquely meets those needs. A market study should show
how one's own product has a place among existing products
serving the same customer base. Along these lines, "Fast
FORTHward" invites the diverse customer base for Forth,
including laboratory researchers and mechanical engineers,
to write about their ideal Forth system.

The type of short articles, letters, or essays that I expect
to appear here should help foster communication among the
Forth user, developer, and vendor communities. As your

May 1992 June Forth Dimensions

May 1991
Orion Instruments revealed a trade-up program for
converting from the UniLab/UDL microprocessor
emulator-analyzer to a more powerful UniLab 8620
rniaoprocessor emulator-analyzer. Ohe discount offer
ended September 30, 1991.)

newly appointed FIG Publicity Director, I also need review-
ers who can help me determine what Forth-promotional
messages should be offered to promote Forth and FIG. If you
have the interest andlor background to help develop and
review such materials, please contact me, in care of the FIG
office. If you wish to write material for this department, send
your ideas or finished work to me by way of Marlin
Quverson. /Fo?tb Interest Gtoup, P.O. Bax 8231, San j ~ s e ,

California 951551
Please do your part to help Forth and FIG by renewing

your membership immediately and, if possible, help me
support our worthwhile cause by considering how you
might contribute to this department. Of you received this
issue as a complimentary lyft, I hope you will see that Forth
Dimensions is becoming a more broadly informative
magazine, with more potential benefit for everyone involved.)

-Mike Ebla

July 1991
BDS Software announced CF83, a 1983 Standard Forth
for the Radio Shack Color Computer running RS-DOS.

-

September 1991
Paladin Software announced DataScopem Version 2.0,
a serial-Line monitor and protocol analyzer sporting a
windowed GUI and requiring MS-DOS 2.1 or higher
running on a PC.

Paladin Soff ware, lnc.
started in 1982, this software consulting firm wrote

custom software for a wide variety of industries, providing
systems and applications software in projects ranging from
WAC to real-time space telemetry and serial protocol
implementations. Recently, the company released
DataScopeTM version 2.0, the latest in a family of PC-based
S o h a r e produrn thatletsPCsreplacemuch more expensive
communication debuggers and serial-line monitors.

Version 1.0 of Datascope was brought out in 1991.
Version 1.4 is available as shareware (on CompuServe,
FIDONET, EXEC-PC, and other bulletin boards as well as
from the company itself-see *Product Watchn).

Version 2.0 ofDataScope features an SAACUA-compliant
(Systems Application Architecture and Common User Ac-
cess) user interface option. It includes user-alterable
multitasking window displays and a "Windows-like* pull-
down menu interface. It also provides search tools that can
find data that is ordinarily an invisible part of a transmission.

Since 1982, Paladin Software, Inc. has written a number
of software applications for a variety of clients, including
General Motors (Saturn plant HVAC cluster-interlink pro-
tocol), Eastman Kodak (T88 Densitometer), McDomeH
Douglas Electrophoresis Operation in Space Ground Data
Systems, Lockheed, ITT (Power Systems SUPERVISOR),
and Federal Express (X.PC protocol and Astra Label System
for the Super Tracker).

The company's founder is James Dewey. He has
implemented X.PC, SECS-11, DDCMP and a variety of other
protocols, primarily for applications involving single-chip
microcomputers. He has programmed in PLI, PLC7, ASYST,
polyFORTH, and Fortran, as well as various assembly

1 languages. Before founding Paladin Software, Inc. he
' worked as an Electrical Engineer and was a senior pro-

grammer with Forth, Inc. He holds degrees in Electrical
Engineering and Psychology from Cornell University.

Forth Dimensions 39

September 1991
Forth, Inc. announced the chipFORTH 68332 Software
~ e ~ ~ l ~ ~ ~ ~ ~ t System, which indudes one-year telephone
support, uses an^^-^^^ PC host, and includes a 68332
board set known as the Motorola Evaluation it (EVK).

October 1991
~ ~ ~ h , Inc. announced a new release o f ~ ~ p ~ ~ ~ ~ E~~~~
Management and Control SystemTM, a process-control
software package.

Companies Mentioned
BDS software
p.0. B~~ 485
~ l ~ ~ ~ i ~ ~ , I K ~ ~ ~ ~ 600254485
phone: 7089981656

~ ~ f i ,
111 N. sePulveda ~ l ~ d .
~~~h~~~~~ ~ ~ ~ ~ h ,  california ~ 2 6 6 a 7  
phone: 310-372-8493 
F ~ ~ :  310-31&7310 

orion I~~~~~~~~ 
180 lndepenknce D ~ .  
Menlo Park, California 94025 
phone: 415327-8800 
FW 4 1 5 - 3 2 7 - ~ 1  

paladin software, lnc. 
3945 ~~~~~h~ 
sari ~ i ~ ~ ~ ,  california 32117 
phone: 619-@0-0368 
F ~ ~ :  6 1 3 - 4 ~ 4 1 7 7  

May 1992 June 



/ On-Line Resources 1 
ForthNet 

F o M e t  is a virtual Forth network that links designated 
message bases of several bulletin boards and information services 

I in an attempt to provide greater distribution of Forth-related info. 
ForthNet is provided courtesy of the SysOps of its various links, 

who shunt appropriate messages in a manual or semi-manual ' manner. The current branches of ForthNet include UseNetls 
comp.lang.forth, BitNet's FIGI-L, the bulletin board systems RCFB, 
ACFB, LMI BBS, Grapevine, and FIG'S RoundTable on  GEnie. 
(Information on modem-accessible systems is included below.) 

The various branches of ForthNet do not have the same rules 
of appropriate postings or etiquette. Many bulletin board posts are 

1 very chatty and contain some personal information, and some also 
contain blatant commercial advertising. Most comp.lang.forth 
posts are not like that. ForthNet messages that are ported into 

I - comp.lang.forth from the rest of the ForthNet all originate on 
GEnie, which is a kindof de factoForthNet message hub. All such 
messages are ported to comp.lang.forth with a from-line of the form: 
From: ForthNet@willen.pgh.pa.us ... 

Most messages ported to comp.lang.forth also contain some 
trailer information as to where they actually originated, if it was not 
on GEnie. 

There is no e-mail link between the various branches of 
ForthNet. If you need to get a message through to someone on 
another branch, please either make your message general enough 
to be of interest to the whole net, or contact said person by phone, 
U.S. Mail, or some other means. Thoughtful message authors place 
a few lines at the end of their messages describing how to contact 
them (electronically or otherwise). 

Phone information for the dial-in s e ~ c e s  mentioned above: 

RCFB (Real-Time Control Forth Board) 303-278-0364 
Sysop: Jack Woehr SprintNet node coden 
Location: Denver. Colorado. USA 

ACFB 
(Australia Connection Forth Board) 03-809-1787 in Australia 
Sysop: Lance Collins 61-3-809-1 787 International 
Location: Melbourne, Victoria, AUSTRALIA 

LMI BBS (Laboratory Microsysterns, lnc.) 213-306-3530 
Sysop: Ray Duncan SprintNet node calan 
Location: Marina del Ray, California, USA 

I for information. Your system administrator should always be your 
fist resort if you have any diffiilties or questions about using ETP. 

, For MSDOSrelated files, there are currently two sites from 
I which you can anonymously FTF' Forth-related materials: 

WSMR-SIMTEL20.ARMY.MIL (Simtel20 for short) 
WIJARCHIVE.WUSTL.EDU (Wuarchive for short) 

Wuarchive maintains a "mirror" of the material available on 
Simtel20. Site120 has a limitcd amount of material, most of it 

I binaries for MSDOS computers. The Forth files on Simtel20 are in 
directoryPDl:<MSDOS.FORTH>.The Forth files on Wuarchive are 
in directory /mirrodmsdos/forth. For detailed information on how 
use FIT and the Simtel2O archive (it is too much to include here), 
see the text files in: 
PDl:<MSDOS.STARTER>SIMTELZO.INF or 
/mirrors/starter/simtel20.inf 

An FTP site containing a mirror of the FIG library on GEnie is 
"under constructionn and will be announced when it is ready. 

FIGI-L Gateway 
For those who have access to BITNET/CSNet but not Usenet, 

cornp.lang.forth is echoed in FIGI-I,. The rnaintainer of the 
Intemet/BITNET gateway since first quarter 1'992 is a s  follows: 

Pedro Luis Prospero Sanchez internet: pl@lsi.usp.br (PREFERRED) 
University of Sao Paulo uunet: uunet!vmel31 !pi 
Dept. of Electronic Engineering hepnet: psanchezOuspif1 .hepnet 
phone: (055)(11)211-4574 
home: (055)(11)914-9756 
fax: (055)(11)815-4272 

Modem 
For those desiring to use (or stuck with) modems, the dial-in 

systems listed above also have Forth libraries. 
Note: If you are unable to access SIMlXL20 via Internet FIT or 

through one of the BITNET/EARN file servers, most SIMTEI.20 M S  
DOS files, including the P C  network at 313-885-3956. DDC has 
multiple lines which support 300/1200/2400/%00/14400 bps 
(HST/v.32/V.42/V.42bis/MNP5). This isa s u b s  
an average hourly cost of 17 cents. It is also accessible bn Telenet 
via PC Pursuit, and on Tyrnnet via StarLink outdial. New files 
uploaded to SIMTELZO are usually available on DDC within 24 
hours. 

I I 
May 1992 June 40 Forth Dimensions 

Grapevine (Grapevine RIME hub) 501 -753-8121 to register 
Sysop: Jim Wenzel 501-7536859 thereafter 
Location: Little Rock. Arkansas. USA 

GEnie (General Electric Network for 
Information Service) 800-638-9636 for info. 
SysOps: Dennis Ruffer (D.RUFFER) 

Leonard Morgenstern (NMORGENSTERN) 
Gary Smith (GARY-S) 

Location: Forth RoundTable-type M710 or FORTH 

Forth Libraries 
There are several repositories of ~ o r t h  programs, sources, 

ex-tables, and so on. These various repositories are notidentical 
copies of the same things. Material is available on an as-*basis due 
to the charity of the people involved in maintaining the libraries. 
There are several ways to access Forth libraries: 

F7P 
you only use if you are on an site which 

supports FIT (some sites may restrict certain classes of users). If 
you haveany questionsabout this, contact your system administrator 

Information provided by: 
Keith Petersen Maintainer of SIMTEL20's MSDOS, 
MlSC & CPN archives [IP address 26.2.0.74J 
Internet: wBsdz@WSMR-SlMTEL20.Arrny.Mil or 

w8sdz@vela.acs.oakland.edu 
Uucp: uunet!wsmr-simtel20.army.mil!w8sdz 
BITNET: w8sdz@OAKLAND 

This list was compiled 20 February 1992. While every attempt 
Was made to produce an accurate list, errors are &ways 
possible. Sites are also subject to mechanical problems or 
SYSOP burnout. Please report any discrepancies, additions, or 
deletions to the following: 

Gary Smith uunet!ddi l!lrark!glsrk!gars 
P. 0. Drawer 7680 nuucp%ddil @uunet. UU. NET 
Little Rock.AR 72217 GEnie Forth RT & Unix RTSysOp 
U.sA. phr 501-227-7817 

fax: 50 1-228-93 74 
8-5 Central. M-F 



E-Mail 
For those with e-mail-only access, there is not much. For now, 

posts from ForthNet ported into comp.1ang.fort.h sometimes adver- 
tise files being available o n  GEnie. Those messages also contain 
information o n  how to get UU encoded e-mail copies o f  the same 
files. There is an automated e-mail service. The entire FIG library 
o n  GEnie is available via e-mail, but no  master index or catalog is 
yet available. The file FILES.ARC contains a fairly recent list o f  the 
files o n  GEnie, and files added since then are only documented for 
comp.lang.forth readers by way o f  the "Files On-line" messages 
ported through ForthNet. 

I f  you have any questions about ForthNeUamp.lang.forth or 
any information to adddelete or correct in this message, or any 
suggestions o n  formatting or presentation, please contad either 
Doug Philips or Gary Smith (preferably both, but one is okay) via 
the following addresses: 

Internet: dwp@wi l~et t .p~h.~a.us 
orddi 1 !Irark!gars@uunet.uu.net 

Usenet: ... !uunet!ddil !Irark!gars 
or ... !uunet!wilIett.pgh.pa.us!dwp 

GEnie: GARY-S or D.PHILIPS3 
ForthNet: Grapevine, Gary Smith 

leave mail in Main Conference (0) 

To communicate with the following, setyourmodem and commu- 
nication sof'ware to300/1200/2400 baud with eight bits, no parity, 
and one stop bit, unless noted otherwise. GEnie requires local 
echo (half duplex). 

GEnie* 
For information, call 800-638-9636 

Forth RoundTable (ForthNet') 
Call GEnie local node, then 
type M710 or FORTH 
SysOps: 
Dennis Ruffer (D.RUFFER) 
Leonard Morgenstem (NMORGENSTERN) 
Gary Smith (GARY-S) 
Elliott Chapin (ELLI0TT.C) 

BIX (Byte Information exchange) 
For Information, call 800-227-2983 

Forth Conference 
Access BIX viaTymNet, then type j forth 
Type FORTH at the : prompt 
SysOp: Phil Wasson 

CompuServe 
For Information, call 800-848-8990 

Creative Solutions Conf. 
Type ! Go FORTH 
SysOps: Don Colburn, Zach Zacharia. Ward McFarland. Greg 
Guerin, John Baxter, John Jeppson 

Interface (formerly Nite Owl) 
SysOp: Bob Lee 
Napa, CA 
707-823-3052 

Non-Forth-specific BBS1s 
with extensive Forth libraries: 

DataBit 
Alexandria, VA 
703-71 9-9648 
SprintNet node dcwas 

Programmer's Comer 
Baltimore/Columbia, MD 
301 -596-1 180 or 
301 -995-3744 
SprintNet node dcwas 

PDS'SIG 
San Jose, CA 
408-2704250 
SprintNet node casjo 

International Forth BBS1s 
See Melbourne Australia in ForthNet node list abwe 

Serveur Forth 
Paris, France 
From Germany add prefix 0033 
From other countries add 33 
(1)410811 75 
300 baud (EN1) or 
1 200175 E71 or 
(1)410811 11 
1200 to 9600 baud (EN 1) 
For details about high-speed, 
Minitel, or alternate carrier 
contact: SysOp Marc Petremann 
17 rue de la Lancette 
Paris, France F-75012 

SweFlG 
Per Alm Sweden 
46-8-71 -35751 

NEXUS Servicios de Inforrnacion, S.L. 
Travesera de Dalt, 104-106 
Entlo. 4-5 
08024 Barcelona, Spain 
+ 34 3 2103355 (voice) 
+ 34 3 2147262 (data) 

Max BBS (ForthNet') 
United Kingdom 
0905 7541 57 
SysOp: Jon Brooks 

Computer Language Magazine Sky Port (ForthNet*) 
Type ! Go CLM United Kingdom 
SysOps: Jim Kyle, Jeff Brenton, Chip Rabinowitz. Regina Star 44-1 -294-1 006 
Ridley Sysop: Andy Brimson 

The WELL (Unix BBS with PicoSpan frontend) 
Forth conference 
Access WELL via CPN (CompuServe Packet Net) 
or via SprintNet node: casfa 
or 41 5-332-6106 
Forth Faimitness: Jack Woehr (jax) 
T v ~ e  ! i forth ,. - 

Citadel Network - two sites 
Underrnind (UseNetlCitadel bridge) 
Atlanta, GA 
404-52 1-0445 

Art of Programming 
Mission, British Columbia, Canada 
604-826-9663 
SysOp: Kenneth O'Heskin 

The Forth Board 
Vancouver, British Columbia, Canada 
604-681 3257 
Forth-BC Computer Society 

U'N I-neWS 
The Monument Board (U'NI-nel/RIME ForthNet bridge) 
Monument, CO 

*GEnieis&enlpar~or~ofthe~orthInt~t~t-oW~ Jerry Shifrin (ForthNet charter founder) 
oflicial Portb Library. 7 19-488-9470 

Forth Dimensions 4 1 May 1992 June 



A Space Application for the SC32 Forth Chip 
by Silicon Composers, Inc. 

QveNicw 
Applications requiring real-time control and high-speed 

data acquisition can take advantage of systems solutions that 
combine these features into one smaU package. Fast and easy 
software development is especially important to generate control 
programs that can be easily tested with application hardware to 
shorten development schedules. What follows is an example of a 
space application involving solar astronomy that meets this profile. 

Sun spots, flares, and granularity are solar phenomena of 
interest to scientists since a good theory of solar dynamics must 
take them into account. The granularity of the sun is caused by 
convection cells, which appear over the entire surface of the sun. 
To some extent, the sun's surface is similar to a pot of boiling 
oatmeal with the bubbles of oatmeal paralleling the convection cells 
on the sun. Although convection cells are about the size of the 
state of Texas, high resolution visual imaging of individual cells 
from earth-based solar telescopes is difficult to achieve because of 
the distortion due to the earth's atmosphere. 

Solar telescopes operating from suborbital flights have the 
advantage of being above the atmosphere, which allows them to 
acquire high resolution images that show more detail of convection- 
cell dynamics. For this type of mission, using a single on-board 
computer to control subsystems and data services can reduce 
system design complexity and development time. This single 
embedded computer can perform tasks such as telescope pointing, 
optics filter control and experiment sequencing as we11 as image 
acquisition, data storage, and down-link communications. 

Hardware 
A good embedded system for this type of application is 

the SBC32 single board computer (using the SC32 Forth RISC 
chip) and the DRAM1032 board. Together, these provide a large 
solid-state memory space, high-performance 110, and a 
microprocessor with plenty of horsepower and flexibility suitable for 
a wide variety of tasks, ranging from real time control to high speed 
data compression. The system software resides in 1BKB of on- 
board shadow EPROM, which is loaded on power up into on board 
zero wait state SRAM (maximum of 512KB). 

The DRAM1032 Board is designed for use in applications 
requiring high-speed data acquisition or control capabilities. The 
DRAM1032 has up to 16 MB of DRAM, a 16-bit bidirectional 
parallel port, 4 serial ports, SCST port, 2 tirner/counters, wristwatch 
chip and CMOS RAM. 

For the solar telescope application, the DRAMI032's four 
serial ports are used to acquire control data from and send servo- 
control commands to the telescope pointing, optics filtering and 
control, and mirror adjustment subsystems. The observation light 
beam is reflected to the telescope's CCD camera via servo control 
using parallel handshake bits and a counterttimer on the 
DRAM1032 board. Solar-image snapshots are initiated at pre- 
programmed times. Solar-image data is read from the 16-bit 
parallel port and written into 16 MB of on-board battery-backed 
DRAM. Once the rocket telescop payload is recovered, mission 
data can be transferred from the DRAM to a second 
SBC32DRAMI032 system or other system by way of the 
DRAMI032's ports. Alternatively, image data can be down-linkcd 
from the DRAM to a GSE (Ground Support Equipment) station. 

Up to 48 MB additional DRAM can be added with the 
DRAMEXP plug-on board. A 64MR system can hold 1,024 gray- 
scale (~ I I comp~~S~ed)  64KB images formatted as 256x256 8-bit 
pixels. An application specific image compression routine can be 
used to increase storage capacity. 

SC32 technology can also be used in the GSE station. 
Data from the rocket telescope can be down-linked to a PC based 

GSE system using the PCS32 (Parallel Co-processor System32), a PC 
plug-in coprocessor board which uses the SC32 chip and supports the 
DRAMI032. Data from the down-link is routed through the 
DRAM1032 parallel port and sent out the on-board SCSI port to 
high-speed SCSI devices, such as optical disk, tape, or hard drive, 
without going through the PC. Once on the SCSI drive, data can be 
accessed by any SCSI based system for analysis. 

Software 
During project development, the SBC324DRAMI032 flight 

hardware can serve as a development system by connecting it to a 
host terminal or PC for I/O services. When developing applications 
such as instrument control, programming in Forth on 32-bit Forth 
hardware with high-speed UO is a major advantage wer  other 
development methods. 

Creating software in high-level interactive Forth significantly 
speeds up development, while running the application on a 32-bit 
Forth chip pr&.ds high resolution and performance. High-speed 
UO permits real-time signal filtering, data compression and encryption 
as data is acquired or transferred. The code is tested and then placed 
in on-board EPROM for the space mission. 

Program 
The following code fragment shows how straightforward it 

is to use this board set. ?UBW returns a flag showing that the next 
CCD data is available on the parallel port. Direct manipulation of the 
hardware is possible, such as %PARRD @ to read memory mapped 
parallel port data. CCD data is collected 16 bits at a time and placed 
in 32-bit wide 0-ws SRAM, where it is processed at high speed before 
being stored in slower DRAM. Access to drivers is shown in the call 
to SCSIWR which takes {block number, address, number of blocks) 
to write large chunks of data to a SCSI device. COMPRESS- 
IMAGE compresses and copies completed images to DRAM, and 
updates pointers. A list of snapshot times in an experiment sequence 
is loaded into EPROM or RAM before the rocket is launched. After 
each imag  is collected, RELOAD-TIMER sets the time until the 
next picture. After the solar imaging phase is complete, additional 
data is collected until memory is full. This data is then unloaded to 
a SCSI device after payload recovery. 

Code cxample - SBC32 ROCKET data collection 
CREATE PIC 32768 ALLOT ( allocate pic SRAM buffer) 
HERE CONSTANT ENDPIC ( and mark end) 
VARIABLE NEXTIMG ( pointer to image time array) 
: COLLECT-IMAGE ( - ) ( CCD parallel -> SRAM) 

ENDPIC PIC DO ( FOR size of picture DO) 
BEGIN ?UBW UNTIL ( wait for CCD word ready) 

%PARRD @ I ! LOOP ; ( copy parallel to SRAM) 
: RELOAD-TIMER ( -- ) 

NEXTIMG @ @ 256 M O D  ( get time till next image) 
%CTURl ! %CTLRl ! ( set hardware timer reg) 
1 NEXTIMG +! ; ( advance picture pointer) 

: ROCKET ( - ) ( Turnkey task for launch) 
INIT-COLLECT ( Set pointers,timer) 
BEGIN ?MORE WHILE ( Outer Space loop ... ) 
POSITION-CAMERA ( adjust camera if needed) 
?TIME4PIC IF  ( time for nth picture?) 

COLLECT-IMAGE ( CCD image into SRAM) 
COMPRESS-IMAGE ( compress, move to DRAM) 
RELOAD-TIMER ( wakeup call for next pic) 
THEN REPEAT ( ... rest of images) 

COLLECT-REENTRY ; ( more until reach earth) 
: EARTH ( block# -- ) ( Save data on SCSI drive) 

DRAM 16384 SCSIWR ; ( 16K blocks = 16MB! ) 

May 1992 June 
I 

Forth Dimensions 



Competency 
I Conducted by Russell L. Harris 
/ Houston, Texas 

Perhaps the most basic problem facing a Forth program- 
mer is that of obtaining, from a client unfamiliar with Forth, 
authorization to use Forth on a particular contract. The 
situation has been exacerbated in recent years by the 
unquestioning and near-universal acceptance of C along 
with the nlethodology of object-oriented programming. A 
secondary problem is that of convincing the client that the 
programmer has the expertise to successfully complete the 
assignment. The following paragraphs present one approach 
to surmounting these barriers. 

Better vs. Safe 
Programming assignments and contracts are not always 

won by the most talented programmer or by the one having 
the best tools and expertise. The factors which typically 
weigh most heavily in the choice of a programmer are the 
language in which he programs and his previous perfor- 
mance. The factor typically of greatest import in the selection 
of a programming language is code maintainability. Predict- 
ability of completion date is a factor which influences 
selection of both language and programmer. 

Clients tend to view code maintainability as a function of 
the language in which the program is written, and the measure 
of mainlainability as  the relative abundance of programmers 
claiming proficiency with the language in question. They 
appear to give little, if any, consideration to the relationship 
between programming technique and maintainability. 

Clients frequently value predictability of completion date 
over minimization of programming time. A program may be 
only one element in a complex system involving many 
components and the services of many vendors. With the 
interdependency of schedules, a missed deadline may have 
consequences which greatly outweigh the expenditure for 
programming. Likewise, once a budget has been authorized 
and a schedule has been set, the programmer may receive 
litle, if any, reward for early completion. From thestandpoint 
of the client, the best insurance against a missed deadline is 
to select a programmer and a language, both of which he 
personally knows to have produced serviceable code within 
reasonable time on a project of complexity comparable to 
that of the project at hand. 

Shock Therapy, or Back to Reality 
Something more than a rcsunie listing past projects is 

required if the Forth programmer is to overcome the 
contemporary mind-set of C and object-oriented program- 
ming and bring his client back into a state of objectivity 
regarding Forlh. He must convincingly demonstrate the 
capabilities of Forth, the maintainability of programs written 
in Forth, and his mastery of Ihe art of prog~amming; and he must 

do so in a manner which will profoundly impress his client 
A demonstration may rake any of several forms. One 

could, for example, quote statistics, studies, or respected 
authorities regarding the matter in question. However, one 
of the more effective means of demonstrating the efficacy of 
a product or a technique is through the use of apparatus. In 
the first place, apparatusbe it basically mechanical, electri- 
cal, or virtual (i.e., a screen image) in nature-almost always 
draws attention. In the second place, apparatus provides a 
concrete example of technique. Finally, functioning appara- 
tus proves capability. 

Computerized apparatus programmed in Forth can attract 
and hold the attention of a client, thereby affording the 
programmer opportunity to demonstrate his own effective- 
ncss and the effectiveness of Forth. Source listings which 
exhibit orderly arrangement, functional grouping, and intui- 
tive names can dispel qualms regarding code maintainability. 
The overall appearance of the demonstration is perhaps the 
best indication to a client of the programmer's ability to bring 
to completion on schedule the project under consideration. 
Attention to detail is vital. Confidence in the programmer's 
reliability can be severely eroded by poor workmanship, by 
program bugs or quirks (no matter how minor), and by 
source code which is abstruse. 

The apparatus need not relate to the project under 
consideration. It should perform an obvious function of 
some complexity. Ideally, it should allow demonstration of 
the manner in which the interactiveness of Forth facilitates 
the development cycle. 

Effdve  Yet Practical Mechanisms 
A demonstrahn mechanism, for maximum effective- 

ness, should be elegant, functional, and attractive; yet 
practicality usually demands that it be both simple and 
economical to construct. Ideally, the complexity of the 
mechanism (including the electronics) should be no greater 
than necessary to support the programming demonstration, 
so that the mechanism spotlights the code rather than 
overshadowing it. 

Although demonstration apparatus frequently has no 
intrinsic usefulness, it should be possible to devise a number 
of useful mechanisms which are simple enough to be 
practical in this role. 

A Clearinghouse 
This is the first appearance of what is intended to be a 

regular Forth Dimensions column serving as a clearinghouse 
for the exchange of ideas and technical assistance regarding 
computerized apparatus for demonsmtion or other purposes. 

The continuation of this undertaking will depend largely 
upon reader response. What I, as edtor of this column, hope 
t o  receive is a variety of submissions, ranging from verbal 
descriptions and conceptual sketches to dimensioned draw- 
ing ,  schematics, source code, and photos of working 
devices, together with suggestions, criticism, and feedback 
regarding specific devices and the column in general. 

Material for publication may be sent directly to me at 8609 
Cedardale Drive, Houston, Texas 77055. I can be contacted 
by phone at 713-461-1618 during normal business hours and 
on most evenings, or on C Enie (RUSSELL.ED. . -- 
Russell L. I lalrls ~sacw~sul t~ny ollylrrmtr wulklrly WIG\ ~r f~kCIdc(I  ~Y~LUII IS III I l l~ 
fieldsof lnstrumenlal~on and mach~necontrol. He programs In polyforth, typos on 
a Dvorak keyboard, and keeps his wristwatch set to Greenwich time. 

Forth Dimensions May 1992 June 



1992 Rochester Forth Conference on 
Biomedical Applications 

June 17 - 20th, 1992 
University of Rochester 

Call for Papers Invited Speakers The Conference 
There is a call for papers Dr. C.H. Ting, Applied @Forth seminars, 

on all aspects of Forth tech- Biosystems, Inc. beginner through 
nology, its application and Human Genome and advanced 
implementation, but espe- Automation .FIG Demonstration of 
cially as relates to biomedical state-of the-art- 
applications. Other sessions Dr. Steven Lewis, commercial Forths 
include standards and em- Aerospace Corporation oASYST seminar 
bedded languages including Rhinosoft: Design of A .Stack computers 
C, Mumps, ANS X3/J 1 4 Forth, Biomedical product .Forth in the post-USSR 
and Open Boot. .Poster sessions 

Mr. Jack Woehr, Vesta 
Please submit 100 word ~~~h~~~~~~ 

.Working Groups 

abstracts by May 15th and 
aANS Forth Standard 

papers by June 1 st. Limit of 5 ANS Forth as a Component .Vendor Exhibits 

pages, 10 point size. Call for of Advanced Programming .Forth vs. C vs. C++ 

longer papers. Environments *Obj. orient. technology 
*Real time systems 

Registration For More Information: 
$450. Attendees Lawrence P. G. Forsley 
$300. Full Time Students Conference Chairman 
$200. Spouse Forth Institute 

Rooms 70 Elmwood Avenue 
Rochester, NY 1461 1 USA 

$150. Single, 4 nights (71 6)-235-0168 (71 6)-3284426 fax 
$1 25, Double pertperson 

EMail: Genie ................ L.Forsley 
.... Take advantage of lower registration Compuserve 720~0.2111 

............. fees this year! Internet 72050.21 1 l@cornpuserve.com 

Forth Interest Group 
P.O.Box 8231 
San Jose, CA 95 155 

Second Class 
Postage Paid at 
San Jose, CA 


