
$10 Volume XIV, Number 4

D I M E N S

November 1992 December

I O N S

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 200dm l&bit Forth Chip ~ ~ 3 2 ' ~ 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. 98 or 10 MHz operation and 15 MIPS speed.
-1-cycle 16 x 16 = 32-bit multiply. I-clock cycle instruction execution.
1 -cycle 1 eprioritized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. -Stack depths limited only by available memory.
-&channel 1/0 bus & 3 timer/counters. *Bus requestlbus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Computer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
-System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB (Iwait-state static RAM. 032 KB to 512 KB &wait-state static RAM.
*Full-length PC/XT/AT plug-in (&layer) board. -1OOmm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) SC/FOX PCS32 (Parallel Coprocessor Sys)
*RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. -System speed options: 8 or 10 MHz.
*Up to 640 KB 0-wait-state static RAM. 864 KB to 1 MB O-wait-state static RAM.
-233mm x 160mm 6U size (&layer) board. oFulClength PC/XT/AT plug-in (6-layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10. or 12 MHz. *System speed options: 8. 10. or 12 MHz.
-32 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB @wait-state static RAM.
100mm x 100mm size (4-layer) board. -1OOmrn x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

November 7992 December 2 Forth Dimensions

8 A Hardware Interrupt Handler
Tim Hendtlass
Data often must be acquired when the world is ready to provide it, even if the computer is busy
with other tasks. Thus, hardware interrupts are a must for programmers working with real-time
devices and data acquisition. This interrupt handler allows interrupt service routines to be written
directly in high-level Fo&-hiding all the tedious detail-and has been used in scientific
instrumentation. Highlevel ISRs have general-purpose applications, and are easier to write and
debug than assembler, at some expense in speed.

1 4 Principles of Metacornpilation, Part Two
B. J. Rodriguez
There may be no better way to learn Forth inside and out than by mastering metacompilation. For
those ready to take the leap, the author's series of articles (begun in our last issue) tackles all the
fundamental issues, addresses the thorniest obstacles, and provides ample illustrations and code.
With this knowledge---bearing in mind the lessons of Shelley's Frankenstein-you can dissect and
customize Forth to your heart's content. Not incidentally, you will also thoroughly understand your
Forth system and will be able to apply its resources more wisely.

28 Character Graphics
C. H. Ting
Forth represents new territory to both novice programmers and to those already adept in other
languages. Exploring such terrain in hit-or-miss fashion can cause missed landmarks and shottcuts
(where would Lewis and Clark have gotten without Sacajawea?), or may even end in terminal
frustration. Sometimes it's best to start with a competent guide at the veiy beginning: here, the
author teaches beginners how to use Forth commands to print messages on the screen. So begins
lesson one.. . more tutorial installments to follow.

29 Styling Forth to Preserve the Expnessiveness of C
Mike Elola
Forth's freed& from mul~ple syntax formats is the source of some confusion: it fails to package
code so that the flow of parameters is unmistakable. In pursuit of simplicity and compactness, Forth
streamlined its parsing requirements by abandoning support for several syntax formats, thus
impairing its expressiveness. Such concerns prompted the author to take up the challenge of
designinga new Forth styling convention.

Departments /
4 EditorialAnother worthy task; Forth in the wilderness.

5 LettersVisible words & ugly complexity, a challenge to standards warriors,
Combsort revisited, and Megasort in Forth.

21 Author Recognition
Program Forth writers' rewards.

26 Fast Forth wardI:orth threading models; new products; and China calls for
benchmarks.

33 Advertisers Index

38 On the Back Burner ... Some assembly required: working with che 8051.
... --- .- -. -. .- - -

Forth Dimensions PRINTED ON RECYCIED PAPER 3 November 1992 December

November 1992 Decembel

W e had just decided to
give readers a respite

frOmANS labor pa"s
when we received a letter by
Chuck Ea ker. In iL, he
challenges Forth experts who
are up to their necks in the
standardization debates to
turn to another worthy,
rewarding, and perhaps more
difficult task. Coincidentally,
columnist Mike Elola passed
this month's "Fast Forthward"
essay space to fellow Board
member Jack Woehr, instead
developing an article closely
related to Eaker's letter.

This issue's other con-
tcncs range from a tutorial
introduction to Forth to an
8051 assembler, an interrupt
handler, and metacornpila-
tion. But if you're too expe-
rienced to need a tutorial,
and too jaded to learn from
others' work with metacorn-
pilation, start with Eaker's
letter and Elola's article; if
you take them seriously, we
lhink you'll have your hands
full.

The next issue will pub-
lish winners of our "Forth on
a Grand Scalen contest. The
object was to describe Forth
projects of an unusually large
or complex nature, and the
top authors succeeded hand-
ily. We look forward to shar-
ing their work with you.

We hope you will give
serious dlought to writing
for Forth Dimmiom. AS a
~~ublication that is both by
and for the Forth cornmu-
nity, it rests on each of us to

A sign was posted to help
new arrivals find their way
over the winding, unmarked
roads. A family of Romanian
expatriates chanced upon the
gathering and found itself
welcomed into a culture they
had studied in books but
never experienced. I over-
heard the father tell some-
one he is an engineer, and
the technophile in me-not
entirely exorcised-intro-
duced itself to him. What a
strange surprise, there among
the jagged peaks and native
culture, to meet a man who,
when he came to the United
States, was required to learn
Foflh for his first job.

We discussed how hard-
ware has changed: the entire
Romanian financial system
once was maintained on a
256K computer (no docu-
mentation) with four wash-
ing-machine-sized hard
drives that could store about
as much information as a
checkbook register. Agradu-
ate of the old People's Com-
puter Co. philosophy of put-
ting computer power in the
hands of the people, I told
him that every time I con-
sider junking my oldTRS-80,
I think, "But in its day, it
could have launched a Third
World space program!" Once
ordained in Eastern Europe's
original mainframe griest-
hood, he told me he dislikes
Forth and loves languages
with libraries.

Draw your own conclu-
sions. Meanwhile, your edi-
tor is back at his desk and
working on the next couple
of issues. But even in the
midst of jugghg these man-
made cieadlincs, press re-
leases, and various develop-
ments, I'm remembering the
fragrant sweetgrass and wild-
flowers, the sound of singers
and drums under the full
moon, tipis radiant with in-
ner fires, and the age-old les-
sons of kinship and gratitude.

' create an informative and
uscful publication. Tell us
what you are doing with
Forth, share your discoveries
and obstacles, teach tk
of us something we should
know.

* * *

As you may know too
well, a peril of the self-em-
ployed worker is the persis-
tent lack of "down time."
The telephone rings at inter-
national hours; there is sel-
dom anyonc todclegate tasks
to; and every time you pass
the office door, a twinge of
conscience strikes-there's
always some task clamoring
for your attention. Paid va-
cations and benefits? Forget
about them.

Sometinles the only way
to really take olf work is to
take off literally, and even
that doesn't always work,
not entirely. I recently left
office and work (except for
calls to the printer) for the
first time since I don't re-
member when. Taking to
the road, 1 ended up at a
small encampment on a
mountainous, native Ameri-
can reservation near the Ca-
nadian border. Nothing bet-
ter counterracts a long-term,
low-level overdose of tech-
nology than big sky, fresh
air, spring water, general hi-
larity, and ceremonial ob-
servances of thc unity of
diverse people, their spiri-
tual traditions, and the nur-
turing earth.

Forth Dimensions
Volume XIV, Number 4

November 1992 December

Published by the
Forth Interest Group

Editor
Marlin Ouverson

Circulatior~/Or&r Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters to the &-
tor, and comments from its readers.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimen-
s i m i s included with membership
in the Forth Interest Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit items for publica-
tion, h e address is: Forth Intcrest
Group, P.O. Box 2154, Oakland,
California 94621. Administrative
offices: 510-89-FORTH. Fax: 510.
535-1295. Advertising sales: 805-
946-2272.

Copyright O 1992 by Fotth In-
terest Group, hc . 'lhe material con-
taincd in this pcriodicd (but not
the code) is copyrighted by the
individual authors of the anicles
and by Forth Interest Group, Inc.,
respectively. Any reproduction or
use of this periodical as it is compild
or the articles, except reprcduc-
tiom fornon-commercial purposes,
without the written permission of
Forth Interest Group, Inc. is a v ie
lation of the Copyright Laws. Any
code bearing a copyright notice,
however, can bc used only with
permission of the copyright holdcr.

The Forth Interest Group
The Forth Interest Group is the
association of programmers,
managers, and engineers who create
practical, Forth-based solutions to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a climate of
intellectual exchange and benefits
intendcd to assist each of its
members. Publications, wnferenccs,
seminars, telecommunications, and
area chapter meetings are among
its activities.

"ForoTlhDimensiotlr(ISSN 0884-0822)
is published bimonthly for $40/46/
52 per year by the Forth Interest
Group, 1330 S. Bascorn Ave., Suite
D, San Jose, CA 951 28. Secondclass
postage paid at San Jose, CA.
POSTMASTER: Send address
changes to Forrh Dimensions, P .0 .
Box 2154, Oakland, CA 94621 ."

Forth Dimensions

Letters to the Editor-and to your fellowreaders-are always welcome.
Respond to articles, describe yourlatestprojects, ask for input, advise
the Forth community, or simply share a recent insight. Code is also
welcome, but is optional. Letters may be edited for clarity and length.
We want to hear from you!

Visible Words & Ugly Complexity
Dear Marlin:

Thanks to Mike Elola for introducing the topic of graphi-
cal interfaces. He mentioned the tclrm "ugly complexity," and
it got me thinking again about the perception of complexity.

Three elements contribute to the perception of ugly
complexity. The perception of complexity happens when a
system forces you to think about more than you are
comfortable thinking about. The ugly part of this perception
happens when, even after you understand and can use the
system, the system still doesn't make sense. The third facet
of ugly complexity is finding that you've gained little or no
functionality after the struggle to learn the system. Systems

- -

like a factory's materials-storage system or the tax laws come
to mind.

A given Forth environment seems simple because you
don't have to think about very many of its parts at once. You
usually have the choice of thinking about only what you can
handle. This may be because it is a small Forth system with
a relatively small number of words. Even when Forth gets

Give Forfh the ability to
swallow whole the work of
others and make it
interactively available,,,

large, it slill seems simple because you have a choice about
how much you have LO deal with at once. The C language,
because of its syntax and compilation, doesn't allow nearly as
much flexibility concerning what you'll think about, and when

It's a mistake to think that, because graphical interfaces
are written in C orC++, they are by nature complex. Yes, they
have a lo1 of parts and a lot of layers, but hey don't have to
be complex. It's also a mistake to believe that all graphical
interfaces are equal and that any collection of shapes on a
screen constitutes a good visible interface. It is important here
to dis~inguish "gmphical" from "visible." Graphical simply
means ha t graphics are used. This is a pretty easy thing to
do. Visible means that the system is made visible and, hence,
more understandable to h e user. ?'his is not so easy but,
when done right, removes much complexity.

People who believe in command lines don't have to panic
here; instead, take a look at the Macintosh Programmer's
Workbqi~. It provides a visible means of creating and using
command lines. You can get commands working quickly
and save them, if you use them a lot, in a smooth, natural
fashion. In fact, it works so smoothly that you may not think
you're getting much done. This is because you can actually
get a lot done without occupying the best parts of your mind
with tasks that should be relegated to the lizard brain.

Considering all of this, I think it's a shame to avoid putting
a lovely, simple visible interface on such a lovely, simple
system as Forth. Creating a visible Forth environment would
be easy, because the concept of "wordn translates easily into
the visible concept of a "box." One could open the box to see
what is inside and to manipulate what is there. Stacks have
already been pictured in the literature-all that remains is
putting in a mechanism to allow the user to point to and grab
items on the stack. Visible words and dictionaries are a much
better way of distributing functionality than D m .

I'm working on these ideas now, and I invite anybody else
who is interested to write or call me. Thanks again, Mike.

Sincerely,
Mark Martino
14115 N.E. 78th Court
Redmond, Washington 98052

A ChaJlenge to Standards Warriors
Chuck Eaker says: Hammer your standards-warfare swords

into plowshares and figure out how to use them to break new
ground by giving Forth the ability to swallow whole the work
of others and make it available in the interactive way we aIl
know and love.

Try this. Develop Forth++, which will operate in a Unix
environment Define Forth++ words which take the name of
a (preferably C++) library (such as some of the X libraries)
and link the library into the Forth++ environment so that a
user can interactively list the classes, functions, etc. provided
by the library, create instances, execute methods, and
generally perform reckless experiments quickly and cheaply
in the manner that, for me, is the essence of Forth.

Off-the-shelf class libraries provide incredible leverage
but they are stupifyingly complex, and the documentation is
enormous but still incomplete. It takes foreverto create and
run a little program that will give you an answer to how this
lillle widget behaves when you do this weird thing with it that
isn't mentioned anywhere in the documentation. If I had
170rth++ running in another window, I could significantly
increase my productivity.

Devise a Forth++ vocabulary and syntax that I could use
for interactive development; and a tool that will translate
Forth++ to C++, which I can then compile and link the object
file to Forth++, so that I can continue development, then
translate.. .

In my opinion, the proposed standard has more Lhan
captured the essence of Forlh. What Forth needs is a way to

Forth Dimensions November 1992 December

I Figure Two. More readable Meaasort. /
capture other standards. There are lots of
common, well-known libraries out there
wilh which tens of thousands of profession-
als are familiar. They are using them to
leverage themselves into positions of power,
from which hey can develop sophisticated
soriware quickly and cheaply. Folrh can
never hope to match this achievement on its
own.

\ MEGASORT FOR EASY READING
: ARRY (1 6 bit a r r a y maker)

(Size-in-items) CREATE 2* ALLOT
(Index - Addr) DOES> SWAP 2* + ;

256 ARRY BUCKETS (TO PUT COUNTS OF EACH OCCURENCE)
256 ARRY POINTERS (LOCATION TO PUT VALUE)
ITEMS ARRY DATATEMP (TEMPERARY ARRAY)

: INITBUCKETS (init BUCKETS)
[0 BUCKETS] LITERAL
512 0 FILL ;

: SCANLSB (ITEMS -)
(FOR EACH ITEM PUT ONE COUNT INTO THE CORRECT BUCKET)
(ITEMS) 0 DO
1 I S@ 255 AND BUCKETS +!

LOOP ;

Chuck Eaker
P.O. BOX 8, K-1 3C12
Schenectady, New York 12301

1 : BUCKETS>POINTERSl (MAKE POINTERS TO THE START OF EACH PILE)
n Combsort Revisited

Dear Mr. Ouverson,
After I sent my article, "Combsort in

Forth" to you, I experimented with the
shrinkage factor (FD XIII/4).

I set up speed tests using Comb1 to

U

256 0 DO
DUP I POINTERS ! I BUCKETS @ +
LOOP DROP ;

: REORDERLSB (ITEMS -)
(MOVE TIE ITEMS TO THE PILES DEFINED BY POINTERS)

(ITEMS) 0 DO

double-check the effect on Combsort perfor-
mance of varying the shrinkage factor. The
results are given in Figure One. I discovered
ha t if arrays have randomized elements,
even a slight deviation from a factor of 1.3
causes the sort speed to suffer. But if the
elements are flat or sorted to some degree, a
higher factor actually results in a speed
increase. This explains the erratic perfor-
mance found by Box and Lacey with higher
factorvalues. I don't know why a value of 1.3
proves so critical to Combsort performance,
so you'll have to accept it as a given.

I S@
DUP 255 AND POINTERS DUP >R
@ DATATEMF !
1 R> +!

LOOP ;

: SCANMSB (ITEMS -)
(lTEMS) 0 DO
1 I DATATEMP 1 + C@ BUCKETS + !

LOOP ;

: BUCKETS>POINTERS2
0
256 128 DO (NEGATIVE NUMBERS FIRST)
DUP I POINTERS ! I BUCKETS @ +
LOOP
128 0 DO
DUP I POINTERS ! I BUCKETS @ +
LOOP DROP ;

Walter J. Rottenkolber
P.O. Box 936
Visalia, California 93279

: REORDERMSB (ITEMS -)
(ITEMS) 0 DO
I DATATEMP DUP @
SWAP i+ C@
POINTERS DUP >R
@ S !
1 R> + !

LOOP :
Megasort in Forth

Dear Editor,
The article by Walter J. Rottenkolber

(FDXIII/4) on Conlbsort, was very interest-
ing but the table of contents entry was

: MEGASORT (#Items -) (Language Nov 87)
INITBUCKETS (init BUCKETS)

DUP SCANLSB BUCKETS>POINTERSl DUP REORDERLSB
INITBUCKETS
DUP SCANMSB BUCKETS>POINTERS2 REORDERMSB ;

Figure One. Combsort shrinkage factors 8 performance. I
Sort time in seconds

Factor Ramp Slope Wild Shuffle Byte Flat Checker Hump

November 1992 December 6 Forth Dimensions

/ Figure Three. Smaller, faster Megasortl . I
\ MEGASORTl FOR SPEED AND S I Z E
CREATE BKT/PNTR 5 1 2 ALLOT
CREATE DATATEML' ITEMS 2 * ALLOT

: ORKT/PNTR (init BUCKETS)
BKT/PNTK 5 1 2 0 F I L L ;

: CNTLSB (ITEMS -)
(ITEMS) 0 DO
2 I S @ 2 5 5 AND 2 * BKT/PNTR + + !

LOOP ;

: CNT>PNTRl
DATATEMP RKT/PNTR
2 5 6 0 DO

DUP @ >R
OVER OVER ! 2 +
SWAP R> + SWAP

LOOP 2DROP ;

: LSB (ITEMS -)
(ITEMS) 0 DO
I S @
DUP 2 5 5 AND 2 * BKT/PNTR +
DUP >R @ !
2 R> + !

LOOP ;

/ DATATEMP l t CONSTANT DATATEMP1

: CNTMSB (ITEMS -)
(ITEMS) 0 DO
1 I 2 * DATATEMP1 + C@ 2 * BKT/PNTR t + !

LOOP ;

: CNT>PNTR2
0 BKT/PNTR 2 5 6 +
1 2 8 0 DO

DUP @ >R
OVER OVER ! 2 +
SWAP R> + SWAP

LOOP DROP BKT/PNTR
1 2 8 0 DO

DUP @ >R
OVER OVER ! 2 +
SWAP R> + SWAP

LOOP 2DROP ;

: MSB (ITEMS -)
(ITEMS) 0 DO
I 2 * DATATEMP + DUP @
SWAP 1+ C @ 2 *
BKT/PNTR + DUP >R
@ S !
1 R> + !

T.OOP ;

: MEGASORTl (# I t e m s -) (L a n g u a g e N o v 87)
OBKT/PNTR DUP CNTLSB CNT>PNTRl DUP LSB
OBKT/PNTR DUP CNTMSB CNT>PNTR2 MSB ;

Timing: average of ten passes timed by stop watch and
corrected for pattern-generation time.

Forth: F-PC 3.34

Sort Speed Size
coml 6.94 -

COMB2 7.05 -

DW&KNKR .65 6728 (Not counting slack and names)
MEGASORT .62 3136 (Not counting stack and names)
MEGASORTI .48 2616 (Not counting stack and names)

The king is dead, long live the king!
I have included the code for bothMEGASORT [Figure Two1

and MEGASORTl [Figure Three], since MEGASORT is more
readable and MEGA SORT^ is "pedal to the metal." It should
be noted that DVD&KNKR is about three times faster than
Quicksort for 1000 items and MEGASORT1 is four times faster!

Dwight K. Elvey
Santa Cruz, California

/ misleading. "Rumors of my death have been greatly exagger- I
ated." I pulled out my old code and found there was no
competition with the Combsort and DVDSiKNKK. It did get

/ me thinking that even DVD&KNKR rnight'not be the fastest /
I and 1 didn't want to be caught with my pants down. I did /
I some research and found yet a better sort--one called /
I Megasort. 1 found an article describing it in a November 1987 / 1 copy of hngmge well, hcrc are the results

/ Tkxt Condition:
Test set: Challenge of Sorts
CPU: 10MHz '286

Total control
with LMI FORTHm
k r Programming Professionals:
an expanding family of compatible, high-
performance, compilers for micmcomputers
For Development:
Interactive Forth-83 InterpreterICompilers
for MS-DOS, OSl2, and the 80386

lbbit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files
500 page manual written in plain English
Support for graphics,floating point, native code generation

For Applications: Forth-83 Metacompiler
Unique tabledriven multi-pass Forth compiler
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscornpiles to 8080,ZSO, 8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,~10, V25, RO(-2000
No license fee or rovaltv for com~iled a~~lications

I Laboratory Microsystems Incorporated
B s t (Xfioe Box 10430, Marina del Rg! C1\ W295

Phone M A Card Olders lo: (213) 3067412
FAX: (213) 301-0761

Forth Dimensions November 1992 December

DL Tim Hendtlass
Melbourne Australia

Interrupts are powerful, but often are not used because
a knowledge of assembly language programming and atten-
tion to many details is usually required. This paper describes
an interrupt service routine compiler that allows intermpt
service routines to be written directly in high-level Forth
while hiding all the tedious detail. It was originally developed
for teaching, so students could concentrate on what they
were doing and why they were doing il, rather than be lost
in how they were doing it. Subsequently, it has been used in
a number of other situations, principally in the area of
scientfic instturnentation. Although ISRs written in high-
level Forth are slightly slower than those written in assem-
bler, high-level ISRs have applications for general purpose
use and are far easier to write and debug. The example given
is written for F-PC, but it can readily be adapted to other
processors and implementations of Forth.

Introduction to Interrupts
In most computing, the timing is set by the processor. The

user supplies input on demand when the processor wants it
and receives output when the processor is ready to provide

Hardware interrupts may
occur at any time, even when
Forth is not in control...

it. Timing is not of great interest in these cases, except to
make the task run as fast as possible, overall.

I-Iowever, in some situations such as interfacing, the data
must be acquired when the world is ready to provide it, and
if it is not acquired it is lost forever. In such cases, correct
handling of the inconsistent and variable timing imposed by
the world is most important. Such programs have no way of
knowing something is going to happen before the moment
at which occurs. Of course, it is possible for the processor to
periodically stop doing ils main task and look to see if
something has happened, just in case; but the chance of missing
an event is very high unless an cnormous proportion of the
processing time is spent looking at very frequent intervals.

A better way to respond to random even& is to use special
hardware to inform the processor when an event has
occurred. It 'informs' the processor with an electrical signal
called an interrupt, applied to a pin on the processor, which

triggers the intcrrupt response mechanism inside the proces-
sor. The processor (normally) will immediately suspend the
task it is doing, establish exactly which of the possible
sources just interrupted it, and take whatever action has been
deemed appropriate to handle interrupts from that source.
After performing this action, the processor will return to carry
on with the task it was doing before the interrupt occurred.
By making the processor subservient to special interrupt
hardware, the programmer can write a program that gives its
full atkntion to the main task, safe in the knowledge ihat
these external, spontaneous events will be handled quickly,
safely, and automatically when they occur. The programs to
handle each of the possible interrupts are quite separate
pieces of code which transfer activity from the main program
to them and back again automatically when an interrupt
ocars. Of course, the hardware must be initialized before it
can handle an interrupt.

Interrupt Response Mechadsm
The processor response mechanism is generally very

similar in all processors. First the processor finishes its current
instruction and saves the minimum information that will be
needed later to resume as if nothing had happened. Then the
processor jumps LO a pre-established address and starts
executing the instructions there. The (usually) short program
the processor executes in response to an interrupt is called
the in tmpt sm'ce mtine(or ISR for short). There are often
a number of them, each starting at a different address. These
start addresses are known as the interrupt uectors. Usually
there is one ISR for each possible interrupt source, although
it is possible for two or more interrupting sources to trigger
the same routine to service all of them. There must be a
special instruction at the end of each ISR that causes the
processor to rescue the information it saved before going to

Tim Hendtlass obtained his Ph.D. in lonosoheric Phvsics in 1974 but later
switched to Scientific Instrumentation. He is now an ~ s s k i a t o Professor respon-
sible for thescientific lnstrurncnlalio~i majoratthcSwinburne InstituteofTechnol-
ogy. He discovered Forth inabout 1980and since has useditextensively, firstfor
rescarchand later for teaching. He teachesForth to about80 studcnlsayear, who
use it for learning about instrument interfacing and real-time processing. In
research, he has used it in diverse fields: from intelligent adaptive technological
support for the elderly, to highly distributed industrial data collection, to devices
for the measurement of capacitance under adverse conditions. Hc likes F-PC
because it is a full implementation with adequate support for evenvaguestudents
and because, as it is public domain, he can share it with all interested persons
without restriction. He can be contacted by mail at the Physics Department.
Swinburne Institute of Technology, P.O.Box 218 Hawthorn Australia 3122; or by
phone (61 3 819 8863) or by fax (61 3 818 3645).

November 1992 December 8 Forth Dimensions

the ISR and use this to return to what it was doing when it
was interrupted, carrying on as if nothing had happened.

Preparing a processor to receive inlerrupts involves fist
putting the interrupt service routine(s) in place in memory,
then arranging for each interllipt to CaUS€! the prOCFSOr to
find its way to the correct ISR. How this is to be done depends
on the processor; in some simple systems, the manufacturer
s p e d e s the start addresses of the interrupt service routines
for all the possible interrupts. In this case, all that is required
is to put the ISRs into memory starting at the pre-specified
addresses. More commonly, a table of start addresses of the

electrical signal for-a non-maskable interrupt reaches the processor, no power on
earth will prevent the processor from responding to it.

Figure One. Registers which must be correctly
reloaded for 'safe' re-entry to Forth.

The data stack pointer SP
The return stack pointer BP
The next instruction pointer ES:SI
The current pointer
~ h , scratch pad registers

AX

,-he segment registers
BX, CX, DX, Dl

The direction Rag
CS, DS, SS
DF

develop liere will work with either maskable or nonmaskable inlerrupts. The
address of the non-maskable interrupt service routine is ently 2 in the interrupt
vector table.

For IBM-PC users, non-maskablo interrupts can be turned off by hardware
external totheprocessor Indeed, they are turned offat power-up (but turned back
on by the BlOS almost immediately). They may be turned on by a program writing
80 hex to I10 port A0 hex or turned off by writing 0 to the same port. This uses
hardware provided on the PC motherboard to control a gate which allows or
prevents the actual electrical NMI signal reaching the chip. It does not exercise
control within the processor as CLI and ST1 do for maskable interrupts. If the

Forth Dimensions

assembly code to save all registers
assembly code to reload all registers as Forth needs
them

to switch high-1eve1
high-level code to do what the ISR has to do
, high-level code to rerurn to assembly code

November 1992 December

ISRs is kept in memory. This allows ttle ISRs to be anywhere
in nlemory, of any length, and importantly to be quickly
changed by just changing the appropriate entty in the table.
It also allows one physical interrupt service routine to service
more than one interrupt source.

Interrupts on the
80x8~ Processor F d y

From now on, we will limit this discussion to the 8 0 x 8 ~
pmessor family on which F-PC runs. In this family a table
of 256 addresses is kept, each entry consisting of a four-byte
address in segment:offset form. Possible interrupt sources are
numbered from zero to 255, and identify themelves by that
number when they interrupt. men source zero
inkrrupls, the processor reads the zro* enuy in he rable,
goes to that address and executes he ISR there. The response
to an interrupt from source number one is the same, except

first entry is read, and so on, The table of ISR start
addresses is called the interrmyt vector table.

There are times when an interrupt would be an acute
embarTaSSment, such as when the pro-or is placing (or
changins, interrupt routines, or when the prOCessor
is running a piece of code that is so time critical that even the
briefest interruption cannot be tolerated. To allow for these
situations, two instructions control whether the
processor will respond to machine-level
instruction set intemptflag (STI) allows it to respond, the
insmction ,-&arintermptflag((-Lo stops it from responding.
There are also non-maskable interrupts R J M ~ I which are
responded to no matter what the state of the intemptenable
flag. The processor automatically disables further interrupts
as it goes to do an ISR, and reenables them when the Fia l

of the ISR, the instruction Im, is ex-
ecuted. If it is the inlention that a particular ISR ibelf may be
interrupted if a more important (urgent) interrupt occurs, the

1.Themostusualtypeofintemptswhichcanbeswitchedonoroffatwillarecalled
maskable inlerrupts. There are also non-maskable interrupts (NMI) which cannot
be turnedoff inside theprocessor. Thoseare normally reserved for responding to
emergency s~tuations, such as power failing, the consequences of which would be
so cataclysmic that responding to them would be more important than anything
else the processor might be doing. The response mechahism is almost identical
to the way the processor responds to maskable interrupts, and the words we

programmer must re-enab1e with an ST1 as soon
it is safe for another to be recognised-
Interrupts can be triggered by either external hardware,

as descnhed above, or by software command. The assembly
language instruction INTO will cause interrupt zero to run just
as if a hardware interrupt signal had been received from
interrupt source zero; and similarly for all other interrupts.
This is very for testing purposes.

Designing an ISR Compiler for F-PC
It is most impomnt to that an interrupt Occurs

and is responded 10, the Proce~sor is running normal
machine code, no matter what it was running when the
interrupt occurred. So, if we were running Forth, after an
interrupt Forth no longer has control. The ISR must at least
start out in assembly code.

If a software command causes an interrupt wbileForth &-
running ourprogram, the environment the processor is in at
the time of the interrupt is known: it will be in Forth.
However* hardware-initiated may ocCXK at any
time, even when Forth is temporarily not in control. (Forth
seeks service from DOS from time to time when it needs to
use the screen, the keyboard, or the disks.) To handle
hardware interrupts successfully, we have to preserve all the
Same registers as for the software-initiated case (because
most of the time Forth will be in control), as well as any
registers Over and above these that DOS might use (just in
case). The net result of chis is that, to be quite sure, we have
to save all registers at the start of our interrupt service routine
and them a'' just before we return from processi%
Our inte'NpL

When we wish to run our Foorth interrupt service routine,
we can make no assumptions about the Of any
register (DOS could have changed them temporarily) and
must reload all the ones (shown in Figure One) absolutely
required by Forth (the scratch ones do not need to be loaded
when we go into the ISR, as we will always be going to the
Start of a Forth word; but they fl'lust be restored before we
return from our ISR, in case Forth was in control 2nd their
'Ontents were impomnt when the interrupt occurred). So
OUT skeleton interrupt service routine l00k.S like:

I Figure Two. Source code for the ISR-building w o r d d ..
assembly code to reload
all the registers we
originally saved
assembly code instruction
to return from interrupt
(IKE'r)

As all but the 'high-level
code to do what the ISR has to
do' are always the same, we
can write them as two words

5 c o n s t a n t STACK-NUMBER
v a r i a b l e STACK-BASE
100 c o n s t a n t STACK-SIZE
A0 c o n s t a n t RSTACK-OFFSET
c r e a t e ISR-STACKS
s t a c k - s i z e stack-number *
a l l o t
i s r - s t a c k s s t a c k - s i z e t

s t a c k - b a s e !

LABEL ISRENTRY

comment :
(s t a c k on e n t r y = p c c s f l a g s n)

\ Y s t a c k s = ncsLing d e p t h o f ISRs
\ p l a c e t o keep t h e t o p o f the c u r r e n t s t a c k
\ s i z e of one d a t a s f a c k r e t u r n s t a c k p a i r
\ d e p t h o f d a t a s t a c k (o f f s e t t o r e t u r n s t a c k)
\ p o i n t e r t o bot tom o f t h e s t a c k o f s t a c k s
\ number of b y t e s t h e s t a c k s w i l l t a k e
\ make s p a c e f o r t h e s t a c k s .
\ c a l c u l a t e t o p o f f i r s t d a t a s t a c k
\ i n i t i a l i z e b a s e p o i n t e r

(callinnthebitbeforethehi&- ((o l d s t a c k on e x i t = p c c s f l a g s n a x d i b p bx d s)

level cgde ISRENTRY and the
bit after ISREXIT). As a hr-
ther refinement, can have
a defining word, say INT:,
that starts an ISK defmition.

(new s t a c k on e x i t = es si o ld - sp o ld - s s c x dx)

n is t h e o f f s e t i n l i s t s p a c e t o t h e l ist of h i g h - l e v e l words t o do i n t h i s ISR. We
f i r s t u se t h e s t a c k we a r e i n when t h e i n t e r r u p t o c c u r r e d t o s a v e some i n f o r m a t i o n
comment;

PUSH AX PUSH D I PUSH BP
MOV BP, SP

ISR code. The definition ter-
mination word, say INT; ,
would append the high-level

'l'his will build the list that is
the user-supplied, high-level

(colon) version of I SREX I T
automatically as the last item
on this list. The run-time

Eg ~ X , [B ~ l [DI1
PUSH BX

behaviour ISR: gives to the
ISR it is building is to perform
ISRENTRY and then to pro-
cess the list just as if ir were a
normal colon definition. Our
ISR structure is now:

ISR: <name>
high-level Forth words
ISR;

This is conceptually neater
and encourages programmers

\ s t a c k p o i n t e r t o bp
\ a d r of o f f s e t t o l i s t t o p r o c e s s (n) t o d i
\ g e t t h e a c t u a l o f f s e t (f r om t h e code segment)

\ we w i l l a l s o need BX
PUSH DS \ and DS
\ o l d s t a c k is now p c cs f l a g s n a x d i bp bx d s .
\ R e g i s t e r a x c o n t a i n s t h e a c t u a l o f f s e t i n t o F o r t h list s p a c e
\ Swi t ch t o new s t a c k
MOV BP, SP MOV D I , S S
MOV BX, CS
MOV SS, BX
MOV DS, BX
MOV BX, # STACK-BASE
MOV SP, 0 [BX]

\ o l d s t a c k p o i n t e r s t o bp and d i
\ new s t a c k segnment-new code segment

\ d a t a s e q = s t a c k s e g = c u r r e n t code s e g
\ g e t neb s t a c k p o i n f e r
\ new s t a c k s e t up

\ F i n i s h s e t t i n g up t h e r e g i s t e r s f o r F o r t h and
\ s a v i n g any r e g i s t e r s no t a l r e a d y s aved

ADD 0 [BX], # STACK-SIZE WORD \ a d j u s t s t a c k - b a s e l e s t we g e t
\ i n t e r r u p t e d

PUSH ES PUSH SI \ s a v e r e g i s t e r s we a r e go ing t o u se
ADD AX, # XSEG @ MOV ES, AX \ p o i n t e s t o t h e c o r r e c t l ist segment
SUB S I , ST \ c l e a r si (p a r t o f F o r t h program c o u n t e r)
PUSH BP PUSH DI PUSH CX PUSH DX
MOV BP, SP SUB BP, # RSTACK-OFFSET \ S e t up new r e t u r n s t a c k p o i n t e r
NEXT \ S t a r t t h e ISR.

\ New s t a c k now e s s i o l d - s p o l d - s s cx dx

(Continued on nextpage.)
- . -

to concentrate on what they
are t~ying to do rather than the details of how it is being done.

Implementation of the ISR compiler.
The definitions of ISRENTRY, ISREXIT, ISR:, and

ISR; are shown in Figure Two. It is not necessary to
understand how they work to use them, but these notes are
intended to assist those who are curious or wish to modify
them for a different system.

When the interrupt occurs, we do not know where the
stacks' pointers used by F-PC point, nor do we know how
much room exists on these stacks before we write over
something important Although F-PC has a substantial amount
of stack space, other versions--especially those on embed-
ded systems-do not, and the only safe thing is to have a pair
of new stacks (one for data, one for return addresses)
exclusively for the use of our interrupt. We cannot havc only
one pair of stacks available if this interrupt may itself be
interrupted. For interruptable interrupts, we need as many
pairs of stacks available as the maximum depth to which we
will allow interrupts to be nested. In short: a stack of pairs of
stads, the depth of which determines the maximum inter-
rupt ncsting depth. In Figure Two, this is set arbitrarily at five.
On entry to the ISR, a variable STACK-BASE is read to get the

I initial value of the data stack pointer, then this is incremented
by STACK-SIZE so it points to the next stack to use should

I this interrupt be interrupted. The return stack pointer is ' initialized to the data stack pointer minus RSTACK-OFFSET.
1 At the time of exit from the ISR, the value of STACK-BASE

is decremented by STACK-SIZE. In the interests of speed,
! no check is made to see that you do not run out of ISR stacks
1 (that is, have interrupts nested too deep).

When we get to ISRENTRY, the stack already contains
four items of interest to us. The contents of the instruction
pointer, the code segment register, and the flag register were
saved automatically by the interrupt-handling hardware built
into the processor. ?he minimum run-time behaviour of
CREATE places on lhe stack the address of the word after the
call to the run-ume routine. m this case, as for a colon
definition, this conlains the offset from thc start of the list
segment LO the start of the list ofthings to do. For a description
of the internal structure of F-PC, see [Ting891. A few more
things must be saved to give us some working room before
we switch to our interrupt stack. Then the remainder of the
things we need to save are placed on this new stack.

When we come to the end of the IS& we cannot just jump
back into what we were doing before the interrupt occurred.

November 1992 December Forth Dimensions

increments a 32-bit counter. 'lk inkmupt occurs at 18.2 Hz,
so our counter will be incremented approximately oncc
every 55 milliseconds.

We need to install this ISR before it can be used, e.g.:

hex
2 v a r i a b l e OLD-VECTOR

\ space t o save t h e o r i g i n a l v e c t o r
\ w e c o u l d s ave it on s t a c k i n s t e a d

1 C ? i n t e r r u p t o ld-vec tor 2!
\ r ead and save old vec to r

t i c k i n g 1 C i n s t a l l - i n t e r r u p t
\ i n s t a l l o u r new v e c t o r

decimal

A couple of other minor words are needed, one to
initialize (zero) the value in the counter, and the olher to read
and display the current value in the counter. lhese are also
shown in Figure Four.

INIT-TICKS will zero the counter and TICKS? will print
the current value in h e counter. Despite 1C interrupts
occurring at, no doubt, inconvenient times as Forth continues
to !x used, all continues as it should because TICKING meets
the requirements of a good ISR: it is short, fast, and leaves no
trace of itself on any stack when it has finished running.
When we have finished with our ISR for good, we can restore
things as they were before we installed it by typing:

Figure Three. Convenient words for use with
interrupts (hex entry is assumed).

CODE ?INTERRUPT (intt -- seg o f f s e t)
POP AX \ g e t i n t e r r u p t number
PUSH ES
PUSH BX \ p r e s e r v e t h e s e r e g i s t e r s
MOV AH, # 35 \ l o a d DOS s e r v i c e number t o AX

INT 2 1 \ c a l l DOS t o do t h e work.
MOV DX, ES \ segment r e t u r n e d i n ES
MOV AX, BX \ o f f s e t r e t u r n e d i n BX
POP BX
POP ES \ r e s t o r e r e g i s t e r s w e p r e s e r v e d
2PUSH \ p u t answer o n t h e s t a c k

END-CODE

CODE INSTALL-INTERRUPT (a d d r i n t l --
POP AX \ g c t i n t e r r u p t number t o AX
POP DX \ and ISR o f f s e t a d d r e s s t o DX
PUSH DS \ p r e s e r v e DS f o r l a t e r r e s t o r a t i o n
MOV AH, # 25
PUSH CS
POP DS
INT 21
POP DS
NEXT

END-CODE

\ we r e q u i r e DOS s c r v i c e number 25 hex
\ ISR segment a d d r e s s is i n CS
\ s o copy it v i a s t a c k t o 3S
\ let DOS d o t h e work
\ r e s t o r e o r i g i n a l DS
\ no v a l u e s t o r e t u r n , j u s t u se NEXT

CODE RE-INSTALL-INTERRUPT (s e g o f f s e t i n tX --)

POP AX \ g e t i n t e r r u p t number t o AX
POP DX \ and ISR o f f s e t a d d r e s s t o DX
PUSH DS \ p r e s e r v e DS f o r l a t e r r e s t o r a t i o n
PCP DS \ and pop I S R segment a d d r e s s t o DS
MOV AH, # 25 \ w e r e q u i r e DOS s e r v i c e number 25 hex
I N T 2 1 \ l e t DOS do t h e work
POP DS \ r e s t o r e o r i g i n a l DS
NEXT \ no v a l u e s t o r e t u r n , j u s t u se NEXT

END-CODE

Lean, Mean, Interruptable
Interrupts and DOS

Interrupt service routines should be as short and as fast
at executing as possible. They should never perform any
input or output (for example) if it can be possibly avoided,
as both of these operations take considerable time. The idea
is to service the interrupt but also to make as small an
interruption to the main program as possible. The ISR should
do the most time-critical parl of the total service and, if there
is more service to do, set a flag so that the main program can
complete the task when it is convenient. For example, when

hex
o ld-vec tor 2@ \ g e t saved v e c t o r
1C r e - i n s t a l l - i n t e r r u p t \ pu t it back
de c ima 1

Remember that interrupt 1C 'fires' 18 times or so every
second. So it must always be vectored to a physically existing
ISR. Don't leave F-PC and load another program without
replacing the original vector, or the system will crash as the
memory image of the ISR code of TICKING get overwritten.

coll&ting data samples under interrupts, the ISR should just
acquire the value from the input port, put it in a holding
buffer, and set a flag so that the main program knows to
process the values from the buffer when it is convenient.
Using a multitasker in conjunction with flags makes this
process particularly simple.

When using F-PC with DOS, there is another reason why
you should not make use of any DOS-based input or output.
Recall that above we arranged for our interrupts LO be
themselves interruptable. 'I'o achieve Lhis, we arranged to
havc a numkr of stacks available for use by the ISR, each ISR

CODE INT-ON STI NEXT END-CODE
'ODE INT-OFF CLI NEXT END-CODE

CODE TRIGGER-INT-IC \ r e p l a c e 1c by t h e i n t e r r u p t
\ number you wish t o t e s t

INT 1C NEXT
END-C0DE

Figure Four= Example of a high-level interrupt
plus test

1
? v a r i a b l e t i c k s

: DINC (a d r --)

dup 2@ 0.1 d t r o t 2 ! ; \ i n c r emen t a doub l e v a r i a b l e

: INIT-TICKS (--)
0 0 t i c k s 2 ! ; \ i n i t i a l i z e t h e c o u n t e r t o z e ro

: TICKS? (--)
t i c k s 2 @ ud. ; \ r e a d and d i s p l a y t h e c o u n t e r

ISR:
TICKING t i c k s d i n c ISR; \ t h a r ' s i t - t h e whole ISR

automatically using the next one above the last one used.
1 DOS has no such facility. It always uses the same stack for

a given function. So if, for example, we are outputting LO the
screen, DOS will set up a stack for its use at a fured place. If,
part way through thls outpul operation, another interrupt
occurs and the new interrupt also goes to output something,
DOS will set up a new stack directly on top of the old one.
This will cause no trouble for the interrupt that is currently
being serviced, but when that is over and the processor goes
to finish the interrupted interrupt, the information it needs
has been overwritten. Disaster is now but a few pulses of the

November 1992 December 12 Forth Dirnensio~ls

processor clock away. Avoiding DOS service in our ISRs is
the only way to ensure this never occurs.

Extra Info about IBM PC Hardware Interrupts
The information given so far describes how the processor

ilself handles intempts. Many computers use extra hardware
external to the processor, that provides extra control over
intcrruptsin particular to exercise various forms of priority
control which allow high-priority interrupts to take prece-
dencc over lower-priority ones. The IBM PC/X'l'/AT family
is no exception and has one or more 8259A intcmpt-priority
controller(s), which provides various features at the cost of
having to be programmed. A full discussion of this chip is
outside the scope of this paper, but the following section
should provide enough information to allow use to be made

Figure Five. Interrupt Request Lines on the IBM PC. I
IRQO Used for system timing applications and is mapped

to interrupt 8. Interrupt 8 on completion passes
control to interrupt 1C (hex), which is the user
timer intermpt and whose vector normally points
to a simple IRm. This line does not appear on the
I/O chamel.

IRQl Used for the keyboard and mapped to interrupt
veuor9. 'Ih line does not appear onthe VO channel

IRQ2 Reserved in the PC and XT. It is used in the AT
family to receive the output of another 8259A, so
that a total of 15 individual interrupts canbe handled.
It is vectored to interrupt number OA (hex).

of the intermpt lines on the I/O bus of the IBM PC family of
computers. For information about features not discussed
here, such as changing the priorities of the various interrupt
request signals, the user is referred to the 8259A data sheet.

The L/O bus of the IBM PC and XT provides six lines,
called 1RQ2 through 1RQ7, each of which signals that an
interrupt service is required when taken high. Two other
lines are are also on the motherboard but are not brought out
onto the I/O bus. The electrical signals on these lines have
to pass through the interrupt controller chip to get to the
processor. The controller decides which, if any, request
should be passed on to the processor. It decides h s based
on the priority of the interrupt (whether this is ofhigh enough
priority to be ''lowed to interrupt what the prmor is
currently doing) and whether it has been explicitly disal-
lowed from passing on this type of interrupt. Each of the
signals from the eight lines may be disabled by writing a 1
to the appropriate bit in a register inside the 8259A. Bit 3 of
this register controls line IRQ3, etc. The IBM AT has more IRQ
lines on the secondary I/O channel 8259A controller anduses
he normal IRQ2 to indicate activity on the secondary 8259A
controller IRQ lines.

The eight intermpc request 1.- on the I/O bus, their
-, and he number they are mapped to are

listed in Figure Five. Each line may be used by an end user's
hardware, although difficulties will be experienced if the
normal ofa line - it at the same time. ~f~~~ do install
your own intempt service routine for any of these interrupts,
be sure to restore the one normally there when you arc done.

interrupt can be signaled by bringing the relevant IRQ
line from the low to the high state. It must be kept in the high
state until the interrupt service routine for this interrupt has
beRun. As initialized by he BIOS, the interrupt conkoller will
not pass a second interrupt signal to the processor until it has
been given a signal to do so. This signal is given by the
prOCessor writing 20 hex to output port 20 hex. ms is
automatically done by the code of I s R E X I T at the end of the
ISR, but can also be done as soon as it would be convenient
to anolher interrupt. It does not matter if the
controller is reset more than once. Do not confuse this signal,
which re-enables the external interrupt priority controller
chip, with the interrupt enable flag inside the processor. 'l'he
external intempt prionty controller can stop any hardware
interrupt signal from on to prwcssor. ne
processor interrupt enable flag will stop or allow all maskable
interrupts, hardware- or software-triggered.

The mechanism by which the rclevant IRQ line was held
Forth Dimensions

IRQ3 Normally used by the secondary asynchronous
communications device (COMS2) and mapped to
interrupt number OB (hex).

I R Q ~ Normally used by the primary asynchronous
communications device (COMSI) and mapped to
interrupt number OC (hex).

IRQ5 Normally used by the fixed (hard) disk and
mapped to interrupt number OD (hex).

IR@ by the diskette disk) and
mapped to interrupt number OE (hex).

1RQ7 Normally used by the parallel printer (PRN) and
mapped to interrupt number OF (hex).

high until the ISR was started (usually a must be
reset by the ISR routine itself as the interrupt-acknowledge
siaal from the processor is brought out the bus.
Thus, the ISK will need to have two extra items in it over and
above what it needs to suit the processor and the main ISR

10 be d o n e i t needs to reset the intermpt priority
controller (automatically done) and it needs to reset the IRQ
generating mechanism (left the programmer).

The 8259A is fairly complex; although it only occupies
two output ports, it is programmed by sending information
by way of svings of bytes written in carefUll~ controlled
Sequences to these two ports. To the 'Ontents of the
interrupt mask register (the register that determines which
htermpts are categoricaliy not to be ''lowed through)* One

needs to more than just write the One byte that
each of the eight lines. The sequence required is: 13 hex to
Output port 20 hex to Output Po* 21 hex to
Output Port 21 hex, and finally the interrupt mask to output
port 21 hex. The values given here will result in the intempt
mask king changed, but preserve the features
as set up by the BIOS at system initialization. See an 8259A
data sheet or IEggebrechl831 for the meaning of each bit and
the Sequences needed to alter features-

References
[Ting89] F-PC Technical ~@rence ~ a n u a l , 0Kete ~ntcr-
prises, Inc. 1306 South B Street, San Mateo, California 34402.

[Eggebrecht831 Int@acing to the IBMPmsoml Computerby
Lewis C. Howard W. Sams & Co.

13 November 1992 December

Principles of

B. J. Rodriguez
Hamilton, Ontario, Canada

F. Creating the Forth Header
Assembly code rarely exists in isolation in a Forth system.

Usually, it is part of a Forth "word" (dictionary entry). This
requires that some information be prefxed onto the machine
code.

I . Use
The Forth word CODE performs two functions: it builds

the header for a Forth dictionary entry, then it invokes the
assembler. A word of the same name in the "hosting"
vocabulary will begin a code word for the Target image.

HOST CODE name
Starts a Target "code word." Builds a Forth header with the
given name in the target image, and invokes the cross-
assembler.

Normally, during cross-assembly, the HOST vocabulary
(or its ASSEMBLER branch) remains active throughout a
cross-assembly. It is not necessary to return to the NATIVE
vocabulary. So, once HOST is selected, each code word can
begin with simply

CODE name
Depending on the assembler, it may be necessary to end
each code word with ; c or END-CODE.

2. Zmplrmentution (screen 75)
This is the first point at which the structure of the Target

machine's Forth must be known.
It is not likely that the Target Forth's header structure is

the same as the Host Forth's. There is no shortcut; it is
necessary to write a word which causes the Host to build a
header in the format required by the Target machine.

(TCREATE) name
Builds a header in the Target image, in the format required
by the Target's Forth.

Note once again the use of the T-prefur, rather than just a
different vocabulary, to dstinguish this word from the native
(CREATE). Both will be needed.

Figure Three illustrates the dictionary header for a

common fig-Forth model. Thc "name field" consists of one
byte, indicating the name length (0..31) followed by the
name text, with the high bit set in both the length byte and
the last text byte. The next two bytes are the "link field," a
pointer to the name field of the previous definition. The last
two bytes are the "code field," pointing to the executable
machine code for this word. In the case of a CODE word, the
executable code is stored immediately after the code field
address ("CFA").

This implementation takes advantage of the fact that the
namefiki in the Host is stored in exactly the same f m t .
The work of parsing a name from the input stream, and
adding the length byte and the "end bits." (TCREATE)
assumes that a Host CREATE has already been performed,
and simply copies the name field (with >TCMOVE) to the
Target image.

The link field and code field must be explicitly handled
for the Target image, since they bear no relation to the I Iost.
Since the link field must have the Target image address of the
previous Target definition, the compiler must maintain a
LATEST for the Target.

HOST LATEST (- - a)
Returns the Target address of the last definition added to the
Target dictionary. (screen 72)

Since this is a fig-Forth model, LATEST is implemented by
referencing a pointer to the current vocabulary header.
Although the vocabulary header is stored in the Target image,
the pointer to it is a variable in the Host. Thus, LATEST is
defined as:

CURRENT @ T @
where CURRENT is the name of the pointer, @ fetches the
contents of the pointer, and T@ then gets the last-entry
information from this address in the Target image.

To maintain the fig-Forth vocabulary structure, the
following pointels must be kept. They are defined in the
HOST vocabulary, and ure stored in the Host memory space.

HOST CURRENT
Holds the pointer to thevocabulary header, for the vocabulary

November 1992 December Forth Dimensions

I Fimure Three. The dictionary--creating the header. I
TCREATE

... I 4 I TEST I link I cfa I FF I ...

Must be copied f Address of code
from the FIost's / in the Target image.
input stream. i

A link to another
word in the
Target image.

The host must keep a LATEST pointer
for the image!

where new definitions are "currently" being added. I
HOST CONTEXT
Holds the pointer to thevocabulary header, forthe vocabulary
which is to be searched for references to already-defined
words.

HOST VOC-LINK

Holds the pointer to the vocabulary header, for the most
recently defined vocabulary.

3. lssues
a) Direct-Threaded Code

The fig-Forth implementation for the Zilog Super8
uses Direct-Threaded Code, rather than the Indirect-
Threaded Code more commonly seen in Forth.
Direct-Threaded Code does not use a code field
pointer; instead, the executable machine code for
each word directly follows the link field.

The relative merits of direct vs. indirect threading are
a hotly debated topic in Forth circles. In this case, the
fact the Super8 CPU includes instruction-level support
for DTC was the deciding factor.

The impact on the Image Compiler is that, for CODE
words, nothing need be compiled by (TCREATE)
after the link field-the assembler is invoked
immediately. For high-level and defined words which
use a common machine language routine for all the
words in a class, a subroutine call must be compiled
after the link field In practice, (TCREATE) always
compiles the subroutine call, and CODE "removes* this
unnecessary call by backing up the dictionary pointer
three bytes.

This must be accomplished within (TCREATE).
Normally, (TCREATE) will begin with a word named
something like ALIGN, which forces the Target
Dictionary Pointer to an even boundary. Then, if the
combination of length byte and name text is an odd
length, a null will be appended to the name to make
it even. (Whether or not this null is included in the
length byte value is problematical.)

c) Packed name fields
Occasionally, clever schemes are devised to speed up
dictionary searches by 'compressing or packing the
name information. One PDP-11 implementation 131
packed four characters of name, the length, and the
link into two 16-bit words.

All of this, if desired, is the responsibility of (TCREATE) .

d) Different linking methods
Other linking methods than the simple, last-to-first,
singly linked list are possible. (TCREATE) is the word
most affected by these.

Links can be stored in forms other than addresses (as
in [31).

Several versions of Forth use multiple dictionary
threads to speed the sequential search. Which thread
to search for any given name is decided by performing
a hashing function on the name. Ohis has repercussions
in vocabulary structure as well, as will be seenshortly.)

e) Separated headers
It is becoming increasingly common for the header
information-specifically, the length, name, and link-
to be stored in a separate region of memory. On the
IBM PC, for example, a separate 64K segment can be
devoted exclusively to dictionary headers, thus freeing
more space in the 64K "program" segment.

4. Altenzatim
a) Re-scanning the name text.

At least one metacompiler creates the name field in the
Target, not by copying a name field from the Host
machine, but by rescanning the input text. The name
is parsed with WORD, and then it and its length arc
copied to the Target image. The text input pointer is
then backed up to the start of the name so that the
Host's CREATE can parse the input normally. (The
need for parsing the name twice will become evident
shortly .)

b) Word alignment
some machines (nobbly the p ~ p - 1 1 and the 68000)
require ht l6-bitvalues, such as addesses, word-
aligned in memory. m hi^ is common~y by
word-aligning the definitions, and the link and code
address fields.

G. Searchtng t h e T a r g e t D i d o n a r y (d r r o r v ~
The reason Forth words have this header information is

SO they may be found by name later. This is the core of the
"high-level" Forth compilation process: each word in a new
definition is searched in the "dictionary" and the address of
its executable code is compiled.

Obviously, a metacompiler must be able similarly to find
Forth Dimensions 15 November 1992 December

words in the Target's dictionary.
Figure Four.The dictionary-searching. I

Rather than write a TFIND . ..

1. Usage
Words creatcd in the Target image are accessed by name,

just like any other Forth words.
If the Host is in the "compilingn state, Target words are

compiled into the Target image. (More on this later.)
If the Host is in the "executingn state, Target words

generate an error. The words being created in the Targct
image are not executable by the Host. (Chances are, they are
for a different CPU entirely.)

It will be seen later that, under some circumstances, a
word defined in the Target may also have an "executing"
behavior in the Host.

2. Impkmmtation
Evcryword defined in the Target image has a corrcsponding

word, of the same name, dcfined in the Host system. These

ellmina& the need the metacom~iler to I F igu re Five. The dic60nary-vocabularies/
have a T F 1-a non-trivial problem). I

Root

vocabulary vocabulary

...-.---.-.............. l..!.! ----------)
correspondence

"mirror" code we're
words c rea t ing

words in the Host system are called "mirror'words.
The metacompiler never needs to search through the

Target image. The Host's own, ordinary search logic is

Figure Four shows the relationship between
the Target dictionary and the Host dictionary.
This illustrates a kernel word, LIT , as it appears
in the dictionary being built in the Target image,
and in the Host dictionary.

It IS likely that many words dcfined in the
Target will have the same name as important
words in the Host. (If the metacompiler is
creating a new Forth kernel, this is certain.) To
avoid these name conflicts, and to allow words
to be found unambiguously, all of the mirror
words are kept in yet another vocabulary, called
TARGET, as shown in Figure Four.

It may well happen that, in the course of
writing a metacompiled application, the Forth
programmer desires to create vocabularies.
Vocabularies are commonly used in Forth to
distinguish duplicate names, to control the
search order, or to "modularize" the program.
'lhe metacompiler must, therefore, duplicate
these effects.

Fortunately, with a tree-structuredvocabula~y
syslem (such as in the fig-Forth model), a tree of
any complexity can be represented as a branch
of anothcr tree.

'Ilks means that all the brdnching vocabularies
in h e Target image can be made to correspond
exactly with branches from the TARGET
vocabulary in the Host dictionary. (Figure Five.)
And, as long as the Host is in the corrcsponding
vocabulary, it will have cxactly the same search
order as the Target.

Figure Five shows all che vocabularies likely
November 1992 December

. . . this lets us make "headerless" definitions
in the image.

sufficient to find the mirror word in the Host's
dictionary. Each mirror word identifies where its
counterpart is located in the Target image.

As long as we're in the corresponding vocabulary,
we will have exactly the same search order.

Host

root

HERE

HERE

f........

16 Forth Dimensions

121) ' '

LO be present in the Image Compiler.

"root" FORTH
'I'he basic vocabulary of the Host's Forth system.

"rootn ASSEMBLER
Thc vocabulary which holds the Host's resident assembler.
(On the IBM PC, an 8086 assembler.)

"rooLn EDITOR
?he vocabulary which hold the Host's screen editor.

HOST
All of the Image Compiler is contained wirhin this vocabulary
and its branches.

HOST ASSEMBLER
The vocabulary which holds the cross-assembler for the
Target. (In this example, a Super8 assembler.)

This is why it is necessary to use the name of h e new
word twice.

The resulting mirror word for the L I T example is shown
in Figure Six. This data structure appears in thc FIost's
dictionary as an entry in the TARGET vocabulary. The code
address field points to machine code, in the Host, which will
be executed by the Host when this word is referenced. 'rhe
address of the corresponding word in the Target image is
stored as one of the two data fields following. (The first data
field, shown shaded in Figure Six, will be used later.)

The Image Compiler builds the Host header first. It then
copies the name field from that header-with adjustments,
if necessary--to the Target image.

3. ~ S W S

a) Headerless code
Since the metacompiler always finds words in the
Target by searching the Host dictionary, it would seem
that the headers in the Target imagc are dispensable.

HOST TARGET
All the mirror words created during metacompilation are
contained in this vocabulary and its branches.

Observe that there are three words named HERE in Figure
Five:

They may be, if the final metacompiled application
will never need to do a dictionary search. This is likely
to be the case in, say, a microwave oven. Such an
embedded program is likely to benefit from the
memory savings achieved by eliminating the headers
from the Target image.

"root" HERE
Returns the Dictionary Pointer of the Host, i.e., where
compilation will occur in the Host (if new definitions are
added to the Host dictionary).

HOST HERE
Returns the Dictionary Pointer of the Target image; i.e.,
where compilation will occur in the Target.

TARGET HERE

A mirror word. This example presumes that a Forth kernel is
being compiled for the 'Target machine. All Forth
kernels have a word HERE. So, this word points to
the Super8 version of HERE in the Target image.

(As an extreme example, it has happened that
five different words called I were defined-in the
Host kernel, the editor, the resident assembler, the
cross-assembler, and the mirror word of the Target
kernel.)

Target words are defined with the "host
environmentn word

HOST CREATE name
Builds a header in the Target image, and a mirror
word in the Host dictionary which points to the
new word in the Target image.

l'his word uses (TCREATE) to build the
hcadcr in the Target image, and the ordinary,
"nativen Forth <BUILDS to build tIie header in the
Host system for the mirror word. It then adds the
Target image address to the mirror word.

If, on the other hand, the metacornpiled application
will be using the Forth interpreter--for example, if a
new Forth kernel is being compiled--then the headers
must be retained. It may still be possible to delete the
headers from certain words; this is a popular means to
protect "internal" words whichshould never be directly
used by the Forth programmer.

The Image Compiler includes a flag variable ?HEADS
which is tested in (TCREATE) to disable the code

I Figure Six. T h e "mirror" word LIT in t h e Host . 1

Run-time action--what will h a p p e n w h e n this
word is e x e c u t e d in the Host.

3

T h e usua l run-time ac t ion is:
"compile this word into t h e t a rge t image."

E.g., in t h e Host:

LIT

from t h e t o t h e
Hos t I m a g e

Forth Dimensions

link

November 1992 December

f

code a d d r e s s of
a d d r e s s this n a m e d word
in Hos t in t h e I m a g e

which builds the Target image header. It is not
sufficient to simply skip (TCREATE) , since it also
builds the code field-which is always required,
headers or no.

b) Dilferent vocabulary structures
Not all Forths use tree-structured vocabularies.
polyFORTH, for example, uses eight parallel
vocabularies. The current vocabulary is hashed with
the namc of a word to direct searches to onc of eight
threads. [91

Other Forth systems define vocabularies ina hierarchy,
but do not cause the vocabularies to chain together as
in the fig-Forth model. Each vocabulary is "sealed."

the same as in "normal" Forth:

; name word word ... word ;
This will build a colon definition name in the Target image.
All of the "words" are presumed to already have been defined
in the Target.

The Image Compiler works with some subtle dffcrences
from the normal Forth compiler, though:

a) The word : (colon) does not switch the Host's tcxt
intcrpreter to "compiling" state. It remains in "cxeculing"
state.

b) d l of word word ... word will execute.

Some Forths (including fig-Forth) search both the
CONTEXT and CURRENT vocabularies. Others arch
only CONTEXT. Still others support a stack or list of
vocabularies which are searched in a defined sequence.
[9,101

These variations do not pose a problem when creating
the Target image; they are handled by changing the
linking logic of (TCREATE) . The problem is ensuring
that the search order through the mirror words-
which use the Host's vocabulary scheme-is the same
as the eventual search order in the Target.

The current Image Compiler ignores the problem
completely, assuming either that the Target Forth will
use a vocabulary structure analogous to the Host
machine's, or that the finer subtleties of the search
order are not important, as long as the CONTEXT
vocabulary is searched first. These assumptions seem
to hold true for most applications.

4. Altcmatives
a) Single vocabulary compilers

Some metacompilers provide no support for multiple
vocabularies. This is adequate for Forth kernels (which
use only one vocabulary), but is a handicap in larger
applications.

b) Differing name lengths
Some metacompilers allow the length of the name in the
Target dctionary to M e r from the length of the name
used in the Host's "mirror" words. %s seems to offer no
advantage, and can lead Lo quite a bit of confusion.

H. Compilhg a Colon DeAnition
The implementation described so far is sufficient to build

a Forth dictionary of CODE words for the Target machine. The
real power of Forth, however, lies in its abilily to use existing
words to define new words. These are the high-level "colon"
definitions.

c) b c h word, when it executes, will compile itself into the
Target image.

This technique was described by Laxen 151.

2. Implementation
Each definition in the Target dictionary can be used in the

construction of new Forth words in the Target image.
(Compiler directives are a special case, to be discussed
shortly.)

One approach would be to give the Host's Forth interpreter
three states-execute, compile into the Host, compile into
the Target. This, however, requires surgery on the Host and
complicates the interpreter.

Instead, the hnction of "compiling into the Target" is
achieved by executing words in the Host. These are words
in the Host which correspond to the definitions in the Target
image-in other words, the "mirror" words.

Each mirrorword in the Host belongs to a "class" of words
which share the same run-time action: When executed,
compile the address of the corresponding Target word, into
the Target image. Since the address of the Target word is one
of the parameters stored in the Host in the mirror word, this
action is represented simply:

@ T,

In this implementation a 2+ is prefured, since the Target
word's address is stored in the second word of the parameter
field.

All mirror words are created by the HOST version of
CREATE. The "self-compiling" action is attached to all of the
mirror words by the DOES> clause in CREATE. (Screen 76;
also shown in Figure Six.)

This leaves the problem of beginning and ending a colon
definition in the 'Parget, i.e., : and ; . To understand these it
is best to look at Figure Seven and focus on the First Rule of
Metac~r~piler Design: Always keep in mind whal the result
shotelil look li&e!

/ lhe metacompiler must have a special version of : which

I
constructs a header in the Target image. As shown in Figure

1. Use Seven, this header must contain the name length, name tcxt,
A colon definition in the Image Compiler looks exactly link Geld, and Lhe code address for a colon definition. This

November 1992 December 18 Forth Dimensions

in the Target image, which
will invoke the Target's colon "OSt" input stream

(is the address of machine code

interpreter. (~tr ict l~speakin~,
the action is to %estn the Forth
inner interpreter.)

The first three fields are

Figure Seven. Compiling a colon definition. 1

built by the metacompiler's
CREATE, which also builds a
mirror word in the Host for
this new colon definition. The
code address can be simply
stored in the Target image by
T ! if the address of this code
in the Target is known. For the
time being, it will be assumed
that this machine code has
already been assembled at a
known location in the Target

: TEST FOO BAR

Special version Executes!
of : which Corn piles
compiles name address into
into the target the image.

~xecutes! Special version
Com piles of ; which
address into compiles address
the image. of target's ; s.

target address target address target address I 4 1 TEST 1 ink I cfa I of I of BAR I of ; s

image. The entire definition is done in the host's "executing" state.
On fact, thiscodeis~artof

a DOES> clause in the Target's
dcfinitionof : .The "patching"
of Target CFAs by DOES>
clauses willbe diicussedlater.)

The job of the meta-
compiler's ; is much simpler. It must simply compile the
address of the Target's ; S word, the run-time routine for ; .
; S is a CODE definition in the Target.

A subtle point is illus~ated here. Some parts of the
metacompiler- : and ; -must know addresses of certain
routines in the Target image. The process of creating the
metacompiler and the process of creating the Target image
are to some extent "intermingled." The Image Compiler
takes the expedient of first defining the cross-assembler, then
the CODE words in the Target, then the rest of the metacompiler.

3. Alternatives
a) Metacompiling by INTERPRET

Of course, "ordinary" Forth does not have words
which compile themselves. It is the responsibility of
the text interpreter (INTERPRET or 1) to "compile the
word's address into the dictionary."

The metacompiler could work in the same way. A
"metacompiling" text interpreter could be written. It
would compile each addressas obtained from the
mirror word-into the Target dictionary. (As will be
seen shortly, it is necessary to redefine the interpreter
loop anyway.)

The advantage of self-compiling words is that their
action issomewhat more obvious than a code fragment
buried inside INTERPRET. Also, the philosophy of "all
words execute" allows quite a bit of flexibility, and
some useful "tricks." This will become apparent later.

b) T-prefur naming
The notion of two words named : is confusing to

Forth Dimensions

some, even when they can be distinguished by
vocabulary. Some systems have used T : to invoke the
metacompiler.

While perfectly valid, this is not in keeping with the
stated goal of minimizing the differences between
"normal" and metacompiled Forth. Many applications
will be debugged in a "normal" (resident) Forth envir-
onment, and then moved to a metacompiler for
optimization and PROM-ing. Consider the amount of
editing required to convert every : to a T : !

C) Reverse-patching Target code addresses
Some metacompilers are loaded as a complete unit,
before any of the Target code is begun. As noted
above, the metacompiler requires the location of
oe~tainTarget machine code. These conflicting demands
are resolved by defining Forth variables within the
metacompiler to hold these special addresses. It is
necessary to store the correct values in these variables
bcfore the metacompiler attempts to use them! Ohis
technique is will bc used, for a different Target routine,
later in the Image Compiler.)

L The Problem of Numbers
In addition to previously defmed words, numbers may be

used to construct a high-level Forth definition.

I. Use
Numbers may be freely intermixed with Forth words in

a colon definition:
: name word 1234 word 5678 ;

19 November 7992 December

Forth's action on parsing a word from the input stream is:
fus~, check to see if it is an already-defined word. If not, then
check if it is a number in the current base. If not, it is an error.
'fie metacompiler works the same way.

2. Imphentation
Remembering again the First Rule of Metacompiler

Design: a number is compiled as two cells in a Forth
definition. The first cell is the address of an executable CODE
word, frequently called LIT. The second cell is the number
itself, which will not be executed.

The action of LIT when executed wili be to fetch the next
cell-the number-from the instruction stream, and put it on
Forth's stack.

Obviously, the metacompiler must perform similar actions:
on encountering a number, compile the address of the
Target's LIT into the Target image. Then compile the
number itself into the Target image.

The problem lies in how the Host system handles
numbers. Unlike Forth words, whose compile-time and run-
time actions can be changed, the action for numbers is fixed
in the text interpreter, INTERPRET. This action cannot be
changed without altering the kernel, which is "off-limits."

Fortunately, the new compile-time action for numbers is
only required within the metacompiler. It is perfectly orthodox
to redefine the text interpreter before defining the
metacompiler. The metacompiler will use the latest defined
version, which can have any desired behavior.

Observe that only the "metacompiling" action for numbers
need be changed When a "compiling" interpreter is &fined
separately from the "executing" interpreter, it is usually made
part of the word 1 . (j means "enter the compiling staten in
all Forth systems; whether this enters an interpreter loop or
merely sets a flag is system-dependent.) The word : always
uses I to enter the compiling state.

So, a "metacompiling" 1 is created, which is used by the
"metacompiling" : . The Host still remains in the "executing"
state, and mirror words are still searched and executed in the
Host. Only the handling of numbers is different.

(In the next section, 1 will need to affect the STATE flag,
as well.)

Another problem: the metacompiler needs to know the
location of the Target's LIT , so that the number-compiling
code can know what to compile. Once again, part of the
Target code must be assembledbefore the metacompiler can
be completed. In this case, however, the Image Compiler
uses an internal variable, *LIT*, to hold this magic Target
address. The programmer must store the address of the
Target LIT in *LIT*, before attempting to compile any in-
line numbers!

3. k u e s
a) Double precision

The Forth interpreter recognizes any integer containing
a decimal point as a double-precision number.

Usually, double-precision numbers are compiled in-
line as two single-precision numbers, with the low cell
fust. When this sequence is later executed, the two
single-precision values will be stacked one after the
other to make a double-precision value, with the high

cell on top of the stack.

The Image Compiler's nurnbcr-handling logic
(TLITERAL) examines the value of DPL-left by
NuMBER-~o identify a double-precision number. It
then compiles one or two single-precision values, as
required.

b) Floating point and other literal values
Similar extensions can be employed to recognize
floating-point numbers, and other in-line literal data
types. Since Forth's NUMBER provides no mechanism
to recognize these, NUMBER nust be redefined.

Fortunately, like the text interpreter, a new NUMBER
will replace the old, wherever it is used by the
metacompiler.

4. Alternatives
a) Redefining INTERPRET instead of I

There are two schools of thought in the Forth
community, on how to handle the compiling "state" in
Forth.

1) ?he first school, exemplified by fig-Forth, uses a
single text interpreter loop, INTERPRET, and a
state flag, STATE. INTERPRET is made "state-
smart." When it parses a word from the input
stream, it may either compile or execute that word,
depending on the value of STATE.

2) The second school, exemplified by polyFORTH and
F83, uses two interpreter loops. The "executing"
interpreter is INTERPRET and the "compiling"
interpreter is I . There is no need for a STATE flag,
since the compile vs. execute action is determined
by whch loop is in progress.

This is not the place for philosophical debates; suffice
it to say that either approach can bc used within the
metacompiler. The former requires the metacompiler
to redefine INTERPRET. The latter requires I to be
redefined.

Note that the metacompiler needn't use the same
t e c h q u e as the Host machine's Forth. For example,
the Image Compiler uses approach (2), while running
on a fig-Forth system that uses (1). (Perhaps a minor
advantage can be claimed; if the Host Forth ABORTS,
it will restart the "native" INTERPRET, which is the
same execution interpreter used by the metacompiler
under approach (2).)

It is expedient-as will be seen later in this series-to
maintain a STATE flag for the metacompiler, regardless.

(Article continues in the next issue. Code begins
on page 22.)

November 1992 December Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send wilh your payment to Ihc Forth Interest Group.
A11 items have one price and a weight marked with # sign. Enter weight on order form and calculate shipping based on location and delivery method.

I "Were Sure You Wanted To Know ..."
IJorfh Dimensions, Article Reference 151 -$4 0# * An index of Forth articles, by keyword. from Forth Dimensions

Volumes 1-13 (1978-92).

FORMI., Article Reference 152 - $4 0# * An index of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (198@91).

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issucs from the volume year (May-April)

b Volume 1 Fonh Dimensions (1979-80) 101 -$15 I#
La t 50 Introduction to FIG, threaded code, TO variables. fig-Forth.

i Volume 3 Fonh Dimensions (1981-82) 103 -$I5 1#
ta 10 Forth-79 Standard. Stacks, HEX, database, music, memory man-

agement. high-level intermpts, string stack, BASIC compiler.
recursion. 8080 assembler.

Las

1 Volume 8 Forth Dimensions (1986-87) 108 -$20 2#
L~~ la0 Interrupt-driven serial input, data-base functions, TI 99/A,

XMODEM, on-line documcntation, dual-CFAs, random
numbers, arrays, file query, Batcher's sort, screenlcss Forth,
classes in Forth, Bresenham line-drawing algorithm, unsigned
divis~on, DOS file VO.

Volurnc 6 Forth Dimensions (1984-85) 106 -$I5 2#
. 1 OQ Interac~ivc editors, anonymous variables, list handling, integer

solutions. control structures, debugging techniques, recursion.
semaphores, simple UO words, Quicksort, high-level packet
communications. China FORML.

tas.

Volume 9 Forth Dimensions (1987-88) 109-$20 2# , 00 Fractal landscapes, stack error checking. perpetual date routines,
hcadlcss compiler. execution sccunty, ANS-Forth meeting,
computer-aided instruction, local variables, transcendental func-
tions, education, relocatable Fonh for 68000.

Volume 7 Forth Dimensions (1985-86) 107 -$20 2#
100 Generic sort. Forth spreadsheet, control structures, pseudo-

intermpts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation. F83
strings.

1 Volume 10 Forth Dimensions (1988-89) 110 - $20 2#

/ loo

dBase file access, string handling, local variables, data structures.
objectvricnted Forth. linear automata, stand-alone applications,
8250 drivers. serial data compression.

FORML CONFERENCE PROCEEDINGS
FORMI. (Forth Modification Laboratory) is an educational
forum for sharing and discussing new or unproven ro
intended to benefit Forth. and is an educational forum %g:t$
sion of thetechnical as cts of applications in Forth. Proceedings
are a compilation of apers and abstracts presented at the
annual conference. F O ~ L is prt of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - $30 2#
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatableloader, LISP,how to
manage Fonh pro'ects, n-level file system, documenting Forth,
Forth structures, dorth strings. 231 pgs

1981 FORML PROCEEDINGS 311 -$45 4#
CODE-less Forth machine, quadruple- rccision arithmetic, SO overlays, executable vocabula stack, Bata typing in Fo*,
vectored data structures, using%orth in a classroom, yramld
files, ~ ~ S ~ ~ , ~ ~ ~ ~ , a u t o m a u c c u e i n g languageformul%nedia,
NEX0S-a ROM-based multitasking operating system. 655pgs

1982 FORML PROCEEDINGS 312 - $30 4#
Rockwell Forth processor, virtual execution. 32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number- Oa
input wordsct, UO vectorin recursive data structures, program-
mable-logic compiler. 29?igs

1983 FORML PROCEEDINGS 313 - $30 2#
Non-Von Neuman machmes. Forth instruction set, Chinese taSt 100
Forth. F83, compiler & interpreterco-routines, lo &exponential
function, rational arilhmetic. transcendentaf functions in
variable-precision Forth. portable file-s stem interface, Forth
coding conventions, expert systems. 353 pgs

1984 FORML PROCEEDINGS 314 - $30 2#
Forth expert systems, consequent-reasoning inference en ine.
Zen floating point, ortable graphics wordset. 32-bit krth, Last Oa
I1WlB Forth, ~ ~ ~ i $ - o b ~ e d u n e n t e d rogramming, decom-
piler design, arrays and stack variables. $78 pgs

1986 FORML PROCEEDINGS 316 - $30 2#
Threading techniques, Prolog, VLSI For& microprocessor,
natural-languageintcrface, expert system shel1,inferenceengine. Last O0
multiple-inheritance system, automatic programming environ-
ment. 323pgs

1987 FORML PROCEEDINGS 317 - $40 3#
Includes papers from '87 euroFORML Conference. 32-bit Forth.
neural networks, control structures, AI, optimimg comp~lers,

ertext, field and record structures, CAD command language, hgp o ject - onented . lists. trainable neural nets, expert systems.
463 pgs

1988 FORML PROCEEDINGS 318 - $40 2#
Includes 1988 Australian FORML, Human interfaces, simple
robotics kernel. MODUL Forth. parallel processing, Last
r rarnmable controllers, Prolog. simulations, langua e topics.

Ra3ware. wil's workings & Ting:s philosophy, ~onhfardware
applications, ANS Forth session, future of Forth in A1

I Volume 11 Forth Dimensions (1989-90) 11 1 - $20 2# 1 applications. 310 pgs
100 Imal variables, graphic filling algorithms, 80286 cxtended

memory. expert systems, quaternion rotation calculation,
~nul~iprocessor Forth, double-cntry bookkeeping, binary table
search, phase-angle differential analyzer, sort contest.

1989 FORML PROCEEDINGS 319 - $40 3#
Includes papers from 89 euroFORML. Pascal to Forth,
ex tens ib l eoph iLer for~0mpi l ing ,3Dmeas~objec t - Last
oriented Forth. CKC ~olvnomials. F-PC. Hams C cross-

/ Volume 12 Forth Dimensions (1990-91)
compiler, modular approach to robotic control, RTX recom ilcr

112 - S2U 21 / for on-line maintenance, mod~1e~, trainable neural net . 43Ppgs
tas 1 00 Floored division, stack variables, embedded control, Atari Forth, I optimizing compiler, dynamic memory allocation, smart RAM,

extended-precision math, intenupt handling. neural nets, Soviet
Foorth, arrays, metacompilation.

1990 FORML PROCEEDINGS 320 - $40 3# . - --- -- - - - - -~ - -

1:onh in indus~ry, ccirlmunicatiolis monitor. 6805 &velopmcnt.
3-key kevhoard. documcntation techniques. ohiect-orientcd
~roriamniinr. sirn~lest Forrh decom~iler,~error reiovew, stack

I bpe';ations, fices<coutrol event man'agement, control siructure
analysis, systems design course, group theory using Forth.
441 pgs

A - These arc your most up-to-date indexes for back issucs of Forfh Dimensions and the FORML proceedings.

Fax your orders 510-535-1295

1991 FORML PROCEEDINGS 320 - $50 3#

m Includes 199 1 FOKML. Asilomar. euroFORML '9 1.
Czechoslovakia and 1991 China FORML, Shanghai.
Differential File Comparison, LINDA m a Simulated Network,
QS2: RISCin it all, A threaded Micropn, ram Machine. Forthin
Networkin borth in the Soviet union. ~OSM: A Forth String
Matchcr $ k ~ Graphics and 3-D Animation, Forth and TSR,
Fonh CAE! System, Atflying Forth to Electnc hscharge
Machining, M a % - F O H Single Chip Computer. SO0 pgs

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. Ilaydon 201 - $90 4#
Annotated glossary of most Forth words in mmmon usage.
including Forth-79, Forth-83, F-PC, MVP-Forth. Implementation
examples in high-level Forth andlor 8086/88 assembler. Useful
commentary given for each entry. 504 pgs

THE COMPI'ETE FORTH, Alan Winfield 210-$14 1#
A comprehensive introduction, including problems with answers
(Forth-79). 131 pns

eFORTH IMPLEMENTATION GUIDE. C.H. Ting 215 - $25 I#
eForlh is the name of a Forth model designed to be portable to a
large number of the newer, more powerful processors available
now and becming available in the near future. 54pgs (wldisk)

F83 SOURCE, Henry Laxen & Michael Perry 217 - $20 2#
A canplete listing of F83, including source and shadow screens.
Includes introduction on getting started. 208 pgs

I'ORTII: A TEXT AND REFERENCE 219 -$31 2#
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the '79 and '83 Forth standards. 487pgs

THE FIRST COURSE, C.H. Ting 223 - $25 1#
This tutorial's goal is to expose you to the very minimum set of
Forth instructions so that you can start to use,,Forth to solve
practical problems in the shortestpossible time. ... This tutorial
was developed to complement The Forth Course which skims too
fast on the elementary Forth instructions and dives too quickly in
the advanced topics in a upper level college microcomputer
laboratory. ..." A running F-PC Forth system would be very
useful. 44pgs

THE FORTH COURSE. Richad E. Haskell 225 - $25 1#
This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to learn Forth. ' h e material was developed
over several years of teaching Forth as part of a seniorlgraduate
course in design of embedded software computer systems at
Oakland University in Rochester. Michigan. 156pgs (wldisk)

FORTH ENCYCLOPEDIA. Mitch Derick & Linda Bakcr 220 - $30 2#
A detailed look at each fig-Forth instruction. 327pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25 2#
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 p ~ s

FORTH NOTEBOOK 11, Dr. C.H. l'ing 232a - $25 2#
Collection of research papers on various topics, such as image
processing. parallel processing. and miscellaneous applications.
237pgs

F-PC USERS MANUAL (2nd ed., V3.5) 350 -520 1#
Users manual to the public-dcmain Forth system optimized for
IBM PCKTIAT computers. A fat, fast system with many tools.
143 pgs

F - I T TECHNICAL REFERENCE MANUAL 351 - $30 2#
A must if you need to know the inner workings of F-PC. 269 pgs

INSIDE F-83, Dr. C.H. Ting 235 - $25 2#
Invaluable for those using F-83. 226 pgs

OBJECr ORIENTED FOR'I'H. Dick Pour~tain 242 -$35 1#
Implementation of data structures. First book to make object-
oriented programming available to users of even very small home
computers. 118 pgs

SEEING FORTH, Jack Woehr 243 - $25 1#
"...I would k c to share a fcw observations un Forch nndcor~~putcr
science. That is thc pup)sc of this r~lonograph. It is offered in the
hope that it will broaden slighlly the streams of Forth literature ..."

SCIENTIFIC FORTH, Julian V. Noble 250 - $50 2#
Scientific Forth extends the Forth kernel in the direction of
scientific problem solving. It illustrates advanced Forth
programming techniques with non-trivial a lications:
computer algebra, roots of equations, d#emtial equations.
function minimization, functional representation of data (FFT,
polynomials), linear equations and matrices, numerical
mtegration/Monte Carlo methods, high-speed real and complex
floating-point arithmetic. 3OOpgs (Includes disk with programs
and several utilities). IBM

STACK COMPUTERS, THE NEW WAVE 244 - $62 2#
Philip J. Koqman, Jr. (hardcover only)
Presents an altemative to Complex Instruction Set Computers
(CISC) and Reduced Instruction Set Computers (RISC) by
showing the strengths and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo B d i e 245 - $29 2#
In this edition of Starling Forth---the most popular and complete
introduction to Forth--syntax has been expanded to include the
Fonh-83 Standard. 346 pgs

WRITE YOUK OWN PROGRAMMING LANGUAGE USING C++,
270-$15 1#

f k ? a S $ a k t an application language. More specifically. ~t
is about how to write y&r own custom application language. i h e
book contains the t&ls necessary to &in the and a
oanpletesampielanguageimplementation. [Guess whatlanguage!]
Includes disk with complete source. I08 pgs

ACM - SIGFORTH
The ACM SIGForth Newsletter is published uarterly by the
Association of Computing Machinery, Inc. SIG%O~~'s focus is
on the development and refinement of concepts, methods, and
techniques needed by Forth professionals.

Volume 1 S ring 1989, Sumnler 1989, #3, #4 911 -$24 2#
F-PC, &ssary utility. euroForth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 8 0 x 8 ~ .
Metacompiler in cmForth, Forth exception handler, string case
statement for UF/Forth. 1802 simulator. tutorial on multiple
threaded vocabularies. Stack frames, duals: an altemative to
variables, PocketForth.

Volume 2 #I. #2. #3. #4 912 - $24 2#
ACM SIGFonh Industry Survey, abstracts 1990Rochesterconf.,
RTX-2000. BNF Parser, abstracts 1990 Rochester conf.. F-PC
Teach. Tethered Forth model. abstracts 1990 SIGFoh conf.
Target-meta-cross-: an engineer's viewpoint, single-instruction
computer.

Volume 3, #1 Summer '91 913a - $6 1#
Co-routines and recursion for tree balancing, convenient number
handling.

Volume 3, #2 Fall '9 1 913b - $6 1#
PostscriptIssue, Whatis Postscript?. Forth in Postscript.Review:
PS-Tutor.

1989 SIGForth W o r k s h o ~ Proceedines 931 - $20 1#
Software engineering, multitaskGg, interrupt-driven systems,
o b i ~ t - o n ~ n l e d l:onh. error recovcw and control. virtual lllemorv
su$rt, signal processing. 127p&

LIBRARY O F FORTH ROUTINES AND UTILITIES,
James D. Terry 237 - $23 2#
Comprehensive collection of professional quality computer code
for Fonh; offers mutines that can be put to use in almost any Forth
application. including expen systems and natural-language
interfaces. 374 pgs

1990-91 SIGForth Workshop Proceedings 932 - $20 1#
Teaching m p u t e r algebra. stack-based hardware, reconfig-
urable processors, real-time operating systems, embedded
control, marketing Forth, development systems, in-flight
monitoring, multi-processors, neural nets, security control, user
interface, algodms. 134 pgs

For faster service, fax your orders 510-535-1295

DISKS: Contributions from the Forth Community
I he "Contributions from the Forth Community" disk library contains
author-submitted donations, encrall including source. for a variety
of computers & disk formats%ach d is determined by the author as
public domain, shareware, or use with some restrictions. This library
does not contain "For Sale" a licatlons. To submit your own conlrr-
butions, send them to the FI&

--
ublications Committee.

Prices: Each item below comes on one or more disks, indicated in
parentheses after the item number. 'Ihe rice is $6 Der disk or $25 for
any five disks. 1 to 20 disks = 1 #.

FLLOAT4th.BLK V1.4 Robert L Smith Cool - (1)
Software floating-point for fig-, ply- . 79-Std.. 83-Std.
Forrhs. IEEE shon 32-bit, four standard functions, square
root and log. IBM.

Games in Forth COO2 - (1)
Misc. games. Go, TETRA, Life ... Source. IBM

A Forth Spreadsheet, Craig Lindley COO3 - (1)
This model spreadsheet first ap in Forth Dimensions
vII. 1-2. Those h u t . -uvl EZi so-. IBM

Automatic Structure Charts, Kim Hams COO4 - (1)
Tools for analysis of lar e Forth programs first resented at
 conference. F$ source; docsincl~ in 1&5 FORML
Proceedings. IBM

A Sim le Inference Engine, Martin Trac COOS - (1)
jased on inf. engine in Winston & &om's book F P , takcs you from pattern variables to complete uruf1cat1on
algorithm, with runnin commcntaly on Forth philosophy &
style. 1nc1. source. I B ~

The Math Box, Nathaniel Grossman COO6 - (1)
Routines by foremostmath authorin Forth. Extended double-
precision arithmetic, complete 32-bit fvced-point math, &
auto-ranging text. Incl. graphics. Uulitles for rapid

lynomial evaluation, conunued fraaions & Monte Carlo
actonzatlon. Incl. source & docs. IBM r . .

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - (1)
AstroForth is the 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstroOKO, an astronavigation system in
AstroForth, calculates sky position of several objects from
different eaxth positions. Demos only. IBM

Forth List Handler, Martin Trac COO8 - (1)
rirnitives extend Forti to provide a flexible, high-
environment for AI. Incl. ELISA and Winston &
micro-LISP as examples. Incl. source & docs. IBM

8051 Embedded Forth, William Payne C050 - (4)
8051 ROMmable Forth o p e r a ~ g system. 8086-to-8051
target compiler. hcl. source. Docs are m the bookEmbedded
Controller Forth for the 8051 Family. IBM

68HCll Collection C060 - (2)
Collection of Forths, Tools and Floating Point routines for
the 68HC 11 controller. IBM

F83 V2.01. Mike Peny & Henry Laxen ClOO - (1)
Thenewest version d to a variety of machines. Editor,
assembler, demmp'~mctacompiler. Source and shadow
screens. Manual available separate1 (items 217 & 235).
Base for other E.83 applications. I B ~ , 83.

F-PC V3.53, Tom Zimmer C200 - (5)
A full Forth system with pull-down menus. sequaitial files,
editor, forward assembler, metacompiler, floating point.
Cumplete source and help fdes. Manual for V3.5 avahble
separately (items 350 & 351). Base for other F-PC
applications. Req. hard disk. IBM, 83.

F-PC TEACH V3.5. Lessons 0-7 Jack Brown C201a - (2)
Forth classroom on &sk. First seven lessons on learning
Forth, from Jack Brown of B.C. Institute of Technology.
IBM, F-PC.

VP-Planner Float for F-PC, V1.O1 Jack Brown C202 - (1)
Software floating- int engine behind the VP-Planner
b redd\heet 80-b~t gmpora real) routines with transccn-
'A'funciions, number 1/8-support, vectors to s
numeric co-processor overlay & user NAN checking%$
F-PC.

F-PC Graphics V4.4. Mark Smiley C203a - (3)
Ihe latest versions of new graphlcs routines, including CGA,
BGA and VGA sup rt, with numerous im rovements over
earli& versions c r e s o r supported by Mark !hey . IBM, F-
PC.

PorketForth V1.4. Chris Heilman - (1)
Smallest complete Forth forthe Mac. Access toall Mac functions,
files, graphics, floating int, macros, create standalone
applications and DAs. ~ a s e g fig & tart in^ ~ o r t h . Incl. source
and manual. MAC

Yerkes Forth V3.6 C350 - (2)
Complete object-oriented Forth for the Mac. Objed access to all
Mac functions files gra cs, floating poi$ macros, create
standalone a 'licatibns. %I. source. tutorial. assembler &
manual. MAE system 7.01 Compatable.

JLISP V1.O. Nick Didkovsky C401 - (1)
LISP interpreter mvoked from Amiga JFonh The nuclws of the
intemreteris the result of Martin Tracv's work. Extended to allow
the ~ S P interpreter to link to and ekecute JForth words. It can
communicate with JForth's ODE (Object-Development
Environment). AMIGA, 83.

V1.3, Frank Sergeant -'K 1
c500 - (1)

em, fast Forth with full source code. Incl. full-screen ehtor,
assembler and metacompiler. Up to 15 files open at a time. IBM.

Worth, Gu Kelly C600 - (3)
A full 6orth s stem with windows, mouse, drawing and modem
packages. h c r source & docs. IBM, 83.

ForST, John Kedmond C700 - (1)
Forth for the Atari ST. Incl. source & docs. Atari ST.

Mops V2.2. Michael Hore q 1 0 - (2)
Closecous~n to Yerkes andNeon. Very fast.com iles subroutme-
threaded & native code. Object oriented. Uses f-P co-processor
if resent. Full access to Mac toolbox & s stem Supports S stem
7 AppleEvents). Incl. assembler, JOCS source. &

BBL & Abundance, Roedy Green C800 - (4)
BBL public-domain, 32-bit Forth with extensive support of DOS.
meliculously o timized for execution speed. Abundance is a
ublic-domain !atabase lan uage written m BBL. Re . hard disk.

Kcl. source &docs. IBM h ~ , hard disk requi re1

WE HAVE CHANGED THE
WAY YOU CALCULATE

YOUR ORDERS.

1) We have leveled the pricing for FIG
items to all members.

Ill 2) We have removed the cost of shipping
from the price of the items. Ill

3) We have given you a better choice of
shipping methods and rates. Ill

Back issues of Forth Dimensions
and FORML Conference Proceedings

are going out of Print!!

I

For faster service, fax your orders 510-535-1295

fig-FORTH ASSEMBLY LANGUAGE SOURCE MORE ON FORTH ENGINES
Listings of fig-Forth for specific CPUs and machines with compiler security and Volume 10 January 1989 810 -1615 1#
variable-length nairres (see Imtnllalicin Manual. k10w): -$IS 1# RTX re rints from 1988 Rochester Fonh Conference, object-

orientJanPo&, lesser Forth engmes. 87 pgs

6502 514 - September 80 9900 519-March81
6809 516 - June 80 Apple I1 521 - August 81
8080 5 17 - September 79

Volume 11 Jul 1989 811 - $15 1#
RTX suPP&ment to ~ o o l s t e ~ s in an E ty Valley, SC32,32-b~t
Forth engine. RTX intenupts utiligr. X p g s

fig-FORTH INSTALLATION MANUAL 5?1 - $I5 Volume 12 A 13 1990 Glossary model editor-we recommend you urchase this
812-$15 I#

~hBoom Ehi architecture and instructions, Neural Can utlng
manual when purchasing any of the source code Estings above. Module ~ ~ $ 3 2 3 2 , pig~orth, binary radix sort on 80286, %8010.
61 Pgs and RTX2000. 87 pgs

SYSTEMS GUIDE T O fi -FORTH
C. H. Ting (2nd ed.. f989)

308 -$25 Volume 13 October 1990 813 - $15 I#

Ilow'sand why's ofthe fig-ForthModelby Bill Ragsdale.intema1 PALS of the RTX2000 Mini-BEE. EBForth, AZForth, RTX-
structure of fig-Forth system. 2101,8086 eForth, 8051 eForth. I07pgs

MISCELLANEOUS
-SHIRT "May the Forth Be With You" 601 - $12 1#

size: Small, Medium. Large. Extra-Large onorderform) @'f&.
te sign on a dark blue shirt.

POSTER (Oct., 1980 BYTE cover)

FORTH-83 HANDY REFERENCE CARD 683 - free

FORTH-S3 STANDARD 305 - $15 1#
Authoritative description of Forth-83 Standard. For reference, not
instruction. 83 pgs

Volume 14 814 -$I5 1#
RTX Pocket-Sc e, eForth for muP20, ShBoom, eForth forCP1
M & 280, XMO%EM f or eForth. 116 pgs

Volume 15 815 - $15 I#
Moore: New CAD System for Chi Design. A portrailof the P20;
Rible: QS1 Forth Processor. QS!. RISCing it all; P20 eForth
Software SimulatorDebugger. 94 pgs

Volume 16 816 -$I5 1#
OK-CAD System, MuP20, eForth S stem Words. 386 eForth.
80386 Protected Mode Operauon, d P 1600 - 16Bit Real Time
Processor. I04 pgs

DR. DOBB'S JOURNAL
BIBLIOGRAPHY OF FORTH REFERENCES 340 - $18 2# Annual Forth issue, includes code for various Forth applications.

(3rd ed., January 1987) Sept. 1982 422-$5 1#
Over 1900 references to Forth articles throughout computer Sept. 1983 423 - $5 I t
literam. lO4pgs Sept. 1984 424 - $5 I#

FORTH INTEREST GROUP
P.O. BOX 2154 OAKLAND, CALlFORNIA 94621 510-89-FORTH 510-535-1295 (FAX)

Name Phone
U.S. ~omeet ic Postage ~ . t a '$& I

2 &y kiority
Company - Fax s1.5om

Street eMail International Postage Rate.

City
State/Prov. Zip
Country

I CHECK ENCLOSED (Payable to: FIG) I Sub-Total I I

I I Item # I

VISA Mastexcard
Card Number
Signature

Expiration Date - MEMBERSHIP

Title Q ~ Y . I Unit Pnce I Total 1 #
. .

10% Member Discount, Member #
**Sales Tax o n Sub-Total (CA only)

Postage: Rate x #s

'MEMBERSHIP IN THE FORTH INTEREST GROUP
The Forth Interest Group (FIG) isaworldwide, non~roii i, member-supponedorganhation wilh wer 1.W members and40chapters. Your membershipincludes asubsuption tothebi-monthly magazine
Forth Dimemiom. FIG also offers its members an on-line data base, a large selectbn of Fonh llerature and other services. Cost is 540 per year for U.S.A. 8 Canada surface; $46 Canada air mail:
all other countries 552 per year. This fee indudes $36142148 for forth Diinensims. No sales tax, handling lee, or discount on membership.
When you pin. your first issue will arrive in four to six weeks;subsequent issues will be mailed to you every other month as they are published-six issues in all. Your membership entitles you to a 10%
discount on publications and functins of FIG. Dues are not deductible as a charitable contribution for U.S. federal income tax Purwses, but mav be deductible as a business exDense.

(

II)

MAIL ORDERS:
Forth Interest Group
P.O. Box 2154
Oakland. CA 94621
PHONE ORDERS:
510-89-FORTH Credit card
orders. customer service.
Hours: Mon-Fri, %5 p.m.

'Membership the ~ o r t h ~ n t e r e s t Grou '
O N e w ORenewal $40/46/&

PAYMENT MUST ACCOMPANY ALL ORDERS
,,,p,NGnM,:

PRICES: All orders must be prepaid. Prices are POSTAGE
Books in stock are shipped
within seven days of receipt of

s u b w to change without notice. Credl w d orders All orders calculate postage as the order. please allow 46
will be sent and billed at current prices. Checks must number of #s times selected weeks for out-of-stoc. books
be in U.S. dollars, drawn on a U.S. bank. A $10 postage rate. Special handling (deliveries in cases will be
charge will be added for returned checks. available on request. much sooner).

For faster service, fax your orders 510-535-1295

** CAUFORNIA SALES TAX BY COUNTY:
7.5%: Sonoma; 7.75%: Fresno. Imperial.
Inyo. Madera Monterey. Orange. Riverside.
Sauamento. San Benlo. Santa Barbara. San
Bernardino. San Dmgo. and San Joaqu~n:
8.25%: Alarneda. Contra Costa. Los Angels
San Mateo. Santa Clara. and Santa CNZ,

XV-4

RTIlOOO Programmable Controller
Hardware

Bacchus Marsh, The RTIlOOO is a modular system based on the 6U, 3340. 19 inch rack standard huilt to withstand harsh in- Tel: 61 53 673155
Fax: 61 53 674480

dustrial environments. Input and output modules are
available for digital, analog and pulse type signals.

The RTIlOOO is a Forth based controller providing
three language levels for program development, and
a real time multitasking/multiuser operating system.

1. The PC element language is a graphical boolean
language in which application programs are creat-
ed by linking together library modules. Users may
define their own PC elements if required. The
application program may be represented graphi-
cally on the VDU and printer as shown below.

2. FORTH high level language.

3. 68000 machine code assembler.

Documentation
ON OUT 000 3 F1

Industrial FORTH technical Manual (245 Pages)
SOD c 68000 Assembler Manual (222 Pages)

PC Elements User Manual (221 Pages)
000 1 F1 On Line Glossary Supplied In Prom.

AUTHOR RECOGNITION PROGRAM 1
To zcognize and reward authors ofForth-elated ar-

ticles, the Forth Zntemt Gmy, (FIG) adopted the following
Author Recognition Program.

Articles
The author of any Forth-related article published in a

periodical or in the proceedings of a non-Forth conference
is awarded one year's membership in the Forth Interest
Croup, subject to these condtions:

a. The membership awarded is for the membership year
following the one during which the article was
published.

b. Only one membership per person is awarded in any
year, regardless of the number of articles the person
published in that year.

c. The article's length must be one page or more in the
magazine in which it appeared.

d. The author must submit the printed arlicle (photo-
copies are accepted) to the Forth Interest Group,
includng idenhfication of the magazine and issue in
which it appeared, within sixty days of publication.
In return, the author will bc sent a coupon good for
the following year's membership.

e. If the original article was published in a language

other than English, the article must be accompanied
by an Engish translation or summary.

Letters to the Editor
Letters to the editor a=, in effect, short articles, and so

deserve recognition. The author of a Forth-related letter to
an editor published in any magazine except Forth D i m -
sionsis awarded $10 credit toward FIG membership dues,
subject to these conditions:

a. The credit applies only to membership dues for the
membership year following the one in which the
letter was published.

b. The maximum award in any year to one person will
not exceed the full cost of the FIG membership dues
for the following year.

c. The author must submit to the Forth Interest Group
a photocopy of the printed letter, including idcnti-
fication of the magazine and issue in which it
appeared, within sixty days of publication. A cou-
pon worth $10 toward the following ycar's mcm-
bership will then tx: sent to the author.

d. If the original letter was published in a language
other than English, the letter must be accompanied
by an English rans slat ion or summary.

1 I . - 1 -A
Forth Dimensions 2 1 November 1992 December

Principles of Metacornpilation-code. I
screen X 6 4
(IMAGE CCMPILER load screen) (7 5 9 0 b j r 2 1 ~ 5 3)
: TMRIJ 1C .SWAPDO C R I . .S J LOADLOOP :
6 5 LOAD (vocabular ies)
6 8 LOAD (image t o t a r g e t)
43 LOAD (hex f i l e s) 71 LOAD (image dump)
72 LOAD (mul t ip l e d i c t i o n a r i e s)
73 LOAD (SUPER8 c r e a t e and compile)
74 75 THRU (create , fwd r e f s) HOST DEFINITIONS
45 59 THRU (SUPER8 assembler)
7 6 81 THRU (Image compiler)
HOST ; S 9 1 9 4 THRU (t e s t) HOST ; S
9 1 112 THRU (SUPERB source code - assembler pr imi t ives)
HOST DECIMAL 8 4 8 9 THRU (SUPERB source code - high l eve l)
HOST DECIMRZ. 1 1 4 153 THRU
HOST DECIMAL 1 5 9 1 6 0 THRU (i n i t i a l i z a t i o n values)
HOST ;S

screen U. 6 5
(image compi ler ' s vocabular ies) (7 6 8 8 b j r 12:15)

: AKA <RUILL)S [C W I L E] ' CFA , W E S > @EXECUTE STOP
: IMPORT I N @ <BUILDS I N ! [CCMPILE] ' CFA , DOES> @EXECUTE

STOP

V E A B U R Y HOST IMMEDIATE HOST DEFINITIMJS
AKA NATIVE FORTH IMMEDIATE
AKA EQU CONSTANT

VCZABULARY TARGET IMTEDIATE TARGET DEFINITIONS
HOST IMPORT HOST I M D I A T E (must be f i r s t defn. i n TARGET!)
HOST IMPORT TARGET IMMEDIATE

HOST DEFINITIONS

AKA def ines a synonym word. Usage: AKA newname oldword
IMPORT def ines a synonym word of t h e same name i n t h e current

vocabulary. Usage: source-voc IMPORT word

Vocabulary usage f o r t h e image compiler:
TARGET holds t h e "symbol" words f o r a l l t a r g e t de f in i t i ons . I t

a l s o holds t a r g e t compiler d i r e c t i v e s and t a r g e t assembler.
Within TARGET is a vocabulary t r e e exact ly p a r a l l e l i n g t h e

vocabulary t r e e being b u i l t i n t h e image.
HOST is used a s an escape t o t h e h o s t ' s FORTH words.
FORTH is redef ined t o r e tu rn t o t h e root t a r g e t vocabula ry... i n

ca se it's encountered dur ing t h e t a r g e t compilation.

screen Y 6 6
(Image t o extended memory, byte-swapped) (8 5 9 0 b j r 9:20) These words s t o r e t h e t a r g e t image i n 8 0 8 6 extended memory.
(f o r 8 0 8 6 hos ts) TSEG is t h e segment value f o r t h e image. We a s s m e t h a t

CS@ HEX 1 0 0 0 + CCNSTANT TSEG (64K segment f o r image) t h e 64K following r ea l - fo r th is avai lable .
CCDE >< (n - n) AX POP, AH AL XCHG, lPUSH >c swaps t h e h i and l o bytes of t h e t o p s tack item.
: T@ (a - n) TSEG SWAP @L >< ;
: TC@ (a - b) TSEG SWAF' C@L ; T@ TC@ T! TC@ a r e t h e c e l l and byte, f e t c h and s t o r e opera tors
: T! (n a) SWAP X T S E G R O T ! L ; i n t o t h e t a r g e t image.
: TC! (b a) T S E G S W A P C ! L ; The image byte o rde r is opposi te t h a t of t h e host.

: > T W E (s d n) BOUNDS DO DUP C@ I TC! 1+ LCXJP DROP ;
: INVOKE (a) U. ?CCMP ; (err msg i f exec ' ing t a r g e t word)
DECIMAL

screen # 6 7
()
(Image t o d isk , byte-swapped)

screen ii 6 8
(Image t o t a r g e t machine, byte-swapped) (8 5 90 b j r 9 : 2 9)
(f o r 8 0 8 6 hos t s)

CCOE >< (n - n) AX POP, AH AL XCHG, lPUSH

: T@ (a - n) XADR X@+ >< X@+ OR ;
: TC@ (a - b) XADR X@+ ;
: T! (n a) X A D R D U P > < X ! + X ! + ;
: TC! (b a) X A D R X ! + ;
: >TCMOVE (s d n) SWAP XADR BOUNDS DO I C@ X!+ LOOP ;

: INVOKE (pfa) 2+ @ GO AWAIT :

s c r e e n # 69
()
(Image t o extended memory, byte-normal)

screen # 7 0
()
(Image t o d isk , byte-normal)

>TCMOVE copies a s t r i n g from t h e host memory t o t h e image.

screen # 7 1

(Image dump) (27 5 8 8 b j r 10:04) These words implement Charles Cur ley 's DUMP as pa r t of t h e
: (DUMP) \ addr c t --- I dump a s pointed t o by r e l o c image compiler. Use HOST DUMP t o l o o k a t t h e image.

SPACE BOUNDS W I TC@ 3 .R LOOP ; Use NATIVE DUMP f o r t h e "or ig inal" dump of real-Forth memory.

I I
November 1992 December 22 Forth Dimensions

. -

LASCI \ add r ct --- I a s c i t ype a s poin ted t o !q r e l o c
SPACE BOUNDS DO I TC@ 127 AND DUP

BL ASCTI - WITHTN O= IF DROP ASCII . THEN EMIT LOOP ;

I I : HEAD \ addr -- 1 headder f o r dump d i sp l ay
1 6 0 DO I OVER + 15 AND 3 .R m P DROP ;

\ N. B: Not r e spons ib l e f o r negat ive counts! - the m;T.

: DUMP \ add r ct -- (dump a s poin ted t o by r e l o c
OVER CR 6 SPACES HEAD BEGIN DUP WHILE CR OVER 5 U.R

2DUP 16 MIN >R R 2DUP (DUMP) 54 TAB LASCI
R K, MINUS Dc ?TERMINAL IF DROP 0 THEN REPEAT 2DROP ;

screen # 72
(Mult ip le t a r g e t d i c t i o n a r i e s)
(1 6 b i t addresses)
HOST DEFINITIONS 0 VARIABLE 'DP
: DICTIONARY (o r g l i m i t) <BUILDS
: DP (- a) 'DP @ ;
: HERE (f a) DP @ ;
: ?FULL DP 2@ SWAP U< 2 ?ERROR ;
: ALLOT (n) DP +! ?FULL ;
: T, (n) HERE T! 2 ALLOT ;
: TC, (n) HERE TC! 1 ALLOT ;

(4 5 90 b j r l5:48) These words manage t h e d i c t i ona ry be ing b u i l t i n Che image.
DP HERE AIUW a r e analogous t o t h e i r na t i ve f o r t h counterparts,

except t h a t they work i n 'image addresses ' . These words a r e
l oca t ed i n t h e TARGET vocabulary s o t hey can be found
s epa ra t e ly f m m t h e na t i ve f o r t h words i n HOST.

SWAP , , DOES> 'DP ! ;

\ e r r o r i f DP > l i m i t T, TC, s t o r e words/bytes i n t o t h e image.

RDP holds t h e image address o f t h e next ava i l ab l e RAM locat ion .
Separa te DP and RDP a r e needed when compiling f o r PRWRAM.
RHERE RALIDT ope ra t e on t h e "ram dic t ionary" .

0 VARIABLE CONTEXT 0 VARIABLE CURRENT 0 VARIABLE VOC-LINK CONTEXT CURRENT VCC-LINK conta in i m g e addresses of t h e
: LATEST (- a) CURRENT @ T@ ; dictionary being b u i l t . IATEST r e t u r n s t h e image address o f
(t h e s e v a r i a b l e s need t o be i n i t i a l i z e d before compilation) t h e l a t e s t de f i n i t i on . (Note t h e usage: @ T@)

These TARGET words a r e analogous t o t h e i r HOST counterparts.

screen X 73
(Super8 c r e a t e and compile) HEX (4 5 90 b j r 14:37
(byte-aligned, same name format a s host, same width a s hos t)
0 VARIABLE ?HEADS \ set 0 f o r header less
: (TCREATE) ?HEADS @ IF

HOST HERE NATIVE LATEST ZDUP \ des t , s r c ad r e s se s
C@ I F AND WIDTH @ MIN 1+ DUP \ length
HOST ALLOT >TCMOVE \ compile name f i e l d i n image
HOST LATEST T, \ compile l i n k f i e l d i n image
HOST CURRENT @ T! THEN \ change image vocabulary p t r s

(subrout ine threading header)
; \ no header f o r subrout ine threaded code

: TCFA (a - a) ;
(subrout ine threading compile)
: TCCMP, (a) OF6 TC, T, ; \ a super8 subrout ine CALL
: TMARK, (- a) OFC TC, HOST HERE 0 T, ;
DECIMAL

) These words a r e CPU- and model-specific code.
?HEADS i f t r ue , causes headers t o be compiled i n t h e image.

(TCREATE) bu i l d s a header i n t h e image, l i nk ing it i n t o t h e
image vocabulary. The name f o r t h e header is obtained
from t h e mst r ecen t l y def ined word i n t h e host; t hus you
must de f i ne a hos t "mirror" word f i r s t .
SUPER8 NOTE: no code f i e l d is canpiled; p f a follows l i nk .

TCFA given a t a r g e t pfa, r e t u r n s t h e t a r g e t c fa .
T C W , ccmpiles a high-level "thread" t o a given t a r g e t a d r

Subroutine thread: compile a CALL t o t h e given adr .
TMARK, reserves a high-level "thread", and s t a cks t h e t a rge t

l oca t i on o f t h e address f i e l d f o r l a t e r r e so lu t i on .
(For forward referencing.)

screen 1 74
(Change execute and compile a c t i ons) (1 6 88 b j r 17:44) Each t a r g e t word has a s soc i a t ed with it (i n t h e "mirror" word)
0 VARIABLE 'MIRROR \ p f a of l a t e s t m i r ro r word a "compiling" a c t i o n and an "executing" ac t i on . For most words
: : [' : CFA @] LITERAL , ; compiling is "compile my address" and executing is "er ror" .

: ACTS: NATIVE HERE 'MIRROR @ ! (:)
!CSP NATIVE SMUDGE] ;

: ACT [CCMPILE] ' ACTS: NATIVE CCMPILE DROP CFA ,
CoMPIlE ;S SMUDGE [CCME'ILE] [;

\ : MAKES: NATIVE J HERE [CWILEI DOES> 2+ LRTEST PFA CFA !
\ !CSP NATIVE SMUDGE ;

HERE 2 t] DOES> DUP (2 t E swap) @EXECUTE [
: IMPERATIVE NATIVE LITERAL 'MIRROR @ CFA ! [2 CSP t!] ;

(:) canp i l e s t h e c f a f o r a colon d e f i n i t i o n i n t h e host.
This is used t o make header less colon de f i n i t i ons .
ACTS: changes t h e "executing" ac t i on o f a m i r ro r word.
Usage: ACTS: word word word ;

ACT makes t h e "executing- a c t i on i d e n t i c a l t o a n e x i s t i n g word.
Usage: ACT word

MAKES: changes t h e "compiling" a c t i o n o f a mir ror word.
Usage: MAKES: word word word ;

NOTE t h a t t h i s becomes t h e executing ac t i on a s well!
IMPERATIVE makes t h e "compiling" ac t i on of a mir ror word t h e

same a s its "executing" ac t ion . This is ak in t o IMMEDIATE.

s c r een 1 75
(Imagc c r ea t e) (8 5 90 b j r 9:21) 'MIRROR holds t h e address of t h e la tes t -def ined mir ror word.
: CREATE <BUILDS (TCREATE) NATIVE HERE 'MIRROR !

[' INVOKE CFA] LITERAL , HOST HERE TCFA (c f a) NATIVE , CREATE b u i l d s a header i n t h e image, and bu i l d s a dual-action
DOES> (a) STATE @ I F 2 t @ TCOMP, (compile) word i n t h e host d ic t ionary . When executed i n compile s t a t e ,

ELSE DUP @EXECUTE (execute) THEN : DECIMAL i t pu t s t h e t a r g e t word's c fa (Supera: p f a) i n t o t h e image.
The de f au l t a c t i o n f o r executle s t a t e is an e r r o r message.

Af t e r CREATE we have enough of t h e image compiler t o compile
CODE words (assembler p r im i t i ve s) .

screen # 76
(Forward references , 1 6 b i t addresses) (4 5 90 b j r 15:46) FORWARD bu i l d s a r oo t word f o r a l inked l i s t of forward

HOST DEFINTTTONS references . Whcn an unknown name is f i r s t encountered,
: FORWARD CBUIIDS 0 , TMRRK, , [NATIVE HERE 2 t] FORWARD bu i l d s a word by t h a t name with a po ln t e r t o where

- -- -.

Forth Dimensions 23 November 1992 December

DOES> (a) NATIVE HERE 0 , R.VLRK,
OVER @ OVER ! SWAP ! [-2 CSP t ! 1 ;

CONSTANT (FORWARD)

: RESOLVE (pfa a) SWAP BEGIN 2DUP 2 t @ T! @ -DUP O=
DROP ;

: CREATE I N @ >R -FIND R> I N ! CREATE
IF DROP DUP CFA @ (FORWRRD) = IF ." ... Resolving"

HOST HERE TCFA RESOLVE ELSE DROP THEN THEN ;

screen # 77
(Image compiling) HEX (4 5 90 b j r 14:41)

HOST DEFINITIONS O VARIABLE *LIT*
: TLITEPAL (d) DPL @ 1t IF SWAP *LIT* @ TCOXP, T,

ELSE DROP THEN *LIT* @ TCOMP, T, ;

: ?NUMBER (a - d f) 0 0 ROT DUP 1t C@ 2D = DUP >R t -1
BEGIN DPL ! (NUMBER) 0 OVER C@ ASCII . - UNTIL DROP (d a)
C@ BL = IF R> IF DMINUS THEN 1 ELSE R> DROP 0 THEN ;

-.

i ts address should be compiled. Subsequent references cause
header less po in t e r s t o be l inked onto a list. Last link=O.
When t h e word is f i n a l l y defined, it should be RESOLVEd,

(Note: I N must be res tored a f t e r -FIND, t o use FORWARD.)
UNTIL

RESOLVE name f i l l s t h e forward reference list s t a r t i n g a t pfa
with t h e given value a . (pfa is t h e pfa of t h e root word

b u i l t by FORWARD.)

CREATE is redefined s o t h a t , i f t h e word a l ready e x i s t s a s a
forward reference word, it is resolved with t h e new cfa .

: [STATE OFF ([COMPILE] HOST) ;

: 1 CO STATE ! BEGIN I N @ -FIND
IF (found) ROT 2DROP CFA EXECUTE
ELSE NATlVE HERE ?NUMBER IF (number) TLITERAL DROP

ELSE (undef) 2DROP I N ! FORWARD THEN
THEN ?STACK STATE @ O= UNTIL ; DECIMAL

LIT must be f i l l e d with t h e CFA of t h e LIT pr imi t ive ,
before any colon de f in i t i ons with l i t e r a l s a r e attempted.

TLITERAL compiles a s i n g l e o r double l i t e r a l i n t o t h e image.

?NUMBER works l i k e NUMBER, except t h a t it r e tu rns a f l a g
indicat ing i f t h e conversion was successful .

[s e t s i n t e rp re t i ng s t a t e , and s e t s CONTEXT t o HOST s o t ha t
host words have precedence i n search order .

] s e t s compiling s t a t e , and e n t e r s t h e image compiling loop.
Words from t h e input stream a r e searched (i n t h e TARGET
vocabulary) and executed. The execution ac t i on of a defined
t a r g e t word is t o compile i t s e l f . Other words, such a s
compiler d i r ec t i ve s , perform t.heir programmed act ion.

screen # 78
(t a r g e t i n t e r p r e t a t i o n) (13 5 90 b j r 17:lB) *DCCOL* must be f i l l e d with t h e address of t h e colon CODE,
: D>T (d) DPL @ I t IF S W >T ELSE DROP THEN >T ; before any colon de f in i t i ons a r e made. This is t h e value

which is s tu f f ed i n t o t h e CFA of a l l colon defs .
: TINTERPRET BEGIN -FIND SUPERB ONLY: no CFAs; t h e ENTER opcode is s tu f f ed ins tead.

IF (found) DROP CFA EXECUTE
ELSE NATIVE HERE ?NUMBER O= 0 ?ERROR (number) D>T : s e t s up f o r a colon d e f i n i t i o n i n t h e image, bui lds t he
THEN ?STACK AGAIN ; header (with t h e appropr ia te CFA), then e n t e r s compile mode.

: TQUIT BLK OFF STATE OFF BEGIN
RP! CR QUERY TINTERPRET ." Tok" AGAIN ;

: HOT ' TQUIT CFA 'QUIT ! ." Tok" QUIT ;
: COOL ' (QUIT) CFA 'QUIT ! ." ok" WIT ;

;S must be f i l l e d with t h e address of t h e ;S pr imi t ive ,
before any image colon de f in i t i ons a r e made.

; ends an image colon de f in i t i on . 1 1
After ; we have enough of t h e image corrpiler t o compile simple
colon de f in i t i ons .

screen # 79
(U t i l i t y words: equ l abe l gap zap s e a l) (30 5 88 b j r 7:06) SEAL name makes t h i s word t h e end of a d i c t i ona ry chain.
HOST DEFINITIONS ZAP name removes (smudges) t h i s word from d i c t i ona ry searches
: SEAL [COMPILE] ' CFA 2- OFF ;
\ : ZAP [COMPILE] ' NFA BL TOGGLE ; These a r e var ious compile-time d i r ec t i ve s .

EQU bui lds a CONSTANT i n t h e TARGET dic t ionary , but nothing i n
\ NATIVE AKA EQU CONSTAhT t h e image. EQU'd values w i l l not compile, even a s l i t e r a l s ! !
\ : LABEL HOST HERE EW ; LABEL EQU's t h e current compile address i n t h e image.
\ : GAP HOST 2 ALLOT ; (word machines) GAP leaves room i n t h e image f o r a compiled Forth word.
HEX
: STOP HOST ?CSP [; IMGDIATE
: IMMEDIATE HOST LATEST DUP TC@ 40 XOR S W TC! ;

screen # 80
(Support f o r def in ing words)

O VARIABLE TWO
(7 6 88 b j r 20:22) These words allow t h e host machine t o co r r ec t l y bu i ld "defining"

and "defined" words i n t h e t a r g e t .

: (DOES>) R> DUP 2 t HOST 'MIRROR @ ! (h o s t ' s de f ' d ac tn .) TODO holds t h e ;CODE o r DOES> code address jus t defined i n t he
@ 'MIRROR @ 21 @ 1t T! ; (change image's defined ac t ion) image. I I

: DOES> NATIVE COMPILE (DOES>) TODO @ , (:) ;
NATIVE IMMEDIATE

(DOES>) when executed by t h e host machine, changes t h e execute
ac t i on of t he most r ecen t ly defined t a r g e t word, i n t h e image

AND i n t h e h o s t ' s mirror word. The image's code address is
s e t t o t h e contents of TWO. The h o s t ' s "execute" vector is
s e t t o t h e address i m e d i a t e l y following t h e (DOES>) .

DOES> compiles (DOES>) 6 bu i ld s a header less colon de f in i t i on
i n t h e host f o r t h e DOES> act ion.
Usage: HOST ACTS: word word word DOES> word word word

Refer t o t h e t a r g e t ' s source code f o r WES> and ;CODE .

I I I

November 1992 December 24 Forth Dimensions

screen 1 81
(S e a l t a r g e t v o c a b u l a r y) (7 6 88 bj r 12:26)

TARGET DEFINITICPUS (f i r s t get a f e w m o r e needed words)
HOST IMPORT CODE
IIOST IMPORT DMEDIATE
HOST IMPORT ;S
HOST IMPORT (

HOST W O R T HEX
IiOST IMPORT \
HOST IMPORT STOP

TARGET SEAL HOST (now seal a t t h e first word i n TARGET)

HOST ;s

s c r e e n t 8 2

s c r e e n # 8 3
(T e s t i n t e r a c t i v e a s s e n b l y) (8 5 9 0 bjr 9:55)

HOST HEX C030 FFFF DICTIONARY P R W PRCM \ o r i g i n s

CM)E IEDOUT HERE FQU $1 LD R8 t OFF LDC OFFEO R8
LD R8 1 OFF LDC OFEDO R8 LD R8 1 OFE IDC OFFEO R8
LD R2 # 4 BEGIN, LDC OFF00 RO NOP NOP NOP NOP NOP

LDC OFFDO R l NOP NOP DEC R2 Z UNTIL,
RET ;C

HERE U.
CODE DEMO IDW RRO t omoo rn m 2 t 1234 IDW m 4 I OFOOO

BEGIN, CALL $1 B E I N , DEC RZ 2 UNTIL,
INCW RRO Z UNTIL, RET NOP NOP NOP

; c

HOST ;S

screen Y 84
(S u p e r 8 : ;) (7 6 8 8 b j r 12:26)

TARGET CODE : ENTER, HOST 1 TARGET
?EXEC !CSP CURRENT @ CONTEXT ! CREATE -2 ALLOT 1 ;S
HOST [

HOST ACTS: (a) DROP !CSP NATIVE CURRENT @ CONTEXT !
HOST CURRENT @ CONTEXT ! CREATE -2 ALUX 1 ;

TARGET : ; ?CSP C W I I E ;S ! X J X E [;S HOST [IFMEDIATE
HOST ACTS: (a) DROP ?CSP TARGET ;S HOST [; IHE'ERATIVE

TARGET is t h e root ot t h e *mirroredY d i c t i o n a r y tree, w h i c h
w i l l be b u i l t i n t h e host. This tree w i l l h o l d a l l of t h e
Inirror* words and w i l l exactly duplicate t h e s e a r c h o r d e r
of the dictionary b e i n g b u i l t i n t h e image.

Once t h e TARGET vocabula~y is sealed, t h e o n l y ex i t s are
HOST t o select t h e HOST v o c a b u l a r y
CODE t o create a c o d e h e a d e r a n d select HOST ASSPMRIER

N o t e t h a t t h e vocabulary m u s t be sealed at its f i r s t d e f i n i t i o n ,
w h i c h i n t h i s case is t h e j u s t - d e f i n e d HOST synonym.

HOST ;S

s c r e e n (1 8 5
(S u p e r 8 d o d o e s d o e s > (;code) HEX (7 6 8 8 bjr 12:30)

TARGET CODE DODOES (- a) TOS 1 + SP @ LDEPD, M S SP @ LDEPD,
TOS POP, TOS 1 + POP, NEXT, \ pop r t n s t a c k t o parm s t a c k

I 1 TARGET : (;CODE) R, IATEST PFA 2- ! ;

HOST : ;CODE HOST ?CSP TARGET (;a)[)E) HOST HERE TCOO !
I ENTERCODE ;

TARGET : DOES> COMPILE (;CODE) I F C, OMPILE WDOES ;
I W D I A T E

HOST ACTS: (a) DROP TARGET (;CODE) HOST HERE MDO !
I F TC, TARGET DCDOES HOST ;

/ 1 HOST ;S

s c r e e n # 86
(S u p e r 8 c o n s t a n t v a r l a b l e) (1 2 11 88 bjr 20:03) 1

TNIGET : CONSTANT CREATE W D G E , ;CODE
TOS 1t SP @ WEPD, TOS S P @ IDEPD,
I P W IDW, W @ TOS =I, W @ TOS 1+ IDc, EXIT,

HOST ACTS: (a) DROP CREATE T,
HOST DOES> (a) 2+ @ 3 + T@ ;

TAKGET : VARIABLE (n) CONSTAW ;CODE
TOS 1t SP @ IDEPD, M S S P @ IDEPD, I P TOS IDW, EXIT,

HOST ACTS: (a) DROP CREATE T,
HOST WES> (a) 2+ @ 3 + ;

HOST ;S 1

1 Trial

Subscription
There are whole other worlds in micro computers

than DOS and Windows. If embedded controllers,
Forth, S100, CP/M or robotics mean anything to you,
then you need to know about The Computer Journal.

Hardware projects with schematics, software
articles with full source code in every issue. And you
can try The Computer Journalwithout cost or risk!
Call toll free today to start your trial subscription and
pay only if you like it.

Rates: $18/year US; $24/year Foreign. You may
cancel your subscription without cost ifyou don't feel The
Computer Journalis for you. Published six times a year.

(800) 424-8825

T i The Comrwter Journal
The Spirit o f the Individual Made Thii Industry

Socrates Press
PO Box 535
Lincoln, CA 95648

Forth Dimensions November 1992 December

A Forum for Exploring Forth Issues and Promoting Forth

W h w Istaned Fast FORmward, Ipmrnised to use it to
share essays aboutFonh, mays about marketing issues, and
essays aimed at educating othen about Forth. lampleased to
be able to share with you the acetpt concerning th~ad ing
modeIsfimJack Woehr's essay 'Seeing Forth " in his book by
the same name. --Mike Elola

Excerpt from "Seeing Forth"
by Jack Woehr

Forth has traditionally a very simple execution engine, but
the number lofl Forth implementation strategies can In01
longer be counted on the fingers of one hand. There is
perhaps no other computer language whose execution
engine exhibits wider and more varied implementations,
though Pascal, LISP, BASIC and Prolog are certainly contend-
ers for the uown.

Forth is described as a virtual machine, a software
emulation of an imaginary processor which would possess
an infinitely extensible instruction set. In the ideal machine,
a routine defined in terms of preexistent operations would
become a member of the microprocessor's instruction set.

In order to emulate this ideal processor, the traditional
Forth compilers lay down address lists to be stepped through
[by the inner interpreter] in the course of executing a Forth
word (function). These addresses, for the purpose of the
emulation, correspond to the instruction set of the ideal
processor.

[...I The hoariest member of the family of Forth inner
interpreters is the Indrect-Threaded Interpreter. The body of
a colon definition in an indirect-threaded Forth is constructed
as follows:
/ addr -o f - in t e7y~ ter /add~~~/addm/addm/ . . .
where

addr-ofintopreteris the address of a routine which will
kandle the first step of processing the list which follows.
Usually the interpreter is a nesting routine, which saves
the Instruction Pointer of the caller on the Return Stack
and sets the Instruction Pointer to point to the first cell of
the following list of addresses.

and
addressis the address of a previously-defined Forth word
called in the course of executing this definition. llle last
address in the list of addresses may be the address of an
unnesting routine which pops the former Inslruction
Pointer from the Return Stack.

November 1992 December 26

Forth words executed in this manner continue to nest
downwards into lower- and lower-level words until they
reach a definition constructed as follows:
/addm-of-next-celUcode/code/c~code/next/
where

addras-ofnmt-cellis just that, the address of the body of
the definition itself. This definition is code and posesses
no interpreter which must be pointed to. Simply stepping

1 into itself is sufficient, and it will clean up after itself and
begin the process of nesting back upwards as described
below.

and
codeis executable machine code.

and
next is either a jump to, or the inline expansion of a
routine which causes the contents of the cell pointed to
by the current Instruction Pointer to be fetched and fed to
the interpretive engine, post-incrementing the Instruction
Pointer in the process. In other words, this level of Forth
execution is the beginning of the end for a Forth Machine
Cycle.

Closely related to the Indirect-Threaded Interpreter is the
Direct-Threaded Interpreter. The body of a colon definition
in a direct-threaded Forth is constructed a s follows:
/ i n t e q r e t e r - i n l i n e / a d d w / a d d w / a d ...
where

interpreter-inlineis the the actual routine that will handle
the first step of processing the list which follows. As
above, the interpreter is usually a nesting routine, which
saves the Instruction Pointer of the caller on the Return
Stack and sets the Instruction Pointer to point to the first
cell of the following list of addresses.

and
addressis the address of a previously-defined Forth word
called in the course of executing this definition. The last
address in the list of addresses may be the address of an
unnesting routine which pops the former Instruction
Pointer from the Return Stack.

Once again, Forth words executed in this manner con-
tinue to nest downwards into lower- and lower-level words
until they reach a definition constructed as follows:
/code/c&/cWcode/next/
where

Forth Dimensions

this definition is code and posesses no interpreter which
must be pointed to. Execution commences at the first
instruction cell. Stepping into itself is sufficient, and it will
clean u p after iwlf and begin the process of nesting back
upwards as described below.

and
code is executable machine code.

and
42LSCt I either a jump to, or the inline expansion of a
routine which causes the contents of the cell pointed to
by the current Instruction Pointer tobe fetched and fed LO

the interpretive engine, post-incrementing Lhe Instruction
Pointer in the process. In other words, this level of Forth
execution is the beginning of the end for a Forth Machine
Cycle.

(Continued on page 32.)

Benchmarks Wanted
In late July, the Forth Interest Group (FIG) received a

letter from China. The Society of Forth Application Re-
search (SOFAR) there was organizing a large-scale promo-
tion of the Forth language. For Forth vendors and other
Forth advocates, here was a golden opportunity to help
promote Forth worldwide:

"We are urgently in need of material concerning the
comparisons of Forth with languages [such as1 C, Pascal,
and assembly and other comparisons like arithmetic and
general processing. These are needed in the form of
performance briefs or testing reports that have source code
listings, comparisons of length and speed, etc.

"In addition we would like to know about the fields or
businesses which have set Forth as their standard language.
[...I We sincerely look forward to your earliest response and
assistance on this matter by the 30th of July, 1B2. You can
contact us through: 10 Third lange, North Street, XiSSi,
Beijing, Postal Code 100034, China."

My response to SOFAR has been merely to direct their
request to several of the Forth language vendors, asking
them to reply directly to SOFAR as well as send me a copy
of their response. So far, I have not received anything.

Information such as that requested is of vital importance
to support a manager's decision to use Forth. IJnfortu-
nalely, il can be difficult to find ou t how Forth measures up.

FIG can act as a channel for information supplied by the
vendo-r FIG can generate its own information. Either
way, I think FIG needs to be a supplier ofsuch information.
I would like for FIG to publish lig-Forth, eFORTH, F83, and
F-PC benchmark comparisons with assembly language.
With help from the vendors, I would like to see FIG
distribute benchmarks of subroutine-threaded, direct-
threaded, and indirect-threaded Forths relative to assembly
language. FIG should also distribute information regarding
the performance improvements possible from optimiza-
tion techniques. I'll gladly organize the information.

Prospective Forth users may not give Forth its due
consideration if we cannot offer information such as this.
So if you have any of this information, please mail it to me
in care of the FIG office.

Forth Dimensions

JULY-AUGUST 1992
In July, Creative Solutions, Inc. announced a 4.2.2

release of MacForthm Plus (4.2 shipped last January and
included MacsBug Interface, editor enhancements, and
68040 compatibility). Upgrades range from $5 to $69
depending on the 4.X version you are upgrading from. As
of August, they were still offering a $99 upgrade for the
now-defunct Mach2 Forth with proof of ownership. In
August, they announced a new Hurdler@ card containing
a SCSI port as well as four serial ports at a limited-time
introductory price of $595.

JULY 1992
The Saelig Company offers the 'IDS2020 16-bit com-

puter that now accepts up to two TDS2020CM daughter
boards with removable SRAM card memory for up to 8Mb
of nonvolative memory. It uses the industry standard
JEIDNPCMCIA 68-pin cards. The TDS2020 includes 10-bit
MD, real-time clock, and interfaces for keyboard, LCD,
and graphics LCD. A related product is the TMR200-03
which plugs into a PC to provide a ThinCard drive that
accepw the JEIDA,PCMCIA card memories.

AUGUST 1992
Bradley Forthware announced Forthmacs-386, a 32-bit

Forth similar to the 680x0 and SPARC workstation versions
of the same product. DOS Extender capability is included
to provide a full 32-bit environment under DOS, DESQview,
and Windows. A ROMable version was also announced.

Forth, Inc. announced a $195 evaluation version of its
EXPRESS Event Management and Control SystemTM, a
process-control software package. ExpressLite can exer-
cise all EXPRESS functions. For example, the graphics
subsystem can be used to create a visual representarion of
any of your controlled devices in such a way that it is
updated to reflect its simulatedstatus. Although I/O drivers
are lacking, up to 256 I/O points can be simulated. It also
comes with the EXPRESS Technical Manual. 'lhe full
package sells for $6,875.

I Companies Mentioned

Bradley Forthware Creative Solutions, Inc.
P.O. Box 4444 4701 Randolph Road. Suite 12
Mountain View. California 94040 Rockville. Maryland 20852
Phone: 415-961-1302 Phone: 301 -984-0262
F a : 41 5-962-0927

Forth. Inc.
11 1 N. Sepulveda Blvd.
Manhattan Beach.
California 90266-6847
Phone: 310-372-8493
Fax: 310-31 8-7130

The Saelig Company
1193 Moseley Road
Victor, New York 14564
Phone: 716425-3753
Fax: 716-425-3835

November 1992 December

Graphics
C.H. Ting
San Mateo, California

This lesson uses the simplest examples to illustrate the
principles of Forth programming: building new instruc-
tions from the existing instruction set.

We will use the simple Forth instruction . " xxxx" to
display characters on the screen, and will also use it to build
an instruction set which will allow us to construct any block
characters on the screen.

To illustrate the use of the . " instruction, let's write the
first Forth program:

: h e l l o ." Hel lo , wor ld!" ;

Now, when you type the word hello and a return on
your keyboard, the characters Hello, world! will appear
folowing your typed hello.

Explanation:
Start a new instruction

h e l l o Name of the new instruction
. " Print the character string until, but not including,

the next "
Terminate the new instruction

Here we recognize that the character F has two compo-
nents: a bar composed of five asteriks and a post which can
be represented by one or more single asterisks. Therefore,
we define iwo new instructions b a r and p o s t which,
respectively, display five asteriks and one asterik. The final
instruction F can then be defined, which displays a bar, a
post, a bar, and then three posts.

The instruction c r starts a new line and causes the
subsequent characters to be displayed from the left margin
of the screen.

Exercise 1: Using the new instructions b a r and p o s t ,
define new instructions C, E, and L which display the
corresponlng block characters on the screen.

Exercise 2: Analyze your own surname. Define a set of
instructions like b a r and p o s t and use them to construct
all thc characters in your surname. I will construct my name
TING as an example:

: c e n t e r c r . "
: s i d e s cr ."
: t r i a d l c r . "
: t r i a d 2 c r ."
: t r i a d 3 c r ."
: t r i a d 4 c r ."
: q u a r t c r ."
: r i g h t c r . "

: T b a r c e n t e r c e n t e r
c e n t e r c e n t e r c e n t e r c e n t e r ;

c e n t e r c e n t e r c e n t e r
c e n t e r c e n t e r c e n t e r c e n t e r ;

: N s i d e s t r i a d 2 t r i a d 2
t r i a d l t r i a d 3 t r i a d 2 s i d e s ;

H e l l o is now a new instruction whose function is to t r i a d 4 sides p o s t

print the string Hello, world! to the screen. This is the first r i g h t t r i a d l sides t r i a d 4 ;

program most computer courses use to introduce you to a
computer language. : TING T I N G ;

: b a r c r ." * * * * * " ;
: p o s t c r . " * 11 . I

: F b a r p o s t b a r p o s t p o s t p o s t ;

Now, what we want to do next is to use this simple
technique to display large, block-shaped English alphabets
on the screen.

Let's use the letter F as an example:

Type the letter F followed by a carriage return on your
keyboard, and you will see a large F character displayed on
the screen, like this:

Exercise 3: It is easy to construct English alphabets this
way. The question is, how many primitive instructions are
needed to construct all the 26 upper-case letters in this 5
x 7 block format? How about the other characters?

Exercise 4: In principle, we can construct all the Chinese
characters using similar techniques. However, most Chi-
nese characters require an enlarged 16 x 16 block format;
the more complicated Chinese characters may require a
24 x 24 block. Try to construct a few simple Chinese
characters using the 5 x 7 format.

- - ---

Dr. C.H. Ting is a noted Forth authority who has made many significant contribu-
tions to Forth and the Forth Interest Group. His tutorial series will continue in
succeeding issues of Forth Dimensions.

November 1992 December Forth Dimensions

Styling Fczth to
Preserve the
Expressiveness of C
Mike Elola
San Jose, California

1 Consider the boost

Part of the expressiveness of other programming Ian-
guages arises from their syntaxes for function calls and
expressions. These syntaxes help "package" the flow of
function parameters in a way that is easily distinguished.

Most programming languages use one syntax format for
function calls, one syntax format for conditionals, and one

1 we'd enjoy if Forth compiled

are a requirement for the use of functions.
Because we are able to recognize unary and binary

arithmetic operations and properly ascertain their input
parameters within algebraic notations, many languages do
not require us to write code only using a function-oriented
syntax. Nevertheless, most languages leave us the ability to

C source code... I - --

I formats are thereby combined, yet it is easy to see where one
ends and the next begins.

Besides its simplicity, Forth's freedom from multiple
syntax formatsand its freedom from symbols reserved for
distinguishing between t h e w i s the source of some confu-
sion regarding where parameter values are being generated

i and where they are being consumed (see Figure One-a).
' Stack comments are an attempt to make up for the lack of
; visual cues (Figure One-b), but they are not always provided.
I As you declare a C function, you also declare how

references to it will appear as enforced by the compiler: each
of ib input parameters must be separated by a comma, and
no more and no less than the declared number of parameters
must be supplied (each of h e correct declared type).

However. for most arithmetic owrations, an algebraic

syntax format for expressions. C is no exception. ! create a purely hnctional syntax. By declaring a function for
j The code that is packaged as C expressions always j addition, for example, we can write the following code:
i generates a single value. This property of expressions is of i add (1,l) .
, key importance. Expressions may be very simple, as exem- ; Switching to a functional syntax may be considered a
I plified by a variable reference. Or they may be very complex, i partial step towards (Forth) postfuc notation. Forth has taken
i such as when they use nested expressions. Xevertheless, a bigger step towards a uniform syntax by abandoning

they are all ultimately reduced to a single value by various support for algebraic notation. Nevertheless, Forth hangs on
i binary and unary operations. This packaging lends the ' to the symbols of algebraic notation as the names of its
I programmer an easy .handlev with which to recognize the 1 functi0ns.A~ long as most languages continue to define those

consolidation, particularly if you look at its repetition con-
structs that have been packaged as functions, such as
w h i l e () and f o r () loops. For its conditional statemen&,

processing of values and the flow of parameter values into
various called routines.

Sometimes parentheses are used to package expressions
as part of their incorporation into other units. For example,
parentheses appear around expressions that are part of the
syntax for branch and loop conditionals. Various syntax
-

however, C still resorts to an alternate format involving open
and close braces around blocks of code. Forth does a more
thorough job of integrating its language elements into a
uniform syntax format.

Regularization steps such as these are what have led to
Forth's simplicity and compaclness: it abandons support for-
several syntax formats, streamlining its parsing requirements.
While most of the acconipanying effects are good ones, there
might have been undesired consequences. We may bc
overlooking how a simpler parsing model has impaired the
expressiveness of Forth source code.

Taken together, these two measures afford levels of
expressiveness that Forth cannot equal: (1) the use of
parentheses for subexpressions that generate values; and (2)
the use of parentheses and commas to distinguish the end,
the beginning, and the continuation of input parameters for
a function. Statements such as

' symbols as infut arithmetic operators, they cannot allow you
to redefine those symbols as the names of functions.
Generally, you cannot expect to use code such as: + (1,l).
Forth offers more freedom in the names you assign to
functions due to its relative lack of reserved meanings for
symbols.

C shows a slight movement in the direction of syntax

Forth Dimensions

syntax format is fashionable. I11 that Aotation, the
and passing of parameters lacks the delimiting symbols that

November 7992 December

p r i n t f ("The va lue is : %i", i n t (s q r t (3))

convey clearly how many parameters are passed to each
function and what happens with the values returned by each
of the functions. Furthermore, the notation is very compact.

How clear is it that PRINT!? in Figure One-a requires two
stack parameters? The misleading visual cues in Figure One-
a suggest two unary functions, one (SQUARED) that takes a
number as its input and another (PRINTF) that takes a string
as its input. Forth code needs to make clear how many par-
ameters are being passed to each routine. Stack comments are
the usual way we go about this, as shown in Figure One-b.

Figure One-a.
3 SQUARED
"The value is: %iW PRINTF

Figure One-b.
3 SQUARED
"The value is: %i"
(product addr --) PRINTF

The coexistence of several syntaxes in languages such as
C contributes to the easy visual subdivision of source code,
improving its readability. You can easily subdividesuch code
into spans that correspond to the generation of values and
spans that correspond to the consumption of values, with
reserved symbols punctuating the various transitions. Since
many programmers have strong math backgrounds, they
learn this notation quickly and view it in a friendly way.

So expressiveness is largely a matter of packaging.
Furthermare, Forth's syntax fails to package code so that the
flow of parameters is unmistakable.

These concerns prompted me to take up the challenge of
designing a new Forth styling convention.

Styling Forth for Rimmeter Flow
Our indentation of Forth code provides important cues

about the start and end of a control-flow construa. I propose
that we also use indents to provide visual cues about the start
and end of a block of code that generates the parameters for
a Forth routine. (I spent considerable time trying to coerce
other symbols to serve the same purpose, but I had no
success.)

The startling-r perhaps amusing-part of this pro-
posed indenting convention is that it is a postfi convention,
since input parameters always precede the Forth word that
uses them. Furthermore, any code that generates parameters
is placed on its own line to help distinguish parameter
generation as well as in a C hnction call--where commas
serve a similar purpose. The result is postfii indents that are
part of a vertically oriented specification:

3
SQUARED
"The value is: %i"

PRINTF

To make the format of the code less vertical and
somewhat more compact, consider placing any unary opera-
tion on the same line as the code that generates its input-
but still allow a separate line for the duo:

3 SQUARED
"The value is: %in'

PRINTF

This styling convention looks its silliest when we write
simple arithmetic expressions:

3
4

*
2

While I don't expect these conventions to win immediate
favor, they could help someone learning Forth. If a uniform
syntax is a Forth virtue, then a uniform indenting convention
can also be a virtue, despite its occasional spaaousness.

A Pre!tty-Printer Challenge
Rather than enter code according to these style guide-

lines, we could develop a pretty printer to create the
indentations. (This is left as an exercise for the reader, as
usual.)

Such a tool would help make all prior Forth code more
expressive, mgardless of the originator's reluctance to in-
clude stack comments. Further, such a tool will suggest how
we might create source-code checkers that can detect stack
emrs without debugging effort.

To make the pretty printer even more challenging,
consider that Forth source code typically contains stack-
manipulating words that introduce artificial separation be-
tween input parameters and the routines that use them. For
example, try adding parameter-flow indentations to the
following code:

4
6
SWAP
8
*.
+

One solution might be to introduce comments to show
the values that were unprocessed, yet were specified in
positions that made them appear as if they would be
processed:

4
6

SWAP (

4
8

* (
X

6 1
t

A Way to Eliminate Forth's Stack Operators
Because every expression and every function in C

generates one and only one value, I anticipate hat the
conversion of C programs to Forth will never require Forth's
stack operators.

The only occasion when a value may be generated in the
wrong position on the stack is when an expression or
hnction is able to generate more than one value (which they
cannot do in languages such as 0. With the extra flexibility

November 1992 December 30 Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

MEET THAT DEADLINE ! ! !

Use subroutine libraries written for
other languages! More efficiently!

* Combine raw power of extensible
languages with convenience of
carefully implemented functions!
Faster than optimized C!
Compile 40,000 lines per minute!
(10 Mhz 286)
Totally interactive, even while
compiling!
Program a t any level of abstraction
from machine code thru application
specific language with equal ease
and efficiency!

* Alter routines without recompiling!
Source code for 2500 functions!
Data structures, control structures
and interface protocols from any
other language!
Implement borrowed features, more
efficiently than in the source!
An architecture that supports small
programs or full megabyte ones
with a single version!
No byzantine syntax requirements!
Outperform the best programmers
stuck using conventional languages!
(But only until they also switch.)

HS/FORTH with FOOPS -The only
ful l mult iple inheritance
interactive object oriented
language under MSDOS!

Seeing is believing, OOL's really are
incredible a t simplifying important
parts of any significant program. So
naturally the theoreticians drive the
idea into the ground trying to bend all
tasks to their noble mold. Add on
OOL's provide a better solution, but
onlv Forth allows the add on to blend
in as an integral part of the language
and onlv HSFORTH ~rovides true
multiple inheritance & membership.

Lets define classes BODY, ARM, and
ROBOT, with methods MOVE and
RAISE. The ROBOT class inherits:

INHERIT> BODY
HAS> ARM RightArrn
HAS> ARM LeftArm

If Simon, Alvin, and Theodore are
robots we could control them with:
Alvin 's R i g h t h RAISE or:
+5 -10 Simon MOVE or:
+5 +20 FOR-ALL ROBOT MOVE
The painful OOL learning curve
disappears when you don't have to
force the world into a hierarchy.

WAKE UP ! I I

Forth need not be a language that
tempts programmers with "great
expectations", then frustrates them
with the need to reinvent simple tools
expected in any commercial language.

HS/FORTM Meets Your Needs!

Don't judge Forth by public domain
products or ones from vendors
primarily interested in consulting -
they profit from not providing needed
tools! Public domain versions are
cheap - if your time is worthless.
Useful in learning Forth's basics, they
fail to show its true potential. Not to
mention being s-1-o-w.

We don't shortchange you with
promises. We provide implemented
functions to help you complete your
application quickly. And we ask you
not to shortchange us by trying to
save a few bucks using inadequate
public domain or pirate versions. We
worked hard coming up with the ideas
that you now see sprouting up in other
Forths. We won't throw in the towel.
but the drain on resources delays the
introduction of even better tools that
could otherwise be making your life
easier now! Don't kid yourself, you are
not just another drop in the bucket,
your personal decision really does
matter. In return, we'll provide you
with the best tools money can buy.

The only limit with Forth is your
own imagination!

You can't add extensibility to fossilized
compilers. You are a t the mercy of
that language's vendor. You can easily
add features from other languages to
HSIFORTH. And using our automatic
optimizer or learning a very little bit
of assembly language makes your
addition zip along as well a s and often
better than in the parent language.

Speaking of assembler language,
learning i t in a supportive Forth
environment virtually eliminates the
learning curve. People who failed
previous attempts to use assembler
language, often conquer it in a few
hours using IISFORTH. And that
includes people with NO previous
computer experience!

HS&'ORTH runs under MSIIOS or
PCDOS, or from ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Source code is in ordinary ASCII text files.

HSLFORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct t o video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, file and device 110;
DOS shells; interrupt handlers;
call high level Forth from intenupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file search paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * IS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed,

PROFESSIONAL LENEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & struct+ compiler;
MetaGraphics Turbowindow-C library,
200 graphiclwindow functions, Postscript
style line attributes & fonts, viewports.

ONLINE GLOSSARY

PROFESSIONAL a n d PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $79.
286FORTH or 386FORTH $299.

16 Megabyte physical address space or
gigabyte virtual for programs and data;
DOS & BIOS fully and freely available;
32 bit addresdoperand range with 386.

ROMULUS HS/FORTH Corn ROM $99.

Shipping/system: US: $9. Canada: $21.
foreign: $49. We accept MC, VISA, & AmEx

The same level of factoring granularity is available in C,
but the code must be written more verbosely: you must
explicitly specify all of the input parameters that flow into
each called routine. Notationally and otherwise, there can be
no mistaking the fact that a modulus operation requires two
parameters. So C requires the explicit specification of both
inputs for the modulus operation, aided by a placeholder that
represents the input parameter supplied to MOD6.

of one routine generating multiple outputs comes the
possibility that other routines may require the same pararn-
cters to be supplied in an alternate sequence.

This suggests that one way to rid Forth of its stack
operators is to exclusively define words that generate no
more than one parameter. This imparts to Forth the nota-
tional granularity needed to give back control of stack
configuration (or parameter flow) through notational means:
you merely order your code to reflect how you want the
stacked parameters ordered.

Benefits of the Verbosity Requirements of C
In C, each item in the input parameter list of a function is

fdled by an expression-and an expression must always
produce exaclly one value. This correspondence helps
generate dynamic syntax requirements for each hnction call
that must be satisfied: you must always call the function in

/ * code t h a t once compiled can */
/ * be l i n k e d i n t o numerous a p p l i - * /
/ * c a t i o n s without r e d e f i n i t i o n . * /

MOD6 (i n p u t)
i n t i npu t ;
{

r e t u r n (i n p u t % 6) ;
1

Forth code such that it becomes much easier to correlate
Forth code to that of other languages.

Another helpful exefdse is to try to translate C source
code into Forth. Such an exercise should make clear further
similarities and differences between these two languages.

This article could be considered an introductory one in a
series focused on the issues of translating C to Forth I do not
feel adequately qualified for that undertaking. Perhaps it can
take the form of an article contest.

Consider the boost we might enjoy if Forth supported the
compilation of C source code as a readily available option.
For example, we could decisively lay to rest the old argument
that there are too few Forth programmers to support Forth.

Comparatively, the Forth notation is abbreviated. This
helps afford Forth its macro-assembler feel.

I fear that this short-cut has also inhibited the develop
ment of Forth libraries. I feel that a Forth library mechanism
should be created that can faithfully match the features of C
libraries.

Looking Forward
Whexas the evolution of the many other programming

languages tends to reveal an incremental refinement of
earlier ones, Forth seems to be a major departure from its
peer languages. To help demystify Forth to others, we need
to note its similarities to other languages as often as we can.
The indentation styling I have suggested adds visual cues to

a consistent manner by specifying an expression for each of

cating a set of registers to the emulation of the Forth virtual
machine and providing the one-byte opcodes ENTER Chestn),
EXIT ("unnest") and NEXT in microcode on the processor
itself.

Another form of threading commonly used on advanced
microprocessors such as the 68000 is Subroutine Threading.
A subroutine-threaded Forth possesses colon definition
bodies which are pure assembly code. The typical call-by-
address scheme of Forth compilation is implemented in
machinecode subroutine calls to the CFAs of called defini-
tions. As the entire body of every definition, code or colon,
compiles down to code, there is much latitude for a smart
compiler to optimize by inline expansion of short defmitions
instead of call compilation.

There are also Token-Threaded Forths, where addresses
refer to entries in a jump table which contains the actual hard
adresses where the code resides.

And finally, there are the "Silicon-Threaded Forths,
where the instruction set of the processor and its call
mechanism are designed to suit the peculiarities of Forth. The
Novix, the Harris RTX Series, and the Silicon Composers SC32
all implement decoding logic which decides if an instruction
is an address call or a machine instruction depending on the
state of certain bits in the instruction. The result of this scheme

its declared parameters.
In C, the flow of parameters cannot be factored across two

routines-the way they can in Forth--at least not notationally.
In Forth, we are free to compile definitions where there is no
mention of missing inputs. Even though MOD requires two
Parameters, we are free to compile the following definition
of MOD6, in which the missing Parameter for MOD l ~ c o m e s
an input requirement for the declared routine, MOD6:

: MOD6 6 MOD ;

is the fastest execution speeds obtainable for threaded code.
The arbitrary categorization performed in the above

paragraphs is by no means exhaustive. What are we to call,
for example, William "Mitch Bradley's CForth83, a Forth
system primarily aimed at 'NIX systems, in which the user
dictionary is JSR-Threaded but the kernel is a gigantic C-
language "switch" statement'

For&war4 c;onf,nued fIDmpage 27.1

There are a variety of means whereby direct threading is
implemented. On a typical Complicated Insmaion Set
(CISC) processor, all interpreters are carefully designed to be
compact and speedy, since they are compiled inline every
time the Forth system lays down a colon definition in the
dictionary.

The Zilog 2880 (Super 8) took another approach, dedi-

November 1992 December 32 Forth Dimensions

block 603
0 (920910/virtual array support)
1 2400 CONSTANT VARRAY
2 : VH (- a) VARRAY BLOCK :
3 : VHERE (- n) VH @ ;
4 : VADDRESS (elem - a) 1024 /MOD VARRAY + BLOCK + 2+ ;
5 : VC! (c elem) VADDRESS C! UPDATE ;
6 : VC@ (elem - c) VADDRESS C@ ;
7 : VC, (C) VHERE VC! UPDATE 1 VH t! UPDATE :
8 : VSTORE (n) 0 DO VC, M O P ;
9

10 : VDUMP BASE @ <BASE> ! HEX VHERE ?DUP I F
11 0 DO I VC@ U. LOOP THEN <BASE> @ BASE ! ;
12 : VFORGET 0 VH ! UPDATE ;
13
14 (initialization) VFORGET
15

block 604
0 (920910/revectored NUMBER)
1 : [NUMBER] (NUMBER) 1 SEQUENCE ! ;
2
3
4
5
6
7
8
9

10
11
12
13

block 605
0 (920910/operand definition) HEX
1 CVARIABLE CLASS
2 VARIABLE SEQUENCE
3 : ? F I R S T (- n) SEQUENCE DUP @ 1 ROT ! :
4 CREATE OPERANDS 2 ALLOT
5 : :O (C) CCONSTANT
6 DOES> C@ ? F I R S T OPERANDS + C ! ;
7 ASM D E F I N I T I O N S
8 1 : O X 2 :O A 3 :O C
9 4 :0 @RO 5 :o @ R 1

10 6 :0 RO 7 :O R 1 8 :O RZ 9 :O R 3
11 OA :O R4 OB :O R 5 OC :O R6 OD :O R 7
12 OE :O @ A OF :O A B
13 10 :O DPTR 11 :O @A+DPTR 1 2 :O @A+PC 13 :O @DPTR
14 (14 :O /)
15 FORTH D E F I N I T I O N S

block 606
0 (920910/operand vectoring)
1 11 CONSTANT (CLASSES (2-dimension)
2 20 CONSTANT #OPERANDS
3 #OPERANDS CONSTANT I X (X-dimension)
4 #OPERANDS CONSTANT I Y (y-dimension)
5
6 #OPERANDS (OPERANDS CONSTANT IXY
7 (OPERANDS #OPERANDS #CLASSES ' CONSTANT (ELEMENTS
8
9 CREATE VECTORS (3-dimensional array) #ELEMENTS 2' ALLOT

10
11 : ELEMENT (x y z - elem#) I X Y SWAP #X + + ;
12 : >VECTOR (elem# - a) 2* VECTORS + ;
13
14 : !VECTOR (a elemt) >VECTOR ! :
15 : @VECTOR (elemf - a) >VECTOR @ ;

block 607
0 (920910/operand vectoring)
1 : NULL ;
2 : NULLNECTORS (ELEMENTS 0 DO [' I NULL I !VECTOR LOOP ;
3
4 (initialization) NULL>VECTORS
5
6 : .ALL CR (ELEMENTS 0 DO I @VECTOR 10 U.R LOOP ;
7 : .CLASS (cl) (CLASSES 1- MIN CR I Y 0 DO t X 0 DO
8 DUP I J ROT ELEMENT @VECTOR 10 U . R M O P LOOP DROP ;
9

10 : .OPERANDS BASE @ <BASE> ! HEX
11 OPERANDS DUP C@ U . 1+ C@ U. <BASE> @ BASE ! ;
12
13
14
15

block 903
0 VARRAY names the first block of the virtual array residing in
1 an US-DOS file at the specified offset in the FORTH block map
2 VB obtains the block buffer address of the array pointer
3 VHERE returns the array pointer, kept in the first cell of the
4 array; the pointer is the number of the next available byte
5 VADDRESS takes an element number and returns the corresponding
6 block buffer address; the 2t skips over the array pointer
7 VC! stores a byte at the specified byte offset in the array
8 VC@ fetches a byte from the specified byte offset in the array
9 VC, stores a byte into the next available position in the array
10 and advances the array pointer
11 VSTORE stores the specified number of bytes from the stack into
1 2 the array
13 VDUMP displays the array, up to the current value of the array
I4 pointer; the array is displayed in hexadecimal
1 5 VFORGET resets the array pointer

block 904
0 [NUMBER] is a modification of the vectored routine (NUMBER) ;
1 encounter of a data or address byte sets SEQUENCE to 1, but
2 does not alter either byte of OPERANDS ; this modification
3 allows the assembler to discriminate between instructions of
4 the form (data) (operand) (mnemonic) and those of the form
5 (operand) (data) (mnemonic) ; otherwise, the single operand
6 would always leave its value in the first byte of OPERANDS ;
7 CAUTION: before EHPTYing the dictionary or FORGETting the
8 application, NUMBER must be revectored to (NUMBER) or the
9 system rill crash, since forgetting the application will also

10 forget [NUBER] ; thus, for safety, EMPTY and FORGET have
11 been redefined to accomplish this; to speed loading, the
12 initial revectoring to [NUHBER] is done after the
13 application has been loaded

block 905
0 execution of an instruction loads the class into CLASS
1 SEQUENCE is used in logging the order of operand encounters; it
2 is zeroed before assembly of each instruction; see PREPARE
3 ?FIRST obtains from SEQUENCE the value 0 when executed by the
4 first operand, then stores in SEQUENCE the value 1, which
5 is returned when ?FIRST is executed by the second operand
6 OPERANDS is a byte array which holds, in order of encounter,
7 the operand numbers of the operands, if any, which apply to
8 the instruction being assembled; it must be cleared before
9 assembly of each instruction; see PREPARE
10 :0 is a defining word for operands; associated with each
11 operand is a constant, the operand number; the value zero is
12 reserved for the operand NULL ; at run time, the operand
13 stores its number into the appropriate byte of >VECTORS
14 the operands, defined with :0 , are compiled into the
1 5 vocabulary ASH

block 906
0 (CLASSES holds the number of potential instruction classes
1 *OPERANDS holds the number of potential operands, including
2 NULL , which corresponds to instructions with no operands
3 i X , +Y , #XY , 6 +ELEMENTS are named to clarify index
4 calculations for accessing the 3-dimensional array
5 VECTORS is a 3-dimensional array which associates a vector with
6 each combination of 1st operand, 2nd operand, s instruction
1 class
8 ELEMENT computes the linear element number from the operand
9 numbers and the instruction class
10 >VECTOR returns a pointer to the specified element of VECTORS
11 !VECTOR stores a pfa into the specified element of VECTORS
12 @VECTOR fetches a pfa from the specified element of VECTORS
13
14
15

block 907
0 NULL>VECTORS makes NULL the default vector; executing it before
1 loading operand behaviours allows one to load only vectors
2 corresponding to valid combinations of operand pairs and class;
3 invalid pairings for a particular instruction will not always
4 execute NULL, since, in general, not all operand behaviours
5 defined for a particular class are valid all for instructions
6 in the class; if classes are limited to a single instruction,
7 all invalid pairings will be trapped, in which case NULL may
8 be replaced with the word : INVALID ." invalid operand(s)" ;
9 .ALL displays in linear sequence [(xO,yO,zO), (xl,xO,zO), . . .,
10 (xn,yO,zO), (xO,yl,zO), (xl,yl,zO), ... , (xn,yn,zn) 1 all
11 elements of VECTaRS
12 .CLASS displays in linear sequence all elements of VECTORS
13 corresponding to the specified instruction class; since the
14 class typically is input manually, it is checked for validity
15 .OPERANDS displays OPERANDS , for diagnostic purposes

November 1992 December 34 Forth Dimensions

block 608
0 (920910/vector definition)
1 : :V (opl op2 cl) : LAST @ @ CFA 2+
2 ROT ROT 2SWAP SWAP 2SWAP ELEMENT !VECTOR
3
4
5
6 EXIT
7 pfa cl op2 opl
8 a z y x need z y
g

10 ROT y a z x
11 ROT z y a x
12 2SWAP a x z y
13 SWAP x a z y
14 2SWAP z y x a

block 609
0 (920910/vector definition) HEX
1 1 CCONSTANT =t
2 2 CCONSTANT =A 3 CCONSTANT -C
3
4 4 - CCONSTANT =@RO 5 - CCONSTANT -@R1
5
6 6 CCONSTANT =RO 7 CCONSTANT =R1
7 8 CCONSTANT =R2 9 CCONSTANT -R3
8 OA CCONSTANT =R4 OB CCONSTANT -RS
9 OC CCONSTANT =R6 OD CCONSTANT -R7

10
11 OE CCONSTANT =@A OF CCONSTANT =AB
12 10 CCONSTANT =DPTR 11 CCONSTANT =@AtDPTR
13 12 CCONSTANT =@AtPC 13 CCONSTANT =@DPTR
14 (14 CCONSTANT =/)

block 610
0 (920910/destination vectoring)
1 VARIABLE (MODE)
2
3 : STORE (n) (MODE) @EXECUTE ;
4
5 : DISPLAY .S CR ABORT ;
6
7 : >DISK [' I VSTORE (MODE) ! VFORGET ;
8 : >DISPLAY [' I DISPLAY (MODE) ! ;
9

10 (default) >DISPLAY
11
12
13
14
15

block 908
0 :V is a defining word for operandlclass vectors; it expects on
1 the stack the operand numbers of the first and second
2 operands, respectively, followed by the instruction class; it
3 creates a colon definition and loads into the appropriate
4 elemcnt of VECTORS the pfa of that colon definition
5
6
7

8
9
10
11
12
13
14

block 909
0 these byte constants facilitate the definition of vectors
1
2 - causes the full name to be compiled; polyFORTH normally
3 compiles only the first 3 characters of the name and the
4 length, so that the names =@RO and -@R1 would be
5 indistinguishable
6
7
8
9
10
11
12
13
14

block 910
0 (MODE) holds the pfa of the compilation word (VSTORE or
1 or. DISPLAY)
2 STORE is vectored to the previously-selected compilation word
3 (VC, or DISPLAY) ; the argument passed on the stack is the
4 number of bytes to be compiled; the argument is used by VC,
5 and is discarded by DISPLAY
6
7 DISPLAY displays and then clears the stack; note that assembled
8 instructions, prior to compilation, are in the form of one or
9 more bytes on the stack, in proper order for compilation via
10 vc,
11
12 >DISK vectors STORE to VSTORE , so that assembled
13 instructions are compiled to the virtual disk array VARRAY
14 >DISPLhY vectors STORE to DISPLAY ; no code is compiled
15

block 611 block 911
0 (920910/instruction definition) 0 PREPARE is executed before assembly of each instruction; it is
1 : PREPARE 0 SEQUENCE ! 0 OPERANDS ! ; 1 executed at load time to prepare for the first instruction
2 2 ASSEMBLE uses the operand and class numbers to index into the
3 (initialization) PREPARE 3 array VECTORS , from which it obtains the pfa of a routine
4 4 corresponding to the specific operands 6 sequence of encounter
5 : ASSEMBLE (opc) OPERANDS DUP C@ (x) SWAP 1t C@ (y) 5 for the instruction being assembled; the opcode basis is left
6 CLASS C@ (Z) ELEMENT >VECTOR @EXECUTE PREPARE STORE ; 6 on the stack by execution of the instruction; assembled code
7 7 is compiled or displayed by the vectored routine STORE ;
8 : :INSTRUCTION (opc cl) CCONSTANT C, 8 PREPARE precedes STORE to allow use of ABORT in DISPLAY
9 DOES> DUP C@ CLASS C! 1+ C@ ASSEMBLE ; 9 :INSTRUCTION defines instructions; it is executed by the

10 10 run-time behaviour of :CLASS ; the run-time behaviour of an
11 : :CLASS (cl) CCONSTANT DOES> C@ :INSTRUCTION ; 11 instruction is to load CLASS , leave on the stack the basis
12 12 for the opcode, then invoke ASSEMBLE
13 13 :CLASS defines instruction classes; each instruction class is a
14 14 defining word for instructions of that class; the run-time
15 15 behaviour of :CLASS executes :INSTRUCTION

b l o c k 612
0 (920910/1
1 0 :CLASS
2 1 :CLASS
3 2 :CLASS
4 3 :CLASS
5 4 :CLASS
6 5 :CLASS
7 6 :CLASS
8 7 :CLASS
9 8 :CLASS

10 9 :CLASS
11 OA :CLASS
12 OB :CLASS
13
1 4
15

.nst ruct ion classes) HEX
OCLASS
lCLASS
2CLASS
3CLASS
4CLASS
SCLASS
6CLAsS
7CLASS
BCLASS
9CLASS
ACLASS
BCLASS

Forth Dimensions

block 912
0 OCLASS , etc are instruction classes; each class is a d e f i n i n q
1 word for instructions of that class
2
3
4
5
6
7
8
9
10
11
12
13
14
15

-- --
35 November 1992 December

block 613
0 (920910/instructions) HEX
1 00 O C M S S NOP
2 03 OCLASS RR
3 13 OCLASS RRC
4 22 OCLASS RET
5 23 OCLASS RL
6 32 OCLASS RETI
7 33 OCLASS RLC
8 73 OCLASS JMP
9 84 OCLASS DIV

10 OA4 OCLASS MUL
11 OC4 OCLASS SWAP
12 OD4 OCLASS DA
13 93 - OCLASS MOVC
14 OEO - OCLASS MOVX
block 614
0 (920910/instructions) HEX
1 70 lCLASS MOV
2
3 20 2CLASS ADD
4 30 2CLASS ADDC
5 40 ZCLASS ORL
6 50 ZCLASS ANL
7 60 ZCLASS XRL
8 90 2CLASS SUBB
9 OCO ZCLASS XCH

10 OD0 ZCLASS XCHD
11
12 0 3CLASS INC
13 10 3CLASS DEC

block 615
0 (920910/instructions) HEX
1 OD0 4CLASS DJNZ
2
3 OBO 5CLASS CJNE
4
5 OBO 6CLASS CPL
6 OCO 6CLASS CLR
7 OD0 6CLASS SETB
8
9 10 7CLASS JBC

10 20 7CLASS JB
11 30 7CLASS JNB
12
13

block 616
0 (920910/instructions) HEX
1 40 8CLASS JC
2 50 8CLASS JNC
3 60 8CLASS JZ
4 70 8CLASS JNZ
5 80 8CLASS SJMP
6 OCO 8CLASS PUSH
7 OD0 8CLASS POP
8
9 2 9CLASS LJMP

10 12 9CLASS LCAU
11
12 EXIT
13 1 ACLASS AJMP
14 11 ACLASS ACALL
15

block 617
0 (920910/vnctors) HEX

1 0, 0 0 - :v vo.00
2 =A 0 0 - :V V0.01
3 =DPTR 0 0 - :V V0.02
4 =AB 0 0 - :V V0.03
5 =@A+DPTR 0 0 - :V V0.04
6 -A -@A+DPTR 0 - :V V0.05
7 =A -@AtPC 0 - :VV0.06
8 =A =@DPTR 0 - :V V0.07
9 =A -@RO 0 - :V V0.08

10 =A =@R1 0-:VV0.09
11 =@DPTR -A 0 - :V V0.10
12 =@RO -A 0 - :V VO.ll

block 913
0 these are instruction mnemonics defined as class 0 instructions;
1 the number preceding the instruction derlning word OcLASs

2 is the basis for assembly of the opcode for the instruction
3

fWeve baen dong 11 stnce 1977 for IBM PC, XT AT, PS2, h s the language that
and TAS-BO models 1 3 4 8 4F I

FOR THE OFFICE - S~mpltty and speed your wo*
wnh our outstanding word procmtng, database handlers.
and general ledger softwsre They are easy to use powerful.
W ~ X B C U ~ prmt-wrts, rsaawlable stte license costs
and comfortable relt* sop rt Ralph K Andnst aUThor/
hrstarian, says ':~#\-&teb me concentrate m my

FORTHCOY - for Communicahans

and a litdCe mom!
THIRTY-DAY FREE OFFER - Free MMSFORTH
GAMES DISK wonh 539 95 w ~ t h purchase of MMSFORTH
System CPYPTOQLJOTE HELPER OTHELLO BREAK-

MILLER MICROCOMPUTER SERVICES FORTH 8rd otrers
61 Lake Shore Road. Naltck, MA 01760

block 917
0 a behaviour is defined for each possible combination of class
1 and operand pair; invalid combinations are assigned the null
2 behaviour; the behaviours are arbitrarily named (Vz.xx for
3 "vector xx of class z"), the name is not used, except
4 for diagnostics; :(0) expects on the stack the following
5 order of operand and class numbers:
6 operand14 operand21 class)
7 the number left on the stack by the vector is the number of
8 bytes (opcode t dataladdress) to be compiled; it is consumed
9 by STORE
10
11
7 "

November 1992 December 36 Forth Dimensions

@m ffhs Bask @@l?rn@ff #4

Some Assembly
Requiredm..

Conducted by Russell L. Harris
Houston, Texas

As promised, with this column we begin an expedition
into the realm of embedded systems. According to the
ancient proverb, a journey of a thousand miles begins with
a single step. Our first step, as you will shortly see, is directly
onto a figurative "cow pie." (Those of you unfamiliar with the
term obviously have never walked through a pasture in
which cattle graze.)

A Rational Rationale
The nature of Forth, as well as the nature of embedded

systems, necessitates the occasional use of assembly lan-
guage. Although hand assembly is possible, it is tedious and
prone to error. An assembler is almost always a worthwhile
investment. Also, designing and coding an assembler is one
of the better ways to gain familiarity with the instruction set
of a processor.

While it is possible to utilize an assembler which is
external to the Forth environment, the convenience of an
assembler integrated with Forth and the ease (in general)
with which such a tool may be created, combine to make the

There are processors for which
this task can become an
arduous and irksome chore.
writing of assemblers a fairly common activity among Forth
programmers. Forth programmers experienced in metacom-
pilation typically will write an assembler upon first encoun-
tering a new processor. The assembler then can serve both
as the means to port Forth to the new platform and as the
resident assembler for the new Forth system.

Consistent Inconsistency
The art of assembler design admits of many interpreta-

tions. I find most appealing the approach of Forth, Inc., as
illustrated by the 8080 assembler in StarHng Forth. 'fie
source for polyForth assemblers I have seen typically occu-
pies less than half a dozen screens. However, such compact-
ness is possible only when the processor instruction set
consistently follows patterns.

If a processor has a reasonably consistent instruction set,

an assembler is neither a lengthy nor a difficult undertaking.
However (and here is where the cow pies come in), there are
processors for which the task can become an arduous and
irksome chore, rather than a stimulating exercise. Such,
unfortunately, is the case for the 8051 processor family, the
family with which we shall deal. The 8051 instruction set is
a hodgepodge, difficult to handle by any means.

Seeing an upcoming need (that of a potential client) for
a Forth system for the 8051 family, I decided to assault two
birds with one stone-hence, our projeck an 8051 assembler.
Were my client not already committed to the 8051 family, our
present and future endeavours would be based on a
Motorola processor, such as the 68HCll. However, I cannot
at present manage a parallel effort with both platfom, so,
unless some patron wishes to rescue us by engaging my
services for programming in the Motorola environment, we
are doomed to the wastelands of Intel. Circurnstanccs such
as this have left our civilization burdened with such ill-
conceived contrivances as the segmented memory architec-
ture of the 80x86, the QWERTY keyboard, and Word Perfect.
But then, that's life. mote: The author types on a Dvorak
keyboard and does all his writing with Microsoft Word.)

The Nitty-Gritty
The accompanying screens contain the basis of an

extensible 8051 assembler which, in its present state, com-
piles all 8051-family instructions, except for a couple of
pathological cases. The assembler is written in polyForth
ISD-4/MS-DOS for the 8086/8088. An entire instruction is
built on the stack before being compiled. Included in the
code is support for a virtual array on disk, into whch the
assembled code may be compiled. The assembler uses
postfix notation, and operands must be separated by spaces,
rather than by commas. Otherwise, the opcode mnemonics
and operands are as specified in the appropriate Intel
documentation. Some examples of valid syntax are the
following instructions:

@A+DPTR JIG'
A 3 2 4 1 CJNE
5 C MOV

A # 2 5 XRL
@RO # 5 7 2 CJNE
C 6 MOV

November 1992 December Forth Dimensions

The assembler is based on active operands, a table of
execution vectors, anda mechanism (a toggle and a two-byte
array) for tagging the first operand encountcred. Named
operands (#, A, @RO, R1, etc.) are active, in the sense of
having a run-time behaviour other than that of CONSTANT.
Execution of a named operand loads either the first or the
second byte of the array OPERANDS with the value of the
operand and sets the toggle SEQUENCE. The toggle initially
is clear, and is cleared after assembly of an instruction. If the
toggle is clear, dle operand value is stored in the first byte of
OPERANDS; if the toggle is set, the value is placed in the
sccond byte.

A problem not initially envisioned was the need to
discriminate between instructions of the form

(named operand)(numeric operand)(mnemonic)

and those of the form

without requiring non-standard syntax. When parsing the
input stream, the text interpreler automatically converts
numcric operands (i.e., data or address bytes) and pushes
them onto the stack; thus, with no flag or mechanism to
indicate that a numeric operand precedes it, the named
operand always stores itsvalue into the fist byte of OPERANDS.

In an effort to avoid redesign of the entire assembler, I
envisioned two approaches to the problem. The first was to
parse the input stream under program control, h e n attempt
to convert the resulting string, ubing CONVERT (because
CONVERT returns an address which can be used to de~ermine
success of the conversion). Successful conversion would
automatically push numeric operands onto the stack. A string
which failed to convert would be either a named operand or
a mnemonic. In such a case, juggl~ng ofthe input pointer > I N

could allow the string to again be parsed and then executed.
I experimenled for a while with this technique, but was
unable to devise asuitable implementation, so I turned to the
second approach, which was to redefine NUMBER

Upon loading the assembler, I revector NUMBER to a
version which, after performing a conversion, sets the toggle.
Thus, encounter of a numcric operand causes the following
named opcrand, if any, to place its value in the second byte
of OPERANDS. This solution does not interfere with the
ordnary function of NUMBER, but there is an associated
hazard, as detailed in the shadow block docun~enlation.

I have grouped the 8051 instructions into classes, in which
all members of a class follow the same pattern with respect
to operands. Instruction mnemonics (ADD, SUBB, XRL, etc.)

to PREP-, which clears both dlc toggle and h e array
OPERANDS. Control passes thence to the vectored routine
STORE, which disposes of the asscrrlbled code, now residenr
on the stack. By default, STORE is vectored to DISPLAY,
which simply displays and then clears the stack. STORE may
be redirected to VSTORE in order to compile the 8051 code
into a virtual array on disk. It is a simple matter to redirect
STORE to other destinations, e.g., a serial port.

Note the ease with which the virtual array is irnplcmented:
a single source block does it all! The same approach may bc
used for a virtual array in extended memory. Virtual memory
techniques are invaluable for data logging applications, and
they form the basis of metacompilation.

An understanding of defining words is essential to the
mastery of Forth. Note the nesting of the defining words
:CLASS and :INSTRUCTION. Also note the manner in
which the defining words : 0 and : V are used to define
operands and vectors, respectively. In spite of its unusual
appearance, operation of the defining word : v is really quite
simple. : V is nothing more than a : which calculates the PFA
of the word being defined and stores the PFA into the array
VECTORS. Otherwise, : V is used as one would use : .

Although the assembler is usable in its presenl state,
several amenities remain to be added, among them, labels
and high-level Forth control of loops and branching. Also, at
h e cost of creating a separate class for each instruction (thus
expanding the array VECTORS), it should be possible to trap
all invalid combinations of operand and mnemonic.

This code will be posted on GEnie. If there is sufficient
interest, I will post an updated listing once my implementa-
tion is complete. Conversely, I am interested to x e what my
readers do, given this code as a basis or for inspiration.

Preview of Coming AttracZions
For h e next leg of our journey, you may want to pull out

your soldering iron and wire-wrap tool. Metacornpilation
and related subjects are easier to discuss and understand
when specific instances are in view. Accordingly, colunm No.
5 will complete the preliminaries by documenting a repro-
ducible, minimal-cost, 8032-based single-board computer
(SBC). Boasting little more than a serial and a parallel pon,
a reset button, and a full complement of M M , the device is
an easy weekend project in the $50 range. It has been
designed for software development in RAM, and requires
neither EPROM programmer nor ROM emulator. For those
with an aversion to hardware projects, I will attempt to find
a source of a suitable commercial SBC.

R.S.V.P.
/ are defined with : INSTRUCTION. When executed, a m e - /

manic pushes onto the stack [he basis or base value for [he
opcode and calls ASSEMBLE. ASSEMBLE Uses the in~UUcti0n

The typical run-time behaviour of a vector is to add to the
base value an offset correspondng to the operand(s), then 'X m e by any other name would stili have thorn."

Russell Harris is an independent consultant providing engineering, program-
ming, and technical documentation services to a variety of industrial clients. His
main interests lie in writing and teaching, and in working with embedded systems

and operand numbers to index into the three-dimen-
sional array VECTORS in order to obtain an execution vector.

push onto the stack the number of bytes to be compiled. -- - - - - - -

After ASSEMBLE executes on page 33, andcan also be
particular combination of class and operands, control passes RoundTab/e on GEnie.

in the fields of instrumentation and machine control. He can be reached by phone
at 713-461-1618 or by mail at 8609 Cedardale Drive, Houston. Texas 77055.
Caveal: ~i~ GEnic address is RUSSELL,H)

Forth Dimensions 39 November 1992 December

Fourteenth Annual

FORML CONFERENCE
The original technical conference

for professional Forth programmers, managers, vendors, and users.

Following Thanksgiving, November 27 - November 29,1992

Asilomar Conference Center
Monterey Peninsula overlooking the Pacific Ocean

Pacific Grove, California U. S .A.

Theme: Image display, capture, processing, and analysis
Papers are invited that address relevant issues in the development and use of Forth in image display, capture, processing,

and analysis. Additionally, papers describing successful Forth project case histories are of particular interest. Papers about other
Forth topics are also welcome.

Conference Registration
Registration fee for conference attendees includes conference registration, coffee breaks, notebook of papers submitted, and

for cveryone rooms Friday and Saturday, all meals including lunch Friday through lunch Sunday, wine and cheese parties Friday
and Saturday nights, and use of Asi1oma.r facilities.

Conference attendee in double room-4365 Non-conference guest in same room-4225 Children under 18 years old in same
room-4155 Infants under 2 years old in same room-frec Conference a~tendee in single room-4465

Forth Interest Group members and their guests are eligible for a ten percent discount on registration fees.

Register by calling the Forth Interest Group busincss ofice at 510-893-6784 or by writing to:

FORML Conference, Forth Interest Group, P.O. Box 2154, Oakland, CA 94621

Forth Interest Group
P.O. k x 2154
Oakland, CA 94621

Second Class
Postage Paid at
San Jose, CA

