
$10 Volume XIK Number 6 March 1993 April

SILICON COMPOSERS INC

FAST Forth Native-Language Embedded Computers

DUP

>R
R>

Harris RTX 2000'" 16-bit Forth Chip SC32'" 32-bit Forth Microprocessor
-8 or 10 MHz operation and 15 MIPS speed. 08 or 10 MHz operation and 15 MIPS speed.
1-cycle 16 x 16 = 32-bit multiply. 1 -clock cycle instruction execution.
1 -cycle 14prioriiized interrupts. *Contiguous 16 GB data and 2 GB code space.

*two 256-word stack memories. *Stack depths limited only by available memory.
*&channel 110 bus & 3 timer/counters. *Bus request/bus grant lines with on-chip tristate.

SC/FOX PCS (Parallel Coprocessor System) SC/FOX SBC32 (Single Board Cornputer32)
*RTX 2000 industrial PGA CPU; 8 & 10 MHz. -32-bi SC32 industrial grade Forth PGA CPU.
*System speed options: 8 or 10 MHz. *System speed options: 8 or 10 MHz.
032 KB to 1 MB Cbwait-state static RAM. 032 KB to 512 KB await-state static RAM.
*FulClength PC/XT/AT plug-in (6-layer) board. 100mm x 160mm Eurocard size (4-layer) board.

SC/FOX VME SBC (Single Board Computer) %/FOX PCS32 (Parallel Coprocessor Sys)
-RTX 2000 industrial PGA CPU; 8, 10, 12 MHz. -32-bit SC32 industrial grade Forth PGA CPU.
*Bus Master, System Controller, or Bus Slave. *System speed options: 8 or 10 MHz.
-Up to 640 KB 0-wait-state static RAM. -64 KB to 1 MB 0-wait-state static RAM.
-233mm x 160mm 6U size (6-layer) board. -FulClength PC/XT/AT plug-in (&layer) board.

SC/FOX CUB (Single Board Computer) SC/FOX SBC (Single Board Computer)
*RTX 2000 PLCC or 2001A PLCC chip. *RTX 2000 industrial grade PGA CPU.
*System speed options: 8, 10, or 12 MHz. *System speed options: 8, 10, or 12 MHz.
032 KB to 256 KB 0-wait-state SRAM. -32 KB to 512 KB 0-wait-state static RAM.
100mm x lmmm size (4layer) board. *100mm x 160mm Eurocard size (4-layer) board.

For additional product information and OEM pricing, please contact us at:
SILICON COMPOSERS INC 208 California Avenue, Palo Alto, CA 94306 (415) 322-8763

I Features

P GETB and PUTB Hank Wilkinson 7 This a h d e describes simple, easy-to-use commands for exploring Windows files. m i l e earning
his teaching certificate for high school physics, the author realized he would want to use Forth in

I Windows when teaching. For such routines, the ability to read and write one byte at a time is ,
fundamental. And once again, Kernighan and Plauger show the way.. .

One-Screen Unified Control Structure Gordon Charlton 9 In contrast to a previously published, everyone-into-the-pool consolidation of control strumre
concepts, the secretary of FIG-U.K. presents his single-screen solution. He avoids the ultimate
reductionism in favor of usefulness, packing heaps of hnctionality-and surprising efficiency-
into sixteen lines. dpANS Forth control structures are discussed for comparison.

Charles Moore's Fireside Chat C.H. Ting 1 f 4 in keeping with tradition, Forth's first and foremost pioneer share5 recent work, current trains of
insight, and his computer-language philosophy with the community. He discusses his implemen-
tations of OK, new d u p development, and his CAD system's design rule checking.

Numbers C.H. Ting 1 8 'lie third tutorial in this series accelerates the pace for newcomers by introducing integers and how
to handle them in Forth. Scaling, stacks, logic operators, and loops are discussed in the context
of examples that demonstrate their basic utility.

Optimizing in BSWJSR-Threaded Forth Charles Curley 21 The author helps intermediate Forth prognmmen learn how to optimize their applications. These
highly portable techniques require only a certain amount of bravado, an analytical approach, and
knowledge of your CPlJ's instruction set and your Forth. Once it is built and fine tuned, your
optimizer should help you to produce faster, more efficient code.

Math--Who Needs It? Tim Hendtlass 27 A thorough treatment of integer, double-precision, Fixed-point, and floating-point math. h
mathematician's toolbox of code is presented, and tables compare the benefits bestowed and the
penalties cxtractcd by the routines. Learn to evaluate your programs' requirements in terms of
solutions with both he desired accuracy and the best performance.

I 4 Editorial Forth consortium, numeracy, windows, & on the stack. I
4 Advertisers lndex

5 Letters Suengh rnis~akeri; Volvos drove him to Forth, C(r Forth's missing link;
Emkdded systems conference; Kelly's comparisons clarified

39 Fast Forthward From on-line discussion to hard-copy correspondence, the Forth
community is developing a collective voice. Mere's a digest of what
it has said lately.

41 Volume Xlll Index .A subject index to FD volume XIJ. Back issues still available! I i
4243 On the Back Burner .. .While you are getting the parts and assembling the board described

in the last issue, our columnist takes time to explain metacompilation
terminology and to foster on-hne interaction.

- --- -- . . -.- . .- - - . - -- -- -- .

Forth Dimensions PRINTED ON RECYCLED PAPER 3 January 1993 February

Forth Dimensions
Volume XIV, Number 6

March 1993 April

i Published by the
Forth Interest Croup

What if Forth businesses and associations teamed up to improve general awareness of
Forth7 They'd have to d o something they all could agree on, benefit from, and contribute
funds for. Something like a public-service ad for trade journals: "Sure, Forth fosters innovation
by enabling programmers to explore highly personalized methods of problem solving. Some
of your best people probably use it already, or know some~hing about it-that's no
coincidence. But did you also know that today's Forth systems can accommodate the rigorous
methods and conventions of well-managed programming teams? lha t multi-tasking and
metacompilation are no problem-never have bccn-and that Forth can stand alone on its
own considerable merits or ~>eacefully cecxist with an operating system7 Forth is a frequent
flyer on the space shuttle, but also excels in earthbound applications like observatories,
industrial automation, embedded controllers, nledical/scientific instrumentation, and benchtop
environments, not to mention consumer applications. Write or call for a free brochure and
list of participating businesses.. ." Or, if funds were scarce, one might only be able to promote

Editor
Marlin Ouverson

Circulation/Or&r Desk
Frank Hall

Forth Dimensions welcomes
editorial material, letters lo the edi-
tor, and comments from its rmders.
No responsibility is assumed for
accuracy of submissions.

Subscription to Forth Dimen-
sionsis included with rnernbcrship
in thc F O ~ I htcrcst Group at $40
per year ($52 overseas air). For
membership, change of address,
and to submit iterm for publica-
tion, the address is: Forth Interest

one of those-low-brow, stick-in-your-mind jingles: "Go Forth, and yourcomputer will say OK!" ~ r o " ~ , P.O. Box 2154, Oakland,

* * t 1 California 94621. Administrative

Do you suffer from innumeracy in Forth, or just need a touch-up to your understanding
about how to deal with digits? Dr. Ting's "Numbers" tutorial encourages beginners with the
power of integer arithmetic. But if you needmore than a beginner's dose, Prof. Tim Hendtla.'
"Math-Who Need5 It?" will further your understanding of different math packages, and will
help you to choose the right routines-kindly provided-for the right jobs. (Hint: it's another
instance in which too much power can corrupt performance.)

Spcaking of performance, Windows makes an appearance in this issue. Forth for
Windows has been implemented by two developers that we know of, Laborator~Microsystems,

offices: 510-89-FORTH. Pax: 51C-
535-1295, Advertising sales: 805-
946-2272.

Copyright O 1993 by Forth In-
terest Group, Inc. 'The material con-
tained in this periodical (but not
the code) is copyrighted by the
individual authors of the articles
and by Forth Interest Group, Inc.,

Wilkinson's "GETB and YUTB" to get started.
One time, a hacker thought Forth had suffered long enough as a skeletal system with little

help and no protection for the naive user. Thus was born a newer and better Forth with, among
other things, a fully fleshed-out, interactive help and error-handling subsystem that relied on
a separate stack to manage the many system-message strings. It was automatically invoked by
the lower-level word HEY! (as in, "Hey, you clutz!") every time a user did somehing
unexpected. But the system died in beta testing when a couple of Forth gurus agreed, "Serious
programmers will find it hard, being needled by a HEY! stack." /SEX? rim shol, gtrxlm?

I * *

Just a reminder.. . Wc greatly value the continued participation of each reader and FIG
member, so please renew by mail, telephone, or fax at your earliat convenience. At the same
time, consider giving a subscription to Fo& Dimm to a business, library, or colleaguc. We
will look forward to sharing with h e w a n d with you--the good work of the Forth community.

-Marlin Ouverson

Inc. and Harvard ~oftkorks. But for the deterkned, do-it-yourself hacker o r the doggedly
curious, not a lot has been forthcoming. Well, there's nothing like starting at the beginning,
which would have to be reading and writing characters in the Windows format; see Hank

On the stack...
A line editor & history func~ion
Forth-user profile
Application success stories
Forth in search of work

~ ~ ~ ~ ~ l ~ e ~ ~ ~ ~ ~ d ~ ~ ~ ~ ~
piled or the anides, repre
ducrions for non-commercial pur-

Advertisers Index

Asian Business Contents 40
Computer Journal -34
Forth Institute 44

poses, without the written permis-
sion of Forth Interest Group, Inc. is
a violation of the Copyright laws.
Any code bearing a copyright no-
tice, however, can be used only
with permission of the copyright
holder.

Integer datc calculations
Build an N 5 1 metacompiler
ANS Forth: progress, analysis, and impact
Forth interface for the GPIB

The Forth Interest Group
Thc Furlti Irlterest Croup is the
association of programmers, man-
agers, and engineers who create
practical, Forth-based solui~ons to
real-world needs. Many research
hardware and software designs that
will advance the general state of
the art. FIG provides a dimate of
intellectual exchan~e and benefits

............ Forth Interest Group 6, centerfold
Haward Softworks 17

...................... Laboratory Microsystems 24
Miller Microcomputer Services l l

-
intended to assist each of ils mem-
bers. Publications, conferences,
seminars, telecommunications, and
arca chaptcr meetings are among
its activities.

"Forth Dimemions (ISSN 0884-
08.22) is publishled bimonthly lor
$40/46/52 pcr year by the Forth
Tntcrest Group, 1330 S. Rascom
Ave., Suite D, San Jose, CA 95128.
Second-dass postage paid at San

I I

January 1993 February 4 Forth Dirnerlsions

(general-purpose interface bus) Offete Enterprises 20
and much more! ... Silicon Composers 2

Jw, CA. POSl'MASnII: Send ad-
drcss changes to Forrh D i m ~ i o n s ,
F O.Box2151.0akland.CA94621."

Letters to the Editor-and toyour fellow readers--are always welcome.
Respond to articles, describe your latest projects, ask for input, advise
the Forth community, or simply share a recent insight. Code is aiso
welcome, but is optional. Letters may be edited for clarity andlength. We
want to hear from you!

Strength Mistaken
Dear Editor,

"A Ixsson in Economics" by Russell I,. Harris (On the Back
Burner, FD XIV/5) was a wclcomc piece of additional
ammunition I'll be able to use the next time I'm nagged to use
a DOS machine for an embedded or instrument-control
application. Mr. Harris hits squarely on several key problems
that crouch waiting to pounce on the naive IBM PC enthusiast
who falls for the mirage.

On another note, along with Walter J. Kottenkolber,
whase letter to the editor appeared in the same issue, I too
have to disagree with Mike Elola on his article (FD XIV/4)
about styling Fo& to preserve the "expressivenessn of C.

Part of Forth's strength will always lie in its simplicity.
I-Iowever, this same simplicity i.5 wrongly viewed as a
weakness when it lets a programmer write unreadable code.
The lack of expressiveness Elola refers to (that is, the lack of
clarity as to where the stack cells come from, what they are,
and what consumes them) is due to how the words are
arranged in the source code just as much as to poor
commenting; and yet, so often I see code written such that
the breaks between lines, the space between words, and the
words' starting columns have almost nothing to do with what
the code is supposed to do. I even see things like a BEGIN
in the middle of a line, with its corresponding UNTIL buried
somewhere in the middle of another line and starting in a
different column. Mr. Elola's indenting may help, but I fear
this will constitute overuse of indenting, defeating much of
the purpose of indenting, which is to make structures and
program flow more obvious.

I'm tempted to write an article about writing readable
code. I believe Mr. Elola has correctly identified a common
problem. What I don't agree with is that it's a weakness of
Forth itself. There are several things about C that I hope I have
left in my past for the most part, and thox include piles of
parenthews and punctuation.

A third subject matter- What's happening with those
ulwa-fast stack microprocessors 1 hear a little bit about here
and there? One blurb 1 read reccnlly cited 100+ MIPS (and
Iior~h MIPS, at hat) at a relatively low cost. Ihis is certainly
sorr~ething T would expect to see gct a lot o f attention in Dfl

Comyuter&.~ign, and othcr trade magazines; yet I haven't
seen a thing in those.

I was glad to see FIG would lx: at [lie Embcddcd Systems
Forth Dimensio~~s

Conference [see letter below/.

Sincerely,
Garth Wilson
11 123 Dicky Streel
Whiuicr, California 30606

73a& for your commt?nls, Garth. PIme &I m'te #hut
arliclc aboul readable berth c&it continues to be impor-
tant. me most lhomgh treatmc?nt I recall was by Kim ZZawis,
whosepaprabout coding conventions waspresentedseveral
yean ago at a FORML wnfmnce; and FIG d&tribtUts a
cumulatim i k lo FD articles, which contains some refer-
ences to Forth style (see tbeflnt two items on Lhe matl-order
form). Bul, as evidenced by much Forth code, those ideas
eitherwere not distributed well or were not adopted wt&ly for
somc reason Yourfurthertreatment of thesubject might help.

AT to stack-oriented CPUs, we welcolcomcpress eleases ahout
realproducts, articles by &elopen, and the slperiences of
mms-as wouki, Ipmume, otherpublications like thmeyou
mention. Meanwhile, check rmt the "More on Forth EnginesJ'
saies on the FIG mail-order form in th13 magazine. -Ed.

V o b Drove Him to Forth,
& Forth's Missing IMr

I have just returned from the Silicon Valley FIG Chapter
meeting-have not missed more than four or five of them
since June 23,19!90, when I first signed up. I enjoyed a chat
with John and Frank Hall during the lunch break, and I want
to follow up with the note I said I wanted to write to Forth
Dimensions.

I am a mechanical engineer, have been designing cranes
and heavy machinery for 30 years. I do not sing and dance
like Leo Brodie, but I do drive old Volvos, and that is how
I came to know Forth. You see, my wife and I started in
computers when we bought our first Apple IIc; we started to
look into the computer section at the library more often, and
that is where, one day in April of 1930, the face of young Leo
appeared on page v of the first edition of StarMng Forth. I
believe I had heard about Forth before that, probably
through a Harris ad in one of the engineering trade maga-
zines, and, seeing that a fellow who liked driving classic
Volvos had written a book about it, I figured that Forth might
not be all too bad.

Well, there is a long story of slruggle, Prustration, feelings
of futility and defeat, but, even though I have not produced
any masterpie- of Forth programming, I go to the meetings,
1 enjoy your magazine, I preach Forth. I have even gone to
thc torture of taking a C class at the local college, LO see how
bad things can bc on the olher side.

There are two reasons for me wanting to write this note:
First, I wish to thank you for publishing Olaf Meding's fine

article, "Forth-Based Message Service." I understood it, liked
it, and would like to see more articles with the same Fogg
Index (or should I say "Fig Index?"). I have a problcm wilh
the arcane and esoteric articles that remind me of my early
struggles with De Rello Gallico, organic chemistry, Iaplace
transforms, ctc.

Secondly, I have to voicc my concern that there is
January 1993 February

sorrlething rniss~ng in the Forh
community that would attract
newcomers, or I would not
still be the novice of the group
almost three years after I joined.
It seems thatwe can cater only
to the seasoned Forth pro-
grammers, perhaps to some
degree to other programmers,
but beginners cannot find any
"Forth kits," as I would like to
call them, that are inexpen-
sive, readily available, work,
have good documentation,
and allow one to e x ~ r i m e n t
and create without frustration.
I think there is a need for a
Forth interpreter package that
can compete at lease with the
likes of GWBasic, in terms of
size, availability, documenta-
tion, graphics, and floating-
point math. Have I missed it
somewhere along the way?

Sincerely,
Henry Vinerts
36139 Chelsea Drive
Newark, CA 94560

Erratum
Ohf Meding, author of last
issue 3 Torth- based Messugc
Service," is employed by
Amtelco, 4800 Curtin Drive,
McFarland, Wisconsin 53558;
telephone 608-838-4194. The
article was originally titled "To
Boldly Go Forth Where No O m
Has Gone Before."

Embedded Systems
Conference

Dear Mr. Ouverson,
I had the opportunity to

E Write about libraries,

source management,

user interfaces,

platformlmac hinel

kernel in dependence,

topics suggested

for the upcoming

FORML conference,

or any other subjects

related to the theme.

CALL

1 a s a s a i t i I
1 for the articles judged best . I
$500 - 1st place
$250--2ndplace
$100 - 3rd place
I--- ..'

Entries will be refereed. Papers to be presented at FORML

areeligible, butaseparate, completecopy mustbe received

at our editorial office by the contest (notFORML s) deadline.

Mail a complete hard copy and a diskette

(Macintosh 800K or PC preferred) to:

The Editor, Forth Dimensions
P.O. Box 2154

Oakland, California 94621

Deadline for contest entries is August I, 1993.

browse the displays at the '
I

recent Embedded Systems Conference and see firsthand the
hardware and software available. I was surprised at the
number of sizzling, color-windowed, integrated C/C++ pro-
gramnling systena. Even the purveyors of Ada, the number
two language there, tended to k a bit defensive. 71ie once-
ubiquitous BASIC was represented by only a couple of
vendors. AndPoah had ordy the Forth Interest Group waving
the banner-a lonely island in the C's. Is the real world trying
to tell us something?

These C compilers integrate an edtior, synlax checker,
compiler, and debugger that can work with either C or
assembly source. Watch Expressions let you run C functions
or display C variables interactively. In other words, these C

systems seem to have a programming environment once
exclusive to Forth. It would be interesting if someone familiar
with both h e new C compilers and Forth would compare
them, especially regarding programming ease and produc-
tivity.

Programming controllers wiih the power systenls would
set you back $12,000 for sofiwarc and hardware, and Lo this
you would have to add a hefiy computer. Most of the
vendors' demonstrations used Sun workstations. Bui ai the
odler end of the scale, Z\Wrld offers a line of ZltK) conlrollcrs
designed to be program~rled with Lhcir $195 C compiler,
which runs on a PC.

(C'onlinued on puge 16.)
January 1993 February 6 Forth Dimensioris

GET6 and
I PUTB
I
1 Hank VVlkinson
' GreensScro, North Carolina
I

Working on my teaching certificate for high school
physics at the University of North Carolina at Greensboro, it
hit me that I want to use Forth in Windows when I teach.
Since I earned my B. S. Physics previously at Guilrord College
(also Greensboro), only a year's study remains for my
certification. This article describes simple commands found
useful exploring Windows' files.

What d o I mean by "use Forth in Windows"? Here is what

j I IS/PO~LWS MS-DOS system interface may be set to ABORT

with a message upon error condition (FATAL), or pass h e
error on (INFORM). The words defmed herc assume HS/
Foch will ABORT, giving immediate feedback

To o p n a file for reading, we pass the address of the file's
path\namc to h e EIS/Forth word OPEN-R wrapped inside
OPEN-GETB. Any error leaves G-H and G-EOF set TRUE.
If success~ully opened, G-H receives the file's handle and
G-EOF receives FALSE.

To close the file, IIS/Forth's CLOSEH is used. The file's
handle goes on the stack for CLOSEH, which ABORTS upon
any error condition. In that case, the VAFG d o not get touched.
Otherwise, CLOSE-GETB doses the file and sets G-H and

(G-EOF to TRUE.

I think I mean:
a) load Forth code contained in *.WRI files
b) write from Forth into *.WKI files
c) draw from Forth into *.RMP files
d) be "in" Windows when in Forth

1

GET-BUF serves as the buffer for MS-DC>S to put the byte
read. HS/Forth's READH need3 the memory segment, offset,
number of bytes to read, and the handle. GETB encapsulates
these functions and sets G-EOF. Notice that a successhl read
will return one byte. Reading past the end of file returns a
zero (FALSE), and sets G-EOF TRUE.

Using GETB on, say, "c:\path\ filename.ext," we first open
the file. From the command line,

$" c : \path\£ i l e n a m e . ext " OPEN-GETB [Enter]

does that. If successful,
GETB . [Enter]

Note that vectoring KEY and EMIT will not achieve any
of the above goals. The first three goals require knowledge
of the Windows data files. Simply put, the last goal requires
knowledge of how Windows works. Frankly, avendor could
easily solve my dilemma.

would display the byte's value, while
GETB EMIT [Enterl

would display the byte as an ASCII character. To determine
if a byte read is valid, consider this code.

Meanwhile, concepts described in Software 7bok I GETB G-EOF . [Enterl
(Kernighan and Plauger; Addison-Wesley, 1976) help Analo- I
gous to K&P7s getc and purc, I have made GETB and PUTB 1 A zero (FALSE) displayed indicates a valid byte, while
GETB reads exactly one byte from a file and leaves it on the
stack. PUTB writes one byte from the stack into a file.

So you may follow, here is my system. My computer is a
VSI PC '286 name-brand "compatible," with VGA, 40-meg
hard drive, both a 5.25" and a 3.5" floppy, a mouse, HP
DcskJe~ 500, a modem, and four megs. of memory. I have
DOS 5, Windows 3.1, and HS/Forth (regular-i.e., uses
segmented memory).

I learned of HS/Forth and VARs in this journal, so will only
review them. A v m is a data structure with the behavior of
both VARIARLEs and CONSTANTS, while faster than cither.
CONSTANT-like, a VAR's value goes to the stack upon u x .
VARIABLE-like, the VAR's new value comes from the stack
by placing I S k f o r e the use or the VAR. Later uses of the VAR

return its latest value.
Refer to the code at the end of this article. First we define

TRUE and FALSE. Next, the handle and end-of-file-flag
containers appear. Initializing the file's handle to TRUE (as
opposed to FALSE) will not confuse an unopened fiie with
the handle for the keyboard. For the end-of-file flag, logic

-1 (TRUE) shows ihe byte &d not actually come from the file.
Once finished playing, we issue:
CLOSE-GETB [Enter]

Now find the example code after the definition of GETB.
A double number DVAR COUNTER holds a count of the
number of bytes in a file. The routine COUNT-BYTES expects
an opened file and proceeds counting bytes until G-EOF
becomes TRUE.

Notice the test for the end of file inside the loop yields zero
for an empty file or an u n o p x e d file. At any ratc, COUNT-

BYTES counts he bytes, while COUNT-FILE performs
administration.

Writing to a file is slightly simplcr than reading. We only
need a VAR to hold h e P-H (pul handle). OPEN-PUTB makes
use of HS/Forth's MKFILE, which creates or erases an
existing file. n1c: handlc passed by MKFILE goes into P-H.

CLOSE-PUTB is analogous to CLOSE-GETB.
PUTB stores the byte on the stack in h e PUT-BUF and

passes the memory segment, offset, byte count, and handle
dictates an unopened file has reached its end. 1 ro W ~ I T E H , which rcmrns h e number of Lyres written.

Forth Dimensions 7 January 1993 February

Testing the actual number of bytes written serves as error / : COUNT-BYTES (--)

check&.
For an example using PUTB, we show copying a file.

Buffers for filenames make the process easier. The names
GBS and PBS allow quick typing. In COPY-FILE, the user is
shown the path\fienames from both buffers. Either a "Y" or
"y" are required for copying LO take place.

With a proper response, the corresponding files are
opened and the copying-byte by bytc-begins. As soon as
the end-of-file flag is found TRUE, the copying stops and the
fies are dosed. During copying, any key hit stops the
process.

These routines are simple to use and understand, and are
robust enough for use from the conlrnand line. Their
simplicity allows easy modification. For something to get into
use quickly, use them as is.

From time to time, the need [or faster file-handling code
becomes apparent. In that case, use larger buffers anddesign
buffer handling. (I have spent more time optimizing code
than I have saved by executing optimizing code. Routines
shown here reflect that experience.)

GETB and PUTB form crucial elements of routines I used
exploring Windows' files. One routine counts the frequency
of bytes. Another finds the occurrence of arbitrary byte
patterns. A third routine creates a file dump. The ability to
read and write one byte at a time is fundamental.

- -

HankW~lk~nson a n d hiswlfeof n ~ n e t e e n yea r s have twoch~ldron In h ~ g h school a n d
o n e In elementary school H e h a s b e e n crnployed In the constructlon t r ade (five
years) a n d In he wholesale supply b u s m e s s (th~rteen years) , a n d ope ra t ed h ~ s
own programming f~ rm (five years) Currently, h e ~ s a gradua te s tuden twork~ng o n
publlc school t eache r ce r t~ f i ca t~on H e h a s u s c d Forth for twelvc y e a r s

0 VAR FALSE
-1 VAR TRUE

TRUE VAR G-H \ G e t - H a n d l e s t o r a q e
TRUE VAR G-EOF \ G e t E n d O f F i l e f l a g

\ TRUE = EOF, FALSE = n o t EOF

\ u s e : $ " \ p a t h \ f i l e n a m e m OPEN-GETB
: OPEN-GETB (address --)

OPEN-R (addr -- h a n d l e)

I S G-H
FALSE I S G-EOF ;

\ u s e : CLOSE-GETB
: CLOSE-GETB (--)

G-H CLOSEH
TRUE I S G-H
TRUE I S G-EOF :

CREATE GET-RUF 1 ALLOT \ 1 b y t e b u f f e r

\ u s e : GETB
: GETB (-- b y L e)

\ G-EOF TRUE, ~ n v a l i d f i l e b y L e
\ G-EOF FALSE, v a l l d f I 1 c byte

L I S T S @ GET-RUF 1 G-H READH
O= I b TRUE IS G-EOF FALSE E X I T THEN \ f l l e e m p t y

GET-BUF C @ ;

0 S->D DVAR COUNTER

\ u s e : COUNT-BYTES
(fllc m u s t b e o p c r i , c o l l n t e r c l c , a r e d

BEGIN

GETB DROP
G-EOF FAZ,SE = WHIZ,E \ i e . , n o t e n d o f f i l e

COUNTh'R 1 M+ I S COUNTER
?TERMINAL I F E X I T THEN

REPEAT ;

\ u s e : $ " \ p a t h \ f i l e n a m e . e x t n COUNT-FILE D.
: COUNT-FILE (n -- d)

\ n = o f f s e t o f c o u n t e d s t r i n g t o f i l e ' s \ p a t h \ n a m c
CR ." C o u n t i n g bytes i n " DUP COUNT TYPE CR
." H i t a n y k e y t o s t o p . " CR
0 0 I S COUNTER \ clear c o u n t t o s t a r t
OPEN-GETB
COUNT-BYTES
CLOSE-GETR
COUNTER ;

TRUE VAR P-H \ G e t - H a n d l e storage

\ u s e : $ " \ p a t h \ n a m e n OPEN-PUTB
: OPEN-PUTB (address --)

MKEILE (a d d r -- h a n d l e)

I S P-H ;

\ use: CLOSE-PUTB
: CLOSE-PUTB (--)

P-H CLOSEH
TRUE I S P-H ;

CREATE PUT-BUF 1 ALLOT \ 1 b y t e b u f f e r

\ u s e : O PUTB (w r i t e s 0 t o f i l e)

: PDTB (b y t e --)

PUT-BUF C !
L I S T S @ PUT-BUF 1 P-H WRITEH
O= I F ." W r i t e e r r o r ! " E X I T THEN ;

\ F I L E NAME HOLDERS
CREATE CBS 128 ALLOT \ GETB f i l e n a m e
CREATE P B S 128 ALLOT \ PUTB f i l e n a m e

\ i n i t i a l i z e f i l e n a m e s t o s o m e t h i n g
$" GETPUT.FTHU GB$ $!

$" XX.FTHW P B S $!

\ u s e : (f i l e n a m e s s t r i n g v a r l a b l e a l r e a d y set)

\ COPY-FILE
: COPY-FILE (--)

CR
." C o p y i n g f i l e n a m e d " GBS $.

CR ." i n t o f l l e n a m e d " PB$ $.
CR . " 1s t h l s c o r r e c t ? (Y / y) "

KEY A S C I I Y OVER = SWAP A S C I I y = OR
I F ." O k a y , w e ' r e c o p y i n g . "

E L S E ." N o t C o p y i n g " CK E X I T THEN
CR ." H i t a n y k e y t o abort COPY-FI1.E."
CR

GB$ OPEN-GETB
PB$ OPEN-PUTB

BEGIN
GETB
G-EOF FALSE = WHILE

PIlTLi
?TERMINAL I F ." Q i ~ i t i n g , so d ~ l c t c p a r t i a l f i l ~ . ' CR

CLOSE-PUTB CLOSE-GETB E X I T THEN
REPEAP
DROP \ drop s p u r l o u s b y t e r e a d w h e n f l l r w a s a m p t y
CT,OSE-PIJTD
Cl OSE-GFTB :

January 1993 February Forth Dimensions

Gordon Charlton

I Hayes, Middlesex, U. K.

1 This article was prompted by Kourtis Giorgio's Curly
Control Structure Set. Giorgio stated that his intention was to
include every good idea he had come across. This turned out
to be a good many good ideas, so Giorgio has provided the
archetypal Fat Forther's solution. Although I am not a devout
minimalist, I do concur with the principal that less is more.
Therefore I pose the question, What is the smallest group of
words that constitutes a workable control set?

I
Three Non-Solutions I The ultimate reductionist solution is ?GOTO. ?his is not a

i solution, as it is unstructured. It is demonstrable that a zero-
tripping FOR NEXT can be coerced into sufficing, at the cost
o f outrageous inefficiency and complexity. This is not a
viable solution. One can also get by with IF, THEN, and

I RECURSE. Although popular with the AI community, this
solution does have certain problems with efficiency and
readability. Therefore, this is not a solution either.

The Solution
Although three words do no1 cut the mustard, we will see

that four words are enough. In fact, I will introduce two extra
ones, for convenience and to remove a slight inefficiency.

i The Unified Con~rol Structure (LCS) is derived from two
pra-ious proposals which do noi a p F a r in Giorgio's compre-
hensive bibliography: they are the 13ainsworth Extended
Case and the Universal Delimiter.

i
One Screen

When comnlencing a project, I will often atterrlpt to come
u p with a solution that fits within onc scrcen. 'l'his is a very
I-igid discipli~lc and focuses thc mind rscellen~ly. A lot has to

I give in conq~rcssing code into a space \vith an absolute limit
of one thousand and twenty four characters. CCI-tainly, neat
presentation goes out the window, along with potentially
meaningful names, stack corrllnenL7, and cven the tillc line.
Saturally, one tries to retain as many or these as possible.

I More importantly, everything that is trivial orsuperfluous has
to be stripped out mercilessly. This leaves only the core of the
program, its essence. Divining the essence of a problem is the

!
beginning of understanding.

Normally I would throw away the one-scrccn vcrsion

once it was stable, and start coding a fuller solution afresh.
As the primary design criterion here is brevity, I present the
one-screen version in all its muck and glory.

Comparison
Although prompted by the Curly Control Set, I will

1 compare UCS to the ANSI control set, as I do not wish to do
Giorgio any injustices by erroneously criticizing a wordset
that I am not familiar with.

I Syntax

I
A control structure starts with BEGIN and ends with either

END or AGAIN. Within a structure, any number O~WHENS may
appear. WHEN must be paired with END or AGAIN. WHEN
substructures may not be nested. BEGIN structures; how-

I ever, may be nested. WHILE is functionally equivalent to O=
WHEN END, and should be treated as a WHEN pair for syntax
purposes. The same considerations apply to UNTIL, whch
is equivalent to a = WHEN AGAIN.

Semantics
BEGIN has no run-time action, it simply marks the

beginning of a structure. The END that pairs up with BEGIN
equally has no run-time action. AGAIN, whether paired with
BEGIN or WHEN, gives an unconditional branch to just after
BEGIN. END, when paired with WHEN, gives an unconditional
branch to just after the final END or AGAIN. WHEN takes a flag.
On false, it skips to just after its closing END or AGAIN. On
true, execution continues sequentially. As stated above,
WHILE has the same action as O= WHEN END, but is more
efficient. On false, it skips to just after the final END or AGAIN.

, Othemise execution continues sequentially. Similarly, UNTIL
'

is more eficierzt than O= WHEN AGAIN. Execution continues
just afkr BEGIN on false, arzd sequenlially othenvis.

u w e
I [:sage is compared to the proposed t.'YSI control set on

I screens two and three of the accompanying listing. BEGIN

AGAIN is the same with bolh ANSI and UCS. BEGIN AGAIN

is one oftwo~)asicstn~c~urcz inI:CS. The other is BE(;INF.ND.

I BEGIN END has no ecluivalcnt in iLYST. It does not affect h e 1 flow of control at all and is. Olerehxe, Ole structural equiva-

Forth Dimensions January 1993 February

BEGIN
[... WHEN ... E N D I A G A I N]
[... WHEN ... END/AGAIN 1

...
END/AGAIN

Figure Two. /

UNTIL == O= WHEN AGAIN
WHILE == O= WHEN END

BEGIN

t
END 1 0) (ii) C::+:

way that CASE is uscd 0.e , one writes CASE KEY 65 OF etc.
instead or h e equivalent KEY CASE 65 OF etc.)

The UCS equivalent oithe CASE statement is rather n1nr.c
general, and is kt tcr compared to the LISP COND or the
Occam extended IF. The extra code in the illustration (the
DUPs, etc) shows what typically would be required to
simulate an Eakcr CASE.

On the final screen is what may be deemed advanced
usage of the ANSI set. The first structure is more understand-
able in UCS, as the exit conditions (a) and 6) are positioned
next to the decision to branch, rather than at the end of the
structure in reverse order (!) It is, however, less efficient, as
leaving via condition (a) incurs an overhead of one uncon-

lent of a no-op. Nonetheless, it does have a use. When one
has chosen not to factor out a long definition, it serves to
delimit logically distinct sections of code for readability
purposes.

As with all variations on UCS, the simple WHILE loop is
an extension of one of the basicstructures, in this case BEGIN

AGAIN. This is simpler than ANSI, which requires a new word
to be introduced: REPEAT.

The simple UNTIL loop loses out in UCS for complexity,
requiring a terminating END.

IF and IF ELSE are notably worse in UCS, although one
small redeeming feature exists. ?he BEGIN can be used to
delimit &he test preceding the WHILE or WHEN, in the same

Figure Three.
--

ditional forward branch in UCS. Given that this only occurs
with the first exit path, no matter how many WHENs are
present, this is not too detrimental.

ANSI, on the other hand, starts to suffer as the number of
WHILES increases, a s one hops and skips out of terminating
ELSE ... THEN ELSE ... THENS. It is perfectly possible to use
WHILE .. . ELSE in ANSI to avoid chis but, as I have never seen
the construct published, must assume that chis is not typical
usage. The O=s are irrelevant, and are merely there to indicate
that the logic of WHEN is reversed with respct lo WHILE.
(WHILE ELSE, in AhTSI, would also demand reversed logic
to WHILE.)

The ANSI rationalc (at lcast thc first draft proposal) states,
"'l'he use of more than one additional WHILE is possible but
not common." This is convenient, as two exits represents
about thc limit of lcgibility. This is illustrated with the final
example, which is less than crystal clear in ANSI. (In case you
were wondering, if the first WHILE succeeds, the section

labeled (a) is executed and
the structure exited. If the
second WHILE succeeds, 6) 1 is exciuad and the struc-

BEGIN turc left. If the third, then
section (c) runs and execu-
tioncontinues atthe BEGINS.
If none succeed, execution
continues at the BEGINS.)
This took some time to con-
struct, whereas the UCS
equivalent was trivial. UCS
suffers no increase in com-
plexity as the number of
WHENs increases. Perhaps the
use of more Lhan one addi-
tional WILE would kc more

BEG135 BEGIN

7 f

WHEN-+AGAIN WHILE

common, d not for its com-
plexity and unreadability.

ANSI is complete, In that
it can be uscd Lo crcale any

t ,+I conce~vable systcni of

$' branches, but there comes a

I point when GO TO^ would
END /AGAIN END /AGAIN END /AGAIN bc more comprehensible.

(iv) (vi)

!
IJCS, on thc other hand, is

(v) not comp~ctc, but does dc-
- liver a useful subsel without

January 1993 February 10 Forth Dimensions

I Figure Four. I

T e x t BEGIN WHEN END AGAIN

Running Save*-*Compile-+Resolve W H E N - - + B ~ C ~ branch
v a r s b ranch fo rward b ranch s t a r t h i s t o r y

Executing Restored- Resolve fo rward I
h i s t o e v a r s b ranch

increasing complexity. It is not compatible with previous
systems, but the effects of maintaining compatibility at any
cost arc amply illustrated by the development of the IBM PC.
You pays your moncy and you takcs your choic~.

k~sumptions
In order to fit the code into one screen, certain assump-

tions have been made. It is assumed that the words BRANCH
and ?BRANCH are present, and that they expect the following
cell in the code space to contain an absolute address for them
to branch to. Furthermore, it is assumed that the code and data
space are contiguous, so that it is meaningful to use HERE and
, (comma) to provide these branch addresses. Finally, it is
assumed that the compilation stack is the data stack.

Stack Comments
Although I have been able to retain stack comments in fie

space available, they are rather terse and deserve some
explanation. "a" represents an address and "en an execution
token. Where a word finishes with EXECUTE, the stack
comment assumes that the EXECUTE^ word has no stack
effect. The comments for IMMEDIATE word5 show the
compile-time stack effects only. At run time, the words
BEGIN, END, and AGAIN have no stack effect, and WHEN,
WHILE, and UNTIL absorb a flag.

Overloading
In order to reduce the number of structure words, AGAIN

and END are overloaded, each having two distinct operations
depending on context. This is achieved by using vectored
execution. BEGIN sets the execution vectors ' E and ' A to
the actions associated to closing a BEGIN, B-END, and
B-AGAIN. WHEN sets them to W-END and W-AGAIN. When
a WHEN is closed, 'E and 'A are reset-by W-END or
W-AGAIMo B-END and B-AGAIN, respectively. TO allow
for riesling, the contents of ' E and ' A are saved on the stack
by BEGIN and are restored when the structure is complete.

Resohdng Backwad References
The address in the code being compiled when BEGIN is

cncountercd is held in a variable B-H (BEGIN-HERE) so that
it is accessible at all times, and backward references can be
resolved when they are encountcrcd. To allow for nesting,
h e contents of B-H are saved on the stack by BEGIN and are
restored when the structure is complete.

Resolving Forward References
There are two types of forward references. The simpler is

that created by WHEN. The address to be filled is left on top of
the stack, and is resolved by the WHEN'S dosing partner. When
the partner is END, a forward reference of the second type is
made. This cannot bc resolved until the final END or AGAIN

is reached. Each ofthese forward references
is covered on the stack by an execution
token, to foxm part ofthe executable history.

The Executable History
As a control structure is wrinen into the

code spa=, a program is built up on the
stack, which will be executed when the
control structure is completed. BEGIN lays
down the first part of this program, which
is called FINISH and will be the last part
to he executed before control is handed
back to the compiler. It has three data items
associated with it, which are the original
values of the three variables. FINISH
restores these, allowing nesting to work.
Above FINISH may come zero or more
E-RES's, whase function is to resolve one
unresolved forward reference each. E-RES
forces execution of the stack program to
conlinuc, by ending with EXECUTE. 'Ihe
rial END or AGAIN iniliates cxccution by
also ending with EXECUTE.

Forth Dimensions 11 January 1993 February

Glossa y

Variable ' E ;
Execution vector. Contains execution token for END.

Variable A ;
Execution vector. Contains execution token for AGAIN.

Variable B-H ;
Contains HERE when BEGIN was executed.

Colon FINISH (e e a) ;
Executable history word. Restores variables, terminates
history execution.

Colon E-RES (e a) ;
Executable history word. Resolves forward branch from
W-END, continues history execution.

Colon B-END (e) ;
Vector word. Called by END when paired with BEGIN,
initiates history execution.

Compiler Security
Compiler security s not included in the code presented

hicre, because of spa'e ~o~lsiJe~at;ons Standard ~ccht~iclues
can be used, and the syntax is sufficicndy simple and rigid that
all illegal co1~.~ruc~5 are readily detected. Overloading END and
AGAIN reduces the number of possible illegal constructs

Extensions
The use of the executable history technique means that

any extension may bc added without altering existing code.
Certain constructs arc poorly named and would benefit from
synonyms. Unfortunately, IF (ELSE) THEN would have to be
quite smart, and probably could not be written in terms of
existing words. I have not attempted to incorporate counted
loops, as I have certain opinions on this subject which would
distract from the intent of this article. Rest to let sleeping dogs
lie, as the old saw goes.

anclusion
At its most spartan, a powerful control set can be

constructedout of four words (UNTIL and WHILE do not add
any functionality to the word set). More importantly, the

CO~O~B-E ,A() ;
Sets execution vectors to actions associated with BEGIN.

Colon B-AGAIN (e) ;
Vcctor word. Called by AGAIN when paired with BEGIN,
compiles branch to BEGIN, initiates history execution.

Colon W-END (a--a e) ;
Vector word. Called by END when paired with WHEN.
Resolves WHEN's forward branch. Compiles branch to be
resolved during history execution, and places HERE and
E-RES on stack. Calls B-E , A.

disparate control structures can be unified into a single
adaptive structure. Ihe prices to pay are non-compa~ibility
and overloaded operators.

Colon W-AGAIN (a--a e) ;
Vector word. Called by AGAIN when paired with WHEN.
Resolves WHEN's forward branch. Compiles branch to
BEGIN. Calls B-E, A.

Colon BEGIN (-e e a e) ;
lJser word (). Saves variables on stack, places FINISH on
stack to be executed at end of hlstory execution. Calls B-E , A.

References
Kourtis Giorgio's Curly Control Set (brilliant namc, reminds

me of a British adveriising slogan: "Watch out, they task
curly!") appears in Forth LXmmsions, ~11116 and XIV/l.

'l'hc FOR NEXT demonstration referred to in the second
paragraph was made in Forlhwrite issue 47, in the article
about Loopy, a minimal subsct language. Forthwrite is the
FIG-UK chapter magazine.

The one-screen discipline was suggested by Mike Lake in
I:o& Dimensions, XIIV3.

Chris Hainsworth's ktended Case appears in Forthujrite
issue 40. This gave the basic structure of UCS.

The Universal Delimiter appears in Forthwrite issue 53
and shows an extension of the techniques used in UCS.

The comparison with ANSI is based on Wil Baden's
marvelous pieces in the FORML Proceedings, particularly '89

Colon END () ;
User word (). Action specified by E.

Colon WHEN (--a) ;
User word (0. Compiles condihonal forward branch and
leaves address to be resolved on stack. Sets executionvectors
Lo WHEN action.

Colon AGAIN () ;
User word (). Action specified by 'A.

and '9.
My opinion of DO LOOP is expressed in more issues of

Fonhw& than I care to mention, 01 pa*cular
here is issue 47, which melds it inlo the Hainsworth structure;
and issue 58, which proposes a radical refactoring.

Colon UNTIL () ;
IJser word (0. Compilcs conditional branch to BEGIN.

Gordon Charlton is a part-t~me hobbyist programmer and full-time house-spouse
who migrated to Forth from LISP and Pascal after a Turkish friend lold him that

/ Forth was a weird lanauace and that he would conseauentlv like it. He was riaht. I
Colon WHILE (--a e) ;
IJser 'word (f). Compiles conditional branch to be resolved

January 1993 February 12 Forth Dimensions

. ,
Gordon isalso, probarbly,lhe world's only Loopy programmer. He is currently;he /
Evcnls and Meetings Secretary olFIG-UK, andcontributcs regularly to Forlhwritc. I

His last maior project was a strina-pattern matcher which was resented at I
during history Places HERE and E-RES on stack,

- .

~ U ~ O F O R M L S '91 and '92. I f anyone can provide a rigorous desciiption of the
Ratcliffe-Obershclp algorithm, he would be pleased to hear from thcm

One-Screen Unified Control Structure 1
-.

\ One-Screen Unified Control Structure G Charlton 27Sep92
variable 'E variable 'A variable B-H
: FINISH (a a a) b-h ! 'e ! 'a ! ;
: E-RES (e a) here swap ! execute ; : B-END (e) execute ;
: B-AGAIN (e) compile branch b-h @ , execute ;
: B-E,A [I] b-end 'e ! [' I b-again 'a ! ;
: W-END (a-a e) compile branch here 0 , here rot !

[' I e-res b-el a ;
: W-AGAIN (a) compile branch b-h @ , here swap ! b-e,a ;
: BEGIN (-a e) 'a @ le @ b-h @ here b-h ! [' j finish

b-e,a ; immediate
: WHEN (-a) compile ?branch here 0 , [' I w-end 'e !

[' I w-again 'a ! ; immediate
: END 'e @ execute ; immediate : AGAIN 'a @ execute ; immediate
: UNTIL compile ?branch b-h @ , ; immediate
: WHILE (-a e) compile ?branch here 0 , ['I e-res ; immediate

\ Screen 2
\ One-Screen Unified Control Structure -- Usage

BEGIN ... AGAIN -> BEGIN ... AGAIN

BEGIN ... WHILE ... REPEAT -> BEGIN ... WHILE ... AGAIN

BEGIN . . . UNTIL

IF . . . THEN

IF . . . ELSE . . . THEN

CASE . . .
... OF ... ENDOF
... OF ... ENDOF
. . ENDCASE

-> BEGIN . . . UNTIL END

-> BEGIN WHILE ... END

-> BEGIN WHEN ... END ... END

-> BEGIN ...
dup . . . = WHEN drop . . . END
dup . . . = WHEN drop . . . END
. . . drop END

\ Screen 3
\ One-Screen Unified Control Structure -- Usage, continued

BEGIN ... WHILE -> BEGIN . . . O= WHEN . . . (a) END
. . . WHILE ... O= WHEN ... (b) END
..- . . -

REPEAT AGAIN
. . . (b) ELSE . . . (a) THEN

BEGIN BEGIN . . . WHILE
. . . WHILE
. . . WHILE

REPEAT
. .. (c) [2 1 SO REPEAT
. . . (b) ELSE . . . (a) THEN

-> BEGIN . . . O= WHEN . . . (a) END
... O= WHEN ... (b) END
. . . O= WHEN . . . (c) AGAIN

AGAIN

I!-_ . - . - - - -- -- . -- -

Forth Dimensions 13 January 1,993 February

Charles Moore3
Fireside Chat '92
As related by C. H. Ting

Chuck discussed the newly released386OK, its i t n p m a -
tion and itsphilasopby. OK is the next incarnation ofForth.
It bus many of Forth's attributes, but Is simph~ and mow
pow@. I text~ts in codeonly, nosouze. 7%e bestwayto &a1
witha computeris through i t s t s n o t t h e s o u z e , which is
only a &crY,tron of the code, nottbe code itse& '7k map i s
notthet-toy;a&c~tionisnottheprogmm."Chtu;kalso
discussed his CAD implementation on OK and the g e n e ~ ~ l
characteri.Mcs of the P21 chip, which is under~lopmmt.

-Dr. C.H. Ting

OK is the future of Forth. It is what Forth should become.
For 20 years, I tried to make Forth more readable and more
compatible to other programming languages. Now, I give up.
The problem is hndarnental. All programming languages,
including Forth, are text-based languages. The problem is
intrinsic, in t ha~ Lhe language is used to describe a program
A text-based language has problems in syntax, like infix
notation.. . Forth has less trouble in this rcspcct, but it is still
a description, not the program itself.

Forth has the advantage that the source and object code
are all accessible to the programmer. The Programmer can
express and his quite freely. The
industry is moving in the opposite direction. Intel goes out

its to make it programmers to code
in the code segment. There is a dialectic contrast here. Forth
empowers the programmer, but the establishment wants
constraints and control.

The problem in programming languages is the syntax of
the underlying text. English description of a program is
impossible, just as symbolic expression of mathematics is
impossible. Goethe said that mathematical truth cannot be
proven. Symbology cannot be the description. It is impos-
sible to describe a program by text. A program is best
expressed by the binary bits, but the binary bib have no
intrinsic meaning. A program runs; it does what you want to
conlrol. Text, the description of ole program, cannot do it.

In OK-CAD, you have all the code you need to deal with
the task you have Lo do, and that's all thcrc is lo 11. l'hcrc is
no source. The closest thing to the source code are the pages
of notes I kccp in a binder. The temptation to documcnt Lhc
codc is strong, but the value is nil.

OK is not text based. The map is not thc territory.
Description is not the real thing.

l'he industry is vcry much in virtual reality, in modeling
January 1993 February

and simulation. Boeing is very strong in modeling on
computers. Mechanics would not agree that the models
would work. It is a typical GIGO, garbage-in, garbage-out.

OK exists in code. It allows you to do whatever you want.
Never mind how it came to being. I wrote it first using
DEBUG.. . Most of the time I trust the code is there and I don't
worry about it. OK is the incarnation of Forth in the '30s.

Forth is based on a virtual machine with two stacks. Phil
Koopman, Jr. said in a recent paper that Forth is a way of
factoring. Forth is kind of modular, and OK is very modular.
I will give you a few examples. The names in OK are spelled
fumy. The most common symbols are the arrows: A (the up
arrow), v (the down arrow), > (the right arrow), and < (the
left arrow). I used them often and consistently. A always
means increase, moving up, andso fortk Here are some words.

- A - 1 CHANGE ;

CHANGE ;
: > 100 CHANGE ;

: < -100 CHANGE ;

The% fragments are used very often. In fact, I have 12
versions of them in OK and CAD. Since they are used so
often, one might want to code a generic version which could
be used everywhere. In a generic version, you may to
clip h e value in the register, and &J other things like range

eLc. However, a universal version does not exist.
Instead, I have a universal construct like this:

A

< %,J CHANGE --. Ax + ! ;

Using h e 386 machine instructions, cach invocation of
CHANGE uses only three 386 instructions. I Iere, a high-level
language is not helpful. These small p i c a of codc fragments
are t>es~ done in machine codc.

MosL of he code is not in subroutines, it is in code
fragments to be jumpcd to, not callcd. You jump LO a piece
of code. Eventually you jump to another menu, not return to
some caller.

14 Forth Dimensions

Look at all the computer applications. Most often you are
presented with a screen, which gives you some choices. You
scroll the screen, sometimes call other screens and use some
keys to make the choices. The meaning of keys changes with
the context. Giving each key a special name will get you into
trouble, bccausc after the context changes the keys will have
completely different meanings. The context is the whole
screen. You do not need to have a word displayed on the
screen to tell you what the screen context is.

I use the 386 only as a historic instance. OK is really
designed for P20. When P20 is available, it will have OK and
eForth. OK is more intuitive to use. It is easy, and you can use
it to explore P20. If we make thing easy to get into, machine
language programming can be taught in grade school. I am
persuaded enough to build it and use it in the last four years.
You should carefully monitor what I am doing, and jump in,
if you will, when you are ready.

'The CAD system is now complete. I have not spent much
time changing it. The last thing I added was design rule
checking. I originally thought it was not necessary; the chip
should be correct by design, not by checking. I-lowever, I
have to do it to convince myself that the design does not have
any problem. I thought about it for a long time, about a
month, before I started coding. 1 had one page of notes
scribbled on a piece of paper, and I spent a couple of hours
coding it. Iiule checking has been a hot topic in the IC
industry. There are a number of algorithms. Thc one I chose
was the one everybody else rejected, of course.

I kept a table of rectangles in memory. The layer of first
metal is the most complicated, and it has 20,000 rectangles.
I simply compare the rectangles one by one to see if any two
of them get too close. The code is very short, but it takes a
long time to run through 20,000 x 20,000 comparisons. It took
half an hour to check the first metal layer. This is the longest
program I ever ran on OK. l h e other layers are rnuch simpler,
and take about ten seconds to run through. The rule checker
stops when an error is detected, and the screen shows the
tiles around the erroneous rectangles, with the cursor sitting
on one of the rectangles. I can correct the mistakes and run
it over again.

The code of this design rule checker is only a few hundred
bytes long. It is so small because of Forth. I indeed have a
Forth system, well factored and easy to use.

Q ~ ~ s t w n s from the Audience

Dwjs OK have two stack?
OK has one stack for subroutine calls and for temporarily

storing register contents. I have a virtual &la slack in the 386
registers. The order is AX, BX, BP, and so forth. The registers
are generally used in that order. My convention is that, in a
subroutine, all the registers are assumed to be free touse. The
caller is rcsponsiblc for saving and restoring registers that
might get changed. This practice is, again, contrary to other
conventions. It was done just to irritate people.

How did you. implement OK on a I?#@
The 3% is a very complicated machine Ir has more than

500 instructions. I keep a well-thumbed Intel 3% manual.

1'20 has only 28 instructions and I have memorized all of
them. Most people would start with a cross-compiler.
Implementing 386 OK, I started using DEBUG to enter the
code until the menu system worked. Then I could modify the
systcm and add new code by using O K itself. For major
changes, I still use DERTJG.

Is OK an '0' and a 'K' or 13 it Zero K'?
Iet me say a few words about the CAD system.
I did the chip layout in tiles. There are 600 x 600 tiles in

the P20 design. Fach tile has five layers, internally repre-
sented by a 32-bit word. The entities contained in a tile have
different meanings depending on where they are. The
meaning of the layout cannot be carried in words, but they
are carried fully in the tiles.

Most CAD systems try to use symbolic description of the
layout of a chip. I used it to lay out the pads around the core
of the chip. I used it in ShBoom because I didn't have enough
memory to hold the pads. The symbolic description was
terrible. I cannot move them easily, and I cannot align them
to the coordinates I want, so that the pad can be connected
correctly to the signal traces. Finally, I moved the design to
386 OK, which has more memory. All the pads were laid out
in tiles and the problems dlsappeared. The best representa-
tion of a picture is the picture itself, not its description.

OK& distributed in code. How can otherpeople contribute
to OK?

OK takes 64 Kbytcs. People can change it and build new
applications in the 64K chunk. We can collect these images
and distribute them on a single floppy disk.

Compatibility is a taboo, here. I have no intention to make
OK system compatible. The code of OK 1.1 on Novix, OK 2.1
on ShBoom and OK 3.1 on 386 are all similar but not
identical.

You have no source lkit ings. How do you moue OKto a new
processor?

'I'he most important structure in OK is the menus. The
menu structure can bc implemented on any processor, using
different techniques. 'I'he details will change, but the menu
structure will be the same. You can get much closer to a
machine without a language. It is like music and the score.
The score is not the music. Different musicians play the same
score. Some will produce beautiful music, others will pro-
duce terrible music--even if they all play correctly according
to the same score. There arc lots of things the score does not
tell about h e music.

Getting back to P20, MuP21 will tx out in another week,
and OK 4.1 on P21 will tx: the ultimate OK. So far, the chip
doesn't work. IIowever, I followed the sequence of evolu-
tion without the benefit of working silicon. The design has
been changed and improved greatly since it was first
conceived. It got simpler. An example is the master clock. I
started with one clock, then it was necessary to have a
second. The synchronization between the two clocks be-
came a real problem. Now there is no clock. I am using an
analog delay line to control the timing. The circuits are much
simpler and more powerhl.

Forth Dimensions January 1993 February

lhe reasons the chip didn't work were many. 'lhe key
suspect is the distance between rectangles. 'Ik design rules
published by the manufacturers ate not clear what the
distance really means. Is it the absolute diagonal distance
between corners of rectangles or the lateral distance between
the edges of the rectangles? I have to move to a fail-safe
direction, consistent with my understanding of the rules.

The chip area is 100 mil square. It is divi&d into 600 x 600
tiles, which I laid out one by one. The image of the layout is
1.5 Mb in size. I converted the tiles into rectangles, and saved
the rectangles to a file. Interestingly, the rectangle fde is also
1.5 Mb. The rectangle file is then ZIPped down to 300 Kb.

The code of CAD is about 3 Kb. Very small, compared to
industry standards. The risk of software is that it becomes
bigger and more complicated. Simpler software is always
more reliable. 700,000 lines of code cannot be reliable. You
cannot check them all. Simpler software means that you can
check it completely.. . I read that the problem of the Patriot
missile was traced to its floating-point calculation. In a long
sequence of calculations to follow the trajectory of the target
missile, the truncation errors in the floating-point calculation
made the missile unworkable. I was a great believer in
software until I learned hardware.

In developing the P20 chip, I rely heavily on my simulator.
I want to trust my simulator, but it is not yet proven If1 get the
simulator proven, I will be able to move on to design other
chips. I have lots of chips lined up in the pipelinc to be designed.

(Letten, conhonhnued fnmr page six.)
I was glad to see the FIG presence, but without other

Forth vendors I question if many conventioneers got the
Fonh message. Too bad there wewn't somc controllec-
operated, h n gillma, like the traveling display at the
Anaheim (1388) programming contest, to show that Forth
actually works. It could give some Forth vendors a chance to
show off their hardware. If the gizmos are made transport-
able, they could be made available to FIG displays at other
conventions. And demos of Forth programming (there's a lot
of postfix paranoia) would let the curious actually see some
of the Forth systems available. Forth definitely needs more
marketing pizzazz.

Someone at the FIG booth demonstrated a clever method
of creating and then downloading headerless Forth code
through a serial port to the controller. Perhaps he would
describe it further in an article?

Motorola won the "Chutzpah" award in marketing, hands
down. For the Oktoberfest beer bust at the convention, Intel
handed out fancy glass mugs imprinted with their logo.
Motorola then passed out blue insulating blankets that
wrapped around the mug, covering Intel's logo with their
own. I presume a suitable revenge is being planned.. .

Yours truly,
Walter J. Rottenkolber
P.O. Box 1705
Mariposa, California 95338

How do you &compile the machine code?
P20 code can decompile very easily into Forth. However,

there is no room for comments. One important clue is the
names, which one can assign to any location in the memory.
The decompiler in 386 OK is not yet complete. It groups the
bytes in a 386 instrudon and displays them in one line. The
instruction and its arguments are not translated to their Tntel
mnemonics.

Ifa map is not the tenitoty, is it necessary to have a map?
A map is useful, but it is different from the territory. When

the difference is subtle, you may confuse yourself.
I am working on P32 and P24. In P21, the last bit was

added to take care of the carry in the ALU operations and it
is also used to control memory addressing, to differentiate
DRAM from SRAM. The clocks are done in analog delay lines.
The T and N registers are tied to the ALU. You just enable the
output and the results are latched back into T. It takes 10 ns.
from enabling of address input, through the M U , to get Lhc
data to the output pins.

Silicon design is very challenging. A NAND gate has many
inputs and an output. If you want more driving current from
a NAND gate, you may use another output driver and then
invert the driver. Or you can invert the inputs. Or you can
invert the output. lhere are so many different approaches,
and it becomes a holistic problem. I don't know how to come
to an optimal implementation. Short of doing the cxperi-
ments yoursclf and get experience the hard way, you don't
have a note on how to get it done right.

In the meantime, OK is now out and 1 hope you will havc
fun with it. Thank you.
January 1993 February

Kelly's Comparisons M e d
Dear Marlin,

Therc may be some confusion about the meaning of the
timing information contained in Tables Two and Three of my
article, "Forth System5 Comparisons" (FD XIIIh), as evi-
denced by comments one and two in the much-appreciated
letter by Don Kemey in FD XTV/3.

The comments accompanying the benchmark code were
meant to illustrate that the empty loop times were subtracted
from all the other raw times (except for the Sieve). I-Ience, for
instance, the empty loop time for riFORTH is shown as
greater than the threading time because it has already been
subtracted from the raw time.

The probable reason that riFORTH did not perform better
in the Sieve benchmark is that the version tested used a high-
level DO LOOP construct, and the loop times were not
subtracted from the Sieve times.

I would have to disagree with Mr. K e ~ e y that hand
calculating h e times would have been easier, considering
the number of versions of Forth lested, the number of words
and tests per Forth, and the fact that the timing differcrcnccs
were in the same ball park (approximately ten to 30 percent)
that the hand timings wcrc in error (reported as lour and
seven percent).

My thanks to all thosc who took the timc to comment on
the article, it made it all worthwhile!

Sincerely,
Guy M. Kelly
2507 Caminito La Paz
La Jolla, California 92037

16 Forth Dimensions

HARVARD S O F T W O R K S
NUMBER ONE IN FORTH INNOVATION

(513) 748-0390 P.O. Box 69, Springboro, OH 45066

By now you know that HS/F'ORTH gives you more
speed, power, flexibility and functionality than any other
language or implementation. After all, the majority of the
past several years of articles in Forth Dimensions has
been on features found in HSIFORTH, often by known
customers. And the major applications discussed had to
be converted to HSLFORTH after their original dialects
ran out of steam. Even the public domain versions are
adopting HSIFORTH like architectures. Isn't it time you
tapped into the source as well? Why wait for second hand
versions when the original inspiration is more complete
and available sooner.

Well, it was a dirty job, but we finally had to do it.
Now you can run lots of copies of HS/FORTH from
Microsoft Windows in text andlor graphics windows
with various icons and pif files available for each. Talk
about THE tool for hacking Windows! But, face it, what
I really like is cranking up the font size so I can still see
the characters no matter how late it is. Now that's
useful.

Good news, we've redone our DOCUMENTATION
The big new fonts look really nice and the reorganization
makes all that functionality so much easier to find.
Thanks to excellent documentation, all this awesome
power is now relatively easy to learn and to use.

Naturally we continue tweaking and improving the
internals, but by now the system is so well tuned that
these changes are not individually of any significance.
They just continue to improve performance a bit at a
time, and enhance error detection and recovery. Update
to Revision 5.0, including new documentation, from all
4.xx revisions is $99. and from really old systems the
update is $149.

HWFORTH runs under MSDOS or
PCDOS, or fmm ROM. Each level includes
all features of lower ones. Level upgrades:
$25. plus price difference between levels.
Soum code is in ordinary ASCII text files.

HS/FORTH supports megabyte and larger
programs & data, and runs as fast as 64k
limited Forths, even without automatic
optimization -- which accelerates to near
assembler language speed. Optimizer,
assembler, and tools can load transiently.
Resize segments, redefine words, eliminate
headers without recompiling. Compile 79
and 83 Standard plus F83 programs.

PERSONAL LEVEL $299.
NEW! Fast direct t o video memory text

& scaled/clipped/windowed graphics in bit
blit windows, mono, cga, ega, vga, all
ellipsoids, splines, bezier curves, arcs,
turtles; lightning fast pattern drawing
even with irregular boundaries; powerful
parsing, formatting, fde and device YO;
DOS shells; interrupt handlers;
call high level Forth from interrupts;
single step trace, decompiler; music;
compile 40,000 lines per minute, stacks;
file seamh paths; format to strings.
software floating point, trig, transcen-
dental, 18 digit integer & scaled integer
math; vars: A B * LS C compiles to 4
words, 1..4 dimension var arrays;
automatic optimizer delivers machine
code speed.

PROFESSIONAL LEVEL $399.
hardware floating point - data structures
for all data types from simple thru
complex 4D var arrays - operations
complete thru complex hyperbolics;
turnkey, seal; interactive dynamic linker
for foreign subroutine libraries; round
robin & interrupt driven multitaskers;
dynamic string manager; file blocks,
sector mapped blocks; x86&7 assemblers.

PRODUCTION LEVEL $499.
Metacompiler: DOS/ROM/direct/indirect;
threaded systems start at 200 bytes,
Forth cores from 2 kbytes;
C data structures & structc compiler;
MetaGraphics Turbowindow-C library,
200 graphidwindow functions, Postscript
style line attributes & fonts, viewports.

ONLINE GLOSSARY $ 45.

PROFESSIONAL and PRODUCTION
LEVEL EXTENSIONS:

FOOPS+ with multiple inheritance $ 79.
TOOLS & TOYS DISK $ 79.

And since Spring is coming, IT IS TIME FOR OUR 286FORTH or ~ 8 6 ~ O R T H $299.
16 Megabyte physical address space or

SPRING SAIB. Thru the end of May YOU get to pick gigabyte virtual for programs and data;

two extra utility packages free for each Professional or ~~~&3~~~$2d~~~~$t;3"~,"*; a
Production Level system purchased, or get a free Online ROMULUS HS/FORTH from ROM $99 .

Glossary with help file utility with each Personal Level Shippinglsystem: US: $9. Canada: $Z1.
system purchased. foreign: $49. we accept MC, VISA, & A ~ X

With this set of money exchange words, we can do some
tests:

C.H. Ting
San Mateo, California

5 ounce g o l d .
10 ounce silver .
lo0 $NT .
20 S m .

If you have many different currencies in your wallet, you
can add them in dollars:

1000 NT 500 HK +
320 RMB +
d o l l a r s (p r i n t s t o t a l worth i n d o l l a r s)

In this lesson, we shall discuss the way Forth handles
integers. Integers are numbers from -32768 LO 32767. This
range of numbers is most convenient to be stored and
processed in Forth. It is very surprising that many real-world
problems can be represented and solved using numbers in
this range Forth can handle larger numbers, and even
floating-point numbers, but these are topic? outside the
scope of this lesson.

Example One. Money Exchange
~h~ first example we will use to demonstrate how

numbers are used in Forth is a money exchange program,
which converts money represented in different currencies.
Let's start with the following currency exchange table:

24.55 NT 1 Dollar
7.73 HK 1 Dollar
5.47 RMB 1 Dollar
1 Ounce Gold 356 Dollars
1 Ounce Silver 4.01 Dollars

We shall use the U.S. dollar as the standard currency, and
convert all to dollars first. arithmetic
operations will be carried out in dollars. The dollars can h e n
be converted back to any other currency.

We define words to convert other currencies to the dollar
by using the names of the corresponding currencies. To
convert from dollars to another currency, the word is
preceded by the $ sign.

: N T (n N T - - $) 10 245 */ . s ;
: $NT ($ -- n N T) 245 10 * / . s ;

: RMB (nRMB -- $) 100 547 * / . s ;
: $jmp ($ -- nJmp) 547 100 */ .s ;
: HK (nHK -- $) 100 7 7 3 * / .s ;
: $HK ($ -- $) 773 100 */ .S ;

: gold (nOunce -- $) 356 * . s ;
: Sgold ($ -- nOunce) 356 / . s ;
: s i l v e r (nounce -- $) 401 100 */ . s ;
: $ s i l v e r ($ -- nOunce) 100 401 */ . s ;
: ounce (n -- n, u s e d to improve s y n t a x) ;

: d o l l a r s (n --) . ,

January 1993 February

If I am in Hong Kong at the time, the total amount can be
converted Hang

looO NT 500 HK + 320 RMB +

SHK
(to Hang Kong and prints i t)

Exercae One. A bus~ness nip.
Now we have a fairly powerful money exchange com-

puter with us. Suppose you depart San Francisco with 1000
dollars in your pocket. You go to Hong Kong and buy a VCK
with 1200 HK. Go to Shanghai and sell it for 2000 RMB. ' h en

back to Hang and spend 900 HK for fun. Go to
Taipei and buy a portable PC with 3OO00 How much
money in U.S. dollars do you have remaining?

The answer typed backwards is:
s r a l l o d - TN 00003 - KH 009 + BMR 0002 - KH
0021 0001

Try it.

Example Two. Temperatuw conurnion.
Converting temperature readings between Celsius and

Fahrenheit is also an interesting problem. 'lhe difference
temperature conversion and exchange is

that the two temperature scales have an offset in addition to
the factor.

: F>C (-- nCelcius)

32 -
10 18 */
,

: C>F (nCe lc iu s -- nFarenhei t)

18 10 */
32 +
t

90 F>C . shows the temperature on a hot summer day
and
0 C>F . shows the tcmperaturc in the cold winter.

In h e abovc cxamplcs, we use the following Forth
arithmetic operators.

18 Fortt~ D~rnens~ons

+ (n l n 2 - n l + n 2) Add n l and n2 and
leave sum on stack.

- (n l n2 - nl-n2) Subtract n2 from n l and
leave difference on stack.

* (nl n2 - nl*n2) Multiply n l and n2 and
leave produd on stack.

/ (n l n2 - nl/n2) Divide nl by n2 and
leave quotient on stack.

* / (n l n2 n3 -- nlen2/n3) Multiply n l and n2,
divide the product by n3
and leave quotient on the
stack.

. s (.. .-. . .I Show the topmost four
numbers on stack.

Here we have to introduce the concept of a stack. A stack
is a memory area in the computer where numbers are stored
and retrieved implicitly. It is different from variables (dis-
cussed in Lesson One). Variables are named locations in
memory, which are accessed by referring to the assigned
names. A stack is a first-in-last-out list. When a number is
given to Forth, it is pushed on the stack. Any operator which
uses numbers pops the required numbers from the stack. The
most accessible number is on the top of the stack, like the
card on top of a card deck. Various Forth operators may
produce one or many numbers, and the numbers are pushed
on the stack as they are generated.

+ thus pops the two topmost numbers off the stack, adds
them, and then pushes the sum back on the stack. -, *, and
/ are other operators commonly used to do simple math.
One must notice that the order of the two numbers used by
+ and * is immaterial, while the order is important for - and
/. Exchanging the two numbers will produce different
differences or quotients, respectively.

* / is a scaling operator in Forth, which is useful in scaling
integer numbers. It multiplies nl by the ratio of (n2/n3). As
shown in Examples One and Two, Lhis operator is very useful
in scaling quantities from one unit to another. Scaling is avery
powerful operation which eliminates Ihe necessity of using
floating-point numbers.

. s is a debugging tool which shows you the contents of
the topmost four items on the stack. It is used often during
debugging to make sure the stack has the correct numbers
for your calculations. 11 is generally not used in the final
program, to avoid printing too many intermediate values.

Several other important, but less commonly used, math
operators are:
MOD (n l d - rem) Dividenlbydandlcave

the remainder on slack.
/MOD (n l n2 - rem quot) Dividenl by n2andleave

both remainder and quo-
ticnt on stack.

1+ (n - n+l) Increment n on stack.
1- (n - n-1) Decrement n on stack.
2* (n - 2 n) Double n on stack.
2/ (n-11/21 IIalve n on stack.
ABS (n -- Inl) Convert top numbcr on

stack to absolute.
NEGATE (n -- -n) Negate n on stack.

Forth Dimensions

As we go along, some of these operators will be used as
occasions arise.

Stark Operators
The stack is the most important place where the results

of previously executed operators can be passed to the
operators yet to be executed. Operators take parameters
from the stack and leave results there for subsequent
operators to use. A program can be built easily by stringing
togcther subroutines. The subroutines can call other subrou-
tines, and so on. The subroutines are Forth operators, and
can be nested almost indefinitely. This is a very important
reason why Forth is simple in its architecture and also in its
syntactical structure.

However, it happens very often that the ordcr of the
numbers on the stack is not correct for an operator which
needs them, like - and /. There is a set of stack operators to
rearrange numbers on the stack. The five most important,
classic stack operators are:

DUP (n - n n) Duplicate the top ofstack.

SWAP (n l n2 - n2 n l) Exchange top two num-
bers on stack.

OVER (nl n2 - n l n2 n l) Duplicate the second
number on stack.

ROT (n l n2 n3 -- n2 n3 nl) Rotate third number to
the top of stack.

DROP (n -) Discard the top of stack.

Example i%m. Rectangles.
A rectangle is specified by the (x,y) coordinates of its

upper-left and lower-right comers. With these four integers
on the stack, we can compute the area, the center, and the
perimeter of a rectangle:

: area (xl y l x2 y2 -- area)

ROT - (x l x2 y2-yl)

SWAP ROT - (y2-yl x2-x1)

* (area)

: center (x l y l x2 y2 -- x3 y3)

ROT - 2/ (x l x2 y3)

SWAP ROT - 2/ (y3 x3)

S W A P (x3 y3)

: sides (x l y l x2 y2 -- sides)

ROT - ABS (x l x2 y2-yl)

SWAP ROT - ABS (y2-yl x2-x1)

+ (sides)

Logic Operators
Computers use logic operators to determine and follow

differcnt execution paths. Logic operators themselves arc
very simple and easy to understand. IIowcver, the combina-
tion of many levcls of logic opcrations, and thc multitude of
different pathways in a large program, makes the computer

19 January 1993 February

seem very complicated, even to the point of showing some
intelligence.

iiere wc i~ltroduce sorrlc of thc log~c operators assoaatcd
with numbers, and the branching operators whlch use the
results of logic operators to select chfferent operations.

Forth uses numbers to represent logic levels There are
only two logic levels, true and false. True is represented by
any number which is not zero (usually a -I), and false is
represented by ~ . r o . The numkr representing logic levels is
often called a Jkg.

< (n l n 2 - - f)

= (n l n 2 - f)

O= (n - f)

O< (n - f)

NOT (fl -- f2)

Return true if nl>n2.
Otherwise, return false.
Return true if nl<n2.

Keturn true if nl=n2.

Keturn true if n=O.

Return true if n<O.

Return true if fl is false.

Otherwise, return false.

A flag can be used to select onc oithe two execution paths
by the following constructs inside a colon definition:
(f) I F < t r u e c l ause> ELSE (f a l s e c l ause> THEN
(f) I F < t r u e c l ause> THEN

: weather (n ~ a r e n h e i t --)

DUP 85 >
I F ." Too h o t ! " DROP
ELSE 55 <

I F ." TOO c o l d . "
ELSE . " About r i g h t . "
THEN

THEN

You can type the following commands and get some
responses from the computer:
90 weather Too h o t !
70 weather About r i g h t .
32 weather Too c o l d .

Loop Operators
We shall be concerned now with only the definite loop

operators used in the following format in a colon definition:
(nLimit nIndex) DO <repeat-clause> LOOP

DO takes two parameters off the stack. The top number
is the starting index of the loop and the second number is the
upper limit of the loop index. After entering the loop, che
repeat clause is repeatedly execuled. LOOP increments the
loop index from nIndex to n l i m i t . When the index is

Example Five. Print the mult@lication table.
: OneRow (nRow --)

Example Four. Weather Rtporting.
The following colon definition illustrates the use of logic

and the branch:

A NW User Interface to I DUP '" 3 .R 3 SPACES

equal to n l i m i t , b e loop is terminated. In the repeat dause,
a special operator I returns the current loop index on the
stack.

A simple example of the loop structure follows:
I I -71

a 386 Personal Computer
by Charles H. Moore

13 1 4 G B m addressing space
DO I 4 .R LOOP (d i sp lay column numbers)

Access RAM memory directly i i 1 3 1

13 1

DO I OVER *
4 . R

LOOP

Simpler tban Fortb
Menu-based user interface tbrougb 7 keys

Run 386 in tbe protected mode

Greatly simp&d DOSfide interface
Complete object code

Extensive doncmenlation by C I-i; Ting

DROP ;

: Table (--)

CR CR 6 SPACES ..-, -

Price: $75.00

Offete Enterprises
1306 south B Stmet

DO I OneRow
LOOP

'I'yping TABLE will cause thc multiplication table Lo k
d~splayed in a neat format.

With these new Forth operators, we can now writc a fairly
substantial program, using many of the operators to demon-
strate how [hey are comb~ned to do useful work.

San Mateo, CA 94402
(415) 576-8250

. - --

Dr C H T~ng 1s a noted Forth author~ty who has made many s~gn~f~cant
tlons to Forth and the Forth Interest Group HIS tutor~al serles w~ll contlnue ~n
succeeding Issues of Forth Dimensions

January 1993 February 20 Forth Dimens~ons

LIFE IN THE FASTFORTH ~ N E

Optimizing in
BSR/JSR-Threaded Forth
Charles Curley
Gillette, Wyoming

The purpose of this paper is to describe a code optimizer
for a 68000-based JSWBSR-threaded Forth interpretedcom-
piler. The code operates in the traditional Folth single-pass
compiler, optimizing on the fly. The result includes words
which execute in fewer instructions than the words called out
in the source code.

Historical Note
The Forth used for the code described herein is FastForth,

a full 32-bit BSR/JSR-threaded Folth for the 68000, described
in unmitigated detail in "Optimization Considerations" (Forth
UimensimXIV/S). It is a direct modification of an indirect-
threaded Forth, real-Forth. lhis is, in turn, a direct descen-
dent of fig-Forth. (Remember fig-Forth?) fig-Forth's vocabu-
lary, word names, and other features have been retained.

For those not familiar with 32-bit Forths, the memory
operators with the prefix w operate on word, or 16-bit,
memory locations. FastForth uses the operators F@ and F !
for 32-bit memory operations where the address is known to
bc an even address. To avoid odd-address faults, the regular

This optimizer is a
complete unit, and is
dependent only upon the nature
of the target processor
Forth operators @ and ! use byte operations.

The assembler used to illustrate is descended from the fig
68COO assembler by Dr. Kenneth Mantei. It is a typical Forth
reverse Polish notation assembler. Typical syntax is: source,
destination, opcode. The addressing modes relevant to the
paper are as follows:

[Address register indirect
[+ Address register indirect with post-incremenl
- [Address register indirect wih pre-decrement
& [Register indircct with a word of displacenlent
@ #L Absolute long address
Tmmediatc data, word
#L Immediate data, long

There is nothing particvlarly new conceptually here.
Chuck Moore's cmForth includes an optimizer for the Novix
NC-4000. The prcscnt paper describes an optimizer for a
more traditional CISC instruction set. the Motorola 68000.

The Compiler
The compiler used in FastForth looks very much like a

traditional indirect-threaded Forth. However, it lays down
opcodes which call (via BSR or JSR instructions) lower-level
words, rather than a list of addresses for NEXT to interpret.

For example, the traditional word L is defined as follows:

: L SCR F@ LIST ;

In an indirect-threaded, 32-bit Forth, the compiler would
build the header for L. This would be followed by a four-byte
address for the code tobe executed to interpret the word. The
code field address is followed by a four-byte address for each
of the three words called out in the source. This would be
followed by the address of the exit code, laid down by the
compiler directive ; .

In a BSR/JSR-threaded Forth, the compiler lays down
BSRs ("branch to subroutine') or JSRs (jump to subroutine),
as appropriate, to the words called out. The return code
consists of an RTS instruction. The result may or may not be
smaller than the indirect-threaded version, but it certainly will
be faster. Whether the result is smaller or not de~ends on the
mix of short BSRs (two bytes), long BSRs (four bytes), and
JSRs (six bytes) laid down at compile time.

One optimization discussed in "Optimization Consider-
ations" is to examine the last instruction of a word. If it is a
BSR or JSK, that instruction canbe twiddled to produce a BRA
or TMP instruction.

Another optimization is to lay down in-line code instead
of calls. This is particularly beneficial when calling short
words (e.g., F@) from a distance, which would require a JSK
instruction. Not only does the technique save run time (by
elirnirialing a call and an IUS instruction), but it may reduce
thc size of words. One circumsLancc where this technique
docs not save space is where a four-byte word is copied in
line to a location which would have required a short (two-
byte) BSR.

January 1993 February Forth Dimensions

Optimized definition vs. the o<&z-]

code field

m!n JSRJBSR lndirect Threaded

0 bytes

optimize that. Instead, let us
generalize, andlook for phrases

SCR Six bytes laid down in line.

F@ Four bytes laid down in line.
LIST Two, four or six bytes of BRA or JMP.

!aaQde Qbvtes
Total 16, maximum

Variables, constants, and user variables in FastForth are
immediate words which compile in-line code, often a six-
byte reference.

Wlth these optimizalions, the compiler produces thc
above for the sample word L given earlier.

The total is sixteen bytes at most, compared to a firm
twenty bytes for the indirect-threaded version. So the JSW
BSRversion may be smaller, but certainly will be much faster!

Two more typical Forth optimi7ations are common and
won't be discussed very much.

If a phrase shows up a lot in a Forth program, it is common
practice for the programmer to consolidate that phrase in a
word with a meaninghl name. This is optimizing for
readability and dictionary size, rather than speed.

The second is to reduce words from high level to
assembler. This requires the active intervention ofthe program-
mer, and the results are well worth it in terms of speed, and
often worthwhile in terms of space. Alas, such optimizations
only improve readability for those who know the relevant
assembly language (and, somemes, the relevant assembler),
leaving the code more opaque to those without such skills.

The Optimizer Design
An optimizer for in-line code should be a single-pass

optimizer, to be consislent with Forth's traditional single-pass
compiler. This wouldmake difficult, for example, replacing long
forward branches with short ones on the fly, but would resilt
in much simpler code in the compiler. It must, then, operate at
compile time, and so must consist of immediate words.

The optimizer should be an add-on, so that the user can
add to the optimizer if he wishes to. However, it should also
be carried over to the cross-compiler so as to produce a very
efficient nucleus.

The optimizer should work silently, as far as the user is
concerned. That is, it should require no changes in source
code to be u.sehl. This requirement separates out the
optimizing compiler from the two common optimizing
methods described above.

Initially, the optimizer word could be developed as a
series of discrete words, but these would be replaced by one
or more defining words and their daughter words.

One key to single-pass optimization during compilation is
to have immediate words which examine previously compiled
opcodes, and twiddle certain ones to produce tighter code.

Another key is to look for certain phrases which can easily
be detected and easily twiddled. We could look for the
phrase BLK F@, which shows up all over the nucleus, and

Four bytes (of the general type: /
Four bytes
Four bytes
Four bytes

&2xb!L&
20 bytes I <USER VARIABLE> F@.

To detail this example: a
user variable is an immediate
word, which lays down the
following phrase:

<off set> & [U ARO MOV, ARO S - [MOV,

Translated into English, the first instruction moves data
from a user variable indicated by an offset from the user area
register U to address register 0. The second pushes it out onto
the stack. The result, examined in memory as word dab,
looks like:

If the next word in the source code is F@ and it is
immediate, it can look at here-less-six for Lhe opcode 41ee.
Finding it, it can twiddle the dctionary to produce h e
following code:

<off set> & [U ARO MOV, ARO [S - [MOV,

This produces the following memory dump:

The first instruction still movcs the contents of the user
variable into the address register, but the second instruction
now reads data from the location pointed to by the register,
and pushes it onto the data stack.

The phrase <USER VARIABLE> F@ is now executed in
two instructions instead of the previous four, and occupies
six bytes instead of the previous ten. And the optimizerworks
for all user variables, even ones not defined at the time the
optimizer is compiled.

Other two-word phrases were similarly identified and
optimized, and some three-word phrases were also identi-
fied and optimized. As each phrase was identified, a defining
word was built up, consisting of nested I F ... ELSE ... THEN
clauses. The resultant words are monsters, and must be
thoroughly understood by the programrncr who seeks to
modify them. In these two respects, they arc un-Forthish, bul
the gain obtained by using thcm is worth the price.

These words must all bestate smart. As theywill runeither
at run time or at compile time, they must examine STATE and
act accordingly. The action at run time is, of course, to
exCCulC thcir namesakes. llence, in the run-time portion of
the defining words, the phrase STATE F@ I F ... ELSE
@EXECUTE THEN.

In ordcr for that phrasc to work correclly, we must have
the run-time address of the namesake in thc dictionary. Wc
require thc namesake LO tK: explicidy stated: ' it and comma

January 1993 February Forth Dimensions

FIG
MAIL ORDER FORM

HOW TO USE THIS FORM: Please enter your order on the back page of this form and send with your payment to the Forth Interest Group.
All items have one price and a weight marked with # sign. Cntcr weight on order form and calculate shipping based on location and delivery method.

La

L ~ ~ .

L~~

109-320 2# Vdume 9 Fonh Dimensions (1987-88) , 00 Fractal landscapes, stack error checking, perpetual date routines.
headless compiler, execution security, ANS-Forth meeting,
computer-aided instruction. local variables, transcendental func-
tions, education, relocatable Forth for 68000.

I Vdume 11 Forth Dimensions (1989-90) 111 . $20 2# 1 <$hcations. -310 pgs

"Were Sure You Wanted To Know ..."
Forth Dimensions, Article Reference 151 -$4 0# * An index of Forth articles, by keyword, from Forth Dimensions

Volumes 1-13 (1978-92).

FORML Article Reference 152 - $4 0# * An !ndex of Forth articles by keyword, author, and date from the
FORML Conference Proceedings (1980-91).

FORTH DIMENSIONS BACK VOLUMES
A volume consists of the six issues from the volume year (May-April)

Volume 1 Forth Dimensions (1979-80) 101 - $15 1#
pt 50 Introduction to FIG, threaded code, TO variables. fig-Forth.

.memory man-
SIC compiler,

Vdume 6 Forth Dimensions (1984-85) 106 - $15 2#
; 100 Interactive editors, anonymous variables, list handling, integer

solutions, control structures, debugging techniques, recursion.
semaphores, simple I/O words, Quicksort, high-level packet
communications, China FORML.

Volume 7 Forth Dimensions (1985-86) 107 - $20 2#
100 Generic sort, Forth spreadsheet, control structures, pseudo-

mterrupts, number editing, Atari Forth, pretty printing, code
modules, universal stack word, polynomial evaluation. F83
strings.

Vdume 8 Forth Dimensions (1986-87) 108 - $20 2#
100 Interrupt-driven serial input, data-base functions, TI 991.4,

XMODEM, on-line documentation, dual-CFAs, random
numbers, arrays, file query, Batcher's sort, screenless Foah,
classes in Forth. Rresenham line-drawing algorithm. unsigned
division. DOS f i e UO.

1987 FORML PROCEEDINGS 317 - $40 3#
Includes papers fmm '87 cumFOKML Conference. 32-bir Forth,
neural networks, control structures, AT, optimizing compilers, 25
h rtext, field and record structures, CAD command language,
ogt-oriented lists, trainable neural nets, expcrt systems.
463 pgs

L~~

FORML CONFERENCE PROCEEDINGS
FORML (Forth Modification Laboratory) is an educational
forum for shar$g and discussing new or unproven p
intended to benefit Forth, and is an educational forum f o x :
sion of the technical as cts of applications in Forth. Proccedin s
are a compilation of apers and abstracts presented at tl!e
annual conference. FOR& is part of the Forth Interest Group.

1980 FORML PROCEEDINGS 310 - $30 2#
Address binding, dynamic memory allocation, local variables,
concurrency, binary absolute & relocatable loader, LISP, how to Last
manage Forth pro'ects, n-level file system, documenting Forth,
~ o r t h structures, dorth strings. 231 pgs

1981 MlRML PROCEEDINGS 311 -$45 4#
CODE-less Forth machine, quadruple- recision arithmetic,
overlays, executable v o u b u l a ~ stack. Iata typing in Forth.
vectored data structures, using orth in a classroom, yrarnid
files, BASIC,LOGO, automaticcucing language for mufimedia,
NEXOS-aROM-based multitasking operating system. 655pgs

1982 FORML PROCEEDINGS 312 - $30 4#
Rockwell Forth processor, vlnual execution.32-bit Forth, ONLY
for vocabularies, non-IMMEDIATE looping words, number-
input wordset, I/O vectorin recursive data structures. program-
mable-logic compiler. 298igs

1983 FORML PROCEEDINGS 313 - $30 2#
Non-Von Neuman machines, Forth instruction set, Chinese ~~~t 75
Forth, F83, compiter&interpreterco-routines,lo &exponential
function, rational arithmetic, transcendentaf functions in
variable-precision Forth, portable file-system interface, Forth
coding conventions, expert systems. 352 pgs

1984 FORML PROCEEDINGS 314 - $30 2#
Forth expert systems, consequent-reasoning inference en ine
Zen floating point, rtable graphics wordset, 32-bit &rth: Oa
IIW I B Fonh, NEO~-bject-onented rogramming, decom-
piler design. arrays and stack variables. 578 pgs

1986 FORML PROCEEDINGS 316-$30 2#
Threading techniques, Prolog, VLSI Forth microprocessor,
na~ural-lan uage interface, expert sy stem shell,inferencc engine, O0
multiple-infferitance system, automatic programming envlron-
ment. 323pgs

Vdume 10 Forth Dimensions (1988-89) - $20 2#

50 dRase file access, string handling, local variables, data structures,
object-oriented Forth, linear automata, stand-alone applications,
8250 drivers, serial data compression.

La*

La9

1988 FORMI, PROCEEDINGS 318 - $40 2#
Includes 1988 Australian FORML, Human interfaces. simple
robotics kernel, MODUL Forth, parallel processing, La*t lQC
grogrammahle controllers, Prolog, simulations, langua e tqics.

ardware, W11's workings & Ting's phdosophy, ~ o r t h Kardware
a~nlications. ANS Forth session. future of Forth in A1

* - These are your most up-to-date indexes for back issues of Forth Dimensions and the FORML proceedings.
Fax your orders 510-535-1295

; 1 00 Local vatiables, graphic 'filling a&orithms, 80286 cxtcnded
memory, expert systems, quaternion rotation calculation.
multiprocessor Forth, double-entry bookkeeping, binary table
scarch, phase-angle differential analyzer, sort conlcst.

Volume 12 F o h Dimensions (1990-91) 112-$20 2#
, 1 QO Floored division, stack variables, embedded ccmtrol, Atari Forth,

ophiz ing compiler, dynamic memory allocation, smart RAM.
extendedprecision math, interrupt handling, neural nets, Soviet
Forth, arrays, metacompilation.

1989 FORMI, PROCEEDINFS 319 -$40 3#
Includes papers from 89 euroFORML. Pascal to Fonh,
exte1~sibleoptimixrforcompiling,3Dmcasurementwithobject- Last 50
oriented Forth, CRC polynomials, F-PC, Hams C cross-
compiler, modular approach to robofic control, R'IX rcmm iler
for on-line maintenance, modules, trainable neural nets. 43fpgs

1990 FORMI, PROCEEDINGS 320 - $40 3#
Forth in industry. communications monitor. 6805 development.
3-kcy keyhoard, documentation techniques, objcct-oriented Last
programming, simplest Forth decompiler, c m r recovery, stack
operations, process control event management, control structure
analysis, systems design course, group heory using Forth.
441 pgs

1991 FORML PROCEEDINGS 321 - $50 3#
Includes 199 1 FOKML, Asilomar, euroFORML '9 1,
Czechos1ovak;a and ,1991 Chitla FORMI., Shanghai.
Differential File Companson, LINDA on a Simulated Network,
C$2: RISCin it all, A threadedMicropro ramMachhe, Forthin

etworkin &orth in the Sowet Union ~OSM: A Forth String
Matcher, $ 6 ~ Graph~cs and 3-1) ~ n i k a t i o n , Forth w d TSR,
Forth CAE System, A lying Forth to Electric Bscharge
Machining, M C S % - ~ 0 8 h Single Chip Computer. 500 pgs

BOOKS ABOUT FORTH

ALL ABOUT FORTH, 3rd ed., June 1990, Glen B. IIaydon 201 - $90 4#
Annotated glossaty of most Forth words in common usage,
including Forth-79, Forth-83, F-PC,MVP-Forth. Implementation
examplcs in high-level Forth and/or 8086188 assembler. Uscful
commentaty given for each entry. 504 pgs

THE COMPLETE FOR'I'H, Alan Winfield 210 - $ I 4 I#
A comprehensive introduction, including problems with answers
(Forth-79). 131 pgs

eFORTH IMPLEMENTATION GUIDE, C.H. Ting 215 - $25 1#
e F o h is the name of a Forth model dcsigncd to be portable to a
large number of the newer, morc powcrful processors available
now and becaning available in the near future. 54 pgs (wldisk)

F83 SOURCE, Henry Laxen & Michael Pcny 217 - $20 2#
A complete listing of F83, including source and shadow screens.
Includcs introduction on getting started. 208 pgs

IWRTH: A TEXT AND REFERENCE 219 - $31 2#
Mahlon G. Kelly & Nicholas Spies
A textbook approach to Forth, with comprehensive references to
MMS-FORTH and the '79 and '83 F o h standards. 487 pgs

THE FIRST COURSE. C.H. Ting 223 - $25 1#
This tutorial's goal is to expose you to the vcry minimum scl of
Fonh instmclions so that you can start to use,,Forth to solve
practical problems in the shortest possible time. ... ' h s tutorial
was developed to complement The Forth Course which skims too
fast on the elementary Forth instructions and dives too quickly in
the advanced topics in a upper level college microcomputer
laboratory. ..." A running F-PC Forth system would bc very
useful. 44 pgs

THE FORTH COURSE, Richard E. Ilaskell 225 - $25 I#
This set of 11 lessons, called The Forth Course, is designed to
make it easy for you to learn Forth. The material was developed
over several yeais of teaching Forth as part of a seniorlgraduate
course in design of embedded software wmputer systcms at
Oakland University in Rochester, Michigan. 156 pgs (wldisk)

FORTH ENCYCLOPEDIA, Mitch Dcrick & Linda Baker 220 - $30 2#
A detailed look at each fig-Forth inst~ct ion. 327pgs

FORTH NOTEBOOK, Dr. C.H. Ting 232 - $25 2#
Good examples and applications. Great learning aid. poly-
FORTH is the dialect used. Some conversion advice is included.
Code is well documented. 286 ves

FORTH NOTEBOOK 11, Dr. C.B. Ting 232a - $25 2#
Collection of research papers on various topics, such as in~age
processing, parallel processing, and miscellaneous applications.
237pgs

F-PC USERS MANUAL (2nd ed., V3.5) 350 - $20 1#
Uscrs manual to the public-domain Forth system optimi-zd for
IBLM PCIXTIAT computers. A fat, fast system with many tools.
143 pgs

F-PC TECHNICAL REFERENCE MANUAL 351 - $30 2#
A must if you need to know the inncr workings of F I T . 269 pgs

INSIDE F-83, Dr. C.H. -ring 235 - $25 2#
Invaluable for those using F-83. 226 pgs

LIBRARY OF FORTH ROUTINES AND UTILITIES,
James D. Teny 237 - $23 2#
Comprchcnsive collection of pmfessional quality computer code
for Forth; offers mutines that can be put touse in almost any Forth
apphcation, including cxpert systcms and natural-language
interfaces. 374 pgs

O B J E m ORIENTED FORTH, Dick Pountain 242 - $35 I#
Implementation of data structures. First book to make object-
oriented programming available tonsen of even very small home
computers. 11 8 pgs

SEEING FORTH, Jack Woehr 243 - $25 1#
"...I wouldliketo share afew observatms an Forthandcomputer
science. That is the purpose of this monograph. It is offered in the
hope that it will broadcn slightly thc streams of Forth literature ..."
95 P R S

SCIENTIFIC FORTH, Julian V. Noble 250 - $50 2#
Scientifi Forth extends the Forth kernel in the direction or
scientific problcin solving. It illustrates advanced Forth
programming techniques with non-trivial applications:
computer algebra, roas of equations, differential equations,
function minimization, functional representation of data (FFT.
polynomials), linear equations and matrices, numerical
integrationmilante Carlo methods, high-sped reai and complex
floating-point arithmetic. 300 pgs (Includcs disk with programs
and several utilities), IBM

STACK COMPUTERS, THE NEW WAVE 244 - $62 2#
Philip J. Koopman, Jr. (hardcover only)
Presents an altemativc to Complex Instruction Set Computcrs
(CISC) and Reduced Instruction Set Computers (RISC) by
showlng the strengths and weaknesses of stack machines (hard-
cover only).

STARTING FORTH (2nd ed.), Leo Brodie 245 - $29 2#
In this edition of Starling F o r t h A e most ppular and complete
introduction to Forth-syntax has been expanded to include the
Forth-83 Standard. 346 pgs

WRITE YOUR OWN PROGRAMMING LANGUAGE USING C++. -.-- - ~

Noman Smith 270 - $i5 1#
This tmok is about an application languagc. More specifically, lt
is about how to write your own custom application language. The
book contains the t&ls necessaty to k g i n the prccrsi and a
annpletesamplelanguagcimplementatim. [Guess what language!]
Includes disk with complete source. 108 pgs

ACM - SIGFORTH
The ACM SIGForth Ncwslettcr is published uarterly by thc

I orth's focus is Association of Computing Machinery, Inc. SIC%
on the development and refinement of cancepts, methods, and
techniques needed by Forth professionals.

Volume 1 S ring 1989, Summer 1989, #3, #4 911 - $24 2#
F-PC, gl$ssaty utility, euroForth, SIGForth '89 Workshop
summary (real-time software engineering), Intel 8 0 x 8 ~ .
Metacompiler in cmForth, Forth exception handler, string case
statement for UFIForth. 1802 simulator, tutorial on multiple
threaded vocabularies. Stack frames, duals: an alternative to
variables, PocketForth.

Volume 2 #I, #2, #3, #4 912 - $24 2#
ACM SIGFonh Industry Survey, abstracts 1990Rochester wnf.,
RTX-2000. RNF Parser, abstracts 1990 Rochester conf., F-PC
'reach. Tethered Forth model, abstracts 1990 SIGFonh conf.
Target-meta-cross-: an engineer's viewpoint, single-mstmction
computer.

Volume 3, #1 Summer '91 913a - $6 I#
Co-routines and recursion for tree balancing, convenicnt number
handling.

Volume 3, #2 Fa11 '91 913b - $6 I#
PostscriptIssuc, What is Postscript?, Fonh in Postscript. Review:
P9-Tnrnr

1989 SlGForth Workshop Proceedings 931 - $20 1#
Software engineering, multitasking. interrupt-drivcn systems,
object-oriented Forth, error recovery and control, vifiual memory
support, signal processing. 127pgs

1990-91 SIGForth Workshop I'roceedings 932 - $20 1#
'I'caching computer algebra, stack-based hardware, recanfig-
urahle processors, real-time operating systems, embedded
control, marketing Forth, developmcnt systems, in-flight
monitoring. multi-processors. neural nets, security control, user
interface, algorithms. 134 pgs

I
For faster service, fax your orders 510-535-1295

-Starting ** - Intermediate *** -Advanced

DISKS: Contributions from the Forth Community
The "Contributions from the Forth Community" disk library contains
author-submitted donations, enerall including source, for a variety
of computers & disk fonnats.%achfiL is dctcrmincd by the author as
public domain, shareware, or use with sane restrictions. This library
docs not contain "For Sale" a lications. To submit your own contn-
butiom, send them to the ~iC?f'ublications Commitlee.

Prices: Each itan below comes on one or more disks any disks = 1 #.

FLOAT4th.BLK V1.4 Robert L. Smith COO1 - $8
Software floating-pint for fig-, poly-, 79-Std., 83-Std.
Fonhs. IEEE short 32-bit, four standard functions, square
root and log. *** IBM, 190Kb, FS3

Games in Forth
Misc. games, Go, TETRA, Life.. . Source.

IBM,760Kb

A Forth Spreadsheet, Craig Lindley COO3 - $6
This model spreadsheet first appeared in Forth Dime~wions
VII, 1-2. Those issues contain docs & source.

IBM,lOOKb

Automatic Structure Charts, Kim IIanis Coa4 - $8
Tools for analysis of lar e Forth programs, first presented at
FOKML conference. F& source; docs incl. in 1985 FORML
Proceedin s

** 1Bb,114Kb

A Sim le Inference Engine, Martin Trac COO5 - $8
8ased on inf. engine in Winston & &om's book on LISP,
takes you from pattern variables to complete unification
algorithm, with mnning commentary on Forth philosophy &
style. Incl. source.

** IBM, 162 Kb

The Math Box, Nathaniel Grossman COO6 - $10
Routines by foremostmath authorin Forth. Extended doublc-
precision arithmetic, complete 32-bit fixed-point math. &
auto-ranging text. Incl. graphics. Utilittes for rapid

olynomial evaluation, continued fractions & Monte Carlo
Lctorization. ~ncl. source ~r docs.

** IBM, 118Kb

AstroForth & AstroOKO Demos, I.R. Agumirsian COO7 - $6
AstroForth is Ihe 83-Std. Russian version of Forth. Incl.
window interface, full-screen editor, dynamic assembler &
a great demo. AstmOKO, an astronavigation system in
AstroForrh, calculates sk position of several objects from
different earth ositions. bcmos only.

I B M , & K ~

Forth List Handler. Martin 'liac COO8 - $8
Iist rimitives extend ~ o r d to provide a flexible, high-
s e e l environment for AI. hcl. ELISA and Winston &
1yom.s micro-LISP as examples. Incl. source & docs. ** IRM,170Kb

8051 Embedded Forth, William Payne CO50 - $20
8051 ROMmable Forth operating system. 8086-to-8051
target compiler. Incl. source. Docs arem the book Embedded
Controller Forth for the 8051 Family. *** lHM,43 Mb

68HCll Collection C060 - 316
Collection of Forths. Tools and Floating Point routines for
the 68HCll controller.
*** IBM, 2.5 Mb

F83 V2.01, Mike Perry & Hcnry Laxcn Cl0O
The newest version, rted to a variety of machines. Editor,
assembler, decompic, mctacompiler. Source and shadow
screens. Manual available senaratelv (items 217 & 235).
Base for other F83 a plicati&s.

.
IBM, 83,495 Kb

PMJ V3.56 cYc 'I'COM Tom Zimmer C200 - $30
A full Fotth systerh with pulldown menus, sequential files,
editor, forward assembler, meucompiler, fluling point.
Complete sourcc and help files. Manual for V3.5 ava~lahle
se~aratelv (items 350 & 351). Base for other F-PC

I a$licati&s.. * IRM, 83,3.5Mb

VP-Planner Float for F-PC V1.O1 Jack Brown C202 - $8
~oftwarefloatin~-point~nrjnebehindthe~~-~llanners readsheet.
80-bit (tan rary real) -tines with transcendentaffunctions,
number I/xu A. vectors to support numeric co-processor
overlay & userRAN checking.

** IRM, F-PC, 350 Kb

F-PC Graphics V4.6, Mark Smiley C203 - $10
The latest versions of new graphics routines, including CGA.
EGA, and VGA sup rt. with numerous im rovements over
earher vers~ons creatEr su rted by Mark 8milcy. ** IBM DSDD, F-PC, % g ~ b

PocketFwth V6.1 Chris Heilman C300 - $12
~mallestcom'plete Forth forthe Mac. Access to allMacfunctlms,
Events, files. gra hics, floating int, macros. crcate standalone
applications and AS. ~ a s e d o n E & ~tart ing~orth. 1ncl. source
and manual.

MAC, 640 Kb, System 7.01 Compatable.

Kevo V0.9b4 Antero Taivalsaari C360 - $10
compleie Forth-like object Fonh for the Mac. Object-Prototype
access toallMac functions, fiies. gra cs.floa~ingpoint.macrvs,
create standalone applications. &el source not included.
extensive demo files, manual.
*** MAC, 650 Kb, System 7.01 Compatable.

Yerkes Forth V3.6 C350 - $20
Complete object-oricntcd Forth for the Mac Object access to all
Mac functions, fiies, g,raphics, floating oint, macros, create
standalones lications. ncl source,tuton$assembler&manual.

** M A E ~ . ~ M ~ , System 7.01 Compatahle.

V1.4, Frank Sergeant
1

c500 - $20
em, fast Fonh wth full source code. Incl. full-screen editor.

assembler and metacompiler. Up to 15 files open at a time.
** IBM,320Kb

KForth Gu Kclly C6M) - $20
A ~ U U 6orth system with windows, mouse, drawing and modem
packages. Incl. source & docs. ** IBM, 83,2.5 Mb

Mops V2.2, Michacl Horc -10 - $20
ClosecousintoYerkes andNeon. Veryfast. corn iles subroutine-
threaded & nativc code. Object oriented. Uses ;-P co-processor
if resent. Full access to Mac toolbox & s stem Supports System
7 fe.g.. A plcEvents). Incl. assembler, &cs &source.

** &c, 3 Mb, System 7.01 CvmpataMe

BBL & Abundance, Koed Green C800 - $30
DDLpublic-domain,&-bit Forth withextensivc support of DOS,
meticulously optimized for execution spccd. Abundance is a
public-domain database language written in RBL. Incl. source &
docs. *** IBM HD, 13.8 Mb, hard disk required

New Version Replacement Policy

Return the old version with the FIG
labels and get a new version

replacement for 112 the current
version price.

MISCELLANEOUS
T-SHIRT ' M a y the Forth Be With You" 601 -$I2 1#

cif size: Small,Medium, Large, Extra-large on orderform) @ J .
ite csign on a dark blue shirt.

POSTER (Oct., 1980 BYTE cover)

FORTH-83 HANDY REFERENCE CARD 683 - free

FORTH-83 STANDARD 305 -$I5 1#
Authoritative description of Forth-83 Standard. For reference, not
instruction. 83 pgs

F-PC TEACH V3.5 Lessons 0-7 Jack Brown C201 - $8 BIBI.IOGRAYHY OF FORTH REFERENCES
Forth classroo& on duk. first seven lessons on learning

340 - 518 2#
(3rd ed., January 1987)

Forth, from Jack Brown of B.C. Institute of Technology. Over 1900 references to Forth articles throughout computer
IBM, F-PC. 790 Kb liter-dture. 104pgs

--

For faster service, fax your orders 510-535-1295

JFAR BACK ISSUES
Volume 2, #4 JFAR (1984) 705 - $15 1#

Extended Addressing: Bionary Search, VA)(& 79 Standard,
Token Threaded Forth, 32 Bit Machine. Implementing Local
Words in Forth

Volume 4, #I EAR (1986) 710-$15 1#
Expert Systems in Foclh: Natural Language Parsing. Micro-
Computer Based Medical Diagnosis System. FORTES
Polysornnographer, FORPS

Volume 4, #3 JFAK (1987) 712 - $15 1#
REPTL, Stand-Alone Forth System. Compiling Forth, Julian Day
Numbers, Abstracts '86 FORML Conference.

Volume 4, #4 EAR (1987) 713 - $15 I#
Embedding of languages in Forth, Fotth-based Prolog for Real-
Time Expert Systems S/WID.

Volume 5, #2 F A R (1988) 715-$15 1#
Mathematics, ANS Standard, Exception Handling. Logarithmic
Number Representaticm, 32 bit RTX Chip Prototype

Volume 5, #3 JFAR (1989) 716-$15 1#
From Russia with Forth, Knowledge Engineering, Symbolic
Stack Addressing.

Volume 5, #4 JFAR (1989) 717 - $15 1#
Forth Processors, Parallel Forth, Arithmetic-Stack Processor,
Architecture of the SC32 Forth Engine, Error-Free Statistics in
Fodl

Volume 6, #I .WAR (1990)
Hams RTX2000, Scientific Programming

MORE ON FORTH ENGINES
Volume 10 January 1989 810-$15 I#

RTX re rints from 1988 Rochecter Forth Cmfennce. object=
OrientecfcmForth, lesser Forth engines. 87pgs

Volume 11 Jul 1989 811 -$I5 1#
RTX suppLent to Footsteps in an Em ty Valley, SC32.32-bit
Forth engine, RTX intempts utility. 9 f p g s

Volume 12 A ri1 1990 812- $15 I#
ShBoom flu architecture and inst~uctions. Neural Com uring
~ ~ d u l e ~ C ~ 3 2 3 2 . ~ i ~ F o r r h . binary radix son on 80286,[8010,
and RTX2000. 87 pgs

Volume 13 October 1990 813 - $15 1#
PALS of the RTX2000 Mini-BEE, EBForth, ALForth, R1X-
2101,8086 eForth, 8051 eForih. 107pgs

Volume 14 814 - $15 l#
RTX Pocket-Sc e eForth for muP20, ShRoom, eForth for CPI
M & ZSO, XMO%E'M for eForth. 116 pgs

Volume 15 815 - $15 1#
Moore: New CAD System for Chi Design, A ponrait of the PW.,
Rible: QS1 For* Processor. Q S ~ , RISCing it all; P20 eForih
Software Simulator/Debugger. 94 pgs

Volume 16 816 -515 I #
OK-CAD System, MuP20, eFotth S stem Words, 386 eForth,
80386 Protected Mode Operation, F& 1600 - 16Bit Real Timc
Processor. lO# pgs

DR. DOBB'S JOURNAL
Annual Forth issue, includes code for various Forlh applications.
Sept. 1982 422-55 1#
Sept. 1983 423 -$5 1#
Sept. 1984 424-$5 I #

FORTH INTEREST GROUP
I P.O. BOX 2154 OAKLAND, CALIFORNIA 94621 510-89-FORTH 510-535-1295 (FAX) I

Name Phone
Company Fax
Street eMail
Citv ---

State/Prov. Zip
Country

Title I @Y. 1 Unit Price I Total I #

*MEMBERSHIP IN THE FORTH INTEREST GROUP
TheForth Interest Group(FIG) isaworld-wide, non-profit, member-supportedorganization wkhover 1,SX membersand40chapters. Yourmembersh~pincludes asubscrlption tothebi-monthly magarlne
Forth DimsnsMns. FIG also offers its members an on-line data base, a large selection of Forth literature and other services. Cost is 540 per year for U.S.A. 8 Canada surface; $46 Canada air mail:
all other countries $52 per year. This fee indudes S36/42/48 for Forth Dimensions. No sales tax, handling fee. or discount on membership.
When you join, your first issue will arrive in four to six weeks; subsequent issues will be mailed to you every other month as they are published-six issues in all. Your membership entitles you to a 10%
discount on publications and functins of FIG. Dues are not deductible as a charitable contribution for U.S. federal income tar purposes. but may be deductible as a business expense.

MAIL ORDERS:
Forth Interest Group PAYMENT MUST ACCOMPANY ALL ORDERS

TIME:
P.O. Box 2154

PRICES: All orders must be prepaid. Prices are POGTAGE:
Books in stock are shipped

Oakland. CA 94621 within seven days of recept of
PHONE ORDERS: subject to change without notice. Credit card orders All orders calculate postage as !he order. piease allow 4-6
510.Bg.FORTHCre<flcard will be sent and billed at current prices. Checks must number of ns times selected weeks for out-of-sto& books
orders, customer sewica. be in U.S. dollars, drawn on a U.S. bank. A $10 pos!age rate. Special handling (deliveries in cases will be
H ~ ~ ~ ~ : M ~ ~ - F ~ ~ , 9.5 charge will be added for returned checks. available on request. much sooner). -

For faster service, fax your orders 510-535-1295

(
CHECK ENCLOSED (Payable to: FIG)

VISA Mastercard
Card Number
Signature

Expiration Date - MEMBERSHIP

7.596: Sonoma; 7.7596: Fresno. Imperial.
Inyo. Madera. Orange. Riverside. sacra^
rnento. San Benito, Santa Barbara. San Ber-
nardino. San Diego. and San Joaquin;
8.25%: Alameda. Contra Costa. Los Angeles
San Mateo. Santa Clara, and Santa Cruz;

XIV-6

- Sub-Total
10% Member Discount, Member #

**Sales Tax on Sub-Total (CA only)
Postage: Rate x #s

*Membership in the Forth Interest Grou
New URenewal $40/46/R .

the addrcss into memory. This is accomplished by the phrase

SMUDGE - F I N D

I F DROP , E L S E 0 ERROR THEN

SMUDGE

(It is possible to dispense with the necessity for naming
the namesake word by playing with the contents of the user
variable IN [>IN to neo- and mczoforthwrightsl. The imple-
mentation will be left as an exercise for the student. It was
not implemented to save space in the dictionary, not because
the author was lazy.)

Another general caveat is that the optimi7er must not
optimize across branch terminations. While it might be
acceptable to optimize the phrase FOO F@, the phrase FOO
THEN F @ is not readily optimized. As THEN is an immediate
word and leaves nothing in the dictionary where the
optimi7~r can detect its passage, we must redefine it to leave
a flag. This is done on screen 585. This is why the run-time
portions of our optimizers examine the variable OPT irnrne-
diately after they examine STATE.

Two defining words have been produced. UNARY is used
to optimize words which are unary operators. That is, they
take one item from the stack and operate on it, leaving one
or zero items on the stack. BINARY is for words which take
two items on the stack, and leave one. For examples of
daughter words, see screen 589.

The Implementation
With the basic concepts laid down, we can expand our

optimizer in three ways. We can add new defining words, for
new classes of optimizers. We can add new daughter words
to the existing defining words. We can add new capabilities
and, if needed, new parameters to the existing defining
words and their daughter words.

'I'he last method of extension is how the optimizer words
were produced in the first place. The progranuner started out
with a default action (cornpile the namesake, as usual), and
one test and one action for a desired condition. As new
phrases were considered for optimization, the nesting of IF

... E L S E ... THEN clauses continued apace.
Thls methodology allowed for incrcnlcntal tcsting of the

words under development. Screen 5CX) shows a test for the
binary operator AND. The test is done by compiling two
words. One is a code definition, consisting of the dcsired
output for the compiler. The other is a tcst high-level word
which exercises thc optimizer. Screens 591 and 592, not
shown, contain the targct dcfining word and daughter
words.

Thc last two lines of the screen cornpare the two words
and disassemblc\dccompile them both automatically as part
of the compila~ion process. These two tests almost instandy
indicate problem areas with words under clevelopment.
Automated testing of compiler output in this manner allowed
very fast, reliable development of the optimizers, and was
essential to the success of the projcct.

Once the basics of the optimizing code havc bcen worked
out, it remains only to incrementally add hnctions to analye the
code and handle the phraxs whex optimization is h i r e d

Selecting Phtases for Opthdzation
If you havc your own target compiler andncrcleus source,

the best way to optimizc all possible applications is to
improve the nucleus. Anything that improves BLOCK will
improve words that call BLOCK. So as PastForth was dcvel-
oped, optimizers were added to the target compiler as well
as to thc FastForth cnvironmcnt. The choice of phrases to
optimizc reflects an effort to improve the nucleus first, with
improvements elsewhere secondary.

As noted, the phrase <USERVARIABLE> F@ shows up all
over the nucleus. Similarly, <USER VARIABLE> F ! , <USER

VARIABLE> O F F and <USER VARIABLE> 1+ ! . The optimi-
zations of F @ and F ! were primary, with the others second-
ary. These are the phrases to be optimized by the optimizer
defining word UNELRY, on screens 5% and 587.

These words also operate with variables and often with
constants. Both variables and constants compile to in-line
literals, either in the form of <value> @ #L S - [MOV, or in
the form of <value> # DR7 MOVQ, DR7 S - [MOV, for
literals in the range of (hex) -80 to 7f. However, since most
variables and constants used as variables will be long values,
it is essential to detect long literals, with short ones a possible
addition for the student.

'l'he long literal form cornpiles into:

<value> @ # L S - [MOV,

After manipulation by F @ the code should look like this:

<value> @ # L ARO MOV, ARO [S - [MOV,

After manipulation by F ! the code should look like this:

<value> @ # L ARO MOV, S [+ ARO [MOV,

This means that the code in UNARY will twiddle the
literal's opcode to change ib destination, and lay down a new
instruction. Since the instruction will vary with the word
being compiled, this must be provided as an operand to each
optimizer as it is compiled. This instance is handled on screen
587, lines thrcc and four.

With nuclear optimization in mind, the phrase <USER

VARIABLE> F @ F @ is handled as well. 'l'his phrase shows up
in places that affect compiler speed, such as in -FIND or
LATEST. Any applications which use double indirection will
bcncfit.

The next defining word for optirnizcrs is thc family of
binary words. These are words which, prior to optimization,
take two operands from the stack and return onc. Thcsc arc
+, -, erc., as indicated on screen 589. In code they take the
form:

S [+ DR7 MOV, DR7 S [<opcode>, NEXT

If we can detect literals and user variables, and see to it
that their contents are left in DR7, we can then compile the
appropriate opcode to complete the operation, saving a push

Forth Dimensions 23 January 1993 February

to and a pop from the data stack.
For example, adding a byte literal to the top of the stack

bccomes;
<value> # DR7 MOVQ, DR7 S [ADD,

Similarly, adding the contents of a user variable to the top
of the stack goes from:
<user var iable> U & [DRO MOV, DRO S - [MOV,

S [+ DR7 MOV, DR7 S [ADD,

<user variable, U & [S [ADD,

This optimization gets rid of three instructions and
produces an optimization of fewer instructions than original
source words. Not bad for not being an example of Moorish
architecture.

To return to the original example, an updated table taking
into account the optimizer is as follows:

- -- - - -

Proaressive o~timization improves the e x a m x i

Comparison: Traditional Compilers
A conceptually simple but very powerful Forth codc

opGilrizcr; mii be I-riid in five screens, less lhan two Isages.
One has problems imagining a traditional compiler with
optimization occupying so small a source codc space. Also,
one has a hard time imagining the likes ofAT&T or Microsoft
releasing source for their compilers. And you don't have to
call a !XO number to get support.

Furthermore, the optimizer presented here is a complete
unit, and can be removed from the FastForth environment
without any changes except, of course, in the size and speed
of the generated code. It is dependent only upon the nature
of the target processor.

Additional phrases may be selected for optimization by
the user, who need only add them to the compiler in the
traditional Forth manner. Eventually, a diminishing return of
better speed and code size must be offset against develop-
ment time and costs. Unlike the traditional compiler, this

tradeoff may be made by the

Item JSRlBSR wl Optimizer Indirect Threaded
code field 0 bytes Four bytes
SCR Part of a four-byte instruction

laid down in line. Four bytes
The rest of the four-byte instruction. Four bytes
Two, four or six bytes of BRA or JMP. Four bytes

su&&s L3uwks
10 bytes, maximum 20 bytes

F@
LIST
exit code
Total

end user, the application pro-
grammer, if he wishes. In fine
Forth wadition, the application
programrmr may modify the
conipiler to suit his applica-
tion, rather than the usual
rnctfiodology of modifying the
application to fit the compiler's
procrustean bed.

Indeed, the very notion of
- - -- ---- I an application programmer

I --
-- - - - -- I having the abillty to modify his compiler is a heresy to the

Total control
MI FORTH"

h r Programming Pmfessionals:
an expanding family of compatible, high-
perf~rmance, compilers for micmcornputers
For Development:
Interactive Forth83 InterpreterlCompiiers
for MS-DOS, OS12, and the 80386

16-bit and 32-bit implementations
Full screen editor and assembler
Uses standard operating system files

* 500 page manual written in plain English
Support for qraphics,floatinq point, native code seneration

I . . - . - . - I

1 For Applications: Forth433 Metacornpiler 1
uniq;itable-driven multi-pass Forth compil*r
Compiles compact ROMable or disk-based applications
Excellent error handling
Produces headerless code, compiles from intermediate states,
and performs conditional compilation
Crosscompiles to 8080,Z-80,8088,68000,6502,8051,8096,
1802,6303,6809,68HC11,34010, V25, RTX-2000
No license fee or royalty for compiled applications

Laboratory Microsystems Incorporated
Post Off~ce Box 10430, Adarir~n delRey, CA 90295

Phone Credit Card Orders to: (310) 306-74 12
FAX: (3 10) 301-0761

ayatollahs of traditional cornputing.

Conclusions
The FastForth code optimizer produces fast, efficient

code. It is easy to understand, and can be modified readily
by the end user. It is very powerful and conceptually very
simple. Indeed, anyone reasonably familiar with the instruc-
tion set of his target processor and the inner workings of his
Forth can write one. Like Forth itself, it makes an abattoir of
the sacred cows of computing.

Availability
In the best Forth tradition, the code is released to the

public domain. Enjoy it in good health.
FastForth for the Atari ST, including the above code, may

be had in alpha release from Ihe author, Charles Curley, P.O.
Box 2071, Gillette, Wyonling 82717-2071. Please consult the
author for the current state of documentation, etc.

Charles Curlcy is a long-time Forth nuclear guru who lives in Wyoming When not
working on computers he teaches firearms safety and personal self defense. HIS
forlhcoming book Pohtc Soctety covers federal and stale f~rearms lcg~slation in
lavman's tcrms.

1 -- - . I

January 1993 February 24
I

Forth Dimensions

Optimizing Forth /

S c r # 5 8 5

0 (o p t i m i z e r s f o r : defs (2 2 3 9 2 CRC 1 1 : 0 5)

1 BASE F @ HEX
2 0 VARIABLE OPT (no t p a r t i c u l a r l y r e -en t r an t !)

3
4 : THEN HERE OPT F ! [COMPILE] THEN ; IMMEDIATE

5
6 : BEGIN HERE OPT F ! [COMPILE] BEGIN ; IMMEDIATE
7
8 : OPGET (addr c t --- I get operand c t bytes f r o m addr)

9 + W @ ;

1 0
11
1 2 -->
13
1 4
1 5

S c r # 5 8 6
o p t i m i z e r s : u n a r y (15 4 9 2 CRC 8 : 3 7)

UNARY CRF,ATE SMUDGE -FIND I F DROP , ELSE 0 ERROR THEN
SMUDGE W, W, W, IMMEDIATE
DOES> STATE F @ (o n l y i f c o m p i l i n g . . .)

I F HERE OPT F @ - (n o t f o l l o w i n g a b e g i n)
I F HERE 6 - W@ 2 7 3 C = (f o l l o w i n g a l i t e r a l ?)

I F 4 OPGET HERE 6 - W ! (yyy ** @ # I XXX,)

ELSE HERE 2 - W@ 2 7 0 8 = (a r o s - [mov, eg use r)
I F -2 ALLOT HERE 4- W@ 41EE = (u s e r v a r i a b l e ?)

I F 6 OPGET HERE 4- W! (YYY U ** & [XXXI 1
ELSE 8 OPGET W, THEN [(yyy arO [xxx, 1

S c r # 5 8 7
0 (o p t i m i z e r s : unary (2 1 4 9 2 CRC 8 : 1 5)

1 1 ELSE HERE 4- W@ 2 7 2 3 = (u s e r f@ o p t i m i z e)
I F 2 0 6 E HERE 4- W! 8 OPGET W,

ELSE HERE 6 - W@ 2 7 3 9 = (l i t e r a l f@ o p t i m i z e)

I F 2 0 7 9 HERE 6 - W! 8 OPGET W,

ELSE F@ <COW> THEN THEN THEN THEN
ELSE F@ <COME'> THEN (f o l l o w i n g br r e s o l u t i o n

ELSE @EXECUTE THEN ; (no t c o m p i l i n g

2
3
4
5
6
7
8
9

1 0 : BINARY CREATE SMUDGE -FIND I F DROP , ELSE 0 ERROR THEN
11 SMUDGE W, W, IMMEDIATE
1 2 DOES> S T A T E F @ [(o n l y i f c o m p i l i n g . . .)

13 -->
1 4
15

f a s t F o r t h on A t a r i ST (c) 1985-92 by Charles Curley
T u e s d a y 6 / 1 0 / 9 2 1 1 : 2 0 : 0 8

Forth Dimensions 25 January 1993 February

S c r # 5 8 8

0 (b ina ry d e f i n i n g word (2 1 4 92 CRC 8 : 1 5)

1] I F HERE OPT F @ - (not fo l lowing a begin)
2 I F HERE 4- C@ 70 = (byte l i t e r a l ?)

3 I F HERE 4- E TOGGLE (xx # dr7 moveq,)

4 -2 ALLOT 4 OPGET W, (dr7 s [xxx,)

5 ELSE HERE 6 - W@ 273C = (l a r g e l i t e r a l ?)

6 I F 6 OPGET HERE 6 - W! (yy S [XXXI 1
7 ELSE HERE 4- W@ 272E = (u s e r f @ ??)

8 I F HERE 4- 9 TOGGLE 4 OPGET W, (ofuse r s [add)

9 ELSE HERE 6 - W@ 2 7 3 9 = (l i t e r a l f @ ? ? 1
1 0 I F HERE 6 - 9 TOGGLE 4 OPGET W, (lit dr7 mov,)

11 ELSE F@ <COW> THEN THEN THEN THEN

1 2 ELSE F @ <COW> THEN (fo l lowing b r r e s o l u t i o n)

13 ELSE @EXECUTE THEN ; (not compiling)

1 4 -->
15

1 . w . lit by te lit
6 9 3 DF93 BINARY + +
4 9 3 9 F 9 3 BINARY - -

9 3 8 F 9 3 BINARY OR OR

2 9 3 C F 9 3 BINARYANDAND

A 9 3 BF93 BINARY XOR XOR

0 (daughter words
1 (o p g e t 8 6 4

2 5 2 9 0 52AE 52B9 UNARY 1 + ! I + !

3 4 2 9 0 42AE 42B9 UNARY OFF OFF
4 2 0 9 B 2 D 5 B 23DB UNARY F ! F !

5 2 7 1 0 2 7 2 3 2 7 3 9 UNARY F @ F@

6
7 (
8
9

1 0

11
1 2

13 BASE F !

1 4

1 5

Scr # 5 9 0

(2 1 4 92 CRC 7:08)

FORGET TASK
BASE F@ >R HEX

0 \ test a r e a f o r macro mods
1 DEBUG FORTH DEFINITIONS
2 : TASK ;
3 : ?LEN: [COMPILE] ' 2- W? ;

4 0 VARIABLE SNARK

5 CODE FOO o f u s e r f l d d r7 mov, dr7 s [and,
6 snark @#l dr7 mov, dr7 s [and,
7 7f # dr7 movq, dr7 s [and,
8 f f f f #1 s [and,
9 NEXT ;C

1 0

11 1 2 +THRU

1 2 : BAR f l d f @ and snark f @ and 7f and f f f f and ;

13
1 4 R> BASE F! EDITOR FLUSH ?CR ?LEN: FOO ?LEN: BAR
15 ' FOO DUP 2- W@ ' BAR EDITOR -CITEXT . UN: BAR UN: FOO ; S

f a s t F o r t h on A t a r i ST

Tuesday 6 / 1 0 / 9 2 1 1 : 2 0 : 1 4

(c) 1 9 8 5 - 9 2 by Charles Curley

January 1993 February 26 Forth Dimensions

Math-

Prof Tim Hendtlass
Hawthorn, Australia

I
you allocate for the fmed dccimal places, the resolution and
the range vary inversely (e.g., the greater the resolution, the
smaller the range). Fixed-point math is very closely related
to integer math, except that all numbers are stored internally
after having been multiplied by an integer scaling [actor.
They are divided by this scaling factor before being output.
This allows a numbcr of decimal places to be provided while

, still treating the numbers as integers. Since you still represent
I numbers in (say) 32 bits, the actual range would be that for

32-bit integers divided by the scaling factor. See Table Onc
for signed numbers, for which the range is the difference
between the largest and smallest numbers that can lx
represented. (For unsigned integers the range would be the
same, but from zero to one more than twice the value shown
under "Iargest positive number.")

The title of this article is a deliberate double entendre.
Whatever one's feelings about mathematics in general,
arithmetic (at least) is going to be needed sooner or later in
your programs. One of the most striking things about Forth,
quickly noticed by people who are used to another language,
is that 16-bit integers are the only types of numbers appar-
ently directly supported in basic Forth. A closer inspection
shows that this is not strictly true, but certainly there arc no
floating-point numbers defined in the core -ix-ords of Forth.
The reason is, of course, that you can addanything you might
want or need to Forth, so why saddle people with things they

/ nlay not need?If floating point is really required, for example,
you just add it, to whatever accuracy you need. The
collection of routines in this article are my compilation of

i math words with varying precision, speed, and portability. I
Flnatmg-point numbers are stored in two parts, one

expressing an integer number and the other the pvwer of ten
(usually) to which this integer should be raised to give the
final numbcr. If this power (the exponent) is positive, the
number represented can kc very large and the resolution
small (ten to the power of the exponent). If h s power is
negative, the number represented can be very small and the
resolution high. Using floating-point representation, h s
tradcoff between range and resolution can alter dynamically
without any explicit attention by the programmer as the
magnitude of the numbers being used changes.

1

I
Single-precision Integer Arithmetic

This is fully provided in F-PC, as in all Forths. The largest
positive signed number that can be represented in I6 bits is

; ~32767 and the largest negative signed number is -32768. The
j smallest number is zero. Of course, since we are dealing with
I integers, no decimal points are allowed. The four basic
j functions (add, subtract, multiply, and divide) are provided,
i plus modulus (MOD), absolute (ABS), and special routines to

multiply or divide by two (2 * and 2 /). In binary, multiplying
and dividing by two are the same a s just shifting all bits in the
number left and right, respectively, by one place. In the case
of a left shift, the bit moved into the least significant place is
xru ; iri d ~ e case uf a righ~ shufi, the bil moved in as h e lnosl
significant bit must be the same as the previous most
significant bit, in order to preserve h e sign of h e number.

did not write all of them and have gratefully acknowledged
the original authors in the texl.

Before rushing in to add new math words with extra
capabilities, it is wise to see if these capabilities are really
needed. In some situations certainly, but not in others. Since,
provided the same algorithms are used, floating-point math
executes more slowly than fixed-point math, and fixed-point
math executes more slowly than double precision, and
double precision executes more slowly than single-precision
math, it makes sense from the point of view of speed not to
use any more capability than you need. Also, the code size
in bytes will vary depending on the precision of the math you
use, and whether it is written in high-level Forth or mainly in

ForNi Dimensions

assembly language. As well as the code, there are tables
showing the relative speeds and memory requirements of the

I words described; this is to allow the reader to pick the one 1 that best meets the requirements of the task at hand.
First let us define a couple of terms concerning the I representation of numben: the resolution and the range. ',.he

/ resolution is the minimum possible change that can be
I represented in a number format. For integers it is one. The

range is the difference between Lhe largest and smallest (or,
in the case of signed numbers, the most negative) nurnkrs
that can tx expressed. Integers' resolution is always one, and
chc range goes up as thc nunlbcr ofbits in the integer increases.

lor fmcd-point numbers, the nunlbcr is expressed in a
single quantity. Depending on how many bits ofthis quantity

January 1993 February

Figure One. 32-bit integer arithmet~c. I
----- -- -- . - - .- - - - 1 I

Multiply two doubk-predsion ntlmbers to give a double-precision product
Unsigned with Q V ~ W check
: UD*C (ud l ud2 -- ud3) \ Unsigned double * unsigned double = unsigned double

dup>r r o t dup>r > r over >r \ pu t a c c b on r e t u r n s t a c k
> r swap dup>r \ pu t a d onto r e t u r n s t a c k
um* \ b*d
0 2r> urn* d+ 2 r> urn* d4 \ o f f s e t 16 b i t s , add on a*dtb*c
0 2r> urn* d+ \ o f f s e t another 16 b i t s , add on a*c
o r 0<> abor t " D* overflow" \ check f o r overflow

Unsigned wfthout overflow check,
: UD* (ud l ud2 -- ud3)

r o t >r over >r >r over >r
um*
2 r> * 2r> * + +

\ Unsigned double * unsigned double = unsigned double
\ pu t c b a d on r e t u r n s t a c k
\ b*d = p a r t of 32 b i t answer
\ a*d+bxc= a d d i t i o n t o t o p 1 6 b i t s

r

Signed with or without overflow check (replace ud* by ud*c to check for overflow)
: D* (dl d2 -- d3) \ Signed double * s igned double = s igned double

dup>r dabs 2swap dup>r dabs \ # s +vet keep i n f o t o work out f i n a l s i g n
ud* \ g e t 32-bit answer (ud*c f o r overflow check)
2r> xor ?dnegate \ work out and apply f i n a l s i g n

I

Division (UO * z16 +U1) / (VO * 216 + ~ ~) = (~ g * 2 1 6 + ~ ~)
\ Use f a s t a lgor i thm, remainder r e q u i r e s an a d d i t i o n a l
\ 32-bit m u l t i p l i c a t i o n and s u b t r a c t i o n .
: T* (ud un -- u t) \ Unsigned double * unsigned s i n g l e = unsigned t r i p l e

dup r o t um* 2>r \ high-part of answer t o r e t u r n s t a c k
um* 0 2 r> d+ \ g e t low-part ans o f f s e t 16 b i t s add on high-part

I

: T/ (u t un -- ud) \ Unsigned t r i p l e / unsigned s i n g l e = unsigned double
> r r@ urn/mod swap \ d i v i s o r t o r , d i v i d e t o p 1 6 b i ts , r e m t o t o p
r o t 0 r@ um/mod swap \ combine with next 16, d i v i d e t h e s e by d i v i s o r
r o t r> um/mod swap drop \ r epea t f o r l a s t 16 b i ts , l o s e f i n a l remainder
0 2swap swap d+ \ combine p a r t s of answer t o f o r f i n a l answer

: U*/ (ud un l un2 -- ud2) \ ud * un l / un2, t r i p l e in t e rmed ia t e product .
>r t * r> t /

: UD/ (U 1 Uo V l V o -- A 1 A0) \ Unsigned 32-bit by 32-bit d i v i d e . No remainder
dup 0= \ t o p 1 6 b i t s of d i v i s o r = O?
i f swap t / \ simple case , make it a t r i p l e , do t h e d i v i s i o n
e l s e \ more involved case

dup 65536. r o t 1+ um/mod >r \ work out s c a l i n g f a c t o r D,save on r e t u r n s t a c k
drop r@ t * drop 2>r \ s c a l e denominator, move t o r e t u r n s t a c k
dup 0 2 r @ u*/ d- \ c a l c u l a t e (U-UO*Wl/WO)
2 r> r> - r o t n i p u*/ \ mul t ip ly by (D/WO)
n i p 0 \ /ZA16, make answer double

then

: D/MOD (d n l dn2 -- drem dquot) \ Divide two s igned double numbers.
2 p ick over xor > r \ work out s i g n of answer
dabs 2swap dabs 2swap \ conver t numbers t o p o s i t i v e
4dup ud/ 2dup 2>r \ do t h e d i v i s i o n , save copy of q u o t i e n t
ud* d- \ c a l c u l a t e t h e remainder
2 r> r> ?cinegate \ r e t r i e v e answer, apply f i n a l s i g n

,
: D/ (d n l dn2 -- dquot) \ Divide two s igned doubles, no remainder.

2 p ick over xor >r work out s i g n of answer
dabs 2swap dabs 2swap \ conver t numbers t o p o s i t i v e
ud/ \ do t h e d i v i s i o n
r> ?dnegate \ r e t r i e v e answer, apply f i n a l s i g n

January 1993 February 28 Forth Dimensions

1 Table One. I
<------.-.---------- Range ----------..---.-.> Resolution

Word Decimal Scaling Largest positive Largest negative Smallest -
size places factor number -n um be;

Integer 16 0 n a 327 67 -32768
increment
1

Integer 3 2 0 na 2,147,483,647 -2,147,483,648 1
Fixed point 32 1 10 214,748,364.7 -214,748,364.8 -1
Fixed point 32 2 100 21,474,836.47 -2,147,483,648 .01
Fixed point 32 3 1000 2,147,483.647 -2,147,483.648 -001
Fixed point 32 4 10000 214,748.3467 -214,748.3468 -0001

Numbers can be entered in line by just typing them, and are
printed with . (and its formatted cousins . R etc.).

Also provided are the words Wt, W*, and UM/MOD, the
building blocks on which all higher-precision arithmetic is
built. The first two take two unsigned 16-bit numbers and add
or multiply them to give an unsigned 32-bit result. UM/MOD

divides an unsigned 32-bit number by an unsigned 16-bit
number to give a 16-bit result and a 16-bit remainder. One
thing Forth does not have is a carry bit-if the result of a
mathematical operation is too large to fit into the available
space, the topmost bit(s) will be lost. Since this can legiti-
mately happen when performing multi-precision arithmetic,
we need to find a way to allow for these "lost" bits-in short,
to synthesize a carry bit. Ths is not hard, but adds a little to
the time taken to do things. Routines written in assembler can
use the internal carry bit of the processor, but will no longer
be portable to other processors.

Double-precision Integer Arithmetic
A limited double-precision capability is built into all

Forths with double-number extensions, and F-PC is no
exception. A double-precision number is one that is ex-
pressed in 32 bits, rather than the 16 bits of a single-precision
number. Since these are still integers, double-precision
numbers can represent much larger numbers, from
+2,147,483,647 to -2,147,483,648, in fact. When do you need
them? When you can't express what you want with single
precision, naturally. For example, suppose you wanted to
store the number of cents you made per year; in all
probability, 16 bi~s would not t x enough, as it would only
allow you to earn up to about $320 per year. If you think
about that example, it may occur to you that, since cents are
the fractional varts of a dollar, you have a sort of two-decimal- . ,
place, fured-point arithmetic here. As long as you add or
subtract numbers, the fured implied decimal point will stay
in place; but if you multiply or divide, the implied decimal
point gets messed up. Below we will see how to correct that,
but first let us consider what double-precision integer
facilities are provided.

Of the four basic functions, only addition (D+) and
subtraction (D-) are provided directly; in a moment we will
generate D* and D / (among others). To print a double
number, there is D . (and its formatted cousin D . R). A
double-precision absolute value word is provided (DABS).
'I'here are also limited double-precision comparisons: D=, D>,
D<, and DO=. To input a double number, either from the
keyboard or in line in a definition, all you need to do is put

a decimal point in the number somewhere. This use of a
decimal point to indicate a double number can lead to
misunderstanding. It is intended for when you arc using an
implied fued decimal place, but it often misleads people into
believing that the decimal part will be correctly handled. It
won't, unless you specifically use words that do so. If you
were to enter the number 31415., the number in the two
positions on the stack would be no different than if you had
entered 3.1415. I-Iowever, the number of digits after the
decimal place is recorded in the system variable DPL,

especially for when you need this information. (As the same
variable is used for all number input, you had better collect
the value from DPL and use it, or put it somewhere safe
before the nexL number arrives.) In the first case above, DPL
would contain zero; in the second case four.

'I'he main words we need to add to flesh out our double-
precision integer capabilily are D * and D /. D* may produce
an answer that is too big to fit into 32 bits (just as * may
produce an answer too big to fit in 16 bits). It is possible to
provide a run-~ime check to detect this (just make sure that
the top 32 bits of the answer are zero), but this takes time.
If you are sure that overflow will not occur in a problem, there
is no need to calculate the top 32 bits of the answer. Code
to perform 32-bit by 32-bit multiplication, with and without
overflow check, is given below. In each case, we do
unsigned arithmetic (both numbers are assumed positive);
for signed arithmetic, we work out the sign of the answer,
make both numbers positive, do the multiplication, and then
apply the correct answer sign.

The algorithm for 32-bit multiplication is built fromthe 16-
bit multiplication we already know how to do. Consider the
following,

(a'2l6 + b) is one 32-bit number and (c*z16 + d) is the other.
Note by expanding it we have reduced one 32-bit by 32-bit
multiply to four 16-bit by 14-bit multiplies, which we know
how to do.

If we want to perform an overflow check, we get the full
32-bit answer by doing four 16-bit multiplies, offsetting their
answers by the correct number ofbits, and adding. The result
is a 64-bit (i.e., quad-precision) number. If the numbers were
both positive and the top 32 bits of the result are not zero,
the result was too big to fit into 32 bits.

If an overflow check is not needed, we proceed by noting
that a*c must equal zero (otherwise the result would not fit

Forth Dimensions 29 January 1993 February

Figure Two. =-bit fixed-point arithmetic. /
Defining the fkecl-point structure
VARIRBLE EDPL
VARIABLE FSCL
: FPLACES (-- n) fdp l @ ;
: F S W (-- n) f s c l @ ;
:FIXED (n - - 1

0 max 4 min fdp l !
1 fdp l @ 0 ?do 10 * loop

\ holds number of implied decimal places
\ holds t he sca l ing f ac to r we a r e using
\ re tu rn number of implied decimal places
\ re tu rn t h e sca l ing f ac to r w e a r e using

\ c l i p t o between 0 and 4 decimal places
f s c a l e !

\ s t o r e #places, ca lc . & s t o r e s ca l i ng f ac to r

3 F I X E D
Outputting numbers
: (F .) (f n -- adr l en)

tuck
dabs
<# b l hold
fdp l @ 0 ?do # loop
a s c i i . hold
s
r o t s ign #>

I

: F. (f n - - (f .) type ;
: F.R (f n p --)

>r (f .) r> over - 0 ?do b l

,
Inputting numbers
: DlO* (d l -- 10*dl)

d2* 2dup d2* d2* d+

\ defau l t t o t h r ee decimal places

\ prepare fixed-point # ready t o output
\ keep copy of top byte so we know s ign
\ convert t o pos i t i ve number
\ s t a r t conversion with a leading blank
\ convert p laces a f t e r decimal point
\ put a decimal point i n place
\ convert in teger pa r t
\ put s ign i n place, t i d y s tack

\ p r i n t f ixed-point number
\ p r i n t r i g h t j u s t i f i e d i n a f i e - ld of p places

emit loop type
\ convert, pad with blanks a s needed, then type

\ multiply a 32-bit number by 10
\ 8*d+2*d=lO*d

,
: FIX (dn -- f n)

dp l @ O< \ s ing le o r double number?
i f s>d 0 dp l ! then \ i f s ing le , convert t o double
dpl @ £places <> \ # decimal places entered not fplaces?
i f dpl @ £places < \ too few places specif ied?

i f fplaces dp l @ ?do d10* loop \ yes, too few so s ca l e t h e number up
e l s e abort" Too many decimal places" \ no, too many - w e c an ' t handle t h i s
then

then
I

Multiply two fixed-point numbers, producing a fixed-point result
: FIX* (£1 £2 -- fl*£2)

r o t 2dup xor >r \ s ign of answer t o re tu rn stack
- rot dabs 2swap dabs \ make both numbers pos i t i ve
dup>r r o t dup>r >r over >r \ put a c c b on re tu rn s tack
>r swap dup>r \ put a d onto re tu rn s tack
um* \ b*d
0 2r> um* d+ 2r> um* d+ \ o f f s e t 16 b i t s , add on a*d+b*c
2r> * + \ add on low byte of a*c
f s ca l e mu/mod \ divide ms32 b i t s , ans t o R.
0 - 3 abor t" Fixed * Overflow!" >r \ unless overflow quot ient t o R
f s c a l e mu/mod r o t drop \ divide remainder and l a s t 16 b i t s
r> + r> ?dnegate \ assemble f i n a l answer, negate i f required

6ivide two fixed-point numbem, producing a fixed-point result.
: FIX/ (£1 £2 -- fquo t=f l / f2) \ Divide two fixed-point numbers

2 pick over xor >r \ work out s ign of answer and save
dabs 2swap dabs 2swap \ make a l l numbers pos i t i ve
2dup >r >r \ keep copy of d iv i so r
dlmod f s c a l e 0 d* \ s ca l e in teger pa r t of answer
2swap f s c a l e 0 d* \ and then s ca l e remainder
r> r> d/ \ divide remainder by d iv i so r
d+ \ add f r a c t pa r t of ans
r> ?dnegate \ put on f i n a l s ign

,

January 1993 February 30 Forth Dimensions

Forth Dimensions 31 January 1 9 3 February

inlo 32 bits), so there is no point in performing t h ~ ~ multiply.
Similarly Cbc+ad) must give an answer that is no bigger than
16 bib. So only b'd need bc done to 32-bit precision, and
@c+ad) to 16-bit precision, and a'c need not be done at all.
Naturally, this makes this version faster than the one with
overflow check.

The traditional method to perform a 32-bit by 32-bit
division is by a subtract-and-shift algorithm (the way we were
taught at school, except bit by bit rather than digit by digit),
which gives both the result and the remainder. This method
can be used to provide division of any precision, not just 32
bits. The method shown here uses an algorithm designed
(only) for 31-bit unsigned numbers (that is, 32-bit signed
numbers without the sign). The advantage of this new
algorithm is speed: it is more than twice as fast. The algorithm
is described in Knuth's book', but I came across it first in an
article by Nathaniel Grossman in Forth IXmmions2. I have
recoded it completely for faster execution.

The algorithm works as follows. Let the dividend be
u0*216+ U1 and the divisor be ~ ~ * 2 1 6 + ~ 1 . Also let D be a
large integer not bigger than 65536Ng. For simplicity of
calculation, let D= 65536/(Vo-1) as suggested by Knuth.
Then our division sum is:

point; for simplicity, let us call this N. Any number lhat docs
not have this number of decimal digits must be multiplied by
the appropriate power oftcn to get its implied decimal point
to line up with all the ochers. After a normal double-precision
multiply, the 64-bit answer will be too large by ION, so to get
the correct answer simply requires a division by ION.
Dividing by 10 is not as easy as dividing by two, unfortu-
nately, so this extra step adds a bit to the execution time.

Aftcr a division, the result will be too small by ION. But
just doing the division and then multiplying by loN would
lose precision. We must do the division, scale the remainder
up by loN, do an integer division of this remainder, and add
this result to the previous result to get a final result to thc
fullest precision possible.

The word to print a fmed-point number, F . (or F . R to
print the number right justified in a specified field), really
prints two numbers: a number representing the integer part
and a second representing the fractional part. These are
printedwith a decimal point in between (and leading blanks,
as required, in the case of F . R).

In this simple package, the user has to specify with the
word F I X that the number just entered is to be a f i e d
decimal point number. From the keyboard, this would be

done by entering 123.4 FIX,
u0*216+ u1 D * (u0*216+ ~ 1) for example. To put the same

- - where D * (vo *21 6+vl) = w0 *216+ w1 fiied-point number in a colon

vo *216+~1 w0*216+ wl definition, you would specify
it as [123.4 F I X] DLITERAL.

and The code in Figure Two
implements these words in a

u0*216+ U1 D UO * W1 straightforward way. By de-
- - * (~0*216+ u1) - plus an error term. fault, the number of implied

v0*216+v1 Wo*65536 W 0 decimal places is set to three;
modify the line 3 FIXED to

The error term is so small it may be ignored, unless we
wished to calcula~e the remainder. In practice, it is simpler to
find the remainder (if we need it) by taking away the product
of the answer and he divisor from the dividend. Also, we
must check that Vo is not zero; if it is, we must not use Lhe
relationship abovc, as wc will bc trying to divide by zero.
However, if Vo is zcro, our problcm is reduced to dividing
a 32-bit number by a 16-bit number, a very much simpler
task.

Thc code in Figure One iniplcments thc various versions
of D* and D/ in a straightforward way.

32-bit Fixed-point Arithmetic
The software to be described will allow you to choose the

number of decimal places you want and, therefore, the
scaling factor that will be used. 'lhe more decimal places you
want, the smaller the largest positive and negative numbers
you can handle, but the smaller the smallest number
increment you can represent.

'1'0 perform fied-point math, only the number input,
number output, multiplication, and division words need to
be changed. The addition, subwaction, and absulute value
double-precision words still work. First you rnust decide how
many decimal places you want to the right of Lhe decimal

alter the number of implied
decimal places to any integer between zero and four.

32-bit Floating-point Arithmetic
If you need a greater range of than can

be really accommodated in either 32-bit integer or 32-bit
futed-point arithmetic, but can tolerate lesser basic resolution
than 32-bit integers provide, you might consider 32-bit
floating point. T-Tere, some of the 32 bits are used to hold an
exponent, and the remainder are for the basic number. The
code shown below allocates 16 bits each to the basic signed
number and the signed exponent. The dynamic range is
probably unreasonably high, and one might be tempted to
increase the number ofbits allocated to the basic number and
decrease the number allocated to the exponent. The pro-
gramming ease of staying with 16-bit quantities for each, and
the speed penalty that would be incurred by dealing with
smaller parts of the number, strongly dictate otherwise. The
accuracy is a little better than four significant digits, about the
accuracy of the traditional logarithm tables that school
children suffered before the advent of calculators. The code
shown below, which implements such a 32-bit floating-point
number package, was originally writlen by Martin Tracy and
has only been slightly modified for greater speed by this
author. Martin called it "Zen" math. 'Ihere is also an add-on

(32 bit floating-point adwon and subtraction
: F+

r o t 2dup - dup 0< \ work out di f ference i n exponents
i f \ t op number has t he l a rge r exponent

Figure Three. 32-bit floating-point math.

negate r o t >r n ip >r swap r>
e l s e

swap >r n ip

-- -

then
>r s>d r> dup 0

\ Trim a double-number mantissa and an exponent of ten to a floating number.
; %'Kt24 (d n n = f)

> r \ exponent t o re turn s tack
tuck dabs \ save copy of sign, make double pos i t i ve
begin over O< over O<> o r \ MSB low word s e t o r top 1 6 b i t s no zero?

\ i f so, too b ig t o f i t i n t o 1 6 b i t s when signed
while

0 1 0 um/mod >r 10 um/mod n ip r> \ and increase exponent
repeat r o t ?dnegate drop r> \ apply s ign and f i n a l exponent

?do >r d10* r> 1-
over abs 6553 >
i f leave then

loop
r > over + > r
i f r o t drop
e l s e r o t s>d d t
then r> t r i m

I

: E'NEGATE
: F-

>r negate r> ;
fnegate f + ;

\ keep l a rge r and d i f f , swap mantissas
\ top has a smaller o r equal exponent
\ keep l a rge r (on re tu rn s tack) and diff

\ convert l a rge r t o double, top 1 6 b i t s >r
\ multiply mantissa by 10, decrement exponent
\ would a *10 cause overflow of these 1 6 b i t s ?
\ prematurely terminate loop i f so

\ ca lcu la te f i n a l exponent
\ top 1 6 b i t s were *ve lose copy of bottom 1 6
\ top 1 6 b i t s -ve, convert t o double and add on
\ ge t f i n a l exponent and t r i m

\ add negative of t h e t op value

\ 32-bit floating-point multiplication
: F* (£1 £2 -- f 3)

r o t + >r
2dup xor >r
abs swap abs urn*
r> ?dnegate r> trim

t

\ 32-bit fioating-point division
: F/

over 0= abort" d / O e r r o r ! "
r o t swap - >r
2dup xor - rot
abs dup 6553 min r o t abs 0
begin 2dup d10* n ip 3 pick <
while d10* r> 1- >r
repeat 2swap drop um/mod
n ip 0 r o t ?dnegate r> t r i m

I

\ 32-bit floating-point input and output
\ Numbers t o be f l oa t ed must include a decimal point when entered.
\ DPL contains t h e number of d i g i t s entered a f t e r t h e decimal po in t .
: FLOAT (n -- f) \ f l o a t t h e l a s t entered number.

dp l @ negate t r i m
,
: F. (f - -) \ p r i n t a f l oa t i ng number i n fixed format.

>r dup abs 0
<# r@ 0 max 0 ?do a s c i i 0 hold loop
r@ O<
i f r@ negate 0 max 0 ?do # loop a s c i i . hold
then r> drop #s r o t s ign
#> type space

\ ca l c exp of answer, save on re turn s tack
\ save xor of mantissas too (s ign of answer)
\ make mantissas pos i t ive and multiply
\ apply s ign and then ge t exponent and t r im

\ check f o r divide by zero
\ get exponent of answer, put on re tu rn stack
\ ge t s ign of answer, tuck down on s tack
\ make number +ve, ensure d iv i so r < 6553
\ would d iv i so r * 10 be less than dividend?
\ yes, d iv i so r * 10, decrement answer exponent
\ now do t h e d iv i s ion
\ lose remainder, apply s ign get exp and t r i m

January 1993 February 32 Forth Dimensions

to Zen which extends it to calculate transcendental functions
(with an accuracy of only about three figures) wriucn
Nathaniel Grossman. This is not reproduced here; it can be
found in Dr. Uobbs Toolbook ofFortbVolumc l'wo, in the file
of theex words on GEnie's Forth RouncYl'able, or directly from
this author. The code in Figure Three implements Zen math.

Forth or Assembly Code?
All the words above are written in Forth and are thus able

to be transported from machine to machine. There are two
reasons why words written in assembly code will run faster.
Ohey will, of course, not be able to be ported to other
processols nearly as readily.) One reason is that, although
there is only a slight speed overhead involved in using the
Forth inner interpreter, this can accumulate to a small but
significant sum over enough operations. ?he second reason
is not as obvious, but accounts for more of the speed penalty
observed. Forth has no carry; if you add two 16-bit quantities
and the sun1 is too large to fit into 16 bits, the uppermost
(17th) bit of the answer is lost. In arithmetic involving more

the normal data stack, and any integers needed are obtained
from Lhc normal data stack. Words are provided to manipu-
late the floating-point stack; the name used is almost always
the name of the same operation of the data stack, but with
a leading F. lhus, wc have FDUP and FROT, for example.

SFLOAT not only provides a full set of arithmetic and
Lransccndental functions, it may also alter the outer inter-
preter of F-PC. The new outer interpreter allows you to enter
floating-point numbcrs in line. Any number with an cmbed-
dcd decimal point or with an exponent will tx: converted to
a floating-point nurnbcr. Any number without a decimal
point will be treated as a single-precision integer and placed
on the data stack. Any number with a decimal point at the end
will be treated as a double-precision integer and put on the
data stack. You can control whether you wish to use the
normal or the new outer interpreter at any time, by using the
words FLOATING and NOFLOATING. A list of words pro-
vided by SFLOAT can be found by inspecting the help file
that comes with SFLOAT.

than 16 bits, a carry is needed in order to do the Glcula-
t ionsyou have to synthesize one, which takes time. By
writing in machine code, you can make direct use of the carry
flag of the processor. ?he @-bit floating-point package
described below is written mainly in assembly language, and
is significantly faster than any of the other packages given.
Not all of this speed increase comes from using assembler-
the algorithms used are highly optimized. If you want the
fastest speed arithmetic possible for a given processor, you
must use the most eficient algorithms and assembly lan-
guage. The result will be larger than the simple algorithms
described above, and totally non-portable. Of course, a
hardware math processorwill always perform faster than any
software solution on thc main processor.

4&bit Floating-point Arithmetic, SFLOAT
?his is a full software assembly language floating-point

package for F-PC written (and copyrighted) by Robert L.

make stack operations an absolute
nightmare, so they arc given a stack
of their own. By default, the floating-
point stack is 100 floating-point num-
bers deep, but you can change this
just by altering one constant before

Relative Performance
Shown in Table 'I'wo are the timings for addition,

subtraction, multiplication, and division for each of the 16-
and 32-bit math capabilities shown above. All times are
relative, with a 16-bit signed add used as reference, and have
becn rounded to two significant figures. The times were
calculated by timing a loop that performed the required
operation 65,536 times, and deducting the ume ior an empty
loop. ?he actual times you get will depend on the processor
speed; on my trusty old 25 MHz '386SX, a 16-bit signed add
took about six microseconds. Also shown are timings for
SFLOAT. Just looking at the figures can bc misleading, as you
may be unintentionally equating apples with oranges, so a
number of explanatory comments are given below.

The multiply and divide times in row one are small, as the
PC processor has hardware 16-bit integer multiply and
divide. The far larger times [or multiplication and division in
row two show the penalty to be paid when you have to

you now have another (third) stack.
I Iolding the floating-point numbers
on the regular data stack would

you load the software. Words exped
their floating-point parameters on
the floating-point stack and leave
their floating-point results there. Any
flags that result from operations on
floating-point numbers are left on

32-bit unsigned integer,
written in Forth, portable

32-bit signed integer,
written in Forth, portable

Smith. It is in the file SMI'l'EI.ZIP .- -. -

32-bit fixed point,
3 decimal places,
written in Forth, portable

which comes as part of rhc F-PC
package. The size of a floating-point
number is 48 bits (six bytes). l h e
largest difference to get used to when
you load this software is the fact that

32-bit Zen floating point,
written in Forth, portable

Table l'wo= I
Description Add Subtract Multiply Divide
16-bit signed integer. 1 1 1.1 1.3
written in Forth, portable

48bit floating point, SFLOAT, 2.9
written in assembler, non-portable

. . -- J

33 January 1993 February Forth Dimensions

decimal point for f~ed -p in1

synthesize operations on long numbers out of repcared use
of short-length operators. Doubling the word size increased
the execution time by a much higher factor. owt three shows
that just adding the extra code to keep track of the implied

multiplication and division -- -

has added about another I Table Three.
- -

a separate exponent simplifies multiplication and division,
but complicates addition and subtraction. Since the actual
number in Zen is a Id-bit quantity, multiplication is done by
multiplying the 16-bit numbers and adding their exponents.

Memory requirements in bytes - - - -- -. -- - - - -- - - --
header code list
space space space total
.- -- - - --

50% to the time; except for
addition and subtraction,
fured-point arithmetic costs
significant time over integer
arithmetic. - / 32-bit integer, 4 functions 8 6 4 2 288 416 1 /

Math Package -- - - - - . -

For curiosity, the multi- I 32-bit fixed ~oint. 4 functions

h e inner inter1>reter(~?3x~) 1 SFLOAT full package 2380 7253 5756 1 5 3 8 9 1 1

plication word in row ~hree
was rewritten as in-line code.
 hi^ saves the time used by

and allows intermediate re- I
-. -. . - - -- - - -

sults to be kept in registers
instead of being pushed at the end of one word and / For &vision, the multiplication is replaced by division and the 1

32-bit floating point, 4 functions
SFLOAT, 4 functions only

immediately reloaded again at the stan of the next. This new 1 addition by subtraction. As a result, these words are faster I
version was faster, but only by about six percent. l'his modest I than their futed-point equivalents, which require a 32-bit I
speed increase must be weighed against the benefits of 1 multiplication and division of the result by a scahng factor. /
&ritinR in Forth so that the word is portable to other Forth / ow ever, addition and subtraction of fured-point numbers is 1

strange. The clue to understanding them lies in the way that I The times shown in row six seem little short of amazing, 1

systems, no malter what the processor. Also, Forth code is
much easier to understand and, therefore, to write and debug.

The 32-bit floating-point Zen package results may seem

considering that this is for 48bit floating point, and show I

trivial, while to do the same with floating-point numbers
requires that the numbers be shifted (scaled) so that their
exponents are equal before the required operation can be done.

Computer Support
For that second view on FORTH appli-

cations, check out The Computer .Journal. If you
run a classic computer (pre-pc-clone) and are
interested in finding support, then look no
further than TCJ. We have hardware and soft-
ware projects, plus support for Kaypros, S 100,
CP/M, 6809's, and embedded controllers.

Eight bit systems have been our mainstay
for TEN years and FORTH is spoken here We
provide printed listings and projects that can run
on any system. We also feature Kaypro items
from Micro Curnucopiu. All this for just $24 a
year! Get a FREE sample issue by calling:

(800) 424-8825

what can be done if you abandon the requirement for
portability and write in highly optimized machine code. Note
again the (relative) inefficiency of addition and subtraction
compared to multiplication and division. The routines used
are anyhng but trivial to understand (see the file SFLOAT.TXT,
for example, for an explanation of the divide algorithmused).
An assembly language routine using the same algorithm for
fured point would be faster than even these floating-point
times. I

Speed is only one criterion, another is the memory these 1
routines take up. Table Three shows the memory needed in
F-PC by each of the math packs. The smaller space quoted
for SFLOAT is with only the basic four mathematical func-
tions loaded; h e larger figure is for the full package, which I
includes many more functions. If you h&e a k t h co- I
processor, there is an equivalent package to SFLOAT called
FFLOAT, which also comes with P-PC and which is even
faster andsmaller. FFLOAT is, of course, totally non-portable. I

Choose your math routines aftcr considering your nced
for spced, precision, size, and portability. No one of them is
always the best.
1. DonaM E.Knuth, The Art of Compuler I'rogramming,

Volume Tm, AaUison-WeslcyPublisbing Company 1973.
2. Nutbaniel G m m u n , ' 2on . Diukiion a n d Shorl Rac- I

tions, "Forth Dimensions ~ 3 , Sqternber/October 15494. 1
- - - -- - - -- -.

Tlm Hc~dtlass, Ph D , IS an Assomate Professor respons~ble for the Sc~ent~fic
lnstrurnentatlon malor at Swlnburne lnsiltute of Technology He d~scovered Forth
In about 1980 and since has uscd ~t for research and for teachlng to about 80
students a year In research, he has used ~t In fields from lntell~gent adaptlve
technolog~cal support for Ihe elderly, lo hlghly d~str~buted lndustr~al data collec-
tlon Lo devlccs for tno measurement of capacitance under adverse cond~llons

January 1993 February 34 Forth Dimensions

\ Extra words needed t o implement 32-bit in teger , f ixed, and f loat ing-point ar i thmet ic .
anew 32math

.

1

* 32-bit Integer Arithmetic *
...

Math-Who needs it? I

.................................
* 32-bit In teger Mult ip l ica t ion *
.................................

\ Unsigned double * unsigned double = unsigned double (No overflow check)
: UD* \ unsigned 32-bit answer, no overflow check

r o t >r over >r >r over >r \ put c b a d on re tu rn s t a c k
um* \ b*d = p a r t of 32-bit answer
2 r> * 2r> * + + \ a*d+b*c= add i t ion t o t o p 16 b i t s

,
\ Signed double * signed double = signed double (No overflow check)
: D* \ signed, no overflow check

dup>r dabs 2swap dup>r dabs \ #s +ve, keep i n f o t o work out f i n a l s ign
ud* \ g e t 32-bit answer
2r> xor ?dnegate \ work out and apply f i n a l s i g n

\ Unsigned double * unsigned
: UD*C

dup>r r o t dup>r >r over >r
>r swap dup>r
um*
0 2 r> um* d+ 2r> um* d+
0 2r> urn* d+
o r 0<> abor t" D* overflow"

double = unsigned double (with overflow check)
\ unsigned, with overflow check
\ put a c c b on re tu rn s tack
\ put a d onto re tu rn s tack
\ b*d
\ o f f s e t 16 b i t s , add on a*d+b*c
\ of f another 16 b i t s , add on a*c
\ check f o r overflow

.
* 32-bit In teger Division *
...........................

comment :
\ Trad i t iona l algorithm, slow but g ives remainder d i r e c t l y

: Q2* (qn= a b c d - - q-12)
2swap dup >r
d2* 2swap d2*
r> O< negate s>d d+

\ S h i f t quad ~I-I l e f t one b i t .
\ save copy of c t o handle c a r r y l a t e r
\ do the two s h i f t s
\ perform t h e ca r ry i f needed

: D/ (dnl dn2 -- dquot) d/mod 2swap 2drop ;
: DMOD (d n l dn2 -- drem) d/mod 2drop ;
comment ;
\ Fast algorithm, remainder requires an add i t iona l mul t ip l i ca t ion and su t rac t ion .
\ Unsigned double * unsigned s ing le = unsigned t r i p l e
: T* (ud un -- ut)

dup \ ud un un
r o t \ udl un un udh
um* \ udl un high-ans .

2>r \ u d l un
um* 0 2r> d+ \ low-ans then add on high-answer a f t e r o f f s e t t i n g it 16 b i t s

\ Unsigned t r i p l e / unsigned s ing le = unsigned double
: T/ (u t un -- ud)

I I -- - . . - - -. -- - -- .. - - - - . -- -

Forth Dimensions 35 January 1993 February

I >r r@ um/mod swap \ d i v i s o r t o r, d iv ide t o p two words, rem t o t o p
r o t 0 r@ um/mod swap \
r o t r> um/mod swap drop
0 2swap swap d+

\ C a l c u l a t e ud * u n l / un2. T r i p l e i n t e rmed ia t e product .
: u*/ (ud un l un2 -- ud2)

> r t * r> t/ ;

\ Unsigned 32-bi t by 32-bi t d i v i d e . No remainder.
: UD/ (u d l ud2 -- ud3)

dup O = \ t o p 1 6 b i t s of d i v i s o r = O ?
i f swap t / \ make it a t r i p l e , do t h e d i v i s i o n
else

dup 65536. r o t 1+ um/mod >r \ work o u t s c a l i n g f ac to r , copy t o r e t u r n s t a c k
drop r@ t * drop 2>r \ s c a l e denominator, move t o r e t u r n s t a c k
dup 0 2 r @ u*/ d- \ c a l c u l a t e (U-UO*Wl/WO)
2r> r> - r o t n i p u*/ \ m u l t i p l y by (D/WO)
n i p 0 \ /2"16 (use t o p 1 6 b i t s o n l y) , make ans double

t h e n

\ Divides two double numbers. A l l numbers a r e s igned doubles .
2 v a r i a b l e temp1 \ t o s i m p l i f y s t a c k management
: D/MOD (dnl dn2 -- drem dquot)

2 p i ck over xo r > r \ work ou t s ign of answer
dabs 2swap dabs 2swap \ conver t numbers t o p o s i t i v e
4dup ud/ 2dup 2>r \ do t h e d i v i s i o n , s ave copy ans
ud* d- \ c a l c u l a t e remainder
2 r> r> ?dnegate \ r e t r i e v e answer, apply f i n a l s i g n

: D / (dnl dn2 -- d w o t
2 p i ck over xo r >r
dabs 2swap dabs 2swap
ud/
r> ?dnegate

\ work ou t s ign of answer
\ conver t numbers t o p o s i t i v e
\ do t h e d i v i s i o n
\ r e t r i e v e answer, app ly f i n a l s i g n

...
* 32-bi t Fixed-Point Ar i thme t i c x

...

\ .
\ * Defin ing t h e f ixed-poin t s t r u c t u r e *
\ .
v a r i a b l e f d p l v a r i a b l e f s c l
: FPLACES (-- n) f d p l @ ; \ number of implied decimal p l a c e s
: FSCALE (-- n) f s c l @ ; \ s c a l i n g f a c t o r w e a r e u s ing
: FIXED (n --)

0 max 4 min f d p l ! \ c l i p t o between 0 and 4 decimal p l a c e s
1 f p l a c e s 0 ?do 1 0 * loop f s c l ! \ s t o r e s c a l i n g f a c t o r

3 FIXED

\
\
: (F.) (f n -- a d r l e n

t u c k
dabs
<# b l ho ld
f p l a c e s 0 ?do # loop
a s c i i . ho ld
s
r o t s i g n #>

\ d e f a u l t t o t h r e e decimal p l a c e s

* Outpu t t i ng numbers *
...

,
: FIX, (f n --) (f .) t ype ;

\ prepa re f ixed-poin t # ready t o output
\ keep copy of t o p b y t e s o w e know s i g n
\ conver t t o p o s i t i v e number
\ s t a r t conversion wi th a l e a d i n g blank
\ conver t p l a c e s a f t e r decimal p o i n t
\ pu t a decimal p o i n t i n p l a c e
\ conver t i n t e g e r p a r t
\ put s i g n i n p l ace , t i d y s t a c k

\ p r i n t f ixed-poin t number

- _ - _ -- - - -- -- -- -. pp --

January 1993 February 36 Forth Dhensions

\ r i g h t j u s t i f y i n a f i e l d of p places
\ convert number

r> over - 0 ?do b l e m i t loop type \ pad with blanks a s needed

...
* Inpu t t ing numbers *
...

\ mult ip ly a 32-bit number by 10
\ 8*d+2*d=10kd

\ Convert number t o f ixed-point number - no check made f o r numbers t o o l a r g e
\ Example 1234.5 FIX. To compile a f ixed-point number i n a : d e f i n i t i o n , use
\ [1234.5 FIX] DLITERAL
: F I X (dn -- f n)

d p l @ O < \ s i n g l e o r double number?
i f s>d 0 d p l ! then
d p l @ fp laces <>
i f dp l @ fp laces <

i f f p l a c e s d p l @ ?do
else abor t" Too mnay
then

then

i

\ i f s i n g l e convert t o double
\ # decimal p laces en te red not £places?
\ too few places spec i f i ed?

d10* loop \ yes, t o o few so s c a l e t h e number up
decimal places" \ no, too many - w e c a n ' t handle t h i s

* 32-bit Fixed-Point Multiply *
...

\ Mult iply two fixed-point numbers, producing a f ixed-point r e s u l t .
: F I X * (f l f 2 - - f l * f 2)

r o t 2dup xor >r \ s i g n of answer t o r e t u r n s tack
- ro t dabs 2swap dabs \ make both numbers p o s i t i v e
dup>r r o t dup>r >r over >r \ put a c c b on re tu rn s t a c k
>r swap dup>r \ put a d onto re tu rn s t a c k
um* \ b*d
0 2r> urn* d+ 2r> um* d+ \ o f f s e t 1 6 b i t s , add on a*d+b*c
2 r> * + \ add on low by te of a*c

\ f s c a l e mu/mod >r >r \ div ide ms32 b i t s , ans t o R. Remainder on s tack
\ f s c a l e mu/mod r o t drop \ and t h a t remainder and l a s t 1 6 b i t s
\ 0 r> r> d+ r> + \ assemble f i n a l answer
\ r> ?cinegate \ yes, answer va l id , negate i f required
\ e l s e abor t" F* Overflow" repor t i f an overflow
\ then

i
\ * 32-bit Fixed-Point Divide *
\ ...
: FIX/ (fl £2 -- fquo t=f l / f2) \ Divide two numbers

2 pick over xor >r \ work out s ign of answer and save
dabs 2swap dabs 2swap \ make a l l numbers p o s i t i v e
2dup >r >r \ keep copy of d i v i s o r
d/mod f s c a l e 0 d* \ s c a l e i n t e g e r p a r t of answer
2swap f s c a l e 0 d* \ and then s c a l e remainder
r > r> d/ \ d i v i d e remainder by d i v i s o r
d+ \ add f r a c t p a r t of ans
r> ?cinegate \ put on f i n a l s i g n

Forth Dimensions January 1993 February

* 32-bit F l o a t i n g - P o i n t Arithmetic *
k Based on Z e n Math by Martin Tracy A

...
\ T r i m a double-nuinber mantissa and an exponent of t e n t o a f l oa t i ng number.
: TRIM (dn n = f)

>r \ exponent t o re tu rn s tack
tuck dabs \ save copy of high word f o r sign, make double pos i t ive
begin over O< over O<> o r \ MSB low word s e t o r t op 1 6 b i t s no zero?

\ i f so, too b ig t o f i t i n t o 1 6 b i t s when signed
while

0 10 um/rnod >r 10 um/mod nip r> \ divide 32-bit mantissa by 10
r > 1+ > r

repeat r o t ?dnegate drop r>
,

\ and increase exponent
\ apply s i gn and f i n a l exponent

\ ..
\ * 32-bit Floating-point Addition and Subtraction *
\ .
: F+

r o t 2dup - dup 0< \ work out d i f fe rence i n exponents
i f \ t op number has t h e l a rge r exponent
negate r o t >r nip >r swap r> \ keep larger (on return stack) and d i f f , swap mantissa

else \ top has a smaller o r equal exponent
swap >r n ip \ keep la rger (on re tu rn s tack) and d i f f

then
>r s>d r> dup 0 \ convert mantissa t o be s h i f t t o double
?do >r d10* r> 1- \ multiply mantissa by 10, decrement exponent
over abs 6553 > \ would a *10 cause overflow of these 1 6 b i t s ?
i f leave then \ prematurely terminate loop i f so

loop
r > over + >r \ ca l cu l a t e f i n a l exponent
i f r o t drop \
e l s e r o t s>d d+
then r> t r i m \ ge t f i n a l exponent and t r i m

,
: FNEGATE >r negate r> ;
: F- £negate f + \ add negative of t h e top value

i ..
\ * 32-bit Floating-point Mult ipl icat ion *
\ .
: F* (£1 £2 -- £3)

r o t + >r \ ca l c exp of answer,save on re tu rn s tack
2dup xor >r \ save xor of mantissas, too (s ign of answer)
abs swap abs urn* \ make mantissas pos i t ive and multiply
r> ?dnegate r> t r i m \ apply sign and then ge t exponent and t r i m

i *****************A*****************

\ * 32-bit Floating-point Division *
\
: F/

over 0= abort" d/O error!" \ check f o r d iv ide by zero
r o t swap - >r \ ge t exponent of answer, put on re tu rn s tack
2dup xor - ro t \ ge t s ign of answer, tuck down on s tack
abs dup 6553 min ro t abs 0 \
begin 2dup dlO* nip 3 pick < \
while d10* r> 1- >r \
repeat 2swap drop um/mod \ now do t he d iv i s ion
nip 0 r o t ?dnegate r> t r i m \ lose remainder, apply s ign ge t exp and tr-

I Code cottcIudes in nexi issue with 32-bitfloating-point YO and tran~cmdentalfinctions.
/ A may be doumloa&d in its entirety fmm the Forth sojkuarc! library on GET&

January 1993 February 38
-1

Fort/? Dimensions

/ A Forum for Exploring Forth Issues and Promoting Forth

Mike Elola
San Jose, California

From the last volume of Forlh Dimensions, T have c ~ l -
lected conlments that reinforce one another and that speak
to Forth and its future. The comment5 brought to you here
have previously appeared in FIYs "Letters to the Editor" or
"Rest of GEnie" columns.

Not so long ago, I viewed the Forth community as a very
divided cornmxnity that was becoming even more divided.
However, the views offered here reveal commonly held
values and beliefs. Perhaps these values can also shape our
vision about how to promote Forth.

John Wavrik is a professor at the University of California
(San Diego, California) who has spoken of the strengths of
Forth: "Conventional languages allow data structures only to
be created by a limited set of mechanisms built into the
language-and then impose further limitations on the status
of these structures (how they can be passed to functions, how
operators may act on thcm, etc.)."

He described the Forth advantage as "the ability to
accomplish dimcult things without fighting the language."
He credit5 Forth withbeing the only language that always let?
him do whatever he determines must be done, and speaks of
fighting the rigid features of other languages (Best of GEnie,

Our concerns are focusing on
management issues and on the
development environmentss.

FDXIII/5). A theme that others will repeat is the relationship
between power and knowledge: "Power in Forth comes, in
great measure, from the user's ability to understand how the
system w o r k s a n d being able to harness that understand-
ing."

Steve Noll gave his testimonial about Forth's enlpower-
ment of the programmer. Crediting Forth for his speed of
development, he briefly described five sophisticated rna-
chine-control applications that he complctcd in four years
(kttcrs, Z;DXILI/S). Although he had comc to I'orh "kicking
and screamng," hc said he was won over. Given his experi-
ence, his suggestion for promoting Forth is a natural one: He
suggested that a way to attract oihers to Forth is for FiG to
distrilx~te, market, and provide si~pport for a low-cost Forth.

A winning subn~ission in ~ h c programming contest held
by FIG U.K a couple of ycars back was a tiny editor frorn Mike

Lake. He shared the story of the success of M.A.S.S., a
company ha t converted to Forlh around 1985 after BASIC,
Pascal, and assembler had all been tricd He mentions that
the company has distributed over 12,000 Forth applications
worldw~de (presumably, in a six-year period). Resides
sharing his code wih us, Iake described his company's
deepening commitment to Forth, culminating in thcir devel-
opment of an in-house Forth that gave them "absolute
control" (Letters, FD XlTI/3).

Dean Sanderson is a key software engineer with Forth Inc.
He had this to say about Forth's future: "For Fo& to survive
as a respected language, it must prove its adaptability and
change enough to support the concerns of management
These include: Integration, Maintenance, Documentation,
M i n i n g cost, Q[ualitylNssurancel, Configuration, andsched-
uling. Though we've started late, we can survive by capitalizing
on what others have learned (Best of GEnie, FDXIII/3).

John Edgecombe described Forth a5 a language that
enterprises resort to when conventional methods fail. He
sympathizes with companies reluctant to use Forth because
of the difficulty of getting good Forth help when they need
it. He described why he uses Forth: ". .I want something I can
understand, that I will maintain, and which is economical of
my limited resources" (Ietters, FD XIII/l).

Tight, clever code is no longer as commercially valued as
it once was. While asserting the prominence of the develop-
ment environment, Laughing Water discounted the impor-
tance ofForth's compactness in today's marketplace: "1Forth'sl
virtues as a general programming language-compactness,
speed, interactivity, flexibility (anarchythave become old
fashioned indeed, and we are frequently superseded by
mainstream languages in more fully evolved development
environmen ts..." (Lelters, FD XIII/l).

By reporting that Macintosh Pascal has earned greater
I mindshare than Forth because of the environment it offers,
I Conrad Weyns added his voice to those proclaiming the
I prominence of thc programming environment. Ibis viewpoint

asscrls h a t a language such as Borland Pascal is popular due
I to the tools into which it is embedded rather than due to Pascal.

Weyns also joined those equating power and undcrstand-
ing: "A lot of Forth's power lies prewsely in its accessibility:
the ability to extend the compiler and interpreter, to add to
it, to use or abuse it ..." (ktlcrs, FD?UI1/3).

Milch Bradley of Sun Microsyslenls said, "C is a viable,

Fortti Dimensions January 1993 February

usable and ubiquitous development environment, and Forth
has to be competitive to succeed." He urged us to pay heed
to the issue of the environment that accornpa~lies our
development systems and our applications, too: "The exist-
ence of the operating system cannot bc ignored." Bradley
clairrls that successful Forths havc addressed the environ-
ment issue, "but without the guidance of a standard there has
been great divergence" (Best of GEnie, FD XIII/l).

Divergence considered a flaw? Some would say that
flexibility is the point of using Forth, because Forth offers Ihe
freedom to solve problcnls in novel ways. Iiowcver, for
pragmatic goals such as codc reuse and codc portability,
divergence can indeed be our enemy. We have to be shrewd
enough to know when a depamire from standard technique
will ultimately turn out to be a hindrance to our collective
Forth future instead of a competitive advantage that will endure.

Brad Rodriguez shared his struggle to understand
metacompiling (Letters, FD XIII/3). The understanding he
sought finally arrived after he attended an advanced poly-
FORTH class. After presenting his struggles at the local FIG
chapter meeting, he report- that others were able to unravel
the secrets of the technique too.

Such an experience underscores our need for various
forms ofsupport. Opportunities to receive structured training
are helpful, along with informal meetings. Rodriguez' expe-
rience also says something about our values and our
requirements as programmers: Before something truly has
value for us, we must be able to "access" exactly how it
works. We feel penalized whenever program code or
language features are inaccessible to us.

To make a language (or a programming technique) more
accessible, books and training materials are always valued.
Most of us read several journals each month besides Forth
Dimmsions in order to have bctter access to state-of-art
practices and techniques

Tom Saunders of Sigma 3 Engineering in Edmonton
(Alberta), Canada requcstcd that FIG members participate in
a survey so that every Forth dialect could be briefly outlined

The contents appearing in this
publication a1 e indexed by

and its design goals described (Letters, FD XIII/2). This
comment prompts me to question whetticr there is a way for
us to pursue our diverse Forths and diversc programnling
techniques with any real hope of improving Forth's conmcr-
cia1 standing-which curren~ly secrns to be flat growth lor a
relatively small number of busincsscs. Undoubtedly, our
diverse solutions will also lead to many breakthroughs. But
ignorance of these breakthrough techniques (or innovative
Forth dialects) is widespread. 1-Tow many receive only limited
use in a handful of products, if that? Without doubt, thc Forth
systems comparisons offered by Guy Kclly havc helped
increase our awareness of the differences betwccn some
popular ForLhs (FD xr11/6).

Based on the comments I scanned, our concerns are
becoming focused upon management issues and upon the
prominence of the development environment. As we focus
on issues such as support and training, we broaden our
concept of the total cost of software. Our ability to profit from
software will require us to be sensitive to all the issues of
producing, deploying, and maintaining software.

Among its credits, Forth natively facilitates fast program
development and easy program modification-two of the
chief advantages claimed by makers of various development
tools. Even without any of the extras that are part of a
contemporary development environment, Forth systems are
alleged to be perfectly suited to most programming needs. If
you can make this claim, fortune may be smiling upon you.
Those of us who require database languages with graphical
interfaces may disagree.

We've also heard strong statements about how much we
value our complete understanding of Forth, including the
operation of its implementation code. In light of his, consider
another of John Wavrik's comments. Here he questions where
the proposedANS Forth is heade&which he belicvcs is away
from Forth's past openness and low-level accessibility:

"My claim is that Forth has traditionally been a language
which allows the user to build major language features.
Ohere is Forth literature discussing variant methods for doing

localvariables, exception handling,
adding object orientation, etc.)
Forth has been a toolkit for build-
ing application-oriented languages.
The AhTSI team is heading in the
direction of including some im-
portant features Oocal variables,
exception handling, etc.) but re-
moving the ability to build such
things" (Best of GEnie, t.Z)XIII/S).

I would like to thank everyone
who made their though& known
by submitting them to Forth Di-
mensions or Lo GEnie's Forth
Round'l'able. Through these fo-
rums, we all kcomc bcttcr in-
formed about the concenls facing
our community.

-Mike Eloh

For further information, please contact:
Paul Soosay

ASIAN BUSINESS CONTENTS
P 0. BOX 12760. KUAIA I,I,3fPUR 5G7AFI. MALAYSIA

TEL (+60-3) 282-7372 19 lines). FAX I+W-31 2W-74 17. I'IX 30226 (Answerback . W I H)

January 1993 February Forth Dimensions

I

/ WHAT Y O U ~ L FIND IN LAST YEAR'S ISSUES OF FORTH DIMENSIONS

Vo e XIII Index
A subject intkxtoForth Dimensions conientsflublished fmm
May 91-April '32. Prepared by Mike Elola.

arithmetic operations
Letter, vol 13, #3, pg 30

blocks within files for source code
Sixty-formatted Source Code, vol 13, # I , pg 28

chapters, Forth Interest Group
Letter, vol 13, #2, pg 31
Letter, vol 13, #3, pg 30

conditional compilation
Smart Comments & Compiler Words, vol 13, #2, pg 6

conferences
A FORML Thanksgiving, vol 13, #6, pg 38

control flow
Universal Control Structures, vol 13, #3, pg 9
The Curly Control Structure Set, vol 13, #6, pg 22

dialects of Forth
Introduction to Pygmy Forth, vol 13, #2, pg 25
Yerk Comes to the PC, vol 13, #5, pg 6
Letter, vol 13, #2, pg 5
Re: Intro. to Pygmy Forth, Letter, vol 13, #4, pg 5
Best of GEnie, vol 13, #6, pg 32

documentation, source code storage within
Sixty-formatted ,Source Code, vol 13, #I, pg 28

editing source code
Add and Delete Screens in PDE, vol 13, #I, pg 23
Letter, vol 13, #3, pg 30
Letter, vol 13, #3, pg 34

Forth Interest Group
President's Letter, vol 13, #I, pg 6
President's Letter, vol 13, #2, pg 32
Letter, vol 13, #I, pg 5
President's Letter, vol 13, #3, pg 23

Forth leaders
Best of GEnie, vol 13, #2, pg 33
Best of GEnie, vol 13, #3, pg 38
New FIG Board Members, vol 13, #6, pg 31

hashing
QuikFind String Search, vol 13, #4, pg 21
Re: QuikFind String Search, Letter, vol 13, #5, pg 15

interfacing Forth to operating systems
Sixty-formatted Source Code, vol 13, #I, pg 28

list operations
Symbolic Processing, vol 13, #I, pg 7

metacornpiling
eForth-a Portable Forth Model, vol13, #1, pg 15
Re: How Metacompilation Stops the Growth Rate of
Forth Programmers, Letter, vol 13, #3, pg 5

minimal Forth
Best of GEnie, vol 13, #6, pg 32

multiprocessor systems
Ada Multiprocessor Real-Time Kernel, vol 13, #3, pg 24

object oriented programming
Yerk Comes to the PC, vol 13, #5, pg 6
Object-Oriented Forth, vol 13, #5, pg 23
Simple Object-Oriented Forth, vol 13, #5, pg 33

product reviews and surveys
Forth Systems Comparisons, vol 13, #6, pg 6
Letter, vol 13, #2, pg 5
Letter, vol 13, #3, pg 37
Letter, vol 13, #4, pg 10

programming environment
Forth for the 90% vol 13, #I, pg 12
eForth-a Portable Forth Model, vol13, #I, pg 15
Letter, vol 13, #3, pg 15
Letter, vol 13, #4, pg 10
Best of GEnie, vol 13, #6, pg 32

promoting Forth
Forth for the 90% vol 13, #I, pg 12
President's Letter, vol 13, #3, pg 23
Editorial, vol 13, #4, pg 4
Letter, vol 13, #4, pg 10
President's Letter, vol 13, #4, pg 26
Letter, vol 13, #5, pg 5
Letter, vol 13, #5, pg 13

real-time control
Ada Multiprocessor Real-Time Kernel, vol 13, #3, pg 24

simulations
Neural Network Words, vol 13, #2, pg 9
Universal Control Structures, voi 13, #3, pg 9

sorting algorithms
Cornbsort in Forth, vol 13, #4, pg 6

stack operations
New Stack Tools, vol 13, #4, pg 13

standards, dpANS Forth
Best of GEnie, vol 13, #I, pg 31
Best of GEnie, vol 13, #5, pg 19
Best of GEnie, vol 13, #6, pg 32

strings
QuikFind String Search, val 13, #4, pg 21

symbolic processing
Symbolic Processing, vol 13, #I, pg 7

target compiling using a hosted target
Forth for the Ws, vol 13, #I, pg 12
eforth-a Portable Forth Model, vol 13, #I, pg 15

user interface routines
Menu Words, vol 13, # I , pg 18

vocabularies, searching through
Best of GEnie, vol 13, #I, pg 31

Forth Dimensions January 1993 February

Conducted by Russell L. Harris
Houston, Texas

Among the things which make Forth unique among
computer languages is the process of metacompilation. Also
known by the terms tatget compilation and cm-cov@ilu-
tion, nletacompilalion is, in simplest terms, a process by
which an existing Forth system is used to generate a second,
tailor-made Forb system. In this respca, metacompilation
transcmds the usual process of compilation. The ncw
system may be a completc devclopment environment, itself
capablc of mctacompilation; it may be a ROMable applica-
tion, having only the barest essentials to accomplish a
specific and limited task; it may be an end-user application,
with support for terminal and disk I/O, but without editor,
assembler, and compiler. The new system may run on a
machine identical to the development system on which the
metacompilation takes place; it may run on a machine with
word size, instruction set, and resources quite different from
those of the development system; it may run from ROM on
an embedded single-board computer. Whatever the case,
metacompilation enables the programmer to create the new
system with a minimum expenditure of time and effort, while
giving him a degree of control he otherwise would have only
in assembly language.
--

Daily association with Forth
devotees via a local telephone
call is an experience you
shouldn't pass up.

the knee to the idol of "intellectual property" may, with my
blessing, proceed without charge.)

I plan to publish a paper on the subject of Uintellectual
property"; meanwhile, you might wish to visit the children's
section of your local library and read again the faerie tale "The
Emperor's New Clothes." If you care to research thc matter
of "intellectual propefly," I suggcst you begin with the
trcatise cntitled BeLaw, first published in 1850, authored by
thc Frenchman, Fredcric Rastiat (1801-1850).

Nomenclature
Cornpilalion is simply the process of writing to a dictio-

nary. Compilation is a routinc occurrence in Forth develop
ment environments, and also takes place in some Forth
applications. Traditionally, on a disk-ba.sed Forth develop-
ment system, the bootstrap loader or operating system brings
up a small Forth nucleus of approximately 8K bytes. This
nucleus then compiles or "loadsn the balance of the Forth
system, including an application, if any.

Forth words are typically classified into categories, much
as routines in C are grouped into libraries. Categories outside
the nucleus are termed electim. The set of electives to be
loaded varies with the Forth implementation, the preferences
of the user, and the requirements of the application, if any.
When memory is limited, one need load only those electives
necessary to support the application. Electives commonly
loaded include those for printing, editing, and disk opera-
tions, in addition LO Lhe more basic functions such as clock,
calendar, and d~uble-leng~h arithmetic.

T h e process of loading electives and applications is
nothing other than compilation. Note, howevcr, that loading
the nucleus is not properly termed compilation: the bootstrap
loader or operating system simply copies from disk to R A M
an executable image. The source blocks which comprise
electives and applications contain both high-level and code
words. The high-level words are compiled by the colon
compiler, while the code words are compiled by the
assembler. The resulting executable code is compiled into
the dictionary of the system on which the compiler and the
assembler are executing; i.e., electives and applications are
compiled into the q!wrating-mrnent. Thus, Forth words,
both high-level and code, may be executed immediately after
they have been compiled.

The Emperor's New Clothes
Before proceeding with our discussion of metacompila-

tion, it is necessary that several concepts be explained and
that a number of terms be carefully defined. The matter of
nomenclature is complicated by two factors. First, everyone
seems to have his own name for a given item. Thus, what I
call a nucleus you may call a kernel. Secondly, there's always
someone trying to get rich by robbing others, specifically, by
getting he government to hold a gun to cvcryone else's head
while he, the robber baron, loots thcir pockets. If you belicve
in the non-entity commonly termed "intellectual property,"
be sure Lo promptly send me a substantial fcc before
proceeding further in this tutorial series; otherwise, 1 will be
forccd to dispatch a tcam of thugs with instructions to
repossess my "propcrty." Crhose of you who have not bowcd

The meta in metacompilation indicates that the code
being compiled is destined for an environment other than h e
operating environment. Unless the application environment
is substantially the same as the development environment, it
will not be possible Lo test metacompiled code within the
development environment. Even ir Lhe developnlenl system
and the application hardware share the same word s i x and
instruclion set, thc complement and physical addresses of
memory and peripherals may differ between the two systems.

Ralher than attcmpling to metacompilc into Lhe operating
environment, one generally sets aside, somewhere on the
development system, an arca of KAM or disk to rcccive h
executable application code. Once metacompilation is coni-
plctc, the code may bc transferred elsewhcrc lor testing.

In this and hturc columns, thc tcrrns covputer system,
hardware, and muchine are synonymous, referring to a

January 1993 February 42 Forth Dimensrons

physical computer system, including peripherals and the
operating system, if any. The term environment will be used
both for hardware and for software; the context will make
clear which meaning is intended.

In metacompilation, there are, in principle, two computcr
systems. The hardware on which the mctacompiler runs is
termed the akwlopment system or host. The term &lop-
ment system is very appropriate for the computer used to
writc or develop an application, but the term is cumbersome,
and I am open for suggestions as to a short yet descriptive
name. The hardware on which the metacompilcd applica-
tion is to run is termed the application hardware or tatget.
Again, af@lfcation hardwaw is descriptive, but is awkward.
Any suggestions? In some cases, the development system
and the application hardware are the same machine. In our
adventures, the development system will be the IBM-PC and
the application hardware will be the 8051-family single-
board computer presented in the last column.

A Forth metacompiler is a Forth application which run9 on
a development system. The metacompiler operates on Forth
source code in order to produce executable application code.
The source code may be a mixture of high-level and code
words. Typically, the source code is read from disk and the
application code is compiled to disk, but the application code
may be compiled to RAM if the development system has
sufficient available memory. Alternatively, the application code
may be compiled directly to readlwrite memory in the applica-
tion hardware, over a data link (typically, a serial line) conncct-
ing the development system and the application hardware.

If the development system and the application hardware
have different instruction sets, the term cross-compilation is
sometimes used instead of the more general term metacom-
pilation.

To Be Continued.. .
Iet us assume we have a Forth environment which does

not include the capability of metacompilation. What must we
do in order to add this capability? What problems and conflicts
do we face? How do we solve and resolve them? What variations
are possible and useful? Subsequent columns will address
these matters, as we work our way through development of
an 8051-family metacompiler which runs on the IRM-PC.

Collegiate Endeavours
A facet of universily life I find compelling is the daily

association with fellows who arc pursuing thc same or a similar
course of study. A university experience in which one limits
himself to auendanot: at lecturcs, laboratory scssions, and tests
might as wcll be undertaken by corrcspondcnce or by
attending night school. It is thc opportunity outside the
classroom to discuss, to reason, to hone mind against mind,
that sets apart the university. In the collegiate environmcnr,
you can always fmd someone who recalls points you failed to
note, someone who sees the underlying concept through
detail you find impenetrable, someone willing to scrutinize
your logic or verify a solution, someone content simply to
listen as you think aloud, someone with an alternate petspec-
tive and approach to a problem which has you stumped.
Conversely, you provide like function for your fellows. It is a
give-and-take affair, somewhat like a climbing expedition, in

which possession of the secure position is constantly passing
from one member to another as progress is made.

While few of us can afford a return, even for a brief period,
to full-time academic study, and few of us have employers
which foster an interactive academic environment in the
workplace, there yet remains a collegiate experience afford-
able and accessible to almost everyone. For a few dollars a
month and a few dollars per hour of connect time, one may
gain the potential of daily communication with a large
number of individuals pursuing a common goal. I am
speaking of the Forth Interest Group (FIG) bulletin board and
real-time mG conferences, currently hosted, along with Lhc
FIG software library, on the GEnie compuler network.

The opportunity of daily association with fellow Forth
devotees across the nation, via a local telephone call (Look
Ma! No tolls!) is an experience you really shouldn't pass up.
The monthly access fee buys unlimited electronic mail,
which is great if you need to communicate directly with
specific individuals. An hourly charge applies once you
move to the Forth "round table," but it is at the round table
that you gain access to the FIG community at large.

Once you know your way around GEnie, you can log on,
check the FIG bulletin board for new messages in a given
category, and log off, all in roughly a minute, so there is little
excuse not to look in on a regular basis. You can download
from GEnie a freebie utility called Aladdin with which PC
users can automate the process, thus eliminating the time
normally consumed in hurdling menus.

I urge readers of this column and every member of FIG to
get a GEnie account and join us in an environment of mutual
support and exploration. Our sysops have provided a bulletin
board category, No. 19, for activity related to the "On the Back
Burner" colunm. Under that category, several topics have been
started and others can be added as needed. Readers having
questions need to post those questions under the appropriate
topic of category 19 and check back f~quently, if not daily, for
response. Readers knowledgeable in various areas are re-
quested to frequendy check topics in which they have
expertise and to provide answers wherever possible. Readers
having better or alternate solutions to common problems are
invited to share their insight with the rest of us.

The gist of it is this: by way of the GEnie computing
network, the FIG round table opens the door to interaction
on a scale which would otherwise bc impossible and on a
frequcncy which would otherwise bc prohibitive. Readers of
this column who are following the ongoing tutorial nccd the
type of support which only a collegiate environment or a
resource such as a nation-wide, local-access bulletin board
can provide. To readers who have mastered subjccb and
techniques covered by this column, the FIG round table
offers the oppoltunity to sharc insight and to lend a helping
hand. Everyone is welcome; everyone is needed. Won't you
join us?

R.S.V.P.
... - .-

Russell Harris is an independenl consultant providing engineering, program-
mina. and technical documentation services lo a varictv of industrial clients. His
main interests lie in writing and teaching, and in workiniwith embedded systems
in thelieldsof instrumentation and machinecontrol. Hecan be reached bv hone
at7 13-461-1618, by faxat713-461-0081, by mailal8609CodardaleDr., ousto on,
Texas 77055, or on GEnie (address RUSSELL ti).

Forth Dimensions January 1993 February

Call for Papers
13th Annual

Rochester Forth Conference
June 23 -26 1993

on
Process Control

Caufor deadljnes.
Confeerence includes i&mductory and advanced seminars

on Forth technology and its applcatwn.

Announcing

Defdtions: The Institute Newsletter

Call or write for a complimentary copy of the newsletter or
the Journal and learn about our Associates Pmgram

Forth Institute
70 Ehwood Avenue
Rochester, NY 14611

(716)-235-0168 (716)-328-6426 fax
72050.21 11 @compuserve.com

Forth Interest Group
P.O. Box 2154
Oakland, CA 94621

Second Class
Postage Paid at
San Jose, CA

