

ISSN 0265-5195

Issue 107 June 2000

 Editorial
 Forth News
 Floating Decimal Fudge Dave Pochin
 The Canon Cat Neal Crook
 32-bit GCD without Division Fred Behringer
 Nominations for the FIG UK Awards of 1999
 An Introduction to Color Forth John Tasgal
 Jobs Roundup
 The BMP Example John Tasgal
 Did you know? - Forth OS
 Vierte Dimension 2/00 Alan Wenham
 From the 'Net Chris Jakeman
 Letters

FIG UK Committee

Chair Chris Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES TW18 2EE
 01784 457565 chris.hainsworth@dial.pipex.com

Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS
 020 8542 2747 dneale@w58wmorden.demon.co.uk

Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET
 01733 753489 cjakeman@bigfoot.com

Treasurer Keith Matthews, 20 Spindlebury, CULLOMPTON EX15 1SY
 01884 34818

Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co Fermanagh BT94 2HJ

 02866 388 253 jennybrien@bmallard.swinternet.co.uk
Librarian Sylvia Hainsworth, Microplex Ltd., 5a Riverfield Road, STAINES

 01784 457565 sylvia.hainsworth@dial.pipex.com

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Sylvia.

 For indexes to Forthwrite, the FIG UK Library and much
FIG UK Web Site

 more, see http://forth.org.uk

 Payment entitles you to 6 issues of Forthwrite
FIG UK Membership

 magazine and our membership services for that
 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
Forthwrite Deliveries

 label. Please quote it in correspondence to us. Look

out for the message "SUBS NOW DUE" on your sixth and last issue and please
complete the renewal form enclosed.

Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its author.
Copyright

 Publication implies permission for FIG UK to reproduce
the material in a variety of forms and media including through the Internet.

http://forth.org.uk/

 1

Editorial

Once again we've managed to combine articles
on new developments with a celebration of
past Forth triumphs - see John Tasgal's

Introduction to Color Forth and Neal Crook on the Canon Cat.

Since announcing John Tasgal's series on the newsgroup, it has
been in such demand that it is now packaged separately as a
special issue of Forthwrite, which will only be available
electronically.

Do you receive messages including monthly reminders about the
FIG UK IRC sessions? If not, then it's because I don't have
your current e-mail address - please bring me up to date, 4
bounced last month.

IRC continues to flourish - in May Michael Gassanenko stayed up
to the early hours to join in from Russia. Do give it a try on
channel #FIGUK on Saturday 1st July from 9:00pm.

Welcome to some more new members - Bruce Cunningham in
Gloucester, Rob Probin in Glasgow (see Rob's letter in this issue)
and Paul Redmond. Also a warm welcome to old member John
Hayhow who has re-joined - did you notice his letter in the last
issue?

Paul is a teacher in a small private school who is preparing to use
eForth in a Programming Option for the 6th Form in September.
He would appreciate advice from anyone with teaching
experience. Please contact him on paul74@netlineuk.net

2

I strongly recommend that new members raid our Library to
borrow books and back-numbers of Forthwrite and the US Forth
Dimensions. It's the biggest and best Forth library anywhere.

Until next time, keep on Forthing,

PS. International FIG
Those who are also members of International FIG will be aware
that things are not proceeding smoothly. There has been only
one (double) issue of their Forth Dimensions magazine in the
past year and there seem to be other problems too.

I have written to the Board of Directors recently and will
publish their reply in the next issue. In the meantime, Taygeta
Scientific have announced that their 3-year administration of
the FIG Office has come to an end. Their commitment to web-
based services continues:

Taygeta Scientific Inc. is and will remain deeply committed to
providing host service, in addition to administering and
managing the forth.org website and the Forth archive/
information pages.

It is our pleasure to provide this service for the Forth
Interest Group and to the Forth community at large in the past
and we look forward to doing so on into the future.

 3

PS. Forthwrite and Higher Education
We are trying to develop a programme for encouraging interest
in Forth among programmers and potential programmers who
have not yet heard of it.

As part of this programme, we are recruiting members who
are able to place copies of Forthwrite in Universities and
Colleges, where they may appeal to people willing to look beyond
the mainstream of computing. We've had positive responses
from 3 members already and are hoping for a few more.

PS. Jef Raskin
Shortly after receiving Neal Crook's article on the Canon Cat
and corresponding with its designer Jef Raskin, Jef featured in
a Sunday Times article (18th June) complete with picture.

 4

Systems
Tom Zimmer reports that
downloads from his site have
approached his ISP's limits.

There have been no less than
145 downloads of his
Win32Forth executable in the
past month so there must be a
lot of busy Forth people out
there.

Doug Beattie has provided a
functional version of Camel
FORTH for the TRS-80. A
complete Z80 Forth system
with all source code, it includes
a Intel .HEX file ready to serial-
boot (upload using SBOOT4T.)

The system can be loaded using
sBoot4T.exe v1.1, his latest
enhancement to the original
19200-baud Serial Boot Loader
(with terminal mode). For
details, see

 http://www2.whidbey.net/~beattidp/

Ralph Hempel offers a new
enhancement to pbForth for
the Lego Mindstorms RCX. The

new GUI is a substitute for
Hyperterminal offering:

��Fast and standard speed
firmware upload

��Script upload with comment
stripping

��XMODEM image download

��Console

Details at
http://www.hempeldesigngroup.com
/lego/pbFORTH

John Sadler reports that Ficl
2.04 is now available for web
download from the usual place:

http://www.taygeta.com/ficl.html

Ficl is a lightweight, efficient
language designed to be
incorporated into other
programs, including
(especially) firmware based
systems. Ficl includes a simple
but capable object model that
can wrap existing data
structures. Applications include
scripting, prototyping,
automation, hardware test and
debug, command language for
embedded targets.

Forth
News

 5

European News

MPE have been looking for
Beta Testers for their C to
Forth compiler. Contact
Stephen Pelc at
sfp@mpeltd.demon.co.uk

Comsol have announces Micro-
Search, their free web-based
microprocessor selection
service.

Initially available for the 8051
family, Comsol have collected
all the data necessary for you
to select a CPU from over 300
different chips from 8
manufacturers. New ones are
being added as manufacturers
release details.

See www.computer-solutions.co.uk/ info-
zone.htm

At their recent AGM, German
FIG Forth-Gesellschaft elected
Fred Behringer as Director.

USA News

Phil Koopman, author of the
book Stack Computers has
published it on-line as a PDF

To get your own copy, please
visit:

http://www.ices.cmu.edu/koopman/stack_
computers and select the ".pdf"
option in the download table.

Please do NOT redistribute the
file to others (although you're
welcome to pass along or link
to the URL). He needs to track
the number of copies in
distribution, and the only way
to do this is to count the hits.

 6

Dave Pochin
01905 723037

davep@sunterr.demon.co.uk

Floating Decimal Fudge
Formatting Floating Point using Win32Forth

Dave Pochin

Another useful contribution from Dave, which this time also applies
outside Win32Forth. Check the Forthwrite index for earlier items in

this valuable series.

I have been exploring the Floating Point extensions in Win32Forth, I’m glad to
say the maths worked fine and the results were very satisfactory. However when
I started tidying up the results, the screen formatting was a mess, decimal points
and signs all over the place, like this:-

 156767830.
 -178923.40

 -156.76783E6
 178.92340E3

What I wanted to see was something like this :-

 156767832.1000
 -178923.4000

Oh dear, maybe using Win32Forth isn’t such a good idea after all !
If there is a way of getting the format right, there should be a suitable defining
word in the Win32Forth file float.f which lists all the definitions using floating
point.

Looking in float.f there are five defining words for printing floating point numbers
F., FE., E., G. and FS. (Don’t bother with FS., it’s just a rewrite of E.). None
of these seem to have much to do with my sort of formatting, as running .Test1
from the listing will show.

There are to two problems to tackle, dealing with the sign and right-aligning the
column. The prospect of trying to write a new routine from scratch is not
attractive, so a hard look at a hard copy of F. from the float.f file may prompt a
few ideas worth exploring.

 7

The Sign Problem
Early in the definitions of both F. and FE., there are lines

IF fabs .” –“
THEN

This looks as if it follows a test for a negative number. When true, the number is
converted into absolute form and a minus sign is printed.

So adding an ‘ELSE’ term seems an obvious step.

IF fabs .” –“
ELSE space
THEN

This should print a space before each positive number, but will require modified
versions of F. and FE.
Try
 : fpos? fdup 0.e0 f>= if space then ; (F: r - -)

In the listing, the word fpos? is tested by running .Test2 and successfully
prints both

 156768000. and 156.768E6
 -156768000. -156.768E6

The Alignment Problem
Before starting on this step, just a note for newcomers to Win32Forth and to
floating point. Win32Forth uses a separate stack to hold floating point numbers,
so there are often two stack diagrams used with the defining words in the file
float.f . Unfortunately there are several variations used for the floating point stack
diagram, such as (F: r -- r), (FS: r -- r) and even
(f1 f2 -- f3) which is a little confusing at first. The word F.S shows the
contents of the floating point stack.

The defining word F. is forty lines long, but in the second half, there are a
number of IF … ELSE … THEN statements ending with variations of
‘$ftemp precision type‘ which hints that printing a floating point number is
just a variation of printing a string, where ‘$ftemp’ is an address and ‘precision’
is a number as in the common ‘addr count type‘ statements.

If these words, or derivations of them, can be used to convert the floating point
number into a suitable string, the problem is solved.

Before looking at the words in detail, it is necessary to decide on the form of the
string. As an example, assume;

 8

��The range of numbers required, say +- 999999999, so

��9 places are needed to the left of the decimal point for number
characters, plus

��1 place for the minus sign or space, plus say
��3 places at the left to separate the number from any text, but which

could be used for digits if necessary.
That’s 13 places to the left of the decimal point.

��The number of decimal places required, say 4, but try and make this

variable in the final defining word; so that makes a string length of about
18 characters, not forgetting the decimal point itself; something like
‘___-nnnnnnnnn.dddd’ should suffice.

The integer part ‘___-nnnnnnnnn’ is 13 characters in length.
The ‘sign’ uses one character (space or -), and comes from either F. or fpos?
The remaining twelve characters may be either digits or spaces, the number of
digits can found from the defined word Represent in float.f ; so by defining a
constant int$len = 12 and subtracting the result of Represent gives the
number of blanking spaces needed.
This step needs watching, because Represent can return a negative value, so
the number of spaces must be held between 0 and 12.

The decimal part ‘.dddd’ is variable in length. The number of decimal places is
required to be on the data stack at execution.

The length of the absolute numerical part ‘nnnnnnnnn.dddd’ is variable, but if the
output is to be correctly right-aligned, all the characters is this part must be filled
with digits. This can be done by setting the precision of the floating point
number to this length.

There is a trap for the unwary here, (guess who fell for it!). It is most likely that
the new word will be used during long sessions of floating point work, the new
word will continually change the precision of the floating point, so it is necessary
to store the current value of the precision before printing and to restore it
afterwards.

Most of the words we need from the definition of F. such as ‘Precision’, ‘Set-
precision’ and the 128 bytes reserved by ‘create $ftemp’ are straightforward
enough, but ‘Represent’ is a key word and is worth investigation.

Represent
Represent expects to find an address and an unsigned number on the data
stack, and a floating number on the floating number stack and returns two flags
and a number.

 9

REPRESENT (addr u -- n flag1 flag2) (f: r --)

As examples;
 1.45678e2 $ftemp precision represent returns 3 0 -1
 14567.8e4 $ftemp precision represent returns 9 0 –1
 14567.8e-6 $ftemp precision represent returns -1 0 –1

In each case the sum of the power and the number of places to the left of the
decimal point is equal to number returned, using the three examples above
gives; 1 + 2 = 3, 5 + 4 = 9 and 5 + (-6) = -1, which is the number of
places to the left of the decimal point if the power were 0. I’m sure there is a
correct mathematical term for this, but my school days are long gone. However,
the sum of the length of the number string to the left of the decimal point and
the number of decimal places gives the precision required.

Now, put all the parts together. Initiate a variable old-precision and a constant
int$len.
Define a word fpos?.
Words used from the file float.f .
 f., $ftemp, precision, set-precision, represent and fdup.

Define a word F.P
F.P prints a floating point number between +- int$len with a variable number
of decimal places.

: F.P (n --) (f: r --) \ requires n, the number of decimal places

\ and r,a floating point number.
 precision old-precision ! \ store current value of precision.
 >r fdup \ put the number of decimal places

\ required (d) on the return stack,
\ and duplicate the floating point number.

 Int$len $ftemp precision represent drop drop
 \ int$len and the number (n) returned by

\ represent on the data stack.
 \ floating point number on the float stack.
 dup r> dup \ int$len, n, n, d, d on the data stack.
 rot + \ int$len, n, d, and (n + d) on the

\ data stack.
 max set-precision \ set the precision to maximum

\ of (d and (n + d))
 \ int$len, and n on the data stack.
 0 max - \ int$len – (max (n and 0)) on

\ the data stack,
 \ this is the number of leading spaces to print.
 spaces \ print the leading spaces. Data stack empty.
 fpos? f. \ print either a space or -, then print the

 10

\ fp number.
 \ floating point stack empty.

 old-precision @ precision ! \ restore the original precision.
;

This new word F.P can be tested by running .Test3.

There is nothing specifically Win32Forth-ish about the above. It should run on
other Forths with little or no revision, all the floating point words are in
DPANS94 ANSI standard A.12 The optional Floating-Point word set.

F.P now goes into my folder of utilities, and an watchful eye will be cast over
the newsgroups for the better ways of doing the same job; there must be plenty
of these out there, somewhere.

 11

nac@forth.org

The Canon Cat
Neal Crook

Neal Crook has investigated the success and untimely demise of this radical

post-Macintosh computer powered by Forth. Its innovative user interface
reminds us that computers can do much more for their users than the

mainstream GUIs currently achieve.

Let me introduce you to the Cat. Here are some of its features:

That sounds like
description of a
was the brainchi
Macintosh. To w
graphics and an

In 1978, Apple r
Publications. Ras
credibility dates

"A Hardw
Modelling

which advocated

In 1970, Xerox h
developed a rev
user interface, c
in arranging a de

��doc
��bui
��OS
��ope
��des
��on-
��aut
��scr
��ins
��ins
ument-centric operation
lt-in modem and communications software
 and graphics toolkit in ROM
n architecture
igned to allow easy integration of 3rd-party software
line documentation
omatic resume at power-on
een saver
tant-on with any keystroke
tant-boot
 a feature-list for a rather nice modern PDA, but in fact it is the
desktop machine that came to market more than 13 years ago. It
ld of Jef Raskin, a user-interface expert and father of the first Apple
het your appetite further, the 68000-based machine had bit-mapped
 integral Forth interpreter.

ecruited Jef Raskin, employee number 31, as Manager of
kin had been a writer on Dr Dobb's Journal, but his user-interface
back to his 1967 Computer Science thesis,

are-Independent Computer Drawing System Using List-Structure
: The Quick-Draw Graphics System"

 a graphical what-you-see-is-what-you-get user interface.

ad opened its Palo Alto Research Center (PARC) and by 1974 had
olutionary machine with a mouse-like pointer device and a graphical
alled the Alto. Raskin was aware of this work and was instrumental
monstration for Steve Jobs. Jobs became convinced that the GUI

was the way forward for computers, and redirected the development of the Apple
Lisa to use some of the technologies that he had seen at PARC.

Months before this, Raskin had persuaded Apple to start a project to develop a
machine that he named Macintosh. This was envisaged as a smaller, simpler,
cheaper machine than Lisa, with an emphasis on ease of use. However, when Jobs
was pulled off the Lisa project, he responded by taking control of the Macintosh
development, and putting Raskin in charge of its documentation.

By the time the Macintosh shipped in 1984, Raskin seemed to have been written out
of Macintosh history. The two in-depth Macintosh articles in the February 1984 issue
of Byte magazine make no mention of him (though this was later remedied in the
August 1984 issue). Xerox brought their own Alto-derived machine, the Star, to
market in the same year, but with a price tag of $16,595 it sold poorly (for
comparison, the Macintosh was priced at between $1,995 and $2,495).

Amongst the Raskin legacy to the Macintosh are the click-and-drag user interface
and the one-button mouse (the Xerox machines used a three-button pointing device,
but Raskin wrote a memo arguing that a user often pressed the wrong button and
showing how a single button could be implemented needing fewer or the same
number of user actions).

In 1982, Raskin left Apple to form Information Appliance Inc, where he was chairman
and CEO. His new company developed Swyft, a document-centric machine that
focussed on ease of use. In 1985, Apple brought the SwyftCard to market as an
add-in card for the Apple][. Information Appliance produced a more highly integrated
Swyft derivative for Canon, called the Cat. They even developed a prototype FlatCat,
though this machine never came to market.

Canon's typewriter division launched the Canon
Cat Workprocessor in 1987, at a price of
$1,495. It was bundled with a daisywheel
printer and was programmed entirely in Forth1
to be a dedicated document processor.

Like the Macintosh, it integrated the system
unit and display into a single plastic case but
added an integral keyboard.

Internally the Cat was based on the 68000 (like
the Macintosh) with 256 Kbytes of RAM and a
720 Kbyte floppy. It had bit-mapped graphics
and support for a pointing device such as a

1 As designer Jef Raskin confirmed to Forthwrite, "
written in Forth".
Canon Cat Workprocessor
12

 Everything in the Cat was

 13

mouse, but the typewriter-centric marketing meant that Canon never exploited these
capabilities. Indeed Raskin claimed that the product marketed by Canon was only a
"dim echo" of what his company had designed.

Instant On
The Cat didn't use files, instead it saved its entire machine state (including the state
of the screen and the cursor position) to floppy disk. At power-up, it gave the illusion
of booting almost instantly; within one second of power-up, the screen display
(including the cursor position) was restored from the floppy disk. After a further 6
seconds, the cursor would start to flash and the machine was fully ready for use. If
the user typed anything in those 6 seconds, the keystrokes were buffered and
displayed as soon as the machine was fully operational. Tests showed that most
people spent more than 6 seconds looking at the screen to restore their own
context before starting to type.

The Keyboard
The Cat keyboard was small, and had a shift key called USE FRONT to access
special functions that were marked on the front of some of the keys.

For example:

��Page -- to start new pages; with a USE FRONT shift, this would start a new
document.

��Learn -- to record a keystroke sequence and assign it to the front of a
number key.

��Explain -- to get on-line help (and "Explain" followed by another key to get
help on that key's function).

��Answer -- to replace a highlighted formula with its calculated result. The
formula beneath was retained, and could be named and cross-referenced.
This allowed spreadsheets to be created and embedded within documents.

Internationalisation
A set-up screen allowed the keyboard layout to be changed to support different
languages.

Navigation
There were no cursor keys. Navigation and selection were achieved using two
coloured LEAP keys that were positioned for use by the thumbs; in the dead centre
front of the keyboard (see below), just in front of the spacebar and rather like the
mouse buttons on some modern laptops.

When the LEAP keys
were simply pressed
and released, they
acted as cursor-left
and cursor-right.
Used as shift keys
for alpha-numeric
characters they
enabled incremental
search: holding
LEAP>> and
pressing 'a', moved
the cursor forward
to the next instance
of that character.
Keeping LEAP>> held
and pressing 'b' moved the cursor forward

Anyone who has used the Emacs editor will
Using "shift front" with a LEAP key repeated
shift key with, for example, the Page key, w
the document. After LEAPing from one end
both LEAP keys simultaneously would highl

In other writings, Raskin explains how this n
granted US Patent 5,019,806) can significa
ways:

Firstly, and most obviously, it require
of letters needed to locate the desir

Secondly, it avoids the situation whe
searching for and then have to wait

Thirdly, it can improve the response
computer has updated the screen to
string 'ab', it can proceed to build an
occurrence of 'aba', 'abb', 'abc' and
based on the frequency of letter usa
the user types the next character, th
located the next occurrence of it, an
optimisation like this is particularly u
your document large.

Canon Cat keyboard
14

to the next instance of the string 'ab'.

 be familiar with this search mechanism.
 the last leap. Using a LEAP key as a
ould page forward or backwards within

 of a text region to another, pressing
ight the text within the region.

avigation method (for which he was
ntly improve ease of use in a number

s the user to type the minimum number
ed text.

re you mistype the word you're
while the computer fails to find it.

 time of the computer; as soon as the
 show (for example) the location of the
 internal data-structure showing the first

 so forth (it would order the search
ge in the English language). By the time
e computer is likely to have already
d simply needs to update the screen. An
seful when your processor is slow or

 15

Forth In ROM
By highlighting the text "Enable FORTH Language" and pressing "Answer", the
function of the "Answer" key was changed so that it would evaluate highlighted text
as Forth code. In addition, by entering the deliberately cryptic sequence "use front"
+ "shift" + "space", the machine entered an interactive Forth editor/interpreter.

Once enabled, you could enter Forth text, highlight it and press "Answer" to evaluate
it. By pressing another sequence of keys, you could also get to the interpreter itself.

Once a Forth word had been defined and tested, the user could execute it merely by
selecting the name on the screen and pressing the Answer key. (Some years later
Niklaus Wirth included similar functionality in his Oberon system.)

Outcome
The Canon Cat was well-received, and won a number of awards, including the 1989
Industrial Designer's Society of America award. Surprisingly after 6 months, with
20,000 units sold, Canon withdrew the Cat from sale. I found two suggestions on
the Internet for Canon's motivation.

��Political in-fighting between the typewriter and computer divisions within
Canon.

��Pressure from Steve Jobs's new company NeXT, in which Canon became a
16.67% investor in June 1989.

Recently, a group of the original Macintosh designers were in the news with the
creation of their new company, Eazel. Eazel is developing user-interface software
that will form part of the Gnome free software desktop environment.

Today, Raskin is an interface and system design consultant - see his new book "The
Humane Interface". Commenting (in 1996) on some articles about Macintosh history,
Raskin wrote: "What I want to create is software that is as easy to use as the Cat
was but with the power of today's applications. I know how to do it, I just haven't
found a company where I can build it". So there's hope for more new and exciting
innovations from this man.

Acknowledgements
My thanks to Al Kossow for providing pictures of the Swyft from his web site, and to
George Currie who photographed his Cat for especially for Forthwrite.

Neal Crook (nac@forth.org) is a hardware engineer by trade, with a background in
ASIC specification, design and verification. He first became seriously interested in
Forth for use as a hardware debug tool whilst developing a validation board for the SA-
110 StrongARM microprocessor.

 16

Nominations for the
FIG UK Awards of 1999

The FIG UK Awards of 1998 were won by Philip Preston
and Paul Bennett. These awards are given to encourage

effort and recognise achievement.

To everyone who sent in their nominations -
"thank you". The closing date for these has now
passed and it's over to the judges to announce the
winner in the next issue. The recipient of each
award will receive a place in FIG UK web-site's
Hall Of Fame, a mention in Forthwrite and a
year's free membership.

Jeremy Fowell: for his efforts in leading the FIG
UK Hardware Project.

Alan Wenham: for his work in making German
FIG accessible to all.
Dave Pochin: for his sharing his explorations
with Win32Forth.

The awards are judged by the officers of FIG UK.
All who are members on 31st Dec. 1999 are
eligible (except the judges).

Free
membership

Achievement

Forthwrite

 17

John Tasgal
0161 7739365

john@tcl.prestel.co.uk

An Introduction to Color Forth
John Tasgal

Following this Color Forth article is a commentary on some of

Chuck's published code, showing how complex code can be written
with a simpler Forth. John's introduction to Color Forth is necessarily
incomplete as a definitive and comprehensive description will require

Chuck's assistance.

Color Forth (CF) is an extremely original and interesting attempt to simplify
both the structure and appearance of Forth. It inherits several features of
Machine Forth, including the use of address registers. But Charles Moore has
reverted in this, his latest Forth, to the destructive conditionals of Classical Forth.

Its two principal innovations are the use of colour to signify syntactic or
semantic categories; and the simplification and reduction in the number of
control structures.

The original source code was first shown on a monitor using a black background
with coloured text. For obvious reasons of legibility I have changed the colour of
the execution-mode tokens from white to black. There is also a special space
character, a green space, which is shown here as a green underscore after the
token
i.e. 'token_'

The effect is to compile a literal: pop the top of stack; compile it's value; at run-
time that value is pushed.

Note that in Color Forth there are no lines of source text: the code is interpreted
token by token.

This article and its successor (the BMP example) are intended to be read
alongside Charles Moore's description of Color Forth as given in the three
references at the end.

Notation and Glossary

Ordinary text Explanatory text - not source code
Source text Source code (in a variety of colours)

 18

Source Code Colour Key:

() Text Comments in blue
WORD Interpret mode in red (viz define this token as a new name in the

dictionary)
SWAP Compilation mode in green
BUF Execution mode in black (white in the original video source)
999 Decimal numbers in grey
FFFF Hexadecimals in cyan
 _ Compile the number on the TOS

(A green underscore which has the same meaning as a green space
in the (video) source code)

Notation

flag? A word or words which push a boolean value for use by IF.
w0 w1 .. In the examples below these are assumed to be pre-defined

application words.

Basic Constructs
Here is a list of elementary program structures. Each program or fragment is first
shown on a single line, then explained in detail one token or one expression to
the line.

1. WORD1 w0 w1 w2 ; WORD1
Create a word and execute it.

The simplest CF program. Build a subroutine called WORD1 then execute it.

Explanation:

1. A comment
WORD1 Create WORD1
w0 w1 w2 Compile w0, w1 and w2
; Not compiled
WORD1 Executing WORD1 causes w0, w1 and w2 to be executed.

Note that because of tail-recursion optimisation (see previous article) the ;
is not compiled.

 19

2. WORD1 w0 w1 w2 word1 ; WORD1
An infinite loop

Explanation:

WORD1 Create WORD1
w0 w1 w2 Compile w0, w1 and w2
word1 Compile a jump to w0
; Not compiled
WORD1 Executing WORD1 causes w0, w1 and w2 to be repeatedly

executed.

3. WORD1 flag? IF w0 w1 w2 ; THEN w3 w4 w5 ; WORD1
A Two-Branched Conditional

Explanation:

WORD1 Create word WORD1
flag? Compile flag? (which modifies the flag for use by IF)
IF Compile the run time behaviour for IF
w0 w1 w2 Compile these words. Will be executed when flag? is true
; Not compiled
THEN
w3 w4 w5 Compile these words. Will be executed when flag? is false
;

WORD1 If flag? is true execute w0, w1 and w2, then return. Else
execute w3, w4 and w5 and return.

Note: For a single-branched test, just remove w3 w4 w5.

Note: Whereas with Machine Forth, the flag? was preserved, in Color
Forth, Chuck has reverted to the classical IF which consumes the flag?.

4. WORD1 flag? IF w0 w1 w2 WORD1 ; THEN w3 w4 w5 ; WORD1
A While-True loop

Explanation:

WORD1 Create word WORD1
flag? Compile flag?
 Compile the run time behaviour for IF
w0 w1 w2 Compile these words. Will be executed when flag? is true
WORD1 Compile a jump to flag?
; Not compiled
THEN

 20

w3 w4 w5 Compile these words. Will be executed when flag? is false
; Not compiled
WORD1 While flag? is true, execute w0, w1 and w2 then repeat.
 Else execute w3, w4 and w5 and return.

5. WORD1 flag? IF w0 w1 w2 ; THEN w3 w4 w5 WORD1 ; WORD1
A While-False loop

Explanation:

WORD1 Create word WORD1
flag? Compile flag?
IF Compile the run time behaviour for IF
w0 w1 w2 Compile these words. Will be executed when flag? is true
; Not compiled
THEN
w3 w4 w5 Compile these words. Will be executed when flag? is false
WORD1 Compile a jump to flag?
; Not compiled
WORD1 While flag? is false, execute w3, w4 and w5 and repeat.

Else execute w0, w1 and w2 and return.

6. WORD1 w1 WORD2 w2 WORD3 w3 ; WORD1 WORD2 WORD3
Multiple entry points

Explanation:

This is a feature not supported by ANS Forth.

WORD1 Create WORD1
w1 Compile w1
WORD2 Create WORD2
w2 Compile w2
WORD3 Create WORD3
w3 Compile w3
; Not compiled
WORD1 Execute w1, w2 and w3 then return
WORD2 Execute w2 and w3 then return
WORD3 Execute w3 then return

7. 255 FE +
Evaluate an expression containing literals

Explanation:

255 (-- 255) Push decimal 255
FE (-- 255 254) Push hex FF

 21

+ (-- 509) Add them

8. WORD1 255_FE_+ ; WORD1
Compile an expression containing literals

Explanation:

 [Note: The next stack pictures show the stack during compilation]

WORD1 Compile Word1
255 (-- 255) Push decimal 255
_ (--) Compile it
FE (-- 254) Push hex FE
_ (--) Compile it
+ Compile add
;
WORD1 Execute Word1 with the following run-time

behaviour:

(-- 255) 255 pushed to stack
(-- 255 254) Hex FE pushed
(-- 509) Add

9. 10_BEGIN w0 w1 w2 NEXT
Set up the index for a loop

Explanation:

This example pushes decimal 10 onto the stack at run-time, where it will
be used as the index for the loop. [This is not as inconvenient as it seems
because the A register is available for holding an intermediate value - Ed.]

 w0, w1 and w2 are executed 10 times.

10. VARIABLE w0 w1 w2
Declare 3 variables called w1, w2 and w3

Some Idioms
Here are some frequently-used instruction sequences:

1. BUF_A!
An efficient way to access a variable's address

Note: The variable's name is in black, followed by the green underscore.

 22

Explanation:

BUF (-- ^buf) Push the address
_ (--) Compile the literal
A! (--) Compile A!

At run-time, the address is pushed, then A! stores it into the accumulator A.

2. A 20_+ A! (A = A + 20)
 A -20_+ A! (A = A - 20)
 Read, modify and write A

Explanation:

This is the sequence to modify A for pointer arithmetic where an
increment-by-one isn't suitable. E.g. adding or subtracting the 'stride' of
an array, or stepping through large fields in a record.
Note that there is no subtraction primitive. '-' must be defined as a
high-level word.

3. WORD1 @+ flag? IF w0 w1 w2 word1 ; THEN w3 w4 w5 ; ...
 Process a stream using pointer arithmetic

Explanation:

While flag? is true execute w0, w1 and w2 then repeat; else execute
w3, w4 and w5 then return.
In each loop, initially fetch the contents pointed to by A, and increment
A.

No flag? word is needed if it is intended to exit on A=zero (as false
causes a jump to the exit sequence). So as a special case we can write:

WORD1 @+ IF w0 w1 w2 word1 ; THEN w3 w4 w5 ; ...
or
WORD2 @+ DUP IF w0 w1 w2 word1 ; THEN DROP w3 w4 w5 ; ...

The WORD2 version has a DUP to allow the data value fetched to be used
by the true block.
This is a fast and elegant way of scanning an array with an exit-on-zero.

 23

4. WORD1 20_BEGIN @+ w0 w1 w2 NEXT ...
Process a stream using an index

Explanation:

Set the index to 20. In each loop, fetch the contents of A; increment A;
process w0, w1 and w2 then decrement the index and repeat if not
zero. WHILE loops are the method of choice as they don't require an
index.

The next article is my annotation to Charles Moores's Color Forth
program BMP, which converts a VGA screen to a BMP file.

References
1. Color Forth
 http://www.UltraTechnology.com/color4th.html

2. 1X Forth
 http://www.UltraTechnology.com/1xforth.htm

3. Dispelling the User Illusion
 http://www.UltraTechnology.com/cm52299.htm
 This includes the source code for the BMP example.

Postscript
In a recent message to the newsgroup (13th May) Jeff Fox reported that
Chuck plans to publish Color Forth for PCs with Pentium processors.
Some progress has been made in this but no release date could be
given.

 24

Jobs Roundup

News of job and project opportunities are sent by e-mail to all
members that have expressed an interest. If you didn't receive the
message sent on 23rd May, then please contact Chris Jakeman to

add your name to the list.

From Paul Bennett:

Not just yet but most probably some time soon, one of my clients will have a
need for a permanent software engineer with a knowledge of Forth for a variety
of Forth dialects (Fig to ANS). The position will be in the West Midlands region
of the UK and will involve some site visits.

Duties will be mainly the maintenance of existing code (assembler and Forth,
(maybe a bit of C as well) and assistance in developing new products.
Experience with real-time machine control would be most useful as would any
electronics, electrical and mechanical background.

In the first instance, e-mails to me with a brief (one page) resume which I will
pass on to my client for his consideration in due course.

Thank you

Paul E. Bennett<email://peb@amleth.demon.co.uk>
Forth based HIDECS Consultancy<http://www.amleth.demon.co.uk/>
Tel: +44 (0)7971-620145 / NOW AVAILABLE:- HIDECS COURSE
Going Forth Safely / see http://www.feabhas.com for details

From Steve Smith:
I should have replied to this a long time ago. After just missing out on a recent
Forth-based contract and thinking about how much I would like to get back into
any Forth projects, can you put me on your contact list for any Forth-based
employment/contract/project work that comes your way.

I do my best to keep my Forth skills up to date (I've got a copy of SwiftForth),
but have to admit it's been 9 years since I was actively involved in any
commercial Forth work.

Up to 1991 I was Software Manager for a scientific instrumentation company
and we used polyForth and chipForth extensively for both the embedded systems
for instrument control, and the PC-based data processing systems. My CVs in
various formats are currently available on my web site at:

www.diamondb.demon.co.uk/cv.html

 25

John Tasgal
0161 7739365

john@tcl.prestel.co.uk

The BMP Example
John Tasgal

Charles Moore has provided an example of Color Forth2 in use, which describes
the conversion of a video screen to a BMP file. Before looking at the code, here is
some background information.

The Program
The aim is to format a video buffer and write it to another area of memory, the
BMP buffer.

When this has been done, Color Forth is exited and, having recorded the start
and length of that buffer, the memory is saved to disk using DOS. The screen is
in VGA mode with a resolution of 640 columns and 480 rows. Each pixel is
represented as a single byte, giving 256 colours.

The original implementation of Color Forth uses a 20-bit cell on the i21
processor. This code is for a PC implementation using a 32-bit cell.

BMP Format
A BMP (Window's Bit Map) file has three parts - a header, a palette, and the
video data itself, as shown here.

Offset Contents
0000h Bitmap type ("BM" for Windows)
0002h File size in bytes.
0006h Reserved
000Ah Bitmap Data Offset from beginning of file to the beginning of the

bitmap data.
000Eh Length of the Bitmap Info Header used to describe the bitmap colours etc
(= 28h for Windows)
0012h Horizontal width of bitmap in pixels.
0016h Vertical height of bitmap in pixels.
001Ah Number of planes in this bitmap.

2 Dispelling the User Illusion
 http://www.UltraTechnology.com/cm52299.htm

mailto:john@tcl.prestel.co.uk

 26

001Ch Bits Per Pixel
001Eh Compression Type. 0 = none; 1 = RLE8; 2 RLE4; 3 = Bitfields
0022h Size of bitmap data in bytes, rounded up to 4 byte boundary.
0026h Horizontal resolution in pixels/m.
002Ah Vertical resolution in pixels/m.
002Eh Number of colors used by this bitmap. For a 8bit/pixel bitmap this

will be 256.
0032h Number of important colors
0036h The Palette of size = (#colours* 4) bytes. Each entry has 4 bytes:

blue, green, red, filler. The filler is set to zero.
0436h Bitmap Data

The Algorithm
To minimise the amount of data to be stored, the extent of the image must be
established.

First, the frame surrounding the image is filled with zeroes. Then, the rectangle
defining the outer limits of the image is found by scanning the whole picture in
four directions:

��top down to find the top edge;
��bottom up for the lower edge;
��left to right for the left edge;
��and right to left for the right edge.

This yields:

 BUF a pointer variable to hold an address
 H the height, and
 W the width

That buffer is now formatted and written to the BMP buffer. Please refer to the
'User Illusion' text to see Charles Moore's description of this program.

Glossary
Variables:

BUF the address of the top left corner (and therefore the start of the
image array in the video buffer)

H the height, and
W the width

Procedures:

ROW (stride ^row -- true | stride false)

 27

Scan a row beginning at ^row.
Returns 0 for a blank line, non-zero otherwise.

ROWS (stride ^row --) Scan rows to find first non-zero row.
Store value in H.

COL (stride ^col -- true | stride false)Is this a blank column ?

COLS (stride ^col -- stride)
Scan columns looking for first non-blank.
Return width in W, and set BUF to first
column.

N, (u advance --) Write a value to the location pointed to by
BUF (the BMP buffer pointer).

2, (u --) Write a value to the BMP buffer, incrementing
 the BUF pointer by 2 bytes.

PACK (pel2 -- packpel2) Pack and invert pixels
 (xbxa -- xxab) where a and b are nibble-sized pixels.

ROW () Write a packed row to the BMP buffer

ROWS (^buf --) Write the video buffer to the data part of the
BMP buffer

The Source Code3
Chuck uses a format of blocks organised in 12 lines of 20 characters. The code
which follows uses a more conventional format.

FRAME A comment
EMPTY (--) Minimise the dictionary
Declare variables
VARIABLE BUF W H Create buffer, width and height variables

Next define ROW, ROWS, COL and COLS. First is ROW :
1. set up the loop count
2. enter the begin ... next loop
3. fetch 4 pixels and increment A
4. if they're all blank then continue round the loop
5. else exit

3This is a fairly complete annotation but some parts of the code (marked with
"??") defied analysis. This may be partly due to errors in the published HTML
page which contains a few copying errors. Both John and I have spent some time
trying (and failing) to decode the exact stack behaviour. If any reader can solve
the puzzle, please write in. - Ed.

 28

ROW (stride ^row -- true OR stride false)
Scan a row beginning at ^row
Return 0 for a blank line, non-zero otherwise

 A! (-- stride) Read row address into A
 159_ (-- stride i) Push limit for loop to do 160 fetches of 4 bytes to

scan all 640 pixels across image.
[Original reads 169, not 159 - Ed.]

 BEGIN (-- stride i)
 @+ (-- stride i pel4) Fetch pel4, increment A. pel4 is shorthand for 4
 byte-sized pixels packed into one 32-bit word.
 IF (-- stride i) Test for a zero value indicating 4 blank pixels.
 + (-- stride+i) If not found, leave a non-zero value on the stack
 ; (-- non-zero) and return.
 THEN (-- stride i) If all pixels are blank, continue.
 DROP [?? Surely a mistake - Ed.]
 NEXT (-- stride i-1) Decrement loop count
 0_ (-- stride 0) If it gets to here, the row is all zeroes,
; so push a zero and return

ROWS is a while-false loop .

1. while ROW returns false (a blank line)
2. decrement H

ROWS (stride ^row --)
Scans across to find first non-zero row.
Stores value in H.
 DUP BUF_ ! (-- stride ^row) Store current row in BUF
 ROW (-- true OR stride false) Is this row non-blank ?
 IF (--) If a non-blank line
 DROP DROP [?? Surely a mistake - Ed.]
 ; (--) return (with BUF set to current row)
 THEN (-- stride) If all pixels are blank, continue.
 DROP [?? Surely a mistake - Ed.]
 -1_H_+! (-- stride) Decrement H
 DUP A + (-- stride ^row) Point to next row4
 ROWS Jump back to first DUP (i.e. scan next row)
 ;

Identify the upper and lower edges by calling ROWS twice; first top down, then
bottom up.

4 This would work if A always held the row address at this point.

 29

448 H ! Set H to max number of rows. As 480-32 =448, presumably these 32

rows are for the command line.

VGA 0 (-- ^vga 0)
OVER ROWS (-- ^vga) Find first edge by scanning up.
-1280 SWAP (-- -1280 ^vga)
640 447 * This product is the max number of pixels in the image
+ (-- -1280 ^vga+[640*447])
ROWS (--) Find second edge by scanning down.5

COL (^col ^newcol -- true OR ^col false)
Do all rows in this column contain blank pixels?
 A! (-- ^col) Make A point to the start of a column.
 H @ -1 +_ (-- ^col #rows-1) Loop limit is number of rows-1 to scan.
 BEGIN (-- ^col i)
 @+ (-- ^col i pel4) Fetch pel4 and increment A by 4
 FF_AND (-- ^col i pel) Extract single pixel by clearing all but the

lower 8 bits.
 IF (-- ^col i) If pixel is not blank,
 + (-- non-zero) leave a non-zero result
 ; (-- true) and return.
 THEN (-- ^col i) Else advance to the next row and continue
 DROP [?? Surely a mistake - Ed.]
 A -644_ + A! (-- ^col i) Point A to next row -640 - 4. -4 is

needed as @+ incremented A by 4
(Original reads 544, not 644 - Ed.)

 NEXT (-- ^col i-1) Next row
 0_ (-- ^col 0) If all rows are blank, push 0
;

COLS (^col --)
Scan columns looking for first non-blank one.
Return width in W, and set BUF to first column
 DUP BUF_! (-- ^col) Point BUF to start of column
 COL (-- true OR ^col false) Is this column blank?
 IF If non-blank column,
 DROP

5 We've now found H, the number of rows in the image, but we seem to have
discarded the address where the first row of the image starts.

 30

 ; (--) then return
 THEN (-- ^col) Else continue
 DROP [?? Surely a mistake - Ed.]

 -1_W_+! (-- stride) Decrement W
 DUP A + (-- ^nextcol) Point to start of next column
 COLS Jump back to first DUP i.e. scan next column
 ;

Identify the left and right edges by calling COLS twice: first left-to-right, then
right-to-left

640 W ! (--) Set W to max # of cols
BUF @ H @ (-- BUF H)
640 * -1 + (-- BUF #pix) #pix = (H*640)-1, i.e. no. of pixels

containing the image after trimming blank rows
from top and bottom.

OVER 639 + (-- BUF #pix buf') buf' = buf + 639
COLS (-- BUF #pix) Scan left-to-right
2 + SWAP (-- #pix+2 BUF)
COLS (-- #pix+2) Scan right-to-left
DROP (--)
W @ 1 + -2 AND (-- W') Rounds W up to nearest even number so that

2-byte reads and writes can be used.
W ! (--) Store result in W

BUF, H and W now have their final values and we prepare to write to the buffer
BMP .

BUF @ (-- bufold) Save old value of BUF
B71000 BUF ! (-- bufold) Change BUF
, (--)
4 (-- 4)

N, (n Advance --) Store a word of data at the location

pointed to by BUF. Advance the pointer BUF by
Advance bytes.

 SWAP (-- n2 Offset n1)
 BUF @ ! Store the first word
 BUF_+! Advance the pointer

[Original reads +1, not +! - Ed.]
;

 31

2, (n --) Write a 16-bit word to the BUF buffer
 2_ (-- n 2) 2 = bytes to advance
 N, (--)
;

Now writing to the BMP buffer can begin. First, the header:

BM [Is this a misprint? - Ed.]
4D42 2, Store ASCII "BM" at offset 0000h
W @ H @ (-- W H)
2 */ (-- (W*H)/2) The bitmap size in bytes ..
16 4 * + (-- size1) Add 64 for the palette ..
54 + (-- size2) Add 54 for the header ..
, and store at offset 0002h.
0 , 0006h Reserved
118 , 000Ah Bitmap Data Offset
40 , 000Eh Length of the Bitmap Info Header
W @ , 0012h Width
H @ , 0016h Height
1 2, 001Ah Number of planes in this bitmap
4 2, 001Ch Bits Per Pixel
0 , 001Eh Compression Type. 0 = none
W @ H @
2 */ , 0022h Size of bitmap data in bytes, rounded up to 4 byte boundary
0 , 0026h Horizontal resolution
0 , 002Ah Vertical resolution
0 , 002Eh Number of colors used by this bitmap. For a 4bit/pixel bitmap

this should be 16 (?)
0 , 0032h Number of important colors
(?) 0036h The Palette of size = (#colours* 4) bytes
ORGB Probably moves pointer to the palette origin.

Next, write the Palette data. The fourth byte is the filler and is always zero. So
only up to 3 bytes are ever specified.

 FFFFFF , FF00 , FF , FFFFF ,
 E00000 , E0C000 , FFFF00 , 808000 ,
 408080 , 40F040 , 40FC , E000C0 ,
 E00040 , C0FFFF , 404040 , FCFCFC ,

Finally, we have the video data section. Although the code has been written for
256 colours in memory, only 16 are used at present so the video data is packed
before writing to the file. PACK takes two pixels of one byte each and packs them

 32

in inverted order into one byte. For the algorithm below to work it assumes that
the data is in two bytes with the pixel data in each of the lower nibbles; the data
in the upper nibbles may be discarded.

i.e. PACK (xbxa -- xxab)

Where x means don't care. The aim is to shift and swap, then do this OR as in:

 xxa0
 xx0b
 xxab after OR'ing

The data in the upper byte is ignored as, although the data is sent out a word at
a time, it is overwritten by the next low byte to be sent. '*/' is shown black in
the text - changed here to green.

PACK (pel2 -- packpel2) Pack two pixels
 (0b0a -- xxab) a and b are nibble-sized pixels
 DUP (-- 0b0a 0b0a)
 1_256_*/ (-- 0b0a 000b) shift n0 right 8 bits
 SWAP (-- 000b 0b0a)
 16_* (-- 000b b0a0) shift n1 left 4 bits
 OR (-- xxab) packed and inverted
;

BMP is written from bottom to top
Note: This is the second definition of ROW and ROWS.

ROW (--) Write a packed row to the BMP buffer
 W @ 2/ (-- W/2) No. of bytes to write
 -1 +_ (-- W/2-1)
 BEGIN (-- i)
 @+ (-- i pel4) Fetch 4 pixels
 PACK (-- i packpel2) Pack 2 pixels into the lowest byte
 1_N, (-- i) Write the packed byte to BMP buffer
 A -2_+ A! (-- i) Decrement A for next 2 pixels
 NEXT (-- i-1)
;

[It is interesting to see that the code for ROW, PACK and N, work together to
read data 2 bytes at a time and write it out byte by byte independently of the cell
size of Color Forth (which seems to be 4 bytes) - Ed.]

 33

ROWS (^buf --) Write the video buffer to the data part of the BMP
buffer.

 A! (--) Set A to point to the start of the data
 H @ -1 +_ (-- i=H-1) Loop limit, once for each row
 BEGIN
 ROW (-- i) Write a row
 A (-- i A)
 W @ -639 +_ W-639 is computed at compile time
 (Original reads @ - 639, not @ -639 - Ed.)
 + (-- i A+(W-639)) Address of next row
 A!
 NEXT (--i-1)
;

ROWS (--) Write the video data

Acknowledgements
I would like to thank Chris Jakeman for suggesting I write these articles.
Many thanks also to Jeff Fox for kindly reviewing an earlier draft and providing
an excellent web site.

Editor's Note: We regret the problems found in decoding this example, which
would surely be overcome with help from Chuck himself. We hope that they do
not obscure the many techniques Chuck has introduced to simplify the compiler
and make Forth more appropriate for his current work.

These include:

��Use of the special A register
��Optimisation using ";"
��Looping back to the start of a word by repeating its name
��Looping using BEGIN NEXT
��Colour syntax for brevity

 34

Chris Jakeman

cjakeman@bigfoot.com

Did you Know? - Forth OS

While other parts of Forthwrite bring you all the news and the latest
ideas and developments, the Did You Know? section highlights

achievements in Forth, both recent and historical (taking care always
to distinguish hearsay from attested fact).

In the days before micro-computers came already equipped
with disk drives and an operating system, Forth provided a
well-integrated and powerful environment combining the
operating system, the applications and the programming
language.

This arrangement survives commercially to this day.

"To be more specific, Greg Bailey at Athena Programming
(ftp://ftp.minerva.com/pub/www/athena.htm) supports several OEMs
with an aggregate of several hundred installations with native Forth OSes
running on low-end PCs providing various application services and also
providing extremely high-bandwidth, high security TCP/IP services.

These boxes run for years without rebooting, and performance exceeds
any high-end servers on the market. "

Source - Elizabeth Rather, Forth Inc.

Thanks to this concept, Forth occupies a unique place in the
history of the 8086 processor.

"One of the very first 8086s was delivered to FORTH Inc, and polyFORTH
was running less than two weeks later." This was before DOS and CPM/86
existed.

Source - Andrew Haley

 35

Alan J M Wenham
01932 786440

101745.3615@compuserve.com

Vierte Dimension 2/00
Alan Wenham

Alan provides a look at the latest issue of the German FIG magazine.

To borrow a copy or to arrange for a translation of an individual
article, please call Alan.

Editorial

Friederich Prinz

Friederich.Prinz@
t-online.de

Includes a plea, which is familiar to all newsletter editors, for
more letters and articles.

Polyalphabetic Encryption Cracker, Part 2

Hugh Aguilar

haguilar@
forth.org

This is a translation by Fred Behringer
(behringe@mathematik.tu-muenchen.de) of a paper by Hugh
in Forth Dimensions,Volume 2,Nos 5 and 6, January/April
1999.

Other Groups

Fred Behringer

behringe@
mathematik.tu-
muenchen.de

Reviews by Fred of Forth Dimensions, January/April 1999; of
Forthwrite 104 and 105; and of Figleaf 16, 17, and 18.

First experience of Windows 2000

Friederich Prinz

Friederich.Prinz@
t-online.de

Fritz had difficulties with faulty drivers for the ZIP engine and
with the "intelligent" set-up where the installation process did
not warn him about totally unsuitable drivers. The result was
that Fritz spent many extra hours in installing an "absolutely
fool-proof" Microsoft product which left him in the lurch.

 36

The Ciphered Cipher - or X S 2XOR - A Riddle

Fred Behringer

behringe@
mathematik.tu-
muenchen.de

A secret message is sent backwards and forwards without
reciprocal knowledge of the key, and without exchanging
keys between recipient and sender, until the recipient can
read the content of the message in plain text. What principle
does this involve?

Colour in Life

Martin Bitter

mbitter@
bigfoot.de

It is not at all easy to print to paper in colour under
Win32Forth. Martin describes how to do it.

DO .. LOOP Code for Extension up to 32k Steps

Fred Behringer

behringe@
mathematik.tu-
muenchen.de

In Forth systems that originated with F83 one can construct
DO loops in assembler. These 16bit systems use opcode 7x
for this purpose but this permits jumps (backwards and
forwards) of only 128 bytes. For 80386 processors and
higher Fred shows how the jumps may be extended to 32k by
using the 0F 8x opcodes.

Use of 4 - A Riddle

Fred Behringer

behringe@
mathematik.tu-
muenchen.de

Write down the integers 1 to 50 by only using exactly 4 times
the figure "4" in connection with the usual arithmetic
operations.

 37

Deutsche Forth-Gesellschaft

Would you like to brush up on your German and at the same
time get first-hand information about the activities of fellow
Forth-ers in Germany?

Become a member of the German Forth Society for 80 DM
(£28) per year (32 DM (£11) for students and retirees). Read
about programs, projects, vendors and our annual conventions in
the quarterly issues of Vierte Dimension.

For more information, please contact the German Forth Society at
the e-mail address SECRETARY@ADMIN.FORTH-EV.DE

or visit http://www.forth-ev.de

or write to
 Forth-Gesellschaft e.V.
 Postfach 161204
 18025 Rostock
 Germany
Tel.: 0381-4007872

 38

Chris Jakeman
01733 753489

cjakeman@bigfoot.com

From the 'Net - Cube Roots
Chris Jakeman

In the last issue, I reported a series of messages on comp.lang.forth
about calculating cube roots, including contributions from member
Philip Preston.

The subject surfaced again as a discussion on functional
programming and Philip posted a method for using binary search to
calculate the inverse of any function that always increases. He
illustrates it with a square root and a cube root. He also posed a
question, which I don't think was ever answered so is repeated here.

From: Philip Preston philip@preston20.freeserve.co.uk
Date: 30-Jan-2000
Subject: Re: Forth a functional programming language?

Anton Ertl wrote
> Jonah Thomas <jethomas@ix.netcom.com> writes:
>> anton@mips.complang.tuwien.ac.at (Anton Ertl) wrote:
[snip]
>> This stuff is kind of fun. I wonder whether it's good for
>> something?
>
> Ithink it's quite good at factoring control flow. I think we
> recently had a try at factoring the binary-searching square-root
> into a higher-order binary-search word and a few other words.

That was the first thing I thought of. I came up with this:

: (BINSEARCH) (upperlimit key xt -- result)
 2>R 0 SWAP BEGIN (-- low high)
 2DUP 1- < WHILE \ end if high-low < 2)
 2DUP + 1 RSHIFT \ trial value is average of limits
 2R@ (-- low high trial key xt)
 EXECUTE IF (-- low high trial)
 ROT ROT \ Prepare to drop low limit
 THEN
 NIP (-- new_low high | low new_high)
 REPEAT
 2R> 2DROP DROP ;

 39

: UPPER-LIMIT (xt -- u)
 >R 0 0 0 BEGIN
 NIP SWAP 1+ TUCK R@ EXECUTE
 2DUP U>
 UNTIL
 R> DROP 2DROP ;

: RUNTIME-XT (xt1 -- xt2)
 >R :NONAME POSTPONE OVER R> COMPILE,
 POSTPONE U< POSTPONE 0= POSTPONE ; ;

: INVERSE-FUNCTION (xt "<spaces>name" --)
 DUP RUNTIME-XT SWAP UPPER-LIMIT
 CREATE , ,
 DOES> (u1 -- u2)
 2@ ROT ROT (BINSEARCH) ;

: SQUARE (u1 -- u2) DUP * ;
' SQUARE INVERSE-FUNCTION SQUARE-ROOT

: CUBE (u1 -- u2) DUP DUP * * ;
' CUBE INVERSE-FUNCTION CUBE-ROOT

etc.

I'm not very happy with UPPER-LIMIT. Is there a better way of
doing it?

I think this posting is worth a little commentary including, as it does, indirection
and the use of DOES>.

Philip has provided the defining word INVERSE-FUNCTION that takes a function
that is simple to calculate (e.g. SQUARE) and defines a word (e.g. SQUARE-ROOT)
that calculates the more difficult inverse. He does this by cheating - repeatedly
calculating the simple function with different values until the correct value is hit
upon. Thanks to the magic of binary search, the number of different values
needed is never more than a small number.

First of all, (BINSEARCH) performs a binary search between 0 and UPPERLIMIT
for f(Key), where f is the function (e.g. CUBE or SQUARE) which we are trying
to invert. It uses EXECUTE to perform any function it is given - this is the
indirection.

Philip's (BINSEARCH) is a more general derivative of the version published in
Forthwrite Oct 91 by Gordon Charlton.

 40

As an example, if we print out the trial values found by (BINSEARCH), we get:

1000 CUBE-ROOT .
trial values = 813 406 203 101 50 25 12 6 9 10 11
10 ok

The introduction of UPPER-LIMIT is (in my opinion) an improvement on
Gordon's implementation as it is more general. It aims to calculate the largest
value x where f(x) no longer fits into a single cell. It does this by incrementing
up from x=0 until it finds an f(x) which appears6 to be less than f(x-1).

By trying all the values (for a 32-bit cell, we have x=65536 for SQUARE and
x=1626 for CUBE), UPPER-LIMIT is slow but will only be executed once - at
compile time.

RUNTIME-XT creates an anonymous word suitable for passing to (BINSEARCH)
that not only executes f(x) but also compares the result with the target,
returning true if it is less than the target.

INVERSE-FUNCTION is the cunning word that defines the solving words like CUBE-
ROOT. Look at the DOES> portion, the part that gets executed whenever CUBE-
ROOT runs.

This fetches two values, the execution token xt and the upper limit from the data
field of CUBE-ROOT and calls (BINSEARCH) to solve the problem.

The CREATE , , part of the word creates CUBE-ROOT and stores the two values
found by executing RUNTIME-XT and UPPER-LIMIT. The anonymous word
created by ' CUBE INVERSE-FUNCTION CUBE-ROOT is equivalent to:

: ANONYMOUS (trial key -- trial less_than_key?)
 OVER CUBE U< 0=
;

This is an excellent illustration of the power of DOES>, a concept so foreign to
other languages that it becomes very difficult to explain. INVERSE-FUNCTION
provides the simplest possible way to create a solving word like CUBE-ROOT.
Without the use of DOES>, you would have to define CUBE-ROOT as:

: CUBE-ROOT (u1 -- u2)
 [' CUBE UPPER-LIMIT] LITERAL SWAP
 [' CUBE] LITERAL (BINSEARCH)
;

6 Only appears to be less because the most-significant bits of the number have
been discarded to fit the result within a single cell.

 41

(and you would also add OVER ... U< 0= into (BINSEARCH)). How much easier
and simpler it is to write:

' CUBE INVERSE-FUNCTION CUBE-ROOT

Diary Date
euroFORTH 2000 15-18 Sept. in Cambridge

This is the most Northerly venue so far, so there should be some
new faces (including mine). Look for details closer to the date on

http://dec.bournemouth.ac.uk/forth/euro/ef00.html

 42

Letters

Graham Telfer

From: gtelfer@po.synapse.ne.jp
Sent: 11 April 2000
To: Chris Jakeman
Subject: Forthwrite on the web & an esoteric language

Hi Chris,
I got the April edition of Forthwrite yesterday. I enjoyed
reading it, as always. You asked for comments about putting
the magazine on the web site. I think it's a bad idea for
FIG UK from the foreign members' point of view. I could quite
happily wait the extra couple of months to read the magazine
and then save myself 20 pounds.

I think FIG UK is better and bigger than the magazine though,
so I'll be renewing my membership when I get the next issue.

Perhaps a quarterly digest including some of the best articles
from back issues would be a better idea.

I came across this site on the esoteric language ring:

SockZ

It's described as being forth like!

Yours
Graham Telfer

Graham Telfer responds positively to the last Editorial.

Fred Behringer sends us some unique pictures from Germany - good to put faces to familiar
names at last.

New member Rob Probin is trying to build an interactive Forth on a PIC. This is unusual as
most Forths for the little PIC are compiled on a host and downloaded.

 43

Fred Behringer

From: behringe@mathematik.tu-muenchen.de

Hi Chris,
The SWAP Dragon was handed over to Egmont Woitzel, this
year's Dragon Award winner. Dr. Woitzel has gained merits in
favour of Forth-Gesellschaft for over ten years. His
dedication to Forth reaches even farther back, some years
prior to his joining Forth-Gesellschaft.

He is the initiator and organizer of our new Web site.

Fritz was jumping around with his newly acquired digital
camera and has taken some photos of the handing-over
ceremony (Egmont and yours truly - and the dragon).

I now know the electorial procedure (Drachenrat) and I was
tasting quite a bit of that alcoholic liquid necessary to seal the
treaty with the dragon, but I'm afraid I must keep the secret
from the other members and from the rest of the world.
Award-winner Egmont Woitzel took this picture of members
of Forth Gesellschaft after the recent ceremony. From left to
right, we have Friederich Prinz, Klaus Schleisiek, Ulrich
Hoffmann, Bernd Paysan and Fred Behringer.

 44

Rob Probin

From: rob@zedworld.demon.co.uk

Hi Chris,

I'm currently trying to read everything I can about Forth. And this
is my primary reason to join Fig-UK - to get Forthwrite (delivered
on paper is strangely satisfying as well?!) For the subscription
amount, I am also willing to support FIG-UK, as I know anything
costs money.

There are a few reasons why I'm interested in Forth but the
primary reason?... I know quite a number of other languages and
want something that gives me a more interactive environment. I
think Forth is the only thing close, so rather than re-invent the
wheel I feel it's certainly worth a go. I do believe in planned design,
UML, OO design, etc, etc, but as evolutionary prototyping schools
of thought went, it's not the only tool required.

Forthwrite, Yes, very good. Especially liked the FORML notes
STATE, IMMEDIATE, POSTPONE stuff, Machine Forth and
Letters.

Currently I'm developing two Forth kernels - a PIC interactive
Forth (rather than John Hayhow's described project, or F2P, it's
more like a Stamp BASIC type thing. I personally believe that it
would be very useful for a lot of people. Xfree style license, with a
support CD for sale.), and secondly a "game forth", for use in game
development that we do (see http://www.lightsoft.co.uk), that
integrates with C/C++. Our development machines are Macintoshes,
but we target PC's as well.

Both are in the initial stages. The PIC forth has the inner
interpreter running, with a few trial words, and the next the thing
to do is decide on the minimal set of words, and of what are good
extra's for bigger memory footprints.

And when I get 5, I'll have to get some back issues of Forthwrite ...

 45

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in publication
for more than 100 issues. Most of the contributions come from
our own members and Chris Jakeman, the Editor, is always
ready to assist new authors wishing to share their experiences
of the Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price of
a loan is simply the cost of postage out and back.

Jack Brien maintains our web site at http://forth.org.uk. He
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as “Build Your Own
Forth” and links to other sites. Don’t forget to check out the “FIG
UK Hall of Fame”.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on the
#FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don’t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

	Structured bookmarks
	1
	2
	3
	4
	5
	6
	7
	8

