

 ISS 0265-5195

news events people reviews projects programming

July
2002

Issue 117

FIGUK magazine:
Special Features of kForth 2/2

Book Review
Expanding the Use of the Stack

Across the Big Teich
Vierte Dimension 1/2002

Interview with
Chuck Moore

euroFORTH 2002 15
German FIG Annual Conference . 39

Forth News 2

Book Review �Write Your Own
Programming Language
using C++� 18
Across the Big Teich 31

Expanding the Use of the Stack. 16
Special Features of kForth 26

From the �Net � Chuck Moore 5
Letters ... 41

news

reviews

people

events

July
2002

Issue 117

programming

 1

Editorial
FIG UK continues to make a difference. Our
IRC sessions attract 5 to 10 people every
month and there are always visitors from
outside UK. I was delighted to meet veteran

Bill Ragsdale on-line in June. For the May session, we switched
over to join a planned meeting on-line with Chuck Moore, the
inventor of Forth. Our arrival en masse caused quite a stir
among those gathered and I hope we can continue to find ways
to bridge the Atlantic.

It good also to find people quoting Forthwrite on the newsgroup
(for example Julian Noble quoted the JenX article recently).

We give a warm welcome to three new members; Paul Culkin
from Fulham, Thierry Charlier (see letter in previous issue) and
Jan Bernard van Doorn from Amsterdam.

PS. Don�t forget the monthly IRC session. Our next one is
Saturday 3rd August on the IRC server called �IRCNet�, channel
#FIGUK from 9:00pm.

Until next time, keep on Forthing,

 2

Forth News

Commercial Systems

iForth
iForth is a multi-platform Forth that
runs on DOS, WinNT, W2K and Linux.

The new v2.0 of iForth features a
completely new internal design that
optimizes away most stack traffic. In
benchmarks a speed increase of about
30% to 40% is measured. Compiling
large projects is faster by a factor of
about 1.5. Generated floating-point code
outruns that produced by Microsoft's
VC++ 6.0 compiler (full optimization).

4-bit Forth Microcontroller
Atmel Corporation is a worldwide
leader in advanced integrated circuits
and one of the elite few companies
capable of integrating dense nonvolatile
memory, logic and analog functions on
a single chip.

Their 4-bit processor, MARC4 has a 4-
bit architecture and is offered for
applications such as wireless
communication and reading telephone
cards. Forth is used as the development
environment and the CPU core is
basically a Forth engine.

Non-commercial
Systems

4th Website has Moved
4th is a free Forth compiler close to
ANS Forth which is virtually crash-
proof and can be used within C
programs.

Hans Bezemer reports that the web-site
has moved to

http://www.xs4all.nl/~thebeez/4tH

Please note the Forth Primer project
continues to be hosted at

http://www.forthprimer.hothere.com/

Help for kForth
The documentation for kforth 1.0.11 has
been updated at

http://ccreweb.org/software/kforth/kforth.htm
l

The downloadable html doc package is
called kforth-doc.zip and is now in
synch with the on-line user's guide.

pbForth Announcements
Ralph Hempel has announced lots of
developments leading to v2.1.3 which
provides support for USB tower under
Windows and much more reliable
communications. Also support for
background processing and saving an
entire system. Thanks to Darin Johnson,

http://www.xs4all.nl/~thebeez/4tH
http://www.forthprimer.hothere.com/
http://ccreweb.org/software/kforth/kforth.html
http://ccreweb.org/software/kforth/kforth.html

 3

users can write new words in assembler
right on the RCX. Source code for his
H8/300 assembler is included in the
distribution and tutorials are on the
web-site. See

http://www.hempeldesigngroup.com/lego/pb
Forth/

The pbForth system was recently
redesigned to be portable to any CPU
that has a contiguous CODE/RAM
space. It achieves this based on Chris
Jakeman's MAF and passes the full
ANS Hayes test suite.

A new tutorial has been published on
playing music on the RCX. Near the end
of the article, there's a description of
how to hook into the 1 msec timer tick
of the RCX - it's a perfect way to make
a simple multi-tasker! See

http://www.hempeldesigngroup.com/lego/pb
Forth/scripts/howtoRCXMusic.html

Ralph reports around 175 active
members on the pbForth mailing list.

Forth Resources

ISO Extension to 2007
Elizabeth Rather reports that the ballot
run by the US ISO liaison committee
oncluded on 17th April in favour of
onfirming the ISO standard for a further
5 years.

ANS Forth Published Papers
In the previous Forth News, we reported
that the ANS Forth of 1994 will be due
for re-evaluation in 2005. Elizabeth
reports that the Technical Committee
(TC) �tried to reconvene in 1998-9, and
did succeed in publishing papers on
cross-compilers and

internationalization, but were unable to
progress much farther�. See

http://www.mpeltd.demon.co.uk/arena.htm#
papers

A new TC will be needed to take ANS
Forth beyond 2005.

Chess Program
Jos Ven has published a 3D graphical
chess program for Forth. The chess
engine was ported by Ian Osgood and
the graphics uses the OpenGL standard
(which has been part of the Windows
OS since Win98). The source works
with Win32Forthv4.2. See

http://home.planet.nl/~josv/

More kForth Examples - Loans
Krishna Myneni has added to his
extensive set of 57 sample Forth
programs with one for calculating
monthly payments on fixed interest
loans. See

http://ccreweb.org/software/kforth/kforth4.ht
ml

More kForth Examples - SHRDLU
SHRDLU is a program for
understanding natural language, written
by Terry Winograd at the M.I.T.
Artificial Intelligence Laboratory in
1968-70. SHRDLU carried on a simple
dialog (via a teletype) with a user, about
a small world of objects (the BLOCKS
world) shown on an early display
screen. See
http://hci.stanford.edu/~winograd/shrdlu/

Krishna Myneni has ported the �son of
SHRDLU� program written by Marcel
Hendrix to ANS Forth. SHRDLU
provides a limited 2-D world, with

http://www.hempeldesigngroup.com/lego/pbForth/
http://www.hempeldesigngroup.com/lego/pbForth/
http://www.mpeltd.demon.co.uk/arena.htm#papers
http://www.mpeltd.demon.co.uk/arena.htm#papers
http://home.planet.nl/~josv/
http://ccreweb.org/software/kforth/kforth4.html
http://ccreweb.org/software/kforth/kforth4.html

 4

gravity, in which 4 colored boxes are
placed. The user gives commands in
natural language, and the program
responds with the appropriate action.

A new feature of this version is that the
natural language commands are entered
directly at the Forth interpreter (at the
ok prompt) rather than being handled by
a word. The program displays
"intelligence" when the user asks it to
put one block over another one when
either or both of the two blocks already
have another block stacked on them. It
also can tell the user how the blocks are
positioned relative to each other in the
2-D world. See

http://ccreweb.org/software/kforth/kforth4.ht
ml

More kForth Examples - xyPlot
xyplot is an example of a C++ GUI
application that contains a Forth
environment (kForth) embedded in it.
Users may extend the application by
writing Forth programs that can be
loaded and executed by the application.
Functions may be added to the
application menus, and the Forth
environment can also access some C++
functions.

The latest release of xyplot uses the
latest kForth environment and is
available for Linux at

http://ccreweb.org/software/xyplot/xyplot.ht
ml

Using TCP/IP to Link
Microprocessors
Chris Stephens of Computer Solutions
(Comsol) offers a 28-page guide to

using TCP/IP in small-memory systems,
download from

http://www.computer-solutions.co.uk

Comsol provide several TCP/IP
packages including one that fits into less
than 5K of ROM.

Dynamic Strings Package
David Williams has updated his free
package to v0.6.26 (When does it get to
v1.0 - Ed?).

These words are intended to work with,
not replace, ANS Forth string words,
which act on strings represented by
address, length pairs on the data stack.
ANS Forth strings are especially good
for analysis and parsing of strings and
substrings, while dynamic strings are
especially good for putting pieces of
strings together and keeping them
available while they're needed, then
reclaiming their memory when they're
not.

http://feynman.physics.lsa.umich.edu/~willia
ms/dstrings.html

http://www.computer-solutions.co.uk/
http://feynman.physics.lsa.umich.edu/~williams/dstrings.html
http://feynman.physics.lsa.umich.edu/~williams/dstrings.html

 5

From the �Net

Charles Moore (Chuck), the inventor of Forth, has always focussed
on his developing his ideas rather than promoting them. He attended

euroForth 2001 and was the subject of a �Slashdot� interview
reported in our Nov 2001 issue. More recently, he participated in a

public IRC interview hosted by James Benoit-Robey, aka futhin. The
chat session was held on channel #Forth on the server

irc.openprojects.net on 5th May with about 40 people attending. An
edited version follows but a more complete log has been posted by

Jeff Fox at http://www.ultratechnology.com/chatlog.htm
The monthly #FIGUK IRC session met on the same evening and
switched over to #Forth to join in. Chuck�s responses are in bold

type. (Note: He did not have prior notice of the questions.)

Howdy. Good crowd
<futhin> I have collected a number of questions. I'm not sure if we should do a
standard interview.. or a free for all. What do you think, Chuck?
Just ask questions or express opinions.

<futhin> Question from �jim�: I know you're both (Chuck and Jeff Fox) involved in
creating chips, and have probably gone thru several versions of forth chips... could
you give us an idea of where you are in terms of stability and production?
None in production; design stable
<thefox> I haven't done a prototype run since 98 and the only MISC production run
was MuP21 in 1994 by Dr. Ting.

<futhin> Question from �goshawk�: How did you come to the conclusion that Forth
was too complex, and that sourceless programming was your next move?
Maybe by reading the Forth Standard. There are �megaforths� that try to
do everything, just like Windows or Unix. But sourceless code is a dead
end. Self-limiting.
colorForth seeks the absolute minimum of overhead. Published colorForth
is overly complex. colorForth in colorForth will be simple.

<futhin> Question from �AlephNull�: Have you ever considered writing a book on
Forth or computing?
I lack the patience to write a book. I'll let Jeff.

<futhin> Question from �futhin�: What do you think about FOR NEXT? Is FOR NEXT
more efficient & simple? What about the conflict with the NEXT word used in the
inner interpreter in some Forths?
FOR NEXT is much simpler than DO LOOP, especially for hardware
implementation. Implementation words such as the other NEXT should be

http://www.ultratechnology.com/chatlog.htm

 6

invisible. FOR NEXT runs thru loops backwards. Which is perfectly fine,
once you're used to it

<futhin> Question from �wtanksley�: Have you looked at backtracking? Have you
played games like that with the return stack?
Yes, return stack is a valuable tool. One use I made of it was to implement
infix notation with precedence operators. On the other hand, I don't like
CATCH .. THROW. Errors should be impossible. Or resolved immediately.

<futhin> Question from �Fare�: What do you think of high-level strongly-typed
variants of forth, such as POP-11, HP RPL, Postscript?
Typing is a crutch for poor programmers. It's an obstacle for good ones
Strong typing merely creates errors so that they can be detected
I have no objections to Forth-like languages, or any languages. Just don't
make me use them.

<futhin> Question from �kc5tja�: In your ColorForth environment, you mention on
your webpage that code is re-compiled on the fly, as needed. Does this happen "in
place" and retroactively? Consider your RDY word in your IDE driver example code.
If we were to change it somehow, and have it re-compiled, will that retroactively
affect other words which utilize it?
No. Words must be defined before they're used. Original Forth, circa 1968,
did provide retroactive re-definition. That means re-interpreting text at
execution time. Far too expensive. But you can always recompile the
application whenever you change a definition is uses. Compile time is really
zero.

<futhin> "words must be defined before they are used" do you discourage the use
of deferred words ?
Yes. But there are some situations when you can't avoid them. colorForth
has several deferred words in the kernel. That's a flaw in the kernel design.

<futhin> Question from �jim�: About catch/throw)... You don't think that in large
systems, it would be nice for higher-level routines to have the option to handle lower-
level exceptional conditions?
That's a hard one. There shouldn't be errors, but if a server fails to
respond, something must be done. Must the application anticipate all such
problems, or can the system somehow cope?
What I do is to mix the low and high-level code into an integrated whole.
Modify the low-level code as necessary for the application.
The notion of levels of code, as in communication protocols, is wrong.
There needn't be so much code to make it necessary.

<futhin> Question from �kc5tja�: Are there purely technological reasons why you
dislike CATCH/THROW, versus philosophical reasons?

 7

No. It's a neat solution for the perceived problem, but when you mess with
the return stack, you can create problems. Robust, reliable code is simple.
<futhin> Question from �GilbertBSD�: What axioms inspired the early design of
Forth?
The data stack came from the Burroughs 5500. Once I learned to use the
stack, everything else followed. The stack provides name-less temporary
storage. When you have to invent names, imagination fails; hence the
endless hyphenated words of C.
Likewise in my chip design, most signals are unnamed, contrary to VHDL
and the like that require them.

<futhin> Question from �onetom�: What is your name convention for structure
members/field? Whats up with nested structures?
I don't do it that way. Forth, Inc had data-base structures. The higher level
names set default values. That is, a file name set the current file,
a record number set the current record, a field name accesses the current
record in the current file. At no time did you need to concatenate the
names, though you needed to keep them distinct.
<thefox> I would add that as part of the MachineForth training I would cover the
concept of using the auto-incrementing instructions as much as possible in such
code.

�I don�t do it that way.�
<futhin> Question from �onetom�: How do u avoid name clashes between
fieldnames in different structures?
We were designing the database so the NAME field was in the same
position in all files. If that's not possible, you need distinct names, but only
in applications that must be resident simultaneously. That is, those that use
multiple files. When you recompile applications as needed, this is pretty
much avoided.

<futhin> Question from �futhin�: "Now that you've come up with colorforth and
experimented with new ways to code Forth, have you discovered any useful things
that can be applied to machineForth for a better MachineForth?"
colorforth is a clearer description of MachineForth for one thing.
New ideas always appear, but colorForth makes it easy to do work-arounds.
For example, IF is a perennial problem. Should it pop the stack? Maybe
yes, maybe no. And that's a hard change to mask.
But it's simpler to decode instructions if it doesn't, so that's how it is so far.

<futhin> Question from �i440r�: IF and DUP-IF ?
Having multiple words could help, but it makes the language more
complex, harder to learn and doesn't address the underlying hardware
issue. I could say more.

 8

<futhin> Question from �i440r�: Do you think portability is important - or does
Forth�s ease/speed of development negate the need for it
Portability is not important. Portability is not possible. Real applications are
closely coupled to hardware. Change the platform and all the code
changes. If it didn't, you wouldn't have changed the platform. To abstract
the problem from the hardware requires massive software like Windows.
That's a permanent tax on all applications to save some one-time
programming.

Programmers should object to job-elimination concepts. Of course, jobs
are actually multiplied to deal with the hyper-complex abstraction and
modern hardware has computers in the displays and disks. They've already
made many interfaces portable. How many layers of portability are
needed?

<futhin> Question from �jim�: In another question, it was mentioned you are
experimenting or otherwise dealing with something called "sourceless
programming"... could you elaborate a bit?
I spent several years writing sourceless code. This was my first version of
OKAD, for chip design. By this I mean, editing the hex machine code into
memory and saving to disk. If, as I expected, code could be reused the
actual machine code would be manageable. But it grew without limit,
eventually becoming unmanageable. And there was another gotcha. I'd
have numbers embedded in the code, without any documentation as to how
they were computed. colorForth embeds expressions and compiles the
result as a literal, but the trace of what that number means, remains.

<futhin> Question from �tcn�: Do you have romantic notions of fixing the internet
and everything, bringing simplicity to the masses? What would it be like?
Of course. I see a Forth Markup Language (FML) supplementing HTML that
defines a subset of users that can read it. FML is like colorForth - words
with tags. More compact, more efficient, more flexible. Eliminates the need
for Java. TCP/IP can't be changed, but it can be lived with.

<futhin> Question from �goshawk�: Do you see your ideas gaining more acceptance
and being more fully exploited in your lifetime? If not, what is stopping that from
becoming a reality?
Ideas are memes. They evolve unpredictably. Memes insinuate themselves
untraceably. My ideas have influence, probably as much as they deserve.
Those that achieve prominence are the result of fads.
Consider the family of languages Fortran, Algol, PLI, Pascal, C. They're all
the same. The currently popular one is random choice.

No. I don't expect to become accepted; I'll just keep exploring.

 9

<futhin> Question from �rob_ert�: Do you think Forth should be used as a "general
purpose language", for everyday software, or does it belong among embedded
devices and other specialised systems?
Forth is the best language for all purposes because it mimics natural
language; defining new words in terms of old ones. Hiding information on
the stacks makes it easy for normal humans to customize their computer.

Will it happen? Give me $100M and I'll compete with Gates.

<futhin> Question from �goshawk�: Do you believe the open source "movement" had
any negative impacts on the acceptance and/or practice of Forth?
Forth was open source before open source became popular. I don't see a
negative impact. Any positive impact? I see a decrease in the writing of
software and an increase in attention paid to integrating software.
DOD boasts about how much code can be ported from the F22 aircraft to
the F35. Maybe 50% of 6M. So nobody writes from scratch, not even Linux
drivers. Forth is the last bastion of DIY. Open source hasn't hurt or helped
that.

�Forth is the last bastion of DIY.�
<futhin> Question from �jim�: Gates is presently competing with Stallman and
Torvalds... if you were at that level, is it Gates that you would be competing with? Do
you regret that Forth came out into open source?
I wouldn't compete on a PC platform. With the 25x chip, it's a whole new
ballgame. No, I think Forth source is a goldmine. Ideas should not be
secret, should not be patentable. The more people engaged, the better the
result.

<futhin> Question from �jospehMoore�: How do you feel about automated
production of software (computer driven) and its possible role in replacing future
human development thereby replacing the need for language based development?
Computers that program themselves have been a dream for decades. It
hasn't happened yet. Not even a little. Even if they do, it takes a human to
have the insight to change the rules. Without true AI, I see no prospect and,
even with AI, there has to be a language to express the problem and
solution. Not in my lifetime.

<futhin> Question from �mlg�: You mentioned Forth Markup Language (FML). My
practice shows that Forth does not make a good language for batch programming
(unless you manage to add an interactive window). What sort of interactivity (if any)
do you propose for FML?
FML, like colorForth, would let the used type (steer) while processing in the
background. Batch programming is an obsolete concept? Computers are
so fast, anything should happen instantly. But, searching the web...
Don't know. Wait and see. But always something can be done.

 10

<futhin> Question from �futhin�: What are your further plans for an integrated Forth
hardware solution? Would you be interested, money being no concern, to realize
such plans?
Absolutely. Forth on a Forthchip is an unbeatable combination. Trouble is,
computers are so fast already that C is viable. Yet critics claim problems
that cannot be addressed. Consider weather forcasting; at some point,
chaos limits predictions. Faster supercomputers are unhelpful. Perhaps
UWB is fertile ground for elaborate processing (Ultra Wideband radio at
http://www.uwb.org/faqs.html).

<futhin> Question from �joseph�: Have you ever programmed self mutatable or self
replicating system components or even user level applications using Forth and if so
does it offer any advantage over using assembly?
OKAD, in sourceless code, was self-modifying. I'd like to optimize the c18
computer, at a layout level. That would require mutating code.
colorForth is intended to facilitate that. For example, storing (and
displaying) variables in source code means they can easily be changed.
But no, I've not done anything significant.

<futhin> Question from �geakazoid�: Will FML have programmable tag sets like
XML? What work has been done on FML? Is it a project that is being programmed?
Absolutely. Programmable tags. As in Forth, tags defined in terms of
previously defined tags, something I sorely miss in HTML. An FML tag has a
distinct color. It is a word that is executed by the editor and ignored by the
compiler, so it takes advantage of the run/compile/edit distinction.

FML is vaporware from my perspective. What it needs is several people
who use it to communicate and thereby evolve it.

<futhin> Question from �John Peters�: Where can we participate in or see some FML
activity?
FML will be on the internet when its time comes. Nothing yet.

<futhin> Question from �kc5tja�: FML has been mentioned numerous times in this
discussion, but yet, no examples of what it'd look like or its structure has been
given. Is this iTV proprietary information? If not, can an example be posted? The
idea of Forth as a markup language intrigues me much.
iTv may have precursed the idea, but not really. When I get TCP and PPP
coded, I'll work on a browser. That browser will translate HTML into FML.
colorForth will interpret the FML to display pages. When FML is adequate, it
can be posted directly and avoid translation. For example, the purple word
P could mean the HTML tag <p> and so forth.

 11

Simple translation. Perhaps 2x compression from Huffman coding and
elimination of those interminable �<�s and �>�s and the resulting spelling
errors.

<futhin> Question from �Howerd�: Is there any difference between FML and a
remotely executed Forth program?
FML would be a restricted subset for security, but it's not remotely
executed. You've downloaded the source and executed it locally. I started it
with the first colorForth, then abandoned it to work on OKAD II. One
advantage of a colorForth-enabled web would be ease of sharing code.

<futhin> Question from �GilbertBSD�: Are there concepts in other programming
languages that you admire or is Forth the one true language?
<futhin> Question from �fare�: Are you familiar with high-level functional
programming languages such as Lisp, ML, Haskell, POP-11, Clean ? with logic
programming languages such as Prolog, Mercury, Oz?
Yes, I'm familiar with LISP, Prolog, not the others. When I was developing
Forth, I knew all languages. With Forth, I've neglected them. However, show
me an idea (like Prolog) and I'll implement it in Forth.
But don't suggest processing of text. That's an exhausted field. LISP was
one of the inspiration for Forth. The notion that you could compute
something without storing anything. I don't see new ideas in the new
languages.

�I wouldn�t recommend me as a role
model.�

<futhin> Questiong from �kc5tja�: Your hardware and software ventures are
decidedly "out of the box". Have they been profitable enough to live comfortably
with? (I guess, in other words, how big is the market?)
They've not been profitable, but they've met expenses. iTv was the best
organized attempt at profitability. At one time, I was worth $20M (paper),
but it didn't work out.
I wouldn't recommend me as a role model.

<futhin> Question from �goshawk�: What inspired you to focus on hardware, and
what background did you have up until that point that allowed him to make that
move?
I considered software a solved problem. All my trouble with real-time
systems were with the hardware. No background. Just determination.

<futhin> Question from �kc5tja� When designing the first x21 processor (i21??), by
what process did you arrive at the initial 27 opcodes for the machine? Software
simulations and statistical profiling?

 12

Seat of pants. Paring down the Forth primitives till I had a managable set.
My guesses corresponded well with others profiling.

<futhin> Question from �geakazoid� What is the status of Chuck & Jeff's work on
parallel processing?
The 25x is unfunded. I could fund a prototype, but without funding, where's
the market?

<futhin> Question from �mlg�: As to parallel processing, does something already
work? What approach do you use to distribute computation across processes?
I would distribute functionally. For example, one processor would accept
serial input, aother would process PPP, another would process IP, another
would process TCP. One would eventually do the application.

<futhin> Questiong from �shapr� Do you have any suggestions for new directions to
explore in computing?
I'm exploring parallel computing with very small. very fast computers.
That's 64 word of ROM, 128 words of RAM, 2400 Mips. They can't do
much, but can do it very fast. With this, I hope to explore some hard
problems.

Processor tasks are programmer-assigned. Partly dependent on unique
processor capabilities. There are 25 independent instruction streams,
63,000 MIPS total, programmable. Nice programming problem.

ok to all

From the �Net

Everyone wants to be successful, but from time to time Forth is claimed to
be a �failure�. Although discouraging, such claims provoke Forth users to
justify our faith in Forth and point to the areas and circumstances where it

is proving more successful than other tools.

Forth will never be a mainstream programming tool. Indeed, the market
has room for only one dominant tool. However, Forth has proved its value

as a personal productivity tool and has already survived far longer than
other candidates like Modula 2.

 13

This is not the first time that Forthwrite has tackled this issue. Here are
extracts from some of the responses to a claim in the July publication of
Wired magazine that �Forth is extinct�, which they define as fewer than

1,000 users.

From Elizabeth Rather of Forth Inc.
It has been called to my attention that in a recent article you declared the Forth
programming language "extinct". This will come as a great surprise to several
thousand of our customers, as well as to Apple, IBM, and Sun Microsystems who
use Forth as the basis for their boot/plug-and-play firmware.

To see a current Forth-based product you have only to look at your friendly
FedEx courier, who wears the Forth-based Enhanced Super Tracker (package
tracking device) on his belt. Or think about it when you watch DirectTV, whose
uplink antennas are controlled by Forth-based devices.

Since my company is primarily marketing to developers of embedded systems, I
can tell you that current uses of Forth range from factory automation (e.g.
Owens-Corning Fiberglas) to smart cards (the SwiftOS card OS for the Atmel
AT90SC cards). Our customer list includes all branches of the armed services,
plus a number of government agencies; all US automobile mfrs plus Daimler-
Benz; and many more.

From Stephen Pelc of MPE Ltd.
A few recent embedded applications using Forth and developed by our clients
include:
! anaesthetic ventilator for operating theatres
! mass spectrometer controllers
! theatre lighting
! underwater seismic recorders
! vending machine controllers
! ISDN routers

From Anton Ertl:
Records show 24,308 accesses of gForth and its components in 20 months or
over 1,200 accesses/month including 270/month for the help document alone.

From Neal Bridges:
There are more than a thousand users of Quartus Forth alone, and that's just
on the handheld side.

 14

provides everything needed in a
professional-quality low-cost Forth
controller board.

Use it in industrial or hobby
projects to control a wide range of
devices using the well-known multi-
tasking Pygmy Forth.

Designed for hosting from a Windows
or DOS PC, you can test your
application as it runs on the F11-UK
board itself. The board was developed
by FIG UK members to provide an easy
way to explore the world of controlled
devices � a niche where Forth excels.

The kit includes both hardware and
software and is supported and sold to
members at a nominal profit through a
private company.

Software

PC-based PygmyHC11 Forth compiler
running under DOS produces code for
Motorola HC11 micro-controller.

Code is downloaded via standard serial
link from the PC to the FLASH memory (or
RAM) on the F11-UK single board computer
(SBC).

No dongle or programming adaptor of any
kind is required.

Forth running on the SBC is interactive
which makes debugging and testing much
easier.

Multitasking and Assembly included.

The serial link can be disconnected to
enable the SBC to function as a stand-alone
unit.

All source code provided - 78 pages
or so (unlike many commercial
systems).

Around 30 pages of additional
documentation is supplied including a
full glossary of the 300 or so Forth
words in the system.

Email mailing list for discussion and
limited support.

Hardware:

Processor:
 Motorola HC11 version E1 - 8 MHz (2
 MHz E-Clock).
Memory:
 32k x 8 FLASH
 32k x 8 battery backed SRAM
 512 x 8 EEPROM onboard HC11.
I/O:
 20 lines plus 2 interrupts (IRQ & XIRQ).
Analogue in:
 up to 8 lines using onboard 8-bit A/D.
Serial:
 1. RS232, UART onboard HC11

 2. Motorola SPI bus onboard HC11.
Expansion:
 Via HC11 SPI serial bus using
 2 or more of 20 available lines.
Timer system:
 Inputs: 3 x 16-bit capture channels
 Outputs: 4 x 16-bit compare channels.
PCB size: 103 x 100 mm.

Price to FIG UK members: £47.0 plus postage and packing (£2 UK, £4 overseas) plus

$25.0 (US Dollars) for registration of 80x86 Pygmy Forth with
the author Frank Sergeant.

 Delivery: ex-stock.
 More information: jeremy.fowell@btinternet.com and 0121 440 1809

F11-UK

 15

euroFORTH 2002

The 18th annual euroFORTH conference on the Forth programming
environment and Forth processors is being held on Fri Sep 6th to

Sun 8th at Technische Universität Wien, Vienna.

The annual conference (held in the UK every third year) moves this year to
Austria. For details, see http://www.complang.tuwien.ac.at/anton/euroforth2002. The event
begins with lunch at 12:30 on Friday and ends officially early Sunday afternoon
with a �survivors party� in the evening. Special rates have been arranged at
nearby hotels and the organisers are expecting the conference fee to be around
150 euros.

The conference rooms are within walking distance of Vienna city centre. (For
Howerd Oakford�s report on the previous year�s conference, see Forthwrite April
2002.)

http://www.complang.tuwien.ac.at/anton/euroforth2002

 16

Expanding the Use of the Stack
Graham Telfer

Introduction
There was a thread on the Forth newsgroup recently about stack comments. I
have always followed the traditional method and never really thought about
variations.

The thread appeared just after I began reading a book about Scheme. Trying out
one of the exercises and following the design pattern shown in the book, I
decided to do the exercise in Forth.

The Area of a Doughnut
This was the exercise set. Find the area of a doughnut
as the difference between the area of a large disc and
the area of a small disc. Figure 1 shows the idea.

While doing this and following the thread about stacks, I
realised that I really want the stack to do two different
jobs. First I want to state the formal arguments that a
word needs and secondly I want to know the actual
state of the stack is immediately before and after a word
is executed.

I tried to satisfy the two needs in this exercise.

Playing Around
I tried putting the formal arguments in front of a word and the stack comments
after the word:

 formal arguments stack comments
: (u1,u2 --> u3) Forth_word (u1,u2 --u3) ... code ... ;

but quickly found this didn't work because Forth thinks that the first character
following the colon is a new Forth word being defined.

Next I tried putting the Forth word first, followed by two sets of comments:

 formal argument stack comments
: Forth_word (u1,u2 --> u3) (u1,u2 --u3) ... code ... ;

Figure 1

 17

This got very clumsy and did not reflect what I felt about my needs.

The final try shows what I think works quite well. The formal arguments needed
by the word precede the Forth word and the actual status of the stack follows. I
also used three other devices to make things clearer.

For formal arguments I knew would be put on the stack during execution,
(rather than be present at the time of execution), I put in square brackets: [].
The input arguments are followed by a: --> in the formal argument part and
by the standard: -- in the stack comment part. In the stack comments I put
arguments that need protecting in curly brackets {}.

The Final Code
This is the finished code. The output from Result is a bit brutal since I became
more interested in commenting the stack than making things pretty. Maybe
though the ideas about showing both formal and stack arguments are worth
developing.

\ Helper Words

314 Constant Pi
(u-->) : Result (donut_area --)
 CR ." The area of the donut is " 8 .R ;
(u1,u2 --> u3) : FindArea
 (outer_radius, {inner_radius}|inner_radius,{outer_area} --)
 (inner_radius,{outer_area}|outer_area,inner_area)
 Swap Dup * Pi * ;

\ Main Words

(u1,[pi] --> u2) : OuterArea
 (outer_radius,{inner_radius} --inner_radius,outer_area)
 FindArea ;

(u1,[pi] --> u2) : InnerArea
 (inner_radius,{outer_area} -- outer_area,inner_area)
 FindArea ;

(u1,u2 -> u3) : DonutsArea
 (outer_area,inner_area -- donut_area)
 OuterArea InnerArea - ;

(u1,u2 -->) : DonutArea (outer_radius,inner_radius)
 DonutsArea Result ;

 18

fennema@gofree.indigo.ie

Book Review
�Write Your Own

Programming
Language using C++�

Boris Fennema

New member Boris is using this book to write a Forth-inspired
scripting language for use as a test driver and for interactive

debugging. He writes �I was really impressed that, within 2 days after
receiving the book from Amazon, I had variables, consts and words

working in a fashion.�

This book is still in print (Amazon for instance) and can also be borrowed from
the FIG-UK library. It comes with an 5 1/4" diskette but I have not been able to
peruse this disk (yet).

Overview
The main aim of this little book (108 pages) is to enable a programmer to write
a custom application language.

UNTIL stands for Unconventional Threaded Interpretive Language. It is not a
Forth but borrows a number of concepts from Forth:

! Reverse Polish Notation.
! Data Stack & return stack used in loops.
! Dictionary
! interpreter
! both primitive and high-level words

The primitive words are coded in 'C'.

Writing Your Own Programming Language in C++
Norman E. Smith
WordWare Publishing Inc
ISBN 1-55622-264-5
March 1996

 19

There is a lot of information in this book. Some of it is specific to UNTIL but,
because UNTIL is close to Forth, it also gives some insight in the broader family
of Threaded Interpretive Languages (TIL).
 As an example, the author uses UNTIL to implement a calculating 'macro'
language. His aim is for UNTIL to be portable and embedded1 into another
application written in C (or C++). The example comes with clear diagrams and
in critical areas he prints small portions of C code to illustrate how UNTIL works.
 There is no hidden magic in the book; it shows the strength of simple
concepts (RPN, data stack, return stack) when used together. It uses a simple
RPN parser as the �outer interpreter� and the 'C' calling mechanism as the �inner
interpreter�. You can write your own TIL based on the book without reading the
companion diskette (as I did since my 5 1/4" floppy drive is "somewhere" in our
attic !).
 UNTIL uses the indirect-threading mechanism � see below. There are
faster threading models but indirect-threading is sufficient for this application
and easily implemented.

Intended Readership
These are programmers who need a custom application language that is
interpreted and compiled. Even though the title refers to 'C++�, this is a
misnomer. The publishers are probably taking advantage of the interest in C++
around that time. You could easily implement all the features in 'C' or any other
language that supports function pointers, data pointers, and pointers to pointers.
 An interest in languages and/or Forth would also help - given that you
are reading this in Forthwrite means that criterion is probably satisfied.

Style
The author followed the Forth conventions for the dictionary headers, so the
Forth Programmer's Handbook (Forth Inc.) complements this book nicely.
 The topics are nicely laid out with attention to detail. Some chapters are a
bit short (3 pages !) but all the essential information is there. The diagrams are
especially clear and the source code is concise and well laid out.

1 Readers interested in embedding Forth into other applications as a debugger or command
language should also take a look at FICL from John Sadler at
http://ficl.sourceforge.net/ficl.html. Unlike UNTIL, Ficl is supported, ANS Forth and
available on a wide variety of platforms. Ficl includes a simple but capable object model
that can wrap existing data structures.

 20

Executive Summary
This is an useful book to have read. It can be used as a basis of an application-
specific language or as the basis of a minimal Forth-like language that you can
�bundle� into another program.

It enhanced my understanding of the indirect-threading model. The
code developed can also be used as a "playground" for testing ideas for
enhancements quickly.
 It also does a great job of showing the strengths of keeping a solution
simple; this makes for an compiler/interpreter that you can explain to someone
else in less than an hour !
 It shows how a Forth system is an interpreter and compiler at the same
time. As the book suggests, you could even rewrite the outer interpreter to use
any other grammar (whether RPN or not) and the inner interpreter would still
work as is. In that case the outer interpreter would shield the user from the data
stack.

Boris has supplemented his book review with a description of the
inner workings of UNTIL revealed by his own tools.

How does UNTIL work?
The core structures are the Data stack, Return stack and the dictionary. The Data
stack is the main mechanism for argument passing. All StackDatums are signed
longs in UNTIL (4 byte integers). The Return stack is used in loops but not for
the call and return mechanism. For this we use the 'C' function call stack frames.
All primitives are coded in 'C' and must take and place their parameters on the
Data stack; i.e. they must match the prototype

 void FooBar(void);

The Dictionary holds a linked list of DictHeaders. These structures contain the
following information:

 DictHeader |- nfa -- name
 | -- length
 | -- smudge flag
 | -- immediate
 |
 |- cfa -- code pointer ('C' primitive.)
 |
 |- pfa -- additional information
 |
 |- lfa -- link to next header.
 |
 |- type -- type bit field (extension see next section).

 21

where

! nfa = a name field address (which also records whether the word is

immediate and hides the word when under compilation (smudge).

! lfa = link field address - this links to the next entry if any in the

vocabulary.

! cfa = code field address - this must point to a 'void f(void)' primitive. On

invocation of any word, the 'cfa' is executed.

! pfa = parameter field address; this field is a union, and contains a

pointer field or value field. It is used when defining a high-level word or
when defining variables or constants.

For instance, the dictionary entry for a constant declaration looks like:

 10 constant LIMIT

The nfa will contain the name (name = LIMIT, length=5), and the pfa will
contain the value of the constant (10).

The cfa will point to a 'C' primitive that will place the constant value on the data
stack when invoked.

The lfa will point to the next dictionary header or be null.

The important point is that any construct (constants, if's or do-loop) is
represented by a dictionary header that ties a run-time function (cfa) and
additional information (pfa) together when invoked or referenced.

Compilation Process
A shortened form of the compilation process for colon definitions appear below.
For details, please see the book; I just want to give a flavour here.
 The compilation words are ':' and ';' - these words are coded in 'C' and are
"pre-loaded" into the dictionary. They are immediate, so when these tokens are
encountered, the corresponding 'C' functions pointed at by their 'cfa' fields are
executed instead of the dictionary entry added to the list of words under
construction.

All compiler words are immediate.

 22

The ':' moves from interpret mode to compile mode and scans in a loop for
tokens separated by whitespace.

For each token it is decided whether this is a word (by looking in the
dictionary); if so and if it is immediate, it is executed, else a reference to the
word is compiled into the word under construction (via a DictHeader *). If it is
not a recognised word, it may be a number and the conversion is attempted. If
successful, a literal is build into the definition, else an error is reported.

';' stops the compilation process and moves back to interpret mode.

The new word is then stored in the dictionary under the given name. In this case
the 'cfa' points at the 'C' primitive 'rtl_colon - the 'pfa' contains a null-terminated
array of DictHeader *.

When the new word is now invoked, control is transferred to rtl_colon.

This function si shown below. It simply walks the array of DictHeader pointers
and executes the 'cfa' belonging to the dictionary entry.

Since the Instruction Pointer is global, each 'cfa' can influence where the
IP ends up. Branches used in loops and 'if' clauses use this to skip back and forth
over the DictHeader * array. In the code below (which is derived from the
book):

! gfAbort is a global flag for stack under/overflow.
! gppIP is a pointer to a DictHeader pointer � Instruction Pointer.
! gpWA is the word address pointer.
! DoStart is a routine that restarts the interpreter in case of an error.

 rtl_colon(void) // runtime part of colon
 {

 // switching context.
 DictHeader ** ppOldIP = gppIP;

 gppIP = gpWA->itsPFA.ppItsW_addr;
 gpWA = *gppIP++;

 // running the word
 while (gpWA && !gfAbort) {
 (*gpWA->itsCFA)();
 gpWA = *gppIP++;
 }

 if (gfAbort) DoStart();

 // switch context back

 23

 gppIP = ppOldIP;
 }

As you can see this is quite straightforward - this is also representative of the
level of complexity of code in the book.

Extension - the 'see' word:
In implementiing my own scripting language, the only deviations I made from
the book are with respect to the storing of literal values and strings. In the
declaration above, the itsType field is really only used when decoding words so
the debugging word see (explained below) can print additional information on
the words. It wastes some header space but is really useful when learning to use
UNTIL.

As explained in the book, in a compiled word you want to load the value
at run-time onto the stack. However, the value is known only at compile-time
and hence needs to be saved somewhere for use at run-time.
 The UNTIL language stores the value of a literal in the next dictionary
slot. This works and uses space efficiently. It also means that the PFA (Parameter
Field Address) can contain a non-header. However, I wanted to develop an
extension word called see (along the lines of PC-Forth) that would allow me to
see the structure of the headers laid down for a compiled word. This is very
useful for debugging.
 The problem was that I could only deal with dictionary headers � a value
masquerading as a dictionary header caused grief since the see word would try
to access it as an valid dictionary header address rather than the value with
nasty results.
 The solution was to use an entire dictionary header to store a literal. The
same was done for strings that are embedded in words, eg .". Each dictionary
header has a field to tell see how it needs to be accessed (this is the easiest; an
alternative is to remember the previous DictHeader cfa field and use that
information.

This works very well - the only values that can appear in a PFA list for a word
are now guaranteed to be dictionary headers. It would be trivial to add a single
step debugger now I have the see macro.

Example of Applying see
Given the following Forth code loaded into my UNTIL dialect "ENABLE":

 : msg ." top is 5 " ;
 10 constant LIMIT
 : w2 LIMIT 0 do i dup 5 = if msg drop else . then loop ;

 24

When see w2 is executed, the output shows how a constant is loaded, and how
if and do .. loop constructs work (branching added for clarity):

 dissasembly of 'w2'
 (1 = 'w2')
 (1) (00674194) - LIMIT
 (1) (00672B88) - rtl_lit
 (1) (00674204) - 0 (0 decimal)
 (1) (00672BC0) - rtl_do
 (1) (00672F7C) - i
 (1) (0067344C) - dup
 (1) (00672B88) - rtl_lit
 (1) (0067423C) - 5 (5 decimal)
 (1) (00673174) - =
 (1) (00672C68) - rtl_zbranch
 (1) (00674274) - 5 (5 decimal)

 (2 = 'msg')
 (2) (00672CA0) - rtl_dot_quote
 (2) (00674128) - top is 5 - (string)

 (1) (006734BC) - drop
 (1) (00672C30) - rtl_branch
 (1) (006742AC) - 2 (2 decimal)
 (1) (00672FB4) - .
 (1) (00672BF8) - rtl_loop
 (1) (006742E4) - fffffff3 (-13 decimal)

The output from see starts each line with a level in brackets, indicating whether
see is tracing a word in the current definition or a nested word that is called.

Note that the level for the msg word is 2 - this means that this is executed as a
separate call to rtl_colon and appears as a single dictionary entry in the pfa
list of the w2 word. What see shows you is an execution trace combined with a
dictionary header dump.

In other words, msg is not copied (in-lined) into the w2 word, it is executed as a
separate level within w2.

The next value is the pointer value of the dictionary entry (in hexadecimal). The
remainder of the line contains details about the dictionary header itself.

As you can see:

! Loading a constant is more space efficient than loading a literal (LIMIT takes

1 DictHeader, whereas the 0 and the 5 take two.

 25

! This can be used as an optimisation by declaring

0 constant 0
1 constant 1
etc. for a number of frequently-used integers.

! The branching targets for the if and the loop are indicated by the line

drawings - the offset dictionary entry follows the branching entry.

! The if is created as a conditional branch, the loop is a direct branch which

is taken as long as the index does not match the limit.

! Note that the offset for the do loop is 'backward' (-13 entries) whereas the

if jumps ahead (+5).

 The proof is in executing 'w2':

 executing w2
 0 - (dec 0)
 0x1 - (dec 1)
 0x2 - (dec 2)
 0x3 - (dec 3)
 0x4 - (dec 4)
 top is 5
 0x6 - (dec 6)
 0x7 - (dec 7)
 0x8 - (dec 8)
 0x9 - (dec 9)

 As you can see, it works !

What Next?
You can implement as much or as little of the Forth words you need. I plan to
add words for exercising DLLs by added stubs that will take their arguments of
the stack and invoke the DLL function.

 26

krishnamyneni@compuserve.com

Special Features of kForth
Krishna Myneni and David P. Wallace

kForth was originally written, as many Forth�s are, to provide user-
programming facilities within another application. However kForth

includes two unusual features which are reported in this 2-part
paper2, which was prepared for JFAR, the Journal of Forth

Applications and Research.
Krishna Myeni is a member of FIG UK living in the USA.

Dynamic Dictionary
Traditional Forth implementations use a fixed size dictionary to hold word
definitions and user created data such as small tables of numbers or counted
strings3. The motivation to implement a dictionary which can grow as needed
may be expressed in a simple code statement:

create array 1024 1024 * allot

where we wish to allot 1 MB of space in the dictionary to hold an array of
values. With a conventional static dictionary, the above code is successful only if
the dictionary happens to have been allocated with sufficient space. Otherwise,
the Forth system may issue a dictionary overflow error or simply crash with a
segmentation fault error. Some Forth systems allow the user to resize the
dictionary from within the environment. A fixed size dictionary is not desirable
when kForth is used as an interpreter embedded into an application, since the
useful dictionary size will depend on the application.

The ANS standard provides extension words for allocating dynamic memory,
ALLOCATE and FREE, so one may argue that it is not necessary to be able to allot
memory in the dictionary space for large blocks of user data. Also, having limited
dictionary space to hold Forth code is usually not of practical concern. So what
are the benefits of a growable dictionary? A dynamically allocated dictionary
provides the following conveniences to the programmer:

! ALLOT may be used without size restriction. The programmer is not

burdened by determining whether or not there is sufficient space to locate
a block of data in the dictionary.

! Addresses of data blocks made with the sequence, CREATE name size
ALLOT, do not have to be managed by the programmer. With ALLOCATE,
the returned address must be assigned to a constant or held in a variable
until the memory block is freed.

2 The paper is available as in PDF format from ftp://ccreweb.org/documents/programming/nsf-a.pdf
3 L. Brodie, Starting Forth 2nd ed., (Prentice Hall, Englewood Cliffs, NJ, 1987)

 27

! Memory is freed automatically upon exit from the Forth system. In
contrast, memory obtained using ALLOCATE should be released using FREE
when it is no longer needed. Forgetting to do so reduces the system
memory available to other applications.

These features are of little value in programming embedded processors, which
have stringent limits on available memory. However, for a desktop system using
a modern operating system (e.g. Linux, Windows), programming is less
cumbersome with these features. However, the benefits to the Forth programmer
from using a dynamic dictionary come with some restrictions. The implications
of using a dynamic dictionary are discussed below.

In kForth, memory for both code and data is dynamically allocated as required.
In this allocation scheme, the task of providing dictionary space and assigning
addresses is passed on to the operating system (OS) rather than being handled
by the Forth system, and growth of the dictionary is limited only by the OS.

The dictionary itself is a vector of data structures, each containing the name of a
word, the word�s precedence, the code field address (CFA), and the parameter
field address (PFA). In kForth, CFA is synonymous with code pointer or the ANS
term, execution token. PFA is synonymous with the ANS term data field. During
�compilation� of a word definition, a temporary code vector is built up. The size
of this vector is unbounded. After a word definition has been compiled into code,
which in kForth consists of pseudo op-codes, memory is dynamically allocated to
hold the code sequence and then copied from the vector into the newly allocated
block. The PFA of the new word is set to the address of the dynamically allocated
block. The CFA is also set. If the word RECURSE was encountered during
compilation, address placeholders inside the code are then replaced with the
CFA.

Now we consider the behavior ALLOT may have in a system which implements a
dynamic dictionary. First note that there is no HERE address in the dynamic
system, since memory is not available until it is requested either through word
definitions or by execution of ALLOT. In the traditional static dictionary Forth
system, the code:

1024 allot

presumes that the programmer has access to the starting address of the memory
region to be allotted, either because CREATE was invoked previously or because
the starting address was obtained with HERE. Therefore, unlike its counterpart
ALLOCATE, ALLOT does not return an address.

In the dynamic dictionary system, kForth, the code 1024 allot, must
dynamically allocate 1024 bytes of memory, starting at some address which is
determined by the OS. This address must somehow be made available to the
programmer to allow use of the memory. We must change the behavior of ALLOT,

 28

but wish to do so in a way that use of ALLOT remains as consistent as possible
with traditional Forth code.

kForth imparts the following behavior to ALLOT; the requested memory is
dynamically allocated and the starting address is assigned to the PFA of the last
word defined in the dictionary. In kForth ALLOT must be used only in a CREATE
name size ALLOT sequence. The behavior of CREATE is also modified so that it
sets the PFA to zero for the new dictionary entry. This allows ALLOT to verify
that it is modifying the PFA of a word created with CREATE, instead of modifying
a word that is already associated with data or code. Therefore, the statement:

1024 allot

by itself produces an error in kForth:

VM Error(9): Allot failed --- cannot reassign pfa

Two other core words are not provided in kForth owing to the lack of a HERE
address. These are:
! the comma operator (,)
! C,

For creating initialized cell-size or byte-size tables, alternative, albeit somewhat
less elegant, methods can be used instead. For instance, instead of the simple
statement:

create tb1 100 , 200 , 300 , 400 ,

to make a 4 element table initialized to values, we could write

: t, (n a1 -- a2) 2dup ! 1 cells - nip ;
create tb1 4 cells allot
100 200 300 400 tb1 3 cells + t, t, t, t, drop

Clearly the statement using the comma operator is simpler but has the problem
that an address for storing initial values into the table is not available until we
use ALLOT, in conjunction with CREATE, to allocate the region for the table. Then
the address must be manipulated to move the successive inital values from the
stack into the table in the proper order.

The example given above would be much easier with a suitable defining word
for creating an initialized table in the absence of the comma operator. Such a
word needs the starting address of the allotted memory so ?ALLOT is provided to
to solve this problem. ?ALLOT functions like ALLOT but also returns the starting
address of the region on the stack. The compatible ANS Forth
definition of ?ALLOT is:

: ?allot (-- AddressAllocated) here swap allot ;

 29

Using ?ALLOT, we may create a defining word for initialized tables:

: table (... n --)
create dup cells ?allot
over 1- cells + swap
0 ?do dup >r ! r> 1 cells - loop drop ;

Using table, it becomes trivial to create an initialized table:

100 200 300 400 4 table tb1

Note that this method works in ANS Forth as well, provided the compatible
definition of ?ALLOT is used. ?ALLOT should not be equated with the ANS word
ALLOCATE since, in kForth, ?ALLOT must be used only with CREATE and it
assigns the PFA of the created word.

Two simple examples of defining words having run-time code further illustrate
the use of ?ALLOT in kForth:

: const (n --) create 1 cells ?allot ! does> @ ;
: ptr (a --) create 1 cells ?allot ! does> a@ ;

The word const is equivalent to CONSTANT and ptr allows the creation of
address constants for our typed Forth system.

kForth code can be ported to a Forth system with a static dictionary merely by
adding the definition of ?ALLOT given above.

Summary
This 2-part article discusses two features of kForth which depart from the
current ANS standard. Data typing and type checking arise from a desire to
supplement the Forth environment�s error detection capability,
particularly for its use as an embedded interpreter in other applications. We have
demonstrated that our limited method of type checking can catch common Forth
programming mistakes, particularly those associated with the return stack. Also,
type checking in our implementation is largely transparent to the programmer
and requires only one additional word, A@.
The use of a dynamic dictionary offers convenience in making unrestricted use of
the available system memory but at the cost of sacrificing the core words for
compiling integer and byte constants into the dictionary: comma (,) and C,.
Furthermore, ALLOT must be used only in conjunction with CREATE, and we
must add the new word ?ALLOT to allow the programming of defining words
which require access to the alloted region.

It has been our experience, in using kForth both as an embedded interpreter and
as a stand-alone computing environment, and for such diverse tasks as
simulating microcontroller assembly code to demonstrating properties of

 30

hydrogen atom wave-functions, that the benefits from the new features outweigh
their costs.

Editor�s Note: This modern ANS-style Forth should not be confused with the
earlier kForth from Guy Kelly (1988, for PC). Krishna Myneni conducted an
Internet search (in 1998) and found no references to the earlier work.

Krishna Myneni is a physicist and self-taught programmer who delights in devising
new experiments, piecing them together out of odds and ends, and orchestrating
the pieces with software. He is a long-time Forth user and proponent, much to the
amusement of his colleagues.

Just for Fun

From time to time, Forth users discuss the minimum set of primitives needed by a
full Forth. There are many possible sets, depending on which words you start with.
The �+� word can be one of those primitives or it can be derived from other
primitives as here, courtesy of Wil Baden.

: + (x y -- x+y)
 BEGIN DUP WHILE
 2DUP AND 2* \ Calculate bit carries.
 >R XOR R> \ Calculate bit sums.
 REPEAT DROP ;

 31

Henry Vinerts
Volvovid@aol.com

Across the Big Teich
Henry Vinerts

This material was prepared for Vierte Dimension by Henry Vinerts,
and printed by permission of Forth Gesellschaft (German FIG)

FIG Silicon Valley Chapter Meeting - Mar. 2002

Spring is here and we are still "washing" Windows. Bob Smith
greeted a small group of about a dozen early risers with his
summary of recent changes to Tom Zimmer's Win32Forth.

Not having read Jim Lawless' original interview with Tom in
English, I wonder how I would translate "Schmollecke" (page 21,
VD 1/2002) back into Tom's words. Tom is leaving the "pouting
corner" and going on to new things, allowing the rest of the
world to play with Win32Forth, except for WinView, which is
expected to re-enter as WinEd. When Tom was still in Silicon
Valley, I remember that he used to quote Einstein about making
things simple, but not any simpler. It is no longer possible within
the paradigms created by Microsoft. There is no way that Bill
Gates could have come from the same gene pool as Henry David
Thoreau.

Tom also used to say that to make Forth interesting to the
public, it should be presented as a game. Now it appears to me
that a number of Forthers themselves, all around the world,
have come to enjoy the challenge of the game of tinkering with
Win32Forth.

Tom, you have inspired them all ! And Bob Smith, in designing a
Windows' icon for the new WinEd editor, perhaps cunningly, has
added the mark of the old pencilmaker Thoreau's simplicity by
changing the stem of the fig leaf to a pencil !

 32

It was good to see Chuck Moore again, albeit as a patient
listener and not a speaker at this meeting. It's been almost 35
years since the birth of FORTH on the IBM 1130; I wonder
whether Chuck might be a bit bewildered by all of FORTH's
grandchildren who are in the playgrounds today.

Dr. Ting had time to state that Win32Forth was too complicated
and that he was using WineForth for his Chinese character
graphics project. The eForth is his, the "Win" part is from a
young man in Taiwan.

John Peters had brought lunch for any helpers on his
Win32Forth modification project, and a small group worked on
until Mike Saari appeared with two recumbent electric bicycles
and invited everyone for test rides. Definitely more fun than
crashing Windows, even for old Forthers ! These bicycles that
Mike is building from mostly standard parts are 21-speed,
reclining-type hybrids, which one can pedal or drive with the
special 36-volt Heinzmann motor. With one battery, 20 to 40
miles per charge and up to 20 mph speeds are possible. With
pedal assist, a daily range of 100 miles is not unusual.

I can think of many parts of the world where a $1500 bicycle
would be a luxury and I can also imagine that, given our
constantly increasing traffic congestion, soon it may become a
necessity for many Silicon Valley commuters. Check them out at
the web pages of ElectricBetterbikes.com or SkeeterEV.com. At
this point there is no Forth aboard the bikes, but it may appear,
as controls become more sophisticated as electric regeneration
is added.

Mike's talk drew many questions and interest from the audience,
which lately has dropped in number to fewer than 20. Even at
that, it seems that SVFIG is where the action is in the U.S.A.,
as far as an organizational character is concerned.

 33

Hang in there, Forth-Gesellschaft e.V. and FIG UK too!

FIG Silicon Valley Chapter Meeting - Apr. 2002

Greetings, everybody!

It is Saturday evening in Garmisch, and I wish that I could join
the German Forth Group with a full stein of Bavarian beer.
Instead, a hearty �prosit� from California will have to do ! I am
sure that on this occasion of the yearly German Forth
Conference I may convey the greetings and best wishes from
the Silicon Valley Forth Group to you all.

Our April meeting took place early, last Saturday, and since my
daughter was visiting us from Germany, I was not able to attend.
I did drop in for a few minutes in the morning, however, to
deliver the latest issue (#116) of Forthwrite, which had just
arrived two days earlier. Dr.Ting was there, ready to give a
description of his F# (F-sharp, in English), which is a 32-bit,
protected mode, subroutine-threaded eForth implementation
with a Windows interface.

According to the program, in the afternoon Jeff Fox was to give
a short presentation on his most recent GUI desktop. Since, as I
heard, he is one of the more frequent SVFIG visitors to the
monthly FIG UK IRC sessions, chances are that he will exchange
some information there.

Roll out the barrel and have some fun!

Cheers to all,

Henry

 34

FIG Silicon Valley Chapter Meeting - May 2002

Hello, my friends across the Big Pond!

The Vierte Dimension arrived on May 22nd, four days after last
month's SVFIG meeting. I have enjoyed reading the happy
reports about the German Forth Conference in Garmisch-
Partenkirchen, and it warms my heart to know that the next two
conferences - in 2003 and 2004 - have already practically been
assured. It should also warm Chuck Moore's heart to know that
his creation has moved many people to lasting friendships and
associations.

Now, for my report... I wish I knew and understood more about
the Basic Stamp and Hans Eckes' Forth Stamp, so I could make
some intelligent comments about Al Mitchell's presentation,
which absorbed the interest of close to 20 attendees for the
whole day. You see, Al has written his own AMRBASIC in GForth
(the brainchild of Ertl, Paysan, and Wilke, if I remember
correctly), which runs on Linux, because Al has rejected
Windows for the past couple of years.

With subroutine threading and new 8051-compatible chips, Al
can make his system run BASIC about 500 times faster than any
of the presently available Basic Stamps can. His AMRBASIC is
mostly interpretive and offers extensibility like the Forth which
is underneath. Once he gets it ported to Windows, he hopes to
introduce users to Forth through the medium of BASIC.

Al's website (www.amresearch.com) may not have much on this
subject at this time, but some advertising is expected soon, as
the system nears completion.

Since I understand English better than computer science, I'd

 35

like to quote some of Al's comments that struck me as
interesting.

"Forth appeals to people who really comprehend the
problem."
"Forth is the most powerful tool possible for machine
control."
"People who use Forth are outside of the ANSI (American
National Standards Institute) box."
"Every application is a dialect of Forth."

The last thought reminds me of my belief that the best
products seem to spring from single minds, rather than from
community efforts, but it leaves me with a question as to
whether the world would have been better served if Leibniz and
Newton had collaborated, if Aiken had known Zuse, or even if Al
Mitchell and Hans Eckes could meet over a cup of coffee
sometime.

That's it for today. As you may have noticed, Dr. Ting was
absent, perhaps against his better wishes, but since Cogswell
College shifted our meeting date to the same Saturday that Dr.
Ting's daughter was getting married (as I heard), family
prevailed over the 'Verein'.

Cheers,
Henry

 36

Alan J M Wenham
01932 786440

101745.3615@compuserve.com

Vierte Dimension 1/2002
Alan Wenham

General
 Martin Bitter, who has edited the last five volumes of Vierte

Dimension, has returned the task to Friederich Prinz with
thanks to VD authors and readers.

New Members
Klaus Sobawa

Klaus Sobawa introduces the firm Firma Soering GmbH, who
are medicine technologists, as new members of Forth
Gesellschaft and reports on their computerised developments.
Fred Behringer welcomes Rolf Schoene and discusses the
problem of the changing age-group structure in human
society and in Forth Gesellschaft.

Tower forever - under DOS
Rolf Schoene
rolf@rolf-schoene.de

Rolf shows that one can very quickly gain access to the DTR
bit of the PC serial port (needed for Lego robot programming)
with the help of the DOS DEBUG program and gives an
assembler DEBUG script for this.

Prize award

Martin Bitter
martin.bitter@forth.ev.de

Martin presents a SWAP dragon coffee cup for solution of a
riddle concerning suitable Forth code relating to DNA chain
sequences.

Alan provides a look at the latest issue of the German FIG
magazine. To borrow a copy or to arrange for a translation of an

individual article, please call Alan.

mailto:101745.3615@compuserve.com
mailto:behringe@mathematik.tu-muenchen.de
mailto:behringe@mathematik.tu-muenchen.de

 37

Stack-Forth

Soeren Tiedemann

A generally philosophical view concerning Chuck Moore's
machine Forth and "keep it simple". "25 Primitives" will
generally suffice. "And whoever needs complicated stack
operation for his/her problem has not thought it through
properly or is not able to program".

Reviews

Fred Behringer
behringe@mathematik.tu-

muenchen.de

In this issue Fred Behringer reviews Forthwrite 114 and
Figleaf for December 2001.

Report from the 17th Euroforth conference
Ulrich Hoffman
ulrich.E.Hoffman@gmx.de

This gathering took place at Schloss Dagstuhl from 23-25th
November 2001 and has been fully reported in Forthwrite.

An interview with Tom Zimmer

Translation of the Forthwrite 114 article

From the Big Teich

Henry Vinerts

This also appears in Forthwrite.

Why is the significance of OO over-emphasised?
Andreas Klimas This is the first part of an intended series of tutorials.

Encapsulation, polymorphism and inheritance are significant
aspects of object oriented programming but the first two of
these are a matter of course in Forth. This leaves
inheritance, which the author considers to be the key factor in
OO.

FINDRAMD.COM - Assembler programming in Forth
Fred Behringer
behringe@mathematik.tu

-muenchen.de

This is once more entry in Fred's "Column for language
migrants". The program FINDRAMD.EXE is to be found on a
Windows98 emergency boot diskette and it enables the
assignment of a drive letter to a created RAM-disk. The hard
disk on the machine may have several partitions and in order
to copy necessary files to the emergency RAM-disk one must
know the relevant drive letters. FINDRAMD.EXE does all this
and is 6855 bytes long. FORTH-assembler can be quickly
used to generate a program FINDRAMD.COM which is only
20 bytes long ! (It should in fairness be pointed out that the
FINDRAMD.EXE program does include error trapping and
error messages.)

 38

MuP21/F21-Bootprocess

Soeren Tiedemann The author discusses the installation, memory map and bus-
logic, 8-bit bootmode, boot routines, and software of the
above processor in what is intended to be a series of articles.

Pontifex

Friederich Prinz
Friederich.Prinz@t-

online.de

Pontifex refers to the building of a bridge between Heaven
and Earth. Fritz lightheartedly discusses a demo version of a
program for the "virtual construction of bridges" for would-be
bridge constructors available by download from
http://www.chronilogic.com .

http://www.chronilogic.com/

 39

German FIG Annual Conference
Dear Readers of Forthwrite,

Our Annual Conference has been a great success, with a high total number of 37
participants, most of them members.

Anton Ertl and Klaus Schleisiek presented variations of their euroFORTH papers
(see Howerd Oakford's review), and Bernd Paysan came with an interesting paper
on FPGAs and Forth. Yours truly could not restrain from again reading a paper on
Arithmetized Logic: A program for converting a Disjunctive Normal Form
to its equivalent Multi-Linear Form.

Our Dutch guests, Willem Ouwerkerk and Albert Nijhof, travelled with Martin
Bitter from the Dutch/German border to the heart of Bavaria. They presented a
collection of homebrew robots, raising the interest of quite a few of us, including
Martin and myself.

After many years of faithful service to Forth Gesellschaft, Thomas Beierlein has
retired. The election process was full of suspense, and Bernd finally made it by
one vote. So the new Board of Directors of Forth Gesellschaft reads: Ulrich
Hoffman, Bernd Paysan, and Fred Behringer.

The Dragon Award 2002 was given to Hans Eckes for his "Forth Stamp"
design and other achievements.

German FIG
Annual Conference 2002

 40

Dutch Forth Users Group

Reading Dutch is easier than you might think. And as Forth is an
international language, reading Dutch code is easier still for a Forth

enthusiast. Are you interested? Why not subscribe to

HCC-Forth-gebruikersgroep

For only 20 guilders a year (£6.30), we will send you 5 to 6 copies
of our "fig-leaf" broadsheet 'Het Vijgeblaadje' . This includes all our

activities, progress reports on software and hardware projects and
news of our in-house products.

To join, contact our Chairman:
 Willem Ouwerkerk
 Boulevard Heuvelink 126
 6828 KW Arnhem, The Netherlands
 E-Mail: w.ouwerkerk@kader.hobby.nl

The easiest way to pay is to post a 20 Guilder note direct to Willem.

 41

Letters

Dave
Pochin

I have just received the latest Forthwrite.

What a surprise, thank you and the committee for my Award, I'm
sure that there are many more deserving candidates than I.

The amount of time and effort you and the other committee
members put in to support Forth is not sufficiently recognised for
starters. Where would we all be without your input ?

The revision of my site is not going well just at present, nothing
wrong with the content, I hope ! I am trying to improve the
navigation, it looks very good, but doesn't work as well as it looks.
Now, where have I seen things like that before !

Still on the Windows - Win32Forth learning curve, but the writer's
block is a bit solid, and there are plenty of diversions around. After
many failed attempts I am just beginning to find my way around the
Forth Scientific Library, full of goodies I don't understand, but it
sure beats pencil and paper for the bits I do recognise, so much to
do, as always.

Regards,
Dave

The Magazine Team are always pleased to get feedback and encouragement. The first
two letters are from recipients of the FIG UK Awards.

 42

Chris
Hainsworth

Bill
Young

I was surprised and delighted to learn about being selected for the
FIG UK Achievement Award for 2001. It is kind of you all to think
that I have helped in some way.

We are really happy here in Spain and there are so many new things
to do.

I wish you and everyone involved in FIG UK the very best wishes
for the future.

Kind regards,

Chris Hainsworth

Thanks very much for the email. I know that it is not much. I would
like to do more but with work and family commitments, time just
doesn't seem to stretch beyond these limits. However, Forth as a
system/language/specification tool interests me greatly (actually,
amazes me how simple yet powerful it is). I'm still trying to get
Forth into a project at work, but

I enjoyed Graeme's articles on Finite State Machines and the
Forth project board articles. Thanks.

For those that are interested, I have a copy of every Circuit Cellar
(Steve Ciarcia's electronics magazine, www.circuitcellar.com)
except the very first issue. I have found this magazine very helpful
for hardware/firmware ideas/projects/information.

regards,
Bill Young
Sensors Scientist
Applied Technology Group
Sensors, Simulation and Automation Section
GlaxoSmithKline R & D

 43

Chairman Jeremy Fowell, 11 Hitches Lane, EDGEBASTON B15 2LS
 0121 440 1809 jeremy.fowell@btinternet.com
Secretary Doug Neale, 58 Woodland Way, MORDEN SM4 4DS

 020 8542 2747 dneale@w58wmorden.demon.co.uk
Editor Chris Jakeman, 50 Grimshaw Road, PETERBOROUGH PE1 4ET

 01733 352373 cjakeman@bigfoot.com
Treasurer Neville Joseph, Marlowe House, Hale Road, WENDOVER HP22 6NE

 01296 62 3167 naj@najoseph.demon.co.uk
Webmaster Jenny Brien, Windy Hill, Drumkeen, BALLINAMALLARD,
 Co. Fermanagh BT94 2HJ

 02866 388 253 webmaster@figuk.plus.com
Librarian Graeme Dunbar Electrical Engineering, The Robert Gordon University,
 Schoolhill, ABERDEEN AB10 1FR
 01651 882207 g.r.a.dunbar@rgu.ac.uk

Membership enquiries, renewals and changes of address to Doug.
Technical enquiries and anything for publication to Chris.
Borrowing requests for books, magazines and proceedings to Graeme.

 For indexes to Forthwrite, the FIG UK Library and
 much more, see http://www.fig-uk.org

 Payment entitles you to 6 issues of Forthwrite
 magazine and our membership services for that

 period (about a year). Fees are:

National and international £12
International served by airmail £22
Corporate £36 (3 copies of each issue)

 Your membership number appears on your envelope
 label. Please quote it in correspondence to us. Look

out for the message "SUBS NOW DUE" on your sixth and last issue and please
complete the renewal form enclosed.
Overseas members can opt to pay the higher price for airmail delivery.

 Copyright of each individual article rests with its
 author. Publication implies permission for FIG UK to

reproduce the material in a variety of forms and media including through the Internet.

FIG UK Web Site

FIG UK Membership

Forthwrite Deliveries

Copyright

mailto:jeremy.fowell@btinternet.com
mailto:dneale@w58wmorden.demon.co.uk
mailto:cjakeman@bigfoot.com
mailto:naj@najoseph.demon.co.uk
http://forth.org.uk/

 44

FIG UK Services to Members

Magazine

Library

Web Site

IRC

Members

Beyond the
UK

Forthwrite is our regular magazine, which has been in publication
for over 100 issues. Most of the contributions come from our
own members and Chris Jakeman, the Editor, is always ready to
assist new authors wishing to share their experiences of the
Forth world.

Our library provides a service unmatched by any other FIG
chapter. Not only are all the major books available, but also
conference proceedings, back-issues of Forthwrite and also of
the magazine of International FIG, Forth Dimensions. The price of
a loan is simply the cost of postage out and back.

Jenny Brien maintains our web site at http://www.fig-uk.org. She
publishes details of FIG UK projects, a regularly-updated Forth
News report, indexes to the Forthwrite magazine and the library
as well as specialist contributions such as �Build Your Own
Forth� and links to other sites. Don�t forget to check out the �FIG
UK Hall of Fame�.

Software for accessing Internet Relay Chat is free and easy to
use. FIG UK members (and a few others too) get together on the
#FIG UK channel every month. Check Forthwrite for details.

The members are our greatest asset. If you have a problem,
don�t struggle in silence - someone will always be able to help.
Do consider joining one of our joint projects. Undertaken by
informal groups of members, these are very successful and an
excellent way to gain both experience and good friends.

FIG UK has links with International FIG, the German Forth-
Gesellschaft and the Dutch Forth Users Group. Some of our
members have multiple memberships and we report progress
and special events. FIG UK has attracted a core of overseas
members; please ask if you want an accelerated postal delivery
for your Forthwrite.

	Forth News
	From the ‘Net
	From the ‘Net
	euroFORTH 2002
	Expanding the Use of the Stack
	Book Review
	“Write Your Own Programming
	Language using C++”
	Special Features of kForth
	Across the Big Teich
	Vierte Dimension 1/2002
	German FIG Annual Conference
	Letters

