
FMS-SI Object and Class Structure
July 31 2016 Douglas B. Hoffman

Creating an Object

An object in FMS is a contiguous section of memory residing either in the dictionary or the heap. The address of that
memory is itself often called the object or ^obj (pointer to object) or reference to the object. Since the address is held in one
cell the object can be passed around on the data stack, return stack, variables, locals, or anywhere the programmer wishes.
Objects can be named dictionary objects or nameless objects located in either the dictionary or the heap. Objects are created,
or instantiated, using the class name in three ways as follows:

1) Named dictionary object. Execute the class name followed by the name you wish assigned to the object. This is a
compile time operation:

classname s

An object of class classname and name s will be created in the dictionary. Subsequently executing s will leave
the address of s on the stack.

s (– obj)

2) Nameless dictionary object. Execute the word dict> followed by the class name. The object will be created in the
dictionary and its address left on the stack. This can be done at compile time or run time:

dict> classname (– obj)

3) Nameless heap object. Execute the word heap> followed by the class name. The object will be created in the heap
and its address left on the stack. This can be done at compile time or run time:

heap> classname (– obj)

There are some more details to be known about creating an object including the implicit initialization and creating indexed
objects (objects with a built in array). These topics will be covered later.

The Structure of an Object

The simplest object has no data, (i.e., instance variables, also called ivars), and will consist of just one cell that contains the
address of the dispatch table for the class representing the class of the object. Consider the following:

 Figure 1.

Note that the number of cells shown pictorially for class A in Figure 1. do not represent the actual number of cells used for
the class. The class structure is described in detail below. For now it is sufficient to know that the dispatch table is located
inside the class definition.

- 1 -

Object(type=A) Class A
 ^class

 Dispatch Table

If the object has instance variables, the more common situation, then they will be appended to the memory following the
first cell of the object, as follows:
 Figure 2.

For illustration, consider when an object of class (or type) B has two ivars, x and y, and ivar x is one cell in size and ivar y is
3 cells. The overall memory required for this object is 5 cells. This does not include dictionary memory used for the name
of the object, if there is a name, or a storage location, if any, to hold a reference to the object.

Objects With Indexed Data

Some classes of objects also contain an array of data, called the indexed area. The indexed area, which is just another form
of instance variable, is always added to the end of the normal ivar area. An example of an indexed object is shown in
Figure 3. where an object of class C is defined such that an array of cell-sized elements is appended to the normal ivar data.
In this case the normal ivar data is the same as that for an object of class B.

 Figure 3.

The width of each element in an indexed object is stored in the class of the object and is the same for all objects of that
class. Class C maintains the width, in this case 1 cell, in the XFA field of the class. The #of indexed elements can vary for
each object and so must be contained in the object (not the class). As can be seen in Figure 3. the #of indexed elements for
this object is 5 and is contained in the first cell following the normal ivar data area. The #of indexed elements for an
indexed object is declared at instantiation time for each object.

- 2 -

Object(type=B) Class B
 ^class

ivar x
ivar y

 Dispatch Table

Object(type=C) Class C
 ^class

ivar x
ivar y

#of indexed elems 5
indexed elem(0) 1 cell XFA
indexed elem(1)
indexed elem(2)
indexed elem(3)
indexed elem(4) Dispatch Table

Embedded Objects As Instance Variables

The last form of instance variable is another object. The format of this ivar is identical to that of any object. Instance
variable names belonging to the embedded object will not conflict with ivar names belonging to the owning object. But it
must be understood that an embedded object is not the same as simply storing an object reference in a cell-sized instance
variable (container object). There are important advantages to embedded objects vs container objects, although container
objects have their own advantages and are fully supported in FMS.

Figure 4.

There is a field in every class,
called IFA and shown in Figure 4.,
that provides the structure for all
embedded objects-as-ivars used in
a class of objects. The structure
of each embedded object is
contained in a node of a linked
list.

- 3 -
Inherited Instance Variable
Data

An object whose class is a
subclass will inherit all instance
variable data from its superclass.
If additional ivars are defined for
the subclass then they will be
appended. Ivar names should not
be re-used in a subclass. While
there is no mechanism to prevent
this and technically it could be
done, doing so will “seal off”
those ivars such that they cannot
then be directly accessed
(accessed by name) in subsequent
methods and subclasses. An error
check could be built in order to prevent this but it would cost more code so it is not.

A subclass of an indexed class will also be indexed and will have indexed elements of the same size. This happens
automatically and cannot be changed. Each object can have only one indexed data area, with the exception that any object
(with the proper class definition) can have any number of embedded or container indexed objects, with each having a
unique element size and number of elements as desired. So in effect there can be any number of indexed areas in a single
object. Of course there can also be dynamically size-able array objects as well.

Referring back to the first section Creating an Object, and figure 1. through 4., executing @ with the object on the stack will
always return the address of the dispatch table for that object. Normally this is not done because the preferred use of objects
is to send them messages.

- 3 -

Object(type=D) Class D
 ^class

ivar x
ivar y

linked-list IFA
object(type=B)

ivar x
ivar y

 Dispatch Table

Class B
 ^class

 Dispatch Table

Example Code for Defining Classes and Instance Variables

The following class definitions are provided to show exactly how they are created for each of the example classes shown so
far. Note that no methods are defined. Object instantiation is shown as well.

:class Class-A \ no instance variables
;class

Class-A x1 \ instantiate a Class-A object in the dictionary named x1

:class Class-B
 1 cells bytes x \ declare an ivar of size 1 cell named x
 3 cells bytes y \ declare an ivar of size 3 cells named y
;class

Class-B x2 \ instantiate a Class-B object in the dictionary named x2

:class Class-C 1 cells <indexed
 1 cells bytes x
 3 cells bytes y
;class

5 Class-C x3 \ object x3 will have 5 indexed elements of size 1 cell each

:class Class-D
 1 cells bytes x \ declare an ivar of size 1 cell named x
 3 cells bytes y \ declare an ivar of size 3 cells named y
 Class-B x2 \ Declare an embedded object of type Class-B named x2.
 \ Note that the ivar name x2 does not conflict
 \ with the public object name x2 created above.
;class

Class-D x4 \ instantiate a Class-D object in the dictionary

0 value x5 \ a convenient place to store an object reference
heap> Class-D to x5 \ instantiate a Class-D object in the heap
(storing the object reference in a value is not a requirement)
x5 <free \ FREE the memory allocated for the object

The Structure of a Class Definition in FMS-SI

While the size of a class definition can vary greatly depending on the specific settings used and the number and type of
instance variable definitions and method definitions, the basic structure and fields of a generic class can be readily
described. It should be understood that once defined, i.e., ended with ;class, a class definition is sealed and cannot be
changed by subsequent class definitions or anything else. A class definition resides entirely in the dictionary. So all class
definitions will be saved when a dictionary image save is performed or a turnkey application is made.

Although there is an indirect way to add behaviors to an object after its class has been sealed. See the section “ADDING
INSTANCE VARIABLES AND METHODS TO AN OBJECT AT RUN TIME” in the documentation file “About FMS-SI-
f”.

- 4 -

Figure 5.

Figure 5. illustrates the generic layout of a class definition.

The first cell of a class definition, cell# 0 in the figure, can be located by the class pointer or ^class. The ^class can be
obtained by ticking the class name and then using >body .

' <classname> >body => address = ^class

The cell at this address contains the address of the dispatch table (^dispatch).

The 2nd cell, called DFA, contains the total size in bytes of any object instantiated using the class. This size does not
include the extra size required for indexed objects, if indexing applies, unless the indexed objects are embedded ivars.

The 3rd cell, called SFA, contains the ^superclass.

The 4th cell, called WIDA, contains the wordlist associated with this class.

The 5th cell, called IFA, contains the address of the information about the embedded object as instance variables for this
class, if there are any.

The 6th cell, called XFA, contains the width in bytes of indexed elements. If this class or any of its superclasses, has not
been declared as indexed then XFA will be 0.

- 5 -

cell#
1 ^dispatch ^class
2 size(bytes) DFA
3 ^superclass SFA
4 wordlist(i) WIDA
5 instance variables IFA
6 width(bytes) XFA

embedded-obj-class offset name-hash elemWidth #elems
class(0) bytes hash bytes n

varies …
class(n)

ivar definitions varies
static variables varies

helper colon definitions varies

^class 1 cell prior to dispatch table
max valid table offset Dispatch Table

XT(0)
XT(1)

0 one cell for each XT
… some cells may contain zero

XT(max)

After the XFA field come the various instance variable definitions which are defined using the wordlist contained in the
WIDA field as the compilation wordlist. After the ivar definitions come the method definitions. The message name
association to a method definition is performed simultaneously:

:m <message-name> … method definition … ;m

Finally, at the end of the class definition, after the message/method definitions, the method dispatch table is constructed.
The dispatch table contains the XTs for methods corresponding to messages defined for the class. The first cell of the table
contains the maximum valid table offset. This value is only used when FMSCHECK? is set to true and allows for error
checking during development in case a message is sent to an object of class type where that message is not defined. The
size of the table varies and will depend on several factors including the dispatch table structure of the superclass and the
number of methods defined for that class. The size of each dispatch table is trimmed to the smallest size possible for that
class. So if class foo has 100 methods (a dispatch table size of 100 cells) a subsequently defined class bar may have only 5
methods (a dispatch table size of 5 cells). It depends upon the number of methods/messages and the maximum table offset
used for the messages in the class.

Messages require the address of the class dispatch table in order to resolve the message to its associated method. For this
reason the first cell of every object, including embedded objects as instance variables, contains the address of the dispatch
table.

The first cell prior to the dispatch table, in the class definition only, contains the ^class. The object itself contains only
the address of the dispatch table, from which the ^class can be computed.

General Comments on Class Definition Size

The size also depends on the number of instance variables, the number of embedded objects as instance variables, the
number of method definitions, the complexity of the method definitions, the number of helper colon definitions if any,
and the number of class variables (also known as static variables) defined if any.

1) While some message name definitions (selectors) are created between :CLASS and ;CLASS these definitions are global in
scope and are not considered to belong to any particular class definition.

2) Any embedded objects as instance variable declarations will also create a new ivar name and additionally create a 3 or 4 cell
node (includes the link address) added to the linked list at IFA. The #elems field at the node will only be created for indexed
type objects.

3) Any instance variable definitions, static variable definitions, and helper colon definitions will belong to the class in which they
are defined and will increase the size of the class definition.

4) The minimum dispatch table is defined in class OBJECT and consists of 4 cells: maximum valid table offset, XT for method
INIT:, XT for method FREE:, and XT for method HEAP:. The number of messages defined will limit the maximum size of
a dispatch table. But often the size of a dispatch table will be less than this maximum due to table trimming.

5) The dispatch tables are trimmed to just the maximum size required. So if there are 20 total selectors allowed, via the
declarations mentioned above, but the maximum selectorID used in the class is the 10th selector then only 10+1 cells will be
used for that table. This is called table trimming. The maximum of 20+1 cells would not be used in this case. It is still possible
that some of those 10 XT cells could be empty (set to zero) depending on which of the first 10 messages are inherited or defined
for that class. In general, less frequently used messages in a class should be declared after those that are used more frequently.
This will have the effect of reducing dispatch table sizes.

- 7 -
Duck Typing

All methods in all versions of FMS use duck typing. Duck typing provides the necessary programming freedom required
for best productivity and are a better fit for the Forth type-free way of doing things because there are no restrictions on
method/message definitions and use.

The message resolution technique uses tables of XTs. The message simply provides an offset into the table. Each class has
its own table. The code for method dispatch is as follows:

: ex-method (obj xt –) self >r swap to self execute r> to self ;
: sel-D create ... does> @ over @ + @ ex-method ;

A possible issue with a dispatch table type selector is that tables can become large when there are very many classes and
many messages. But in practice the dictionary size penalty for empty table locations has proven to be small, even when
there are many classes and messages defined.

Compiling with the FMSCHECK? constant set to true will result in "message not understood" error messages if no
corresponding method has been defined for that class of object. There is no provision for a default action in the event of a
not understood message (how could that be done?). The program will simply abort. With FMSCHECK? set to false (which
is done after debugging is complete) the dispatch code will run slightly faster.

Instantiating Objects

A few things should be understood about instantiating FMS-SI objects.

1) Regardless of which memory is desired, the dictionary or the heap, the same class definition is used. The only
difference is the way instantiation is performed. A named dictionary object is instantiated by executing a class
name followed by the new object name.

2) A nameless object is instantiated, left on the stack, either in the dictionary or in the heap by executing DICT> or
HEAP> respectively followed by the class name. DICT> and HEAP> may be used outside a definition.

3) The entire memory for an object is allotted or allocated with just one call to ALLOT or ALLOCATE (these calls to
allot and allocate are performed implicitly by the object system). This holds true for embedded objects as well.
Also, regardless of the number of embedded objects, only one call to ALLOT or ALLOCATE is (implicitly) made to
reserve memory for the entire object.

4) When an object is instantiated the INIT: method is implicitly sent to the object by the FMS system. This is not
true for embedded object-as-instance-variables which must have the INIT: message explicitly sent if it needs
sending at all.

- 7 -

