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Abstract

In recent years, expert systems have become the most visible and the fastest growing branch of Artificial
Intelligence. General Electric Company’s Corporate Research and Development has applied expert system
technology to the problem of troubleshooting and the repair of diesel electric locomotives in railroad “running
repair shops.” The expert system uses production rules and an inference engine that can diagnose multiple
problems with the locomotive and can suggest repair procedures to maintenance personnel. A prototype system
has been implemented in FORTH. running on a Digital Equipment PDP 11723 under RSX-11M. This sytsem
contains approximately 530 rules (roughly 330 rules for the Troubleshooting System. and 200 rules for the Help
System), partially representing the knowledge of a Senior Field Service Engineer. The inference engine uses a
mixed-mode configuration, capable of running in either the forward or backward mode. The Help System can
provide the operator with assistance by displaying textual information. CAD diagrams or repair sequences froma
video disk. The rules are written in a representation language consisting of nine predicate functions, eight verbs,
and five utility functions. The first field prototype expert system. designated CATS-1 (Computer-Aided
Troubleshooting System - Version 1), was delivered in July 1983 and is currently under field evaluation.

Introduction

In the last few years, expert systems [7-9] have become the most visible and the fastest growing
branch of Artificial Intelligence[1, 5, 12, 14]. The objective of these systems is to capture the knowledge of
an expert in a particular problem domain, represent it in a modular, expandable structure, and transfer it
to other users in the same problem domain. To accomplish this goal, it is necessary to address issues of
knowledge acquisition, knowledge representation, inference mechanisms, control strategies, user
interface, and dealing with uncertainty.

There are various approaches to the representation of the expert’s knowledge, spanning from logic
[11], to semantic network [3], frames [10] and production rules {6, 13]. Each representation has its own
advantages and disadvantages, and this paper will limit itself to the description of an expert system
implemented using production rules.

Rule-based expert systems consist of a body of knowledge (knowledge base) and a mechanism
(inference engine) for interpreting this knowledge. The body of knowledge is divided into facts about the
problem, and heuristics or rules that control the use of knowledge to solve problems in a particular
domain.

The facts represent atomic pieces of evidence describing the problem to solve. They can be generated
at the beginning of the session, by asking the user a fixed sequence of questions that establish the current
problem at hand. Facts are also generated throughout the session as a direct result of system inference,
and as additional questions are asked of the user.

The rules are conditional statements expressed in a subset of English, thus easy to understand. Each
rule consists of a situation recognition part (premise) and an action part (conclusion). The situation part
expresses some condition on the state of the data base, and at any given point it is either satisfied or not.
The action part specifies changes to be made to the data base whenever a rule is satisfied.
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The inference engine is an interpreter of the facts and the rules. Its task is to monitor the facts in the
data base and execute the action part of those rules that have their situation part satisfied. The inference
engine can operate forward (event-driven) or backward (goal-driven). In the forward mode, it tries to
arrive at a goal, starting from the available facts. In the backward mode, it selects a goal and then verifies
whether or not the supporting facts are present or can be inferred.

Problem and Proposed Solution

The General Electric Company’s Corporate Research and Development has applied expert system
technology to demonstrate the system’s feasibility in the area of troubleshooting. To test these techniques,
the problem selected was the repairing of diesel electric locomotives in “running repair shops” : railroad
maintenance personnel must detect and repair a large variety of faults that have partially disabled a diesel
electric locomotive. The a priori information available to them is the list of “symptoms” reported by the
engine crew. More information can be gathered in the shop, by taking measurements and performing tests
that may consume excessive “shop time” if performed by inexperienced personnel.

The result of this development effort is a rule-based expert system., DELTA (Diesel Electric
Locomotive Troubleshooting Aid) [2]. which guides the troubleshooter in his task, enforcing some
disciplined troubleshooting procedures that will minimize the cost and time of the corrective
maintenance.

Originally, a feasibility prototype system was developed in LISP [4, 15]. Subsequently a field
prototype system has been implemented in FORTH, running on a Digital Equipment PDP [1/23 under
RSX-11M.(Thesystemalsorunsona PDP 11,70 under RSX-11M-PLUS and in emulation modelona
VAX 11/780 under VMS.) The choice of Forth was dictated by strong implementation issues, such as
compactness of code, efficiency and portability to other microprocessor-based systems. This system
contains approximately 330 rules. partially representing the knowledge of a Senior Field Service
Engineer. Roughly 330 rules are devoted to the fault diagnosis and repair procedures, i.e.. the
Troubleshooting System, while about 200 rules form the Help System. The Troubleshooting System uses
a mixed-configuration inference engine based on a backward chainer and a forward chainer, as illustrated
in Figure 1. The Help System, uses the forward chainer of the same inference engine to respond to
requests for information from the expert system. When the user hits the “HELP” key, the system provides
additional information, such as the location and identification of locomotive components, replacement
part classification, and description of repair procedures. To accomplish this task, the system uses CAD
files stored in TEKTRONIX line graphics format and VIDEQ pictures stored on a laser video disk.

A pictorial description of a session with this expert system is illustrated in Figure 2. A fixed sequence
of questions is used to gather the initial facts about the locomotive problem, such as unit number, model
vear, reported symptoms, etc. An associative information table provides additional facts, such as unit
standard features. unit history of failures, model failure propensity, etc. All these facts constitute the
starting point for the troubleshooting process.

The set of rules (heuristics) that embeds the empirical knowledge about the diesel electric engine is
functionally partitioned into knowledge spaces such as mechanical system, electrical system, etc. Within
each knowledge space. the rules are subdivided according to hypotheses (fault areas). such as Operator
Error, Engine Unable to Make Power, etc.

A set of meta-rules (a smart index of the knowledge partitions) retrieves from the various knowledge
spaces the subsets of rules associated with all the hypotheses that could be relevant to the initial
symptoms. This collection of hypotheses constitutes a preliminary diagnosis. Working in a backward
mode, the interpreter tries to prove or disprove each hypothesis, based on both initial facts and additional
facts inferred by the system or asked of the user.

The result of this process is a final diagnosis that indicates the successful hypotheses (faults) and their
corresponding corrective actions (repairs).

Inference Engine

This expert system is based on a mixture of control strategies, since its inference mechanism can
work in either forward or backward mode (Figure ).

When the initial facts are input by the user. the META-RULES load aset of HYPOTHESES and a
set of IFF-RULES. IF-RULES and WHEN-RULES (see discussion of rules below).

The BACKWARD INTERPRETER then tries to evaluate each hypothesis with the given set of
rules and current facts. The evaluation of a hypothesis (goal) is a three-step process. First, the system
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scans the list of facts to verify whether the hypothesis is already known to be true or false. If this is the case,
then evaluation terminates. Otherwise, the system scans the conclusion of each rule to determine whether
the hypothesis could be proved by at least one rule. In such a case, the system recursively evaluates each
clause (sub-goal) in the premise of that rule. Finally, when no hypothesis (or argument) can be directly
inferred by a rule, the system requests information from an external source (either the user or a sensor).

During this deductive process. new evidence (NEW FACT) needed to prove a hypothesis could be
inferred by the BACKWARD INTERPRETER orinput by the USER/SENSOR. When NEW FACT is
written in the list of facts, the FORWARD INTERPRETER is activated. This interpreter scans the
META-RULES, IFF-RULES, IF-RULES and WHEN-RULES, trying to execute any rules containing
NEW FACT in their premise.

The META-RULES verify whether or not some new knowledge (new set of hypotheses and
corresponding IFF-RULES, IF-RULES or WHEN-RULES) is required and whether or not the existing
knowledge should be reorganized. by reordering the set of current hypotheses. as a result of the presence
of NEW FACT.

The IFF-RULES and the IF-RULES try to find some new evidence that can be inferred directly,
based on the presence of NEW FACT. The new evidence could later provide a shorter path in the
deduction process. These rules can be accessed by both the backward and forward chainers. IFF-RULES
are “if-and-only-if” type rules (if A then B, and if not-A then not-B). IF-R ULES are “if-then™ type rules (if
A then B).

The WHEN-RULES attach properties and activate procedures associated with NEW FACT. These
rules can only be accessed by the forward chainer, thus preventing the backward chainer from using them
to establish some goal. WHEN-RULES are “when-then” type rules (when A then B).
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If any of the above rules has a fully satisfied premise (since no explicit rule-chaining or user-
prompting is allowed during the evaluation of rules in the forward mode), then the FORWARD
INTERPRETER executes that rule, writes another NEW FACT, and iterates again. This forward-
chaining process stops when no rule can be executed by the FORWARD INTERPRETER, and control is
returned to the BACKWARD INTERPRETER.

The BACKWARD INTERPRETER will continue its deductive process, until a hypothesis is proved
or the entire set HYPOTHESES has been exhaustively evaluated.

Representation Language

The rules that form the knowledge base of the Troubleshooting System and the Help System are
written in a special representation language. The user-extensible language currently contains:
- nine predicate functions to describe the conditions of the premise of each rule,
- eight verbs to describe the actions and inferences in the conclusions of each rule,
- five utility functions to interact with the user and display alphanumeric, graphic or pictorial
information.
Each rule is a conditional statement describing the logical implication:

(premise) -Ef-> (conclusion)

The weight “cf is the certainty factor, a number between -1 and [, which indicates the strength of
such implication. This number is used to control the propagation of uncertainty in rule-chaining, to
control the combination of different pieces of evidence supporting the same conclusion, and to evaluate
the overall degree to which a premise is satisfied.

Each premise is an intersection of clauses. Therefore, a premise is satisfied if a// its clauses are also
satisfied. In this case, the intersection of clauses corresponds to a boolean AND. However, this operation
could be extended to a fuzzy intersection, e.g., MIN, if the truth-value of the clauses can take values
within the interval [-1, 1]

Fach clause is defined by a predicate function and an argument composed of a 3-tuple
<object attribute value>. Each clause is satisfied if its predicate function returns a true-value when applied
to its argument.

Each conclusion is a disjunction of actions that are executed once the premise of the rule has been
satisfied. Each action is defined by a verb and an argument.

Moreover, there are five utility functions that can be present in the premise or in the conclusion of the
rule. These functions are transparent to the rule interpreter, in the sense that they do not affect the
truth-value of the premise and do not modify the list of facts. The purpose of these functions is to help the
user with text, graphics or video-images. These functions form the basis of a rule-driven help system.

A listing of the predicate functions, verbs and help-functions is provided in Appendix 1. Appendix I1
illustrates three rules of the Expert System. describing a fault in the locomotive fuel system, and two rules
of the Help System describing related available information.

Appendix 11T shows the FORTH source code used to compile Rule 5210 in Appendix II. All of the
rules in Appendix Il were listed by a pretty-printer which adds text identifying the end of a rule and
removes the parenthesis in FORTH comments. The 3-tuples are offset by the executable word, [ and
closed by a ]. As an example, in Rule 5210 EQ is a predicate function with an object of FUEL-
REGULATING-VALVE, an attribute of VIDEO and a value of HELP . Sometimes expressions
will have multiple values. The 3-tuple associated with VDSHOW gives the starting and ending frames,
and specifies still mode for the video disk. Rules needn’t be explicitly closed, as the source executes and
builds data structures via the FORTH text interpreter.

Conclusion

The first field prototype of this expert system has already been implemented in a rugged unit,
packaged by COMARK, containing a PDP 11,23 (running RSX-1IM and an enhanced version of
fig-FORTH). a 10 meta-byte Winchester disk, a VT100 terminal and a SELANAR graphics board. A
SONY laser-video-disk player and an additional color monitor complete the configuration of this field
prototype system. The system has already shown promising results since its recent delivery to the General
Electric Company's Locomotive Operation in July 1983. The mixed-mode configuration of its inference
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engine performs very well. The FORTH implementation proved to be easily transportable to small
microprocessor-based systems while maintaining fast execution speed. The man-machine interface is very
user-friendly and allows the user to interact with the system via menu selections or simple (single
keystroke) answers such as: Y, N, 2, W, H. (Yes. No, ?Unknown, Why?, Help).

During the next six months, the locomotive troubleshooting system will be tested in the field to verify
the accuracy of its knowledge base and the reliability of the hardware configuration. In the following
phase of this project, the knowledge base will be expanded to approximately 1200 rules, to cover, with
increased depth, a larger portion of the problem space.
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Appendix |
Description of the nine types of predicate functions used in the FORTH implementation:
EQ: evaluates the argument. and returns a true-value if the argument was proven true (Equal).
EVAL-ALL: forces an exhaustive evaluation of the argument and returns a true value if the argument
was proven true at least once during its evaluation.
NE: evaluates the argument and returns a true-value if the argument was proven false (Not Equal).
NC: evaluates the argument and returns a true value if the argument was either proven false or
unknown (Not Confirmed).
ND: evaluates the argument and returns a true value if the argument was either proven true or
unknown (Not Disconfirmed).
ASK-Y: prompts the user with a particular question (the comment associated with the clause), writes
the argument as a new fact (with an attached certainty-factor indicating the user’s response) and
returns a true-value if an affirmative response was input.

) ASK-N: like ASK-Y. but returns a true-value if a negative response was input.

UDO: requires the user to perform a given action (the comment associated with the clause), waits for a
confirmation from the user, writes the argument as a new fact and returns a true-value if the action
was confirmed.
MENU: displays a menu of choices, prompts the user for a specific menu entry selection, writes the
selection as a new fact and returns a true value if a legal entry was selected. This function has three
components:

MENU-T: displays the title of the menu

MENU-E: displays a menu entry

MENU-S: prompts the user for an entry selection

Description of the eight types of verbs used in the FORTH implementation:
WRITE: writes the argument as a fact in the list of facts.
CLR: deletes from the list of facts any existing fact which matches the argument.

) EVAL: activates the backward chaining interpreter, trying to verify the argument.

EVAL-ALL: activates the backward chaining interpreter, performing an exhaustive verification of
the argument.
ASK: prompts the user with a particular question (the comment) and writes the argument (with an
attached certainty factor indicating the user’s response) as a fact in the list of facts.
UDO: requires the user to perform a given action (the comment), waits for a confirmation and writes
the effect of the action (the argument) as a fact in the list of facts.
STOP: displays a termination message (the comment) to the user and terminates the session,
disregarding any pending tasks.
MENU: displays a menu of choices, prompts the user for a specific menu entry selection and writes
the selection as a new fact. This verb has three components:

MENU-T: displays the title of the menu

MENU-E: displays a menu entry

MENU-S: prompts the user for an entry selection

Description of the five utility functions used in the FORTH implementation:

DISPLAY: displays a message to the user.

PAUSE: displays a message and waits for an acknowledgement from the user.

SHOW: displays a CAD file (graphic picture) or an alphanumeric file on the user’s terminal.
SCREEN: clears the graphic plane of the user's terminal.

VDSHOW: displays a video-image (still frame or film sequence) on the auxiliary monitor.
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Appendix I
Sample of three rules in the Expert System related to a fault in the fuel system.
Rule 760

there is a fault in the fuel system at idling speed and readings were taken from the locomotive fuel
pressure gage

EQ [ ENGINESETIDLE ]
Is the engine at idle?
EQ [ FUEL PRESSURE BELOW NORMAL ]
Is the fuel pressure below normal? (Less than 38 psi?)
EQ [ FUEL-PRESSURE-GAGE USED IN TEST ]
Did you use the locomotive gage?
EQ [ FUEL-PRESSURE-GAGE STATUS OK ]
Is locomotive gage known to be accurate?
THEN:
WRITE [ FUELSYSTEM FAULTY ] 1.00
Establishes that there is a fuel system fault.
End of rule 760

Rule 1270
the locomotive fuel-pressure gage is OK
IF:
UDO [ FUEL-PRESSURE-TEST-GAGE STATUS ATTACHED ]
Attach a known good pressure gage.
ASK-Y [ FUEL-PRESSURE-TEST-GAGE READING SAME-AS FUEL-GAGE ]
Is test-gage reading the same as locomotive-gage reading?
THEN:
DISPLAY [ FUEL-PRESSURE-GAGE STATUS OK ]
The locomotive-pressure-gage is OK.
WRITE [ FUEL-PRESSURE-GAGE STATUSOK ] 1.00
Establishes that the locomotive-pressure-gage is OK.
WRITE [ FUEL-PRESSURE-GAGE STATUS ALREADY TESTED ] 1.00
Establishes that the locomotive-gage has been tested.
End of rule 1270.

Rule 1460

there is at least one faulty fuel system component
WHEN:
EQ [ FUEL SYSTEM FAULTY ]
The fuel-system is faulty
THEN:
DISPLAY [ FUEL SYSTEM FAULTY ]

There is a fuel system fault.

WRITE [ FUEL PROBLEM SOLVED ] -1.00
Establishes that the fuel problem is not solved.
EVAL-ALL [ FUEL SYSTEM-COMPONENT FAULTY ]
Tests for a faulty fuel system component.
End of rule 1460
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Sample of two rules in the Help System describing available information relevant to the subgoal of
verifying the accuracy of the fuel pressure gage.
Rule 5190
you want to see the Fuel Pressure Test Gage Menu
WHEN:
EQ [ FUEL-PRESSURE-TEST-GAGE MENU HELP ]
Requests FUEL PRESSURE TEST GAGE Menu
THEN:
CLR [ FUEL-PRESSURE-TEST-GAGE MENU HELP ]
Forgets Request
MENU-T [ FUEL-PRESSURE-TEST-GAGE SELECTION INVALID ] 1.00
This Menu contains information of the
FUEL PRESSURE TEST GAGE

These are your choices:
MENU-E [ FUEL-TEST MENU HELP ] 1.00
I want to go back to FUEL TEST Menu
MENU-E [ FUEL-PRESSURE-TEST-GAGE PICTURE HELP ] 1.00
CAD Picture of pipe plug where test gage should be attached
MENU-E [ FUEL-REGULATING-VALVE VIDEO HELP ] 1.00
VIDEO Picture of regulating valve where pipe plug is located
MENU-E [ GOAL: BACK TO EXPERTOR STOP ] 1.00
End of help. Back to our problem
MENU-S [ FUEL-PRESSURE-TEST-GAGE SELECTION FINISHED ]
Please enter vour selection by number:
End of rule 5190

Rule 5210
vou want a VIDEO picture of fuel regulating valve
WHEN:
EQ [ FUEL-REGULATING-VALVE VIDEO HELP ]
Request Picture of regulating valve where pipe plug is located
THEN:
CLR [ FUEL-REGULATING-VALVE VIDEO HELP ]
Forgets request
VDSHOW [ 16120 16120 0 ]

WRITE [ FUEL-PRESSURE-TEST-GAGE MENU HELP ] 1.00
We want to use Fuel Pressure Test Gage Menu
End of rule 5210

Appendix Il

RULE 5210
( you want a VIDEO picture of fuel regulating valve)
WHEN:
EQ [ FUEL-REGULATING-VALVE VIDEO HELP }
( Requests Picture of regulating valve where pipe plug is located)
THEN:
CLR [ FUEL-REGULATING-VALVE VIDEO HELP ]
( Forgets request )
VDSHOW [ 16120 16120 0 ]
( )
WRITE [ FUEL-PRESSURE-TEST-GAGE MENU HELP ]
( We want to use Fuel Pressure Test Gage Menu)
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DELTA system is tested on a GE locomotive by Frank Lynch (seated), Manager of the R&D Center’s
Knowledge Based Systems Program, and Dave Smith, GE locomotive expert.




