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Abstract

The work in control applications at the Laboratory for Perceptual Robotics has been directed toward a
prototype Cartesian Assembler donated to the laboratory by General Electric of Schenectady. New York. The
machine and some of the hardware interfaces are described along with low level controlling schemes for
point-to-point position/ velocity control. An emulation of single axis controllers is shown to be an effective
control method. Encoder/ positional information is the basis of this low level control structure which will later be
tailored for use with processors devoted to each axis. High level control issues such as adaptive learning
techniques are addressed.

The prototype Cartesian Assembler (pictured in Figure 1) is a robotic manipulator which consists of
threesliding (or prismatic) joint axes and a revolute joint axis. Each axis is actuated by a DC servomotor.
The motor shaft for each linear axis is directly coupled to a ball screw. The ball screws for the two
horizontal axes are mounted on the frame of the machine. A “carriage” which houses the vertical axis
motor and screw is mounted upon the ball nuts of the two horizontal ball screws. The rotational axis
motor is found at the lower end of the vertical axis.

There are two closed loop low level control systems for this machine. The first is a velocity
servo-loop. This controlloop is implemented completely in hardware via a set of servoamplifiers (one for
each axis) which use velocity feedback from tachometers that measure the angular velocity of each motor
shaft. The servoamplifiers combine the signals from these tachometers with a “desired” velocity signal
received from the AAVII-A D/A converter interface on the PDP-11/23 and send an appropriate
controlling signal to each axis motor. The tachometers are coupled to the motor shafts.

Also mounted on each motor shaft is an optical incremental encoder composed of a “slotted” disk
and a lamp, phototransistor assembly. It is this encoder which provides positional feedback for the
second low level control loop. The two resulting out-of-phase “sine™ waves are passed through
comparator circuits which square the waves and produce TTL-compatible forms. The edges (both rising
and falling) of these waves are counted by a sixteen-bit binary up/down counter circuit (one for each
axis). Suppose a particular encoder disk has two hundred slots. Then for one rotation of the motor shaft,
each encoder output wave will complete two hundred cycles. Thus each of the square waves which reach
the counter will have four hundred edges. There are two out-of-phase waves and the counter counts the
edges of each one. The counter will therefore record eight hundred counts for each motor shaft rotation.
Since each linear axis travels one inch per motor shaft revolution, this translates to eight hundred counts
per one inch of axis travel.

Thesixteen-bit output of each counter is presently sent through a multiplexer circuit and this output
is sent to a DRV interface to a single DEC PDP-11/23. In the near future, a single (controller)
processor will be devoted to each axis and the need for the multiplexer circuit eliminated. (For a more
detailed description of the Laboratory for Perceptual Robotics see [1].)

At present, the individual controllers are emulated by FORTH Assembler routines running on the
lab’s PDP-11/23. The version used was developed at the Laboratory for Laser Energetics at the
University of Rochester. One goal when constructing the low level servo routines was that they should
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Figure 1. The Prototype Cartesian Assembler
Atleft is the GE CID camera used for visual input. At right is a small revolute joint arm, the Rhino XR-1.

execute as quickly as possible. Since the CODE words of FORTH Assembler run at machine speed. this
goal was easily attained.

The controlling signal for each axis is a velocity signal which is sent to the AAV[1-A interface and
delivered to the servoamplifiers. The inputs to the point-to-point position servo are the desired position.
the actual position (in terms of encoder counts), and a maximum velocity allowable for each axis. Since
the same controlling routine is used for all four axes. arrays indexed by register R0 of the PDP-11 were
constructed for the desired position. the maximum velocity, and the current velocity being sent to the
amplifiers. A state table is also used to record whether each axis has ceased to move (i.e. is within a
user-chosen range of the desired position). This information is used to determine whether to position
servo each axis. The code for these routines is included in the Appendix at the end of this paper and
discussed below.

A standard speed trajectory control scheme is used with an acceleration period. a constant speed
period (at the maximum velocity), and a deceleration period. The period changes do not depend on time.
but on the absolute value of the difference between the desired and the actual distance. Figure 2 depicts
this trajectory and also shows the trajectory which results if the distance to be travelled is relatively small.

The acceleration phase is actually a step function with a user-chosen increment (also stored in a
four-element array). The control velocity is incremented at each sampling until it reaches the maximum
velocity or (for a short distance) until the distance to be travelled is less than the output velocity signal.
When the velocity /position relationship reaches this point (D2 in Figure 2). the velocity signal becomes
proportional to the distance left to travel. In actuality, this deceleration phase is also composed of a step
function since the velocity signal is reset at discrete instances.

The first step in adaptive control has been taken in the form of a routine which corrects the drift
inherentin the servoamplifiers when a zero velocity is requested. If a zero is sent via the AAVI[-A to the
amplifier. a strictly zero velocity is not always the result. even when the amplifiers are balanced
beforehand. Thus a drifting of the axis results. Part of the Change.Speed macro of blocks 1004-1007
check for such a drift using another state table called Command.Status. If it is determined via use of this
table that an axis is no longer being position servoed. the routine checks to see if the axis position is still
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Figure 2. Line Insertion
The velocity trajectory of the position/velocity servo. D, = Initial Position; D; = Point where
Vel = Maxvel; D, = Point where Vel > (D, - D,); = Desired Position. At left is the normal trajectory.
At right is the case where the distance to be travelled is so short that the maximum velocity is never
reached.
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within the desired range. If not, the value which (currently) represents a zero velocity is appropriately
incremented or decremented by one. The same algorithm compensates for loading effects.

Similar control schemes for each axis will be implemented on PDP-11/03 systems. These single axis
controllers will eliminate the need for the interrupt driver currently in use to emulate them. The code for
this interrupt driver may be found in the Appendix of this paper.

The use of such interrupt routines allows the position servoing to take place while other routines are
concurrently run on the FORTH level. This is necessary since both high level routines for axis movement
and the low level position servo routines are being run on the same processor. The result is that the high
level routines are run normally, but are interrupted at every 1/60th of a second (the system clock runs at
60Hz). The interrupt routine is the position servo routine which updates the output velocities for each of
the four axes.

Routines to control the currently used two-fingered gripper which is actuated by a stepper motor
have been run synchronously with the above routines.

The control algorithm given above allows only point-to-point movement of the machine. In other
words, one point at a time is specified. the machine axes move to that point and stop. then the next point is
specified. In a complex task, the robot will need to move continuously through various points in the work
space. Continuous path motion algorithms using spline interpolation of desired trajectory segments are
now being developed and are based on works such as Paul [2].

The use of tactile and visual information will be integrated with existing routines for decision-based
planning and machine movement [3]. Routines which acquire such sensory information from the lab’s
C.1.D. camera (a solid-state, charge injection device sold by GE) and from the Overton tactile sensor [4]
are running successfully. Processing of both types of sensory information is in development.

Higher level adaptive-learning control routines will also be implemented on the cartesian machine.
Suchroutines, already written in FORTH and to be tested within the next several weeks, are based upon
an Associative Search Network (ASN) designed by the Adaptive Networks Group of the University of
Massachusetts [5]. The idea is to search for the correct manipulator control actions and to learn from the
experience. The effect of the control signals is to move the joint variables by certain fixed amounts. The
ASN receives a reinforcement which is used to determine the effects (good or bad) of its previous action(s)
to accomplish learning.

Conclusion:

Some of the issues encountered in the evolution of the use of the cartesian assembler of the
Laboratory for Perceptual Robotics have been discussed. Hardware feedback devices, and in particular,
methods of using these devices to provide information for machine control have been developed. The
implementation of these control schemes in FORTH has been a successful venture. High level control
schemes such as the ASN approach are under investigation.
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BLOCK 1000

( Servo Routine Variables
4 ARRAY Desire.Pos
ARRAY State
ARRAY MaxVel
ARRAY Velocity
ARRAY Increment
ARRAY 0-Vel

ARRAY Command.Status
4 ARRAY Delay.Left
1704400 CON VelOut
1677700 CON CntOut
1677740 CON Cntin

R A i

Appendix

GCP 5/16/83 )
The desired position for all 4 axes)
The state of each axis )
The maximum velocity of each axis )
The current velocity of each axis )
Velocity increment for each axis )
Zero Velocity output for each axis )
I=Command executing/0=1dle )
Amount of time left for next adapt)
Starting address of the output D/A)
Address to write to counter )
Address to read from counter )

o~~~ o~~~ -

5 VAR Range Error range for stopping )
30 VAR Delay Delay between adapt. steps )
0 CON Stop | CON Move Internal states for servo routine)
0 VAR Dir Direction of move) >
BLOCK 1001
( Servo Routine Macros GCP 4/7/83 )
: Save-Regs  ( <>--<>, Save used registers on return stack )
ASSEMBLER
RP -) RO MOV, ( Save RO)
RP ) T MOV, ( Save T)
RP -) W MOV, ( Save W)
FORTH ;

. Restore-Regs
ASSEMBLER

W RP )+ MOV,
T RP ) MOV,
RO RP )»» MOV,

W Cntln @#% SUB,

( <>--<> Restore registers from return stack )

( Restore W )
( Restore T )
( Restore RO )

FORTH -—>
BLLOCK 1002
( Stop? GCP 4/7/83 )
: Stop? ( <>-<>_ Test for stop point )
ASSEMBLER
RO CLR. ( Init. loop counter )
BEGIN,
T RO MOV, ( Determine table ... )
T ASL. ( ...byte offset )
W DesirePos T 1) MOV, ( Get desired position )
CntOut @% RO MOV, ( Select axis position )
(

MI IF,

How far away? )

W NEG. ( Get absolute value )

THEN,

-
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BLOCK 1003
( Stop? cont.

Range @% W CMP,

LT IF.

VelOut T 1) 0-Vel T I) MOV,
State T I) Stop # MOV,
Velocity T 1) CLR,
Command.Status T 1) CLR,

ELSE.
State T I) Move # MOV,
THEN,
RO INC,
4 # RO CMP,
GE END,
FORTH ;
BLOCK 1004

( Change.Speed?
: Change.Speed?

ASSEMBLER RO CLR.
BEGIN,

T RO MOV,

T ASL,

State T 1) Stop # CMP,

NE IF,

W Desire.Pos T 1) MOV,
CntOut @%¥ RO MOV,
W Cntln @# SUB,

MI IF,
W NEG,
Dir @# -1 # MOV,
ELSE,
Dir @# 1 ¥ MOV,
BLOCK 1005
{ Change.Speed cont.
THEN,
Command.Status T ) TST,
EQ IF,
Delay.Left T 1) DEC,
EQ IF,

Delay.Left T 1) Delay @% MOV,
0-Vel T I) Dir @¥ ADD,

THEN,
THEN,
Velocity T I) W CMP,
LT IF,
Velocity T [) W MOV,
Dir @& TST,
MI [F,
W NEG,

o~~~

(

o o~ -

—~ —

P e e e U e —_—

R T e N PN

GCP 5/16/83 )
Within range of Des. Pos. )
Yes )

Stop Axis Movement )
Set axis state to stop )

Update velocity table )
Command completed )
No )

Set axis state to move )

Increment counter )

Finished? )

Yes if greater or equal )
-—>

GCP4/7/83)

( <>--<> Test for speed change & do it )

Initialize loop counter )

Determine table ... )
. byte offset )

Is axis stopped ? )

No )

Get desired position )

Select axis position )

How far away? )

Get absolute value )
Set negative direction )

Set pos. dir. ) >

GCP 5/18/83 )

Idle ?)

Yes )

Decrement time remaining)
Ready for next adapt )
Reset time remaining )
Adapt for zero offset )

Distance left < Vel )
Yes )

Update velocity table )
Which direction ?)
Negative direction )
Set forsub. ) -->
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BLOCK 1006
( Change.Speed? cont. GCP 4/7/83 )
THEN,
W 0-Vel T 1) ADD, ( Add offset )
VelOQut T 1) W MOV, ( Output new vel. )
ELSE. ( Distance left > Max Vel)
MaxVel T 1) Velocity T 1) CMP, ( Increase Velocity ? )
LT IF, ( Yes )
Velocity T I) Increment T 1) ADD,. ( Increase Vel by Inc.)
ELSE,
Velocity T I) MaxVel T I) MOV, ( Set velocity to Max )
THEN,
W Velocity T I) MOV, ( Copy vel. for output )
Dir @# TST, ( Which Direction ?)
MI IF, ( Negative Direction ?)
W NEG. ( Yes )
THEN, -2
BLOCK 1007
( Change.Speed? cont. GCP 5/18/83 )
W 0-Vel T I} ADD, ( Add Offset )
VelOut T I) W MOV, ( Output Velocity )
THEN,
THEN,
RO INC, ( Increment counter )
4 # RO CMP, ( Finished? )
GE END, (If >= 104)
FORTH

(Extra space for expansion of routines)

BLOCK 1008

( Interrupt.Servo, Install.Int.Servo, Enable & Disable Int. )
CODE Interrupt.Servo ( <>--<>_ Interrupt servo routine )
Save-Regs Stop? Change.Speed? Restore-Regs RTI,
. Install.Int.Servo ( <>--<>, Install the servo routine )
0 1775460 ! ( Disable Clock interrupt )
* Interrupt.Servo 1000 ! 3400 1020 ! (Install interrupt )
1000 1775460 ! ( Enable interrupt )

0 VAR Proc.Status
CODE Restore.Processor ( <>--<>  Restore old processor status )

Proc.Status @%# MTPS, ( Set Processor status )
NEXT, ( Sequence )
CODE Disable.Interrupts ( <>--<>_ Disable all Interrupts )
Proc.Status @# MFPS, ( Save old Processor Status )
3400 # MTPS, ( Disable all interrupts )
NEXT, ( Sequence )

>
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BLOCK 1009

( Read.Counter, Zero.Array, Abs.Move.Single GCP 5/16/83 )
: Read.Counter ( <intI>--<int2>, read axis intl position )
Disable.Interrupts
CntOut ! Cntln @
Restore.Processor |

» Zero.Array ( <array>--<>  Zero out the array )
DUP 2DUP 40 DO 12 * + 0 SWAP ! LOOP ;

. Abs.Mov.Single ( <pos.axis>--<>, Absolute single axis move )
Disable.Interrupts
DUP ROT SWAP 2* Desire.Pos + ! ( Set Desire Position )

2* Command.Status + ISET ( Set Command Status)
Restore.Processor -—>
BLOCK 1010
( Position and Velocity setting words GCP 5/16/83 )
: Max.Vel.Single ( <velaxis>--<>_ Set velocity for axis )
2 * MaxVel + !

: Abs.Move ( <x.y.z.t>--<>_ Absolute move on all four axes )
0 3 DO I Abs.Move.Single -1 +LOOP :

: Max. Vel ( <x.y,z.t>-<> Set all four Velocities )
0 3 DO I Max.Vel.Single -1 +LOOP ;

: Rel.Move.Single ( <Rpos.Axis>--<>_ Relative single axis move )
DUP 2* Desire.Pos + @ ROT + SWAP Abs.Move.Single ;

. Rel.Move ( <x,y.z,t>--<>_ Relative move on all axes )

0 3 DO I Rel.Move.Single -1 +LOOP ; -
BLOCK 1011
( Array Initialization words GCP 4/11/83 )
: Clear.All.Arrays ( <>--<>_ Initialize all arrays )
Desire.Pos Zero.Array State Zero.Array
MaxVel Zero.Array Velocity Zero.Array

Command.Status Zero.Array

. Initialize.Counter ( <>--<>_ [Initialize the counter )
CntOut 2+ DUP 0 SWAP ! 15 SWAP ! :

: Initialize.Zero.Velocities ( <>--<>_ Init 0-Vel Array )
40010 0-Vel ! 40010 0-Vel 2+ ! 40520 0-Vel 4 + !
40000 0-Vel 6 + !

: Set.Increments ( <>--<>_ Init Increment Array )
3 DUP DUP DUP Increment ! Increment 2+ ! Increment 4 + !
Increment 6 + ! ; -
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BLOCK 1012

( Set.Up.Robot, Move.Complete GCP 5/18/83 )
: Set.Delay ( <>--<>, Initialize Delay for Adapt. routine )
Delay @ 4 0 DO DUP Delay.Left 1 2* + ! LOOP DROP ;

: Set.Up.Robot ( <>--<>, Set up Arrays and Enable Servo Rtn. )
Clear.All. Arrays Initialize.Counter
Initialize.Zero.Velocities Set.Increments
300 300 300 0 Max.Vel Set.Delay
Install.Int.Servo :

: Move.Complete? ( <>--<> Waits for completion of a command

move on X, v, and z axes only )

BEGIN

3 0 DO 1 2* Command.Status + @ LOOP OR OR 0=

END ; S



