The R65F11 and F68K Single-Chip
Forth Computers
Randy M. Dumse

New Micros, Inc.
808 W. Dalworth
Grand Prairie, TX 75050

Abstract

The R65F11, introduced mid year 1983, was the first commercially available single-chip
Forth “engine.” It has remained relatively unchallenged in its market position for over one
year. Other single-chip systems are under development. In all probability, near the end of
1984, the F68K will become the second single-chip engine for the Forth language, with an
anticipated 20 times execution speed improvement in performance over its predecessor. This
paper focuses on the design methodologies used in the development of the R65F11 and the
new F68K.

Introduction

A processor that has a native machine code language that is optimized for a particular
language is commonly called a language “engine.” Conventional high level language engines
get their title by having a micro code that is optimized for interpreting a particular high level
language’s pseudo code. There is only one level of interpretation involved. The conventional
language engine must implement the pseudo code of the high level language as its own
machine code if there is to be any advantage in an “engine” over a standard instruction set
processor.

The advantages a conventional high level language engine can have over a processor
with an external pseudo code interpreter in ROM are speed of execution and reduced
program memory usage.

The most notable entry in the field of conventional high level language engines came
from Western Digital in the form of their Pascal Engine. The device was a processor (CPU
only), rather than a complete computer on a chip. (The actual CPU was made up of five
chips in total.) It directly executed the P code from the Pascal compilers. The part did not
receive wide acceptance due to technical problems, questionable performance benefits, and
an unresponsive marketplace. [1]

Current generation high level languages have a closed set of command structures that
are patterned after very limited subsets of English. They allow the programmer to enter
something that looks like English. The language compiler or interpreter converts the input
into computer executable machine code.

If Forth were a conventional language it would have to be said that there are no single-
chip Forth “engines” in existence at the time of this writing. In the case of Forth engines,
however, the variation in the concept is significant. A discussion of the comparison of Forth

The Journal of Forth Application and Research Volume 2, Number 1, 1984
11

12 The Journal of Forth Application and Research Volume 2 Number 1

to conventional languages will have to be made to understand the significance of this
distinction. [2][3]

Although the language starts with a limited subset of the English language, the
programmer can add both functions and interpreters of functions to the language. Program-
ming in the language occurs on several levels. The software is multi-dimensional. There is no
limit to the dimensions of interpretation possible. No matter how completely the original
language may be accommodated in an engine implementation, the user will create new
interpreters and problem interpretations on top of the original language. Until self modifying
hardware can keep up with a dynamically changing language set, there can be no perfect
Forth engine.

The most important aspect of creating a Forth engine with current technology is to
create the virtual Forth machine in hardware. Only the software can be extensible.
Therefore, the essence of the Forth engine exists whenever the virtual Forth processor is
implemented, at any level. Although the speed of the interpretation of the Forth language
depends on the level to which the language is reduced to micro code, any Forth engine will
offer the following advantages over conventional processors:

1. Reduced program memory usage.

2. Extensibility.

These features, then, can be used to measure whether a single-chip computer is a Forth
engine or not.

Implementation Approach

The methods by which the Forth engine can be implemented (as per the above
definition) can vary greatly. The processor itself must contain sufficient features to support
at least the common inner interpreters of Forth to be a virtual Forth machine. This can be
accomplished by:

. implementing the inner interpreters and some primitives in internal ROM,

2. micro coding some of the lower functions of the inner interpreters as well (DOCOL,

NEXT and SEMIS, for example),

3. or ideally, by micro coding all of the primitives of the language to a unified machine

code instruction set.

The method used on the R65F!1 was the first. The inner interpreters (DOCOL,
DOUSER, DOVAR and DODOES), along with 133 primitive and higher level words, were
placed in internal ROM. Since there were no modifications to the instruction set of the host
processor, the R65F11 has no speed advantage over a conventional processor running
Forth from an external ROM. No external run time ROM is needed, however, with the
R65F11. From an etic point of view, the R65F11 has reduced memory requirements as
compared to a conventional processor running machine code, and has all the advantages of
the Forth Operating System with extensibility strongly supported. These are exactly the
characteristics required of a Forth engine. [4]

The F68K follows the same philosophy. All the inner interpreters of the original
language are included in the internal ROM of the part. As in the R65F11 the run time
kernel words are also included in ROM. Due to the higher efficiency of the 16-bit
architecture of the F68K and the expanded 4K bytes of ROM memory, the F68K has many
additional words included in the internal set. The micro monitor concept first implemented
in the R65F11 is expanded upon in the F68K to the point that it has become a respectable
outer interpreter. The Operating System functions are thereby greatly enhanced. Of course
both qualifying marks of a Forth engine, extensibility and reduced memory requirements,
are fully realized in the F68K.

Both the R65F11 and F68K use external development ROMs to complete the normal
set of Forth words found in the standard implementations of the languages. The R65F11 is

The F65F11 and F68K Single Chip Forth Computers 13

based on fig-Forth, while the F68K is expected to have two separate Development ROMs,
one for the 79 and one for the 83 Standard.

Case History: The R65F11

The R65F11 was the first single-chip computer Forth “engine.” The extensibility of
Forth makes it possible to categorize the R65F11 as a high level language “engine,” and the
effective nature of its Forth Operating System gives the R65F11 “usability” that exceeds the
current 1nterpretive Tiny BASIC chips.

The R65F11 was intended to be used as a dedicated controller which could be rapidly
programmed in a high level language. It was to be a versatile, complete system needing only
the addition of a user’s program in EEPROM and a small amount of “glue” to make a
useful target computer system. It was also intended that the combination of language,
Operating System and the chip itself would allow development of programs and systems
without the need for expensive development systems.

BANKEXECUTE BANKEEC! BANKC@ BANKC!
EEC! ? . .R

D. D.R #S #

SIGN #> <# SPACES
SEEK INIT DWRITE DREAD
SELECT DISK M/MOD */
*/MOD MO / /MOD

* M/ M= MAX
MIN DABS ABS D+-

+- S—>D COLD (NUMBER)
HOLD BLANKS ERASE FILL
QUERY EXPECT " —TRAILING
TYPE COUNT DECIMAL HEX
—-DUP SPACE PICK ROT

> < U< =

- 2- - 2+

1+ PAD C/L HLD
DPL IN CLD;WRM BASE
UR/W UPAD UC/L RO

SO TIB BL 4

3 2 1 0

C! ! C@ @
TOGGLE +1 BOUNDS 2DUP
DUP SWAP 2DROP DROP
OVER DNEGATE NEGATE D+

+ o< NOT 0=

R R> >R LEAVE
;S RP@ RP! SP!

SP@ XOR OR AND

U/ U= CMOVE CR
ITERMINAL KEY EMIT ENCLOSE
(FIND) DIGIT I (DO)
(+LOOP) (LOOP) 0BRANCH BRANCH
EXECUTE CLIT LIT

Listing 1. Included words of the R65F11 kernel [5]

14 The Journal of Forth Application and Research Volume 2 Number |

Language in ROM

In order to install the conventional Forth outer interpreter in the R65F11, the
dictionary would have to be inside the chip. Also, the dictionary control and searching words
would have to be included. A study of the problem showed that the outer interpreter called
about 80% of Forth when run. Putting the conventional outer interpreter inside with the
kernel was clearly out of the question. Only the kernel of Forth could be fit into its 3Kbytes
of internal ROM. The kernel was a selected list of words that included all the run time
functions and language primitives as shown in Listing 1. The words that could not be
included inside were put in an external development ROM.

The words included in the kernel are all the run time functions of the language. Putting
the compile time functions in the external Development ROM is a very workable solution.
The combination of 3K-bytes of internal ROM and 8K-bytes of external Development ROM
made for a very complete Forth implementation, with a full assembler and many other
extensions especially created to make programming dedicated applications easier.

The method of separating the dictionary heads from the code bodies of the internal
kernel words also gave rise to a feature unique to the Forth implementation on the R65F11.
It is possible to target compile (i.e., generate headerless code) a program and test the code
with the separated heads located in an entirely separate section of memory. Usually testing
target compiled code interactively is an unknown luxury. On the R65F11 it is as easy as
typing HHHH H/C, where HHHH is the hex address where the heads are to be placed, and
H/C is the word that initiates target compilation. [6]

The NEXT function in the R65F11 is basically the same as the one provided in the
fig-Forth Model as shown here in Listing 2. High level interrupts are provided for. This
slows the overall language down, but was considered a very desirable feature in a high level
language environment (i.e., if the user was so good at machine code why would he use a high
level language?).

NEXT BIT INTFLG
BVS INTRTN

NEXT! LDY # I
LDA (IP)Y
STA W+l
DEY
LDA (IP),Y
STA W
CLC
LDA IP
ADC # 2
STA 1P
BNE NEXT3
INC IP+]

NEXT3 JMP (W-1)

Listing 2.

The above NEXT takes 31 bytes and nominally 41 microseconds to execute.

The “Micro Monitor”

The desire to have some sort of interactive monitor inside the kernel still remained.
Without a command interpreter of some kind the chip could hardly be considered a stand-
alone system. The ability to autostart a user’s program in ROM certainly gave the flavor of

The F65F11 and F68K Single Chip Forth Computers 15

an operating system. Further, the ability to boot programs from disk if no such autostart
ROMs were found in the memory map, exceeded the capabilities of all other “systems on a
chip.” Yet, without the interpretive interaction of the outer interpreter the system just did not
“feel” like a Forth system.

There was very little room left for such an addition. Most interactive monitors require
at least 2 Kbytes of program to provide minimal features. All of the desired functions of a
useful monitor were available in the kernel. If only there were a way to access them
interactively the problem would be solved. This train of thought led to the inclusion of the
“micro monitor”, a small program that performs well as a small outer interpreter. (The
original concept for a stand-alone, minimal interpreter germinated during a talk given by
Owen Thomas. [7])

The way of handling the entry of words to be interpreted by the monitor without using
the dictionary is the key to the monitor. Instead of using the ASCII names of the word to be
executed, words are identified by their Code Field Addresses.

In order to distinguish between what is a word and what is a number, the “micro
monitor” requires that hexadecimal entries be preceded by either an “N”, meaning the entry
is a number, or a “W”, meaning it is a word to be executed. Even though the “micro
monitor” is limited to only one entry per line, it has the interactive feel of the full outer
interpreter. With the help of a look-up table detailing the CFA’s of any words to be
executed, an operator can fully exercise the power of the chip. All of the 133 words in the
kernel of the single-chip Forth computer can be selectively executed by command from the
system terminal using the “micro monitor”. The scheme used with this interpreter does not
require the dictionary portions of the language to function.

In the R65F11, the start-up portion of COLD is in the kernel. Neither ABORT nor
QUIT is in the kernel. (Remember, the words that they in turn call amount to 80% of the
language.) The code for the “micro monitor” is shown in Listing 3.

HEX
. MON (MICRO-MONITOR)
BEGIN (START A NEVER ENDING INTERPRETATION LOOP)
CR (MOVE TO NEW LINE)
> (OUTPUT A PROMPT, SAYING READY FOR INPUT)
HEX (ALL ENTRIES TAKEN IN HEXIDECIMAL)
QUERY (GET LINE OF INPUT FROM TERMINAL)
00 TIB @
(NUMBER) (PROCESS THE LINE TO GET NUMBER FROM LINE)
2DROP (THROW AWAY ERROR INFO)
TIB @ C@ (GET THE FIRST CHARACTER FROM THE LINE)
57 = (IS LETTER A “W™)
IF (IFIT IS, ITS NOT A NUMBER, BUT A WORD)
EXECUTE (EXECUTE IT IMMEDIATELY)
THEN (OTHERWISE THE NUMBER IS LEFT ON STACK)
AGAIN ; (FOR USE BY WORD NEXT TIME AROUND)

Listing 3.

To enter the “micro monitor” the CTRL-R key combination is typed after power is
applied and before a second reset is issued. The “micro monitor” prompts the operator with
a “>" at the beginning of a new line. If the operator enters an “N” (actually any key other

16 The Journal of Forth Application and Research Volume 2 Number 1

than a “W”) the characters following to the null are interpreted as a number to be placed on
the stack. If the first character is a “W”, the number following is taken to be an address. The
word at that address will be executed. After it finishes, control is passed back to the “micro
monitor” which goes once again around the interpretive loop. Listing 4 shows an example of
the system being exercised by the “micro monitor”. [2]

>NI1234 The number hex 1234 is entered
>WFEE4 1234 Stack is printed, FEE4 is CFA of .
>N0002 2 entered
>N0003 3 entered
>WF778 CFA of +
>WFEE4 5 Result is printed
> Ready for next entry
Listing 4.

R6500/11 Host

The R65F11is a ROM coded version of the R6500/ 11 single-chip microcomputer. This
microcomputer chip can be a complete stand-alone computer system. It has on board
processor, ROM, RAM, I/O components and special feature hardware. A unique feature of
the R6500/ 11 that made it suitable to host the Forth kernel and become the R65F11, was its
ability to maintain all of its microcomputer features and still address external memory.
Under software control the R6500/11 can select a 16 Kbyte external memory space. It is
difficult to say whether the R65F11 in final form should be classified as a microprocessor or
microcomputer. From an internal viewpoint, it has all the elements of a stand-alone
microcomputer including an internal mask ROM’d program. From an external view, it is a
microprocessor that runs high level Forth code. The issue is further confused by its ability to
boot programs from disk storage if an external user program cannot be found, which is a
common attribute of advanced microcomputers with disk operating systems.

Processor Features. The processor of the host R6500/11 is an 8-bit CPU based on the
proven 6502 architecture. The design is von Neumann in nature. Pipelining of instruction
execution gives speed advantages over other 8-bit processor designs. It compares well in
benchmark tests against other similar generation processors. It does not compare well
against the new generation 16-bit processors. However, it requires very little silicon by
comparison, which means that additional features can be added to the same chip (i.e., the
kernel of Forth in ROM and the stacks in RAM). The CPU portion of the R65F11 occupies
only 110 by 90 mils of silicon.

Register Set. Besides the Program Counter, there are no [6-bit registers in the R65F11’s
CPU. There are five 8-bit registers that are used for various functions in implementing the
virtual Forth machine. The Accumulator is used to perform mathematical and logical
functions. The Status Register is used to determine conditions for branches, etc. The Y
register is used for various general purpose functions within the machine coded routines of
the interpreters and primitives. Most notably the Y Register is used as part of an indirect
addressing mode instruction that allows zero page RAM bytes to be used as concatenated
16-bit registers, allowing functions such as NEXT to be performed efficiently. The machine’s
stack pointer, the S Register, is used as the Forth return stack pointer. It operates in zero
page, where the internal RAM of the R65F11 is located. The R65F11 has only one stack
pointer so the X Register is used with indexing to form a software controlled stack.
Although it would appear at first glance that this would considerably hinder the speed of
operation, it does not make a great deal of difference. A pull of a byte from the normal

The F65F11and F68K Single Chip Forth Computers 17

processor stack takes 4 machine cycles. A load using indexing from zero page takes 4 cycles
and an incrementation of the X Register another 2.

Instruction Set. The R6500/11 CPU is actually an enhanced version of the 6502, having four
new instruction types added. These are the Bit Set (SMB), Bit Clear (RMB), Branch on Bit
Set (BBS) and Branch on Bit Clear (BBC) instructions. Although these are useful instruc-
tions in a dedicated controller environment, they offered no advantage to the implementa-
tion of the Forth language and are not used in the Forth kernel.

Memory Features. The availability of both internal and external memory made the R65F11
possible. The sacrifice of two of the four available ports of the host R6500/11 micro-
computer gives a multiplexed address and data bus capable of addressing 16 Kbytes of
external memory. One TTL latch is required external to the part to capture the multiplexed
address data. Internally the R65F11 has both permanent and temporary memory storage.

ROM. Current versions of the R65F11 have only 3 Kbytes of internal ROM. The Forth
language, complete with dictionary and dictionary control words, requires about 8 Kbytes of
permanent storage. The kernel of Forth, however, requires under 2.5 Kbytes. The ROM of
the R65F11 contains the kernel and the RSC Forth Operating System, a total of 133 run
time words built in.

The dictionary names and linkages are not included with the ROM. They are not
needed at run time. The dictionary control words are of no use without a dictionary to
manipulate, so they were omitted likewise. The kernel is otherwise surprisingly complete. All
mathematical and logical operators, stack control, run time structures and even input/output
formatting words are included.

A few other special feature words were included that are beyond the normal scope of a
Forth kernel. They include a simple CASE statement handler, PROM programming support
words and bank switching words to compensate for the limited addressing space. A primitive
disk handler is also resident within the chip.

RAM. The R65F11 has 192 bytes of internal RAM. This is sufficient room to accommodate
30 levels of return stack storage, 50 levels of data stack entries and a number of system
variables. There was not enough room to justify trying to use the area for the terminal input
buffer or the user area, which are assigned an external address of hex 0300. Similarly, the
user dictionary would be too limited if attempted to be kept internally. It is therefore
assigned to be set externally at hex 0400 by default.

The internal RAM is used in a disk boot operation. The intention was to rely on as little
external circuitry as possible in order to be able to load an operating boot program. The first
128 bytes after the system variables in RAM are used for that purpose.

Input| Quiput Features. Having onboard input/output features is a requirement of a
microcomputer but not of a microprocessor. Thereby, the I/ O features do not contribute to
the R65F11’s credibility as a Forth engine. They are, however, extremely important for the
final applications the R65F11 was targeted for.

A fully duplex, advanced feature, hardward serial channel is provided on the R65F11.
Baud rates and bit patterns are programmable. Virtually any of the standard asynchronous
baud rates are attainable with proper crystal selection. The Operating System initializes it to
communicate at 1200 baud (assuming a 1 MHz crystal) with one start bit, seven data bits
and two stop bits with no parity.

Two eight-bit 1/ O ports are available to the user. They can be used individually as single
inputs or outputs, or in parallel, as a printer port for instance. Two of these parallel lines are
shared by the serial port. When the serial channel is in use the number of parallel lines
available for other uses is decreased.

18 The Journal of Forth Application and Research Volume 2 Number |

Special Fearures. The R65F11 has a number of other features that can only be labeled as
special features. Like the other 1/ O features, these special features are not an essential part of
the Forth engine portion of the R65F11 but do add considerably to the usability of the part.

Two 16-bit multi-mode counter/timers are provided on the R65F11. They can be used
for a number of important real world functions, such as pulse counting, pulse generation,
interval timing, as a source for periodic interrupts, etc.

Four edge sensitive lines, two positive and two negative, are implemented on port lines.
These are useful in data communications tasks.

One of the sidelights of the R65F11 being hosted on a single chip microcomputer is that
the ports used as the address and data bus can under program control be once again turned
into ports. This unique feature means the R65F11 can “manually” take control of all its bus
signal lines. It is this very feature that allows the R65F11 to program EPROM’s in circuit
with no external latches or special one shots.

Case Summary

At the time of the writing of this paper the R65F11 has been in production for only one
year, yet several companies are already in volume production with Forth microcomputer
based products. This is relatively unusual for a brand new processor. There are several board
level development systems available, that cost less than the CRT terminals used to “talk” to
them. They are being used for more product developments. This remarkably rapid design-in
record is testimonial to the power of the “Forth on a chip” concept.

Selection of the Second Generation

Although there are many single-chip computers on the market, selecting one to be the
second generation to the R65F11 was difficult. It was imperative to its success that the new
chip be a significant architectural advancement over its predecessor. The other single-chip
computers that were contemporaries of the R6500/11 would have all been down-featured
when compared to the R65F11.

The 68200 is the first single-chip computer since the R6500/11 was introduced that is
truly advanced enough to be considered as a Forth engine candidate. It has one of the most
comprehensive sets of features offered in a single-chip computer to date. The memory space
of the 68200 is program and data unified in structure. The 16-bit CPU has eight 16-bit data
registers and six 16-bit address registers as well as 16-bit Stack Pointer, Status Register and
Program Counter registers, and fast hardware multiply and divide instructions. Three 16-bit
counter/ timers are included as well as a full duplex serial channel. Onboard ROM in the
initial version will be 2K words (4Kbytes). RAM provided in that version will be 128 words
(256 bytes). Average instruction times are .5, 1 or 1.5 microseconds. Clearly this is a very
suitable candidate to be the next generation ROM-coded Forth single-chip engine. The
following benchmark figures were provided by Mostek. A complete benchmark is available
from that source that shows a more complete range of comparisons. The relative perform-
ance marks are consistent with these, however.

A Simple Comparison of Processors

SPEED (#sec) SPACE (bytes)
68200 8096 8051 68200 8096 8051
MOVE 0.5 1.0 1.0 2 3 2
JMP 1.2 2.0 2.0

2 2 2
ADD 0.5 1.0 3.0 2 3 3
TOTAL 2.2 4.0 6.0 6 8 7

The F65F11 and F68K Single Chip Forth Computers 19

Case History: The F68K

The 68200 development was started approximately three years ago when Mostek clearly
saw that the 68000 type architecture was superior to the then planned designs for other
microcontrollers. Realizing software costs are a great deal of the development cost of a
project, they decided to develop a high speed, high power processor/controller in single-chip
form that had advanced programmability features. When the emulators became available in
mid-1984, New Micros began preparing the ROM code for a targeted fall/ winter 1984 F68K
product introduction.

Language in ROM

The approach taken in the ROM code of the F68K closely follows that of the R65F11
philosophy. The headerless words of the Forth run time kernel are coded in internal ROM.
The higher memory efficiency of the 16-bit instruction set and the additional I Kbyte of
ROM available in the F68K (4K versus 3K) makes it possible to go beyond the functions of
the R65F11. The “critical mass” of required memory in the R65F11 was about 2.5 Kbytes.
After the basic run time functions of the language were in place in that amount of memory,
many other functions were added to the remaining .5 Kbytes. These included CASE state-
ments, bank switching, PROM programming, disk read and write primitives and the micro
monitor. The F68K uses the extra space to accommodate enhanced versions of all these
functions. Many of the primitives usually written in high level language are re-written in
machine code to enhance the system operating speed.

The F68K version of NEXT far outperforms that of the R65F11 as shown in listing 5.

MOVE (IP)+,W
MOVE (W)+,A0
IMPA (A0)

Listing 5.

This version of NEXT is three instructions and six bytes long. It executes in 3
microseconds and can be placed inline in the definition, rather than jumped to, for
additional time savings. It is almost 15 times faster than the NEXT of the R65F11.

As a comparison, if NEXT were micro-coded in the F68K, it would of course be faster.
The performance improvement is not earthshattering, however. Note that an indirect
threaded NEXT must make three memory references, one for the NEXT op code and two to
access the next word’s CFA. The normal machine code does the same memory references,
but uses three op codes. In other words the normal machine code does two extra memory
references. This is only one microsecond longer than the proposed micro-coded version.
Would the 33% speed improvement justify the added complexity of modifying the micro-
code? This is in the range of performance that could easily be achieved by using a slightly
faster crystal. The F68K approaches the limit of what could be expected of any Forth engine
having a similar memory access time.

68200 Host

The F68K is a ROM coded version of the 68200 single-chip microcomputer. Like the
R6500/ 11, this microcomputer chip can be a complete stand-alone computer system. It has
on board processor, ROM, RAM, I/ O components and special feature hardware. It also has
a special feature similar to that of te R6500/11 that makes it suitable to host the Forth
kernel, which is its ability to maintain all of its microcomputer features and still address
external memory. Under software control the 68200 can select a 16 Kbyte external memory
space.

20 The Journal of Forth Application and Research Volume 2 Number 1

The F68K is even more difficult to classify in final form as either a microprocessor or a
microcomputer. Like the R65F11, it has all the elements of a stand-alone microcomputer
including an internal mask ROM’d program. From an external view, it is a microprocessor
that runs high level Forth code. Unlike the R65F11, the F68K can actually be programmed
in high level language with no other chips required. All RAM pointers are directed to
internal memory on power up. A limited dictionary can be written internally with the
improved micro monitor program interactively.

Processor Features. The F68K CPU is designed as a 16-bit revision of the 68000. Although
it is actually a significantly different processor, the philosophy of 68000 design was closely
adhered to. It compares well in benchmark tests against all other 8- and 16-bit processors.
The post incrementing and pre-decrementing address modes appreciably improve the parts
performance. It has approximately the same number of registers as its namesake, although
they are half as long (16 as opposed to 32 bits).

The F68K has seventeen 16-bit registers in its CPU. There are eight 16-bit data registers
and six 16-bit address registers that are used for various functions in implementing the
virtual Forth machine. Two address registers are used for the Instruction Pointer and W.
Another address register is used to maintain the data stack. The machine’s stack pointer is
used as the Forth return stack pointer.

The availability of both internal and external memory made this Forth engine implemen-
tation possible. The sacrifice of 24 I/O lines of the 40 available in the host F68KT
microcomputer gives a multiplexed 16-bit address and data bus capable of addressing 16 or
64 (or no) Kbytes of external memory depending on the mode selected. Two TTL latches are
required external to the part to capture the multiplexed address data. Internally the F68K
has both permanent and temporary memory storage.

Current versions of the F68K have 4 Kbytes of internal ROM. The Forth language,
complete with dictionary and dictionary control words requires about 8 Kbytes of permanent
storage. The kernal of Forth, however, requires under 2.5 Kbytes. The ROM of the F68K
contains the kernel and the Forth Operating System.

The F68K has 256 bytes of internal RAM. This is sufficient room to accommodate 30
levels of return stack storage, 50 levels of data stack entries and a number of system
variables. Unlike the R65F11, this area is also used for the terminal input buffer and the user
area at start-up time, as determined by the operating system. Determination of a lack of a
useful external memory map by COLD will cause all pointers to be initialized to internal
RAM. Although crowded, there is enough RAM to be usable for interactive system
checkout and limited test word programming.

Input| Outpur Features. As was the case with the R65F11, the I O features of the F68K do
not contribute to its credibility as a Forth engine. They are, however, extremely important
for the final applications the chip was targeted for.

A fully duplex, advanced feature, hardware serial channel is provided on the F68K.
Baud rates and bit patterns are programmable. Virtually any of the standard asynchronous
baud rates are attainable with proper crystal selection. Asynchronous baud rates up to 375K
bps and synchronous rates up to 1.5Mbps are possible.

Two 8-bit I/ O ports are available to the user. They can be used individually as single
inputs or outputs, or in parallel, as a printer port for instance. Two of these parallel lines are
shared by the serial port. When the serial channel is in use the number of parallel lines
available for other uses is decreased.

Special Fearures. Like the R65F11, the F68K has a number of other features that can only
be labeled as special features. Like the other I/O features, these special features are not an
essential part of the Forth engine portion of the chip but do add considerably to the usability
of the part.

The F65F11 and F68K Single Chip Forth Computers 21

There are 16-bit multi-mode counter/timers provided on the F68K. They can be used
for a number of important real world functions, such as pulse counting, pulse generation,
interval timing, as a source for periodic interrupts, etc.

Four edge sensitive lines, two positive and two negative, are implemented on port lines.
These are useful in data communications tasks.

Because the F68K is a single-chip microcomputer it can use its ports as programmable
address and data busses. This means the F68K can “manually” take control of all its bus
signal lines, just as the R65FI1 did. It is this very feature that allows the EEPROM
programming in circuit with no extra external latches or special one shots, etc. Bevond the
capabilities of the R65F11, the F68K has bus arbitration circuitry built in with bus request
and bus grant signals that makes it a natural for multiple processor systems and DMA target
transfers. This is particularly attractive when it is remembered that the majority of time the
CPU will be accessing internal ROM, running internal Forth primitives, accessing the
external bus for data and CFA’s from high level language words’ parameter fields.

Conclusion

The R65F11 was the first commercially available single-chip Forth engine. The F68K
will soon join it as the next generation Forth engine. The special features of these parts make
them ideal for small, dedicated applications. Without having these features built into the
chip, external hardware would have to be added to make a system. If larger systems had to
be built, where would be the advantage of an engine over a conventional processor with the
language in ROM? (Remember the ill-fated Pascal engine.) In such situations, speed is the
primary, if not the only, advantage of an engine. By far the greatest number of applications
that need Forth are more features critical than time critical. Now the F68K with its advanced
16-bit architecture can run Forth code about as fast as the R65F11 executed its assembly
language. Would “Forth machine code” be even faster? By the size of effort required to start
a chip design from scratch to achieve micro-coded engine performance, the anticipated
advantages must be very significant to justify it. Certainly the F68K performance makes it an
excellent real time Forth engine.

References

[1]. Western Digital Product Handbook, “WD9000 Pascal Microprocessor Chip Set”.

[2]. Dumse, R.. “High Level Language in Single Chip Microcomputers”, MIDCON 8]
Professional Program Session, Record 25.

[3] Dumse, R., “New Programming Philosophy for Dedicated Applications”, ELECTRO 82
Professional Program Session, Record 25.

[4]. Dumse, R. and Smith, D., “High Level Language Solutions for Dedicated Applications”,
WESCON 82 Professional Program Session, Record 17B.

[5). RSC-FORTH User’s Manual, Document #29761n51, October 1983, Rockwell Inter-
national.

[6]. Dumse, R., “The Smallest Outer Interpreter”, Rochester FORTH Conference Pro-
ceedings, 1984,

[7]. Thomas, O. and Amantneek, K., “Basis of FORTH”, 1982 FORTH Modification
Laboratory Proceedings.

Manuscript received May 1984.

Mr. Dumse graduated from the University of North Iowa in 1975 with a B.A. in
Physics. He headed development of the Rockwell R65FI11 and is interested in dedicated
computer sysiems and microprocessor technology. As president of New Micros, Inc., he
developed a board level version of the Rockwell chip, the “100 Squared”, and is currently
involved in the development of the F68K.

