Review

A Review of RISC and Forth Machine Literature

Lawrence P. Forsley
Laboratory for Laser Energetics
University of Rochester

Recently considerable attention has been given to the development of a Reduced Instruc-
tion Set Computer, or RISC, which may alleviate many of the design problems and
instruction execution bottlenecks associated with modern computers. Forth may be a
member of the RISC class of machines. This paper examines current RISC and Forth
machine literature, draws parallels, and notes differences among the efforts.

Reduced Instruction Set Computers

Computer architectures have increasingly tended toward direct hardware execution of
high level languages (HLL). For example, Intel’s iAPX-432 chip has been referred to as an
Ada computer. These computers, like the Digital Equipment Corporation (DEC) VAX, tend
to have fully orthogonal instruction sets and execute instruction sequences commonly
produced by Fortran and other compilers. Recently, this trend towards more complicated
computer architectures has been resisted by the development of the Reduced Instruction Set
Computer.

The term RISC was coined at the University of Berkeley [PATT82] for a computer chip
designed to efficiently implement procedural languages, such as C and Pascal [SEQU83]. In
particular, these designs were optimized to reduce the overhead of procedure calls, which
were estimated to be upwards of 409% of program execution time [PATT82]. One method
employed in the Berkeley RISC I and RISC II chips was an overlapped register window
which precluded the necessity of copying parameters during a procedure call.

Another aspect of the RISC architecture is simplicity. The Motorola 68000 is noted as
having approximately 68,000 transistors, and the 32-bit RISC I has 45,000; many of which
support a large (78) register file [PATT82] [WILK82]. A simplified architecture is necessary
to deal with the realities of VLSI design: limited power dissipation, limited intra- and inter-
chip communication and debugging difficulties. A RISC computer is also optimized towards
relatively few instructions which execute at high speed. Taken together, this results in a chip
where the simple control logic occupies only 6% of the chip area (as opposed to 50% in some
VLSI chips) and isn’t microcoded [PATTS82], thereby leaving room for the register file.
RISC I had approximately 31 instructions and limited addressing modes: index plus displace-
ment, and by hardwiring register 0 to all 0s, absolute and register indirect [SEQUS3].

Interestingly, simulated RISC I HLL benchmarks indicate speeds exceeding those of a
10 MHz Motorola 68000 [PATT82] and the DEC VAX 780 computer [LARU82] [PATTS2].
Several manufacturers, most notably Ridge Computers [FOLG83] and Pyramid, have since
developed commercial RISC-like computers.

Castan and Organick described an even simpler RISC machine for evaluating functional
programming languages [CAST82]. They envisage the development of a Direct Executable

The Journal of Forth Application and Research Volume 2, Number 1, 1984
85



86 The Journal of Forth Application and Research Volume 2 Number |

Language which is not linear, but is list structured, and is known as a “3L-model” where 3L
refers to Lisp Like Language. Both the 3L form and u3L processor for executing it are
similar to the tree structures and processor described by Vaughan and Smith in this Journal
issue. Although LISP was the first language implemented for a 3L processor, a Pascal
environment is under development.

The w3L processor is vertically microprogrammed and has only 10 instructions. It
contains a register stack with fewer than 256 32-bit wide entries, and all of its data paths are
32 bits wide. The authors expect to use a network of 3L processors sharing some common
memory to independently execute the 3L lists.

Forth

Although Forth currently has little parameter passing overhead, unlike most procedural
languages, the Forth interpreter follows the RISC premise of a simple hardware design and
provides for efficient execution of a HLL (Forth). However, the introduction of named
parameters on the stack and frames of local storage [GLAS83] would increase parameter
passing significantly. There have been no reports of native Forths running on conventional
RISCs for comparison, nor has a VLSI Forth chip appeared. Indeed, prior to this issue of
the Journal there have been very few papers on Forth hardware implementations.

In the mid-1970’s Lorenson, of the European Southern Observatory, published a
technical note describing a microcoded version of Forth for the Hewlett Packard 21MX
computer [LORE77]. Rust presented a 16-bit bit-slice implementation, supported by a Zilog
Z-80 in an S-100 evironment, at the 1981 Rochester Forth Standards Conference [RUSTS81].
Winkel described another bit-slice implementation in Forth Dimensions [WINK81]. More
recently, Wada and Kaneda, from Kobe University in Kobe, Japan, published 4 papers on a
bit-slice implementation similar to Rust’s.

Their first two papers describe the machine’s internals [WADAS2a] and its performance
[WADARB82b]. The machine has a hardware 4K x 16 bit return stack and dual 8K x 16 bit
parameter stacks for simultaneous access to TOS and TOS-1. The machine uses the Z-80 to
manage the dictionary and execute the Forth text interpreter. Two additional papers by
these authors discuss the execution of Forth and Pascal code [KANES83] and microcoding of
the Pascal P machine interpreter [WADAS3]. They report that Forth executes twice as fast
as Pascal on their machine [KANES3], and that the Forth is over 100 times faster than a
2 MHz Z-80 running polyForth and about 50 times faster than a DEC LSI-11 running
polyForth [WADARg2b]. Their machine had a variable clock cycle of either 175 or 350 nsec.

Not surprisingly, most of the Forth machines published in the literature to date have
been based upon Advanced Micro Devices bit-slice technology. The bit-slice approach offers
a simplified building block approach to architecture and reasonably fast execution. However,
it is likely that the bit-slice Forth machines are more complex than necessary, reflecting the
use of general purpose commercial bit-slice devices. Much of the interest in a VLSI version
of Forth stems from process control and telecommunications applications where costs
preclude using a bit-slice version. Unfortunately a bit-slice Forth design will be significantly
different from a VI.SI design.

It is interesting to note that most of the conclusions drawn by Patterson, Castan and
others have been from RISC simulators, as very few RISC devices had been built by 1983.
With the increasing interest in a VLSI Forth, it would be reasonable to apply the same RISC
simulation techniques to Forth, which would provide more realistic performance expecta-
tions than have previously been available. However, we need to study the static (e.g. memory
utilization) and dynamic (word interpretation) execution of Forth first, which will require the
development of Forth code analyzers.



Review 87

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Inertial Fusion
under contract DE-AC08-80DP40124 and by the Laser Fusion Feasibility Project at the
Laboratory for Laser Energetics which has the following sponsors: Empire State Electric
Energy Research Corporation, General Electric Company, New York State Energy Research
and Development Authority, Northeast Utilities Service Company, Southern California
Edison Company, The Standard Oil Company, and University of Rochester. Such support
does not imply endorsement of the content by any of the above parties. This work was also
supported by a research contract with Digital Equipment Corporation.

I would like to thank Kathleen Wilkenson for the computerized library searches, and
John Cassady for providing references to Wada’s first two papers.

Bibliography

[CAST82] Castan, M.; Organick, E. I., (Dept. of Computer Sci., Univ. of Utah, Salt Lake
City, UT) “Micro 3L: An HLL-RISC Processor for Parallel Execution of FP-
Language Programs”, Proceedings of the 9th Annual Symposium on Computer
Architecture, IEEE, New York, NY, 1982, pp. 239-247.

[FOLG83] Folger, D. and Basart, E., (Ridge Computers, Sunnyvale, CA) “Computer
Architectures — Designing for Speed”, Digest of Papers Spring COMPCON
83, Intellectual Leverage for the Information Society, IEEE, New York, NY
1983, pp. 25-31.

[GLAS83] Glass, H. (University of South Florida, Tampa, FL) “Towards a More
Writable Forth Syntax”, Proceedings of the 1983 Rochester Forth Applications
Conference, Institute for Applied Forth Research, Inc., Rochester, NY 1983,
pp. 125-132.

[KANER3] Kaneda, Yukio; Wada, Koichi; and Maekawa, Sadao, (Faculty of Engineering,
Kobe University, Kobe, Japan), “High-Speed Execution of Forth and Pascal
Programs on a High-Level Language Machine”, Wilson, D. R. and van
Spronsen, C. J. (eds), MICROCOMPUTERS: Developments in Industry,
Business and Education, Elsevier Science Publishers B. V., 1983, pp. 259-266.

[LARU8S2] Larus, J. R., (Dept. of Electrical Eng. and Computer Sci., Univ. of California,
Berkeley, CA) “A Comparison of Microcode, Assembly Code, and High-Level
Languages on the VAX-11 and RISC I”, Computer Archit. News 4, Vol. 10,
No. 5, Sept. 1982, pp. 10-15.

[LORE77] Lorenson, Svend, (European Southern Observatory), “A Microcoded Forth for
the HP21MX Computer”, ESO Technical Note, Garsching, West Germany,
1977.

[PATT82] Patterson, D. A. and Piepho, R. S., (Dept. of Electrical Eng. and Computer
Sci., Univ. of California, Berkeley, CA) “RISC Assessment: A High-Level
Language Experiment”, Proceedings of the 9th Annual Symposium on Com-
puter Architecture, IEEE, New York, NY, 1982, pp. 26-29.

[RUST81] Rust, T., (Dave Nutting Associates, Arlington Heights, Illinois), “ACTION
Processor FORTHRIGHT?”, Proceedings of the 1981 Rochester Forth Stan-
dards Conference, Institute for Applied Forth Research, Inc., Rochester, NY
1981, pp. 309-315.

[SEQU83] Sequin, C. H. and Patterson, D. A. (Computer Sci. Div., Univ. of California,
Berkeley, CA) “Design and Implementation of RISC I”, (Randell, B. and
Treleaven, P. C., editors), VLSI Architecture, 1982 Advanced Course on VLSI,
Prentice-Hall, Englewood Cliffs, NJ, 1983, pp. 276-298.



88

The Journal of Forth Application and Research Volume 2 Number 1

[WADAS82a]

[WADAS2b]

[WADAS3]

[WILK82]

Wada, Koichi; Kaneda, Yukio; and Maekawa, Sadao (Kobe University, Kobe,
Japan) “System Design and Hardware Structure of a Forth Machine System”,
Systems, Computers, Controls, Vol. 13, No. 2, Scripta, Silver Spring, MD,
1982, pp. 19-28. Translated from Denshi Tsushin Gakkai Ronbunshi, Vol. 54~
D, No. 3, March 1982, pp. 338-345.

Wada, Koichi; Kaneda, Yukio; and Maekawa, Sadao (Kobe University, Kobe,
Japan) “Software and System Evaluation of a Forth Machine System”, Sys-
tems, Computers, Controls, Vol. 13, No. 2, Scripta, Silver Spring, MD, 1982,
pp. 11-18. Translated from Denshi Tsushin Gakkai Ronbunshi, Vol. 54-D, No.
3, March 1982, pp. 346-353.

Wada, Koichi; Nakamatsuju, Toshiyuki; Kaneda, Yukio; and Maekawa, Sadao,
(Kobe University, Kobe, Japan) “Realization and Evaluation of Pascal Machine
on a High-Level Language-Oriented Stack Machine” Systems, Computers,
Controls, Vol. 14, No. 4, Scripta, Silver Spring, MD 1983, pp. 1-9. Translated
from Denshi Tsushin Gakkai Ronbunshi, Vol. 66-D, No. 4, pp. 369-376.
Wilkes, M. V. (Digital Equipment Corp., Hudson, MA) “Keynote Address,
The Processor Instruction Set”, Proceedings of the 15th Annual Workshop on
Microprogramming, 1EEE, New York, NY, 1982. pp. 3-5.



