Technical Notes

Separate Headers

Siem Korteweg
J. v. Stolberglaan 16
3931 KA Woudenberg
The Netherlands

Hans Nieuwenhuijzen
Sterrewacht “Sonnenborgh”
Zonnenburg 2
3512 NL Urrecht
The Netherlands

Abstract

In classical FORTH, code is generated linearly in memory, and consists of appropriate,
interwoven header and object code structures. To improve the memory usage characteristics of
this classical dictionary structure, we have separated the headers from their associated object code
to implement new header structures, supporting the removal of headers from memory when they
are no longer required.

Objectives and Strategy

The object code of most applications will contain headers corresponding to:

— routines replacing parts of code by an identifier for extra clarity.

— parts of code frequently used in other routines.

All the headers may be available for debugging, but once a module has been tested, only
the headers used for communication with other modules are needed. The other headers will
not be used in other modules; i.e., they have a ‘local’ meaning. Although they have only a
local meaning, they do have a global existence; i.e., they remain in memory until the code of
the module is removed from memory.

An algorithm has been published, see [SCHLS1], that supports the selective removal of
headers. As it only temporarily adjusts the dictionary, we have tried to find a structural and
natural mechanism to remove local headers from the object code when they are no longer
functional. See [JOOS81] and [BART77] for two mechanisms to generate and handle header-
less definitions (so called “orphans™). These orphans are used to save memory. We will
generalize and clarify these mechanisms, and remove and clarify their extra administration.

When the FORTH system being used produces relocatable code, it is easy to construct
an algorithm that performs the selective removal of local headers, although its execution
may take quite some time. We will consider the general case in which the FORTH system
produces non-relocatable code. In that case it is difficult to remove headers from compiled
code, as header and executable code structures are interwoven.

The Journal of Forth Application and Research Volume 2, Number 2, 1984
69

70 The Journal of Forth Application and Research Volume 2 Number 2

Implementation

By separating headers from their associated code, we avoid the necessity of relocating
object code when headers are removed from memory. In order to execute the object code of
a routine whose header is found, we have to add a ‘code pointer’ to the headers. As all the
headers can be placed adjacently in memory, we can remove the linkfield from the headers.
All the present operations upon the dictionary can be adapted very easily.

We can implement vocabularies as a row of headers and a link to another vocabulary
that is to be searched entirely when a header is not found in the first vocabulary. This imple-
mentation offers the fewest problems when vocabularies are to be removed in case one of the
vocabularies overcrowds. It implies that the vocabularies are fully relocatable, although it is
not equivalent to the usual vocabularies. This implies that we can implement a dictionary
structure supporting headers separated from their object code without overhead in memory
usage compared with usual dictionary structures.

In order to remove only the local headers from the dictionary, they should be recogniz-
able from the global headers. This means that space has to be allocated in the headers to
hold this property (one bit will suffice). Most headers of applications will be local, so we
implement this property analogously to the precedence property. All headers are local,
except when the routine GLOBAIL is used analogously to the routine IMMEDIATE .

Most of the time we delete the local headers from the dictionary after an entire
application is compiled. This implies a new routine DELETE.LOCALS to delete all the
local headers from the entire dictionary. This routine can use a linear scan of the row of
headers to erase the local headers by shifting the global headers.

As the headers and the object code are interwoven in usual dictionary structures, it is
easy to make a decompiler as long as headers with their identifier strings are available in the
code. The separation of headers and code makes it impossible to achieve an easy and direct
correspondence between a part of object code and its associated header. We can use a binary
search algorithm, using the historical order of the headers, but this will cause overhead. To
reduce this overhead, one could use an array containing index pointers to the headers giving
their historical order. However, the extra array would only be needed during decompilation,
and decompilation is not a frequently used feature.

Highlevel Implementation
(bit configuration in a count byte)
(bit 7: parity, always up)

(bit 6: precedence)

(bit 5: local/ global switch)

(bit 4: count)

(vovne)
(bit 0: count)

BASE HEX

0 VALUE BOH (begin of headers)
0 VALUE RUNNER (traverses the header space)
0 VALUE HOLD (pointer for DELETE.LOCALS)
0 VALUE TEMP.END (pointer for DELETE.LOCALS)
: ADVANCE 1+ 1 TRAVERSE 3 + ; (3: skip code pointer and last)

(character)
: ’DELETE C@ 20 AND ;

Notes: Separate Headers 71

: DELETE.LOCALS

BOH TO RUNNER (HOLD = 0 => no headers in “buffer”)
0 TO HOLD (HOLD <> 0 => headers from HOLD to)
BOH TO TEMP.END (RUNNER remain in dict.)

BEGIN RUNNER DP.H <>
WHILE HOLD
IF RUNNER ?DELETE

IF HOLD TEMP.END (source,dest)
RUNNER HOLD — (#bytes)
DUP +TO TEMP.END
CMOVE (erase local headers)
0 TO HOLD { no local headers in “buffer”)

THEN

ELSE RUNNER ?DELETE
IF RUNNER TO HOLD THEN
THEN
RUNNER ADVANCE TO RUNNER
REPEAT HOLD
IF HOLD TEMP.END RUNNER HOLD -
DUP +TO TEMP.END
CMOVE
THEN
TEMP.END TO DP.H ;

Test Results of DELETE.LOCALS

Number of headers Number of headers to be removed
in the dictionary 25 50 75 100
100 1-1 1-2 2-2 2-2
200 -2 2-4 3-5 4-7
300 1-3 3-6 4-8 6-11
400 2-4 3-8 5-12 6-15

Time in seconds
Table 1: The time needed to delete headers from the dictionary.

The recorded numbers are the times (in seconds) required to delete the denoted number
of local headers. The first number corresponds to the deletion of headers taken from some
source (resulting in a non uniform distribution of the identifiers, typical for most applica-
tions). The second number corresponds to the deletion of headers taken from the FYS
FORTH kernel (resulting in a more uniform distribution of the identifiers).

Conclusions

The removal of local headers from compiled code is supported by the new structure,
that is, it is possible to mark headers during compilation and to remove them from the
dictionary afterwards. The implementation of this selective removal costs some extra code
that should be considered, opposed to the possible savings. It offers the following advantages:

Saving of memory. When new code is generated all headers may be available for debugging.
Once a module has been tested, only the headers for communication with other modules are
needed. The other (local) headers can be deleted, thus allowing memory saving.

72 The Journal of Forth Application and Research Volume 2 Number 2

Long identifiers for clear documentation. It does not matter how long we make the
identifiers of the local headers in the source code because they can be deleted from the object
code (they do require extra mass-storage for the source code, but that is less important as the
amount of available mass-storage is less critical than the amount of available central
memory). So, we can choose long identifiers that are very clear to read and understand. This
means that the programs can become clearer to read and easier to debug and maintain.

Meta- or cross-compilers. The generated object code does not contain headers, and the
structure has built-in local headers. This makes it easy to write a meta- or cross-compiler
using this structure.

Headers on mass-storage. It is possible to save all headers on mass-storage for possible
later use.

Decompilation is not often used, but it could be implemented easily at the cost of some
extra code and memory overhead, the latter only during decompilation.

Acknowledgements

We wish to thank prof. dr. J. v. Leeuwen of the department of Computer Science of the
State University of Utrecht for giving one of us the opportunity to work a year at the
Observatory for the final phase of his study. We also wish to thank Rieks Joosten and Frans
Cornelis for the time they spent discussing and analyzing this concept and its use. We also
thank Hans v. Koppen for the use of his room and his Apple II computer.

To obtain a copy of the FYS FORTH manual of FYS FORTH 0.3 please contact:
Hans Nieuwenhuijzen, Sterrewacht “Sonneborgh”, Zonneburg 2, 3512 NL Utrecht, the
Netherlands.

References

[JOOS81] R. Joosten, FYS FORTH 0.2/0.3 Preliminary User Manual, State University
Utrecht, Utrecht the Netherlands, 1981

[SCHLS8I] K. Schleisiek, Separate Heads, FORTH Dimensions vol. 2 no. 5, 1981, PO Box
1105, San Carlos, Calif. 94070, pp 147-151.

[BART77] P. Bartholdi, Pseudo-vectors, EFUG-notes, June 1977.

[BART79] P. Bartholdi, The TO solution, FORTH Dimensions vol. 1 no. 4, 1979, PO Box
1105, San Carlos, Calif. 94070, pp 38-41.

Appendix: Deviations from the '79-STANDARD

The TO-concept uses the routines TO, +TO and FROM to give a ‘flag’ certain values.
Datastructures of type VALUE take appropriate actions by means of the routine EXECTO
depending on the value of this flag. CF. also [JOOS81] and [BART79].

+TO
+TO —> <>
Sets the action of the following VALUE type to add the integer on top of the stack to
the data contained in the VALUE.

I+
<INTEGER> I+ —> <INTEGER>+1>
Increments the number on top of the stack by 1.

Notes: Separate Headers 73

CMOVE

<SOURCE> <DEST> <#BYTES> CMOVE —> <>

Moves <#BYTES> bytes of memory from address <SOURCE>> through <SOURCE>+
<#BYTES>—1 to <DEST> through <DEST>+<#BYTES>~—1. The contents of these
bytes are preserved, even when overlapping.

EXECTO

TO

<+VALUE> <ADDR> EXECTO —(%val—flag = ~1)~> <>
<ADDR> EXECTO —(%val—flag= 0)~-> [<ADDR>]
<VALUE> <ADDR> EXECTO —(%val—flag= 1)-> <>
Acts on the address on top of the stack depending on the value of the %val—flag. The
flag is reset to zero afterwards. The following cases are implemented:
—1: the <+VALUE> is added to the contents of TADDR>,
0: the contents of the address replaces the address.
I: the <VALUE> is stored in <ADDR>.

TO —> <>
Sets the action of the following VALUE type to store the number on top of the stack in
it.

VALUE (IMMEDIATE)

<START.VALUE> VALUE #<VALUENAME># —> <>
Creates a value, initializing its contents to the number on top of the stack.

