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Abstract
The stack frame technique for dynamic local variable storage in Algol and descendant languages

may be adopted in Forth to expand the number of elements easily handJed directly on the stack,
reducing the need for variables. The required extensions to Forth can preserve the interactive quality
of Forth by using the parameter stack exclusively and by using a built-in set of local variable names
rather than an argument list compiler. Special techniques such as wildcard names, code pointer arrays,
and modifications of TO can reduce the overhead involved.

Forth provides a computation stack to store temporary data along with stack operators to
rearrange that data, but lacks a facility found in Algol and similar post-Fortran languages to allocate
variable storage on the stack. In these languages variables so allocated are local to a particular
procedure and referred to loosely as "local variables", even though that term encompasses statically
as well as dynamically allocated variables. When their storage is dynamically allocated such vari­
ables allow calling procedures recursively and recovering memory occupied when procedures are
completed. The allocation is accomplished by pushing on the stack a block of space, called a stack
frame, to hold all the variables for each recursive call to a procedure, and dropping the block when
returning from each call. Each variable is then represented in object code by an offset relative to the
frame boundary instead of by an absolute memory address. Data is fetched from and stored into the
framed memory the same as ordinary variables, in contrast to Forth's emphasis on rearranging the
order in which data is stored on the stack.

CPU makers have supported dynamic local variables with hardware registers specifically for
base relative addressing on the stack, as in the Burroughs mainframes and the Intel 8086 micro­
processor. In Forth, however, local variables have not been used much, at least outside of Europe;
as early as 1977 Paul Bartholdi at the Geneva Observatory introduced Forth extensions to employ
local variables on the stack[2]. They are rarely found in commercially available systems, and the
Forth Standard[4] not only does not include them, but prohibits indexing into the stacks of the Forth
pseudo-machine as well.

More recently, and with increasing frequency, a number of papers have appeared expressing
a need for local variables in Forth and describing a variety of Forth extensions to provide them
[3,4,10,11,12,15,16,17]. This paper develops further the particular technique of using a set oflocal
variable names built into the system and available for use in all procedures, as opposed to defining
new local variable names in every instance. Methods for implementing this technique are examined
from the standpoint of achieving general applicability, minimizing the costs incurred, and preserving
the interactive features of the Forth environment.

I An extension of remarks at the FORML conference in Taiwan, Republic of China, September, 1984.
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The Role ofLocal Variables in Forth
Because local variables have not gained wide acceptance among Forth users their role in

programming requires explanation. Here I am concerned only with their operational role in relation
to stack frames. In broadest terms that function is to allow more data to be handled on the stack,
rather than in other data structures, than are conveniently handled with Forth stack manipulations.
The stack can then replace the permanent storage of numerous scalar variables, and also replace
other more complex forms of dynamic storage such as a Pascal style heap, for arrays and other
lengthy structures, when the full complexity of such facilities is not needed. This paper concentrates
on storing relatively small sets of scalar values on the stack, leaving to future work analysis of larger
structures in detail. However, for the greatest potential use stack frame facilities should provide
room for large data structures, and some systems in use limit the size of stack frames, e.g. Duffs
"methods stack"[4].

Forth stack operations work well for certain types of calculations, for example, evaluating
algebraic expressions, where all the intermediate results can be pushed on the stack in precisely the
order in which they must later be pulled off. Stack operations become inconvenient when several
values must be preserved for repeated use in a calculation with both access and modification in a
random order. Code to handle even only four or five entries on the stack with DUP, SWAP, ROT etc.
while preserving their values becomes complex, placing a burden on the cpu to run it and a burden
on the programmer to figure out how to write it (beside which readability problems pale in
comparison).

Juggling several items on the stack usually involves shifting data onto the return stack with> R
or using PIC K and RO LL. >R is supposed to be used with caution, yet I find it necessary quite
frequently, a sign that other tools are needed. PIC Kand RO LLare such tools but are not impressive
in terms of efficiency. They both require a literal argument to be compiled, and R0 LL reads and
writes every element above the target item on the stack. >R works easily when only one value is
shifted, yet even that value becomes buried under the parameters of any DO loop subsequently
entered. Shifting more values makes a program resemble the Towers of Hanoi game (where disks
stacked on needles are rearranged only by moving them onto other needles ... ). Moreover, moving
data between stacks has no obvious relation to any algorithm being encoded.

Variables thus remain the most reasonable place to store more data than can fit comfortably on
the stack, but are oriented toward data accessed by many procedures, requiring longer term storage
and global definition. For small sets of temporary values for a single procedure they have
disadvantages; they require writing declarations, consume permanent storage both for the data and
their headers, and require extra code to move their values to and from the stack when used
recursively. Local variables flll the role of global variables in supporting a more random sequence
of access than do stack manipulations, while retaining the stack's function of dynamic storage
allocation.

Common Local Variable Names
The previous papers on this subject differ in their interpretation of the role local variables should

play in Forth. Glass[6] and LaQuey[ll], for example, express a desire to eliminate stack manipu­
lations entirely and to include a declaration of named arguments in Forth definitions, making them
more resemble procedures in other languages. Bartholdi[2] (at least in his early paper) and
Bowhill[3] go only so far as to define some Words, such as Bartholdi's PARO,PAR1 ,PAR2, ... which
are used in common by all procedures to access successive elements of a stack frame. This
emphasizes providing random access to the stack rather than the declaration of variable names.

The second approach strikes me as being most Forth-like, in the sense that a minimal solution
is sought that addresses the most important problem, thus conserving the available resources. The
immediate problem with DUP, SWAP, ROT etc. is not that they do not describe the data manipulated,
but that they cannot easily access more than three values. The use of common names also eliminates
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the storage for ordinary variables defined in great numbers, keeping their values on the stack and
eliminating their headers altogether, along with their associated declarations.

A need for descriptive variable names is still present but is lessened, at least in my opinion, by
the resemblance of much progranuning to mathematics. In mathematics it is common to use the same
familiar symbols such as x,y,z or i,j,k in different contexts; creating unique names everywhere can
actually be a burden. Common, reused symbols can be kept short, which contributes to readability
in its own way. Fully descriptive names are difficult to achieve, because there is always some context
which must be learned before even supposedly descriptive names can be understood.

Declaring unique names everywhere has disadvantages of its own. To reduce the storage
required by many variables Glass[6] and others use systems for making the headers exist only at
compile time, and even only within a single definition. The compiler handling the declarations in
these systems adds to the size of the Forth system. Making the variable names available only at
compile time departs from the open, flexible, and interactive quality of Forth, due in part from being
able to access whatever you want whenever you want. Moreover, my objective here is not to replace
Forth's stack operators, which have been found useful for many applications, but merely to
supplement them where they are inconvenient for particular problems.

Storage For Local Variables
Local variables can be stored on the parameter stack, the return stack, or a third stack created

just for locals, and designs have been presented using all three [2,3,4,8,15]. Using the return stack
(as in [15]) is incompatible with the interactive interpreter mode that is central to the Forth
environment, where the return stack is needed to control execution of the interpreter. Like> Rand
R>, return stack frames can be used only within colon definitions, which then cannot be tested
stepwise or broken into smaller pieces, at least not without some special debugging system[l5].
Some parameters, such as those of a DO loop, can reasonably be kept on the return stack because
the associated code must be compiled to define branch destinations, but the more Forth's facilities
depend on the return stack the more Forth becomes just another compiled language.

Some systems[2,8] have stored values on the parameter stack but have also involved the return
stack for frame control information. One control item is the pointer to the base of the previous stack
frame, which must be saved when a new frame is created, to allow a return into the old frame.
Another item may be an execution address for a Word which will close a stack frame automatically
upon exit from a definition, seeking to make creation and removal of a frame an inherent part of
colon definitions. Burdening definitions this way adds even more inflexibility in addition to
weakening the interpreter.

A third stack for locals (as in [3] and [4]) preserves Forth's interactive quality but appears to
be less efficient than storing locals on the parameter stack. First, when argument data passed on the
stack are to be framed for repeated use, they must be moved to the other stack, instead of just leaving
them on the stack where they are first generated. Second, the storage for the other stack must be
managed as part of the memory map, adding code to the system. If there are going to be large arrays
on the other stack, space must be divided between that stack and the parameter stack. Pointers to
a separate local stack must be initialized and managed in conjunction with system aborts and so on.
The parameter stack, by contrast, is already taken care of in the system.

These inefficiencies of a third stack apply to the return stack as welL They may also relate to
the design of hardware implementations of Forth. The return stack is normally relatively small and
accessed only from the top, in contrast to the parameter stack which can potentially hold long lists
of values even when only the top two or three are used at a time. The return stack is therefore an
excellent candidate for a completely hardware or on-chip implementation, and one with minimal data
paths, making it useless for stack frames. The parameter stack already requires a complex form even
when in hardware and may allow for overflow into separate memory, and is thus a more likely
candidate for hardware stack frame support.
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Of course, in some cases moving parameters off the stack can allow a routine to run faster as,
for example, when parameters are used repeatedly to generate a long list of elements built on the
parameter stack to be returned as results. Getting the parameters out from under the results at the
start eliminates having to copy the whole list over the parameters at the end. The more usual situation
is for a routine to take more data on the stack as arguments than it returns as results, as long as there
are so many arguments and temporary parameters that a stack frame is required to handle them in
the first place. Many procedures, after all, do not return any results, or when returning lengthy
results do so by storing them into a data structure off the stack. Without more evidence on the
balance of arguments and results the cost of using more than the existing parameter stack seems
unjustified; ordinary variables can always be used in the special cases where the parameter stack is
inconvenient.

A Parameter Stack Frame System
The most obvious way to create stack frames is just to mark the current position of the

parameter stack top with a base pointer (denoted BP) whenever base relative addressing is desired.
To allow nesting of frames the value of the base pointer must be saved whenever it changes, and the
most obvious place to save it is on the parameter stack at the place marked. Figure I illustrates this
for a Word taking three arguments on the stack when called and creating a stack frame to handle
them as variables, along with two additional local values. As the Word is executed Argl,Arg2,Arg3
are on top of the stack with the stack pointer at position (a). Creating the stack frame pushes BP on
the stack at (d) and copies the stack pointer into BP. Processing within the Word pushes and drops
additional elements above the variables, leaving the stack pointer at indeterminate position (b) while
the frame is open.

Figure 1. A Parameter-Stack Frame

(c) Arg3
Arg2

(a) Argl
(d) BP

Varl
Var2

(b)

(3rd on stack before creating frame)
(2nd on stack before creating frame)
(top stack element before creating frame)
(saved value of base pointer)
(first value pushed after framing)
(second value pushed after framing)
(more values pushed after framing)

<-- P-3
<-- P-2
<-- P-l
<-- BP
<-- PI
<-- P2
<-- P3,4, ...

The stack frame defined in Figure 1 has no explicit top or bottom; with appropriate code any
element pushed before or after allocating the frame is accessible via base-relative addressing. The
range from Arg3 to Var2 is only implicit in how the elements are used, just as there are no explicit
argument lists in Forth generally. Yet the simple model of stack frames just described is new;
previous systems [2,8] save BP on the return stack and use BP to mark an explicit bottom of the
frame. Saving BP in the frame itself does have an effect, which is a distinction between arguments
to a Word and temporary variables created within the Word. The working variables above BP can
be redefined during calculation, including adding more variables, while the argument list is fixed,
at least in size, and is unlikely to be reused for different data while the frame is open. This restriction
and the fact that offsets from BP are negative for arguments, while positive for additional variables,
seem to me to be very minor effects compared to the effects on system control of using the return
stack.
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Frame Handling Words
For some Words to allocate and deallocate the stack frames described above S [ and] S are

suggested, pronounced "frame" and "unframe", and used in the form" ... S[ ... m n ] S" with literals
m,n explained below. Because the return stack is not affected such expressions may appear outside
as well as inside colon definitions, can appear repeatedly inside such definitions, and can be factored,
opening a frame in one definition and closing it in another. Though the symbols S [ and ] S, like @

and I, have to be memorized, they are short and suggestive of "opening" and "closing". Their
hieroglyphic quality can be used to alert the reader that a low level system operation is meant, and
to avoid confusion with descriptive names in an application program, such as one about video or
photographic frames. As fundamental data handling tools, these Words should be defined in machine
code. BP should be a processor register where possible, to maximize the speed of base-relative
addressing to access frame elements. Indeed, without adequate processor support for base-relative
addressing, direct addressing of static variables will be much faster than either dynamic variables
or conventional stack operations when those are complex.

S[ simply pushes and sets BP. ] S restores BP but in addition removes framed data from the
stack and replaces them with a selected number of elements at the top of the stack to be left as
results. ] S is derived from a similar syntax "m ARG S... n RESU LTS" introduced earlier by Jekel[8] .
Argument m is the number of initial arguments, or elements below BP, to be dropped, and n is the
number of results to be pushed. In the type of stack frame used here m and n are not needed until
closing the frame and are thus both arguments of ] S. The results to be left are taken from the top
of the stack (under m,n) and copied to the point m cells deeper than BP in the frame, while first
restoring BP so as not to destroy its saved value. In Figure I, returning one result would copy the
value at point (b) to point (c) and make (c) the top of stack. All stack elements above BP are
automatically dropped without knowing their count. While ] S does a lot of work it does it all in one
step, compared to managing the stack one piece at a time with numerous stack operations. It may
be worthwhile to have special variants of ] S which build in specific values of m and n, for example
when m or n is zero.

One more Word that would be useful in opening a frame is one to allocate space by adjusting
the stack pointer. The phrase n LOCA LS is descriptive of this, allocating space for a number oflocal
variables. For speed, the values on the stack should not be initialized; just decrement the stack
pointer 2*n. LOCALS complements another Word I have found necessary in Forth, DROPS, to drop
large blocks from the stack; the two functions could actually be combined.

Accessing Frame Elements
Bartholdi's Words PARD, PAR1, PAR2 were mentioned above as terms to access values on the

stack, but Bowhill[3] has defined a different system of names based on operator symbols, including
@1, '1, @2, 12, etc .. Both these nomenclatures were introduced with different stack frame systems
than the one described here but can be adopted with new definitions. All these names share an
important trait; they return the value of the designated cell instead of its address, in contrast to
ordinary Forth variables. This accomplishes two objectives. First, it increases efficiency by
eliminating @ and I references from code. Second, it is necessary with some processors such as the
Intel 8086, where a separate 64K address space can be assigned to the stack; addresses within this
space cannot be operated on by the ordinary @ and ! functions.

With Bartholdi's names returning values, a prefix operator, TO, which he defined in another
paper[l], is needed to store into parameters[9]. The expressions TO PAR; and +TO PAR; may
represent storing into and incrementing parameter;. TO is a general purpose operator independent
of data type, e.g. it can also store into a double width parameter 2PAR;. The TO construct has not
been universally adopted, even for variables. It may be avoided with the alternative nomenclature
introduced by S.A. Bowhill[3].
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In Bowhill's approach operator names such as @ ! +! are converted into parameter references
by appending a cell index suffix, as in @1 @2 etc. indicating the usual operation but on the specified
frame element. These names are short and reveal what operation is done. Their hieroglyphic quality
avoids confusion with any application variable names which also happen to have suffixes, and may
alert the reader that a fundamental or built-in facility is meant. Their pronunciation could be as
simple as "fetch one" for @1 , with the full meaning clear from the context. Their only problem may
be a difficulty in thinking of operator symbols as representing values, giving an unnatural feel to the
code. One could always add a prefix P to overcome this, if you did not mind the extra length.
Eliminating the split between TO and its following object, these operator based Words are easier to
implement with code giving the fastest execution, based on the discussion of TO below.

An important point in defining a set of built-in local variable names is the need for names for
more than one data type. To make full use of common parameters the system should provide double
width along with single width. Incrementing should also be provided along with fetch and store. As
an initial working set, I suggest names be given to the eight cells above and below the BP mark in
the stack frame. PAR1, PAR2, ... can be made a little more convenient by shortening to P1, P2, etc.
In Bowhill's nomenclature the operators 2@ 2! +! and D+! all need associated parameter names
for frame offsets from -8 to +8. That means ninety-six Words to be added to the Forth dictionary;
assuming somewhat optimistically sixteen bytes per Word, at least 1.5 K bytes of memory would
be required unless some special techniques were employed.

Wildcard Names
With so many parameter names to be added to the Forth dictionary much space would be saved

if only the root name existed in the dictionary, with the numeric suffixes interpreted separately. It
is really essential for readability, however, that the suffixes be written as part of the names, not
separated by a space, as would be required for the nonnal Forth interpreter to separate the parts of
the names. The confusing blanks can be eliminated by expanding the string matching function used
when searching the dictionary to include wildcard matching as used in Utrecht and described by
Joosten[9] .

The details are dependent on the particular Forth system, but essentially names are flagged in
the dictionary to indicate they take indeterminate, or wildcard suffixes. The search routine finds a
match when the initial characters of a search string match, regardless of suffix characters past the
length of the dictionary entry. The Words found must then be immediate and process the suffix
themselves at compile time. For Bowhill's names the operators @ ! +! etc. would appear in the
dictionary twice, in their existing versions and in a second wildcard version which represent stack
frame elements. The regular versions must appear first in the search order, so that when no suffix
is written the regular versions are found instead of the wildcards. Similarly any names like @X or
! Y defined in the application will not be confused with the parameter names.

Code Pointer Arrays
There is a range of alternatives for what wildcard parameter references will compile, with

different combinations of execution speed, compiled code size, and kernel support code size. The
compiled code must execute quickly if local variables are to be generally useful; machine code must
be used throughout and techniques to reduce the size of code should be carefully considered. In the
earliest system Bartholdi compiled every reference as an in-line literal, i.e. as an execution address
of machine code, followed by the frame offset for a parameter. The two cells comprising this in­
line literal could be reduced to one cell if a unique execution address were used for each parameter.
Normally unique execution addresses would involve entire dictionary entries for each parameter,
but a method exists where only a code pointer for each parameter, addressing a single code segment
shared by all the parameters, is required.
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Referring to Figure 2, headerless code pointers may be arranged in an array forming a map of
the stack frame around the BP point, with the offset within the array being the same as the offset
of the parameter from BP. At run time the common code segment can compute the offset by
subtracting the fixed base of the array in memory from the pseudo-machine register ''W", set by the
address interpreter to the address of the current code pointer in the array when executing that
compiled address. When computing the offset is especially difficult, however, as on eight-bit
processors, the fastest execution requires a separate code segment for each pointer, with the offsets
imbedded in the code as immediate machine instruction operands[3] .

Figure 2. A Code Field Array

Dictionary entry for compiling

Name field: wildcard, immediate
Code field: ptr. -----------~~ Compile Time Code: extract suffix;

get addr. in array;
compile or execute.

Run Time
Code Field Array

Run Time Code:
compute offset for
base-relative addressing;
read or write.

P2 ptr. ----{

PI ptr. ----t----

empty cell

frame offset

P-l ptr. -------\

P-3 ptr.

P-2 ptr.

P3 ptr. -----{

Execution Addr. ---'------..- Pi ptr.
(in register W)

Using TO with Local Variables
The original version of TO[l] sets a flag interpreted at run time by the Word compiled after TO,

for selecting among fetching, storing, or incrementing. In that case only two arrays of code pointers
described above are needed, one for single and one for double width parameters. The different
operations on each parameter type would be executed by branches within the common code segment
for each data type, addressed by all the elements in the array for each type. Execution would branch,
according to the value of the flag, to separate routines for fetching, storing, or incrementing the
parameter, after computing the offset. The kernel overhead for this version of TO is small but it adds
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run time work for testing and clearing the flag, and takes up space in the application by compiling
TO. Other, more efficient, versions of TO have therefore been sought[13,14].

Some improvement in TO is obtained by using multiple code pointers in each Word, one for
fetching, one for storing, one for incrementing, and so on. TO and +TO must then be "state-smart",
with code to both compile and execute the operation for use in the compiling or interpreting system
state. When compiling, TO and +TO select which execution address to compile for the Word
following in the source text. Executing compiled code is then faster since no TO ! or @ is executed
at run time. Compiled code is also shorter because TO itself is not compiled. Dictionary headers,
however, are lengthened by the extra code pointers. A single use of the extra pointer makes up for
this extra length by saving the space otherwise used to compile TO or +TO etc.

Only fetching and storing, though, can be certain to be used with a variable, so the extra code
pointers, for incrementing and other functions, are just wasted space. One way to reduce that space
is to define only one extra function, one which returns the parameter field address; other functions
can then take the form of ordinary post-fix operators taking an address on the stack. Even this
address function, however, still might not be used. A more serious impact of multiple code fields
occurs when using the code pointer arrays introduced above; an entire array is required for each of
the code fields. I would therefore propose a new, hybrid version of TO. Variables or other Words
usable with TO should have exactly two code pointers, one for fetching and one for storing; for all
other functions such as +TO, compile an in-line literal, i.e. an operator followed by data. For
ordinary variables the data would be the parameter field address, and for stack frame elements the
data would be the frame offset.

The operators to be compiled by +TO etc. will be different for each data type, even though
compiled by the same Word. A compact way to tabulate the different operators compiled is to use
the code pointer already needed to define run time action, to also perform a compile time function.
As in Figure 3, the code segment addressed by the first code pointer may be preceded by a table of
additional execution addresses. This table is accessed at compile time by prefix operators such as
TO, through the first code pointer addressing the end of the table. In the table are addresses for

Figure 3. Structure of Value Words

Code Pointer Table

code ptr. -------'l.~ Compile time code

Dictionary Entry code ptr. -------Jl.~ Compile time code

Name field +TO code ptr. -----'l..~ +TO Compile time code

1st Code field

2nd Code Field

--------'l.~ Run time code to fetch value

------'II..~ Code to store value

Parameter Field: data value

Compiled by +TO

execution address -------'l..~ Code Field -----i..~ Code to increment:

in-line data =value address fetch in-line data;
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compile time routines unique to the data type, which in turn will compile associated run time
operators followed by data; the data will be computed differently for each type. The table exists only
once for all instances of a data type rather than burdening every header with duplicates of this
information. The work needed to access the table is done only at compile time.

When applied to a local variable, wildcard name, the storing and fetching code segments above
are modified to become immediate, compile time routines instead of the actual run time segments.
TO therefore must test not only the system state but also whether the following Word is immediate,
and execute any compiling procedure included in its definition. These compile time procedures
interpret the numeric suffix and compile the corresponding element in the arrays of run time code
pointers described above. Separate arrays are needed for fetching and storing, for each data type.
With double and single width local variables covering the plus and minus eight cell range around
BP, four arrays are needed occupying one hundred thirty-six bytes.

The discussion of the hybrid version of TO above has focused on compiled code. There is an
additional overhead in this approach avoided by the original simple flag based method, which is code
to execute the indicated operations when the system is interpreting. The execution addresses
compiled by +TO and other special functions cannot be simply passed to EXECUTE, because they
look for in-line literal data. Rather than include entire variants of such in-line operators for inter­
preter mode execution, it may be easier always to compile the operators and then execute what was
compiled if the system is interpreting, simultaneously restoring the dictionary pointer. This technique
is applicable to almost anything in Forth, but can cause problems when applied to large expressions
like entire definitions. Its use with one Word at a time, however, should be straightforward.
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