
Should VARIABLE be an
Immediate State-sensitive Word?

Steven M. Lewis
Department of Bioengineering

University ofSouthern California
Los Angeles, CA 90089

Abstract
We present an alternative to the word VAR I AS LE. In the absence of special modifiers, the word

returns the contents. Previous use of modifiers allow the word to store or otherwise modify its
contents. Unlike previous implementations the word is immediate and modifiers act at compile time
allowing run time performance equivalent or superior to that seen with @and !. The extension of this
concept to arrays is also presented.

Introduction
Forth, despite the clarity with which it handles many concepts, suffers from the clumsiness with

which VARIABLEs are handled. The expression which in most languages would be written
C =A + B, in FORTH is A @ B @ + C !. The latter is cryptic, requires additional keystrokes and
is generally clumsier. To correct this deficiency a number of solutions have been proposed.

Bartholdi (1,2) proposed the TO concept, reacting to a suggestion by Charles Moore. He
recognized the truism that most VARI ABLEs are fetched much more often than they are used for
other operations. He thus argued that a fetch should be the default action of a VAR I AB LE and other
operations should require special treatment. His proposal was that a flag be maintained. The word
TO would set the flag true. VARIABLEs would test and clear the flag. If the flag was false, the
operation would be a fetch. If true, a store. Thus the example above would be written A B + TO C
a considerable improvement in clarity.

The TO concept, as originally stated, suffers in that a severe penalty is imposed at run time,
since VARIABLEs must test the state of the flag at each call. Rosen (3,5) proposed instead of TO,
that FORTH words should have multiple code field addresses. This concept has been expanded by
Schleisiek (7). VARI ABLEs would thus compile a different CFA depending on the state of the
TOFLAG, compiling words equivalent to DOCON (the operative portion of CONSTANT in many
systems), DOVAR or an equivalent storage word. This solved the problem of speed at the expense
of some fairly radical changes in the interpreter and, because the multiple CFA's must be in code,
a large amount of system specificity. In addition, while adding 2 or 3 CFA's to VAR lAB LE will not
require much additional memory, the storage increases as the number of operations supported
increases.

This paper presents a solution which offers speed, flexibility and remains within the 83-Standard
(6). The solution is general enough to handle arrays, double precision and floating point variables.
It also allows the use of many of the automatic storage concepts used in the C language. VALU E is
used in place of the word VARI ABLE. It is made an immediate, state sensitive word which will
either execute or compile the code for an indicated operation. The word PO I NTER, which allows
the location operated on to be set at run time, has also been implemented.

The Journal of Forth Application and Research Volume 3, Number 1, 1985

53

54 The Journal of Forth Application and Research Volume 3 Number I

Basic Implementation
A multivalued flag TOFLAG is defined in screen O. A number of IMMEDIATE words are

defined which set TO FLAG to various values. Table I shows the actions that have been included in
this implementation. The C language contains a number of additional possibilities. It is necessary
to leave the default value of TOF LAG a fetch. For consistency, it is recommended that I should cause
a store and 2 cause the address of the indicated location to be left on the stack. Beyond that, it is only
necessary that an implementation be internally consistent. The word: and all VA LUE words (see
below) will set TOF LAG to O. Words which alter TOF LAG should be implemented directly before
the affected VA LUE. For example: =X will cause the top of the stack to be stored in the VA LUE X.

The VA LU E creates an immediate, state-sensitive word. When executing, a VALU E word will
perform the indicated action. When compiling, VALUE words will compile instructions to perform
the action. Thus, if the TOF LAG is 0, a VA LUE will compile the sequence (LI n ADDR @. (Version
1, the faster version 2 is discussed below). If the TO FLA G is I, the sequence (LI n ADD R ! will
be compiled. All testing of the flag is done at compile time leading to substantial improvements in
run time performance.

The VA LUE concept is readily adapted to arrays and other types of variables. The defining
words for version 1 of VA LUE assume only that the address of the object is on the stack. SCREEN
6 shows how easily this adapts to arrays. The use of VALUEO is as follows:

20 VALUEO MY_ARRAY creates the object MY_ARRAY
1 MY ARRAY fetches the contents of element I
21 3 : =MY ARRAY stores 21 in element 3 of MY ARRAY

Table I. Words which alter TOF LAG

Instruction
<default>

%=
+=
++

=
&=
- > P

(TOF LAG Value)
a
I
2
3
4
5
6
7
8
100

Action
@

put affected address on stack
+1

[a] - - > [a] + I
[a]--> [a]-l
[a] - - > data*[A]
NEG ATE data then + !
put address of object on stack (see text)
store stack into pointer (see text)

Implementation Details
When any VALUE class word executes, the DOES> portion leaves an address on the stack. In

execution mode, this address is used immediately. In compile mode, the literal instruction and the
address are compiled to place the address on the stack at run time. (TO_ ACTI ON) is a list of
operations to perform on the data. TO_ACT ION will fetch the indicated action and either execute
the word or compile it for action at run time. One exception is made for TO FLAG =2, to leave the
address of the element on the stack. Instead of compiling a NOOP, nothing is compiled since the
address is already on the stack.

The VALUE 0 code is similar to VALUE with two changes. First, the address placed on the
stack is the base address of the array. The word VAL_A DDR takes an index and computes the
address of the desired element. VA LUE () executes or compiles VA L_ADDR. One exceptional case

Should VARIABLE be an Immediate State-Sensitive Word? 55

is treated. When TOFLAG is 8 (&=) then the base address of the array is the desired return and
VAL_ADO R is not compiled. The code for the pointer takes the returned address and inserts a @
since the pointer holds the affected address. The case of TOFLAG being 100 (->P) indicating a store
to pointer is treated as an exception and handled with the word PTR!.

It is important to put the : =or another word which alters the TOF LAG immediately preceding
the ARRAY since intervening VALUE class words will intercept the flag. The instruction &= will
return an appropriate address for the entire array and is used when a word will operate on the array
as an object. The instruction %= will leave the address of the indicated element on the stack.

The set of instructions in Table I can, with suitable modifications, be applied to objects
addressing other than 2 byte words. The Word FVALUE has been included to demonstrate how : =
and %= could operate with floating point objects. Analogous operations to the remaining actions
could be defined easily. They have not been included because the code would be dependent on details
of the floating point implementation. The word assumes that F@ and F! work as expected and is
independent of whether there is a separate floating stack or not.

One problem with VA LUE and most other implementations of the TO concept is that, while it
is possible to write a FORTH word which operates on a specific VALU E or array, it is not possible
to write a word which operates on unspecified VALU Es without passing the address on the stack and
giving up the convenience of the VALUE notation. To fulfill this function, data types POINTER and
PO INTER () are defined. A POI NTER operates like VA LUE except that instead of containing the
affected data, the POI NTE R contains the address of the data. A special operation - >P causes an
address to be stored directly in the data. Thus the code:

5 VALUE V1
POINTER P1
%= V1 ->P P1 (store addr of V1 in P1)
++ P1 (effectively increments V1)

A more useful concept is POI NTE R(), a pointer to an array. Once a PO I NTE R() word is set
to point at an array, it behaves in a similar manner to the array itself.

10 VALUE() MY ARRAY (create a 10 element array
POINTER() P1 (create an array pointer)

INC ARRAY ->P P1 -1 P1 0 00 I ++ P1 LOOP ;
(increments all elements of the array on the stack)
(note element -1 of a VALUE() is the size)

&= MY ARRAY INC ARRAY (increment ALL elements of MY ARRAY)

In dealing with arrays, double precision variables and floating point data, there is usually enough
code involved with operating on the object to make the fetch and store portions a minor portion of
the entire cycle. For single VALUEs, there is a significant penalty in accessing a VALUE as compared
to a CON STAN T, because the CON STAN T will often use a COO E word to perform the fetch rather
than placing its address on the stack and then fetching. Such code words will be quite system
dependent. A general form may be obtained by looking at (LI n or 00 CON if the sources are
available. In version 2 of VALUE, fetch and store operations are implemented as code words. Screen
11 lists the timing on a 68000 system running the Laxen-Perry implementation of the 83-Standard
(No-Visible-Support software) under CPM-68k. Code words make the operation of VALUE run at
the same speed as accessing a CON STAN T and considerably faster than accessing a VARI ABLE.
Storing into a VALUE runs at speeds comparable with fetching and appreciably faster than the
VARI ABLE store operation.

56 The Journal of Forth Application and Research Volume 3 Number 1

Discussion
VALUE offers several advantages over alternative implementations of the TO concept. Because

all tests are done at compile time, there is no penalty at run time. If the CODE version is used, there
may actually be time savings at run time. Additionally, the word is within the 83-Standard and
requires no modification of existing FORTH words. It generates shorter code, generally easier to
read. The use ofa multivalued action flag allows VALUE words to be used in modes like increment,
decrement and + I .

Pointers constitute a particularly powerful extension on the TO concept. While there is a small
penalty at run time involved in the use of pointers, the convenience of writing general routines to
operate on arrays and still being able to use TO class operations will usually justify any run time
penalty.

Early papers (1) suggested that implementation of the TO concept would eliminate the need for
@ and!. This seems unlikely. More likely @ ! and I could be used more in lower level, systems
programming. Inexperienced users could enjoy the advantages of FORTH without the necessity of
dealing with these words.

&= is particularly useful. It is frequently necessary to pass an array to a subroutine. Using I

seems clumsy. Depending on the structure of the array, the address of the Oth element mayor may
not be appropriate. &= offers a way for all arrays to return a uniform address. &= is also needed
to allow setting of pointers to arrays. If pointers are used extensively, for example, in routines where
vectors are being manipulated, it may be more useful to have an array return the base address as the
default and handle all accesses through pointers.

There are several difficulties and points to keep in mind. The current implementation assumes
a 16 bit stack and would require minor modification to work on 32 bit systems. If the interpreter
aborts between the time the TO FLAG is set and the time it is read and reset, TOF LAG will have an
erroneous value at the first reference. While : has been modified to prevent this from affecting
compiled code, there still may be errors at run time. If possible ERROR or some similar routine
should be modified to clear the TOF LAG as well. VA LLiE adds another state sensitive word to the
language. Users may find that the benefits gained by implementing the TO concept in this way offset
possible confusion caused by this addition.

VALUE is a powerful, portable concept that I find increasingly useful in my FORTH
programing. The flexibility of the approach encourages the programmer to add new functions to an
extremely powerful concept.

I thank Chris Home for his helpful comments and suggestions. This work supported in part by
HU07ll.

References
1) Bartholdi, Paul, ''The 'TO' solution", Forth Dimensions Vol. 1, No. 4:38-40, 1979.
2) Bartholdi, Paul, "'TO' solution continued ... " Forth Dimensions Vol. 1, No. 5:48, 1979.
3) Rosen, Evan, "QUAN and VECT - High Speed, Low Memory Consumption Structures",

FORML Conference Proceedings, 191-197, 1982.
4) Dowling, Tom, "The Quan Concept Expanded", Proceedings 1983 Rochester Forth Conference,

89-92, 1983.
5) Perkel, Marc, "The Integer Solution", Forth Dimensions Vol. 6, No. 2:18-19,1984.
6) Forth-83 Standard, Forth Standards Team, 1984.
7) K. Schleisiek, "Multiple Code Field Data Types and Prefix Operators", Journal of Forth

Application and Research, Vol. 1, No. 2:55-64, 1983.

Manuscript Received December 1984.

Should VARIABLE be an Immediate State-Sensitive Word? 57

: CLRTO [COMPILEJ : ; IMMEDIATE (make sure TOFLAG cLear

1 for actions
%= 2 TOFLAG IMMEDIATE
++ 4 TOFLAG IMMEDIATE
*= 6 TOFLAG IMMEDIATE
&= 8 TOFLAG ; IMMEDIATE

speciaL code for POINTERS)

\ wiLL be flag for vaLue operation

\ because we do this a LotI •. ,CLRTO 0 TOFLAG

words to set TOFLAG see tabLe
:= 1 TOFLAG IMMEDIATE
+= 3 TOFLAG IMMEDIATE

5 TOFLAG IMMEDIATE
-= 7 TOFLAG IMMEDIATE
->P 100TOFLAG IMMEDIATE

Scr # 0 VALUE1.BLK
o \ VALUE AN IMPLEMENTATION OF THE TO CONCEPT
1
2 VARIABLE TOFLAG
3
4
5
6 \
7
8
9

10
11
12
13
14
15

TEST TO (n--n make sure n ok for CASE
DUP-0< OVER MAX TO > OR
IF ABORT" ILLEGAL TO VALUE" THEN

not 8
not 100

\ maximum defined operations

testing the most common cases
(<>--f T if fLag = 0)
(<>--f T if fLag = 1)
(<>--f T if fLag = 2)

@ 8 = NOT «>--f T if fLag
@ 100 = NOT; «>--f T if flag

for convenience in
T00 TOFLAG @ 0= ;
T01 TOFLAG @ 1 =
T02 TOFLAG @ 2 =
NOT T08 TOFLAG
NOT-T0100 TOFLAG

Scr#1 VALUE1.BLK
o \ TESTS FOR RANGE AND VALUE
1
2 8 CONSTANT MAX TO
3
4
5
6
7
8 \
9

10
11
12
13
14
15

make a state sensitive word to handLe setting pointers
PTR! (executing N,Addr--<>, compi Ling <>--<>)

STATE @ IF COMPILE! ELSE! THEN
CLRTO ;

\ [addrJ=[addrJ-n same as -!

\ [addrJ=[addrJ*data

\ note a good word for code

\ another good word for code+ I •. ,

1 SWAP +! ;

-1 SWAPaddr--<>

addr--<>

(--)

(++)

(-=) (data,addr--<»
SWAP NEGATE SWAP +!

(*=) (data,addr--<»
SWAP OVER @ * SWAP

Scr # 2 VALUE1.BLK
o \ A SERIES OF WORDS TO IMPLEMENT THE REQUIRED OPERATIONS
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

58 The Journal of Forth Application and Research Volume 3 Number 1

\ expect addr so action 2
\ wi LL do nothing
\ RESET TOFLAG

Addr--<> executing fLag dependent)
\ get fLag and test range
\ compute desired action
\ if executing do it, if compiLing
\ compi Le it

ELSE
TOFLAG @ 2 = NOT
IF , ELSE DROP THEN

THEN CLRTO ;

TO_ACTION (compiLing
TOFLAG @ TEST TO
2* &ACTION + @
STATE @ 0= IF

EXECUTE

Scr # 3 VALUE1.BLK
o \ TO ACTION the operative portion of VALUE
1 \ NOTE a CASE statement couLd be used for much of this
2 \ TO ACTION is the crude body of a CASE statement
3 CREATE (TO ACTION)] @ I NOOP +! (++) (--) (*=) (-=) NOOP [
4
5 I (TO_ACTION) >BODY CONSTANT &ACTION \ get address to use
6
7
8
9

10
11
12
13
14
15

POINTER (create <>--<> does> fLag dependent)
CREATE 0 , IMMEDIATE (<>--<> note must be set before use)
DOES>

VALUE (creat N--<> does> fLag dependent)
CREATE, IMMEDIATE (N--<> must be initiaLized
DOES>

STATE @ IF
COMPILE (LIT) , NOT T0100 IF COMPILE @

ELSE NOT T0100 IF @ THEN-THEN
NOT T0100 IF TO ACTION ELSE PTRI THEN;

Scr # 4
o \ VALUE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

VALUE1. BLK
version 1 and POINTER

STATE @ IF
COMPILE (LIT) ,

TO_ACTION ;
THEN \ put addr on stack

\ do operation

THEN

VAL ADDR INDEX,BASE--ADDR compute address of array eLem.)
SWAP 2* + 2 + ;

NOTE TOFLAG = 8 SAYS use base addr not indexed addr)
Note eLement -1 of VALLIE () is the array si ze)
VALUE() (create Size--<> does> fLag dependent)

CREATE DUP , 2* ALLOT IMMEDIATE (S N--<> NOTE IMMEDIATE)
DOES> (INDEX--?? depends on TOFLAG)

STATE @ IF
COMPILE (LIT), (put base addr on stack)
NOT T08 IF COMPILE VAL AD DR THEN- -

ELSE NOT T08 IF VAL AD DR THEN THEN
TO ACTION \ in either state addr is on stack

Scr # 5 VALUE1.BLK
o \ VALUE() A TO CONCEPT ARRAY
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Should VARIABLE be an Immediate State-Sensitive Word? 59

THEN
NOT T0100 IF TO ACTION ELSE PTR! THEN

NOT T0100 IF @
NOT-T08 IF VAL ADDR THEN
THEN

VALUE1.BLK
A POINTER TO AN ARRAY

ELSE

POINTERO (create <>--<> does> flag dependent)
CREATE 0 , IMMEDIATE (S <>--<> note must set before use)
DOES> (index--?? depends on toflag)

STATE @ IF
COMPILE (UT) ,

NOT T0100 IF COMPILE @
NOT T08 IF COMPILE VAL ADDR THEN

THEN

Scr # 6
o \ POINTER 0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

ADDR

\ handle @
\ default to address

\ cause addr to stack
ELSE \ COMPILE @
THEN THEN \ ! DEFAULT TO

\ always reset TOFLAG

I and %= cases

(UT) ,

COMPILE F@
COMPILE F!

VALUE1.BLK
handles only @,

FVALUE (create Float--<> does> flag dependent)
CREATE HERE F! 4 ALLOT IMMEDIATE \ store initial value
DOES>
TOFLAG @ DUP 2 > IF ABORT" ILLEGAL TOFLAG" THEN
STATE @0= IF

T00 IF F@ ELSE
T01 IFF! THEN THEN

ELSE
COMPILE
T00 IF
T01 IF

THEN CLRTO ;

Scr # 7
o \ FVALUE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

68000 CODE

instead of @)
\ 68000 and implementation specific
\ just needed to fix extension

NEXT C;

as DOCONSTANT)
\ on 68000 this is needed to prevent
\ the sign bit from extending

NEXT C;

(VALUE!) (does
IP)+ 07 MOVE
07 W LMOVE
SP)+ W) MOVE

(VALUE@) \ same
IP)+ 07 MOVE
07 W LMOVE
W) SP -) MOVE

Scr # 8 VALUE1.BLK
o \ REWRITING @ AND ! PORTIONS IN CODE
1
2 CODE
3
4
5
6
7 CODE
8
9

10
11
12
13
14
15

60 The Journal of Forth Application and Research Volume 3 Number 1

T02 IF DROP
ELSE , THEN

THEN CLRTO ;

\ executing has ADDR,ACTION
\ compiLing has ADDR,ACTION

SWAP \ we must compiLe addr first
T00 IF COMPILE (VALUE@) , DROP ELSE \ HANDLE @
T01 IF COMPILE (VALUE!) , DROP ELSE \ HANDLE!
COMPILE (LIT) \ other cases need the addr

\ on the stack
\ expect ADDR so action 2 is nothing

THEN THEN \ otherwise compiLe action
\ reset TOFLAG

ELSE

FAST TO ACTION \ wiLL compiLe (VALUE@) and (VALUE!)
TOFLAG @TEST TO \ get fLag and test range
2* &ACTION + @ \ compute desired action
STATE @0= IF

EXECUTE

Scr # 9 VALUE1.BLK
o \ FAST TO ACTION uses code words for @and !
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

VALUE
CREATE, IMMEDIATE (N--<> must be initiaLized)
DOES>

FAST_TO_ACTION; \ FAST TO ACTION does operation

Scr # 10 VALUE1.BLK
o \ VALUE VERSION 2. this version uses code words for @and
1
2
3
4
5
6
7 \ note FAST TO ACTION is state sensitive
8
9

10
11
12
13
14
15

\ test VALUE
\ test CONSTANT
\ test VARIABLE
a miLLion operations

37 sec version 1; 25 sec version 2; 37 sec variabLe)
!TEST VAL 1000 0 DO 1000 0 DO 1 := AVAL LOOP LOOP
!TEST VAR 1000 0 DO 1000 0 DO 1 AVAR I LOOP LOOP

(36 sec version 1; 25 sec version 2; 23 sec Constant
@TEST VAL 1000 0 DO 1000 0 DO AVAL DROP LOOP LOOP ;
@TEST=CON 1000 0 DO 1000 0 DO ACON DROP LOOP LOOP ;

Scr # 11 VALUE1.BLK
o \ TESTS AND EXAMPLES
1 0 VALUE AVAL
2 VARIABLE AVAR
3 0 CONSTANT ACON
4 \ in each case perform
5
6
7
8
9

10
11
12
13
14 (10 sec to subtract out irreLevant structure
15 EMPTY-LOOPS 1000 0 DO 1000 0 DO LOOP LOOP;

