
Readable and Efficient Parameter Access
Via Argument Records

Bill Stoddart
Department of Computer Science

Teeside Polytechnic
Middlesborough, Cleveland TSl 3BA

United Kingdom

Abstract
An Argument Record allows the input parameters and local variables of a high level Forth

definition to be accessed by name. Method selection prefixes such as to then become widely
applicable, allowing closer action object binding and reducing the proliferation of dictionary words
as new data types such as floating point numbers and matrices are introduced. Such enhancements
are of particular interest because they can be freely intermixed with classical Forth. Standard Forth
techniques for describing compiler extensions prove to be an ideal tool for implementing these
enhancements. A package that requires just 1200 bytes of dictionary space is sufficient to provide a
wide range of facilities, and produces efficient re-entrant code.

Introduction
This paper stems from work done in conjunction with Universal Machine Intelligence, Ltd. on

the use of 83 Standard Forth as a basis for a robotics control language. The envisaged applications
include operations on information expressing the robot's "world view" in terms of the position and
orientation of physical objects within its domain.

Classical Forth has a mixture of closely related strengths and weaknesses when tackling complex
problems of this nature. The pressure to produce short readable words often results in a superior
decomposition of a problem and a better interface between components than would result from
Pascal. On the other hand, some well understood operations, such as matrix multiplication, are quite
tricky to express in Forth, and when coded bear little resemblance to a text book description of the
underlying algorithm.

Recent published work on enhancing Forth's power of expression [DUFF 84], [KORT 84] has
described techniques that are of particular interest because they are of general applicability and may
be freely intermixed with classical Forth. These techniques include formalised parameter passing
with named arguments, and the use of a prefix syntax based on method selectors. [DUFF84] also
considers the inheritance of class characteristics, a topic that is not attempted here.

In this paper I hope to show that the classical techniques for extending the Forth compiler, and
the underlying architecture of the Forth system, are effective tools for providing a wide range of
general enhancements. With a package that generates just 1200 bytes of compiled code when
implemented on our 8086 Forth system, the features provided include: formalised parameter passing
with argument lists, call by reference and call by value, a prefix syntax that can hide "type" details
and which is applicable to both dictionary objects and named parameters, local variables, the
dynamic allocation of storage for local arrays, and named loop indexes.

The Journal of Forth Application and Research Volume 3, Number 1, 1985

61

62 The Journal of Forth Application and Research Volume 3 Number 1

The implementation techniques are such that when used appropriately, these enhancements will
generate more efficient solutions than classical Forth.

General Approach
We extend the Forth compiler in the usual manner using a combination of new defining words

and immediate words. The normal syntax of words separated by spaces is maintained throughout.
We use a naming convention by which immediate words defined in the package are named in lower
case, whilst normal Forth operators are in upper case.

First Example: An Argument List With CONST Parameters.
Consider the following definition of WIT HIN

: WITHIN (n1 n2 n3 -- fLag true if n2 <= n1 < n3)
{ canst n1 canst n2 canst n3 }

n1 n3 < n1 n2 < NOT AND

In this definition { commences the description of an "argument list". The defining word con s t is
used to create the temporary dictionary entries n1 n2 and n3. The "argument list" is terminated by
}, which will compile a run time operator to move three values from the stack into the "argument
record", at the same time saving overwritten values of the argument record on the return stack. The
"argument record" is an area of memory at a fixed offset from the user area pointer. See fig 1.

When n1 is encountered during compilation of the remainder of the definition, it compiles a
run time operator that will return its value to the stack. That is, it compiles a run time operator that
will return the value in the argument record cell associated with n1. This run time operator is
extremely efficient, consisting of only 6 bytes of machine code (including NEXT).

When compilation reaches;, the temporary words n1 n2 and n3 are removed from the
dictionary, and a run time operator is compiled that will restore the argument record to its condition
on entry to the definition, and perform the EX IT function.

The argument list is not used to return results! These are just left on the stack in the usual Forth
manner.

VAR Parameters and Access Method Selection
Consider the definition:

+ I (n addr -- add n to contents of addr)
{ const n var x }
vaL x n + to x

A parameter defined by va r differs from con s t in that it is associated with additional access
method selection prefixes vaL and to. These immediate operators set values in an action key, and
cause x to compile an appropriate postfix operator. In fact the above definition will generate exactly
the same code as:

: +!
{ canst n var x} x @ n + x I

NUM Parameters, A Local Variable Facility
A numparameter has the same access methods as a va r but is matched against a value on the

stack rather than an address. Assigning a value to a num parameter within a definition places that
value in the associated cell of the argument record. Such assignments are "local" to the definition

Readable and Efficient Parameter Access via Argument Records

Figure 1. Argument record setup for WITH I N.

Before:
parameter argument return

stack record stack

UP-> status
x aO top- > ret addr
n1 al
n2 a2

top- > n3 a3
a4
as
a6
a7

After:
parameter argument return

stack record stack

UP-> status
top-> x aO ret addr

a1 a7
a2 a6
a3 top- > as
a4
n1
n2
n3

63

Key:
n1 n2 n3:

aO .. a7

UP

status

stack parameters for WITH IN
contents of the argument record on entry

user area base pointer, the argument record for a task is immediately below
the user area

contents of user variable O. STATUS returns the address of this user
variable, and would be used to define ARG. (See CODE AND INTERRUPT
ROUTINE MANIPULATION OF ARGUMENT RECORDS).

in which they are made. A typical use is shown in the following definition of the greatest common
divisor function:

1ST-GCD (n1 n2 -- n3 n3 is the gcd of n1 and n2)
{ num x num y }

BEGIN val y WHILE
val x val y MOD (leave remainder on stack)

va l y to x
to Y (assign remainder to y

REPEAT val x

This is used as:
1624 1ST-GCD . 8 ok

64 The Journal of Forth Application and Research Volume 3 Number 1

Additional local variables may be declared that are purely internal to the definition. For example,
we would could define the gcd function as:

2ND-GCD (n1 n2 -- n3 functionaLLy equivaLent to 1ST-GCD)
{ num x num y 0 num remainder}
BEGIN vaL y WHILE

vaL x vaL y MOD to remainder
va L y to x
remainder to y

REPEAT vaL x

In this example, the 0 in the argument list is compiled as part of the definition in the normal way.
When the run time operator compiled by } moves stack values into the argument record, 0 becomes
the initial value of rem a i nde r. It follows that internal parameters such as rem a i nde r must
follow parameters that are initialised from stack values provided externally.

External Argument Lists
The argument lists described above are internal to a high level Forth definition. This causes the

definition to assign stack parameters to an argument record when executed. Where an argument list
is declared externally, a following definition can access the argument record, but does not assign
parameters to it. This allows the definition of words that operate on an argument record set up at
a higher level of nesting.

Consider the following example in which $CLOSE (addr1 addr2 n--flag) returns true
if character strings of length n at add r1 and add r 2 are found to match in at least 75 % of character
positions.

{ num aptr num bptr const n num m }
NEXT-CHARACTER 1 aptr +1 1 bptr +!

$CLOSE (addr1 addr2 n -- fLag)
DUP { const a$point const b$point const n num mismatched}
n 0 DO

a$point C@ b$point C@ = mismatched +1

NEXT-CHARACTER
LOOP n vaL mismatched / 3 >
NEXT - CHARACT ER manipulates the first two parameters in the argument record set up by

$CLOS E. The external argument list prior to NEXT - CHARACT ER must match the argument list in
$CLOS E in terms of the number of argument record cells allocated. The two lists do not need to
match in terms of parameter types. In this example the access methods $CLOSE requires for
a$po i nt and b$po i nt allow these to be cons t parameters, whereas the pointer incrementing
function performed in NEXT - CHAR accesses the same parameters (the same cells in the argument
record) as num parameters.

Code and Interrupt Routine Manipulation ofArgument Records
External argument lists allow the assembly of code that manipulates argument records. A macro

ARG, can be defined to assist this process, and is similar to the macro many Forth assemblers
provide to access USER variables. In code, the definition of NEXT-CHARACTER as described in the
previous section would then be:

{ num aptr num bptr const n num m }
CODE NEXT-CHARACTER

aptr ARG INC bptr ARG INC NEXT END-CODE

Use of the argument record in interrupt driven applications is also possible. For example, consider

Readable and Efficient Parameter Access via Argument Records 65

an interrupt driven version of TYPE that outputs to a serial port. TYPE could set up two argument
record cells as a pointer and a counter, initialise the transmitter, and execute STOP. The transmitter
would then issue its "transmitter buffer empty" interrupt, and an associated interrupt routine would
access the argument record, place the next character to be transmitted in the transmitter buffer, and
decrement the counter.

The interrupt routine would be invoked each time the transmitter buffer became empty. When
decrementing the counter produced a value of zero, the interrupt routine would disable the
transmitter and wake the associated task, which would continue execution at the word following
STOP.

Interactive Testing
Interactive testing is an essential part of Forth. It's not just a debugging tool. It's an effective

way of relating to the concepts being developed in the solution to a problem.
With the exception of named loop indexes, all the facilities described in this paper can be used

in both compilation and execution states.
The special argument list terminator} X can be used to set up an argument record in interpret

mode. For example:

20 30 { num x num y }X
vaL x vaL y + . 50 ok

When }X moves values to the argument record the overwritten values in the record are not saved
on the return stack, as this would interfere with the operation of the text interpreter.

Recursion
Recursion is supported in the usual way, by using RECURSE to compile a re-entry to the current

definition. A recursive definition of the factorial function would be:

NFACT (n1 -- n2 n2=n1!)
{ const n }
n
IF n 1- RECURSE n * ELSE 1 THEN

RECUR SE compiles the code field of the most recent dictionary entry. The parameter n is not
counted as a dictionary entry for this purpose. In implementation terms, { must save the information
that tells the system its latest definition, and} must restore this information.

Defining a New Parameter Type
The listings include definitions of the parameter definers con s t va r numd num f va r f num

and ; nde x. In this section we discuss the definition of the matrix parameter definer mat in some
detail.

Functional Specification
The defining word mat is used within an argument list in the form:

{ .•• mat m ..• }

to define a matrix parameter m.
When the corresponding argument record is set up, m will be matched against the address of

a 64 byte area of memory used to hold the elements of a 4 x 4 matrix with 32 bit real elements.
Subsequent use of m (without prefixes) within the scope of the argument list will return the

address of the matrix to the stack.

66 The Journal of Forth Application and Research Volume 3 Number 1

When used with prefixes the following are allowed:

tom (add r-) moves the 64 bytes at addr to m.

of m (i j - add r) returns the address of matrix element i j.

val 0 f m (i j - - f - x) returns the value of matrix element i j to the floating point stack.

too f m (; j - x - f -) stores the top element of the floating point stack as matrix element
i j.

Definition
Each cell in the argument record is supported by two run time operators which return its address

or its 16 bit contents respectively. These are the "cell address returner" and the "cell contents
returner".

In this case the argument cell will contain the address of a matrix. All matrix operations consist
of placing this matrix address on the stack with the "cell contents returner" and optionally selecting
a subsequent operation via method selection prefixes.

The subsequent operation will be an "access method" for the matrix. These access methods are
defined as normal Forth words, in code or high level Forth as required. They can be given
temporary headers because they will be accessed from an "action table" (see below). Corresponding
to the actions defined in the functional specification, we define access methods:

MCOPY addr1 addr2 --
Copy 64 bytes from addrl to addr2. The matrix action table (see below) will associate this method
with the prefix to.

MADDR-ELEMENT i j addr --
Return the address of element i j of the matrix at add r. The matrix action table will associate this
method with the prefix 0 f .

M@-ELEMENT i j addr -- ; -f- x
Return the value of element i j of the matrix at add r to the floating point stack. The matrix action
table will associate this method with the prefix combination val 0 f .

MI-ELEMENT i j addr -- ; x -f-
Store the top value from the floating point stack in element i j ofthe matrix at add r. The matrix
action table will associate this method with the prefix combination too f .

We now compile the action table that matches the allowable method selectors with the given
methods. Note that prefixes such as to and of set bits in a variable known as the ACTION-KEY.
The word ACTION returns the contents of this variable and re-initialises the variable to O. The value
-1 is used to terminate the table.

CREATE MATRIX-ACTIONS
to ACTION ,] MCOPY [
of ACTION ,] MADDR-ELEMENT
val of ACTION] M@-ELEMENT [
to of ACTION,] M!-ELEMENT [

-1 ,

Finally, we are ready to define mat as:

: mat MATRIX-ACTIONS CCR ARG ; IMMEDIATE

Here CCR returns the address of an area of memory that contains the headless code fragments that
are the cell content returners for each cell in the argument record. The CREATE .. DOES> action

Readable and Efficient Parameter Access via Argument Records 67

of mat is encapsulated within ARG. The CREATE phase constructs a dictionary entry (for msay)
in the "argument names area", which is a section of memory above the main dictionary. The
parameter field of this entry will contain its position in the argument list, and the addresses provided
by MATRIX-ACTIONS and CCR.

The DOES> phase executes immediately when the defined parameter m is subsequently
encountered within the definition. It determines the argument record cell associated with m and
compiles the associated cell content returner. It then checks whether any method selectors have
preceeded m, and if so matches the specified ACTI ON key against the action fields in the MA TRI X­
ACTIONS table, and compiles the associated run time operator.

The Scope ofan Argument List
The scope of an argument list is that part of the input stream during which its parameter names

remain in the dictionary. For an internal argument list, this is until the end of the definition
containing the argument list. For an external argument list, this is until the start of the next argument
list.

Use ofMethod Selectors With Other Defining Words
When a set of run time operators and an action table such as MAT RI X- ACT ION S has been

defined, it is a simple matter to apply the appropriate method selectors to a define an intelligent data
object in the dictionary.

Usage
Suppose we define:

: MATRIX CREATE 64 ALLOT

Then the phrase:

MATRIX-ACTIONS PREFIXED MATRIX AMAT

will define an intelligent matrix AMAT that is used with the same syntax as the parameter mat m.
For example we can say:

12.7 E 4 to 4 3 0 f AMA T

Use of AMAT without prefixes returns the base address of the matrix, giving compatability with a
plain MATRIX.

Implementation
PRE FI XED creates two new words. The first is a dumb headless matrix, equivalent to

I MATR I X AMAT. The second is an immediate word AMAT whose action is to compile or execute
the first word (depending on STAT E), then check for a specified access method and execute or
compile that. PREFIXED will work with any defining word. For example we can say:

16B-ACTIONS PREFIXED VARIABLE X
3 to Xetc.

Such intelligent data objects require an additional 7 bytes of dictionary space (on our DTC system)
compared with their dumb equivalents.

Dynamic Allocation of Space for Local Data Structures
The argument record provides a convenient area for holding 16 and 32 bit local variables. When

68 The Journal of Forth Application and Research Volume 3 Number I

LOOP ;

an equivalent facility is required for a larger amount of data, such as an array, we must assign this
in a different area.

We provide this facility with the words: i nt e rna L, £CAPTURE and £RE LEAS E. In the matrix
multiplication example described below, these are used as follows:

: M* { internaL mat m4 ... }
64 m4 £CAPTURE

64 m4 £RELEASE

i nt e rna Lcompiles a literal that is returned to the stack when M* is subsequently executed,
and then becomes the initial content of the argument record cell associated with the following
parameter m4. This value provides information from which the address of the argument record cell
associated with the parameter may be calculated.

£CAPTURE is used within the definition to compile a run time operator that requires stack
values n1 and n2, n1 being the number of bytes to be allocated, and n2 being the literal value
compiled by i nterna L. In the above example n1 =64, and the run time operator will allocate
64 bytes of memory space and place a pointer to the allocated area in the argument record cell
associated with m4.

£RELEA SE expects a stack value n, and releases n bytes of allocated memory.
In the present implementation, space is allocated by advancing the parameter stack pointer.

Parameters currently on the stack are hidden until the space is released, and a balanced stack is
required between £CAP TURE and £RELEA SE. This provides the most convenient option in terms
of memory management.

Named Loop Indexes

Description

Loop index parameters allow a named index to be associated with a particular loop. For
example:

TEST
{ index i }
5 (i'J wi th i DO i

TEST (i'J 1 2 3 4 ok

The prefix wit h is used to associate index i with the following loop. It compiles a run time
operator that will store a pointer to the top of the return stack in the argument record cell associated
with i. Use of i within the loop will return the index of the loop associated with i.

Loop indexes differ from all other parameters considered here in two ways.
Firstly, the default action of a loop index is not to return either the address of or the contents

of a cell in the argument record. In fact the use of an index without a prefix will compile a "cell
address returner" followed by another operator that evaluates the loop index. Compilation of the
second run time operator is arranged by induding the hidden prefix DE FAULT in the defining word
index.

Secondly, an index will ignore a preceeding to and leave the to flag in the ACTION-KEY set.
This allows the use of a phrase such as:

i j vaL of amatrix to j i of bmatrix

Thus to is allowed to ride over i j and apply to bmat r i x.

Readable and Efficient Parameter Access via Argument Records 69

Advantages

Named loop indexes are more convenient than the Forth words I J and K. For example, in the
matrix multiplication:

C=A* B

we can write the elements of C as

n

Cij = ~ Aik * Bkj (1)
k=l

To code this using the FORTH operators I J and K, we must use I as the inner loop index, rather
than K as suggested in (1). As a first step we might rewrite the formula as

n

Ckj = ~ Aki * Bij
i=1

This gets the i j and k of our formula a little closer to the I J and K of Forth, but a second
problem arises when we assign the product. By the time the assignment takes place we have left the
inner loop and all loop indexes have changed their names!

Matrix Multiplication Example
The word M* defined below performs a floating point multiplication of 4*4 matrices m1 and

m2, and places the result in matrix m3.
4*4 matrices are the most general tool available for the description of three dimensional space,

and are extensively used in the control of robot manipulators [PAUL8!].

: M* { mat m1 mat m2 mat m3 i nterna L mat m4
index i index index k }

64 m4 £CAPTURE
5 1 wit h i DO

5 1 wit h j DO F0.
5 1 wi th k DO

i k vaL of m1 k j vaL of m2 F* F+
lOOP to i j 0 f m4

LOOP
LOOP
m4 to m3

64 #RELEASE

The definition has been coded for the 8087 numeric coprocessor. The floating point operations
F* and F+ take their arguments from the floating point stack, and return results to the floating point
stack. F0. places zero on the floating point stack. An interesting feature of the definition is that the
same source code could apply to a system that held floating point values on the parameter stack. This
transparency does not occur because the 8087 is hidden from the programmer, but because of the
extreme simplicity of stack usage obtained with named parameters.

The results of the calculations are initially assigned to m4, and only copied to m3 when the
matrix multiplication is complete. This allows the destination m3 to be the same matrix as m1 or m2,
so that we can define operations such as:

MATSQUARE (m m*m to m)
DUP DUP M*

70 The Journal of Forth Application and Research Volume 3 Number I

The Advantages ofPrefix Syntax and Access Method Selection
Now that a fairly complete example has been described, we have the material to review the

reasons for including operaton prefixes in this package.

Reduced Number of Words
Although 4 new run time operators are defined to access a matrix, the only new word the user

requires to invoke them is the parameter defining word mat.

Action Object Binding and Data Type Hiding
Prefixed data objects select an access method for their data. This gives us a greater confidence

that the access method will be the appropriate one, and reduces the amount of source code
modification when an algorithm is recoded for a different data type.

As an example, if X is a 2VARIABLE a programmer might erroneously attempt to return its
contents with X @rather than X 2@.

If a prefix syntax is available, the programmer can request the value of X with the phrase val
X. This will be the phrase used whether X is a 16 bit integer, a 32 bit integer, a 32 bit real, a 64 bit
real, a complex number, or a data record describing an antique Chinese vase.

Data Structures in Extended Memory Space
In a system with a memory that extends beyond Forth's Standard 64k bytes, it becomes easy to

hide the difference between a data structure held in Forth's memory, and one held in extended
memory. The difference is in the access methods, and can be hidden behind the definition of defining
words. For example, if all matrices were held in extended memory rather than Forth memory, the
access methods MCOPY etc. would be specified differently, but from then onwards all source code
could be compatible with a system that held its matrices in the Forth memory space.

Efficiency of Compiled Code

Memory Requirements
Including an argument list in a definition generates an additional 4 bytes of compiled code. The

run time operator (S ETUP) which moves data into the argument record requires a cell count as a
I byte in line value (3 bytes total). The run time operator (RESTORE) which restores the argument
record and performs the EX IT function also requires 3 bytes. Two bytes are saved by having the
EX I T function performed by (RESTOR E).

To access a parameter without method selection prefixes requires 2 bytes of compiled code. To
access a parameter with method selection prefixes requires 4 bytes.

To add a new parameter type the overhead of an action table must be incurred, in addition to
the definition of the access methods themselves. However, this overhead is more than offset by using
headless words for the access methods. Once access methods and an action table are set up, they may
be used in combination with existing defining words to create intelligent data objects in the
dictionary. The additional overhead for intelligence is 7 bytes per object. This is the best place to
incur the overhead, because a dumb object which is only able to return its parameter field address
may be manipulated by reference from within compiled code, and this makes intelligent objects
something of a luxury.

Speed of Execution
Argument records cannot compete with Forth for simplicity of parameter passing, but once the

execution overhead associated with setting up the argument record has been paid, access to
parameters is very efficient. This is assured in the following ways:

Readable and Efficient Parameter Access via Argument Records 71

- by dedicating two separate run time operators to each cell in the argument record, (the cell
address returner and the cell contents returner);

- by the ability to write access methods in code;
- and by an ability to access the argument record from a code definition when optimising the

time critical section of a routine (as when re-coding an inner loop).

Further Developments
(1) A way should be found to indicate that an operator in an action table has the "immediate"
attribute. This would provide a facility that is already familiar through use of immediacy in Standard
Forth. An important application that can be forseen at present is the support of method selection
prefixes during target compilation. Named loop indexes could also be implemented more efficiently.

The normal method of flagging immediacy by setting a bit in the length byte of the words name
field is not available, since the action table operators are already compiled into the action table.

Instead we could define:

15 PREFIX IMMED

I MM E0 would be used to flag certain entries when defining an action table.
MA TCH would compare key values on the lower 15 bits only, and on finding a match would

inspect bit 15 of the action table key value, and return an immediate flag in addition to the operator's
cfa.
(2) Modified versions of DOES> and; CODE are required to allow argument lists to be used within
the CREATE phase of defining words.

Conclusions
With a package that produces 1200 bytes of compiled code it has been possible to add the following
enhancements to Forth:

- Argument lists and named parameters
- facilities equivalent to call by reference and call by value
-local variables, and the dynamic allocation of memory for local arrays, etc.
- named loop indexes
- a prefix syntax that invokes a method selection mechanism, and which can be used with both

argument list parameters and classical Forth defining words.

Tools are provided for extending these facilities by adding new prefixes and parameter types.
The new facilities integrate perfectly with classical Forth. Given the functional specification

(glossary entry) for a word, the word may be coded with the help of the facilities described or
without them. It will appear the same to the rest of the system. In addition the facilities allow fully
interactive debugging.

[DUFF84] and [KORT84] have argued convincingly that methods similar to those described
here enhance the readability and modifiability of algorithms coded in Forth, and in his introduction
to the "Enhancing Forth" issue of The Journal [V2.3], Lawrence Forsley writes: "It is an exercise
for the reader to determine whether these concepts enhance Forth or supercede it". In writing this
package, I have been surprised how effectively Forth can describe the enhancements and integrate
them into its repertoire. This has reinforced my feeling that Forth has an essentially correct
approach, and that formalised parameter passing and prefix syntax could rapidly be accepted as an
integral part of the language.

As we discover the best way to write these enhancements, we will learn about Forth itself. One
area this will cover is the optimisation and generalisation of words from which the enhancements
are built. Some of these will be of great general utility. For example, this package uses a word
DELETE (addr1 addr2--) to delete all dictionary entries between addr1 and addr2. This is

72 The Journal of Forth Application and Research Volume 3 Number 1

used when deleting parameter names from the dictionary at the end of a definition. It is also used
in other packages that support separate headers and temporary compilation aids.

The use of state smart words will be another area for debate, as will the manipulation of
dictionary entries for data objects that are implemented as immediate words that compile run time
operators. What do we mean by the "body" of such a word, for example?

References
[DUFF84] Charles Duff and Norman Iverson: "Forth Meets Smalltalk" Journal of Forth

Application and Research, Vol 2, No.3, 1984.

[KORT84] Siem Kortweg and Hans Nieuwenhuyzen: "Stack Usage and Parameter Passing"

Journal ofForth Application and Research. Vol 2, No.3, 1984.

[PAUL81] Richard P. Paul: Robot Manipulators, Mathematics Programming and Control, MIT

Press. 1981.

Manuscript Received June 1985.

Bill Stoddart received a BSc in Mathematics and an MSc in Statistics from Sheffield University,
u.K. He has worked as a Systems Engineer and Yoga teacher and is now a Senior Lecturer in the
Dept. of Computer Science at Teeside Polytechnic, Cleveland, U. K. He has implemented a multi­
tasking 83 Standard Forth which is used for teaching and project work in the Polytechnics Real Time
Laboratory.

Appendix A: Terminology
Access method. An operation used to access data. For example @ I and +! are access methods for
16 bit integer data.

Access method selection prefix. An immediate word such as to va 1 VI; thor 0 f which is used
before a named parameter or a prefixed data object to select the access method to be used.

Argument. A value which is passed as input to a Forth word via the stack, and which may be copied
to the argument record and accessed by name if an argument list is present.

Argument list. A source code description of stack arguments which gives each argument a temporary
name. When used within a high level definition, an argument list compiles a run time operator that
moves arguments from the stack into an argument record.

Argument record. An area of memory at a fixed offset from the user area pointer. A multi tasking
system has an argument record for each task.

Data object. Data plus the operations that access the data. Used in preference to "data structure" to
avoid the connotation of a typed template associated with the use of the term "data structure" in
Pascal. Nothing fancy is implied. A Forth constant is a data object within the terms of this definition.
On the other hand a data object could be something more complex, such as a relational data base.

Named argument. A temporary dictionary entry created during interpretation or compilation of an
argument list, and used to access an argument that has been copied to the argument record.

Parameter. Used synonymously with "argument".

Prefix. An abbreviated form of "access method selection prefix".

Readable and Efficient Parameter Access via Argument Records

Appendix B: System Description

73

8086 Code Level Features
The system has a direct threaded NEXT, and thus the code field of each definition contains native

code.
The following 8086 registers are dedicated to Forth:

SI Forth's threaded code instruction pointer
BX Forth's user area base pointer
SP Forth's parameter stack pointer
BP Forth's return stack pointer.

Indirection is indicated in the assembler by using @r, where r is an appropriate register name.
For example:

-4) BX@ PUSH

will push the contents of the location 4 bytes below the address held in BX.
The assembler instruction LODS which is used to access in line arguments for (SETUP) and

(RESTORE) is equivalent to:

SI@ AL MOV SI INC

The instruction CBWconverts a byte in AL to a word in AX.

Extensions to the 83 Standard
I Causes the following definition to be created with a separate head. See SNIP

<> n1 n2 -- fLag
True if nl not equal to 02.

BIT n1 -- n2
n2=2 n1, for example 3 BIT • 8 ok

DELETE addr1 addr2 --
Removes all dictionary entries whose link field addresses are between addr1 and addr2, where
addr1 is below addr2.

S0 -- addr
A user variable containing the base address of the parameter stack.

SNIP Removes all separate headers from the dictionary.

Floating Point Extensions
The system uses an 8087 co-processor and floating point operations generally take values from,

and return values to, the floating point stack. The notation -f- is used to show the pre and post
condition of the floating point stack, as in:

F@ addr -- ; -f- x

Fetches floating point value x from add r, and leaves x on the floating point stack.
The remaining floating point operations used are:

FI addr -- ; x -f- stores x at addr.
F* x1 x2 -f- x3 x3 = x1 * x2
F+ x1 x2 -f- x3 x3 = x1 + x2
Fill. -f- III

74 The Journal of Forth Application and Research Volume 3 Number I

VARIABLE ACTION-KEY

: NULL o ACTION-KEY NULL

ACTION ACTION-KEY @ NULL ;

PREFIX CREATE C, DOES>
C@ BIT ACTION-KEY @OR ACTION-KEY !

PREFIX to IMMEDIATE 1 PREFIX va L IMMEDIATE
PREFIX of IMMEDIATE 3 PREFIX DEFAULT
PREFIX with IMMEDIATE

SCR 16 WJS 20MAY 85)
o (ACTION PREFIX to of vaL with
1
2
3
4
5
6
7
8
9

10
11 0
12 2
13 4
14
15

SCR 17 WJS 13MAY85)
o (MATCH
1
2 : MATCH (addr1 key -- addr2 addr2 is execution addr or 0
3 SWAP OVER (key addr key)
4 IF
5 BEGIN (key addr) DUP @ -1 = ABORT" action?"
6 2DUP @ <> WHILE 4 +
7 REPEAT 2+ @ SWAP DROP
8 ELSE DROP THEN
9

10
11
12
13
14
15

8 CONSTANT AREC-SIZE I -16 CONSTANT AREC
VARIABLE DP I' I VARIABLE £ALLOCATED
VARIABLE AFLAG 0 AFLAG !

CHECK ABORT" arg List?"

ALLOCATE (n --)
£ALLOCATED @+
DUP 0 AREC-SIZE 1+
£ALLOCATED ! ;

PNA

WJS 20 MAY85)

CHECKWITHIN NOT

S0 @480 -

List support

S0 @580 -

SCR18
o (Argument
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Readable and Efficient Parameter Access via Argument Records

SCR 16
oWords defined with PREFIX set individual bits in ACTION-KEY.
1
2 ACTION returns the ACTION-KEY value, and re-initializes the
3 ACTION-KEY to 0.
4
5 For example: to of ACTION. 5 ok
6
7
8
9

10
11
12
13
14
15

SCR17
oMATCH is used in the DOES> phase of ARG and in the DOES> phase
1 of PRE FI XED, to select an access method. For examples of the
2 type of table searched by MATCH see 116-ACTIONS and
3 MATRIX-ACTIONS.
4
5 add r1 is the address of an action table (such as 116-ACTIONS).
6 key is an ACTION value.
7
8 If the ACTION value is 0, MATCH returns a value ofO. This is
9 used to indicate that no additional action is to be executed or

10 compiled. (See ARG and PREFIXED).
11
12 If the key value is not matched by any entry in the table, an
13 error is reported.
14
15 Otherwise the cfa of the required access method is returned.

SCR 18
o ARE C- SI ZE returns the number of cells in the argument record.
1
2 ARE C returns the offset of the argument record from the base of
3 the user area.
4
5 AFLAG is set by } (in compilation mode) and tested by ;
6
7 DP I I is used to manage memory allocation in the PNA.
8
9 £ALLOCATED holds a count of the arg record cells allocated.

10
11 PNA returns the limits of the parameter names area, which is
12 the area used to hold the temporary dictionary entries required
13 for named parameters defined in an argument list.
14
15 ALLO CAT E (n -) allocates n cells in the argument record.

75

76 The Journal of Forth Application and Research Volume 3 Number 1

NEXT
NEXT
NEXT
NEXT

BX@ PUSH
BX@ PUSH
BX@ PUSH
BX@ PUSH

WJS 11MAY85)
(code size)

returners) 6 C,
NEXT AREC 2 +)
NEXT AREC 6 +)
NEXT AREC 1fi') +)
NEXT AREC 14 +)

(ceLL content
) BX@ PUSH
) BX@ PUSH
) BX@ PUSH
) BX@ PUSH

4 +
8 +

12 +

CREATE CCR
AREC
AREC
AREC
AREC

SCR 19
o ASSEMBLER (Run time operators
1 CREATE CAR (ceLL address returners) 7 C,
2 AREC) BX@ DI LEA DI PUSH NEXT
3 AREC 2+) BX@ DI LEA DI PUSH NEXT
4 AREC 4 +) BX@ DI LEA DI PUSH NEXT
5 AREC 6 +) BX@ DI LEA 01 PUSH NEXT
6 AREC 8 +) BX@ DI LEA DI PUSH NEXT
7 AREC 10 +) BX@ DI LEA DI PUSH NEXT
8 AREC 12 +) BX@ 01 LEA 01 PUSH NEXT
9 AREC 14 +) BX@ 01 LEA DI PUSH NEXT

10
11
12
13
14
15

SCR2111
III (Run time operators WJS 15MAY85)
1
2 CODE (SETUP)
3 LOOS CBW AX CX MOV AREC) BX@ DI LEA
4 BEGIN DI@ AX MOV BP DEC BP DEC
5 AX BP@ MOV DI@ POP DI INC DI INC
6 LOOPZ UNTI L NEXT END-CODE
7
8 CODE (RESTORE)
9 LODS CBW AX CX MOV AX AX ADD AX 01 MOV

10 AREC) BXDI+@ 01 LEA SP BP XCHG
11 BEGIN 01 DEC 01 DEC DI@ POP LOOPZ UNTIL
12 SI POP SP BP XCHG NEXT END-CODE
13
14
15

} LAST 21 STAGE @
IF COMPILE (SETUP) £ALLOCATED @C, -1 AFLAG I THEN

IMMEDIATE

}X ?EXEC 2DROP £ALLOCATEO @2*
III DO STATUS AREC + I + I 2 +LOOP

{MK1

WJS 2111MAY85)
DELETE

£ALLOCATED @ C,

IMMEDIATE

IMMEDIATE

COMPILE (RESTORE)
EXIT THEN

[COMPILE] [

LAST 2@

AFLAG @
III AFLAG

COMPILE
SMUDGE

IF
ELSE
?CSP

SCR21
III (Opening and cLosing an argument List, new
1 I {MK1 0 £ALLOCATED! PNA OVER DP I I !
2
3 { {MK1
4
5
6
7
8
9

1III
11
12
13
14
15

Readable and Efficient Parameter Access via Argument Records

SCR19
o Each cell of an argument record has two associated run time
1 operators that return its address and its contents respectively.
2
3 The code for these headless operators is provided in two tables,
4 whose base addresses are returned by CAR and CCR. Each cell
5 address returner is 7 bytes in length, and each cell content
6 returner is 6 bytes. The arrangement given is specific to a DTC
7 system.
B
9 Compiling an access method for a named parameter consists of

10 compiling either the cell address returner or the cell contents
11 returner for the argument record cell associated with the
12 parameter, followed by an optional second operator as determined
13 by ACTION.
14
15

SCR20
o
1 (S ETUP) is the run time operator compiled by } to move stack
2 parameters into the argument record. As new values are moved
3 into the argument record, values that will be overwritten are
4 saved on the return stack.
5
6 (RESTORE) is compiled by ; ifan argument record is present in
7 the definition. It restores the contents of the argument record
B to their state on entry to the definition, and performs the EX IT
9 funct i on

If>
11
12
13
14
15

SCR21
o { marks the start of a new argument list by setting the number
1 of allocated cells to zero, resetting DPI I to the start of
2 the PNA, and deleting any parameter names currently in the
3 dictionary. LA ST is a 2 cell user variable giving the name and
4 code fields of the latest dictionary entry.
5
6 } closes an argument list, restoring LAST. In compile mode
7 (SETUP) is compiled, followed by an in line value giving the no.
B of allocated cells in the argument record. AFLAG is set to mark
9 the presence of an argument record in the definition.

10
11 } X closes an argument record and initialises it with stack
12 values. This is useful during interactive testing.
13
14 ; is redefined to test AFLAG and conditionally compile (RESTORE)
15 and re-initialise the argument record description.

77

78 The Journal of Forth Application and Research Volume 3 Number 1

ARG-INTERPRET (pfa)
DUP C@ 1+ NEGATE £ALLOCATED @+ (pfa ceLL-no)
OVER 1+ @ DUP C@ ROT * + 1+ SWAP (cfa1 pfa)
3 + @ ACTION MATCH (cfa1 cfa2) >R ACT R>
?DUP IF ACT THEN

ACT STATE @ IF , ELSE EXECUTE THEN

ARG
HERE DP" @ DP I DP "
ICREATE IMMEDIATE £ALLOCATED
HERE DP I I @ DP! DP I I

ARG-INTERPRET ARG DARG WJS 16MAY85)

@ C, 1 ALLOCATE "
DOES> ARG-INTERPRET

ARG1 ALLOCATE

SCR 22
o (ACT
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 DARG

WJS 20MAY 85)

?DUP

etc.

>IN !
R>

ACTION MATCH
usage foLLows

: BINARY 2 to BASEX ;

PREFIXED (addr --)
>R >IN @>R I EXECUTE R>
LAST 2+ @ CREATE IMMEDIATE
DOES> DUP >R @ACT R> 2+ @
IF ACT THEN; EXIT ExampLe

Suppose BASE is defined as: 40 USER BASE
We define BASEX as a prefixed version of the same user
variabLe with: 40 I16-ACTIONS PREFIXED USER BASEX

SCR 23
o (PREFIXED
1
2
3
4
5
6
7
8
9

10
11
12 We can then define:
13
14 A Limitation of this technique is that I BASEX >BODY wiLL not
15 return a pfa containing the same information as • BASE >BODY.

SCR 24
o (Some action tabLes WJS 18MAY85)
1
2 CREATE NO-PREFIXES -1 ,
3
4 CREATE I16-ACTIONS
5 to ACTION ,] [

6 va L ACTION ,] @ [-1 ,
7
8 CREATE I32-ACTIONS
9 to ACTION ,] 2! [

10 va L ACTION ,] 2@ [EXIT
11
12 CREATE R32-ACTIONS
13 to ACTION ,] F! [

14 va L ACTION ,] F@ [

15

Readable and Efficient Parameter Access via Argument Records

SCR 22
£) ARG is the base defining word for all named parameters within
1 an argument list. The CREA TE phase of ARG executes while a
2 parameter list is being scanned. A dictionary entry for the
3 parameter is built in the parameter names area, the number of
4 the cell allocated for the parameter is compiled, along with 2
5 additional values which are an action table address and the
6 address of either the CAR or CCR table.
7
8 The DOES> phase of ARG is executed when the parameter name is
9 subsequently encountered. This phase is state dependant. The

10 a rg record cell associated with the parameter is determined,
11 (this is not known until the a rg list is completed) and the
12 c.a.r or c.c.r for the cell either compiled or executed. The
13 action key value is then searched for in the action table of the
14 parameter, and the run time operator associated with the key
15 is either compiled or executed.

SCR 23
oThe CREA TE phase of PRE FI XED expects the address of an action
1 table to be on the stack. PRE FI XED must be followed in the
2 input stream by 2 words, say DDDD and CCCC. DDDD must be an
3 existing defining word (such as USE R in the source screen
4 example). CCCC is the name of the new dictionary entry.
5
6 A headless word of type DDDD is created along with an immediate
7 word CCCC. CCCC will compile or execute the headless operator
8 depending on STAT E, and will then attempt to match the key
9 provided by ACT ION against entries in the action table at add r.

10 If a key match is obtained, the second cfa is compiled or
11 executed depending on STATE.
12
13
14
15

SCR 24
oEach entry in an action table consists of a method selection key
1 followed by the execution address of the operation associated
2 with that key.
3
4 The action tables are used in the definition of named parameter
5 types such as const num var fnum. These and others are on the
6 following screen.
7
8 Action tables are also used in the definition of prefixed data
9 structures. See previous screen.

10
11
12
13
14
15

79

80 The Journal of Forth Application and Research Volume 3 Number 1

SCR 25
llJ (Some argument definers WJS 20 MAY85)
1
2 const NO-PREFIXES CCR ARG IMMEDIATE
3 num 116-ACTIONS CAR ARG IMMEDIATE
4 var 116-ACTIONS CCR ARG IMMEDIATE
5
6 dnum 132-ACTIONS CAR DARG IMMEDIATE
7
8 EXIT
9

10 fnum R32-ACTIONS CAR DARG IMMEDIATE
11 fvar R32-ACTIONS CCR ARG IMMEDIATE
12
13
14
15

IMMEDIATE

WJS 2llJMAY85)

£ALLOCATED @1- 2* C,

[COMPILE] LITERAL

) LODS CBW DI POP
BX DI ADD (arg rec ceLL addr to DI)

SP DI@ MOV NEXT END-CODE

I CODE (fCAPTUR) (n1 n2
AX DI SUB DI NEG

AX POP AX SP SUB

SCR 26
llJ (Dynamic memory allocation for 'internaL' data
1
2 CODE fRELEASE AX POP AX SP ADD NEXT END-CODE
3
4
5
6
7
8 : fCAPTURE COMPILE (£CAPTURE)
9 IMMEDIATE

10
11 i nterna L
12 fALLOCATED @ 2* AREC-
13
14
15

CREATE INDEX-ACTIONS
DEFAULT ACTION,] (GET-INDEX) [

with DEFAULT ACTION,] (SET-INDEX) [

AX DI@ MOV

WJS 20MAY85)
DI@ DI MOV DI@ AX MOV
NEXT END-CODE

-4) BP@ AX LEA

COMPILE 0
DUP >R NEGATE ACTION-KEY +!

R> ACTION-KEY I IMMEDIATE

DI POP

DI POP
AX PUSH

index INDEX-ACTIONS CAR ARG
DOES> ACTION-KEY @1 AND

DEFAULT ARG-INTERPRET

SCR27
llJ (Named Loop indexes
1 I CODE (GET-INDEX)
2 2) DI@ AX SUB
3
4 CODE (SET-INDEX)
5 NEXT END-CODE
6
7
8
9

10
11
12
13
14
15 SNIP

Readable and Efficient Parameter Access via Argument Records

SCR 25
oThese defining words are used to name parameters in an argument
1 list. The CREA TE •• DOE S> action is done within ARG for args
2 requiring 1 cell in the argument record, and within DARG for
3 arguments requiring 2 cells (32 bit local variables).
4
5 Before ARG or DARG is invoked, two addresses are placed on the
6 stack. These are the address of the action table to be
7 associated with the type of parameter being defined, and the
8 address of an area of memory that contains a set of headless run
9 time support routines for each cell in the arg rec. For these

10 examples the run time support routines return the cell addr or
11 the cell contents (see CAR and CCR). ARG will compile these
12 addresses into the parameter field of the named argument. (See
13 ARG).
14
15 For a deviation from this general pattern see index

SCR 26
o £RELEA SE will release n bytes of internally allocated space by
1 advancing the stack pointer.
2
3 £ CAP TUREcompiles (£ CAP TURE) and a following in line argument.
4
5 (£ CAP TURE) uses n2 and its I byte in line argument to determine
6 the address of a cell in the argument record. It allocates n
7 bytes of internal space by moving the stack pointer, and places
8 the address of the allocated area in the argument record cell.
9 The value n2 is generally the initial content of the cell, and

10 will have been calculated by the word i n t ern a L when the
11 argument list was read by the compiler.
12
13 The operations performed here minimise run time calculations and
14 allow us to set an add r determined at run time in an a parameter
15 type defined as a CCR. See matrix multiplication example.

SCR 27
o
1 (SET-INDEX) addr -- expects the address of an arg rec cell
2 and stores a pointer to the location that will hold hold the limit
3 and index of the subsequently entered loop.
4
5 (G ET - I NDEX) add r - n expects the address of an arg record
6 cell that contains a pointer into the return stack previously
7 set by (S ET- I NDEX), Returns n, the index of the associated loop.
8
9 I NDEX- ACT ION S returns the address of the action table for

10 index. DEFAULT is always set for an index, by code in the
11 DOES> phase of index.
12
13 i nd e x is the defining word that names an index parameter. 0 is
14 compiled as the initial index value. The DOES> phase executes
1 5 when the i nd e x name is encountered during subsequent compilation

81

82 The Journal of Forth Application and Research Volume 3 Number 1

Errata
Note that throughout the preceding paper, the symbol # has erroneously been replaced by the

symbol £. We regret any confusion caused by this error.

