
Technical Notes

Run-Time Error Handling in FORTH Using
SETJMP and LNGJMP for Execution Control

or
GOTOinFORTH

Robert J. Paul, Jay S. Friedland, Jeremy E. Sagan
Turning Point Software, Inc.

llA Main Street
Watertown, MA 02172

Abstract
This paper discusses and provides two FORTH implementations of the SET JMP! LN GJMP

concept for error handling in applications which have words nested many layers deep. SET JMP and
LNGJMP may be familiar to programmers who have worked with UNIX/C environments. A SET JMP
is paired with a LN GJ MP, which when executed later, will return control to the code following the
SET J MP. passing an appropriate value on the stack. In essence, this creates the equivalent of the
GOTO statement in FORTH. In most FORTH applications a word at each level returns an error or
success code which is processed before continuing. The use of SET JMP!LNGJMP eliminates the
nesting of IF. •• ELSE • •• THE N or BEG IN. • • UN TI L statements by transferring control to a
level where all error conditions may be handled. SET JMP and LNGJMP may be nested to handle local
as well as global situations. These constructs reduce code overhead and produce code which is easier
to follow. SET JMP and LNGJMP are ideal programming constructs for error handling since they
allow control flow to be optimized.

Introduction
There are certain programming tasks, notably error handling, that are most conveniently

processed by a branch to an error handler, which resumes execution in some other part of the
program. In non-structured languages, this is usually accomplished via a GOTO instruction. In a
block-structured language like FORTH, a programmer can find himself several subroutine levels
deep with an error that should be returned to the highest level of control. A typical solution would
be for each word to return an error/success code, which must be checked before proceeding.
However, the resulting IF. •• ELSE ••• THE N constructs often make the code more difficult to
follow and can consume a lot of memory. The ideal solution would be to exit several subroutine
levels, back to the main control level, where all errors could be handled.

History
The idea for SET J MP / LN GJ MP comes from the language C as implemented under Unix. It is

a somewhat late addition to that language, appearing after Kernighan and Ritchie wrote The C
Programming Language. It is documented in the Unix Programmer's Manual, Berkeley 4.2 release,
August 1983.

The Journal of Forth Application and Research Volume 3, Number 1, 1985

83

84 The Journal of Forth Application and Research Volume 3 Number 1

Implementation
The idea is quite simple. A word SET JMP simply marks a place in the FORTH program.

Subsequent LNGJMPs will transfer control to (i.e. goto) the place marked by the SET JMP.

SET J MP (-- r c) saves the current execution environment, the return stack and parameter stack
pointers, and returns the value 0 on the parameter stack.
LNG J MP (r c - -) restores the (most recent) environment, the return stack and parameter stack
pointers saved by SET JMP, and leaves the return code on the parameter stack.

The effect of a llJ LN GJ MP is to continue execution as if the last SET J MP had just executed.
Normally, a non-zero value (e.g. error code) is used to indicate why the jump was made.

Cautions
A facility this powerful must also carry with it some dangers. In order to work correctly, a

SET-IMP must be executed before any LNG.IMPs, otherwise the results are undefined. Less obvious
is the requirement that the return stack must be intact below the level where SET J MP was called (i.e.
the SET JMP must be nested no deeper than the LNGJMP call). If the stacked version is used, exactly
one UN SET J MP must be executed for each SET J MP; any number of LNG J MPs may be used.

Code Definitions
Two versions of the routines are provided. Figure 1 gives the implementation (on an IBM PC)

of a version that supports only one active SET.I MP. Each subsequent SET J MP forgets the previous
location and installs the current location. This version is simpler than the second, and will suffice
for most purposes. In this version, the word CLR.I MP may be executed to initialize the SET J MP
location so that control returns to the interpreter.

The second version allows for nested SET JMPs, up to 12 levels; an implementation is shown
in Figure 2. This version requires that exactly one UNSET JMP be executed for each SET JMP
executed. This version is more flexible, but also requires more careful coding.

Figure 3 provides test code for the stack version. A large variety of execution paths can be
taken, depending on what sequence of keys is pressed. The sequence < Esc> < Esc> <? >
< Space> < Esc> <? > < Esc> will get you out without executing any LNG J MPs. If a different
key is pressed at any point, the calling routine will restart.

Machine independence is very simple. Three words must be coded: RP@, ! SP, ! RP. RP@
(- - r p) returns the return stack pointer on the parameter stack. ! SP (s p - -) changes the
parameter stack pointer to the value sp, and I RP (rp --) changes the return stack pointer to the
value rp.

Applications
Time is Moneypersonal, a personal/small business accounting package published by Turning

Point Software, includes a master diskette program which was written in FORTH. It uses the one
level version of SET J MP and LNGJ MP. At the highest control level is a menu handler which contains
the sequence BEG INS ETJ MP 0 R0 P . .. AGAI N to ensure that control always stays at the menu
handler. Each major function is implemented as an overlay, each of which begins with SET J MP
-DUP IF /ERROR/ ELSE ••. THEN, where /ERROR/ is a handler which prints a message based
on the error number. Number 27 is used for < Esc> ke:>: processing, 26 for out of memory errors,
and all others for disk I/O errors.

Notes: Run-Time Error Handling in FORTH

Figure 1. One Subroutine Level Version

(SETJMP/LNGJMP CODE - ONE LEVEL VERSION)
(8088 Version for IBM PC
CODE RP@ BP PUSH, NXT C;
CODE !RP BP POP, NXT C;
CODE ISP AX POP, AX SP MOV, NXT C;

VARIABLE RPSAVE VARIABLE SPSAVE VARIABLE IPSAVE
SETJMP I IPSAVE I RP@ RPSAVE I SP@ SPSAVE ! 0 ;
LNGJMP >R SPSAVE @ !SP R> RPSAVE @ !RP R> DROP

IPSAVE @>R ;
CLRJMP SETJMP -DUP IF ." LngJmp code II • QUIT THEN

EXIT

(6052 Version for AppLe)
CODE !RP XSAVE STX, BOT LOA, TAX, TXS, XSAVE LOX, POP JMP, C;
CODE ISP BOT LOA, TAX, NEXT JMP, C;
CODE RP@ XSAVE STX, TSX, TXA, XSAVE LOX, PUSH0A JMP, C;

Figure 2. Stacked Version

(SETJMP/LNGJMP CODE - STACKED VERSION)
CODE RP@ BP PUSH, NXT C;
CODE 'RP BP POP, NXT C;
CODE !SP AX POP, AX SP MOV, NXT C;

85

SLEVEL @+ !
SP@ SPSAVE SLEVEL @+ !
!SP R> RPSAVE SLEVEL @+
+ @ >R ;

VARIABLE SLEVEL -2 SLEVEL
CREATE RPSAVE 24 ALLOT
CREATE SPSAVE 24 ALLOT

SETJMP 2 SLEVEL +1 I IPSAVE
RP@ RPSAVE SLEVEL @+ !

LNGJMP >R SPSAVE SLEVEL @+ @
R> DROP IPSAVE SLEVEL @

UNSETJMP -2 SLEVEL +! ;

(CURRENT STACK LEVEL)
(12 SUBROUTINE LEVELS)

CREATE IPSAVE 24 ALLOT

o
@ IRP

Figure 3. Test Code

(STACKED SETJMP/LNGJMP TEST)
: W4 CR ." CaLLed W4 from W" DUP .. " - hit <Esc> /I

KEY 27 = 0= IF 4 LNGJMP THEN;

W3 3 SETJMP -DUP IF ./1 @3 rc=/I .
THEN W4 CR ./1 CaLLed W3 from W/I OVER .. /1 - hit <?> /I
KEY 63 = UNSETJMP 0= IF 3 LNGJMP THEN DROP;

W2 2 SETJMP -DUP IF ./1 @2 rc=/I . THEN W4 W3 CR
/I CaLLed W2 from W/I OVER
/I - hit <Space> /I KEY 32 = UNSETJMP 0=

IF 2 LNGJMP THEN DROP;

W1 SETJMP -DUP IF ./1 @1 rc=" . THEN W2 W3 W4

86 The Journal of Forth Application and Research Volume 3 Number 1

