

84 The Journal of Forth Application and Research Volume 3 Number 1

Implementation

The idea is quite simple. A word SETJMP simply marks a place in the FORTH program.
Subsequent LNGJMPs will transfer control to (i.e. goto) the place marked by the SETJMP.

SETJMP (—- rc) saves the current execution environment, the return stack and parameter stack
pointers, and returns the value O on the parameter stack.

LNGJMP (rc --) restores the (most recent) environment, the return stack and parameter stack
pointers saved by SETJMP, and leaves the return code on the parameter stack.

The effect of a @ LNGJMP is to continue execution as if the last SETJMP had just executed.
Normally, a non-zero value (e.g. error code) is used to indicate why the jump was made.

Cautions

A facility this powerful must also carry with it some dangers. In order to work correctly, a
SETJMP must be executed before any LNGJMPs, otherwise the results are undefined. Less obvious
is the requirement that the return stack must be intact below the level where SETJMP was called (i.e.
the SETJMP must be nested no deeper than the LNGJMP call). If the stacked version is used, exactly
one UNSETJMP must be executed for each SETJMP; any number of LNGJMPs may be used.

Code Definitions

Two versions of the routines are provided. Figure 1 gives the implementation (on an IBM PC)
of a version that supports only one active SETJMP. Each subsequent SETJMP forgets the previous
location and installs the current location. This version is simpler than the second, and will suffice
for most purposes. In this version, the word CLRJMP may be executed to initialize the SETJMP
location so that control returns to the interpreter.

The second version allows for nested SETJMPs, up to 12 levels; an implementation is shown
in Figure 2. This version requires that exactly one UNSETJMP be executed for each SETJMP
executed. This version is more flexible, but also requires more careful coding.

Figure 3 provides test code for the stack version. A large variety of execution paths can be
taken, depending on what sequence of keys is pressed. The sequence <Esc> <Esc> <?>
< Space> <Esc> <?> <Esc> will get you out without executing any LNGJMPs. If a different
key is pressed at any point, the calling routine will restart.

Machine independence is very simple. Three words must be coded: RP@, !SP, !RP. RPa
(-- rp) returns the return stack pointer on the parameter stack. ! SP (sp =-) changes the
parameter stack pointer to the value sp, and 'RP (rp —-) changes the return stack pointer to the
value rp.

Applications

Time is Moneypersonal, a personal/small business accounting package published by Turning
Point Software, includes a master diskette program which was written in FORTH. It uses the one-
level version of SETJMP and LNGJMP. At the highest control level is a menu handler which contains
the sequence BEGIN SETJMP DROP ... AGAIN to ensure that control always stays at the menu
handler. Each major function is implemented as an overlay, each of which begins with SETJMP
-DUP IF /ERROR/ ELSE ... THEN, where /ERROR/ is a handler which prints a message based
on the error number. Number 27 is used for <Esc> key processing, 26 for out of memory errors,
and all others for disk I/O errors.

Notes: Run-Time Error Handling in FORTH

Figure 1. One Subroutine Level Version

(SETJMP/LNGJMP CODE - ONE LEVEL VERSION)
(8088 Version for IBM PC)

CODE RP@ BP PUSH, NXT C;

CODE !RP BP POP, NXT C;

CODE !SP AX POP, AX SP MOV, NXT C;

VARIABLE RPSAVE VARIABLE SPSAVE VARIABLE IPSAVE
: SETJMP I IPSAVE ! RP@ RPSAVE ! SP@ SPSAVE ! 0 ;
: LNGJMP >R SPSAVE @ !SP R> RPSAVE @ !RP R> DROP

IPSAVE @ >R ;
: CLRJMP SETJMP -DUP IF ." LngJdmp code " . QUIT THEN ;
EXIT

(6052 Version for Apple)

CODE !RP XSAVE STX, BOT LDA, TAX, TXS, XSAVE LDX, POP JMP, C;
CODE !SP BOT LDA, TAX, NEXT JMP, C;

CODE RPQ XSAVE STX, TSX, TXA, XSAVE LDX, PUSH@A JUMP, C;

Figure 2. Stacked Version

(SETJMP/LNGJMP CODE - STACKED VERSION)
CODE RP@ BP PUSH, NXT C;

CODE !RP BP POP, NXT C;

CODE !SP AX POP, AX SP MOV, NXT C;

VARIABLE SLEVEL -2 SLEVEL ! (CURRENT STACK LEVEL)
CREATE RPSAVE 24 ALLOT (12 SUBROUTINE LEVELS)
CREATE SPSAVE 24 ALLOT CREATE IPSAVE 24 ALLOT
: SETJMP 2 SLEVEL +! I IPSAVE SLEVEL @ + !

RP@ RPSAVE SLEVEL @ + ! SP® SPSAVE SLEVEL @ + ! 0 ;

: LNGJMP >R SPSAVE SLEVEL @ + @ !SP R> RPSAVE SLEVEL @ + @ IRP
R> DROP IPSAVE SLEVEL @ + @ >R ;
: UNSETJMP -2 SLEVEL +! ;

Figure 3. Test Code

(STACKED SETJMP/LNGJMP TEST)
: W& CR ." Called W& from W" DUP . .'" - hit <Esc> "
KEY 27 = 0= IF 4 LNGJMP THEN ;

: W3 3 SETJMP -DUP IF ." @3 rc=" .
THEN W& CR ." Called W3 from W' OVER . ." - hit <?> "
KEY 63 = UNSETJMP 0= IF 3 LNGJMP THEN DROP ;

: W2 2 SETJMP -DUP IF ." @2 rc=" . THEN W4 W3 CR
." Called W2 from W'" OVER .
"' = hit <Space> " KEY 32 = UNSETJMP 0=
IF 2 LNGJMP THEN DROP ;

: W1 SETJMP -DUP IF ." @1 rc=" . THEN W2 W3 W4 ;

