
Proceedings of the 1985 Rochester Forth Conference

Improving the Understandability of Forth Code

John Bowling, Starlight Forth Systems
15247 N. 35th St, Phoenix, Az 85032

101

One of the most often vocalized complaints about Forth is
that it is unreadable, and therefore unmanagable because no one
but the original author understands it. An example of this is
metacompiling: One of the least understood and most complex
functions in Forth.

A couple of years ago, I was looKing for a Meta-Compiler to
compile Forth Code for the 65SC816 using a standard fig-Forth
for the 6502. I found less than a half dozen available, most not
set up for the 6502, and none readily able to handle the type of
cross-compilation that I wanted to do. Also, on those where I
was able lOOK at the source code, I found them almost impossible
to interpret. The comments that were there were just better
than none at all. This implied that modification to what I
needed was out of the question.

BacKground: Operation of a'standard Forth compiler

Standard compilation in Forth searches the current and
context dictionaries for the words used in the new word. If
found, the precedence bit determines it they require immediate
execution or may be compiled. If not IMMEDIATE the specified
word's CFA is put into the new word's address list. If the word
was COMPILE the next word will be compiled even though it is an
immediate word.

If the word is not found, NUMBER is executed to determine
if it is a number that is valid in the given numeric BASE. If
it is, LIT or DLIT is compiled into the new word's address list,
followed by the value. If it is not a valid number, an error
message occurs.

Foreground: Target Compilation to a different processor

When target compiling for a different processor than the
system processor, you can not allow the system to execute any of
the new TARGET words.

To properly compile words in the TARGET, the TARGET is
searched first. When the word is found, and if the precedence
bit is off, the word's CFA is compiled. If a TARGET word is
IMMEDIATE, rather than execute, it triggers a search of a
special dictionary, TIMM, for Target Immediate where words are
imititaions of the IMMEDIATE words in the TARGET. The words
execute completely within the HOST vocabularies, and compile
TARGET address. DO and LOOP, which manipulate the stacK and

102 The Journal of Forth Application and Research Volume 3 Number 2

compi Ie addresses for (DO) and (LOOP) into the TARGET , a re two
examples.

If not found in the special dictionary, search continues
with META, ASSEMBLER and host FORTH. In this case the word
does not involve compilation and word can be a standard HOST
word, but must not be executed unless it is immediate. Commonly
used words that are acceptable are the comment words (and \ •
Words in the special TIMM dictionary may search TARGET or checK
for LABELS compiled into the ASSEMBLER for the addresses it
needs to compile.

If the specified word is not found in the target, a search
of the HOST is made. If found and if the precedence bit is set
the word wiUbe executed. If th-e precedence bit is not set,
then a warning message is output. HOST addresses must never be
compiled into the TARGET. If not found in the HOST, TNUMBER is
executed, and the address of target LIT or DLIT is placed in the
word list followed by the value.

One of the ways of maKing code more understandable is to
create a Logical English pseudo-Code translation. The following
is English Pseudo-Code from the above Cross-Target compilation
technique:

\ Not Immedate Word

\ Not Found in Host

no Effect on Target
\ Not Immediate
\ Host word

\ Not found in TIMM dictionary

\ Compile Target LIT value
and Exit \ Not Numeric

End If
Else

If Valid Number
Execute Tnumber

Else Notify of Error
End If

End If
Else Compile Into Target
End If

If Found \ Word in Target
If Immediate word \ Immediate, search

Search Timm dictionary \ Target IMMediate
If Found Execute \ Execute TIMM word

If Address Available Compile Address and Complete
Else Search Target \ Address not available

If Found Compile Address and Complete
Else Search Assembler for Lables \ not in Target

If Found Compile Address and Complete
Else Notify of Error and Exit \ Not Address Label
End If

End IF
End If

Else SearCh Host
I f Found

If Immediate Word Execute \ With
Else Notify of Error and Exit

Proceedings of the 1985 Rochester Forth Conference 103

Else Search Host
I f Found

If Immediate Word Execute
Else Notify of Error and Exit
End It

Else
If Valid Number

Execute Tnumber

Else Notify of Error and Exit
End It

End If
End If

\ Not Found in Target

\ With no Effect on Target
\ Not Immediate Host

\ word
\ Not Found in Host

\ Compile Target LIT
\ or DLIT and value

\ Not Numer ic

Translation of this Pseudo-Code into Forth Code is not
difficult. Understanding the resultant Forth Code, if you have
access to the douments that defined the problem and execution,
is not impossible. This code, because of the deeply nested
conditionals, is very difficult to debug. There are better ways!

To improve understanding of code similar to the above,
another translation step is needed. This time we have
eliminated the multiple nested conditionals through the use of
Case statements. Case operators allow us to select one of
several operations based on a value passed on the stacK, without
treading our way through several conditionals.

Execution of Timm words:

CASE Search Assembler
Compile Address
Error

\ Search for Label for address
\ Found Label in Assembler
\ No Label in Assembler

CASE Search Target
Compile Address
Search Assembler

\ Search for word in target
\ Found Word in Target
\ Try for a Label

CASE Timm Execut
Compile Address
Search Target

\ Get needed address
\ Found address, stuff
\ Not a Timm word, go search Target

Host
\ Non-Immediate Host word: Error
\ Execute the Immediate Host word
\ Not a Host word,
to convert to a number using Target Literal

CASE Search
Error
Execute
Target Number

\ Try

Non-Immediate word, not valid for Timm words
Found: Execute a Timm word
Not a Timm word, LOOK for word in the Host

Timm
\
\
\

CASE Search
Error
Timm Execute
Search Host

104 The Journal of Forth Application and Research Volume 3 Number 2

\ word not found in Target, try Host

Target
\ Non-Immediate word, compile
\ Immediate Target word, DO NOT execute,

CASE Search
Compile
Search Timm

substitute
Search Host

This is much easier to follow than the nested conditionals,
yet still requires an understanding of what one is trying to
accomplish. Understanding of the problem statement from the
defining documents is still very helpfull.

To further improve understanding of this, we need to
eliminate the multiple case functions. One way of doing this is
through State Machines. State machines are simply a series of
CASE functions, with each state representing one CASE statement.
Another way of looKing at them is to thinK of a double (or
greater) subscript array, where the subcripts point to an
executable function.

Execution of Timm words:

Search Timm command sets state 0
Search Target command sets state 1
Search Assembler command sets state 2

STATE: Timm Execute \ Is the Address Available?
\ Yes No
\ State:
(0) Compile SearCh Target \ Timm word
(1) Compile Search Assembler \ Target Word
(2) Compile Error \ Assembler Label

Compilation of Target words:

Search Target command sets state
Search Timm command sets state
Search Host command sets state

o
1
2

STATE: Search Target

\ Search
\ State:
(0)
(I)
(2)

Result: Non-Imm

Compile
Error
Error

Immediate

Search Timm
Timm Execute
Execute

Not Found

Search Host \ Target
Search Host \ Timm
Target Number \ Host

It lOOKS almost too simple to do what the nested
conditionals do, and it's much easier to read and understand,
even without a definition document. It also eliminates many of
the complaints about unreadable Forth code by presenting it in a
form that is almost universal regardless of language.

