
Proceedings of the 1985 Rochester Forth Conference

An Alternate Forth Dictionary Structure
James C. Brakefield

Technology Incorporated, Life Sciences Division
300 Breesport, San Antonio, Texas 78216

Abstract:

109

The data structures used for definitions and the word search of Forth
can facilitate various utilizations of the same. My goal is complete­
ness and efficiency.

Constants or literals are stored separately. This is so they can be
hashed. The concept of a constant is enlarged so that the code string
is a constant in the same sense as a text string. A constant is
something which is self-identifying and unchanging at the textual
level.

A colon definition is then a palrlng of a code string with a name.
Only pointers to the two "constants" are kept in the definition entry
(a pointer to the name string and a pointer to the code string).

The various constant and definition records are implemented with
tagged fields. This allows inspection of the entire record by any
routine possessing a pointer into any field of the record.

Additional optional fields are: Reference count, Comment pointer,
Input type list pointer, Result type list pointer, etc.

Talk:

I have been rethinking the memory structure of Forth in order to
achieve certain goals. This effort is similar to the work of several
other people, RTL being the closest in spirit. The driving constraint
is that Forth definitions always be decompilable. At the same time,
provision is made for various "advanced" features (mul tiple cfa's,
type checking, precedence parsing, overloading).

The problem of decompiling a code string with embedded constants
becomes continually more difficult if the user is allowed to add new
forms of constants. Thus it seems that the embedded constant is
something of a black sheep to be discouraged in the same sense that
occurred with the GOTO. As one looks at code strings one sees that
the relative branch displacements are also embedded constants. This
has a major effect on Forth control structures but fortunately there
is a nice solution.

As one examines the various ways word definitions can be arranged in
memory, one eventually gives up as there is no fixed record structure
which gives all the features one wants. Thus, I eventually settled
for a less memory-efficient but expandable record structure. By the
use of tags each field is self-defining. Thus a symbol table entry
can be "understood" given a pointer to any of its fields.

The issues of whether tags should be addresses or just codes, whether
tags are even needed, this is left unresolved. At issue is how to
recognize a field and what that recognition consists of. Coded tags

110 The Journal of Forth Application and Research Volume 3 Number 2

are limited to a small set of values. If one wants to add another
type of tag, one may need to add another bit to the tag data struc­
ture. This can have no end. Using a full address for the tag sol ves
this problem but at a memory cost which may be unacceptable. Letting
the field identify itself through indirection, while in the true
spirit of Forth, may require constraints which make difficult the
flexibility and variability desired.
The sUbject of treating code as a constant has generally been recog­
nized, but not utilized. The dichotomy of program and data has so far
been too great to unify by the ordinary programmer. (Ask a programmer
how he likes coding his control constants). Although both Forth and
Lisp allow one to manipulate program as data, only Prolog actually
makes program and data look the same. This is probably due to
Prolog's lack of sequentuality, i.e., one tends to think of program­
ming as coding the sequential activity of the CPU whereas data has an
inherent timeless nature.

(My technique for representing code strings is to use the curly
brackets to surround a code string. This lets code strings nest, but
as the bracketed code string is replaced by its address, this causes
no problem. As each right bracket is encountered the code string
becomes complete and is saved in free space as an unnamed code string
constant. You can think of the brackets as one letter BEGIN and END.
This makes Forth code strings look like Lisp or Prolog data lists.)

What all of this leads up to is that the 32-bit microprocessor is at
hand and the 64-bit microprocessor looms in the not-so-distant future.
We all know that Forth is the best way to use the beast. However,
there is no agreement on how to organize memory. Files should not be
necessary as the very few systems will have anywhere near four giga­
bytes of disk. Thus, screens can be attained some other way,
preferably by decompilation. By treating code strings as constants,
they can be hashed and reused without being named. One can have a
situation where code is continually being written and added to the
system. Those pieces of unnamed code which have unsuspectedly high
reference counts become candidates for naming.

Appendix A:

Dictionary Entry Field Tags:

Primary code field (parameter and code fields)
Link field -- for hashed or linear search
Secondary code field -- for multiple cfa's
Length of code & parameter field -- for storage reclamation
Reference count field
Name pointer field (name elsewhere)
Code field pointer (definition elsewhere)
Parameter type list pointer
Result type list pointer
Comment string pointer
Immediate flag (accomplished via two versions of the link field tag)
Raisability flag (accomplished via two versions of code field tags)
Precedence & parsing field -- for algebraic syntax

Proceedings of the 1985 Rochester Forth Conference

Last code field & extension pointer (if non-zero) -- allows continua­
tion

Appendix B:

Defini tions:

Code string: List of word addresses preceded by DOCOLON and followed
by EXIT. I.e., a headerless definition.

Constant: A data structure (i.e., contents of memory) which does not
change once created.

111

Hashing: Technique for speeding a search for a given item.
function of the item is computed which tends to yield a flat
of all items. This is used to subdivide the items and hence
the search.

Some
histogram
restrict

Immediate: A word which is executed by the compiler rather than being
compiled.

Literal: A non-address constant embedded within a code string. Con­
sidered by the author as in same category as the GOTO.

Raisable: A word which may be executed without indirection. Non­
raisable words must precede their parameter fields and thus require at
least one level of indirection from a code string which references
them.

Type: A word, which given the address of a datum of its type, com­
putes the length of that datum.

Word: Named or unnamed executable code string. If named, its textual
form is the text form of the name string; if unnamed, its textual form
is as a bracketed code string.

Appendix C:

Tokens:

(Another area of concern is that of the naming of Forth words.
Forth's use of the white space as the only name separator is certainly
general. I tend to prefer the more typical algebraic tokens wherein
the character set is divided into categories and characters in each
category form tokens which do not always need a white space for sepa­
ration. This usually leads to the categories of numeric constants,
alphanumerics, non-alphanumerics, and singletons.)
Decimal integer: digit string -- 1234
Octal integer: "octal digit string -- "773
Hexidecimal integer: $hexidecimal digit string -- $FF01
Boolean integer: %binary digit string -- %11011
Real: integer with embedded decimal point -- 1.5
Character string: 'character string' -- 'this is a string'
Alphanumeric: alphabetic letter, alphanumeric string -- AM2905
Non-alphanumeric: non-alphanumeric string -- <>

112

Singleton:
Code string:
Comment:
Token binder:
(Alphanumerics,
the underscore:

Appendix D:

The Journal of Forth Application and Research Volume 3 Number 2

single character token (separators & brackets)
token or {word address list} -- { SWAP DROP }
- text carriage return -- - gibberish

non-alphanumerics, and singletons may be combined with
A5b_,_++ is a token)

Programming Language Hierarchy:

Non-extensible machine language or micro-code
Non-stack oriented programming
Many programmers operate at this level even if computer supports
stacks

Extensible machine language -- Forth
Two stacks, micro-codes higher level facilities

Traditional Algebraic -- Fortran, Pascal, C, ADA
Both data structure and control must be planned
Usually single stack implementation

Dynamic memory allocation -- Lisp
Data structuring automatic, control must be planned

Dynamic control -- Prolog, Expert Systems languages
Both data structure and control automatic
Forward versus backward chaining
Probablistic control often used

References:

1) Buege, Bob. Status Threaded Code. 1984 Rochester Forth Con­
ference, p103.

2) Solley, Evan. An In-circuit Development System with a Forth
Heri tage. 1984 Rochester Forth Conference, p25.

3) Steel, Guy L., Jr. Common Lisp. Digital Press, 1984.

4) Clocksin & Mellish. Programming in Prolog. Springer-Verlag,
1981.

5) Dijkstra, E.W. GOTO Statement considered harmful. Communications
of the ACM, 11:3:147-8, March 1968.

(6) Elliott, I.B. The EPN and ESN Notations. Sigpl an Notices,
19:7:9-17, July 1984.

