
Proceedings of the 1985 Rochester Forth Conference

A FORTH-Based Object File Format and Relocating Loader
used to Bootstrap Portable Standard Lisp

Harold Carr and Robert R. Kessler

Utah Portable Artificial Intelligence Support Systems Project
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112

119

Abstract: For a quarter of a century much Artificial Intelligence research has
been accomplished using Lisp as the implementation language. Portable Standard
Lisp (PSL) was created to support research activities on a wide variety of
processors and operating systems. To aid in porting PSL, we developed an ASCII
object file format whose relocation directives are essentially FORTH language
statements. A Portable Linker is then used to directly link compiled Lisp code
normally dependent on the Lisp runtime system. Finally, since the object file
contains FORTH statements to handle final relocation of segments, we wrote a
relocating loader in FORTH to load and execute these "exported" Lisp programs.
The PSL runtime system is ported by processing it with this system as just
another exported program. This paper discusses the FORTH-based object file
format (which is general enough to handle other languages besides Lisp) and the
FORTH-based relocating loader.

Porting PSL: PSL [Griss 82] is ported by first moving its object file loader
(FASLlN) to the target machine. This is done by cross-compiling FASLIN on a host
machine. It is then linked using a machine-independent linker (PLINK) [Carr
85] which reads and generates the FORTH-based object file format. Once linked, it
is transferred to the target machine then loaded and executed using a variant of
the relocating loader discussed later. FASLIN then incrementally loads cross­
compiled object files which define the rest of the PSL runtime system. Once
completed, the runtime system is used to compile the compiler on the target
machine, thereby making the ported system independent of the host machine.
Besides assisting in the porting of PSL, PLINK and the machine-specific loader give
us the ability to develop programs in the full Lisp environment then "export" them
to run as standalone programs.

Motivation: The writing of the machine-independent linkers and machine­
dependent loaders is simplified by using FORTH language statements as relocation
directives. Coupling this with an ASCII format gives several benefits, First. we can
use built-in FORTH words to process object files when writing loaders. Second,
we can use standard text tools to examine and modify the object files - very
useful during a port. Third, it provides a standard for number representation,
freeing us from dealing with different number systems, byte ordering, etc" which
may occur between the host and target machines. Finally, many target machines
do not yet have sophisticated file-transfer programs (FTP). The ASCII format
allows us to use simple FTP programs over serial lines.

The File Format: The relocatable object file is a mixture of absolute code
(represented by numbers) and directives. For example, before linking, two
separately compiled files may look like (source - left, object code - right):

120

(global ,(x y»

(de om ()
(setf x 10)
(setf y 8)
(gcd))

(de gcd ()
(while (-: x y)
(if (> x y)
(setf x (- x y»
(setf y (- y x»»

x)

The Journal of Forth Application and Research Volume 3 Number 2

- seg code -
o 0 0 0 - code 4 + entry-point ­
- code 4 + def-fca om -
MOVL 10 - q x vca dw -
MOVL 8 - q y vca dw -
JMP - q gcd fca dw -
- 32 len code -
- seg data -
o 0 0 0 - data 0 + def-vca y -
o 0 0 0 - data 4 + def-vca x ­
- 8 len data -

- seg code -
o 0 0 0 - code 4 + def-fca gcd ­
CPML - q y vca dw - - q x vca dw ­
BNEQ 5
MOVL REG11 REG1
BRB 45
CPML - q y vca dw - - q x vca dw ­
... (etc.)
- 75 len code -

In this example absolute code is shown as VAX mnemonics rather than opcode
and addressing mode numbers. A tilde (-) marks the beginning and end of a
directive. Inside of directives, numbers are pushed on the parameter stack and
other symbols are expected to be executable FORTH words, as in a standard
FORTH interpreter. Outside of directives we just deposit the numbers in the
current segment. The compiler and loader must agree on the size of the numbers,
usually the size of an addressable cell (8 bits o,n the VAX).

I
Function entry points are defined with DEF-FCA and referenced with FCA. Global

variables are defined with DEF-VCA and referenced with VCA. PLINK is used to
resolve function and variable references and to collect each file's contribution to
the various segments into contiguous segments. An object file is ready for
loading once all references are resolved, except segment base addresses, which
are determined at load-time. Once PLINK processes the above files the resultant
relocatable object is:

- 8 len data -
- 107 len code -
- seg data -
000 0 0 0 0 0
- seg code ­
000 0
- code 4 + entry-point ­
MOVL 10 - data 4 + dw ­
MOVL 8 - data dw -
JMP - code 32 + 4 + dw -

Proceedings of the 1985 Rochester Forth Conference

000 0
CPML - data dw - - data 4 + dw ­
BNEQ 5
MOVL REG 11 REG 1
BRB 45
CPML - data data 4 + dw -
••• (etc.)

121

<file>
<directive>
<command>

Segment length definitions come first so that all segments can be created before
loading. Next, a segment definition initiates sequential loading into the named
segment. Relocatable references into the various segments are handled by making
offsets from the segment base such as: - data 4 + dw -. In this case, DATA is
replaced with its base address, 4 is added to this address and the result is
deposited into the next word with the OW function. Since word size varies from
machine to machine, a machine specific function such as OW must be supplied for
each new machine. A BNF for the file format of a resolved object file (as in this
small example) is:

::= { number I <directive> }*
::= - <command> -

.. - <segment-directive> I <segment-length-directive>
<relocation-directive> I <entry-point-directive>

<segment-directive> .. - seg <identifier>
<segment-Iength-directive> ::= <length> len <identifier>
<relocation-directive> ::= <relocation-info> dw
<entry-point-directive> •. - <relocation-info> entry-point
<relocation-info> ::= <segment-id> {<offset> +}*
<offset> ::= The offset from segment base.

The Relocating Loader: This format is machine-independent and straightforward
to process. PLINK uses an extended version of this format. To create a loader we
need to write a top-level function to open the file, read and process one symbol at
a time until the end of the file is reached, and then close the file. When we read a
symbol, if it is an executable FORTH word, we execute. If it is not a FORTH word
we assume it is a number, in which case we either deposit it into the current
segment or push it onto the stack if we are inside a directive. Assuming the
open-read-process-close functions are in place we can define the directives as
FORTH words (here written in Bill Sebock's - Princeton University - VAXFORTH):

o var &directive
o var &loading-point
o var &entry-point
32 constant blank

1 -> in directive)
address counter)
start of instructions)
ascii blank)

: - (---) (toggle directive mode)
&directive @com &directive !

len (n ---name
here 1 and allot

modeled after definition of ARRAY)
make sure even addresses)

122

create
here
swap dup allot
o fill

seg (---name)
blank word spush

The Journal of Forth Application and Research Volume 3 Number 2

get segment name from input stream)
beginning of storage for segment)
allocate the storage - N bytes)
initialize storage to zero)

(get segment (put segment base in address ctr)

dw (32-bit-number ---)
&loading-point @! (32 bit store)
4 &loading-point +! ; (increment address counter by 4 bytes)

entry-point (32-bit-number ---)
&entry-point ! ; (save it for later execution)

Conclusion: FORTH's syntax avoids issues of precedence. Its built-in symbol
table, stack and its execution model make it straightforward to write linkers and
loaders based on this file format. This format is simple, easy to manipulate (with
text editors) and easy to extend (by defining new FORTH words). It allows us to
concentrate on other issues during the porting of PSL. However, these object files
are generally twice as large as a typical binary object format and slower to load.
Once PSL is ported we revert back to using a standard binary format.

Acknowledgments: Work supported in part by the Burroughs Corporation, the
Hewlett Packard Company, the International Business Machines Corporation, the
National Science Foundation under Grant Numbers MCS81-21750 and
MCS82-04247, and the Defense Advanced Research Projects Agency under contract
number DAAK11-84-K-0017.

References

[Carr 85]

[Griss 82]

Carr, H.
A Portable Linker for Portable Standard Lisp.
Master's thesis, Department of Computer Science, University of

Utah, January, 1985.

Griss, M. L.; Benson, E.; Maguire, G. Q. Jr.
PSL: A Portable LISP System.
In Proceedings of the 1982 ACM Symposium on LISP and

Functional Programming, pages 88-97. ACM, Carnegie-Mellon
University, Pittsburgh, Pa., 1982.

