
Proceedings of the 1985 Rochester Forth Conference

A Multiprocessing Computer System Composed of
Loosely-coupled FORTH Micro-chip Modules

Gabriel Castelioo and Richard Haskell
School of Engineering & Computer Science

Oakland University, Rochester, Michigan 48063

123

INTRODUCTION
A Multiprocessing Computer System consisting of loosely-coupled

FORTH micro-chip modules is currently being developed at the School of
Engineering and Computer Science at Oakland University. A network of
16 modules has been designed. The modules do not share any common
memory and communicate with each other over a global bus -- an 8-bit
paralle 1 bus wi th 7 control lines. The system uses a layered protocol
structured on the OSI Reference Model [1]. The network is designed to
support different types of micro-chips operating at different speeds.
The software support at the physical and data-link layer will have to
be modified for the different types of micro-chip modules.

In such a system, it would be desirable for one module to execute
a word that has been defined in another module in the system. This is
referred to as a Remote Procedure Call (RPC). In the system being
developed calls of this type are handled by the RPC layer which sits
above the Data-link layer of the OSI model. The FORTH words defined
at this level are independent of the type of micro-chip being used.

Example of a Remote Procedure Call
A brief example will set the stage for the discussion that

follows. Assume two modules with identification numbers 6 and 8
connected on the network. The user on module 6 would like to execute
a word EXAMPLE in module 8. The user declares EXAMPLE to be a remote
word (word defined in some other module) using the word REMOTE as
follows:

8 REMOTE EXAMPLE.
After the above declaration, EXAMPLE can be used in the normal

FORTH manner and the fact that it is a remote word is now transparent
to the user. EXAMPLE is now part of the vocabulary in module 6 with a
link to its counterpart in module 8. This link is established by the
RPC layer as will be discussed in the sections that follow.

IMPLEMENTATION
The following sections will discuss the implementation in FORTH

of the RPC layer. The source listings of some of the words appear in
the Appendix.

Definitions
Caller - The module initiating the remote call.
Cal lee - The module being called.

The protocol at the RPC layer uses the following fields
<cal lee id> <caller id> <entry#> <'bytes> <parameters>

where,
<callee id> is stored in the variable RECID, <caller Id> is the
constant MYID, <'bytes> is stored in the variable HBYTES and
tells the cal lee how many bytes follow, <entry'> is the entry

124 The Journal of Forth Application and Research Volume 3 Number 2

number of the word being referenced and is stored in ENTRY.
Each of the above fields is 1-byte long. This implies that the

number of parameters is limited to 256 bytes or 128 words. The
identification (id) numbers of the modules are assigned arbitrarily.
The determination of <entryU> corresponding to a particular word will
be discussed in the following sections.

Pr imitive Words
The following words are defined at the Physical and Data-link

layers and are dependent on the type of micro-chip used.
SEND - send one byte of data to callee.
RECEI VE - recei ve one byte from caller.
CALL - Establish link between caller & cailee. Uses <callee id>

from RECID. Returns a if successful. If an error occurs
the error number is stored in the variable ERRNO and a
non-zero value returned•

•ERROR - Prints error message corresponding to error stored in
ERRNO and aborts.

ENDCOM - Terminate link.

Remote Words and Entry Numbers
All words in a module that may be accessed by other modules are

stored in a table called ENTRIES as follows:
[WORDO] UinO UoutO
[WORD1] Uin1 Uout1
[WORD2] Uin2 Uout2

where [WORD1] is the cfa of WORD1; Uin1 and Uout1 refer to the number
(in bytes) of input and output stack items respectively. The <entryU>
referred to earlier is the index of the word being referenced in the
table ENTRIES.

WORDO is a special word called RET.ENTRY that accepts an input
word and returns the entryU (index) and Uin corresponding to the word
(returns a a if wor'd is not in the table).

The REMOTE Declaration
The caller module identifies a word as being remote by using the

word REMOTE as follows:
<callee id> REMOTE <word>

REMOTE executes GET.ENTRY which makes a remote call to the module
identified by <cal lee id>. The <entryU> is 0 which causes RET.ENTRY
to be invoked in the callee, thus returning the entryU and Uin of
<word> as results of the call. After REMOTE executes (compile-time)
it forms a dictionary header for <word> with its parameter field
containing <cal lee id> <entryU> <Uin>.

To execute the remote word the user executes <word> in the normal
FORTH manner. This causes a remote call via RPC.SEND. It is
important to note that the determination of <entryU> is done during
compile-time. At run-time <entryU> is available in the parameter
field of the corresponding word. <Uin> tells RPC.SEND how many
parameters to read off the stack. It may also be used to check for
sufficient number of stack items before initiating the call.

More about ENTRIES
The table ENTRIES is created by the defining word RPC.TABLEas

follows:

Proceedings of the 1985 Rochester Forth Conference 125

<Hentries> RPC.TABLE ENTRIES <word1> <Hin1> <Hout1>
<word2> <1tin2> <Hout2>

Any word in the table may be executed by referring to its index
«entryH» in the table. Executing ENTRIES with <entryH> on the stack
will execute the corresponding word. This is how RPC.RECV executes a
remote call in the callee module. All the words in the table may also
be executed locally in the normal FORTH manner. Thus the remote user
and the local user both execute the word in the same manner.

Replying to a Remote Call
After a remote call has been received, the word corresponding to

the <entryH> is executed. The results are returned to the original
caller (who now becomes the callee) using the same protocol. The
received <entryH> is used with bit 7 set to 1 to indicate that it is a
reply to the remote call corresponding to <entryH>. This limits the
number of words that can be referenced remotely to 127.

CONCLUSION
The RPC layer implementation described in this paper provides a

means by which a remote procedure call is transparent to the user.
The higher layers of the system can use the RPC layer to develop a
very user-friendly multiprocessing environment. The scheme discussed
here may be used with other networks provided the necessary changes
are made to the primitive words at the physical and data-link layers.

REFERENCES
[1J Zimmerman, H. "OSI Reference Model - The ISO Model Architecture
for Open Systems Interconnection," IEEE Transactions on Communications
(COM-28)4, Apr.1980, 425-432

Appendix
The following is a source listing of some of the words in the

implementation of the RPC layer. The words @RECID. @ENTRY. @#BYTES
and !RECID, !ENTRY. !#BYTES fetch and store the contents of the
variables RECID. ENTRY and #BYTES. The word WAIT.REPLY waits for a
reply from the called module. The reply is handled by RPC.RECV.

(ScrH 23 rpc3.2 gsc)
(n items -- I send n bytes after establishing link)
(the value n is stored in variable HBYTES)

SEND.MESS
CALL IF .ERROR

ELSE MYID (caller id) SEND @ENTRY (entryl!) SEND
@HBYTES (Hbytes) DUP SEND
o DO SEND LOOP ENDCOM (terminate link) THEN

Receive & execute a remote procedure call)
Or receive reply - entryH > 128)
RPC.RECV
REC.MESS (receive parameters from caller) @ENTRY
DUP 128 < (reply to my call ?)
IF (no) DUP 128 + !ENTRY (set bit7 of entrylt for reply)

ENTRIES (execute word) SEND.MESS (send reply)
ELSE DROP THEN j

126 The Journal of Forth Application and Research Volume 3 Number 2

(Scrft 24 rpc3.2 gsc)
o VARIABLE RPC.BASE (base address for table)

ERR O! #BYTES ;
-- cfa I returns the cfa of next word in input stream)
FIND [COMPILE]' CFA ;

This is entry 0 in table ENTRIES)
-- #in\entry# I return entry# of word in TIB)
RET.ENTRY

o IN ! FIND (cfa of word) RPC.BASE @ (base addr. of table)
DUP 2+ SWAP @ (#entr ies) 1+
1 DO 4 + 2DUP @ - 0= (cfa's equal ?)

IF DUP 2+ C@ (ftin) I (entry#)
ROT >R ROT R> (2swap) LEAVE THEN

LOOP @ - (not found?) IF ERR THEN ;

Scr# 25 rpc3.2 gsc)
store WORDO in table)
WORDO I RET.ENTRY CFA , -1 C, 2 C, ;
-- n I get number from input stream)
GET.' 32 WORD HERE NUMBER (double precision) DROP

entry# --)
<ftentries> RPC.TABLE <name> <word1> <ftin> <#out> •••)

RPC.TABLE
<BUILDS DUP , WORDO 0 DO FIND, GET.# C, GET.# C, LOOP
DOES> DUP RPC.BASE ! SWAP 2DUP SWAP

@ > OVER 0< OR (check range)
IF 2DROP ERR
ELSE 4 * + 2+ DUP 3 + C@ (get #out) !#BYTES

@ (get cfa) EXECUTE (execute word) THEN

Scrft 26 rpc3.2 gsc)
get next word in input stream to HERE without moving pointer)
GET.WORD IN @ 32 WORD IN ! ;

-- #in\entry# I get entry# for word at HERE from remote mod.)
GET.ENTRY

CALL IF .ERROR
ELSE MHD (caller id) SEND 0 (entry#) SEND

HERE COUNT (#bytes) DUP SEND
o DO DUP C@ SEND 1+ LOOP
DROP ENDCOM WAIT .REPLY THEN ;

Scr# 27 rpc3.2 gsc)
addr -- Isend remote call/cal lee id, entry# & #bytes at addr)
RPC.SEND

DUP C@ !RECID 1+ DUP C@ !ENTRY 1+ C@ !#BYTES
SEND.MESS WAIT .REPLY

<recid> REMOTE <word> Iidentify a word as a remote procedure)
REMOTE

DUP !RECID GET.WORD GET.ENTRY
<BUILDS ROT C, C, C,
DOES> RPC.SEND ;

