
Proceedings of the 1985 Rochester Forth Conference

FORTH AS THE BASIS FOR AN INTEGRATED
OPERATIONS ENVIRONMENT FOR A SPACE SHUTTLE

SCIENTIFIC EXPERIMENT

Henry M. Harris
Mission Design and Operations Manager SIR-B

Jet Propulsion Laboratory/California Institute of Technology
4800 Oak Grove Drh'e 156/220

Pasadena. CA 91103

Abstract
Over a period of three years, a FORTH-based system was developed by
JPL for the operations of a major scientific instrument onboard the Space
Shuttle. The software had to meet a very demanding operations
environment where the the interactiveness of the software was not merely
desirable but essential to the success of the mission. Forth was chosen
for its capability of integrating divergent software needs into an interactive
package. The mission flown in October 1984 was beset with numerous
hardware failures and challanged the capability of the system to its fullest.

23

Introduction
In November of 1981, the Space Shuttle was first used as a platform for

scientific instruments. Orbiting above the Earth at an altitude of 259 km,
the Shuttle's 60 foot long cargo bay contained a number of scientific
instruments for studying the Earth from the Shuttle's unique perspective.
Principal among these was the Shuttle Imaging Radar-A (SIR-A) JPL built
managed and performed the ground-based operations. As a sucessor to
this high successful experiment a more complex radar experiment was
flown in October of 1984. See [ELA82]. Both of these experiments used
ground-based software to facilitate command and control of the
instruments. (This phase of the experiment is usually referred to as
"mission operations".) The software, especially in the the second
experiment, proved indispensable in reacting to real-time problems that
develop in any space mission where successful data gathering may depend
upon a timely solution to unplanned events.

This paper will survey software concepts developed for this project and
discuss how the software (called the Shuttle Mission Design and Operations
System or SMDOS [HAR84]) was used for the SIR-B mission and the results
obtained.

Instrumentation
Mission operations was conducted for both flights at Johnson Space Center

24 The Journal of Forth Application and Research Volume 3 Number 2

(JSC). Although some computer support was provided by JSC, most SIR
specific software had to be generated by JPL on computers that were to be
transported to Houston form JPL's Laboratories in California. Rather than
centralizing the software in a minicomputer, a distributed intelligence
concept was evolved that connected six microcomputers, each performing a
parallel task for the mission planning cycle.
The system used on the SIR-B mission were six IBM XTs linked together by
an ethernet network. Each computer was equipped with an IBM
monchrome and an RGB moniter. The RGB was driven by a standard IBM
graphics card. One of the computers was used as a file server for the
network. Figure 1. shows the configuration of four of the computers and
identifies their function.

Forth System
Forth was selected as the language for all of these tasks for a number of
reasons:

1) Forth provides accessibility to the machine in a way high-level language
actively discourages.

2) The interactive environment of Forth allows rapid program
development.

programming tasksallows diversea way that
environment.

is extensible in
an integrated

3) Forth
operating in

4) Forth is compact which in this case was essential considering the large
amount of tasks that had to be resident in memory at any given time.

The Forth system used was PC/Forth+ by Laboratory Microsystems Inc., a
32 bit implementation with extensions for the 8087 math coproccesor.

Scope
The software
applications.
accom plish the

that was needed
Modules that were
following tasks:

for the
created

space mission
for the 1984

was diverse in
mission had to

1) High-speed
accuracy.
2) interactive
pictures of the

orbit propagation calculations that had double-precision

computer graphics that created area-filled aniamated color
Earth as would be seen from the shuttle bay.

Proceedings of the 1985 Rochester Forth Conference 25

3)A hueristic simulation of the performance of the radar under a wide
variety of conditions.

4) Monitor and decommutate the real-time telemetry stream as it was
transmitted to Earth from the Orbitera via the TORS satellite. The software
had to simultaneously decommutate, select, store and record the raw data
in real-time from two seperate data sources as provided by JSC.

5) Edit a data-taking plan contalOlOg hundreds of separate events while
providing constraints in the type and range of the variables.

Approach
Because the amount of code produced (almost one megabyte) was so

large, a considerable amount of effort was given to adopting proceures and
programming practices which encourage readability and a uniform
approach to programming. Three areas in particular were targeted for
development:
1) data structures
2) array equations
3) graphics.

These specific areas will serve to illustrate the approach taken in creating
SMOOS.

1) Data structures
The data structure word created for SMOOS is TYPE. TYPE compiles a
structure into memory while creating a named instance of TYPE. The word
created by type can then be used inside new TYPE definitions th·at inherit
the structure. The TYPE instances are used in SMOOS to create records,
files and arrays. A simple example of a TYPE definition is the following:

TYPE COMPLEX
real REAL
imaginary REAL

ENO.

This definition results in the word COMPLEX appearing in the dictionary.
COMPLEX can then be used for array. or file. Execution of COMPLEX
leaves the number of bytes in the record on the stack and creates the
words "real" and "imaginary" in the dictionary. Execution of "real" or
"imaginary" leaves the offset to the "COMPLEX" record on the stack. For
example let is define the complex file Z.

26

10 COMPLEX FILE Z

The Journal of Forth Application and Research Volume 3 Number 2

The number preceeding COMPLEX is the number of buffers equal in length
to one record of COMPLEX created. To store the real part of the complex
mumber Z we have

45.23 E 0 real Z F!

Note that the address of the real part of Z is defined by the selector word
"real." The command

, ZPUT

moves and internal pointer to the next storage area . If the FILE has been
associated with a disk file name using

" Complex.OAT" , Z OPEN

then the buffer area will be written to disk when when the pointer reaches
the end of the allocated storage.

This is very brief look at the approach to data structures that was taken
in the implementation of SMOOS. For more information on Forth data
structures see [BAS83].

2) Arrays
The principle advantage to be gained by using the array concept can be
realized by the implementation of the array operator. Simply providing a
scheme to provide storage for and a method of indexing arrays is not much
of an improvement over using scalars. It is important that these operators
are object oriented; that is, they operate on a class of object called an array
which can be defined at any time for the particular application. (To extend
the object concept even further the fields are accessed by selectors which
are anal ago us to the method of the object.) Array operators implemented
include:

A+ (<array!> <array2> -> <virtual array>) - addittion
A- (<array!> <array2> -> <virtual array» - subtraction

A* (<array!> <array2> -> <virtual array>)
x «array!> <array2> -> <virtual array>)
Arrays are created by a defining word with

- multiplication
- cross product

the following syntax:

Proceedings of the 1985 Rochester Forth Conference

ARRAY X 1 3 OF REAL

27

which creates an
Arrays of any
condition may
example of array

array of rank 1 (a vector) of floating point numbers.
rank or dimensionality may be created but an error
result if an inappropriate operator is applied. Another
creation is:

ARRAY Y 3 2 2 3 OF COMPLEX

which defines an array of rank 3 with dimensions 2 by 2 by 3. COMPLEX
was defined above under data structures. Addressing the real component
of the [1,2,1] element of the array Y is accomplished by the form:

real Y { 1 2 1 }

The result will be to leave the address of that particular component on
Forth stack. It is probably worth repeating here that, in general, arrays are
ultimately only a useful concept when most of the work is done by
operators. Access to individual elements should be kept at a minimum.

3) Graphics
The graphics standard selected is a subset of several well-known graphics
standards such as the ACM Core and the GKS standard. This particular
subset was chosen because it is well described in a popular book on
graphics. Our graphics module is called the Simple Graphics Package (SGP)
which is discussed in the book Fundamental of Interactive Computer
Graphics by Foley and Van Dam. See [FOL82]. This package includes words

such as:

MOVE_ABS_2 «X> <Y> -> -)
MOVE_REL_2 «dX> <dY> -> -)
POINT_ABS_2 (<X> <Y> -> -)
LINE_ABS_2 (<X> <Y> -> -)
LINE_REL_2 (<dX> <dY> -> -)

POLYGON (<X_array> <Y_array> n -> -)
TEXT (<string> -> -)

where the comment in parenthesis give the stack effect of these Forth
words. <X> refers to a floating point number representing an X coordinate.
<X_array> and <string> are address' of an array and a string repsectively.
An inportant part of the SGP was the concept of the window and the

28 The Journal of Forth Application and Research Volume 3 Number 2

viewport constructed by the words:

WINDOW (<x min> <x_max> <y_min> <y_max> ->
VIEWPORT (<x_min> <x_max> <y_min> <y_max> -> -).

The WINDOW word specifies the window into world coordinates, that is
the actual coordinates used by the application, which will be displayed on
the device.

VIEWPORT specifies the area of the device viewing area that will be used
in Normal Device Coordinates (NDC).

All of the words in the SGP are device dependent. In this case this means
that all graphics produced by SMDOS could be sent to a pen plotter, a CRT
screen or a printer. SGP worries about the translation into each device's
particular language. A further enhancement that is being currently
developed is to add the capability to create a standard intermediate
graphics file (using the NAPLPS standard for example.)

The fact that once a structure is defined its characteristics can be
inherited by other new structures is a very powerful concept for organizing
data. The use of selector words for accessing fields with these structures
lends itself to code that is more standardized and improves readability.
These concepts are important on any large programming project.

The simularity to the PASCAL TYPE (and
inheritance and message sending concepts)
another example of the adherence to known
create Forth extensions.

more remotely to small talk
should be apparent and is

or often used structures to

Programming Style
The management of such a large programming task in Forth was helped

considerably by the adoption of constraints on programming style. The
objective was consistent readable code independent of the particular
programmer involved. Two elements of this style that were emphasized
were indentation and delimiter rules. An example can serve to illustrate
both ideas.

360 0
DO

?WITHIN WINDOW
IF

PLOT GROUND TRACK- -
THEN

LOOP

Proceedings of the 1985 Rochester Forth Conference 29

Note that the delimiters DO, LOOP and IF, THEN are always on the same
column.
Also the logical elements contained by the delimeters are always indented.
This is, of course, wastefull of disk space considering the way Forth sto~es

its screens but the waste is more than made up for by the clear, readable
source code that results. Disk space is not considered a problem by us in
these days of multi-megabye disk drives.

Mission Planning
The object of mission planning is to develop a plan to achieve all the

scientific objectives within the contraints of the mission. Since these
objectives depend upon very dynamic geometrical relationships, it is
important to have tools which can predict these relationships from known
initial conditions and integrate these with the specific scientific objectives.

One of the scientific objectives was to image specific targets on the Earth
from different angles from Earth orbit. A file was created using the TYPE
word explained above which contained information for each of the
investigators's sites. This file was then automatically called by SMDOS
when constructing windows onto the Earth's surface and polygons were
drawn to represent the sites for the investagators.

The known initial conditions were state vectors provided by Johnson
Space Center which represented a known orbit and position of the space
shuttle. These vectors were propagated forward in time in one minute
increments to produce an ephemeris file resident on the IBM hard disk.

Mission planning could begin by entering SMDOS, defining a view window
of some area of the Earth of interest, selecting a science file, some
ephemeris which contained the planned orbit and simply instructing
SMDOS to create a window that would have all these elements overlayed in
one projection. This image could be sent to a screen, plotter or printer in
any of number of projections as selected from a menu. Standard mecator,
cylindrical and polar projections are available.

The shuttle orbit was represented by a projection of the orbit track on
the ground through the center of the Earth. In addition the trace on the
surface of the Earth created by the viewing cone of the radar (called the
footprint) could be shown on the device selected. The radar is capable of
tilting in the azimith direction and this angle can be simulated by the
software with the appropriate change in the radar footprint reflected in the
display.

On-off times for the radar and tilt angle can be adjusted interactively
until the operator had satisfied himself that the required targets are to be
imaged under conditions dictated by the needs of the scientist and the

30 The Journal of Forth Application and Research Volume 3 Number 2

constraints of the mission.
The process described above can be repeated as many times as necessary

as the precise orbit and science opportunities were refined. Once the final
plan had been decided upon the command generator portion of SMDOS
could take over. Photo 1. (taken during the SIR-B mission) shows a science
work station using a planning computer. The screen in the photo shows
various sites of scientific interest oulined by polygons superimposed over a
region in the Middle East The footprints of the radar are the two stripes
that travel from top to bottom of the screen.

The command generator works from the mission plan file to translate the
plan into a form understood by the shuttle computer called the command
file. Once the translation process has been completed and verified, the
command file is transmitted to PAYCOM where it is integrated with all
other payload commands and orbiter events. Once PAYCOM has verified
that the command list violates no known constraints the command list can
be transmitted to the shuttle at the times with which each command is
flagged.

Photo 1. Science Planning Workstation

Proceedings of the 1985 Rochester Forth Conference 31

Mission Operations
Two weeks before the launch all computers were shipped to JSC and

installed in the Mission Operations Control Room (MOCR.) Telemetry was
provided by two interfaces, a high data-rate link (KU band) and a low
data-rate link (S band.) Also a command link was established to JSC's
Payload Conmmander (PAYCOM) over ordinary telephone lines via a 1200
baud modem for transmission of the commands generated by SMDOS.

Liftoff occured without incident on the morning of October 4,1984. After
opening the huge cargo bay doors the SIR-B antenria was deployed and we
made ready to take our first data.

The computers monitored the orbit. SMDOS displayed ground tracks over
selected sites on the Earth. The orbits matched our planning; we could
proceed with the planned scenario of data taking.

It was in the first day of data taking that we noticed the first problem.
The reconstructed echo display provided by one of the SMDOS computers,
that normally would show the bell-shaped curve of the radation pattern
that was being returned from the Earth, went flat. Normal engineering
telemetry was insufficient to allow the radar engineers to diagnose the
problem.

The engineers decided on a course of action. Since the returned echo was
negligible as received by the SIR-B antenna it was decided to increase the
gain of the receiver. The problem was in not understanding what had
happened to cause the failure it was not immediately apparent what the
appropriate gain should be. The reconstructed echo display could be used
interactively to judge the effect of a gain increase but it had not been
designed for this purpose and was not calibrated properly.

No problem. With the advice of the radar engineers, the Forth module
that was used to generate the display was quickly modified to produce a
calibrated display. The gain of the receiver was increased until a perfect
bell-shaped pattern again appeared on the display.

We discovered later that a cable feeding the signal to the transmitting
antenna had developed a short that antennuated the signal by 10 db.
Instead of irradiating the Earth with 1000 watt bursts we were
transmitting about 100 watts, the power of an ordinary light bulb.

This was only the start of our problems. A satellite on board failed to
deploy properly. The shuttle had to remain in high orbit until the problem
was resolved before it could fire its engines to descend to the orbit that
had been planned for the SIR-B data taking. This meant we had to replan
for a possible new orbit. Fortunately we were prepared for this task and
soon the SMDOS computers were displaying new radar footprints on the
Earth.

32 The Journal of Forth Application and Research Volume 3 Number 2

A crucial link in the task of acquiring the data is the Tracking Oata Relay
System (TORS) satellite, Figure 2. show how the shuttle orbiter transmitts
the SIR-B data to the ground where it is recorded. The satellite is in
geosynchronous orbit which means it is at an altitude such that its orbital
speed exactly matches that of the Earth. Since the orbiter is in a lower
orbit the satellite is constantly moving with respect to the shuttle and high
bandwidth communication must be accomplished by tracking the satellite
with an antenna (called the KU band antenna) mounted in the shuttle's
cargo bay. Well into the mission this antenna failed, losing its ability to
track the TORS satellite.

A bolt had sheared in the antenna's pointing mechenism and the KU band
antenna was trashing around, threatening to destroy itself. It was
necessary for an astronaut to exit the shuttle (EVA) in a spacesuit to pin
the antenna down.

A solution was found for this problem also. Onboard were tape recorders
capable of recording short portions of our data. We could use these to
store segments of our data, if a way could be found to transmitt the
contents of the tapes to the ground. The KU band antenna could not track
but it could transmitt. It was decided to use the shuttle itself , firing its
small attitude thrusters to point the antenna at the moving target of the
TORS satellite. Of course in this mode, since we were not pointing at the
Earth, we could not take data. We developed a scenario that eventually
proved successful: Take data and record on tape. When the tape was full
move the shuttle to track the TORS and transmitt to ground. When the
tape is empty move the shuttle so the SIR-B radar again points at the Earth
and take more data.

Of course this meant an entirely new data-taking strategy. Again the
SMOOS computers were put to work displaying new plans for the stringent
new conditions.

The shuttle returned to Earth on October 12. We had managed to take
about 20 percent of the data orginally planned.

Conclusions
SMOOS represents a pioneering effort by NASA/JPL to extend the

possibilites inherent in using a manned space platform for scientific
experimentation. The field is still very new and ripe for methods and
ideas that will fully exploit the existence of the space shuttle. Command
and control of an instrument like SIR-B requires a new intergrated
approach that combines, as SMOOS has done, predictive capabilities as well
as the means to use telemetry to provide interactive visualzations of
experiment status.

Proceedings of the 1985 Rochester Forth Conference 33

We have found in the implementation of SMOOS that the use of Forth has
several advantages over other languages. The development time was
generally halved in comparision to the normal accepted times for code
development using FORTRAN. The extensible nature of the language
allowed us to create, within the same run-time system, diverse,
interacting modules. The nature of Forth allowed us to create formalized
commands modeled on standards in graphics, array manipulation etc while
still retaining the free access to the machine that Forth provides.

That is not to say Forth is not without its problems. Though by
implementing inheritable data structures, and array manipulations we
avoided a a lot of common Forth programming problems we still found
heavy number crunching tasks difficult to program because of the the RPN
notation. This was true even of programmers with a lot of experience with
Forth. We believe that Forth was the correct choice for this project because
we were willing to forgo the numerical programming ease of a number
crunching language such as FORTRAN for the wide range of non-numerical
tasks that were easily implemented in Forth. We found the speed of doing
numerical work like orbit propagation in Forth quite. acceptable due mainly
to Forth extensions for the 8087 numerical co-processor provided by LMI.
See [MAC84] for a good discussion of number crunching using the 8087.

The best example of the power of Forth was discussed above. When the
antenna feed failed and we realized that the software had to adapt to that
failure, it was relatively easy given the interactive Forth enviroment to
change the required module to meet the new specifications. This is clearly
beyond the capabilites of most languages. Indeed, most shuttle software is
required to remain fixed not only during missions but for intervals
typically six months before the launch as a matter of policy. Real-time
programming would be unthinkable give the realities of most current
software design. The success that we have seen in using SMOOS to handle
adaptive space mission design stand as a testimony to the unique and
powerful capabilities of Forth.

The work described in this paper was carried out by the Jet Propulsion Laboratory. California
Institute of Technology under contract with the National Aeronautics and Space Administration.

34 The Journal of Forth Application and Research Volume 3 Number 2

References
[FOL82] J. Foley and A. Van Dam, Fundamentals of Interactive

Computer Graphics, Addison-Wesley, 1982.

[HAR84] H. Harris, "SMDOS: SIR-B Mission Design and Operations
Software," Jet Propulsion Laboratory Document D-1081, 1984.

[B A S 83] J. Basile, "Implementing Data structures in FORTH," Journal of
Forth Applications & Research Vol. 1 No.2, 1983.

[ELA82] C. Elachi, "Radar Images of the Earth from Space," Scientific
American, December 1982.

[MAC84] F. Macintyre. "Number Crunching with 8087 FQUANs: The Mie
Equations," Journal of Forth Applications & Research Vol 2,
Number 3,1984.

Proceedings of the 1985 Rochester Forth Conference

Figure I. Hardware configuration

35

Disk memory

_.Jtf'frv~r.k ~:-.-------....,

Position Display
Computer

..
V

Disk memory

Disk memory

Disk memory

36

EARTH

The Journal of Forth Application and Research Volume 3 Number 2

Figure 2. SIR-B Data Flow

ORBITER

