
Proceedings of the 1985 Rochester Forth Conference

What's Wrong With Forth?
John S. James

Communi Tree Group
p.O. Box 486

Santa Cruz, CA ~5061

ABSTRACT

167

Forth offers unusual control over the entire hardware and software
environment, allowing design efficiencies far more important than its
speed and memory performance. But some traditional coding practices
have used this flexibility in ways which impede the development and
maintenance of large software projects. And easy access to system
facilities has too often allowed vendors to get away without providing
complete application support for any particular purpose.

The keys to improvement are modular software design, information
hiding, and closure. We will have succeeded when programmers can join a
project, then quickly come up to speed and contribute within a single
section of a complex system.

***

Why doesn't Forth have more "market share" compared with other
tools for software development? I asked this question for several years
before sensing any clear answers.

Forth today finds itself completely secure in its own niche; there
is no chance it will go away. It has kept growing over the years with
little institutional backing, against alternatives which have
multimillion dollar development budgets, major promotion campaigns, and
public subsidies going for them. Only UNIX has been a serious
competitor, but it is not growing as a threat.

Yet with all the demonstrated power of Forth, it has had near zero
attention from academic computer science departments, even though they
have long been aware of it. And Forth remains very much out of style
among those who finance or manage large software-development projects.
Most users of Forth (myself included) got involved largely by accident;
once involved, few persons or organizations have left Forth for anything
else. Yet those who have chosen software-development systems from
scratch, without first-hand experience with Forth, have rejected it from
its beginnings 15 years ago through the present.

How can a system work so well without being more attractive to new
users?

What's Right With Forth?

No one knows why Forth works as well as it does. The usual lists



168 The Journal of Forth Application and Research Volume 3 Number 2

of benefits and features -- lists heavily skewed toward raw machine
efficiency, of limited importance in today's industry -- do not explain
its usefulness in practice. Many languages, even BASIC, are
interactive, and several are extensible.

The key benefit may be that Forth is interactive and extensible at
all levels at any time. Users can combine the lowest levels of direct
access to machine instructions and bits, with intermediate levels such
as the words which implement the FORTH system itself, with the highest
levels of application-oriented, user-defined data types. And users
often do combine all these levels -- even in the same line of code.

The result: an almost unprecedented control over the entire
machine and software environment, making possible system-wide design
efficiencies far more important than instruction speed and memory
compactness, where Forth also performs well. And all too often, another
result: code which is "structured", but otherwise undisciplined,
unfactored, and full of unique concoctions a nightmare for anyone but
its author to maintain.

Large applications may have thousands of different words. Forth
permits, but does not require, the organization of these words into
cleanly defined modules, with precisely known, documented
interactions. Without such organization, it can be hard to modify any
part of the system without understanding many other parts, causing
obvious problems for ongoing development and maintenance.

Eventually, Forth may evolve into a new language which includes
better support for software modularity. Meanwhile we can begin this
evolution in our own work by using better practices to design and
implement maintainable software.

Better Software Practice: One Underlying Theme

The big question for maintainability of Forth code is how much new
programmers must learn before they can do useful work on the system in
question.

Unfortunately, software practices which have evolved over the years
do not measure well against this standard.

Problems and Recommendations

The problem starts with the Forth system itself. The
implementation styles of the systems in use have set the style for
application programming.

Forth differs from other languages in that almost everyone who does
much work with it becomes an expert on its internals. The fact that
most users can do so, easily and gradually, provides the immense
advantage of complete control of the environment, allowing optimum use
of the hardware for the job at hand. But all too often, users not only



Proceedings of the 1985 Rochester Forth Conference 169

can, but also must, become experts on Forth internals to do useful work.

The designers of other language products, for example those using
Basic, C, or Pascal, must know something about their audiences and
provide complete facilities for some purpose, because most users will
not change the compiler or the language. But few Forth systems provide
complete facilities for any application purpose. (For a quick lesson on
the deficiencies of your system, pick up a Basic book and start
implementing all of its examples.)

Few Forth systems are ready-to-go for any application purpose, such
as business, machine control, or science. Most systems sold amount to
language construction kits for these purposes, not languages. Users not
only can design their own language, they must.

Forth is indeed a complet~ language for one particular purpose
implementing the system itself. Words like WORD, HERE, and CONVERT can
of course be used in applications, but they have taken their current
form largely for the convenience of system implementers, not application
programmers.

Other words, such as the brackets, blur the line between
application and system. That's no crime, but problems start when
application programmers must understand the internals of their
particular system in order to do professional-quality work. Vendors
should provide a complete working environment which can be used
independently of the system. Internals could still be used to extend
the environment, for efficiency or to meet unusual requirements, but
this system code could be kept in a small, separate section of the
software.

Clarifying the boundary between system and application will also
give us an occasion to review certain coding practices which don't help
either our work or our reputation. For example, while unstructured
jumps may occasionally be justified, should they be obtained by improper
nesting of structured operations which happen to give the right result
due to the particular way they were implemented? Forth practice is full
of words used completely outside their designed intent to take advantage
of incidental effects. And also there are minor embarassments such as
adding truth flags to Ascii character values or to addresses.

Forth has all the potential to be a major contributor to the
computer industry. But we must use it to provide clean development
environments, so that doing useful work does not require digging into
the internals of application modules, or of the system itself.



170 The Journal of Forth Application and Research Volume 3 Number 2




