
Proceedings of the 1985 Rochester Forth Conference

Some Problems in Implementations
or tbe FORTH Standards

Mahlon G. Kelly,
268 Turkey Ridge Rd.,

Charlottesville, VA 22901

Nicholas Spies,
313 Grace St.,

Pittsburgh, PA 15211-1503

173

There have been many complaints about the FORTH standards. These
have been both from users and from those responsible for implementing
the standards in commercial FORTHs. Complaints have even appeared in
letters in major magazines, and have included such adjectives as
"unuseable". But the reasons for the complaints have been, in large
part, unfocused. Many users' complaints seem to stem from a wish that
standard FORTH "did more", which reveals a misunderstanding of the
purpose of the standards: to provide a minimal word set so as allow
writing of transportable code (although one may argue what "minimal"
means -- for example standard floating-point words were called for even
before FORTH-79 was formulated). Perhaps a more basic user's complaint
is that small changes in FORTH-83 (e.g. redefinition of • and the
termination of LOOP ) make it difficult to translate code and can lead
to subtle bugs (e.g. with floored division) if the differences are not
understood. The failure of the FORTH-83 standard document to explicitly
spell out differences aggravates this problem.

More fundamental complaints come from the implementors of FORTH
systems (which, for lack of a better term, we will call "system­
authors"). In some cases they have seen the differences between FORTH-79
and FORTH-83 as so small that they have not converted to the more recent
standard (e.g. MMSFORTH). In other cases system-authors have provided
both standards by using overlays (e.g. HS/FORTH). The most damning
complaint, however, is that the standards documents are sufficiently
unclear and/or ambiguous that implementation is subjective. For example,
is it required that setting BLK to zero will force interpretation to the
input device? Are state-smart words prohibited, e.g. can .w only work in
compile mode and • only work in execute mode? And what does "an error
condition results" mean; should an attempt to divide by zero result in a
reported error in FORTH-83, with the required sacrifice in speed? All of
these questions (and more) have beiEm answered differently by different
system-authors, with the result that there are many different "standard"
FORTHs on the market.

The standards must be viewed in light of their primary goal: to
enable the writing of transportable code. While writing a text on both
FORTH-79 and FORTH-83 for Prentice-Hall we have had to examine closely
the differences in the standards. We have examined 12 different
implementations of "standard" FORTH, and we have discussed the standards
with the system-authors. This has led us to define more precisely the
problems in relation to the goal of the standards. We have defined six
problem areas and also feel we can define some solutions. The problem
areas (with some typical examples) are as follows:



174 The Journal of Forth Application and Research Volume 3 Number 2

1) Standard words are so few that most implementations have double
or treble the number of words required in the standards. And naturaly
most programs call on those dialect-specific words. For example,
FORTH-79 has 171 reserved words while FORTH-83 has 158. On the other
hand MMSFORTH has 426 words, MVPFORTH has 396, and PC/FORTH has 472 (all
without extensions). If a programmer working with MMSFORTH has to input
a number during program execution she will use lIN rather than create a
separate word using EXPECT and CONVERT. The program will not be
translatable to another dialect, and only because of a very basic lack,
a single word to allow numeric input during execution of a program.

2) Differences between the standards are small enough that many
system-authors have not implemented FORTH-83. Others have implemented
both standards using overlays. Of 11 standard FORTHs examined, 6 were
FORTH-79, 3 were FORTH-83, and 2 allowed either standard. Thus the
existance of FORTH-83 has in effect increased the number of incompatible
dialects.

3) The lack of explicit documentation for subtle changes in
FORTH-83 has caused confusion for both users and system-authors. The
article by C. Kevin McCabe (FORTH-83: The evolution continues. Byte,
August, 1984) clarifies many of the differences, but is not generally
available. Many users seem to be confused about such things as loop
termination, floored division, the lack of state-smart words such as '
and .", and so on. At least one commercial FORTH-83 dialect has
continued to treat' as state-smart and has not implemented ['] • While
this confusion is not a fault of the new standard per se, it does result
in resistance to its implementation, and when the confusion is that of
the system-authors it results in non-transportable and confusing code.

4) Some specifications are ignored as unrealistic. One of these is
the implication that wards such as ' and ." should not be state smart.
At least two dialects continue to treat them as state smart, presumably
with the reasoning "if it works, why change it?". We know of no dialect
that limits EMIT to 7 bits, although that is explicitly required by the
FORTH-83 document. Such deliberate but reasonable departures from the
standards make for non-transportable source code.

5) Errors and ambiguities in the standards documents can lead to
confusion. Some of the ambiguities are at worst humorous, since common
sense gives the correct interpretation. For example "The minimum
capacity of TIB is 80 characters'" obviously means that the minimum
capacity of the text input buffer should be 80 characters, not that TIB
should have a parameter field 80 bytes long. And in the definition of
ROLL "moving the remaining values into the vacated position" cannot mean
that two 32-bit numbers are somehow moved into a 16-bit space. But there
are more damaging errors. Probably the most blatant error is the
specification of BLANKS as a reference word in FORTH-79 (to fill a
specified number of bytes with ASCII 32). In all previous dialects and
in FORTH-83 the word is BLANK, and presumably the "S" is a
typographical error, yet some FORTH-79 implementations use BLANKS while
others use BLANK. Other ambiguities have led to differences in
implementations of FORTH-83. Does the standard intend that ' and .If can
no longer be state smart? That is, can ." only be used within a colon
definition? And is the action of ' to be deferred when it is compiled in



Proceedings of the 1985 Rochester Forth Conference 175

a colon definition? These are open to interpretation and have been
handled differently in different implementations. And is it required
that setting BLK to zero will immediately return interpretation to the
keyboard? The standards are unclear and some dialects return to the
keyboard while others do not. These ambiguities and resulting
differences in FORTH dialects can make the language confusing, they
decrease transportability of programs, and they can earn FORTH a bad
name.

6) Most users and system-authors perceive a need for the standards
to specify words for a wider range of uses. Thus nearly all dialects add
floating-point arithmetic, most add some level of graphics, and many add
string manipulation words (to sort, concatenate, extract, and search for
strings, for example). And most dialects now work from within an
operating system, with words for such things as loading files of blocks,
making a specific file the one "seen" by FORTH as containing blocks,
displaying the operating system directory, and exiting FORTH to the
operating system. Some of these added words are fairly uniform between
dialects simply because of common sense. Thus F+ is used to add two
floating point numbers, DIR displays the operating system directory, and
BYE exits from FORTH. Since virtually all programs written in these
dialects will use some of the dialect-dependant words, virtually none of
the programs are transportable. While it is understandable that the
standards define a minimal set of words with the idea that the standards
should specify what FORTH should do rather than how it should be done,
and while a goal of the standards is to allow the user or system-author
to develop FORTH as desired, it can be argued that unless extensions are
added to the standards, "modern" FORTHs will largely result in
non-transportable programs and the goal of the standards will be
defeated. We found that in order to write a usable textbook we had to
describe not only FORTH-79 and FORTH-83 but also a typical enhanced
dialect (we somewhat arbitrarily chose MMSFORTH with examples from other
dialects as well). Even then the usefulness of the text (and any text)
is limited by the variety of different dialects that may be used by
students. No single book can describe them all.

We feel that the solutions to these problems are fairly straight
forward, although they will require an effort of the standards team.
First, we do not feel that a new standard is needed. That would only
decrease the transportability of code by increasing the number of
dialects. We feel that nearly all of the problems can be eliminated by a
clarification of the FORTH-83 standard document and by the addition of
extensions, which a particular dialect mayor may not include while
still meeting the standard.

The standard document should be clarified in three ways: 1)
Ambiguities (such as mentioned in (5) above) should be removed from
definitions by careful editing. 2) Terminology must be carefully
defined; for example what does "an errol" condition results" imply, what
does it mean that "sys is balanced", what is a "compilation address",
and so on. (For that matter, name-field, code-field, and so on should be
defined, since they are used in the document.) 3) The differences
between FORTH-79 and FORTH-83 should be clearly and unambiguously stated
in the standard document. We recognize that it is nearly impossible to
write a completely unambiguous standard document, and for that reason we



176 The Journal of Forth Application and Research Volume 3 Number 2

suggest in a separate paper that a "test-suite" should be created that
will test whether a dialect meets the standard.

Finally we feel that extensions should be added to the standard for
such things as floating-point arithmetic, graphics, strings, and use
within an operating system. It would then be possible for a dialect to
be specified as standard with the exception that certain extensions are
not included, just as Microsoft FORTRAN is speci.fied as standard FORTRAN
with the exclusion of imaginary numbers. It is clear, for example, that
many floating-point words are used in common by nearly all dialects and
could easily be standardized. Dialects would still be free to add to the
extensions, and for that matter, to ignore an extension and still be
standard.

If these clarifications and extensions of FORTH-83 were made FORTH
programs would be much more easily transported between systems, FORTH
implementations would not interpret the standards differently, FORTH
would be much easier to teach and learn, and programmers would have much
less trouble when switching between dialects. But the changes must be
made quickly, for the acceptance of certain widespread implementations
otherwise may force a de-facto but less than optimal standard. Finally,
extending FORTH-83 would not remove any of the flexibility and
extensibility so prized in FORTH; users would be free to ignore or
modify the standard extensions for their own purposes or even to use
only the required words, and system-authors could add to or replace the
standard extensions if needed.




