
Proceedings of the 1985 Rochester Forth Conference

FORTH for a Multimicroprocessor Control Syste.

C. A. Myerholtz, A. J. Schubert, M. J. Kristo, and C. G. Enke
Department of Chemistry

Michigan State University
East Lansing, Mich. 48824

189

In our laboratory, a triple quadrupole mass spectrometer (TQMS)
has been placed under complete computer control. A distributed­
processing system of several microcomputers were required to control
the more than 30 instrumental parameters, acquire data and perform
peak-finding in real-time. The hardware, which consists of four
8088-based microcomputers (one master and three slaves) was designed
and built using the Newcome-Enke Bus (1). Hardware supporting three
modes of interprocessor communication are provided: direct memory
transfer (DMT) , which allows large blocks of data to be moved from one
processor memory to another, command transfer (CT), which allows the
master to load a list of routines to be executed into the command
buffer provided in each slave, and status check (SC) which allows each
processor to check a set of status flags from any other processor.
All of these modes can be executed without interrupting or delaying
any of the slave's real-time operations (2). The hardware was
designed to provide the maximum modularity and flexibility for the
changing needs of the scientific research environment.

The software for this system was based on a standard FORTH
operating system (3). FORTH was chosen as the programming language
for this multimicroprocessor system, because its modularity
complemented the modularity of the hardware and because its speed, low
memory requirements, and extensibility lead to greater ease in
programming, testing and operating the instrument. The basic FORTH
system which normally operates in a single processor environment had
to be expanded to handle the interprocessor tasks of block data
transfer, parameter passing, and task assignment. This involved
additions to the FORTH system running on the master processor and
modifications to the FORTH system for the slave processors.

The first step in adapting FORTH to a distributed processor
environment involved modifications to the target compiler on the
master processor. Several interprocessor memory access words were
developed that utilize direct memory transfer hardware to transfer
large blocks of data between the memories of any two processors in the
system. These words first select a slave processor and then transfer
data between the master's parameter stack and the selected slave's
memory. Two slave control words, RESET and HLD, utilize the control
signals provided by the command transfer hardware to reset a selected
processor or put a processor in the HOLD state, preventing any program
execution. These interprocessor control and access words were used to
create a modified version of the target compiler that directly
downloads the code into the desired slave's RAM instead of writing the
compiled code to the disk.

There are several advantages to having a compiler that directly

190 The Journal of Forth Application and Research Volume 3 Number 2

downloads code into the target processor. For instance, the compiler
can initialize variables and tables in the slave processor during
compilation. This eliminates the need to store special slave
initialization routines in slave memory space even though they are
only used once. The devices interfaced to the slaves are all
memory-mapped, so the compiler can also initialize all of them
appropriately. Also, since the compiler interprets code from the
disk, the entire specialized initialization procedure may reside on
the disk rather than occupy any system memory.

For the master processor to instruct a slave processor to execute
a selected routine, the master processor should have a list of the
routines available in each slave. To accomplish this, a word was
added to the compiler which records information about selected slave
commands into a Slave Command Access Table (SCAT). This new word,
COMMAND, is a FORTH immediate word. When executed, COMMAND records
into the slave's SCAT the first three characters of the routine's
name, the length of the name, and the code field address of the
routine. This information is later used to direct he execution of a
task in a slave processor.

The source code of the basic FORTH system implemented in the
slave processor had to be modified so that the slave processor can
receive instructions from its first-in first-out (FIFO) command
buffers, into which the master writes all of its commands to the
slave. The code that normally interprets commands and data from a
terminal was replaced with new code which performs the same function
using the command FIFOs. The result is a slave interpreter that
operates in the following manner: using the command buffer hardware,
the slave monitors the condition of its command FIFO. When the FIFO
becomes not empty, the 24-bit value in the FIFO is read. Eight of the
24 bits either force an immediate control operation or tell the
microprocessor whether the remaining 16 bits are data or a command.
If an immediate control operation was executed, the lower 16 bits are
discarded. If the lower 16 bits contain the code field address of a
FORTH word to execute, control is then transferred to the routine at
this address. When execution is completed, control will return to the
command FIFO interpreter. If the lower 16 bits are data, the value
is then transferred to the slave's parameter stack. This method of
moving numeric data to the stack and initiating the execution of a
word appears to the rest of the FORTH system to be identical to
interpreting text from a terminal. This new command interpreter was
installed in such a manner as to preserve the multitasking
capabilities of the polyFORTH system. Thus, a slave can be running a
background task, such as an oscilloscope display, and still be able to
act on new commands sent to it through the command buffers.

The slave processors do not possess terminals or disk drives;
thus the support code for these devices is not normally down-loaded
into a slave. This reduces the basic FORTH slave system to
approximately 2 Kbytes. However, for debugging purposes, terminal
support software can be loaded into a slave processor to allow a
programmer to interact with it directly. Normally the user directly
interacts with only the master processor. Since the slave interpreter
mimics normal operation from a terminal, a programmer may test a
routine on the master and be confident that it will behave in the same
manner when it is down-loaded into a slave.

Proceedings of the 1985 Rochester Forth Conference 191

To allow programs running on the master to pass data and commands
to the various slave processors, several new words were defined for
the master processor FORTH system. The first of these follows the
form nPUSH, which. pushes the value at the top of the master
processor's stack to the top of the nth slave processor's parameter
stack. This becomes the primary method of parameter passing from the
master to the slave processors. The second type of word was designed
to ease access of variables and arrays in a slave processor from the
master processor. It follows the form nLABEL and defines a new word
on the master processor that when execute selects the appropriate
slave and leaves the address of a variable in the slave on the
master's stack. The execution of words defined by this command
prepares the master processor for use of one of the interprocessor
memory access words. The third major type of word added follows the
form SLn, and allows commands to be passed to a slave in the form of
addresses of FORTH words to execute. When executed, a word of this
form looks up the code field address for the word that follows it in
the Slave Command Access Table for slave n. If the look-up is
successful, the address is transmitted to slave n's FIFO as a command
to be executed. The SLn and nPUSH commands use the status hardware,
which is provided for each microcomputer, to determine if a slave's
FIFO is full or not. If the FIFO is full, the command passes control
to the next task in the multitasking loop. When control is returned
to the command it checks the FIFO status again. This process is
repeated until data can be transferred to the slave's FIFO.

The use of this type of software system is not limited to the
dedicated hardware developed in our laboratory. The same approach can
be implemented on any microprocessor system with shared memory.
Additional software would be required to emulate the various
communication modes implemented in hardware in our system. However,
the specialized communications hardware developed as a part of this
project offloads some of the burden from the software and offers, not
only vital time savings, but also the ability to perform command
transfer and status check without interference with any slave's
real-time tasks. Even direct-memory transfer affects only the
processors involved. A software system based on the system described
here has been implemented on Intel's Multibus system, for example.

In conclusion, we have developed a programming environment for a
distributed processing system that is simple and easy to use. The
programmer can interact with the system as a unit, rather than a
series of isolated microprocessors. The programmer has access to all
words defined for all processors and processor linkage at execution
time is transparent to the programmer.

References

1. B. H. Newcome and C. G. Enke, Re~ Sci~ Inst:~ 5~, 1984,
2017.

2. B. H. Newcome, C. A. Myerholtz, and C. G. Enke, in preparation.
3. Forth, Inc., Hermosa Beach, California.

192 The Journal of Forth Application and Research Volume 3 Number 2

