
Proceedings of the 1985 Rochester Forth Conference

ARTIFICIAL INTELLIGENCE
WORKING GROUP REPORT

Chairman, William Dress
Secretary, Ray Adams

Attendees:

241

J. Waldron, Y. Racine, A. Cotterman, S. Gulick, D. Mateen,
S. Lewis, M. Worrel, G. Haydon, R. Miller, J. Basile,
S. Rose, D. Ruffer, C. Moore, P. Reynolds, T. Rayburn,
J. Garst, C. Rogers, M. Perry, R. Dixon, M. Glidewell,
M. Kristo, L. Atkinson, P. Lambrix, J. Bender, P. Moreton,
D. Jagerman, J. Lundin, B. Davis, J. Shifrin

Chairman's Comments

Use Forth to describe AI problems - as opposed to
writing an AI language in Forth.

Fast version of an expert system, Expert II.

Prolog done in Forth (by Joel Springs?); Expert II
has been of some use.

Natural Language Processing - use Forth to vector
int%ut of various states.

Savvy program and savvy user's group.

Mike Perry interest~d in knowing what tools are of
use in the various AI fields - ex. dynamic alloca­
tion.

Henry Harris' talk generation of storage,
de-allocation by hand nevertheless he had
grammed some very sizeable applications.

but
pro-

Garbage collection equated to floating point (by
Chuck Moore) in terms of desirability of avoiding.

Distinctions between editor complexity and operator
tools vs. AI construct usefulness.

Person new to AI interested in knowing which struc­
tures that AI investigators need in their work, and
to see if those could be provided via Forth con­
structs.



242 The Journal of Forth Application and Research Volume 3 Number 2

AI Interest Areas

Expert Systems
Language Understanding
Theorem Proving Machine
Learning
Auto Instruction/Teachings
Vision/Speech
Games

Techniques

Pattern Matching
Object Oriented Messages Program Languages
Logic Programming
Productions, Fames
Search
List manipulations (Data Structure)
Probabilities
Recursion
Parsing

Because of fuzziness
descriptions, we have
our own discussions.

of our
a problem

natural language
in understanding

Dick Miller mentioned that Chuck Moore sometime ago
suggested that Forth would be the most natural way
to get machine language (spoken) capability once we
can get the machine to listen to us.

Data Structures suggested as one of the easiest
things to do in Forth.

75% of Group used or interested in Expert Systems.

Dick Miller interested in who is using Expert II.

one person has used and written a paper on its
results.
Miller thought the easy access (back into) Forth
would provide relief for some experienced prob­
lems.

Why are Lisp and Prolog used to such a great extent
in Expert Systems, AI research? What is it about
these languages that is so attractive - could Forth
fulfill these needs?

The heart of Expert II was publi shed (somewhere)
written in Forth.

Expert II suggested as most useful in figuring out
(learning) what an Expert System is as a starting
point, then strike out on your own for further
study.



Proceedings of the 1985 Rochester Forth Conference

Because Forth can handle data and programs the same
(as does Lisp), why can't Forth be used as well as
Forth?

The (one of the) interest difference between Lisp
and Forth is the greater ease with which Lisp can
treat data structures as potential program instruc­
tions.

More to the point than the details of the language
is the need to figure out what elements of (human)
intelligence can be represented in an effective way
(as an operator) by a computer program.

Comments on recursion as a concept, as a procedure
(relative to data structures) vs. iteration as an
algorithm.

Lisp is thought of (by Mike Perry) as trading off
things that appear more natural to the programmer
for (at the expense of) things that are hard for
the machine.

Chuck Moore pointed out that the NOVIX chip will
easily implement the processing of tree structures.

Words used as data seem to be an important attri­
bute of Lisp; Forth really can act (naturally) the
same way (e.g. case statement - vectored case). A
Forth programmer need only vector 5% of an applica­
tion.

Disadvantage of the large size of Lisp that pre­
vents use in a small computer, as opposed to Forth.

There is a rich source of useful problems to be
solved by a small computer that could be done in
Forth. These are being ignored by the Expert Sys­
tems community.

What are some of the AI techniques that we need to
focus on in Forth (given that Forth could easily
treat data as programs)?

Dictionary and Vocabulary searches (each vocabu­
lary should know how it is organized-tree struc­
ture, linear, etc.)

Lisp does dynamic allocation/deallocation of
memory well (Bill Dress' paper suggests one way
- but more work is needed).

243

What about relocating dictionary
(forgetting one word at a time).

words



244 The Journal of Forth Application and Research Volume 3 Number 2

Vocabulary for compiled overlays.

Re-Iocatable jumps cost twice as
absolute jumps (C. Moore), therefore.

much as

Mike Perry argues that "Objects are Crap" and lead
to inefficient, clumsy handling at run time that
are better done at compile time.

Counter argument (that I did
which was recountered by Perry,
use of hidden vocabularies.

not comprehend)
who offered the

Others suggested that Perry's objection does not
change the desireability of handling objects
from the standpoint of the user rather than the
programmer.

Observation that Chuck Moore's comments on
cult problems and how they may be more
solved is related to how fast compilation
achieved -- save the data and recompile.

diffi­
easily

can be

Comment on Lisp and the desireability of being able
to easily handle lists. By comparison, how easily
are these handled by Forth? Suggestions on how
several Forth constructs do easily handle lists.

What kinds of data structures?

Suggested that Forth Dimensions should have another
competition (like for case statements); this one on
list handling.

Or AI programming contest in Forth.

Or not restrict to Forth.

Could someone suggest a general AI problem that
could be a competition?

Optimal search problem
Rubics cube
Maze problems (not algorithmic)

The solution published for the sieve problem was so
bad it stimulated people to improve on it.

Another suggestion for a competition.

Devise an optimal strategy for solving an adventure
game.

Challenge Forth Researchers to do some useful work
in AI coded competitivly in Lisp.



Proceedings of the 1985 Rochester Forth Conference

Solution limited to two blocks of code.

Ini tiates the challenge by asking for problem sub­
mittals

Does speed - as from new Forth engines-make some AI
(sub)problems trivial, or much easier, so that pre­
vious stumbling blocks disappear?

Proof of program correctness is a research area
that could be profitable but this concept was
offensive to C. Moore, because of his experience
(and the modularity) and observations of the funda­
mental nature of Forth programming style and prac­
tice.

c. Moore observation from two conferences (Asilomar
and Rochester)

We are genuinely puzzled by what AI is all
about, whereas the AI community is openly hos­
tile to Forth.

Some suggestions about the psyches of AI and
Forth practitioners and computer science practi­
tioners.

245


