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Abstract
A FORTH program which provides a design tool for systems which contain a microcoded

component was implemented and used in a computer architecture laboratory. The declaration of
standard components such as registers, ALUs, busses, memories, and the connections is required.
A sequencer and timing signals are implicit in the implementation. The microcode is written in a
FORTH-like language which can be executed directly as a simulation or interpreted to produce a fixed
horizontal microcode bit pattern for generating ROMs.

The direct execution of the microcode commands (rather than producing bit patterns and
interpreting those instructions) gives a simpler, faster implementation. Further, the designer may
concentrate on developing the design at a block level without considering some of the implementation
details (such as microcode fields) which might change several times during the design cycle.
However, the design is close enough to the hardware to be readily translated. Finally, the fact that
the same code used for the simulation may be used for assembly of the microcode instructions (after
the field patterns have been specified) saves time and reduces errors.

1. Introduction
At the Wright State University computer architecture laboratory a microcoded machine

simulator and microcode generator have been developed using FORTH. These tools have been used
as "hands-on" instructional aids in graduate courses in computer architecture, and are also being used
to aid the in-house development of new architectures in ongoing research efforts. The simulator
provides basic block-level functional control and data-flow simulation for a machine architecture
based on a microcoded implementation. The user specifies basic functional units such as registers,
ALUs, memories, and busses and the major data path connections between these. Then microcode
is written using a set of FORTH words which are executed to simulate the actions of corresponding
microinstructions. Basic interactive debugging facilities allow the user to test and alter the hardware
organization and the microcode implementation. The user can then present the same machine and
microcode specifications, along with special mapping information, to the microcode generator to
obtain actual horizontal microcode which can then be used to generate ROMs for a hardware
realization.

As an instructional tool this simulator has proven very useful. It allows students to prepare
architecture designs at a block level without specifying the timing details of a microcoded machine.
It also provides a solid experience in dealing with the issues of parallelism and speed versus
hardware quantity and cost which are at the heart of many architectural decisions.
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The use of simulators for instruction in microprogramming is common practice. Robert Rosin
used microcode simulators running on the CDC6600 in his classes at SUNY Buffalo before moving
to specialized machines such as the QMl [9]. Mathur [8] has implemented a simulator, MICROSIM,
which simulates the structure of the Interdata 70, a microprogrammable architecture. MICROSIM
is used for teaching microprogramming and emulation. Simulators of this type have a relatively fixed
hardware configuration but do allow for experimentation with the emulation of different target

"machine instruction sets. Multiple levels of microcode can provide more flexibility, but do not allow
for realistic hardware design experimentation.

At -aneven more abstract level, most architecture references-use an instruction-set processor
language such as ISPS [1] to describe instruction set meanings. Interpreters are available for these
languages. The advantage of such systems is that they allow the description of an instruction set
which is more or less implementation independent-the first step in the design process.

Efforts have also been made to develop structured higher-level languages which produce
efficient microcode [5]. They have been only moderately successful. The structure of the language
used here is closer to that of an assembler. Assemblers for microcoded machines are not easy to use
because each instruction has the capability of specifying many independent and concurrent
operations. Still, they are frequently used because of their power, and are easy to construct in
FORTH [2].

As a hardware development tool the Wright State simulator is particularly useful for testing
basic hardware organization concepts and making instruction set choices. The ability to perfonn test
runs using the microcode not only supports the correctness of the microcode but also verifies the
basic correctness of the hardware organization chosen, thus eliminating many of the costly errors
associated with prototype hardware implementations. In addition, certain microcode sequences may
be identified as particularly costly, and suitable adjustments can be made to the hardware design and
instruction set. Forsley [6], reviewing RISC and Forth machines, suggests that simulation of new
machines is a reasonable approach to obtaining perfonnance expectations. Applying the code
generator to tested microcode simplifies the process of generating the binary image of the microcode
for a hardware implementation.

The FORTH Microcode Simulator (FMSIM) and FORTH Microcode Generator (FMGEN) are
implemented in Laboratory Microsystems Z-80 FORTH V3.0, running under CP/M [4]. FMSIM
occupies some 55 screens and FMGEN occupies another 31. When loaded, FMSIM requires 10K
of dictionary space and FMGEN requires 5K. Most words used are FORTH 83 Standard. The
FORTH environment has proven to be very appropriate for the development and use of these tools.
Developed by students on small microprocessors, the simulator and code generator fonn a compact
and simple-to-use package. Simulations can be perfonned in a convenient, interactive fashion for
relatively little cost in terms of computing capacity. The use of FORTH also makes these tools easily
modifiable and extensible [3]. The use of special, executable FORTH mnemonic microcode, rather
than the generation and interpretation of binary microcode, makes the simulator more compact,
efficient, and easy to use [11].

The following sections describe the simulator and code generator in more detail. Use of these
tools is also described. A complete example is included in the Appendix.

2. Microcode Simulator - Overview
The first step in designing a microcoded system using FMSIM is to prepare a block diagram

similar to the partial diagram shown in Figure l(a). The user must then translate this diagram into
a hardware description for FMSIM by first declaring each hardware device used in the diagram.
FMSIM provides FORTH defining words for declaring the following types of devices: BUS,
REGISTER, POINTER, DRIVER, ALU, MEMORY, PROM, ADDER, INCREMENTER, MUX, and
COMPARATOR. A FORTH programmer can easily add extra device types if required.
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Figure 1. (a) Simple block diagrarq of an ALU and accumulator.

! ! OBUS
! ! ALU1 PORTA
! ! ALU1 PORTB
! ! AC

« 0 :: 15» <-- ALU1
«0:: 15» <-- IBUS
« 0 :: 15» <-- AC
« 0 :: 15» <-- OBUS

«0::15»
«0::15»
«0 •• 15»
«0::15»

Figure 1. (b) Connection statements for the diagram of l(a).

The FMSIM declaration of each device includes an instance name, the device type, and any
modifiers needed to specialize the operation of the device. For example:

3.STATE REGISTER AC

defmes a register with name AC and tri-state outputs. For each device declarations FSIM creates a
FORTH definition containing a special data structure which represents the device.

After all hardware elements have been declared, the user then specifies the primary data path
connections among them. For example, the statement:

, ! AC « 0 :: 11 » <-- oeus « 0 :: 11 »

specifies that inputs 0 to 11 of the accumulator AC are connected to the bus 0 BUS in corresponding
order. Connection statements modify the previously defmed device data structures, filling in
information that is used to update the states of these devices when the simulation is running. Figure
l(b) illustrates the connection statements for the diagram in Figure l(a). Note that connections are
only made for data paths. All control is implicit in the device declarations and in the microcode
written.

At this point the user has described the hardware organization of some desired architectural
implementation. The next step is to describe the microcode instructions that will control the
sequencer, the ALU, and all other components of the system. In the case where this system interprets
another higher level instruction set, this microcode, together with the defined hardware, provides
the instruction set processor (lSP) for the target machine [1]. The user is allowed to define names
for certain bits, allowing convenient mnemonic specification. All addresses in the code are specified
by LABELs, which are also words which must be defined. The user then writes microcode using
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these names, the names of the hardware devices previously defined, and a set of microinstuction
operations. Two operations are the most common: ENS (enable) and LD (load). ENS enables the
output oftri-state devices, and LD is used to signal the gating of information into a device. ALUs,
of course, have a more extensive set of operations which sometimes require modifiers. The general
format for microinstruction components is:

<operation> <device_name> <modifiers>.

For example, the micro-operations:

ENS MA
SEL ALU1 F=S
LD RAM

specify the following actions: enable the memory address register, select the "pass B" function at
ALU1, and load RAM with the data on its inputs.

Microinstructions are composed of sets of these micro-operations (describing the data transfers
occurring in one cycle of execution) terminated by sequence control operations which tell the
microsequencer which microinstruction to execute next. For example, CONT specifies the end of one
microinstruction and passes control to the following one. JMP FETCH ends one micro-instruction
and passes control to the microinstruction with label FETCH. For example, the following two
microinstructions:

[ DCA ] ENB MA SEL ALU1 F=S ENB ALU1 LD RAM CONT
SEL ALU1 F=0 ENS ALU1 LD AC JMP FETCH

perform the "deposit and clear accumulator" assembly instruction for the implementation of the
PDP-8 described at the end of this paper. [ DCA] is a label for the fIrst instruction.

One feature of this simulator is that the microsequencing component of a simulation is implicit
in the simulator. In other words, the user does not specify sequencing hardware. Operations such
as CONT, JMP, and JSR are provided. Further, the system provides the user with a special sequence
control operation, JVCTR, which is used in decoding the machine instructions of the simulated
machine. Usually the user includes a mapping PROM as part of the hardware design. This takes the
instruction opcode as an address and converts it into an entry point into the microcode. The decode
procedure (which the user must include) sends this micro-address to the sequencer via a predefined
simulator device called the MPC. The J VCTR operation causes a branch to the address at the MPC,
executing the instruction.

After constructing microcode for the hardware implementation deflned, the user loads the
simulator screens into the dictionary. Then the screens containing the hardware and microcode
descriptions are loaded. As these screens load, data structures are created for the hardware devices
and connections. The microcode description compiles into one large, executable FORTH word. To
execute the simulation, the user types RUN < Labe L>, where < Labe L> is the desired entry point.
As each microcode statement executes the states of the data stuctures change (with the simulated data
transfers). The simulation will continue to execute freely until the end of the defInition is reached
or until an error condition is encountered.

Currently, the only statistic kept is the total number of microinstructions executed. Addition of
other system statistics as desired is a simple matter. The simulator provides.a number of control
words which allow the user to start the simulation at various points, set breakpoints, single-step
(trace) the execution, and examine and modify the contents of various devices in the simulation. This
can be done both interactively and by the creation of a simulation control program.

The next sections describe in greater detail the structure and operation of the simulator program.
A complete specification of the simulation language is also provided. The reader may wish to consult
the example given in the Appendix at the end of this paper for a better understanding of what the
user must provide for the simulation. '
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3. FMSIM Structure and Operation
The simulator can be divided into four functional units. The first unit contains the code which

defines system data structures corresponding to the hardware devices declared by the user. The
second unit is responsible for parsing connection statements and for generating and filling in the data
structures necessary for updating the simulation state as the simulation proceeds. The third unit
consists of the definitions which provide the user with the microcode operations which are used to
specify the microcode and which, when executed, drive the simulation. Finally, the fourth unit
provides the simulation control words which allow the user to interact with the simulation. Each of
these units is described in detail below.

3.1 Hardware Defmition
Figure 2 shows the types of devices available on the simulator and the device definition syntax.

Note that BUSses are treated as hardware devices by the simulator. REG I STERs, which are latched,
have one input and one output, and may be either 2-state or 3-state devices. DR I VERs are always
3-state, and are treated much like registers, with the exception of having no memory. A PO INTER
is a special register intended to be used for addressing stack memories. It includes increment and
decrement operations that are used for PUSH and POP instructions. An INCREMENTER is a non­
storage device which simply transfers the incremented input to the output. A MUX is a multiplexer,
which is a non-storage device with any number of sets of inputs. Three types of two-input devices
are provided. ADDERs perform the expected addition operation. ALUs have several different
functions which may be selected; these are discussed later. COMPARATORs test their inputs for
equality and produce a one bit output which can be used to control conditional branching in the
microprogram.

Two kinds of memory devices are provided. MEMs are equivalent to RAM, and have data inputs,
data outputs, and address (MAR) inputs. PROMs are similar, with the obvious exception of having no
data inputs. Both of these types come in any length and in three widths: 8-bit, 16-bit, and 32-bit.

All non-memory devices are 32 bits wide. Not all of these bits must be used in connection
statements or the simulation if a narrower width is sufficient. REG I STERs, PO INTERs, ALUs, and
MUXs may be either 2-state or 3-state; all other devices are 3-state by default. As illustrated in Figure
3, each device desired by the user is defmed using one of the device defining words provided by
FMSIM. Each of these words creates a definition with the name specified by the user, and generates
a data structure suited to each type of device. Figure 4 shows the general form of these data
structures.

The first two fields are the same for all devices. The data field occupies the first two words; it
holds the current state of the device, and is also used as a work area. The next word is the type field,
which contains a constant indicating the type of the device.

For most devices the next field contains a pointer to a linked list of output connection nodes.
Each of these nodes describes connection information for each bus that is connected to the outputs
of the device. The following fields are pointers to linked lists of input connection nodes, one list for
each input port on the device. (For example, REG 1STERs have only one IN_ LI ST pointer; a four­
input MUX will have four.) The remaining fields contain other device-specific information, such as
the number of inputs on a multiplexer or the storage area for memory devices. Bus data structures
have no input or output lists, but they do have a link so that the system may keep a master bus list.
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Ie device
/' "- /

'- ADDER ./
name

/
COMPARATOR ./

'-
/' DRIVER "-
'- ./

BUS
'- ./

simp

counting_device

2.STATE

3.STATE

POINTER
COUNT. BY

INCREMENTER

2.STATE ?----}
c~

REGISTER J-< name >--~3.STATE ALU

2.STATE

8~ MUX )--< name >--< size.#" >--
3.STATE'

-[-(
mux device

modified device

storage_device

size.# 8.BIT.MEM name
"- "- I"

16.BIT.MEM
'- ./

32.BIT.MEM
'- ./

/' 8.BIT.PROM
'-

16.BIT.PROM "./
32.BIT.PROM'- ./

device definition-
I simple device I-
I counting_device I

I modified device I

I mux device I
~I -
I storage_device I

Figure 2. FMSIM devices and device definition syntax.
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3.STATE
2.STATE

BUS
BUS
ALU
REG ISTER

IBUS
OBUS
ALU1
AC

Figure 3. Device definitions for the diagram of Figure l(a).

REGISTER

data

data

type

out list

in list

output connection descriptors

U"'--r:r
input connection descriptors

ALU BUS STORAGE

data ..........---.. data data

data data data

type type type

out list link out list

in list1 in list

in list2 addr list

storage

Figure 4. FMSIM device data structures.

3.2 Connection Descriptions
A large portion of FMSIM is devoted to parsing the connection descriptions and generating the

corresponding connection node-lists described above. A fairly flexible connection syntax is allowed;
this is described by the syntaX diagram in Figure 5. (Refer to Figure l(b) for examples of connection
statements.) The general format is as follows: the inputs of some device, qualified by a port selector
if applicable, are connected to the outputs of the device described on the right side of the <-­
symbol. Each statement connects a contiguous group of bits at a device output to a contiguous group

\

of bits at a device input. The field lists'shown in the syntax diagram describe these bit fields. The
input and output bit fields must be the same size, but they do not have to be in the san;te positions.
It may take several statements to describe the wiring at a single port, but it is possible to effect
connections in any configuration (one bit at a time, if necessary). If the bit field list is omitted the
statement connects the entire width of the device. FMSIM provides special VCC and GN0 device
definitions for connecting inputs to logic-l and logic-O values.



12 The Journal of Forth Application and Research Volume 3 Number 3

The first element of a connection statement, the ! !, is a simulator word which performs the
parsing and node generation for each statement. First, temporary pointers are created which point
to the source and destination device words as well as the node list which is to be updated. The bit
field descriptions are also saved in temporary variables. Then a new node is allocated. The structure
of this node is shown in Figure 6. The link field is used to form node lists. The device field is a
pointer to either (a) the destination device data structure, if this node is on an output list; or (b) the
source device data structure, if this node is on an input list. The shift field indicates the number of
bits left or right that the data from the source must be shifted to align properly with the destination
field. The mask field is used to select the desired bits from the source device. The mask and shift
values are calculated from the bit-field description and stored in the new node. Error checking for
device and bit-field compatibility is also performed at this time. After the node is filled in, it is linked
to either the output list of the source device (if the destination is a bus) or the input list of the
destination device.

The final part of the hardware description is the set of EQUATE statements. These statements
declare the bit names that will be tested for conditional branches in the microprognun. EQUATE
statements may be viewed as wiring status bits into the microsequencer. As indicated in Figure 7
their syntax is similar to that of connection statements. EQUATE parses the statement and creates a
definition and data structure which contains a pointer to the source device and a mask which selects
the desired bit. EQUATE defined words may then be used as the objects of TST operations in the
user-defined microcode.

At this point the hardware implementation is completely specified. The next step is to describe
the microcode part of the implementation of the application or ISP.

field list

-
destination

>---,--------------.~

n2

simple_name

r PORTA)

~/ two _port_name
/

L(PORTB~
multi _port_name ) / number "-

/

/ memory_name "" LI MAR

connection statement

---...~~ destination

Figure 5. Connection statement syntax.
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link

device +
shift

mask

mask

to destination bus

or

to source device

Figure 6. Connection description node structure.

-C EQUATE >---<'--_-J
device name

Figure 7. EQUATE statement syntax.

3.3 Microcode Operations
In order to define microcode for the simulation the user applies "micro-operations" to the devices

and test bits previously defined. These microcode operations are provided by the simulator and are
responsible for the actual execution behavior of the simulation. When the microcode definition is
compiled into the dictionary, these words execute immediately. Typically, they compile literal
pointers to the devices on which they operate, and then compile appropriate run-time actions into
the definition. Much of the testing of device types for choosing run-time actions and most of the
error checking is performed at compile time, making the simulation more effective and efficient.

As mentioned previously, the user must ensure the proper order of the operations within a
simulated microinstruction. FMSIM was developed to simulate microcycles that consist of the
following sequence: (a) at the beginning of the cycle selected storage devices are enabled; (b) the
enabled data propagates through the system, passing through non-storage devices as required, and
establishing new values at the inputs to other storage devices; (c) the new values are loaded into the
storage devices, ending the microcycle. Although FMSIM was developed with this sequence in
mind, there is nothing in the simulator to enforce this form of microcycle. Micro-operations are
executed sequentially, in the order specified. It is thus possible to develop microcode for a more
complicated timing and sequencing scheme which will be properly simulated. However, the user
must ensure that the micro-operations specified are consistent with the restrictions imposed by the
timing scheme chosen.

Micro-operations fall into two categories - those which are concerned with data flow, and those
concerned with sequence control. Most operations, such as LD, ENS, and SEL, control the flow of
data. The last operation in each microinstruction definition is a sequence control word.

Before examining the data-flow operations it will be useful to describe how FMSIM transfers
data between devices during the execution of a simulation. As mentioned previously, a micro­
operation compiles two items into the microcode definition. The first is a pointer to a device data
structure; the second is the compilation of a run-time procedure. This procedure uses the pointer to
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< device- name >
< device- name >

-----,-----~f-------<

I----...~f-------<

~
equate_name /

['----... TST

comparator_name

alu function

input_number

1----( pointer_name

Figure 8. FMSIM data-flow micro-operations and syntax.

obtain from the device data structure a pointer to the appropriate node list. It then processes each
node in the list. First, it uses the device pointer to obtain the current value at the source device. Then
it uses the mask and shift fields to extract and align the proper group of bits from the source. This
is then ORed into the destination value. Processing of output lists is similar.

Figure 8 shows the syntax for the data-flow operations. The LO operation processes an input
list to load a device with a new value. The ENB operation processes one or more input lists to obtain
the current value if the device is a non-storage type (e.g. ADDER). If the device is a storage type (e.g.
REG 1STER), it obtains the current value from the device data structure, and then distributes this
value to the destinations described by the output node lists.

The SEL operation may apply to either a MUX or an ALU. When applied to a MUX, SEL uses
the name and the port number to compile a literal pointer to the proper input list of the named device
into the definition. Then SEL compiles a load type action into the definition. When applied to an
ALU, SEL compiles a pointer to the ALU and the selected run-time function into the definition. These
run-time functions process the input node lists of the ALU to obtain the current inputs and then
perform the desired computation, leaving the results in the device data field. FMSIM provides
sixteen ALU functions as listed in Figure 9 below.

F =a
F =1
F=A
F =B
F = -A
F =-B

F =NOLA
F =NOT. B

F =A+ 1
F =B+ 1
F =A + B
F =A - B
F =B - A

F =A 1\ B (AND)
F =A V B (OR)
F =A X B (exclusive OR)

Figure 9. ALU functions.
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The TST operation can be applied to EQUATE names or directly to the outputs of comparators.
In either case execution sets a condition code variable to either TRUE or FA LSE, depending on
whether the bit or comparator output is a 1 or O. This condition code variable is then used by the
conditional microsequencing operations described below.

The-dour operations PRE.INC, PRE.DEC, POST.INC, and POST.DEC apply only to
POINTER devices, incrementing or decrementing the current stored value. FMSIM provides these
operations as substitutes for up-down counters, simplifying the implementation of such structures
as stacks.

Before describing the micro-operations provided to control the microsequencing, it will be
useful to describe the way FMSIM handles microcode addresses. Remember that the microcode
description compiles into one long FORTH definition. Simulating the sequencing of the
microinstructions requires that the interpreter make jumps back and forth to different points within
this definition. This is accomplished by using special simulator constructs called labels.

Each label used in the microcode must be defmed in advance using the LABEL defining word.
The user assigns a predefined label name to a particular microinstruction by prefixing the instruction
with the name enclosed in a "left-bracket"-"right-bracket" pair. (See the example in Figure 10.)
When the microcode definition is loaded, every label inside the compile state brackets executes
immediately, taking the current dictionary address and storing it inside the label body. When a label
is encountered as a destination address (outside of brackets) a reference to its dictionary word is
compiled into the dictionary. When loading is complete, all necessary dictionary entry points are
contained in label definitions. The actual use of these is described below.

FMSIM provides the user with nine different sequence control micro-operations which use these
labels to guide the run-time microsequencing of the simulation. Some of them are immediate, as with
the data-flow words described above, and some are simply compiled into the definition to execute
when the simulation is run. The syntax for these words is specified in Figure 11. The basic
mechanism used to control sequencing involves manipulation of the return stack. When execution
must be transferred to some other part of the definition, the pointer to the next word in the definition
is dropped from the return stack and replaced by the dictionary address extracted from the
appropriate label definition. When the microsequencing FORTH word terminates, control is
automatically transferred to the desired destination.

Four jump operations are provided. J HP <l abe l> transfers control directly to the labeled
microinstruction. JTR <l abe l> and J FS <l abe l> check the condition code modified by TST
before performing a jump. J SR <labe L> saves the current return pointer on a special simulator
stack before performing a jump to the label.

Three return operations are provided. All of these work by replacing the current return pointer
with the pointer left on the top of the simulator stack by the most recent J SR. RET is an
unconditional return from a microcode subroutine. RET. TR and RET. FS check the simulator
condition-code flag before executing the return.

LABEL
LABEL

CHUNK
TST.RAR

[ CHUNK] SEL ALU1
TST lAC

F=NOT. B ENB ALU1
.1 FS TST • RAR

LD L

(label marking p.-code
entry point)

(label as destination of a
-sequencing operation)

Figure 10. Label definition and use.
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JVCTR •./

CONT"- ./

f JMP 1-----/ label "-
"\ /
f JSR label "-"\ /
f

JTR label "-
"\.

f
JPS label "-

~

r RTN ./

/ RTN.TR'-

RTN.FS

Figure 11. Microsequencing operations and their syntax.

One special microsequencing operation is provided especially for the instruction decoding and
microcode entry sequence. J VCTR allows the user to jump to a microcode entry point that was
specified in a special instruction mapping PROM. This PROM is programmed by the user using the
LOAD. VCTR <l abe l> operation, which loads the PROM with the address corresponding to the
named label. If this vector is enabled onto the special MPC bus (already defined by the simulator)
when the J VCTR is executed, control will pass to the desired microcode entry point.

3.4 User Interface
After completing and loading the description of the hardware and microcode being simulated,

the user must specify how the simulation is to be driven. In the typical case of the interpretation of
some ISP, this usually means loading machine language opcodes into the simulated program
memory and initializing the simulated system (the program counter, for example). Because the
simulator is set in the FORTH environment, simulations are interactively accessible to the user.
However, to allow clean and convenient interaction with the simulation, FMSIM provides a few
additional facilities.

RD <name> displays the contents of the named device or bus. <val ue> WT <name> places
the double word on the stack into the data field of the named device. Memory devices may be loaded
or read by the words

<data> <address> <name> LOAD.MEM.n

and
<address> <name> READ.MEM.n

respectively, where n specifies the bit width of the memory (8, 16, or 32). RUN < l abe l> starts
execution of the simulated microcode at the specified label. All of these words may be used both
interpretively and as part of a colon definition for simulator control or interactive debugging.

Address vectors for decoding machine instructions or generating microcode addresses can be
loaded into storage devices using LOAD. VCTR <add ress> <name> <labe l>. LOAD. VCTR takes
the address contained in the label definition and places it in the named storage device at the specified
address.
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Two counting breakpoints are provided for debugging purposes. <n> LD. BK1 <Labe L> and
<n> L0 • BK2 <LabeL> specify the label at which execution should stop and the number of times
(n) that the instruction should be executed before halting. The sequencing micro-operation at the end
of each microinstruction checks to see if break points are enabled and if the next micro-address is
the one specified in the breakpoint. If it is, and if the instruction count matches, then the destination
address is left on the simulator stack, and execution returns to the interpreter. At this point the user
may examine the simulation statistics, and examine or modify the contents of any simulator device.
Execution may be resumed by the command GO, which expects the starting address to be on the
simulator stack. The breakpoint count is not reinitialized-all subsequent breaks will occur each time
the label is encountered unless a new breakpoint specification is entered.

A microtrace debugger facility is also provided. The user specifies the starting location and
initializes the microtrace routine by executing START• AT <LabeL>. After performing this
operation the user can then single-step through the individual operations inside a microinstruction
by repeatedly executing the word MT. The state of the simulation may be examined between
executions-control is returned to the interpreter between micro-operations.

4. FMGEN Structure and Operation
One of the primary differences between FMSIM and many other machine simulators is that

microcode written for it executes directly, rather than generating microcode bit patterns which are
then interpreted to drive the simulation. This is possible because of the power and flexibility that
FORTH provides for defining the simulation environment. While this feature is advantageous for
the actual designing and running of simulations, it is at some point desirable to be able to generate
horizontal microcode bit patterns from microcode that has already been tested on the simulator. The
ability to use the same input description for both simulation and microcode generation reduces errors
and labor. FMGEN, the complementary microcode generator, provides this capability.

In FMGEN the device-defining words, microcode operations, and simulation control words are
redefined. Instead of constructing an executing simulation definition out of the user's microcode, a
definition is constructed, using user-supplied mapping information, which when executed generates
the corresponding microcode bit patterns. This microcode is written as ASCn data to specified
screens in the disk me, which can then be used as input to tailored PROM-programming systems.
FMGEN consists of three functional units: the first unit constructs code-generation data structures
from the simulation hardware description; the second unit creates mapping-description data
structures corresponding to '.he mapping information provided by the user; the third unit compiles
the microcode description, creating a FORTH definition that will generate the binary microcode.
These units are described below.

4.1 Hardware Definition
Each of the device-defining words (R EGISTER, ALU, etc.) used to specify the hardware devices

present in the simulation is responsible for the creation of device mapping definitions. These
definitions are data structures which contain pointers to lists, each of which describes the desired
bit-mapping which corresponds to one of the possible operations on that device. For example,
REG I STER <name> defines a word with the structure shown in Figure 12(a). Note that there are
only two allowed register operations- LD and ENB. Each of the lists is made up of mapping
descriptor nodes which specify which bits or bit fields are to be set when that operation (LD R1 for
example) occurs. The next section describes the structure of these mapping descriptor-nodes.

Figure 12(b) describes the allowed operations and the corresponding data structures for each
of the other device types. Note that BUSses do not have any operators, and thus are ignored (null
definitions). EQUATE names are treated as objects of the TST operation, and are thus given
definitions similar to COMPARATORs. ALUs are currently implemented with sixteen possible
functions (and ENB), requiring a corresponding number of mapping lists.
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In addition to creating data structures for the named devices, these defining words also specify
the runtime action which occurs when the microcode defmition executes. In general terms, each of
these words processes the appropriate mapping list, inserting bit patterns into the binary microword
currently being assembled.

REGISTER

ENB.map

LD.map

ENB mapping descriptor
nodes (usually 1)

LD mapping descriptor
nodes

Figure 12. (a) Device mapping data structure for REG I SrER (general).

BUS

no operations

POINTER

ENB

LD

PRE.INC

PRE.DEC

POST.INC

POST.DEC

EQUATE

TST

INCREMENTER ADDER DRIVER

ENB ENB ENB

MUX ALU 8.,16.,or 32.BIT.MEM

ENB ENB BEj£* of inputs)

r
LD

i 8.,16.,or 32.BIT.PROM

n inputs 16 functions
ENB

~ ~

COMPARATOR

TST

}J-sequencing oPS

CONT

JVCTR

JMP

JSR

JTR

JFS

RTN

RTN.TR

RTN.FS

Figure 12. (b) Operation mapping lists for other devices.

4.2 Mapping Instructions
In order to generate bit patterns in the binary microword from the device descriptions defmed

above and the generation instructions in the simulation microcode, some form of mapping
information is necessary. This mapping information indicates which bits and/or fields in the
microword must be set to signify the desired operation. Once this information is provided it can be
placed in the mapping descriptor nodes on the appropriate operation list for the device, as described
above.
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After defining the simulated hardware and before defining the microcode, the user must specify
the bit mapping for each possible combination of device and operation present in the simulation. This
is accomplished using the mapping definition words FIELD, AT, and IGNORE provided by
FMGEN. The complete syntax description for these words is given in Figure 13.

field def

-C~-F-IE-LD-~>--<Field_name>-~ ::

operat,on8C alu_name ~~_f_un_ct_ion_~
-r+1 SEL ~ ~ , t!---...-------.

mux_name port.# ~

data_ op />---<" device_name

1'--------------<" sequence_ op /)-----------'1

null map

CODE.GROUP code_group_name ,,>-------/

-----J.c IGNORE )1---_.1 operation

map

-0-1 operation

~ • RlT b;"

Field_name >-0--< value rJ
Figure 13. Mapping statement syntax.

The first thing that must be specified is the size (in bits) of the microcode word being generated.
A maximum size of 232 bits is allowed. <n> MWORD. SIZE sets the microword width.

Next, for notational convenience, the user specifies contiguous groups of bits within the
microword and assigns names to them. This is done using the FIE LD statement shown in the
diagram. Note that the bit field description is the same type used by connection statements. The word
FIE LDis a defining word which parses the statement and creates a named definition containing the
bit numbers. This definition has a run-time action which is executed when the field name is used in
a mapping statement. This is described below.

The AT statement is the primary mapping description statement. In the example below,

AT LD AC SET BIT 33



20 The Journal of Forth Application and Research Volume 3 Number 3

AT specifies that the LD AC operation is signified by setting bit 33 of the binary microword. As can
be seen from the diagram in Figure 13, AT statements can describe mapping for data flow micro­
operations, sequence control micro-operations, and CODE. GROUP specifications. The
CODE. GROUP specification allows the user to map sets of recurring operations as single items. Code
groups for which no mapping specification is given are mapped according to their individual
components.

AT uses the specified operation to generate a pointer to the corresponding node list in the device
data structure. SET then allocates a new mapping node and attaches it to the end of the list, returning
a pointer to it. The structure of this node is shown in Figure 14. Mapping description nodes come
in two types. Numeric nodes contain a link for list maintenance, a byte offset into the
microinstruction assembly area, and a 16-bit mask for setting the desired bits. Label nodes are used
for mapping micro-addresses. They also contain a link field. However, instead of containing the
actual bits to be mapped (which are unknown at mapping time), they contain an indicator as to
whether the label address is to be used as an absolute or a relative address. The third word contains
a pointer to the field descriptor of the address field.

When a BIT is being set, BIT consumes the following bit number and uses it to generate an
offset and mask in the mapping descriptor node. When a FIE LD is being set to some value, FIE LD
executes and consumes the rest of the statement. If the word after TO is a number, then another
numeric node is generated with offset and mask. If the word is an addressing type descriptor, then
a label node is constructed with the type specified and a pointer to the address field.

LA BELs are also defined differently from the simulator. LA BEL is a defining word which
creates a place to store the line count which is current when that label executes. The contents of
labels are used when the label mapping nodes are executed.

Connection statements play no role in the generation of the microcode, and are skipped over
by FMGEN (null definitions). It should be mentioned here that the mapping information is treated
in a similar manner by the simulator, allowing the exact same screens to be used as input to both
FMSIM and FMGEN.

numeric

link

byte offset

mask

label

link

type to field descriptor

Figure 14. Mapping description node structure.

4.3 Micro-Operations and the Microcode Def'mition
As mentioned previously, the hardware and microcode descriptions compile into a FORTH

definition which is then executed to generate the binary microcode. Data flow operators such as LD
and EN B compile as constant offsets which select the proper ma.,ping list in each device data
structure. The device names are compiled as normal definitions with the run-time action of
processing one of the node lists in the device body. Micro-sequencing operations such as CONT and
J MP are immediate words which perform two actions at compile time. First, they increment the
microcode line counter. This allows labels (which are also executed during compilation) to be loaded
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with the proper micro-store addresses before execution, eliminating the problem of forward
references. Then they compile the appropriate run-time procedure into the definition.

In order to run the generator definition, the user must specify the starting screen where the
ASCn microcode is to be stored using the statement <n> START. SCREEN. The statement
GEN. CODE <name> then initializes the line counter and the pointers used to output the data, and
executes <name>. As each micro-operation is executed, its corresponding mapping node-list is
processed. This involves moving through, the list and masking bits into the microinstruction at the
proper offset. At the end of each microinstruction the node-list corresponding to the sequencing
operation is processed. If the opemtion is a jump to some label, this involves processing a label node.
If absolute addressing is indicated the contents of the destination label are simply masked into the
specified address field. Relative addressing requires the calculation of an offset from the current line
counter.

After the entire microinstruction has been processed, the line counter and assembled microword
are sent to the output screen, the pointers and line counter are updated, and execution proceeds to
the next microinstruction. This sequence continues until the end of the microcode definition.

5. An Example
In order to give the reader a better feel for what is involved in using the simulator, and what

kinds of simulations are possible, the complete input listing for a simulation of the DEC PDP-8
architecture is presented in the appendix. This simulation is the implementation in microcode of the
ISP-Ievel description of the PDP-8 presented in Siewiorek, Bell, and Newell [10]. The reader is
encouraged to review this description.

The first step taken by the designer of the simulation is to layout a block-level description of
the hardware implementation of the architecture. Note that in the diagram the only things specified
are devices and primary data paths. Control is implicit in the simulation, although the authors suggest
that the designer have explicit timing diagrams in mind before constructing microcode definitions.

Screens 21 and 22 contain the hardware definitions for the simulation. Screens 23 through 26
list the connections. Screens 27 through 29 contain EQUATE-defined bit names for use in the TST
operations.

Screens 30 through 35 contain the mapping information necessary to generate microcode for
this design. Note that the microword width is 44 bits. Also note the FIE LD definitions. The
EN COD E• ALU• SEL statement is a shorthand for encoding the ALU function selects as sequential
values into the ALU F field.

Screen 36 contains the LABEL definitions for the microcode which follows. <n> LABE LS
simply applies LABE L to the <n> label names following.

Line 10 of screen 37 is the start of the microcode definition. This definition continues through
screen 44. For readability, the microcode has been organized so that, where possible, there is one
microinstruction per line.

Screen 45 contains the opemtions necessary to "program" the instruction decoding PROM named
MAP. The contents of each of the labels are deposited in MAP starting at address 0, in direct
correspondence with the machine opcodes which are used to address MAP.

For convenience in testing, a small PDP-8 assembler was written and is contained in screens
46 through 50. This assembler is used to assemble and load the small test program (screens 51
through 53) into the simulated RAM. Note that line 13 of screen 53 loads the beginning address of
the program into the PC. When these screens are loaded, the simulation is ready to run, and a RUN
FETCH command will cause the program to execute.

The test program is a short I/O program which reads a character from the keyboard and prints
it ten times. Entering Q stops the execution. Although execution time per micro-instruction is not
a particularly useful statistic (since it varies with the complexity of the simulation and the host
machine used), it does give a general idea of the capability of the simulator. Running the above
simulation of the PDP-8 and the test program described on a 4MHz Z-80, the simulation executed
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some 4023 microinstructions in 59 seconds, yielding an execution rate of a little over 68
microinstructions per second. While not exactly blinding speed, this is fast enough for useful testing.

Screen 54 contains the commands necessary for generating horizontal microcode for this
simulation, assuming the code generator and description file have been loaded. The actual microcode
generated is contained in screens 55 through 58.

6. Conclusion
FMSIM has been used by some thirty students over the past year in a two-course, graduate-level

sequence in computer architecture. These students implement some relatively simple ISP, such as
the PDP-8, as a first project and an introduction to simulation with FMSIM. They then work on
individual projects of much greater complexity, typically involving the design and simulation of a
machine .to implement the ISP for a custom instruction set, constrained by some basic
implementational approach, such as the use of a stack machine. A previous background in FORTH
is not necessary; the minimal FORTH knowledge required to access and run the simulation is easily
picked up by the students. However, a knowledge of FORTH is a definite advantage in using the
system, particularly for those students who wish to make custom modifications to the simulator or
who wish to perform more intricate simulations.

FMSIM is also being used in a continuing research effort aimed at designing and implementing
a RISC-type machine to implement a generalized FORTH environment, and is the focus of one
related thesis. This project and the preliminary simulation results will be described in another paper.
At this time FMSIM has been very successful in helping to verify several design concepts.

Both FMSIM and FMGEN are prototype systems, under constant revision and enhancement,
and are by no means production software. No real attempts have been made to optimize the FORTH
code, either to minimize memory usage or execution time, or to provide a clean, maintainable
structure. A year of use has brought out many shortcomings of the system. In particular, the inability
to use data directly as control has proven to be a major limitation on the realism of the simulations.
New versions of FMSIM and FMGEN, with various corrections and enhancements, are currently
the topic of a thesis which should be completed by March, 1986. Parties interested in obtaining these
revised packages should contact the authors.
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Simulation of PDP-8
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Appendix: PDP-8 Simulation

Screen # 21
o ( PDP-8 ISP SIMULATION )
1
2 ( device declarations )

3 BUS IBUS
4 BUS OBUS
5 BUS AOOBUS
6 BUS MABUS
7 2.STATE REGISTER AC
8 2.STATE REGISTER L
9 2.STATE REGISTER C.HOLD

10 2.STATE REGISTER PC
11 2.STATE REGISTER IR
12 3.STATE REGISTER MA
13 2.STATE REGISTER STOP. FLAG
14 3.STATE REGISTER SWITCHES
15 3.STATE ALU ALU1 -->

Screen # 22
o ( declarations continued)
1
2 32 16. BIT :PROM MAP
3 4K 16.BIT .MEM RAM
4 COMPARATOR AUTO. INC
5 COMPARATOR IOT.OPR
6 COMPARATOR ZERO.AC
7 COMPARATOR USKIP
8 DRIVER 01
9 DRIVER 02

10 DRIVER 03
11 DRIVER 04
12 DRIVER 05
13 DRIVER 06
14 DRIVER 07
15 DRIVER 08 -->

Screen # 23
0 ( wiring connections)
1 RAM «0 ·. 11 » <-- OBUS «0 ·. 11 »
2 RAM MAR «1 ·. 12 » <-- ADDBUS «0 ·. 11 »
3 RAM MAR « 0» <-- GND
4 IBUS «0 ·. 11 » <-- RAM «0 ·. 11 »
5 ADDBUS «0 ·. 11 » <-- OS «0 ·. 11 »
6 ADDBUS «0 ·. 11 » <-- MA «0 ·. 11 »
7 01 «0 ·. 11 » <-- ADDBUS «0 ·. 11 »
8 IBUS «0 ·. 11 » <-- 01 «0 ·. 11 »
9 PC «0 ·. 11 » <-- OBUS «0 ·. 11 »

10 05 «0 ·. 11 » <-- PC «0 ·. 11 »
11 04 «0 ·. 11 » <-- PC «0 ·. 11 »
12 MA «0 ·. 11 » <-- MABUS «0 ·. 11 »
13 MABUS «7 ·. 11 » <-- 03 «0 ·. 4»
14 MABUS «0 ·. 6» <-- 08 «0 ·. 6»
15 -->

25
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Screen # 24
0 ( connections continued)
1
2 ! ! MABUS «7 11 » <-- 04 «7 ·. 11 »·. ·.
3 !! 03 «0 ·. 4» <-- GNO
4 !! MAP MAR «1 ·. 3» <-- IR «9 ·. 11 »
5 !! MPC «0 ·. 15 » <-- MAP «0 ·. 15 »·.
6 !! ALU1 PORTA «0 ·. 11 » <-- IBUS «0 ·. 11 »·.
7 !! ALU1 PORTA « 12 » <-- GNO
8 ! ! ALU1 PORTB «0 ·. 11 » <-- AC «0 ·. 11 »·.
9 ! ! ALU1 PORTB « 12 » <-- L « 0»

10 ! ! OBUS «0 ·. 12 » <-- ALU1 «0 ·. 12 »·.
11 !! AC «0 ·. 11 » <-- OBUS «0 ·. 11 »·.
12 ! ! 02 «0 ·. 11 » <-- IBUS «0 ·. 11 »
13 ! ! MABUS «0 ·. 11 » <-- 02 «0 ·. 11 »
14 !! IBUS «0 ·. 11 » <-- SWITCHES «0 ·. 11 »
15 -->

Screen # 25
0 ( connections continued)
1
2 IR «0 11 » <-- IBUS «0 ·. 11 »·. ·.
3 L « 0» <-- OBUS « 12 »
4 06 « 0» <-- L « 0»
5 06 «1 ·. 12 » <-- AC «0 ·. 11 »
6 OBUS «0 ·. 12 » <-- 06 «0 ·. 12 »·.
7 07 «0 ·. 10 » <-- AC «1 ·. 11 »·.
8 07 « 12 » <-- AC « 0»
9 07 « 11 » <-- L « 0»

10 OBUS «0 ·. 12 » <-- 07 «0 ·. 12 »·.
11 08 «0 6» <-- IR «0 ·. 6»·. ·.
12 IBUS «0 ·. 11 » <-- 04 «0 ·. 11 »
13 STOP. FLAG « 0» <-- OBUS « 0»
14 C.HOLD « 0» <-- OBUS « 12 »
15 -->

Screen # 26
0 ( connections continued
1
2 AUTO. INC PORTA «0 ·. 8» <-- ADOBUS « 3 11 »·.
3 AUTO. INC PORTB « 0» <-- VCC
4 AUTO. INC PORTB «1 ·. 8» <-- GNO
5 IOT.OPR PORTA «0 ·. 1» <-- IBUS « 10 ·. 11 »·.
6 IOT.OPR PORTB «0 ·. 1» <-- VCC
7 ZERO.AC PORTA «0 ·. 11 » <-- AC « 0 ·. 11 »·.
8 ZERO.AC PORTB «0 ·. 11 » <-- GNO
9 USKIP PORTA « 0 ·. 2» <-- IR « 4 ·. 6»·.

10 USKIP PORTB « 0 ·. 2» <-- GNO
11
12
13
14
15 -->
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Screen # 27
o ( give names to device bits that wi II be tested )
1
2 EQUATE IB <-- IR «8»
3 EQUATE PB <-- IR «7»
4 EQUATE CLL <-- IR «6»
5 EQUATE CMA <-- IR «5»
6 EQUATE CML <-- IR «4»
7 EQUATE RAR <-- IR «3»
8 EQUATE RAL <-- IR «2»
9 EQUATE RT <-- IR «1»

10 EQUATE lAC <-- IR «0»
11
12
13
14
15 -->

Screen # 28
o ( bit names continued)
1
2 EQUATE GP2-3 <-- IR «8»
3 EQUATE CLA <-- IR «7»
4 EQUATE SMA <-- IR «6»
5 EQUATE SZA <-- IR «5»
6 EQUATE SNL <-- IR «4»
7 EQUATE IS <-- IR «3»
8 EQUATE OSR <-- IR «2»
9 EQUATE HLT <-- IR «1»

10 EQUATE GP-3 <-- IR «0»
11
12 EQUATE SPA <-- IR « 6»
13 EQUATE SNA <-- IR « 5»
14 EQUATE SZL <-- IR « 4»
15 -->

Screen # 29
o ( bit names continued )
1
2 EQUATE CARRY <-- L « 0»
3 EQUATE C-IN <-- C.HOLD « 0»
4 EQUATE NEG.AC <-- AC «11»
5 EQUATE INTERRUPT <-- STOP.FLAG « 0»
6
7
8
9

10
11
12
13
14
15 -->
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ENCODE.ALU.SEL ALU1 INTO ALUF
F=0 F=1 F=A F=B F=-A F=-B F=A+1 F=B+1 F=A+B F=A-B
F=AVB F=AAB F=NOT.A F=NOT.B END.LIST

--)

7»
11 »
15 »
18 »

« 0 ·.
« 8 ·.
« 12 ·.
« 16 ·.

FIELD ADDRF
FIELD ALUF
FIELD TSTF
FIELD EOLF

Screen # 30
o ( mapping description for code generator)
1
2 45 MWORD.SIZE
3
4
5
6
7
8
9

10
11
12
13
14
15

Screen # 31
o ( mapping for enabLe statements
1
2 AT ENB D1 SET BIT 20
3 AT ENB 02 SET BIT 21
4 AT ENB 03 SET BIT 22
5 AT ENB 04 SET BIT 23
6 AT ENB 05 SET BIT 24
7 AT ENB 06 SET BIT 25
8 AT ENB 07 SET BIT 26
9 AT ENB D8 SET BIT 27

10
11 AT ENB MA SET BIT 28
12 AT ENB RAM SET BIT 29
13 AT ENB ALU1 SET BIT 30
14 AT ENB MAP SET BIT 31
15 AT ENB SWITCHES SET BIT 32 -->

Screen # 32
o ( mapping for Load statements
1
2 AT LD AC SET BIT 33
3 AT LD L SET BIT 34
4 AT LD PC SET BIT 35
5 AT LD IR SET BIT 36
6 AT LD MA SET BIT 37
7 AT LD STOP. FLAG SET BIT 38
8 AT LD SWITCHES SET BIT 39
9 AT LD RAM SET BIT 40

10 AT LD C.HOLD SET BIT 41
11 ( mapping for test statements
12
13 AT TST CARRY SET TSTF TO 10
14 AT TST C-IN SET TSTF TO 11
15 AT TST NEG.AC SET TSTF TO 12 -->



A Microcoded Machine Simulator and Microcode Assembler 29

SET TSTF TO 1
SET TSTF TO 2
SET TSTF TO 3
SET TSTF TO 4
SET TSTF TO 5
SET TSTF TO 6
SET TSTF TO 7
SET TSTF TO 8
SET TSTF TO 9
SET TSTF TO 1
SET TSTF TO 2
SET TSTF TO 3
SET TSTF TO 4
SET TSTF TO 5

Screen # 33
o ( test statements
1
2 AT TST lAC
3 AT TST RT
4 AT TST RAL
5 AT TST RAR
6 AT TST CML
7 AT TST CMA
8 AT TST CLL
9 AT TST PB

10 AT TST IB
11 AT TST GP-3
12 AT TST HLT
13 AT TST OSR
14 AT TST IS
15 AT TST SNL

continued)

--)

Screen # 34
o ( test statements
1
2 AT TST SZA
3 AT TST SMA
4 AT TST CLA
5 AT TST GP2-3
6 AT TST SZL
7 AT TST SNA
8 AT TST SPA
9

10 AT TST INTERRUPT
11
12 AT TST AUTO. INC
13 AT TST 10T.OPR
14 AT TST ZERO.AC
15 AT TST USKIP

continued)

SET TSTF TO 6
SET TSTF TO 7
SET TSTF TO 8
SET TSTF TO 9
SET TSTF TO 5
SET TSTF TO 6
SET TSTF TO 7

SET BIT 44

SET TSTF TO 13
SET TSTF TO 14
SET TSTF TO 15
SET TSTF TO 00 --)

-->

LBL. VALUE
LBL. VALUE
LBL. VALUE
LBL. VALUE

SET ADDRF TO
SET ADDRF TO
SET ADDRF TO
SET ADDRF TO

SET BIT 19
SET EOLF TO 1
SET EOLF TO 2
SET EOLF TO 3
SET EOLF TO 4
SET EOLF TO 5
SET EOLF TO 6
SET EOLF TO 7

Screen # 35
o ( mapping for input/output subroutines)
1
2 AT CODE.GROUP GET.IN SET BIT 43
3 AT CODE.GROUP PUT.OUT SET BIT 44
4
5 ( mapping for branch control words)
6
7AT JVCTR
8 AT JMP
9 AT JTR

10 AT JFS
11 AT JSR
12 AT RTN
13 AT RTN.TR
14 AT RTN.FS
15
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labels used in pseudo-microprogram)

LABELS

Screen #I 36
o ( declare
1
2 38
3
4 GP3
5 IND.TST
6 TAD
7 JUMP
8 CMAC
9 ROR2

10 TST.IAC
11 TST.SZA
12 TST.SNA
13 TST .HLT
14
15

FETCH
INDIRECT
ISZ
lOT
CMLINK
TST .CLA
TST.RAR
TST.SMA
TST.SPA
THE.END

1STEP
IND.END
DCA
OUT. DATA
INCAC
TST.CMA
TST.RAL
SKIP1
TST.USKIP

INC.PC
LOGIC.AND
JMS
OPR
ROR1
TST.CML
TST .213
INVERT
END.GP2

-->

Screen #I 37
o ( 1/0 subroutines for pseudo-microprpgram
1
2 READ R> DUP 2+ >R a >BODY 2a ;
3 WTREG R> DUP 2+ >R a >BODY 2!
4
5 CODE.GROUP PUT.OUT READ AC DROP EMIT;
6 CODE.GROUP GET.IN ?TERMINAL IF KEY ELSE 0 THEN 0 WTREG AC
7
8 ( pseudo-microprogram)
9

10 PDP-8
11
12 GP3] JSR TST.CLA
13
14 [FETCH TST INTERRUPT JTR THE.END
15 -->

Screen #I 38
o ( instruction fetch, decode and address calcuLation)
1
2 [ 1STEP] ENB D5 ENB RAM TST 10T.OPR LD IR JTR INC.PC
3 ENB D8 ENB D4 TST PB LD MA JTR IND.TST
4 ENB D8 ENB D3 TST IB LD MA JTR INDIRECT
5
6 [ INC.PC ]
7 ENB D4 ENB MAP SEL ALU1 F=A+1 ENB ALU1 LD PC JVCTR
8
9 [ IND. TST] TST IB JFS INC.PC

10 [ INDIRECT] ENB MA TST AUTO. INC JFS IND.END
11 ENB MA ENB RAM SEL ALU1 F=A+1 ENB ALU1 LD RAM CONT
12 IND.END] ENB MA ENB RAM ENB D2 LD MA JMP INC.PC
13 -->
14
15
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TAD ]
ENB MA ENB RAM SEL ALU1 F=A+B ENB ALU1 LD AC LD L JMP FETCH

[ ISZ ]
ENB MA ENB RAM SEL ALU1 F=A+1 ENB AlU1 LD RAM LD C.HOlO CONT

TST C-IN JFS FETCH
ENB D4 SEL AlU1 F=A+1 ENB AlU1 LO PC JMP FETCH

Screen # 39
o ( instruction execution procedures)
1
2 [ LOGIC.AND ]
3 ENB MA ENB RAM SEL ALU1 F=A#B ENB ALU1
4
5
6
7
8
9

10
11
12
13
14
15

LD AC JMP FETCH

-->

JMS ]
ENB MA ENB D4 SEL ALU1 F=A ENB ALU1 lO RAM CONT
ENB MA ENB D1 SEL ALU1 F=A+1 ENB AlU1 LO PC JMP FETCH

[ DCA ]
ENB MA SEL ALU1 F=B ENB A1U1 LO RAM CaNT
SEL ALU1 F=0 ENB ALU1 LD AC JMP FETCH

TST IB JTR OUT.DATA
PUT.OUT JMP FETCH
GET.IN JMP FETCH

Screen # 40
o ( execution procedures continued)
1
2
3
4
5
6
7
8
9

10 [ JUMP ]
11 ENB MA ENB D1 SEl ALU1 F=A ENB AlU1
12
13 lOT]
14
15 OUT.DATA

lD PC JMP FETCH

-->

Screen # 41
o ( operate
1
2 [ OPR ]
3
4
5
6 CMAC]
7
8 CMLINK
9

10 INCAC]
11
12 [ ROR1 ]
13 [ ROR2 ]
14
15

group instructions)

TST GP2-3. JTR TST.2/3
JSR TST.CLA
TST CLL JFS TST.CMA
SEl ALU1 F=0 TST CMA ENB AlU1 LO L JFS TST.CM
SEl AlU1 F=NOT.B TST CMl ENB ALU1 lO AC

J FS TST. lAC
SEL ALU1 F=NOT.B TST lAC ENB ALU1 LO L

JFS TST.RAR
SEL ALU1 F=B+1 TST RAR ENB AlU1 lO AC LD L

JFS TST.RAl
TST RT ENB D7 LD AC LO l JFS FETCH
ENB 07 lD AC LO l JMP FETCH

-->
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Screen # 42
0 ( operate group continued )
1
2 [ TST.CLA ] TST CLA RTN.FS
3 SEL ALU1 F=0 ENB ALU1 LD AC RTN
4
5 [ TST.CMA ] TST CMA JTR CMAC
6 [ TST.CML ] TST CML JTR CMLINK
7 [ TST. lAC ] TST lAC JTR INCAC
8 [ TST.RAR ] TSl RAR JTR ROR1
9 [ TST.RAL ] TST RAl JFS FETCH

10 TST RT ENB 06 LD AC LD L J FS FETCH
11 ENB 06 LD AC LD L JMP FETCH
12
13
14
15 --)

ENB 04 SEL ALU1 F=A+1 ENB ALU1 LD PC JMP END.GP2

TST GP-3 JTR GP3
TST IS JTR INVERT
TST SNL JFS TST.SZA
TST CARRY JTR SKIP1
TST SZA JFS TST.SMA
1ST ZERO.AC JTR SKIP1

Screen # 43
o ( operate continued )
1
2 [ TST.213 ]
3
4
5
6 [ TST.SZA ]
7
8
9 [ TST.SMA] TSl SMA JFS END.GP2

10 TST NEG.AC JFS END.GP2
11 [ SKIP1 ]
12
13
14
15 --)

Screen # 44
0 ( operate continued)
1
2 INVERT ] TST SZL JFS TST.SNA
3 TST CARRY JFS SKIP1
4 TST.SNA TST SNA JFS TST.SPA
5 TST ZERO.AC JFS SKIP1
6 [ TS1.SPA ] TST SPA JFS TST.USKIP
7 TST NEG.AC JFS SKIP1
8 [ TST.USKIP ] TST USKIP JTR SKIP1
9 [ END.GP2 ] JSR TST.ClA

10 TST OSR JFS TST.HLT
11 TST HLT ENB SWITCHES SEL ALU1 F=AVB ENB ALU1
12 LD AC JFS FETCH
13 [ TST.HLT 1ST HLT JFS FETCH
14
15 THE. END ] --)
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lOAD.VCTRS 0 MAP
lOGIC.AND
JMS

Screen # 45
o ( FIll JUMP TABLE)
1
2 8
3
4
5
6
7
8
9

10
11
12
13
14
15

TAD
JUMP

ISZ
lOT

DCA
OPR

-->

VARIABLE lOCATION.POINTER$
lOCATION.POINTER$ ! ;
CREATE , DOES> @ ; ( DEFINING WORD USED FOR )

( OP-CODES WITH NO OPERAND
CREATE , DOES> @ [COMPILE] I >BODY @
177 AND OR 200 OR; (OP-CODES WITH 1 OPERAND )
CREATE , DOES> @ OR ; (MODIFIERS USED WITH )

( GROUP1 MICROINSTRUCTIONS )
CREATE 400 OR , DOES> @ OR ; ( SKIP GROUP )
CREATE 0 , DOES> lOCATION.POINTER$ @ SWAP ! ;
lOCATION.POINTER$ @ U.
lOCATION.POINTER$ @ 2 * RAM MEM.FlO + OVER U. CR
1 lOCATION.POINTER$ +! ;

SKIP$
lABEl$
;$

Screen # 46
o (PDP-8 ASSEMBLER )
1
2 OCTAL
3
4 =$
5 OP$
6
7 OP1$
8
9 GROUP1$

10
11
12
13
14
15

OP1$
OP1$
OP1$
OP1$
OP1$
OP1$
OP$
OP$
OP$
OP$
OP$

Screen # 47
o (PDP-8 OPCODES
1
2 OCTAL
3
4 0000
5 1000
6 2000
7 3000
8 4000
9 5000

10 6000
11 6001
12 6002
13 6400
14 7000
15

ANO$
TAD$
ISZ$
DCA$
JMS$
JMP$
OUT$
ION$
IOF$
INN$
OPR$

-->
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Screen # 48
o ( PDP-8
1
2 OCTAL
3
4 200
5 100
6 40
7 20
8 10
9 4

10 12
11 6
12 1
13
14
15

GROUP1 )

GROUP1$
GROUP1$
GROUP1$
GROUP1$
GROUP1$
GROUP1$
GROUP1$
GROUP1$
GROUP1$

ClA$
Cll$
CMA$
CMl$
RAR$
RAl$
RAR2$
RAl2$
IAC$

-->

SKIP GROUP )

400 OR ;
7577 AND ;

SKIP$
SKIP$
SKIP$
SKIP$
SKIP$
SKIP$
SKIP$
SKIP$
SKIP$

Screen # 49
o (PDP-8
1
2 OCTAL
3
4 100
5 110
6 40
7 50
8 20
9 30

10 4
11 2
12 0
13
14 1$
15 : P.ZERO$

SMA$
SPAS
SZA$
SNA$
SNl$
SZl$
OSR$
HlT$
NO.OP$

( INDIRECT BIT )
-->

Screen # 50
o (PDP-8
1
2 OCTAL
3
4 10
5 11
6 12
713
8 14
9 15

10 16
11 17
12
13
14
15

AUTO INCREMENT REGISTERS )

CONSTANT RO$
CONSTANT R1$
CONSTANT R2$
CONSTANT R3$
CONSTANT R4$
CONSTANT R5$
CONSTANT R6$
CONSTANT R7$

-->
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Screen # 51
o (PDP-8 LABELS )
1
2 OCTAL
3
4 LABEL$ A$
5 LABEL$ B$
6 LABEL$ C$
7 LABEL$ D$
8 LABEL$ E$
9 LABEL$ F$

10 LABEL$ G$
11 DECIMAL
12
13 0 =$
14
15 CR 52 LOAD CR 52 LOAD

Screen # 52
o ( test program )

1
2 OCTAL
3 0 =$
4 B$ 7766 ;$ C$ 0 ;$ F$ 0 ;$
5 20 =$
6 D$ OPR$ CLA$ ;$
7 TAD$ B$ ;$
8 DCA$ C$ ;$
9 A$ INN$ ;$

10 OPR$ SNA$ ;$
11 JMP$ A$ ;$
12 DCA$ F$ ;$
13 TAD$ F$ ;$
14 OPR$ CMA$ ;$
15 TAD$ G$ ;$

Screen # 53
o ( test program continued)
1
2 OCTAL
3 OPR$ IAC$ ;$
4 OPR$ SNA$ ;$
5 OPR$ HLT$ ;$
6 OPR$ CLA$ ;$
7 TAD$ F$ ;$
8 E$ OUT$ ;$
9 ISZ$ C$ ;$

10 JMP$ E$ ;$
11 JMP$ D$ ;$
12
13 20 0 WT PC DECIMAL
14
15

G$ 121 ;$

-->

35
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Screen # 54
o 55 START.SCREEN
1
2 GEN.COOE pop-8
3
4
5
6
7
8
9

10
11
12
13
14
15

Screen # 55
o 0000 000000040020
1 0001 100000020030
2 0002 00102102E005
3 0003 002008828006
4 0004 002008429007
5 0005 0008e0880600
6 0006 000000039005
7 0007 000010030009
8 0008 010070000600
9 0009 002030210005

10 OOOA 000270010801
11 0008 000670010801
12 oooe 030070000600
13 0000 000000038001
14 OOOE 000840810601
15 OOOF 010050000300

Screen # 56
o 0010 000240010001
1 0011 010050800200
2 0012 000850110601
3 0013 000850110201
4 0014 000000029016
5 0015 100000010001
6 0016 080000010001
7 0017 000000029029
8 0018 000000040020
9 0019 000000037022

10 001A 000440036023
11 0018 000240035024
12 001C 000440031025
13 0010 000640034726
14 001E 000604032001
15 001F 000604010001
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Screen #I 57
o 0020 000000078000
1 0021 000240050000
2 0022 000000026018
3 0023 00000002501e
4 0024 000000021010
5 0025 00000002401E
6 0026 000000033001
7 0027 000602032001
8 0028 000602010001
9 0029 000000021000

10 002A 000000024032
11 0028 000000035020
12 002e 00000002A031
13 0020 00000003602F
14 002E 00000002F031
15 002F 000000037039

Screen #I 58
o 0030 00000003e039
1 0031 000840810639
2 0032 000000035034
3 0033 00000003A031
4 0034 000000036036
5 0035 00000003 F031
6 0036 000000037038
7 0037 00000003e031
8 0038 000000020031
9 0039 000000040020

1.0 003A 00000003303e
11 0038 000340032A01
12 003e 000000032001
13
14
15

37
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