Discrete Event Simulation in Forth

Leonard F. Zettel

Room S3035, SRL
Ford Motor Company
P.O. Box 2053
Dearborn, Michigan 48121, U. S. A.

Abstract

A Forth based discrete event simulation system is presented, with words for scheduling events,
executing the simulation, or optionally stepping through it. An example problem, the barbershop
simulation, is presented and discussed. Forth is shown to have considerable advantage over
implementation in conventional procedural languages.

Introduction

Discrete event simulation is a widespread application of computing. This paper will describe
the implementation of a discrete event simulation in Forth and demonstrate that, the characteristics
of Forth lead naturally to a system with considerable advantages over systems coded in conventional
procedural languages like FORTRAN or Pascal. For a thorough description of a FORTRAN based
simulation system see [PRI74]. Discrete event simulation has been used to model and study a great
variety of phenomena. It is particularly well suited to the study of problems involving waiting
lines — queueing problems. Simulation studies have been made of waiting lines at banks [PRI74], the
flow of work through factories [SHE84], and the performance of computer systems [SIG84], to
mention just a few examples.

A Simulation Problem

To guide the following discussion, let us consider a simple queueing situation, the barber shop
problem [SCH74]. Customers arrive at random times, wanting to get a haircut. There is one barber,
and (s)he can serve a typical customer in about sixteen minutes. A customer who arrives when the
barber is busy takes a seat in the shop and waits his turn. In more technical language, the customer
has joined a single-server, first-in, first-out (FIFO) queue. A customer arriving when three or more
people are already waiting may balk—decide not to join the queue but instead get a haircut at another
time or place. Items that might be of interest in studying this system, for different arrival rates of
customers and haircut times, could include the proportion of time the barber is busy (his utilization),
the length of time customers have waited (average, maximum, percentile distribution), the length
of the waiting line, and the proportion of balks.

In approaching the discrete event simulation problem we consider that at any time the system
can be in only one of a set of states. For our purposes the state of the barber shop is completely
defined by whether the barber is busy or idle and, if busy, by the number of customers waiting to
get haircuts. Transitions from state to state occur instantaneously and are called events. For a more
rigorous definition of a discrete event simulation system see [SUR83]. For the barbershop system
we need two events: arrival of a customer, and completion of a haircut.
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The commonest approach to discrete event simulation, and the one we will take here, involves
the maintenance of a calendar of events. The simulation proceeds by having the system remove the
next most imminent event from the calendar, update a simulation clock to the time of the event
removed, change the system state according to the rules for that event (which may be conditional
on the state of the system at the time of event occurrence), and possibly add one or more new events
to the calendar.

In the barber shop problem, the simulation would be started off by showing no one waiting for
a haircut, setting the status of the barber to “idle”, and placing a customer arrival event on the
calendar. When executed, a customer arrival event would do the following:

1) Schedule the next customer arrival event.

2) If the barber is idle, set the state of the barber to busy and put a haircut completion event on
the calendar.

3) If the barber is busy and there are fewer than n customers waiting, increase the number of
customers waiting by one.

4) If there are n or more customers waiting, increase the number of balks by one and do nothing
else, thus effectively the customer does not enter the barbershop.

The haircut completion event actions are:
1) If there are no customers waiting, set the state of the barber to idle.

2) If there are customers waiting, reduce the number of waiting customers by one and schedule
another haircut completion event.

To round out a practical system, there would probably be one or more statistics reporting events
and an end-of-simulation event, either scheduled to occur at a definite time (eight hours after the
shop opened, say) or triggered by some system statistic like the completion of 100 haircuts.

An event calendar is an instance of a priority queue, the priority in this case being the event
occurrence time. Schemes for priority queues and event calendars have included linear lists, indexed
lists, heaps and leftist trees. Any of these can be implemented in Forth. For a review of these
structures and issues related to their relative performance see [MCC81].

In FORTRAN the event type is usually identified by an integer carried as part of the event notice
on the calendar. A particular event is executed by means of a subroutine call after a computed GO
TO, with all the overhead that that implies. Space for the event calendar and other files, and
variables and arrays for system state representation and statistics collection, are kept in large
COMMON blocks. Exceeding any of the storage limits, besides being difficult to detect, necessitates
often cumbersome and complicated reallocation of memory. As a result, initial allocations err on
the generous side, resulting in the waste of computer resources as we wait for the rare worst case
to happen.

Simulation in Forth

Proper implementation in Forth avoids all of this. Variables and arrays representing the system
state are naturally global. Data structures that will change size during the simulation can dynamically
allocate and free space in a manner that does not interfere with other structures, so that the only limit
encountered will be that of the overall space accessible to the Forth dictionary. The key data
structure is the event calendar, here a linear linked list [KNU72] with variable node size. We use
a linear linked list for simplicity, and because it will give performance equal to or better than the
alternatives as long as the event calendar does not grow too long. Figure 1 shows a conceptualization
of the list, and Figure 2 represents more nearly the way it would appear in the computer memory
allocated to the Forth dictionary.
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Figure 1. Figure 2.

The variable CALENDAR points to the top of the list. The minimum node size for an event notice
is five cells. The first cell contains the pointer to the next node on the list, or is zero if this is the
last node. Putting the link node first increases the speed with which we can pass from node to node
during processing and also simplifies the code of the list processing routines PUSH and POP, since
they then don't have to distinguish between an occurrence of the address of the pointer variable and
the occurrence of a node address. The second cell of a node contains the node size in cells, including
the pointer cell and node size cell. "

The third and fourth cells contain the double number event time. The fifth cell has the
compilation address of the routine associated with the event. If the event routine requires parameters,
then they are placed in the sixth and succeeding cells of the node. When the event routine executes
the parameters will be in order on top of the parameter stack. The event calendar is arranged in order
of increasing execution times, so the notice for the next event to be executed is always at the top of
the list.

The event time is expressed as an integer, the customary form of number representation in
Forth. In recent years it has become fashionable among some in the simulation community to
consider a floating point time an advantage, because its reduced granularity would hopefully
eliminate problems which can arise when two distinct events are scheduled for the same moment in
time. If the event that ends up first on the calendar causes state changes that influence the action of
the second event, then results of the simulation will depend on whether it appears first or second.
In the opinion of the author, this “advantage” is likely to be more than offset by the changing
granularity of a floating point clock as the simulation progresses. At large simulation times the
results of events close to each other in time will be modeled with less and less accuracy. Finally,
we note that by using a double number simulation time, a time unit of one second (for many
simulations a rather fine granularity) lets a simulation span sixty years before clock overflow.

The Forth word SCHEDULE (screen 39) inserts a new event notice at the proper spot in the
event calendar. NEXT.EVENT (screen 40) takes the top event notice off the calendar, updates the
simulation clock (kept in the double number variable CLOCK), puts any event attributes on the
parameter stack, and EXECUTE’s the associated event routine. Here we take advantage of the
threaded code properties of Forth to minimize the overhead associated with invoking an event
routine. If there is no event notice on the calendar, NEXT.EVENT aborts with a message to that
effect. The continuing execution of the simulation is accomplished by SIMULATE, (screen 40). It
simply loops endlessly, invoking NEXT . EVENT until interrupted by input from the terminal.

At this point note that implementation in Forth has given us an important bonus at next to no
cost. By invoking NEXT . EVENT directly from the terminal we can step through the simulation event
by event, examining or changing any aspect of the system at our leisure, directly from the keyboard.
This is a greater degree of interactive capability that that offered by any other simulation system
known to the author.

It is fairly common to want an event routine to schedule a future instance of itself, so we include
the word ME which will put the compilation address of the word in which it is embedded on the stack
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when executed. The definition of ME uses words not found in the Forth-79 standard. The usage here
is FIG Forth and follows [PET81]. We note in passing that the commonly used MYSELF (RECURSE
in some implementations) can be defined as follows:

: MYSELF [COMPILE] ME EXECUTE ; IMMEDIATE

Although the author has not yet encountered the situation in practice, it is conceivable that there
might be a closed circle of event invocations in a simulation, i.e. event A schedules an instance of
routine B which in turn schedules A. This and its more complicated variations can be handled by
any of the vectored execution techniques available to the Forth programmer.

Now let us consider some of the specifics of simulating our example (screens 88-90). We define
the Boolean constants TRUE and FALSE according to the Forth-79 standard (in Forth-83 TRUE
should be -1). Variable WAITING holds the number of customers waiting to get a haircut. BALKS
holds the number of customers who have balked since the simulation started. BARBER holds the
value TRUE when the barber is busy, and FALSE if (s)he is idle. The arrival time of the next
customer will be determined by a random draw of an integer between ARRIVAL.MIN and
ARRIVAL.MIN plus ARRIVAL.SPREAD minus one, each integer having an equal probability of
being chosen. HAIRCUT.MIN and HAIRCUT.SPREAD function the same way for haircut
completion times.

For convenience we have included the word SETUP.BARBERSHOP to initialize the simulation.
It sets the number served, the number who have balked, and the simulation time all to zero. The state
of the system is put to the traditional “empty and idle” by putting zero in WAITING and FALSE in
BARBER. Finally, CUSTOMER.ARRIVES is executed.

CUSTOMER.ARRIVES schedules the occurrence of the next customer arrival. The code for
CHOOSE and RANDOM is taken from [BRO81] (screen 17).

Next, if the barber is busy and less than four people are waiting we add one to WAITING and
exit. Note that since for haircutting purposes all customers are created equal, in this case there is
no need to create an actual file of waiting customers. The number waiting is sufficient for all the
purposes of the simulation. If the barber is busy and four or more people are waiting, we add one
to BALKS and exit. If the barber is idle we change the barber state to busy and schedule
FINISH.HAIRCUT. Note that in this version of Forth, [''] puts the parameter field address of the
following word on the stack, so we get the compilation address required by SCHEDULE by following
the event routine name with CFA, which replaces the parameter field address with the corresponding
compilation address.

In FINISH.HAIRCUT we add one to SERVED. If a customer is waiting we decrement
WAITING by one and schedule another haircut completion, otherwise we set the status of BARBER
to idle and exit. Finally, we include the word REPORT to display the current status of the system —
number of customers served, number waiting, and number of potential customers who have balked.

Instrumentation and Software

The example shown was run on a Commodore 64™ with a 1541 disk drive and a VIC-1525
graphic printer. The Forth system was Superforth 64™ V 2.2 from Parsec Research, run in its
79-Standard mode. Superforth 64 is an extension of MVP Forth from Mountainview Press. With
the exceptions noted in the text, every effort was made to adhere to the Forth-79 standard. The
screens shown here use the Brodie baskslash (\, ASCII 92) to indicate that the rest of the line is
comments [BRO84]. The actual screens used the Commodore code 92, which prints as an English
pound sign (£).

Figure 3 shows some of the output from LOADing screen 97, including both computer system
performance figures and simulation results. An additional 86 bytes not shown was consumed by the
event calendar in the course of the simulation.
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SYSTEM COMPILATION
727 BYTES 34.68 SECONDS

MODEL COMPILATION
601 BYTES 19.50 SECONDS

AFTER 8 HOURS @ MINUTES @ SECONDS.
26 CUSTOMERS HAVE BEEN SERVED,

@ ARE WAITING AND

@ HAVE BALKED.

9.03 SECONDS EXECUTION.

END OF SIMULATION.

Figure 3.

Conclusions

We have shown that a discrete event simulation system can be implemented in Forth using very
modest amounts of memory and with acceptable run times. In addition, the nature of the Forth

language

makes the system inherently interactive and extendable, features not found in more

conventional simulation systems.
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SCREEN #17

@ \ RANDOM NUMBER GENERATOR
1 \ FROM STARTING FORTH P265.
2 CREATE RND @ , HERE RND !

3 : RANDOM RND @ 31421 * 6927 + DUP

4 RND ! ;

5 : CHOOSE ( U1 --- U2)

6 RANDOM U* SWAP DROP ;

7

8 : <ROT (N1 N2 N3...N3 N2 N1) \ BACKWARDS ROT

9 ROT ROT ;
10
11
12
13
14
15

SCREEN #36

@ \ FREE MIN.NODE GET

1 VARIABLE FREE @ FREE ! 3 CONSTANT MIN.NODE

2 : GET ( N --- ADDR) \ PUT THE ADDRESS OF THE NEXT AVAILABLE
3 \ NODE OF SIZE N ON THE STACK.

4 DUP FREE DUP @ \ FIND A FREE NODE BIG ENOUGH.

S5 BEGIN DUP

6 IF DUP 2+ @ &4 PICK <

7 ELSE DUP THEN

8 WHILE SWAP DROP DUP @ REPEAT ?DUP

9 IF DUP 2+ @ 4 PICK - DUP MIN.NODE < \ SALVAGE REST OF NODE?
10 IF DROP DUP @ ROT ! SWAP DROP

1" ELSE OVER 5 ROLL 2% + DUP 5 ROLL ! 3 PICK @ OVER ! 2+ |
12 THEN

13 ELSE DROP HERE SWAP 2% ALLOT \ NO NODE; MAKE ONE.

14 THEN DUP <ROT 2+ ! ;
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SCREEN #37
@ \ N! N@ 2+! GIVE
1 : N! C N1...NN ADDR N ---)

2 \ STORE N1 TO NN IN CONSECUTIVE CELLS STARTING AT ADDR.

3 2% @ DO SWAP OVER I + ! 2 +LOOP DROP ;

4 : N@ C ADDR N === N1...NN) \ FETCH N CONSECUTIVE VALUES STARTING
5 \ AT ADDR + 2N-2 & LEAVE THEM ON THE STACK.

6 1- 2%« @ SWAP DO DUP I + @ SWAP -2 +LOOP DROP ;

7

8 : 2+! ( D1 ADDR ---) \ ADD D1 TO THE DOUBLE NUMBER AT ADDR.

"9 DUP >R 23 D+ R> 2! ;

11 : GIVE ( ADDR ---)
12 \ ADD NODE AT ADDR TO FREE LIST.
13 FREE @ OVER ! FREE ! ;

14
15
SCREEN #38
@ \ PUSH POP
1 : PUSH ( N1...NN ADDR ---) \ PUSH N1 TO NN ONTO THE STACK
2 \ POINTED TO BY ADDR. NN IS THE NODE SIZE IN CELLS.
3 OVER GET OVER @ SWAP DUP 4 ROLL !
4 3 PICK N! ;
5
6 : POP ( ADDR --- N1...NN) \ POP STACK POINTED TO BY ADDR,
7 \ LEAVING VALUES ON STACK & NODE ON FREE LIST.
8 DUP @ DUP NOT ABORT" EMPTY USER STACK."
9 DUP @ ROT ! DUP GIVE 2+ DUP @ 1- N@ ;

10 : ME ( --- ADDR) \ PUT THE CFA OF THE WORD BEING
11 \ COMPILED ON THE STACK.

12 LATEST PFA CFA [COMPILE] LITERAL ; IMMEDIATE
13

14

15

SCREEN #39
\ 2PICK CALENDAR SCHEDULE
: 2PICK ( N-—- D1) \ RETURN THE CONTENTS OF THE NTH AND N+1ST
\ STACK VALUES, NOT COUNTING N.
1+ DUP 1+ PICK SWAP PICK ;

VARIABLE CALENDAR @ CALENDAR !
: SCHEDULE ¢ N1...NN ADDR DTIME M ---) \ PUT THE EVENT WITH
\ COMPILATION ADDRESS ADDR ON THE EVENT CALENDAR.

NVNooO~NOOVMSsrUWNNDN-_AS

CALENDAR DUP @

BEGIN DUP IF 4 2PICK 3 PICK &4 + 23 D>
ELSE DUP THEN

WHILE SWAP DROP DUP @ REPEAT

DROP PUSH ;

[ QT T QI QT Q|
Vi W20
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SCREEN #40

@ \ CLOCK NEXT.EVENT SIMULATE END.RUN

1 2VARIABLE CLOCK

: NOW ( === D1) \ D1 IS THE CURRENT SIMULATION CLOCK TIME.
CLOCK 23 ;

: NEXT.EVENT ( ---) \ TAKE THE NEXT EVENT OFF THE CALENDAR,
\ UPDATE THE SIMULATION CLOCK, AND EXECUTE THE EVENT.
CALENDAR @ NOT ABORT" NO NEW EVENT"

CALENDAR POP DROP CLOCK 2! EXECUTE ;

NVoo~NoOVM W

: SIMULATE ( ---)

10 BEGIN NEXT.EVENT ?TERMINAL UNTIL ;
1"

12 : END.RUN ( ---)

13  ABORT" END OF SIMULATION." ;

14

15

SCREEN #88
\ TRUE FALSE WAITING BARBER BALKS SERVED FINISH.HAIRCUT
1 CONSTANT TRUE @ CONSTANT FALSE
VARIABLE WAITING VARIABLE BARBER
VARIABLE BALKS VARIABLE SERVED
VARIABLE ARRIVAL.MIN VARIABLE ARRIVAL.SPREAD
VARIABLE HAIRCUT.MIN VARIABLE HAIRCUT.SPREAD
: NOW. ( --=) \ PRINT THE CURRENT SIMULATION TIME.
NOW 3600 U\MOD
. .'" HOURS " 60 \MOD . .'" MINUTES ' . .'" SECONDS. " ;
: FINISH.HAIRCUT ( =-=-=)
1 SERVED +! WAITING @
IF =1 WAITING +! ME HAIRCUT.MIN @ HAIRCUT.SPREAD @ CHOOSE
+ S->D NOW D+ 5 SCHEDULE
ELSE FALSE BARBER !
THEN ;

-
VPN, OVOEONOCVS WD, S

SCREEN #89
® \ CUSTOMER.ARRIVES SETUP.BARBERSHOP
1 : CUSTOMER.ARRIVES ( ---)
2 ME ARRIVAL.MIN @ ARRIVAL.SPREAD @ CHOOSE +
3 S->D NOW D+ 5 SCHEDULE BARBER @
4 IF WAITING @ 4 <
5 IF 1 WAITING +! ELSE 1 BALKS +! THEN
6 ELSE TRUE BARBER ! ["] FINISH.HAIRCUT CFA HAIRCUT.MIN @
7 HAIRCUT.SPREAD @ CHOOSE + S->D NOW D+ 5 SCHEDULE
8 THEN ;
9 : SETUP.BARBERSHOP ( ---) \ INITIALIZE THE SIMULATION.
10 @ WAITING ! FALSE BARBER ! @ BALKS ! @ SERVED !
11 @. CLOCK 2! CUSTOMER.ARRIVES ;
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SCREEN #96
@ \ BARBERSHOP REPORT
1 : REPORT ( ---)
2 CR ." AFTER ' NOW. CR SERVED @ .
3 ." CUSTOMERS HAVE BEEN SERVED," CR
4 WAITNG @ . .'" ARE WAINTING AND'" CR BALKS @ .
5 ." HAVE BALKED.'" CR ;
6
7
8
9
10
1
12
13
14
15
SCREEN #97
® \ DEMO LOAD SCREEN FOR BARBER SHOP SIMULATION.
1 : ELAPSED.TIME ( D1 D2 ---) 2SWAP D- DROP 100 60 */ S$->D
2 <H # # 46 HOLD #S #> TYPE ." SECONDS " ;
3 HERE RDTIM 17 DUP . LOAD 36 40 THRU
4 CR ." SYSTEM COMPILATION'" CR ROT HERE SWAP - . .'" BYTES "
5 ROTIM ELAPSED.TIME HERE ROTIM
6 88 89 THRU 96 DUP . LOAD
7 CR ." MODEL COMPILATION' CR ROT HERE SWAP - . ." BYTES " RDTIM
8 ELAPSED.TIME RDTIM
9 : END.SIM ( D1 ---) REPORT RDTIM ELAPSED.TIME .'' EXECUTION.' CR
10 ABORT'' END OF SIMULATION" ;
11 720 ARRIVAL.MIN ! 720 ARRIVAL.SPREAD !
12 720 HAIRCUT.MIN ! 480 HAIRCUT.SPREAD !
13 SETUP.BARBERSHOP

14

' END.SIM CFA 28800. 5 SCHEDULE SIMULATE
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