
Extending Forth
in a Camac Controlled Muon Channel

Robbie Spruit
TRJUMF

Vancouver, B. C.
Canada, V6T 2A3

Abstract
Control and diagnostic software was developed for a recently commissioned muon channel at

TRIUMF. Logistics gave rise to separate efforts in several programming languages. This paper
describes the Forth diagnostic package. The choice ofprogramrning language is discussed briefly.
Several extensions to Forth, and their usage, are shown in the framework of a detailed account of the
software implementation. Emphasis is placed on the production of readable code and on the design
of constructs that closely model the structure of the application.

Contents: Choice of language; Beam line overview; Channel control; Forth implementation;
Terminal; Camac; Channel elements; Functions; Parameters; User interface; Conclusion; References;
Appendices: CalTech Forth, Non-standard words, Extensions; Source Files: LOAD, VT100,
CAMAC, DIGI, POWER, CONFIG, USER, INFO.

Preface
When the M 15 channel at TRIUMF delivered its first muons, the very fITst channel settings had

been established with the aid of a small Basic program. Subsequent beam tuning was done with a
set of Forth routines, until the adaptation of an existing control program, written in C for another
channel, was completed.

The Basic program was coded in six hours. It was less than two pages and permitted the
checking of the cabling and of the computer access to the power supply interfaces.

The Forth application routines were developed in three weeks, took seven pages and allowed
full control and diagnostics.

Adaptation of the C program took a month. This involved adding a few pages to the existing
fifty and some restructuring necessitated by porting to a different operating system and compiler.
This package was not meant for diagnostics. It features a channel definition language and a level of
user interface not addressed by the other programs.

The efforts in the different languages varied widely in scope. They were not undertaken to study
the comparative merits of programming languages but rather to do a specific job with the tools at
hand.

This paper describes the Forth program used for channel tuning and hardware diagnostics. On
several occasions modifications or extensions of the Forth language were introduced to make the
code more readable.

Choice ofLanguage
Clearly, if the task is simple enough, the choice of programming language is less important and

a simple language like Basic can be very effective.

Journal of Forth Application and Research Volume 3, Number 4

3

4 The Journal of Forth Application and Research Volume 3 Number 4

Forth excels in flexibility and speed of implementation but it lacks the wide acceptance and
standardization of C. The choice between Fortran and Forth on technical grounds can be quite clear:
Fortran for math, Forth for control. Include the programming language C and the arguments are less
evident. C is well suited to either type of task.

The advantages of Forth, interactiveness and structural extensibility, were not sufficient reason
to rewrite existing application software. However, when setbacks in the acquisition and installation
of the system software began to jeopardize the timely completion of the C approach, a parallel effort
was started in Forth.

A version of CalTech Forth [2] had already been used on site to run FASTBUS test software
[4] under RSXll-M on a PDP 11/34. Since the control system for M15 was to employ a Micro-ll
with RSXll-M, there were no problems with the installation.

Beam Line Overview
TRIUMF is the name for Canada's meson facility in Vancouver, British Columbia. It is used

for pure research in nuclear and particle physics as well as for applied research programs such as:
a) the treatment of cancerous tumours with pion' beams, b) the production of medical radioisotopes
and c) the use of neutron beams for geological analyses. TRIUMF is operated by the universities
of Alberta, British Columbia, Victoria and Simon Fraser under a contribution from the National
Research Council of Canada.

Figure I shows the layout of the 147 m long main building. The six segment cyclotron, 18 m
in diameter, allows the simultaneous extraction, of multiple proton beams at different energies of up
to 520 MeV and 140 uA. Two targets, placed in the;rthorproton beam line 1, are the sources for
a total of six secondary beams of pions and muons.

THERMAL
NEUTRON
FACILITY

SERVICE
ANNEX
EXTENSION

MESON HAll

CHEMISTRY
ANNEX 42 MeV

ISOTOPE
PRODUCTION
CYCLOTRON

NEUTRON
ACTIVATION
ANALYStS

MESON HAll
SERVICE
ANNEX

Figure 1. Floor plan of the TRIUMF cyclotron building

M15 is a dedicated "surface" muon channel. It collects positively charged muons from pions
decaying at rest within a few microns of the meson production target's surface. Surface muons are
longitudinally spin polarized and may be collected into beams of high optical quality. These
properties are exploited in two categories of experiments: measurements of muon decay to test
modern theories of particles, and muon spin rotation experiments to test physical and chemical

Extending Forth in a Camac Controlled Muon Channel 5

phenomena quite unrelated to nuclear or particle physics. For example, the muon is a sensitive probe
of magnetism in solid state crystals.

A more detailed mechanical layout of the channel is given in Figure 2. The controllable elements
shown are dipole magnets (benders), BI to B4, which steer the beam and quadrupole and sextupole
magnets, QI to QI7 and SXI and SX2, which are arranged in pairs or triplets to focus the beam.
The two DC separators were not included in the initial installation. Movable slit plates (not shown)
select spectral qualities such as divergence, momemtum range, intensity and spot size.

t
EXPERIMENTAL
TARGET
LOCATION
(EL.291.5')

lATl TARGET
ARRAY

Figure 2. Muon channel MI5

Channel Control
Remotely controllable power supplies provide direct currents of up to 750 Amperes to the

magnet coils. Local interlock circuitry monitors such conditions as magnet temperature and coolant
flow and automatically switches off the corresponding power supply when necessary. Each power
supply has an analogue input to set the current regulator, an analogue output to monitor the actual
output current, digital outputs indicating on, off and interlock status and digital inputs to switch
power on and off and to allow a reset of interlock faults. DIA converters, AID converters and digital
I/O modules housed in a Camac [1] crate provide for computer control as indicated in Figure 3.

The slits are positioned with AC motors, driven by a microprocessor in the same Camac crate,
and interfaced through similar AID and digital I/O modules.

6 The Journal of Forth Application and Research Volume 3 Number 4

COMPUTER

TERMINAL

CAMAC
CRATE

POWER

SUPPLIES
P.S.

Q1

P.s.
Q2

P.s.
Q17

MAGNET
COILS

~ ~MUONS § ~§~
----.-------
~~ § ~§~

QUADRUPOLE DIPOLE SEXlUPOLE

Figure 3. Camac interface connections

Camac, - the phrase 'Computer Automated Measurement And Control' has been adopted to
make it an acronym -, is the name for an instrumentation bus standard which originated in the
nuclear science community.

Extensive experimental calibration (tuning) is required to obtain a beam with particular char
acteristics. A given beam line tune is best represented by a set of magnetic field strengths.
Monitoring the actual fields with probes may be costly, difficult or impossible. The value given to
the D/A converter that sets the magnet current may provide a suitable measure. Such is the case for
MI5, so that tunes are normally described by a set of DAC settings.

Automatic tuning has, for economic and technical reasons, only recently been given serious
consideration. Integration of the beam line control system with the detector and data acquisition
systems is still in the planning stage.

The type of control considered here is the provision of convenient facilities for setting and
monitoring the state of a number of beam line elements. The interpretation of the detector readout
and the choice of parameters for the elements are operations performed by a beam line physicist.

Forth Implementation
The source code of the application programs is listed in the appendix. The me named LOAD

loads the following mes (VT100, CAMAC, CAMEM, DIGI, POWER, SLITS, CONF IG and USER) on
top of the modified CalTech RSX Forth.

The file CAMEM deals with access and diagnostics for a special Triumf Camac memory module,
while in SLITS motor control is passed to a microprocessor via a protocol through such a memory
module. These two files have been left out in order to avoid an encumbrance of site dependent trivia.
The type of features they offer and the programming principles they depend on are equally well, or
better, explained with the files DIGI and POWER.

The conceptual design began with a tabular representation of the elements of the muon channel.
This became the file CON FIG. Then the notions of what one wanted to do with the elements were

Extending Forth in a Camac Controlled Muon Channel 7

put in the file POWER, for magnet power supplies, and in the file SLITS for the moveable slit plates.
The files VT100 and CAMAC are general utilities. The user interface in the file USER was held to
a minimum since eventually this would be handled by the existing C software.

The following narrative of the principal design modules is presented in the order in which the
files are loaded.

Terminal
Initially, basic control was developed for a hardcopy terminal mode in which standard Forth

terminal I/O is adequate. Later, software was added to support a 24 x 80 character video display.
A set of cursor commands is grouped in a file named after the terminal type, in this case a

VT100. The word ESC sends an escape sequence made up of the next word and preceded by an
escape character. A generic compilation construct was devised to allow the creation of words such
as ES C, which differ only slightly from regular string output but would normally be awkward to
implement as they are to be used inside as well as outside of definitions. ESC and ." are defined
as follows:

ESC BL ($) 33 EMIT WRITE

" & " ($) WRITE

The definition for ($) was a bit tricky, since it has to cause the word in which it is used to be
state sensitive, but the result is satisfying: it makes it easy to define some very useful words. ESC
makes it possible to code terminal dependent escape sequences in a format that is identical to the
specification in the user's manual. The effect of the sequences can be checked interactively, with no
need for additional definitions.

Camac
A subaddress (A) in a slot (N) in a Camac crate is declared as an addressable entity to which

a maximum of 32 I/O function codes (F) may be applied.
The brevity of the routines presented in the listing derives from a number of simplifications. All

status is polled so interrupt handling is not necessary. Direct access to the memory mapped I/O page,
and the resulting compromise in operating system security, is acceptable. There is only one crate.
Multi-branch, multi-crate addressing was not needed.

The minimum functionality required for this application, a 16-bit read and a 16-bit write, could
be coded in a few lines. The facilities provided here are used in general non-interrupt Camac
applications. Camac error messages can optionally be directed to specific fields on the screen, using
the message facility defined in the terminal file.

The Channel
The description of the channel configuration in terms that suit computer control can be done

with lists or tables showing the hardware (Camac) layout. Software to read and interpret such lists
creates a program data base. Control routines, to be invoked by operator commands, can then be
written to act on these.

The option of 'intelligent constructs' in Forth allows for a particularly elegant presentation. The
central notion is to treat a beam line element as an active entity, characterised by configuration
parameters and by the functions that are expected of it.

Allocation and initialization of configuration and working parameters was done in the CREA TE
part of a class define construct (named PS:) and the functionality of the various command options
in the DOES> part.

8 The Journal of Forth Application and Research Volume 3 Number 4

Functions
Standard Forths define a variable as a routine that pushes an address on the stack. The value

located at this address may then be read (by @) or written (by !). A suggestion by Charles Moore
led to the 'smart variable' which would return its value rather than its address unless preceded by
the word TO in which case it would take on a new value from the stack [3]. The word VAR: is used
to define such variables in this version of Forth. Its implementation relies on a state variable, set by
TO and .reset by the variable.

Extending this concept to our channel elements leads to software designations of elements that
return a value unless told to take on a new value by a 'prefix operator' [5]. The selection of different
functions, such as +TO for incrementing, is implemented using different values of the same state
variable. For power supplies, the words ON, OF F and RESET are treated in the same fashion as TO
and +TO.

For diagnostic purposes it is useful to change the meaning of an element's value. The words
oACand AD C indicate that the power supply values are to refer to the setting of the 0/A converter
or to the measure of the actual output current obtained through A/D conversion. The words AMPS
and COUNTS indicate whether the values are measured in Amperes or in OAC or AOC counts.

When the interpretation of a value is in doubt, one can always type it explicitly. For example:

25 AMPS TO Q1 35 TO Q2 AOC Q1 • Q2 •

would check the setting of currents to the first two quadrupole magnets.
The words TO, +TO, ON, OFF and RESET refer to a single power supply. The state variable

they affect is implicitly and immediately reset. The words OAC, AOC, COUNTS and AMPS explicitly
set or reset a state and apply to any number of power supplies.

There are instances where one may want to issue a command for a group of power supplies. For
example, once a tune has been established for a momentum of 30 MeV/c, the tune for 27 MeV/c
may be obtained by scaling all fields down by 10 percent. Status display is another example of a
command that could apply to all supplies. To arrive at a tune it is necessary to sweep selected groups
of magnets through certain momentum ranges.

For these cases command names were chosen with a left parenthesis as the last character. These
assign a certain value to a state variable which keeps its value until reset explicitly by a right
parenthesis. Thus

and

? (81 82 83 84)

-10 S (81 82)

shows the status of the first four benders

scales the first two down ten percent.

The implementation of the TO concept originally used simple values for the state variable, 0
as the default value, 1 for TO, and 2 for +TO. With the proliferation of command options, this
method began to stand out as an example of poor software practice: defining the same association
in more than one place and hoping that the definitions agree.

A 'switch' class define construct (named SW:) was implemented as a remedy. It allows the prefix
operators to be defined such that they switch a state or fuction variable to some unique value, in this
case the parameter field address. As can be seen in the definition of PS: in the fIle POWER,
comments are no longer required to identify the commands.

Parameters
In a CREATE DOES> construct the parameter field address is available on the stack when the

part following DOES> is executed. The individual parameters can then be retrieved by applying
offsets to this address.

Extending Forth in a Camac Controlled Muon Channel 9

For power supplies, thelarge number of parameters required to define their state dictated the
creation of a naming convention. The initial approach was to store the parameter field address on
entry after DOES> in a variable, named PAR.

For each parameter then a word was written to access it, e.g

VAR: PAR
DAF PAR 4 +

: ADF PAR 8 +

were used to get the address of the full scale values of the DAC and the ADC. These definitions
evolved into variables of the form:

• PAR 4 PAR.OF: DAF
• PAR 8 PAR.OF: ADF

where PA R•0 F: was such that the parameters now worked with prefix operators, which looked well
since read access was much more common than overwriting.

In the course of development, the number and order of parameters was changed a few times.
Each change required an edit of the offset literals. This was not difficult but there was an awareness
of something not being quite right. PA R• 0 F: was replaced by 'underbar colon', which needs no
arguments. It assumes it is being used in the context of a parameter list accessed via a pointer, called
PAR . The name change of PAR to PAR reflects the change in type, from VAR: to PNT:.

Not only was the readability of the p-;;rameter declarations greatly improved hereby, the way
was opened up for a similar improvement in parameter allocation and initialization. The pointer
declaration, PNT:, was extended to mark the beginning of a data structure, with subsequent
parameter declarations increasing the size. The word ALL0 CATE, used in the CREA TE part of a
CREATE DOES> construct, allots space for the parameters and makes them accessible by name.
Thus, allocation and initialization no longer require knowledge of offsets or order of declaration.

User interface
An on-line help facility was added and the software was installed to come up automatically with

a continuous status display after logging in to the operating system.
He Lp consists of a list of the most common command options, the last of which is the command

to reinvoke the display. Thus there is always an indication of what options are available. A minimum
of typing skill is required to switch between display and command mode. When in command mode,
the user has access to the entire Forth command set. This is where this implementation stops being
user friendly. Logically, CalTech Forth's entire dictionary, the assembler included, is just one long
list. Fatal results, even if unlikely, are possible by mistyping.

Early Forth systems have always been criticized for such surprises. There are a number of
possible preventive programming measures. None were pursued, since power prevailed over
protection, and time was of the essence.

Notwithstanding its known drawbacks and pitfalls, this simple user interface is highly effective,
requires a minimal development time, and is immediately aqcessible to unfamiliar users without
hindering the more experienced.

Conclusions
The description of the Forth application program made it possible to present some language

constructs, data and function structures or pseudostructures 'in real life' as extensions to the Forth
language.

10 The Journal of Forth Application and Research Volume 3 Number 4

List the specified fIle.
Load, i.e. start interpreting, the specified fIle.
List the fIle whose n char. fIlespec starts at a.
Load a fIle, e.g.: CAMAC LOAD.
Create a fIle and direct standard output to it.
Redirect standard output to the terminal.
Get a keyboard input character, zero if none.

A concise style of implementing functional descriptions is achieved when individual references
to parameters or structure members may be made without having to refer explicitly to the structure
itself.

Coding prefix format commands by name permits a more readable implementation of constructs
that make use of such operations.

References
[1] Modular Instrumentation and Digital Interface System (CAMAC) ANSI/IEEE Std 583-1975.
[2] M.S. Ewing, The CalTech Forth Manual, June 1978. A Technical Report of the Owens

Valley Radio Observatory, California Institute of Technology, Pasadena, Ca 91125.
[3] P. Bartholdi, The TO solution, and 'TO' continued, FORTH Dimensions, Vol. 1, No. 4/5,

1979.
[4] C. Logg, Fastbus Diagnostic Operating System (FBDOS), Aug 1982. Informal paper,

Stanford Linear Accelerator Center, Ca 94305.
[5] K. Schleisiek, Multiple Code Field Data Types and Prefix Operators, Jml. of Forth Appl.

;& Res. Vol. 1, No.2, Dec 1983.

Manuscript received June 1985.

Robbie Spruit, P.Eng., M.Sc. (Eng) Delft, learned about Forth in 1976, when working on data
acquisition and instrument control systems for an international telescope construction project. As
a member ofthe Forth Standards Team, he took part in the definition ofthe Forth-79 standard. Mr.
Spruit is an independent consultant, based in Vancouver, B. c., Canada, with particular experience
in control, communication and interface systems in engineering and specific environments. Among
his current interests is the application ofcomputer systems to natural language services.

Appendix

CaITech Forth
CalTech RSX Forth's direct threaded code, its sixteen thread dictionary, compressed name fields

and sequential source fIles make for extremely fast compilation. This compensates for the lack of
a Forth editor. To make a change in a source fIle one has to exit Forth, invoke the system editor and
rerun Forth. It is possible to run a system program from within Forth but the entire process of
reloading took only a few seconds so there was no pressing need to implement this feature.

A useful feature is the validity of program flow constructs outside of definitions. It is more
convenient to type 20 0 DO READ • LOOP to show the result of twenty read actions than to have
to go through the sequence of encasing this phrase in a new definition, executing it once and
FORGETting it.

A disadvantage of CalTech Forth is the divergence from the more widely used versions of
Forth. We did change it, but rather than making a rigorous conversion to a Forth 79 or 83 standard
we made modifications as required to be able to execute code that looked like standard Forth. A few
of the nonstandard words listed below are CalTech's. Any inconsistencies are ours.

Non-standard words
FLIST <fi lespec>
FLOAD <filespec>
LIST (a n --
LOAD (a n --
>FILE <fi lespec>
>TER
?TER (-- c)

Extending Forth in a Camac Controlled Muon Channel 11

*/R (abc -- r)
BIT (n -- v)
CON: (n CON: <name>
ESC <string>
RANGE (nab -- n f
SHIFT (n1 n n2)

\
O. (n)

T. (n)

• R (n w)

O.R (n w)

LR (n w)

TIME.
DATE.

Extensions
@VAR (-- n)
VAR: <name>
DVAR: <name>
SW: (a SW: <name> --)
PNT: <name>

: <name>
0: <name>

ALLOCATE (a --)
WHILE

CASE
C.ERR (n --)
ENDS

Listing 1

Return rounded result of a*b/c.
Raise 2 to the power n.
Define a (direct code) constant (can't be changed).
Output an escape sequence or compile what's needed to do it.
True if n is in the range a,b (inclusive).
Shift nI n bits left or, if n < 0, -n bits right.
Treat rest of line as a comment.
Show integer value in octal.
Show a number in base 10.
Show in current base, right adjusted in a field of width w.
Octal output, right adjusted in a field of w characters.
Decimal output, right adjusted.
Show time of day.
Show date.

Get state for TO-variables and clear it.
Define a TO-variable.
Define a double TO-variable.
Define <name> such that it stores its pfa in a.
Name and start a parameter list.
Define a single integer parameter variable.
Define a double integer parameter variable.
Allot space for and redirect the list identified at a.
As in Forth-83, but REPEAT allows any number of

WHILEs.
Equivalent to OVER = I F DROP.
Abort in a bad case, show n and error message.
End nested ELSEs. Replaces any number of THE Ns, but

not those that bracket an I F or CASE clause without
ELSE.

An implementation of the VAR:, SW: and PNT: extensions follows. Address and assembler
conventions are specific to this version of PDP-II Forth.

CODE @VAR 0 (no-op) TST,

1 ' @VAR SET TO

2 ' @VAR SET +TO

S-) 0 # MOV, , @VAR @# CLR, NEXT,

VAR: \ <name> ; define an integer 'TO-variabLe'.

CREATE 0
o CASE @
1 CASE !
2 CASE +!

, DOES> @VAR
ELSE
ELSE
ELSE C.ERR ENDS

12

DVAR:

The Journal of Forth Application and Research Volume 3 Number 4

\ <name> ; define a doubLe integer ITO-variabLe'.

CREATE 0 ,
o CASE D@
1 CASE D!
2 CASE D+!

o , DOES> @VAR
ELSE
ELSE
ELSE C.ERR ENDS

SW: \ a SW: <name> -- ; define a function switch that appLies to a.

HERE 8 + (pfa of word to be defined) SWAP SET;

VAR: @PNT

PNT:

\ @PNT hoLds the address of the pointer defined with PNT:.
\ This impLementation does not aLLow nested structures.

\ <name> ; Define a pointer to a parameter List.
\ The pointer itseLf, when invoked by name, Leaves the
\ address at which can be found 1) the address, 2) the size of
\ the List.

CREATE HERE TO @PNT 0 (address), 0 (size), DOES> ;

@PNT,

0:

\ n -- ; in the decLaration of a parameter of size n, set
\ up the address and offset, and update the size of the List.

@PNT DUP (address), 2+ DUP @ (offset), +! (update size)

\ <name> define an integer parameter variabLe.

CREATE 2 @PNT, DOES> D@ @+ @VAR
o CASE @ ELSE
1 CASE! ELSE
2 CASE +! ELSE C.ERR ENDS;

\ <name> ; define a doubLe integer parameter variabLe.

CREATE 4 @PNT, DOES> D@ @+ @VAR
o CASE D@ ELSE
1 CASE D! ELSE
2 CASE D+! ELSE C.ERR ENDS

ALLOCATE \ a -- ; assume 'a' to be a pointer to a List.
\ InitiaLize the pointer and aLLot space for the List.

HERE OVER ! 2+ @1+ 2/ 0 DO 0 , LOOP ;

Extending Forth in a Camac Controlled Muon Channel 13

Listing 2

Source tiles
Each of the source fIles listed below starts with a comment line (in parentheses), in which the

first word is the fIlename.

LOAD fiLes for diagnostics on M1S)

fload VT100
fLoad CAMAC
fLoad DIGI
fLoad CAMEM
fLoad POWER
fLoad SLITS
fload CONFIG
fLoad USER

VT100 terminaL dependent cursor addressing)

HOME ESC [H ;
XV ESC [T. " ;"T. " H"; \ x y -- ; move cursor to coL x,

\ row y
CLRS ESC [J \ CLear screen from cursor
CLRL ESC [K \ CLear from cursor to end of Line
UP ESC [A \ Move cursor up
BKSP ESC [D \ Move cursor Left

DVAR: XVMES 0 -1 TO XVMES \ x,y for messages, ignore if y<0

: M" \ Use instead of ." to di rect messages to XVMES
& " ($) XVMES DUP 0> IF XV ELSE DDROP THEN WRITE

(DIGI bit assignments of TRIUMF's 1/0 moduLe)

-1 CON: 'NODIGI' \ used to fake status when a digi moduLe is not
\ provided

BS?:
BIT:

CREATE BIT
BIT CON:

DOES> @ OVER AND \ Define a 'bit set?' test

\ input bits
when reset:

0 as?: 'OK' \ InterLock fauLt
1 BS?: 'ON' \ Power Off
3 BS?: 'REMOTE' \ LocaL

\ output bits

0 BIT: PWR-ON
1 BIT: PWR-OFF
2 BIT: INTLK-RESET

14 The Journal of Forth Application and Research Volume 3 Number 4

(CAMAC for PDP-11 with a Kinetics 3912 crate controller)

OCTAL 166000 CON: CAMAC \ Crate's address
DECIMAL

: NA \ n a -- na ; encode slot &subaddress into Unibus address
o 15 RANGE 0= ABORT" Subaddress must be 0-15 " SWAP
o 30 RANGE 0= ABORT" Slot nr. must be 0-30 "
4 SHIFT + 1 SHIFT CAMAC + ;

N: CON:; \ n -- ; define a slot (module) no.
RD: CODE S-) SWAP @# MOV, NEXT,; \ na -- ; define an input action
WR: CODE @# S)+ MOV, NEXT,; \ na -- ; define an output action

o 0 NA RD: RD o 0 NA WR: WR \ Data bits 15 - 0
o 1 NA RD: RD-HI o 1 NA WR: WR-HI \ Data bits 23 - 16
o 4 NA RD: ST1 o 5 NA RD: ST2 \ Status register 1 & 2

VAR: #NA \ provide global access to last used N, A and
VAR: #F \ function code

=F
X
Q

TO #F TO #NA #F #NA B!
ST2 2 AND 0= ;
ST2 1 AND 0= ;

\ na
\
\

f ; execute a single action
x ; True if 'X' was generated
q ; True if 'Q' was generated

OCTAL
NA>
NA.
NAF.
X?
Q?

2/ DUP -4 SHIFT 37 AND SWAP 17 AND ~ na -- n a
NA> SWAP 2 T.R 3 T.R; \ decode and show n and a
" NAF:" #NA NA. #F 3 LR SPACE; \ show last n, a and f

2 AND IF M" No X, "NAF. THEN;
ST2 IF ST2 4 AND IF M" Time out,"ELSE

ST2 2 AND IF M" No X," ELSE
ST2 1 AND IF M" No Q," ELSE ENDS NAF. CR THEN

DECIMAL
: F: CREATE 0 7 RANGE IF , DOES> @ =F RD Q? ELSE

16 23 RANGE IF , DOES> @ ROT WR =F Q? ELSE
o 31 RANGE IF , DOES> @ =F X? ELSE

1 ABORT" F-code must be 0 to 31 " ENDS

\ na -- data) (na --) (data na --) (na --)
\ 'read' 'operate' 'write' 'operate'

o F: RD1 8 F: TLM 16 F: WT1 24 F: DIS
1 F: RD2 9 F: CL1 17 F: WT2 25 F: XEQ
2 F: RC1 10 F: CLM 18 F: SS1 26 F: ENB
3 F: RCM 11 F: CL2 19 F: SS2 27 F: TST

Extending Forth in a Camac Controlled Muon Channel 15

\ 16-bit data diagnostic for a single subaddress:

W=R?\ n1 n2 -- n1 ; complain if different
DDUP - IF OVER Mil Wrote:"6 O.R." read:"6 O.R NAF. CR
ELSE DROP THEN ;

CHKD\ n1 -- n1 ;check write read on current N and A
DUP #NA WT1 0 WR #NA RD1 W=R?;

CHK-DATA \ na -- ; Check single one's and single zeroes
TO #NA 1 BEGIN CHKD COM CHKD COM ?DUP WHILE 2* REPEAT

(POWER Control magnet power supplies)

DVAR: PXY
DVAR: PXY2

VAR: PCT
VAR: ADC?
VAR: AMP?
VAR: #AD
VAR: #DA
VAR: FUN

o 3 TO PXY \ Starting point of first display column
46 3 TO PXY2 \ II second II

\ Percentage increase for scale command
\ FLag to get AOC rather than OAC setting
\ Flag to work in AMPS rather than COUNTS
\ Temporary store for aid
\ II d/a
\ Function to be performed

TO PCT

\ Extend use of TO variables

\ Scale by PCT percent
\ Initialize setpoints by reading actual OAC setting
\ Show DAC, ADC and Status
\ Show parameters
\ Load setpoint value from next word in input stream
\ Write 10 and DAC value to output stream.
\ Revert to standard mode
\ for TO, +TO, ON, OFF and RESET

SCA (;

ON
OFF
RESET
SCA(
R(
?(

P(

RD(
WR(
)

SW:
SW:
SW:
SW:
SW:
SW:
SW:
SW:
SW:
SW:

S(

, @VAR
, @VAR
, @VAR
, FUN
, FUN
, FUN
, FUN
, FUN
, FUN
, FUN

ADC
AMPS

1 TO AOC?
1 TO AMP?

DAC 0 TO ADC?
COUNTS 0 TO AMP?

PNT: PAR
0: XY

SP
FSA
OAF
OAC
OG
AOF
AOC

\ pointer to the parameter list of a power supply
\ col and row for display
\ Value of set point
\ Full scale amps x 10
\ OAC's full scale (4095 for 12-, 65535 for 16-bits)
\ OAC's camac address
\ DIGI's camac address (ignored if not there)
\ AOC's full scale
\ AOC's camac address, set bit 0 for ch 16-31.

10. PAR @ (pfa>nfa) 8 - 10. ; \ Show name of beam line element

AD \ -- n ; read 1 of 32 subbaddresses
AOC DUP 1 AND IF 1- RD2 ELSE R01 THEN;

16 The Journal of Forth Application and Research Volume 3 Number 4

C?A \ n1 -- n2 ; convert counts to amps (if required)
AMP? IF 0 FSA M* ADC? IF ADF ELSE DAF THEN

-1 CASE 32767, D+ SWAP
ELSE DUP >R 2/ 0 D+ R> M/ THEN DROP THEN

A?C \ n1 -- n2 ; convert amps to counts
AMP? IF DAF -1 CASE 0 SWAP FSA M/ DROP
ELSE FSA */R ENDS THEN ;

SDAC DAF DDUP U> IF SWAP THEN DROP DAC WT1
SET DAF DDUP U> IF SWAP THEN DROP DUP TO SP DAC WT1

FS. \ n -- ; show full scale in number of bits
-1 CASE 16 ELSE 4095 CASE 12 ELSE 1023 CASE 10 ELSE ENDS 2 .R

%+ 100 + 100 */ R ; \ n1 p -- n2 ; add p percent

%DIFF OVER IF OVER - 100 ROT */R
ELSE SWAP DROP THEN; \ n1 n2 --- p

\ pretend 'ok' if no digi

\ header for ps status table
II DAC ADC "CR
, (percent off)' CR

IITHEN
LocalllTHENII

Ampsx10"
"THEN"

"AMP? IF
ELSE

STATUS AD TO #AD DAC RD1 TO #DA
DG ?DUP IF RD1 ELSE 'NODIGI' THEN
ID. SP C?A 6 U.R

'REMOTE' IF SP #DA %DIFF ?DUP
IF 6.R ELSE II

ELSE

PSHD

'OK' IF
'ON' IF #DA 0 DAF 0 ADF M/ DROP H/ DROP #AD %DIFF ?DUP

IF 6 .R ELSE II IITHEN
ELSE II off IITHEN

ELSE II intlkllTHEN CR DROP

CTRL \ controlbit --
DG IF DG WT1

ELSE DROP ." No remote ON/OFF/RESET for II I D. THEN

PSHL \ header for configuration table
" (aId bi ts digi d/a bi t s amps)"CR

PS. \ write an entry of the configuration table
TAB ADC NA. TAB ADF FS. TAB DG NA. TAB DAC NA.- - 10 / 8TAB OAF FS. FSA .R " PS:II ID. CR ;

Extending Forth in a Camac Controlled Muon Channel 17

: PS: \ <config'n par's> PS: <name> -- ; define a power supply'
CREATE PAR ALLOCATE \ and initiaLize param's

10 * TO FSA BIT 1- TO OAF NA TO DAC
OVER IF NA ELSE DROP THEN TO DG \ zero if no digi
BIT 1- TO ADF
16 IMOD >R-NA R> + TO ADC \ modify naf for 32 ADC chnLs
PXY TO XY PXY DUP 18 > IF DDROP PXY2

ELSE 1+ THEN TO PXY
DOES>

PAR @VAR FUN
II CASE

o CASE ADC? IF AD ELSE SP THEN C?A ELSE
to) 1 CASE A?C SET ELSE
+to) 2 -CASE A?C SP + SET ELSE

ON CASE PWR-ON CTRL ELSE
OFF CASE PWR-OFF CTRL ELSE

RESET CASE INTLK-RESET CTRL ELSE C.ERR ENDS
ELSE SWAP (@VAR) DROP

, SCA(CASE SP PCT %+ SDAC ELSE
R(- DAC RD1 TO-CASE SP ELSE
?(CASE XY XY STATUS ELSE
P(CASE PS. ELSE

RD(CASE ASKN TO SP ELSE
WR(CASE 10. SP 6 U.R CR ELSE C.ERR ENDS

18 The Journal of Forth Application and Research Volume 3 Number 4

< CONFIG Camac modules, power supplies and slits in M15)

1 N: N1 \ GEC model AOC-32, 32-chn L 12-bi t analog to digitaL cony.
2 N: N2 \ "
4 N: N4 \ Joerger modeL O/A-16, duaL 16-bit digitaL to anaLog cony.
5 N: N5 \ "
6 N: N6 \ Joerger model OAC-8L, 8-ch 12-bit digitaL to anaLog cony.
7 N: N7 \ "
8 N: N8 \ "

11 N: N11 , Triumf model 0550 8-chnL 4-bit digital 1/0 moduLe.
12 N: N12 \ " <read bit 0 intLck, 1 on, 3 remote)
13 N: N13 , " <write bit 0 on, 1 off, 2 reset)
15 N: N15 \ Triumf modeL 0576/1, octaL 4-bit Input Gate Output Reg.
16 N: N16 , "
17 N: MM , Triumf modeL 2401, 128 24-bit word memory module.
22 N: OW , Kinetics modeL 3291, dataway dispLay.,

'aid bits digi dla bits amps,
N1 0 12 N11 0 N6 0 12 750 ps: Q1
N1 1 12 N11 1 N6 1 12 750 ps: Q2
N1 2 12 N11 2 N6 2 12 80 ps: Q3
N1 3 12 N11 3 N6 3 12 80 ps: Q4
N1 4 12 N11 4 N4 0 16 250 ps: B1
N1 5 12 N11 5 N6 4 12 80 ps: Q5
N1 6 12 N11 6 N4 1 16 250 ps: B2
N1 7 12 N11 7 N6 5 12 80 ps: Q6
N1 8 12 N12 0 N6 6 12 80 ps: Q7
N1 9 12 N12 1 N5 0 16 250 ps: B3
N1 10 12 N12 2 N6 7 12 80 ps: SX1
N1 11 12 N12 3 N7 0 12 80 ps: Q8
N1 12 12 N12 4 N7 1 12 80 ps: SX2
N1 13 12 N12 5 N5 1 16 250 ps: B4
N1 14 12 N12 6 N7 2 12 200 ps: Q9
N1 15 12 N12 7 N7 3 12 200 ps: Q10
N1 16 12 N13 0 N7 4 12 200 ps: Q11
N1 17 12 N13 1 N7 5 12 750 ps: SEP1
N1 18 12 N13 2 N7 6 12 200 ps: Q12
N1 19 12 N13 3 N7 7 12 200 ps: Q13
N1 20 12 N13 4 N8 0 12 200 ps: Q14
N1 21 12 o 0 N8 1 12 750 ps: SEP2 , no digi
N1 22 12 N13 6 N8 2 12 200 ps: Q15
N1 23 12 N13 7 N8 3 12 200 ps: Q16
N1 24 12 N13 5 N8 4 12 200 ps: Q17,, aid igor memory words

'Left ri ght left right mem pos width stat no.,
N2 0 N2 1 N15 0 N15 1 MM 816 832 848 1 s Lit: SL1
N2 3 N2 2 N15 3 N15 2 MM 817 833 849 2 s Lit: SL2
N2 4 N2 5 N15 4 N15 5 MM 818 834 850 3 slit: SL3
N2 7 N2 6 N15 7 N15 6 MM 819 835 851 4 sLit: SL4
N2 8 N2 9 N16 0 N16 1 MM 820 836 852 5 sLit: SL5
N2 11 N2 10 N16 3 N16 2 MM 821 837 853 6 slit: SL6

Extending Forth in a Camac Controlled Muon Channel

(USER routines for M15)

, ExampLes of use of the diagnostics in CAMAC, POWER and SLITS,
, serving as a makeshift user interface.

3 22 to XYMES 'coL, row for camac error reports

he Lp "INFO" List ;
?? heLp;

19

mags q1 q2 q3 q4 b1 q5 b2 q6 q7 b3 sx1 q8 sx2 b4
q9 q10 q11 sep1 q12 q13 q14 sep2 q15 q16 q17

, group aLL
'magnets

sLits sL1 sL2 sL3 sL4 sL5 sL6 ; , group aLL sLits

aLL mags sLits; , aLL eLements

scaLe s(mags) ;

show pshL p(mags cr sLhL sLits) cr , config'n. parameters

time.hd 73 0 xy time. cr , show time in header

nokey ?ter 13 - ., , c Leave 0 onLy if return was hit

II home cLrs pshd
40 23 xy ." Hit return for attention. (rev. Mar 85)" time.hd
begi n ?(mags) nokey whi Le

cr mm mtst nokey whiLe
?(sLits) nokey whiLe time.hd repeat

o 21 xy clrs ." Type ?? for heLp."cr

save >fiLe ." (TUNE.M15 " date. space time. ")"cr
wr(mags cr sLits)

>ter ;

, fiLe header
, eL't settings

restore rd(fLoad) ; , restore setpoints from data in fiLe

svcaL >fi Le ." (CALIB.M15 " date. space time. ")"cr
wm(sLits)

>ter ;

: LdcaL rm(" CALIB.M15" Load)

r(aLL)

II

20 The Journal of Forth Application and Research Volume 3 Number 4

(INFO M15 diagnostics. RS/850330)

Words must be separated by spaces.
Say DAC or ADC, AMPS or COUNTS to qualify subsequent reads and writes.

<value> TO <name>
<name>
ON or OFF <name>
RESET <name>

MAGS
<vaLue> S(<names>)
<value> SCALE
R(<names>)
?(<names>)
FLIST <fi Lespec>
SAVE <fiLespec>
RESTORE <fiLespec>
SHOW

<pos'n> <width> TO SLx

8YE

II

Set DAC in integer amps x 10 or counts.
Print vaLue of DAC or ADC in AMPS or COUNTS.
RemoteLy controL power supply for <name>.
Reset power suppLy interLock.

Is a name for aLL power supplies.
ScaLe power suppLies by integer percentage.
ScaLe all (0 SCALE sets dacs to setpoints).
Read dac's into setpoints.
Show setpoint, dac (if different) and adc.
List a fi Le on the terminaL.
Save settings in a fiLe
Restore a tune into the setpoi nts".
Show configuration parameters.

Set sLit x (x=1-6) in .1 mm integers.

End the program.

Do dispLay.

Sample display shows benders scaled down by 10%. Some DAC-ADC's need
adjusting.

DAC ADC 14:56:23
(percent off)

Q1 150 5 SEP1 1010
Q2 215 1 Q12 1450 1
Q3 1475 Q13 2290 1
Q4 1400 1 Q14 1425 1
81 34200 -10 intLk SEP2 0
Q5 1925 1 Q15 1330 off
82 34700 -10 1 Q16 2285 off
Q6 1000 Q17 1355 off
Q7 1280 1
83 29925 -10 1
SX1 1080 1 s Lit pos'n width
Q8 1350 SL1 1 700
SX2 1080 SL2 0 1001
84 30150 -10 SL3 1 251
Q9 1225 1 SL4 0 1001
Q10 2235 1 SL5 0 600
Q11 1250 1 SL6 1 599

Hit return for attention. (rev. Mar 85)

