
FORTH in the Computer Numerical
Control Environment

John Mullen
Department ofIndustrial Engineering

Iowa State University
Ames, Iowa

Abstract
In order to help students grasp the concepts of computer-aided manufacture, a small Computer

Numerical Control (CNC) workstation was built. It consists of a microcomputer, a vertical mill, a
plotter, a printer, and necessary interface electronics. The workstation may be controlled by means
of either a FORTH-based control language or a CNC language closely following the standards of EIA
RS-358-B.

The development of this workstation has been greatly facilitated by the use of FORTH, which
was used to test electronic driver and interface circuits, to control the plotter and mill, to form a basis
for the FORTH-like control language, and to implement the EIA standard CNC language. In addition,
since the CNC languages are embedded in FORTH, the support features of the FORTH system are
available to the user.

The inherent transportability of FORTH combined with a hierarchial modular design results in
an implementation that is almost totally hardware-independent and very flexible. This project serves
as an extensive demonstration of the utility of the integrated FORTH environment in CNC
applications.

Introduction
An important part of any design process is the repeated iterative adaption cycle necessary in

which a plan is adjusted to make it work. This important aspect of engineering is not often
emphasized in a curriculum because students must master a large number of design techniques and
actually implementing designs is both time-consuming and expensive. Since metal-cutting processes
are fundamental for industrial engineers, a compact, inexpensive CNC workstation can be used to
allow students to gain experience in this important aspect of engineering.

To this end, a compact, self-contained Computer Numerical Control (CNC) workstation was
designed and built in the Industrial Engineering Digital Control Laboratory at Iowa State University.
This table-top CNC workstation allows students to design parts-cutting programs in an interactive
environment and to test the program by cutting parts in machineable wax. In order to make the
experience realistic, the control language is modeled after an industry standard and the mill allows
three-dimensional contour cutting.

FORTH was instrumental in the design of this sytem and is currently used to operate it. This
paper discusses the role of FORTH and some of the techniques employed in the workstation project.

The Workstation
The CNC workstation consists of a Commodore CBM 8032 microcomputer and CBM 8050 disk

drive [1] connected to a modified Sherline Vertical Mill [2] by means of a locally designed interface.
In addition, a Commodore 2022 printer and a Hewlett-Packard 8228b plotter [3] are interfaced to

Journal of Forth Application and Research Volume 3, Number 4

21

22 The Journal of Forth Application and Research Volume 3 Number 4

the computer to provide program listings and graphical displays of the tool's path. CNC-FORTH,
the control language used, is an extension of "FORTH for PET" [4], which was modified with
vendor-supplied screens to conform to FORTH-79.

Background
CNC Systems

Computer Numerical Control (CNC) is the use of numbers, letters and symbols to control the
action of some machine. Often implied is the concept that each component in the controlled system
has a finite number of states determined by the range of the component's travel and by the desired
minimum resolution. CNC is used to control cutting equipment, robots, parts insertion equipment,
and many other devices [5].

There are several degrees of tool control. In simple point-to-point applications, such as parts­
insertion equipment, the tool is moved from one position to the next without undue concern over the
intermediate path. However, in attempting to follow a contour, such as in cutting cloth from a
pattern, the path must be described exactly. Finally, in the case of some applications, such as rnetal­
cutting, the speed at which the tool moves is also important since tool wear and the part's finish are
affected [6].

In this project the controlled device is a small vertical mill with three orthogonal axes. The
maximum travel along any axis is seven inches. It was decided that a minimum resolution of about
0.001 in. would be acceptable. In order to provide maximum flexibility, the mill is capable of three­
dimensional contouring operations and controllable feed rates in the range of one to ten inches per
minute (ipm).

The RS-358·B Standard
While there are a wide variety of CNC languages, most commercial languages conform closely

to standard RS-358-B [7]. To make the workstation more realistic, the RS-358-B standard was used
as a model for CNC-FORTH.

In this type of language, a program consists of a sequence of blocks. Each block consists of two
or more words and is interpreted as a single command. A CNC block is of the form

N G XYZIJ F S T M EOB

where

N
G
XYZIJ
F
S
T
M
EOB

sequence number
preparatory function
dimensional data
feed function
speed function
tool function
miscellaneous function
end-of-block indicator

The N word and the EOB terminator are required. All other words are optional but must be in the
order shown if present.

Workstation Development
Plan

There were four major tasks. The first was to make the mill computer controllable. The second
was to design the interface between the computer and mill. The third was to control the mill's
movement and speed, and the last was to implement the CNC language.

Mill Conversion
A Berger-Lahr RDM 63/10 [8] stepper motor is attached to each of the mill's three lead screws.

This motor develops 16 in.-oz of torque and has a step size of 9° which produces a minimum

Forth in the Computer Numerical Control Environment 23

resolution of 0.00125 in. and a maximum feed rate of 17 ipm along the X and Y axes. Gearing is
needed on the Z axis to provide sufficient torque and leads to a resolution of about 0.00038 in. and
to a maximum feed rate of about 6 ipm along the Z axis. The modified mill is pictured in Fig. 1.

The next question was how to advance the motors. Several options, using FORTH to generate
the bit sequences, were tested. On the basis of these tests, half-step operation was shown to be
superior in its smoothness and speed. However, positioning was erratic for the odd-numbered phases
since only one winding was energized. Thus it was decided to operate the motors in the half-step
mode but to halt only at full-step positions.

Figure 1. The modified mill.

Interface Design
Each motor requires four bits to control its windings. In order to provide three-dimensional

contouring control, all three motors must be operated independently and simultaneously. The
primary function of the interface is to permit such control with only six data and one control line
of the eight-bit parallel port. A secondary function is to relieve the software of some minor
computational tasks. A third function is to permit data input on the same parallel port.

The basic control scheme is to place each motor in one of four possible states: step forward, step
back, lock, or free wheel, and then to clock the CB2 control line to cause action. Sequential logic
within the interface generates the appropriate series ot control signals for each motor.

24 The Journal of Forth Application and Research Volume 3 Number 4

When CB2 is brought low, the first half step is executed for any motor which is to move. In
addition, the command input buffer is latched, which allows the bus signals to be changed in
preparation for the next cycle. When CB2 goes high again, the second half step is executed and the
command buffer is unlatched.

While CB2 is low and the command buffer is latched, a data-input buffer allows signals from
a joystick to be processed as input. This joystick is used to align the tool to the workspace prior to
runnfug a program.

Motor control signals are generated by means of three independent circuits. Each circuit steps
its motor through the proper sequence of signals to cause forward or reverse half-step motion. Also,
any motor's sequence can be locked or windings de-energized (free wheel).

The parallel part in the CBM is controlled with aMOS 6522 VIA, which may be programmed
so that any of its bits are input or output. Bit 6 of the parallel port in conjunction with CB2 is used
to signal the direction of data flow to the interface. If both bit 6 and CB2 are high, flow is toward
the interface (output). If both are low, flow is toward the computer (input). Other combinations
permit directional change without conflict. The bus protocol is established through the FORTH
words TAL Kand LI STEN defined below.

59456 CONSTANT VIA (base addr of user VIA)
VIA 3 + CONSTANT DORA (data direction register)
VIA 15 + CONSTANT ORA (data regi ster)
HEX

TALK (CBM taLks, interface Listens)
7F DORA C! (program VIA for output on

bits 0-6)
ORA C@ 40 OR ORA C! ; (set bit 6 of data bus)
LI STEN
ORA C@ BF AND ORA C! (reset bit 6 of data bus)
40 DDRA C! ; (program VIA for output

on bit 6 aLone)

To prevent unwanted motion CB2 is not changed by TALK or LISTEN. These words are to be
used only when CB2 is low in order to obtain input while the computer is waiting for the motors to
complete a step.

Control-FORTH
Once the hardware had been built and tested, the remainder of the project involved designing

the software. It was decided that the best approach was first to design a FORTH-like control
language, Control-FORTH, and then to design a translator to convert CNC blocks into equivalent
Control-FORTH statements. The primary emphasis in the development of Control-FORTH was to
control the mill suitably for CNC operations. Specifically, this involved accurate positioning, tool
velocity control, point-to-point positioning, and linear interpolation. In addition, both absolute and
relative coordinate specification were desired.

Although the development of Control-FORTH is too broad in scope to treat in this paper, the
following discussion suggests several key aspects of its implementation.

Stratification. Control-FORTH was written on four levels following Bernstein's concepts of
"Software Drivers" [9]. These levels were:

1. Software drivers, which directly manipulate the parallel port.
2. Higher-level drivers, which perform such tasks as coordinate manipulation and linear

interpolation calculations.
3. CNC functions, which carry out complete CNC tasks, such as linear interpolation.
4. User-oriented words, which set up the stack as needed for CNC functions to operate.

Forth in the Computer Numerical Control Environment 25

The joystick is an example of the utility of this appraoch. When the mill was first used, it was
very difficult to align the tool to the workpiece. The interface was modified to allow one to send
signals to the computer with a joystick. This allows the operator to position the tool precisely from
the Mill's position. The changes required to convert the one-way data bus to a two-way data bus were
to modify the interface; to define the new words, TAL Kand LIS TEN; and to redefine two original
words, LOCK and UNLOCK. However, the bulk of the existing software was unaffected.

Coordinate System. In order to function properly, it is imperative that the CNC system always
"know" exactly where the tool is. If the tool's position is viewed in terms of motor steps, the X and
Y axes are divided into segments of 0.00125 inches each. However, the Z axis is divided into steps
of about 0.0003846 inches each. The main problem here is the aspect ratio; that is, a unit distance
along the Z axis is not the same as the other two. Thus the calculation of the length of a diagonal
and tool speed are complicated. Also, such a coordinate system is implementation-dependent. Thus,
if a stepper motor were to be replaced with one of a different step size, all words dependent on the
step size would have to be changed. Ideally, a coordinate system should have no aspect ratio problem
and should relate to some standard unit of length. However, such a system would not relate to the
motors directly, and a cumulative rounding error could arise.

The solution to both aspect ratio and rounding error problems was to develop a dual coordinate
system. One part is an orthogonal system with a unit size of 0.0005 in. along each axis. The tool's
coordinate is stored in the array HT-COORD. The other is a parallel system with a unit size of one
step along each axis. The tool's coordinate for the latter system is stored in S-COORD. The two are
related by the word HT- >S•

ARRAY STEPS/TURN 40 , 40 , 130 ,
: HT->S (n bas - n) STEPS/TURN @ 100 */;

When a move is specified, the destination is first calculated in the half-thousandths system. Then
the nearest equivalent point in the stepper system is found, and the relative distance in steps from
the current motor's position to the new one is calculated. Once the conversion is made, the move
is executed. .

This scheme eliminates cumulative rounding error if coordinates are specified as multiples of
0.0005 in., regardless of the step size. Also, if a motor is replaced, one need only change the
appropriate cell of STEPS/ TURN.

The major Control-FORTH words are listed in Table 1. These words may be used to control
the mill or plotter. There is also the set of words defined in Table 2 that is used only with the plotter.

An Example. The following program segment will cut a 1.0 x 0.5 in. slot with its bottom at 0.20
in. below the x-y plane. The tool diameter is % in. The initial tool position is at 0.5 in. above the
x-y plane and some unspecified x-y coordinate. The slot's lower left-hand comer is at (0,0), and the
lower right at (1,0). The cut is to be made at 10 ipm.

375 375 1000 ASS PTP
50 FEEDRATE !
375 375 -400 LIN
100 FEEDRATE !
1625 375 -400 LIN
1625 625 -400 LIN
375 625 -400 LIN
375 375 -400 LIN

o 0 1400 REL PTP

(move to [0.1875,0.1875,0.5])
(set feed rate to 5 ipm)
(cut to [0.1875,0.1875,-0.2])
(set feed rate to 10 ipm)
(cut to [0.8125,0.1875,-0.2])
(cut to [0.8125,0.3125,-0.2])
(cut to [0.1875,0.3125,-0.2])
(return to starting corner)
(Lift tooL cLear of work)

26 The Journal of Forth Application and Research Volume 3 Number 4

CNC-FORTH
The final phase of this project was to develop words that would translate standard CNC blocks

into Control-FORTH commands. There were four distinct steps in this phase. The first was to
develop an overall plan. The second task was to develop necessary components to interpret CNC
words. The third step was to systematically develop the meanings of each word in CNC-FORTH,
and the final step was to define words that would actually translate the interpreted information into
action. Representatives of the screens which define CNC-FORTH are in the Appendix, and key
details of its implementation are discussed below.

Basic Plan. The fundamental idea was suggested by Bernstein [10]. In his approach, the first word
of each command causes a special vocabulary to be made current; then, each intermediate word
changes variables as needed, and the final word causes action. Bernstein's approach was modified
so that one enters the CNC vocabulary at the start of the CNC pro&.ram (screen 156) but action
occurs at the end of each block. Each word between the N-word (screen 162) and EOB (screen 194)
is a FORTH word that affects some variable. The terminator, EOB, carries out the action indicated
by the variable settings at the end of the block.

There are three major advantages to this approach. First of all, since each word is a FORTH
word, the FORTH interpreter can be used to interpret the block. Thus, CNC-FORTH is an extension
of FORTH-79 and Control-FORTH, not a separate program. Secondly, since all words except EOB
affect only variables, one can verify their effect by examining the variables without risking possibly
dangerous action, such as the tool cutting into the mill's bed or fixtures. Screens 152 and 153 define
the variables used to represent the components of a block. The word [E0 B] (Screen 164) is a
dummy version of EOB that displays these varia~les. CNC? (Screens 157 and 158) can be used to
display the variable set at any time. A third advantage is that, since these words do not affect any
external devices, they can be used to set up motion for either controlled device.

CNC Components. There are three major problems at this level. First of all, the CNC language is
a post-fix language; that is, the operands follow their identifiers. The second problem is that
operands may be decimal fractions, such as "3.75" or "-0.0015," which may represent inches,
inches per minute, millimeters, or some other context-dependent value. The final problem is the
enforcement of word order within a block.

The word GET-NUMBER, defined below, will place a number that follows it in the input stream
on the stack. The position of the decimal point (if any) is then placed above it. This word is used
to obtain numbers by every word requiring a numerical operand.

: GET-NUMBER (- d n) 32 WORD NUMBER DPL @ ;

Other words then convert the double number into an appropriately scaled single number. For
example, #CONVERT (screen 169) will change an input value (d) to half-thousandths of an inch.
SCALE-FACTOR@ compares the position of the decimal point (02) to the limit on range (n3); then
it retrieves the multiplier indicated by 02. The value of nl will determine whether conversion is from
inches or millimeters.

: #CONVERT (d n1 n2 - n) SCALE-FACTOR@ >R D->S R> CFACT1 @ */ ;

In order to enforce standard word order, a command level is assigned to each class of words.
The level for an N-word is zero; that of an M-word is one; and so on. N sets the value of CMD- LV L
to zero. Thereafter, each word uses ? LV L! to verifY that its level is greater than that of the last word
used. If it is, ? LV L! stores the level of the current word in CMD- LV L. If not, it displays an error
message and exits through CNC-ERR, which identifies the block containing the error and stops the
program.

: ?LVL! (n) CMD-LVL @ OVER < IF CMD-LVL !
ELSE ." WORDS OUT OF ORDER" CNC-ERR THEN ;

Forth in the Computer Numerical Control Environment 27

Finally, if an axis is not mentioned in a command, its coordinate value is not to be changed. A
flag array indicates whether or not each axis is referred to in a current block. If an axis is not
mentioned, its current value is taken as the desired value (screens 185 and 186).

CNC Word Definitions. A distinction must be made at this point. Some words, such as 601 and
M05, are codes; that is, the letter and number together have a unique meaning. Other words, such
as N and X, require operands. Codes must be entered as shown, i.e., without spaces, whereas there
must be a space between such words as N and their operands.

Codes are words that simply set a flag or variable that indicates a context or action at the end
of the block. For example, 601 (screen 174) sets DEF-MVCODE (screen 178) to 3, which indicates
linear interpolation. M05 sets a flag that will cause execution to pause in the block and then display
the message "turn spindle on.»

Words with operands also set variables and flags but in addition must use GET-NUMBER and
possibly #CONVERT to obtain and process the operand. Operands are checked for appropriate range
and then stored in the proper variable.

CNC Action. The word EOB, defined in Screen 194, marks the end of each CNC block. It carries
out the action prescribed by the CNC variables. Since this word causes motion, a different version
is needed for each device. Note in its definition that vocabularies are switched after its header is
established so that this definition may be used to define EO B in both the MIL L and PL0TT ER
vocabularies.

Aside from carrying out the action required by a block, EOB also checks to see if a stop has
been indicated by a word, such as M05, within the block, if the step or trace mode has been set, and
fmally if the stop button has been pressed.

The words shown in Table 3 implement a minimal subset of RS-358-B, which is sufficient to
allow writing fairly complex parts programs. Table 4 lists words used to control the system. Finally,
Table 5 lists words that extend the RS-358-B standard.

An Example. The following program performs the same task as the earlier example of
Control-FORTH:

N 10 670
N 20 690

EOB
EOB

(input in inches)
(absolute coordinates)

N 500 600 X .1875 y .1875 EOB (position over first corner)
.N 510 601 Z -.2 F 5 EOB (enter work)
N 520 X .8125 F 10 EOB (cut to 2nd corner)
N 530 y .3125 EOB (3rd corner)
N 540 X .1875 EOB (4th corner)
N 550 y .1875 EOB (back to first)
N 560 600 Z .5 EOB (Lift tool clear)

Conclusion
This author has programmed extensively in several assembly languages as well as in numerous

versions of BASIC and FORTRAN. Although he had never used FORTH before, he was able to
learn how to use the language and complete this project more easily than if he had used the other
languages. The combination 'Of features available in FORTH makes it a much more suitable language
than any of the others for this type of application. Thus FORTH is very well suited to the CNC
environment.

28 The Journal of Forth Application and Research Volume 3 Number 4

At this time, the Iowa State University Industrial Engineering Department is considering the
adaptation of this project to another computer, possibly a Texas Instruments Professional. If this
project had been done in BASIC, its adaptation to the TI would be quite difficult. However, since
FORTH-79 is available for the TI, the adaptation should be straightforward. While portions of the
current application are in assembly language, the Tfs microprocessor is quite fast, so the FORTH
versions of these words could be used.

The utility of FORTH in this environment, together with its transportability, suggests great
promise in FORTH as a means of implementing CNC languages. There is also a possibility that it
can provide a basis for an exchange of ideas and algorithms in this field if a standard of media
exchange can be established.

The project is continuing. At this time, the system is being tested by students to determine how
its utility might be improved. Those wishing further information are referred to the author's thesis
[11] or may contact the author at the address above.

Acknowledgments
The Department of Industrial Engineering at Iowa State University is sponsoring this project.

ISU's Engineering Research Institute has also provided technical assistance. Dr. Roger W. Berger
suggested this project and contributed his support towards its completion; his assistance is also
~ratefully acknowledged.

References
1. Commodore Business Machines, Norristown, PA.
2. Sherline Products, San Marcos, CA.
3. Hewlett-Packard Co., 16399 W. Bernardo Drive, San Diego, CA.
4. A B Computers, 252 Bethlehem Pike, Colmar, PA.
5. Pressman, R. S. and Williams, J. E., Numerical Control and Computer Aided Manufacturing,

John Wiley and Sons, New York, 1977, Chap. 1.
6. Childs, J. J., Principles of Numerical Control, 3rd ed., Industrial Press, Inc., New York,

1982, Chap. 2.
7. Childs, J. J., Principles ofNumerical Control, 3rd ed., Industrial Press, Inc., New York,

1982, pp. 53-77.
8. BERGER-Lahr Corp., Fitzgerald Drive, Jaffrey, NH.
9. Bernstein, M., "FORTH in the computer toolbox," FORTH Dimensions, Vol. 4, No.2,

July/August 1982, pp. 6-8.
10. Bernstein, M., "Stepper Motor Control: A FORTH Approach," MICRO, No. 45, February

1982, pp. 95-99.
11. Mullen, J., "How FORTH May Be Used to Implement an EIA Standard CNC Language,

Demonstrated by Means of a Small, Microcomputer-controlled Vertical Mill," Master's thesis,
Iowa State University, Ames, Iowa, 1984.

Manuscript received May 1985

John Mullen received a B.A. degree in Mathematics from the University ofPennsylvania in 1968 and
a M.S. degree in Industrial Engineering from Iowa State University in 1984. He is currently an
instructor pursuing a Ph.D. in Industrial Engineering at ISU. His interests include operations
research, simulation, and digital computer control.

Forth in the Computer Numerical Control Environment

Appendix

Table 1. Control-FORTH general words.

29

ABS
ABS-LIN
ABS-PTP

ALL-ZERO
CUT
DRILL

JOY-MOVE
LIN

LOCK
PLOT
POLY
POS?
PTP
REL
REL-LIN

REL-PTP

SET-COORD
SET-RATE
SLOT

SURFACE

UNLOCK
X
XYPOLY
XYSLOT
XYSURFACE
Y
Z
ZERO

select absolute coordinate reference
(x y z) move to (x,y,z) along a straight line
(x y z) move to (x,y,z) as quickly as possible, not necessarily along a straight
line
sets coordinates to (0,0,0)
select the mill
(nl n2) drills hole of to n2 or of depth n2, depending on reference mode.
Dwells nl msec at bottom.
control the mill with the joystick
(nl n2 n3) functions as ABS-LIN or REL-LIN depending upon reference
mode
lock tool in current position
select plotter
(xk yk zk ... xl yl zl k) move through the k points indicated
display current coordinate position
(x y z) function as ABS-PTP or REL-PTP depending on reference mode
select relative or incremental reference
(x y z) move from current position (xO,yO,zO) to (xO+x,yO+y,zO+z) along a
straight line
(x y z) move from current position (xO,yO,zO) to (xO+x,yO+y,zO+z) as
rapidly as possible
(x y z) defme current coordinate to be (x,y,z)
(n) set feed rate to n tenths of an inch per minute
(n x3 y3 z3 x2 y2 z2 xl yl zl) cut a surface using SURFACE, then make a
final pass around the perimeter
(n x3 y3 z3 x2 y2 z2 xl yl zl) cuts the surface defined by the current point
and the three other points in n+1 passes
de-energizes the mill's actuators, even if the plotter is selected
(- 0) index value for x-axis
(xk yk ... xl yl k) a two-dimensional version of POLY
(n x3 y3 x2 y2 xl yl) a two-dimensional version of SLOT
(n x3 y3 x2 y2 xl Y1) a two-dimensional version of SUR FA CE
(- 1) index value for Y-axis
(- 2) index value for Z-axis
(n) will zero the axis whose index value is n

30 The Journal of Forth Application and Research Volume 3 Number 4

variable cnc-block id number of the current cnc block

variable cmd-lvl used to check order of cnc words

array cfact1 (used to scale operands
10000 , 1000 10 10 1

variable cfaet2 (used to convert operands into half-)

(thousandths. i f input i sin inches,)

(cfact2 =5, if mm, it is 127)

152
(fundamental cnc variables
cnc-voc definitions

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

variable need-dwell
--)

flag:

4-26-84)

true -) x will get dwell

153
(additional variables for cnc words
cnc-voc definitions

variable def-mvcode

variable stop

variable motion

)

)
)

4-26-84)

room for up to ten arguments

indicates the type of motion

default type of motion

(true -) arg used in current blk)

(indicates stop or end

(flag: true -) motion in this
(cnc block

20 aLLot

arg-used 20 allot

arg

variable mvcode

array

array

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

(initializations for the first block

sets up the system for cnc operation
definitions

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

156
(cne
forth
: cnc

definitions
cne-voe
[compile] cnc-voc
-1 feedrate !
o cfact2 !

-1 mvcode !
-1 abs-ref !
-1 def-mvcode !
o cnc-block !

-1 cmd-l vl !;

4-26-84)

(these variables are set to bad values)
(so that errors due to the ommission)
(of codes may be detected)

Forth in the Computer Numerical Control Environment 31

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

157
(cnc? finaL version
forth definitions decimaL

cnc?
cnc-voc
" context: " .context 5 spaces

current: " .current
ene-bLock: " ene-bLock @ 5.r cr

cmd-LvL: cmd-LvL @ 4 .r
tfact2: cfact2 @ 4 .r
mvcode: mvcode @ 4 .r

def-mvcode: def-mvcode @ 4.r cr
abs-ref: abs-ref @ 4 .r

stop: stop @ 4 .r
feedrate: feedrate @ 4 .r

motion: motion @ .f cr
-->

4-26-84)

10 spaces
10 0 do 6.r Loop cr
" arg: "

10 0 do i arg @ 6.r Loop cr
"arg-used: "

10 0 do i arg-used @ .f." "Loop

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

158
(cnc? continued 4-26-84)

-->

o ?LvL! (n must be the first word)
get-number (get foLLowing number)
-1 > if (if dp L > -1,)

.' bLock number may not contain a decimaL point' cr
n-err

endif
drop (convert to a singLe number)
dup 1 < over 999 > or if (if the number out of range)
.. ' cannot be used as a bLock number'
n-err

eLse

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

162
(n first word in each bLock
cnc-voc definitions decimaL

: n

5-25-84)

32 The Journal of Forth Application and Research Volume 3 Number 4

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

163
(n continued

ene-bLock !
faLse motion !
o mvcode !
o stop !
faLse need-dweLL!
10 0 do

faLse i arg-used
Loop

endif ;

5-25-84)

(store bLock number)
(initiaLize certain variabLes)

(reset arg fLags)

164
([eob] test version of eob 4-26-84)

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

[eob]
cnc-voc
cmd-LvL @0< if

." missing n word"
ene-err

endif
cr cnc?
-1 cmd-L vL !
10 10 10 reL-ptp
-10 -10 -10 reL-ptp
cr pos? ;

(if the cmd-LvL is negative,
(start of error message
(rest of message and abort

(dispLay the cnc variabLes
(set cmd-LvL negative for n word
(jog device a LittLe

dispLay current coordinates

)

)

)

)

)

)

169
(scaLe-factor@ dpL Limit --- scaLe-factor
cnc-voc definitions

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

scaLe-factor@
over over> if

.' more than I

endif
drop
o max
cfact1 @

(if dpL exceeds the Limit
decimaL pLaces' ene-err

(toss the Limit
(-1 and 0 mean the same here

5-27-84)

)

)

Forth in the Computer Numerical Control Environment 33

4-26-84)

(if the argument has aLready been)
(used in this bLock,)

(identify the argument number)
twice'

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

172
(arg! n i
cnc-voc definitions

arg!
dup arg-used @if

0' argument ' .
f has been used

ene-err
endif
swap over
arg !
true swap
arg-used !

(ni ini
(store the vaLue
(i --- true i
(mark argument as used

)

)

)

)

)

5-27-84)

convert number to haLf-thousandths)
set the motion fLag)

if dwell is needed

common eLement of dimension words)
set / check command Level)
get conversion factor)

y z
decimaL

(

(
(

y
z

o. X

173
(-xyz x
enc-voe definitions

-xyz
? Lv L!
cfact2@
get-number
4 #convert (
true motion (

3 -xyz 1 arg!
4 -xyz 2 arg!
need-dweLL @ if (

2 ?LvL! get-dwell
eLse

2 -xyz
endif
o arg! ;

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

174
(g0, g01, g70, g71, g90, g91,
cnc-voc definitions decimaL

g00
1 ?LvL!
2 def-mvcode I ;

g01 1 ?LvL! 3 def-mvcode

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

g70 1 ? Lv L!
g71 1? Lv L!

g90 1 ?Lv L!
g91 1? Lv L!

g93 1? Lv L!

5 cfact2
127 cfact2

1 abs-ref
o abs-ref

1 mvcode

g93 4-04-84)

(point to point motion)
(command LeveL is one)
(motion code is two)
(Linear interpoLation)

inch input
mi Ll i meter input

(absolute input)
(incrementa l input)

preLoad registers)

34 The Journal of Forth Application and Research Volume 3 Number 4

" program endll .,
II turn spindLe on. II

II turn spindLe off. II

" tooL change"

3 0 do
arg-used @ if
i arg @

eLse
o

endif
Loop
end-case

eLse-case
.1 reference method not specified'
ene-err
end-case

end-cases ;

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

178
(m00, m02, m03, m05, m06
cnc-voc definitions decimaL

-m
13 ?LvL!
stop
cr ;

m00
2 -m

II program stopll ;

m02 3-m
m03 1-m
m05 1-m
m06 1-m

185
(xyz-arg@
cnc-voc definitions decimaL

xyz-arg@
abs-ref @
begin-cases

1 case
3 0 do

; arg-used @ if
i arg @

eLse
i ht-coord @

endif
Loop

end-case
o case

-->

186
(xyz-arg@ continued

4-04-84)

(common factor
(set LeveL to ten
(store code in stop
(carriage return

4-04-84)

case of absoLute motion

(if the argument was used,)
(get ; t)
(if it was not,)
(get the current coordinate)

(case of incrementaL motion

4-04-84)

Forth in the Computer Numerical Control Environment 35

restore the original context vocabulary

(set up for new program)
(stop interpreting the program screen)

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

187
(ene-stop stops execution of a ene program
ene-voe definitions

ene-stop
current @
context !
ene
quit

5-25-84)

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

194
(eob

eob
ene-voe
ehk-emd-lvl
ene-motion?
ene-move?
ene-stop?
break? ;

5-25-84)

(verify syntax and signal block end)
(set up stack if motion is to occur)
(carry out motion, if there is any)
(check for a programmed stop or pause)
(check for an external stop or pause, such as)
(an operator's interrupt or single-step mode)

Screen
00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

210
(ene-move? expanded version

ene-move?
ene-voe
-dup if if there is to be motion,
begin-cases

1 case set-coord
2 case ptp
3 case lin
4 case drop drop dwell
5 case -drill drill
6 case -poly poly
7 case -epoly poly abs-lin
8 case -surface surface
9 case -surface slot
else-case .' undefined motion' ene-err

end-cases endif;

5-30-84)

)

end-case
end-case
end-case

end-case
end-case
end-case
end-case
end-case
end-case

end-case

36 The Journal of Forth Application and Research Volume 3 Number 4

