
Exception Handling in FORTH
Clifton Guy and Terry Rayburn

Bremson Data Systems, Inc.
1169I w: 85th St.
Lenexa, KS 66214

Abstract
FORTH relies on the discipline of the progranuner to provide the benefits of structured

languages: readability, predictability and modularity. A difficult class of problem for structured
software is the handling of exceptions to the control flow, including errors. Even in properly designed
software, a low level module may detect a condition whose proper resolution resides on a higher level.
We describe a general implementation for exception handling in FORTH that hides the inherent
structure violation within a readable control structure which allows return from any nesting depth of
FORTH words and control structures. Further, this structure is itself nestable to any arbitrary depth.

Exception Handling in Structured Programs
The goals of structured programming are to improve the clarity of presentation of the control

flow and to standardize style. A limited number of control structures have been described as the
primitives in whose terms all algorithms can be expressed. These primitives are the sequence, the
DO-WH HE and the I F-THEN-E LSE structures. Various camps now support the inclusion of the
CASE construct, the BEGIN-UNTI L, the BREAK and the LEAVE in the legitimate set [SH083]. All
consistently plead that the use of GOTO be minimized.

A common problem for structured programmers is the handling of control flow exceptions such
as error conditions. In a well-structured program, there may be several layers of code between the
user and the lowest level utility that may detect an error.

A typical approach is to pass flags back from the layer in which an error is detected. Each layer
in the path looks at the flag and decides whether to exit or continue. A more sophisticated approach
is to use a vectored abort, registering an error handler before the descent into the lower layers. Upon
error detection, the code may execute an ABORT which will pass control to the registered handler.
Although the former technique is technically structured, neither approach meets the goals of
structured programming. We believe an exception handling construct should preserve the clarity of
the control flow while providing a direct path from exception detection to the handler. Our goal is
to present such a construct that can be added to a FORTH system without modifying the kernel.

Theory of the Solution
The solution to the problem of exception handling in a structured program ultimately involves

unwinding the thread of execution as represented by the return stack. When an exception is raised,
the mechanism could pop the return stack by some preset number of levels or unwind through the
exits of the intervening words. In either case the return stack pointer is restored to the level of the
exception handler. Therefore, it is possible to build a general denester by saving and restoring the
return stack pointer. Since the parameter stack has been used by intervening words, its pointer
should also be restored. This is essentially saving and restoring the context of the upper level.

The most useful version of the solution would be molded into the form of common control
structures with which the programmer is already familiar. This new control structure would contain

Journal of Forth Application and Research Volume 3, Number 4

J7

38 The Journal of Forth Application and Research Volume 3 Number 4

a clause for handling the exception which we call the except clause. As execution begins its descent
to lower layers, we wish to save a projected "future context" that will exist if an exception occurs.
We must save the FORTH interpreter pointer modified to point to the except clause, which we call
the exception address. Existing control structures such as I F work in just this way.

The future context may be saved on a stack to allow nesting of the structure. We call this stack
the exceptions stack. With this implementation, exception handlers themselves may generate
exceptions. Three items are saved on the stack in our implementation: the parameter stack pointer,
the return stack pointer and the exception address. Other context items important to the application
may also need to be saved. These would include a string stack pointer or user stack pointer, if
implemented.

ALERT-EXCEPT-RESUME
The proposed control structure is:

ALERT (ALERT cLause> EXCEPT (EXCEPT cLause> RESUME

ESCAPE

The exception control structure looks like a familiar I F- ELSE- THE N or BEG I N- WHIL E
REP EAT. Like the BEG I N- WHIL E- REP EAT, all three elements are required for the structure.
ALERT registers the EXCEPT clause as the exception handler. If an error is detected, ESCAPE raises
the exception which passes control to the handler. If ESCAPE is not executed, the ALERT clause will
complete normally and execution will continue following RESUME.

Implementation
On screens I and 2 we present an implementation of ALE RT- EXCEPT- RES UME for

polyFORTH II on a Digital Equipment Corp. PDP-II. The FORTH interpreter pointer is kept in
a register named I. S is the parameter stack pointer and R is the return stack pointer. NEXT
assembles the inner interpreter as two instructions. The standard word END-CODE is not used to
terminate a CODE definition. Unlike the FlG model, polyFORTH does not insure that conditionals
are paired.

0000 PREALERT
0002 (ALERT>
0004 0026 (exception address)
0006 alert clause

0020 POP
0022 Branch to 0050
0026 except clause

0050 execution continues

Figure 1. ALERT-EXCEPT-RESUME Memory Model

Exception Handling in Forth 39

Run-time behavior
Figure 1 is a memory model of a compiled ALERT-EXCEPT-RESUME structure. The first word

in the structure to execute is PREALERT (screen 1), which implements optional run-time checking.
PREALE RT verifies that there is enough room for the code word (A LERT) to push the context onto
the exceptions stack. This word may be removed from the final application. We include it in our
version because instances of exception stack overflow are difficult to trace. If overflow occurs,
PREALERT aborts. This should occur only during testing of the application. The solution is to make
the exceptions stack larger.

(A LERT) is the code word that registers the handler by saving the context on the exceptions
stack. Figure 2 is a representation of the exceptions stack before (A LERT), after (A LERT) and
after RESUME. S and R are pushed onto the exceptions stack. The interpreter pointer points to the
word following (ALERT) when (ALERT) executes. The exception address has been previously
compiled at that location. This address is fetched and pushed onto the exceptions stack. The
interpreter pointer is incremented by two to skip over the address. At this point the ALERT clause
is executed.

If an ESCAPE is executed, it must restore the future context saved by (ALERT). It pops the
exception address into I and restores Rand S. Upon execution of NEXT, control passes to the
EX CEPT clause. If the ALE RT clause completes without an ESC APE, the word POP will pop the
exceptions stack, and the next word branches around the EXCEPT clause.

Compile-time behavior
ALERT is an IMMEDIATE word that compiles PREALERT and (ALERT). (ALERT) does not

call PREALERT since calling a colon definition from a code definition is obscure. If PREALERT
called (ALERT), the return stack pointer would have changed and necessitated an adjustment before
being pushed. A useful by-product of this implementation is the easy removal of the run-time
checking. Finally, ALERT must compile a cell to receive the exception address that will be resolved
by EXCEPT and leave the address on the parameter stack.

EXCEPT compiles POP and executes ELSE. ELSE resolves the exception address into the cell
marked by ALE RT. It compiles a branch and an empty cell and leaves the address of the cell to be
resolved by RESUME. RESUME is a synonym for THEN which indicates the end of the control
structure.

Application Notes
An example of ALERT-EXCEPT-RESUME is shown on screen 3. The physical I/O would take

place where the comments "read block" and "write block" are found. A status word is checked for
success or failure. In our hypothetical case there is no read or write, but we set the status word
externally to demonstrate the behavior. The word COP I ES is our application layer that reads a
block, far.bles the data where the comment "process" appears, and writes the block back out.

When EXAMP LE executes and both REA D and WRIT E are successful, then a success message
is printed. If either READ or WRITE fails, then ESCAPE causes control to pass to the EXCEPT clause
which prints an error message. Note that ESCAPE is two levels below EXCEPT and nested inside
a DO-LOOP.

For experimenters: ESCAPEs could also appear at other levels, perhaps as a range check on the
loop parameters in COPIES. As we have mentioned, ALERT-EXCEPT-RESUME blocks may be
nested. In such a case an ESCAPE could appear within the EXCEPT clause of our example to pass
control to a higher level handler.

During incremental testing of our application, we often executed a word from the interpreter
that used ESC APE. If an error condition occurred, the program would crash ungraciously since the
exceptions stack had not been set up. We found it helpful to redefme ESCAPE to give an operator
message and QU IT, which returns control to the programmer with the parameter stack intact.

40 The Journal of Forth Application and Research Volume 3 Number 4

length

pointer

24

26

12

10

8

6

4

2

o

EXCEPTIONS STACK before (ALERT)

26

24

22

20

18

16

14

26 paramo stk. ptr. 12

24 return stk. ptr. 10

22 exception addr. 8

20

L~
18

16

14

24

20

length

pointer

EXCEPTIONS STACK after (ALERT)

length

pointer

24

26

12

10

8

6

4

2

o

paramo stk. ptr.

return stk. ptr.

exception addr.

'-

26

24

22

20

18

16

14

EXCEPTIONS STACK after ESCAPE or POP

Figure 2. Exceptions Stack Diagrams

Exception Handling in Forth 41

We have referred to our process as exception handling and have given an example of the special
case of handling errors. A colleague has suggested that the mechanism could be used to implement
a forgiving user interface. Such an interface would allow the user to escape from the current mode
by pressing a particular key, perhaps the ASCII "escape". An ESCAPE would return control to some
predictable level no matter how convoluted a path the user had taken to his current predicament.

Comparison to Other Solutions
Other solutions to the general problem of exception handling have been described in the FORTH

literature. Joosten [JO082] and Nieuwenhuijzen [NIE82] describe a modification to ABORT that
causes it to search the compiled code of each word in the calling sequence looking for an error
recovery marker. When the marker is found, ABORT causes execution to resume at the following
location. This marker is the compilation address of a synonym for EXIT. So, if the marker is
reached during normal execution, the result is an exit. QU I T has been modified to contain an error
handler of this type. If no intervening handler is found, the handler in QU I T will be found and
executed.

This solution has several features to commend it. It is easy to use and highly readable. Putting
an error handler into QUIT is a good idea. ALERT-EXCEPT-RESUME could make use of this idea
to insure that a handler is always registered. One elegant characteristic of this solution is that it does
not require explicit registration of error handlers. However, unless ABORT is very smart, the
mechanism is subject to failure. One problem area is that data such as loop indices kept on the return
stack are indistinguishable from return addresses. This can cause a search for an error recovery
marker in an area of memory unrelated to the thread of execution. The second problem area is that
data in colon definitions other than compilation addresses may be mistaken for the error recovery
marker. Examples of such data are literals, strings, branch offsets and whatever in-line extensions
the user may add. This last item makes it hard to provide a general solution by making ABORT
smart. Joosten reports that these problems do not appear to matter in practice.

Schleisiek [SCH83] provides a defining word for writing named exception handlers which when
executed will return control to a higher level. Registering a named handler has two effects. It enables
the execution of the handler if the exception occurs and it marles the place where execution will
resume afterwards. This solution is portable because it is implemented entirely in high level FORTH.

Having a named handler for a specific exception is an attractive idea. In our solution, a specific
exception condition is not bound to a specific handler. If the programmer were to insert an ALE RT
EXCEPT-RESUME block between the layers of an ESCAPE and an existing exception handling
block, that new block does not handle the newly defined exceptions alone. Instead, the existing lower
level exceptions will pass control to the new EXCEPT clause. These must be detected and sent on.
Despite the benefits of tightly coupling the exception and its handler, we believe that the ultimate
disadvantage of Schleisiek's syntax is that it places all of the responsibility for an understandable
structure on the application programmer when this could be easily assumed by the underlying
mechanism.

Schleisiek puts the exception information in linked return stack frames. We agree that "the
return stack is the proper place to store information which has a limited lifetime corresponding to
a certain execution level" [SCH84]. A better implementation of ALERT-EXCEPT-RESUME would
use return stack frames instead of the exceptions stack. The separate data structure is unnecessary.

Colburn [COL83] describes an approach to error handling that vectors the behavior of ABORT"
via a frame on the return stack. In a way similar to ALERT-EXCEPT-RESUME, his approach codes
and registers the exception handler in-line. An ABORT" occuring within the scope of this definition
will branch to the registered handler. Execution resumes following the exception handler, which is '
coincidently the code that caused the exception to occur in the first place. This provides an automatic
retry mechanism.

42 The Journal of Forth Application and Research Volume 3 Number 4

While we restricted ourselves to a solution that could be layered onto an existing FORTH,
Colburn modified ABORT" to his benefit. First, ABORT" raises the exception, performing the
function of our ESCAPE without adding a new word. Second, ABORT" behaves as usual if no
handler is registered. We like the idea of having a default error handling behavior and having it
coded in-line. This allows the word detecting the error condition to be written and tested without
any external scaffolding.

The problem with Colburn's approach is that it results in code that is unnecessarily difficult to
read because it does not resemble any familiar structure. The inherent retry mechanism seems at first
a benefit that would compensate for the loss of readability. However, the complexity that seems to
be saved must be inserted in order to make the mechanism stop retrying. Placing an ALE RT
EXCEPT-RESUME within a BEGIN-UNTI L block provides an explicit retry loop that is easier to
understand.

A Final Word
We have described a general solution to the problem of exception handling in FORTH. It

defines the words ALERT, EXCEPT, RESUME and ESCAPE. We have also compared our solution
to several others which have been described in the literature. We like the simple syntax described
by Joosten and Nieuwenhuijzen but are concerned by the frailties of the approach. There are also
some attractive aspects of the solutions described by Schleisiek and Colburn but both suffer from
a lack of readability. Since ALERT-EXCEPT-RESUME follows the form of other control structures,
it can be easily-combined with them to provide any general control flow and exception behavior. We
regret that the implementation we present does not use the return stack frame model for storing
exception information. However, modifying the code we have given to use the return stack should
not be too difficult. We hope that the reader will find this structure a useful extention to his FORTH
system.

References

[COL83] Don Colburn, "User Specified Error Recovery in FORTH," 1983 FORML
Conference Proceedings.

[J0082] Rieks Joosten, ''Techniques Working Group (report)," 1982 Rochester FORTH
Conference Proceedings.

[NIE82] Hans Nieuwenhuijzen, "The Importance of the Routine QUIT," 1982 Rochester
FORTH Conference Proceedings.

[SCH83] Klaus Schleisiek, "Error Trapping: A Mechanism for Resuming Execution at a
Higher Level," 1983 FORML Conference Proceedings.

[SCH84] Klaus Schleisiek, "Error Trapping and Local Variables," 1984 FORML Conference
Proceedings.

[SH083] Martin L. Shooman, "Software Engineering Design/Reliability/Management,"
McGraw-Hill, Inc., 1983.

Manuscript received October 1985.

Terry Rayburn received the BS in Physics from Texas A&l University in 1971 and the MSEE
from the University of Missouri in 1983. He has used FORTH as a consultant in a variety of
applications and is currently a Software Engineer with Bremson Data Systems in Lenexa, Kansas.

Clifton Guy received the BS in Computer Engineering from Iowa State University in 1984. A
Systems Design Engineer at Bremson Data Systems, his interests include software engineering, data
structures, and communications.

Exception Handling in Forth 43

Glossary

(A LERT> is the execution-time code of ALE RT. It pushes three values onto the exceptions stack.
These are the parameter stack pointer, the return stack pointer and the "future" FORTH
instruction pointer.

ALERT is an IMMEDIATE word which begins an exception handling control structure terminated
by RESUME. Besides compiling PREALERT and (ALERT>, it has effects similar to IF. It
leaves an empty cell in the dictionary to be filled in by EXCEPT which will contain the address
of the EXCEPT clause.

ESCAPE restores the parameter and return stack pointers, and resets the interpreter pointer (I) to
point to the EX CEPT clause.

EXCEPT is an IMMED I ATE word which compiles POP in order to pop the exceptions stack if the
ALE RT clause completes normally. It uses ELSE which fills in the empty cell left by ALE RT
and leaves an empty cell to be filled in by RESUME.

EXCEPTIONS is a data structure that contains a stack pointer at EXCEPTIONS+O, the stack depth
at EXCEPTIONS+2, and a stack at EXCEPTIONS+4. This stack is used to hold information
needed at the time ESC APE is executed. The stack allows nesting of ALE RT- EXCEPT
RESUME blocks up to 4 levels deep (3 words per level is 24 bytes).

POP pops three items off the exceptions stack.

PRE ALE RT verifies there is enough room on the exceptions stack for (A LERT> to push its three
values.

RESUME is an IMMEDIATE word which is a synonym for THEN. It fills in the empty cell left by
EX CEPT and marks the end of the control structure.

44 The Journal of Forth Application and Research Volume 3 Number 4

SCREEN 1
Exception handling by Clifton Guy and Terry Rayburn is in
the public domain and may be reproduced with this notice)

VARIABLE EXCEPTIONS 24 DUP, ALLOT HERE EXCEPTIONS !

PREALERT
EXCEPTIONS @ EXCEPTIONS 10 +

EXCEPTIONS DUP 2+ @ + 4
1 ABORT" Exceptions stack

THEN

< IF
+ EXCEPTIONS
overf low"

CODE (ALERT)
o EXCEPTIONS MOV
o -) I)+ MOV

NEXT

o -) S MOV 0 -) R MOV
EXCEPTIONS 0 MOV

SCREEN 2
(ESCAPE ALERT EXCEPT RESUME)

CODE ESCAPE
o EXCEPTIONS
S 0)+ MOV

NEXT

MOV I 0)+ MOV
EXCEPTIONS 0 MOV

R 0)+ MOV

ALERT COMPILE PREALERT COMPILE (ALERT) HERE 0 ,
IMMEDIATE

POP 6 EXCEPTIONS +! ;
EXCEPT COMPILE POP [COMPILE] ELSE IMMEDIATE

RESUME [COMPILE] THEN; IMMEDIATE

SCREEN 3
(ALERT-EXCEPT-RESUME example)

VARIABLE RSTATUS VARIABLE WSTATUS

READ (read block) RSTATUS @ NOT IF ESCAPE THEN
WRITE (write block) WSTATUS @ NOT IF ESCAPE THEN

COPIES (n -) o DO READ (process) WRITE LOOP

example ALERT 3 COPIES CR II Copy successful."
EXCEPT CR ." Error in COPY."
RESUME ." Done."

EXAMPLE 2 0 DO 2 0 DO
I RSTATUS! J WSTATUS

LOOP LOOP; EXAMPLE
example

