
State Sequence Handlers
Edward B. Rawson

Rawson Engineering
Lincoln, Massachusetts

Abstract
We describe a new type of sequence control structure which allows an ordinliry : word to

behave as a small state machine. The control structures may be freely mixed with BEG IN, UNTI L,
etc., and with IF, ELSE, and THEN, with conventional nesting restrictions. The new structures
include analogs of BEGIN, UNTI L, etc., as well as several other words which support terse, readable
state machine code.

The normal state variable is replaced by an execution pointer, whose handling is mostly hidden
in the source code. Application code never need supply a pointer value. DefInitions may be
understood as standard FORTH procedures, with the understanding that execution may "hang up" in
one of the internal loops or called procedures until it is proper to proceed. Repeated calls to the main
procedure result in repeated execution of the loop code or the called procedure until continuation is
appropriate.

The sequence control structures encourage structured code, make state entry and exit natural,
and produce fast, compact, object code. They eliminate the need to assign and manage state numbers.

The structures and several applications are described.

Introduction
State machines are often used in the management of physical hardware. For example, a motor

may be running or stopped, or executing some sequence of activities. such as dynamic braking. The
nature of the current activity is coded into a state variable, and the software which manages the
motor executes the corresponding state handler code periodically in order to sample inputs, to control
outputs, and to change the state itself as needed.

The references will give the reader some background on the finite state machine concept.
[SMA82] describes the concepts which have evolved for hardware state machines. These are more
formal and limiting than we require. [BAS83] gives a simple Forth example of a software machine.
[STA83] describes a mixed hardware/ software implementation. From our point of view, the
example of the motor control code includes all the important features.

The fact that the state handlers can change the state makes this "go-to" code. Any handler can
cause a jump to another handler at the next invocation of the main control code.

Even with good support, such state machine code is tedious to write and difficult to understand.
Transitions caused by external events may not be anticipated in the design. State numbers often
appear as numeric literals. Recursive calls to the master procedure or direct jumps between state
handlers are often used to improve speed when the state changes. The more complex the situation,
the more the code looks like the "spaghetti" code which was so common 20 years ago. Careful
assignment of states and construction of action tables reduces, but does not eliminate, the "go-to"
nature of the control flow.

We have recently developed an alternative scheme which works well in situations requiring
sequence management. Its utility for other state machine applications has not been tested. Our
application environment has several important characteristics:

Journal of Forth Application and Research Volume 3, Number 4

45

46 The Journal of Forth Application and Research Volume 3 Number 4

1) Real-time control of some piece of hardware is involved. Hence the main procedure is being
called repeatedly, usually at intervals of 50-100 milliseconds.

2) The control software is handling extended operation sequences, often lasting a minute or more.

3) In addition to sequence management, the control software must do "housekeeping", such as
sensing an input and updating a stored value which represents that input. Housekeeping procedures
may be state dependent or may be required at all times.

4) States require entry and exit procedures which may be the most complex parts of the code, the
handlers sometimes being only waits.

5) State entry and exit are often not well behaved, occurring as a result of external actions which
are beyond the programmer's control. An operator may abort a complex sequence and demand that
a different one be started, with little regard for the state of the hardware, and of course no knowledge
of the state of the software.

Our state sequence scheme allows any : word to act as a miniature state machine. The only
required external resource is a variable to store an execution pointer. This replaces the usual state
variable. Machines having 10 internal states are accommodated easily. Those having 100 internal
states would need to be subdivided. A word which is acting as a state machine is defined
nonnally and reads nonnally, except for the inclusion of special control structures of the same sort
as BEGIN ••••• UNTI L loops. These special structures may be nested with conventional loop and
conditional structures, but may not be inside of DO loops. Repeated calls to such a : word cause
only a fraction of its code to be executed, with the executed piece corresponding to the state handler
in a conventional state machine.

In the remainder of this article, we often refer to the high-level (inner interpreter) instruction
pointer. In the interest of brevity, we use a common alternate name, the IP register.

Basic Syntax
A simple example of the syntax is given in Figure 1.

ssEXAMPLE HOUSEKEEPING xPOINTER ssBRANCH t/fA
IF WORKING_ENTRY

ssBEGIN WORKING CODE t/fB ssUNTIL
WORKING_EXIT

THEN
ssBEGIN IDLE_CODE ssAGAIN

Figure 1

ssEXAMPLE has two internal states, corresponding to WORKING_CODE and IDLE_CODE. For
its operation, ssEXAMPLE requires two support variables, ssCURR and xPOINTER. xPOINTER
is private to ssEXAMPLE. Another state sequence word would use another variable. xPOINTER
corresponds to the state variable in an ordinary state machine. ss CUR R is shared by all state
sequence words in the system. Its function is to point to the execution pointer, in this case
xPOINTER.

HOUSEKEEPING is a procedure which is executed on every call to ssEXAMPLE. xPOINTER
has been described above. ssBRANCH saves the location of the xPOINTER storage cell in the
working variable, ssCUR R, for use by other words. It then tests the stored value in xPOI NT ER. If
it is zero, ssBRANCH takes no other action. If the stored value is non-zero, ssBRANCH copiesit
into the IP register, causing a direct jump to the indicated point within ssEXAMPLE. We assume for
the moment that the stored value is zero.

State Sequence Handlers 47

Pointer relationships are shown in Figure 2. Since ssCURR is a common working variable, it
may have been used by another procedure. Hence, it must be set by ssBRANCH on each invocation
of ssEXAMPLE. On the other hand, xPOINTER is "owned" by ssEXAMPLE, and its contents may
be stable through many invocations. '

ssCURR

~POINTER ~
I ,-

I,
I

I
I

I
/,,,

/' Bound by
",/ ssBEGIN

'"'".-.-'

ssEXAMPLE
HOUSEKEEPING
xPOINTER
ssBRANCH
t/fA
IF

WORKING_ENTRY
ssBEGIN
WORKING_CODE~__--
t/fB

ssUNTIL
WORKI NG_EX IT

THEN
ssBEGIN

-~
IDLE_CODE ~

ssAGAIN

Figure 2

If t/fA returns a true value, execution continues with WORKING_ENTRY and ssBEGIN.
ssBEG I N copies the IF register into the xPO I NT ER storage cell, using the contents of ssCUR R to
locate the cell. On a subsequent call to ssEXAMPLE, the stored value will cause ssBRANCH to jump
directly to the call to WORKING_CODE.

After ssBEG I N has stored the pointer, execution continues with WORKI NG CODE, t IfB, and
ssUNTI L. If t I fB returns a true value, s sUNT IL is a NOOP, just as UNTI L-;'ould be. If t I fB
returns a false value, however, ssUNTI L causes an EX IT from ssEXAMP LE. On a following call
to ssE XAMP LE, the execution sequence will be as shown in Figure 3.

Entry~ ~ ~
ssEXAMPLE HOUSEKEEPING x~ssBRANCH t/fA

If WORKING_ENTRY ~ ~----.-Exit
ssBEGIN WORKING_CODE t/fS ssUNTIL
WORKING_EXIT

THEN
ssBEGIN IDLE_CODE ssAGAIN

Figure 3

We have created a pseudo-loop, which requires repeated calls for repeated execution.
When t I f B returns a true value, execution continues to WOR KIN G_ EX IT and the next ss

loop. Execution of ssEXAMPLE finishes with IDLE_CODE. ssAGAIN is an unconditional EXIT
(the ; is never executed). Further calls will result in the execution sequence shown in Figure 4.

48 The Journal of Forth Application and Research Volume 3 Number 4

Ent ry --...."..,. ~ ~
ssEXAMPLE HOUSEKEEPING xPOINTER ssBRANCH t/fA

IF WORKING ENTRY ~
ssBEGIN WORKING_CODE t/fB ssUNTIL
WORKING EXIT

THEN - ~ ~Exit
ssBEGIN IDLE_CODE # ssAGAIN ;

Figure 4

In order to restart the ssEXAMPLE sequence, we need only set the xPOINTER storage cell to
zero. This can be done by a procedure within IDLE_CODE, or by some external process. If t /fA
returns a false value, execution drops into the second pseudo-loop right away, avoiding
WORKING_ENTRY, WORKING_CODE, and WORKING_EXIT.

Single Level Structures
With ssEXAMPLE as an illustration of the approach, we can now list the run-time behavior of

the control words which form the basic state sequence "package".

s s BRA NCH Saves the address of the execution pointer in s s CUR R. Branches to the location
given by the pointer. 0 - no branch.

ssENTRY

ssBEGIN

ssUNTIL

ssWHILE

ssREPEAT

ssAGAIN

ssINIT

ssPAUSE

ssEND

Same as ssBRANCH, but uses a supplied truth value to decide whether to
branch. True - no branch.

Saves the IP register in the execution pointer.

Tests the top-of-stack value.
True - continue False - EX IT •

Tests the top-of-stack value. True - continue.
False - jump to after following ssREPEAT.

Unconditional EXIT.

Unconditional EXIT.

Resets the execution pointer to O. Must be used with ssBRANCH.

Marks the execution point just as ssBEGIN does, then EXIT's.

Synonym for ssBEGIN.

Examples of definitions for these words are given in screens 36-38. Syntax documentation
(another version of the material above) is given in screens 31-35. Implementation details and
explanations of non-standard FORTH nomenclature are given in screens 20-22. Our development
system is based on the CPM80 version of polyFORTH Jr.M

The word s s PA USE is useful for constructing loops in which only a portion of the loop is to
be executed on each call. Such behavior is often needed for background processes in real-time
control systems. Screen 34 gives an example. Such code could of course be constructed with a
selection (state) variable, but the code would be longer, harder to write, and harder to understand.

ssE N0 is provided only to enhance readability of source code. It may be placed at the end of
a word which uses s s structures. It makes the word into a noop for any calls after the sequence is
complete. Placing s s BEG I Njust before the would have the same effect, but the code would
be confusing for a reader.

State Sequence Handlers 49

+checksum cHECKSUM-POINTER
ssBRANCH cScurr CV0!

IH> 100 IH> 1FFF PsSTART
ssBEGIN 1sCHECK PsDONE ssUNTIL 0 CsSAVE
IH> 2000 IH> 3FFF PsSTART
ssBEGIN 1sCHECK PsDONE ssUNTIL 1 CsSAVE
IH> 4000 IH> 5FFF PsSTART
ssBEGIN 1sCHECK PsDONE ssUNTIL 2 CsSAVE
cScurr CV0NOT IF 6 !kFLAG THEN

ssINIT

Figure 5

Figure 5 gives an example of the application of state sequence structures to an internal computer
problem, that of carrying out a checksum of PROM at run time. We sum only a few bytes on each
call, so that only a small part of our processor time is used. As the sum for each prom is completed,
we save the cumulative sum, so that an error can be localized to one of the three proms in the
system. Prom boundaries are irregular. The first 256 bytes are avoided to avoid interaction with
CPM when the prom image is loaded under CPM as a transient program. At the end of the check
cycle, if the sum is non-zero, a flag is set to disable the outputs to the controlled hardware and thus
assure safety of the machinery. Screens 46-48 show the support definitions for +checksum.

The computation is based on a procedure cKsum, which takes as arguments a starting address
and a byte count, and which returns an 8 bit sum. The main procedure is unusual only in the use of
variables to store the state of the operation between invocations of +checksum. This is necessary
because our state machine does not have private stacks. Every invocation of +c hec ksum must
finish with the (public) stacks unchanged. The same restriction would apply to any other state
machine structure.

The major virtue to be found in this code is readability and ease of change. The "irregularities"
and requirements mentioned in the problem description are accommodated naturally. Auxilliary
arrays are replaced by in-line literals, a reasonable choice when only 3 proms are involved. We
avoid one intemalloop which would require a stored index. A notable feature of the +checksum
code is the repetition of the sequence

ssBEGIN 1sCHECK psDONE ssUNTIL

three times. We could have combined 1 sCHECK and psDONE, but the repetitive code is a necessity,
because s s BEG INmust be in the same word as ss BRA NCH. Placing it in a called procedure will
not work, because both words refer to the IP register. We next describe a technique which, in a
limited way, gets around this problem, condensing the ssBEGIN ••••.. ssUNTI Lsequence into
a single procedure call.

Called Procedures
The restriction of state sequence mechanisms to single-level structures can be partially removed.

This allows more complex machines without having the main procedure grow too large. In cases
such as the checksum procedure shown above, we can also reduce code size by re-using called
procedures.

We define a special form of : word which can behave, on its own, as an entire

ssBEGIN •... t/f ssUNTIL

clause when called by the main procedure. Such : words must be called directly by the main
procedure (the one containing ssBRANCH or ssENTRY). They manipulate the IP register and the
s s execution pointer to accomplish the required sequence management. Figure 6 shows the

50 The Journal of Forth Application and Research Volume 3 Number 4

+checksum code rewritten with such a word. Execution "hangs up" at each call to PrSUM until
PsDONE indicates that the current prom is completed. ssNEXT causes the next invocation of
+checksum to branch to the word following PrSUM. Figure 7 shows the pointer relationships and
the action of ssNEXT.

:ssPROC PrSUM 1sCHECK PsDONE IF ssNEXT THEN

+checksum cHECKSUM-POINTER
ssBRANCH cScurr CV0!

IH> 100 IH> 1FFF PsSTART PrSUM 0
IH> 2000 IH> 3FFF PsSTART PrSUM 1
IH> 4000 IH> 5FFF PsSTART PrSUM 2
cScurr CV0NOT IF 6 !kFLAG THEN

ssINIT
Figure 6

CsSAVE
CsSAVE
CsSAVE

ssCURR
+checksum

cHECKSUM-POINTER
ssBRANCH

cScurr CV0!
IH> 100 IH> 1FFF =7

PsSTART c------'

PrSUM ... ~/"7

o ~----------------
CsSAVE Effect of

IH> 2000 IH> 3FFF ssNEXT
PsSTART
PrSUM
1
CsSAVE

IH> 4000 IH> 5FFF
PsSTART
PrSUM
2
CsSAVE

cScurr CV0NOT
IF 6 !kFLAG THEN

ssINIT
Figure 7

Code for out: ssPROC implementation is given in screen 39, using 8080 assembly code. The
nonnal word run-time code is replaced by code which works directly with the caller's IF
register value. At call time, this points to the word in the main procedure which follows the call to
the : ssPROC word. The IP register is backspaced to point again to the called: ssPROC, and then
saved in the ss execution pointer. This is similar to the action of s s BEG IN. Next the IP register
is loaded with the PFA of the : ssPROC word, and execution continues. We have produced a direct
jwnp to the "called" procedure. Nothing has. been placed on the return stack. Hence if the : ssPROC
word ends nonnally, or if EXI T is executed anywhere within it, we will cause an EXI T from the
main procedure. This is similar to the action of the sequence

••.. false ssUNTIL

appearing in the main procedure. The execution sequence is shown in Figure 8.

State Sequence Handlers

(+checksum code)

From SSBRANCH~-A~:er ssNEXT has executed

~ ~ -" /--
PsSTART PrSUM 0 CsSAVE ~

Juml
:ssPROC PrSUM 1sCHECK PsDONE IF ssNEXT THEN

Exit from
+checksum

Figure 8

51

THEN

If we take no action to change things, we have created a pseudo-loop. At each entry to the main
procedure, ssBRANCH or ssENTRY will jump to the : ssPROC word. This word saves a
decremented IP register value, so that the call will repeat, and then executes. At exit, it forces an
exit from the main procedure.

There are two ways to allow continuation of the main procedure. The first is s s NEXT, which
mimics the action of

••.• true ssUNTIL ssPAUSE

s s NEXT need only increment the execution pointer by 2, so that on the next invocation of the main
procedure, the : ssPROC word will be skipped, as shown in Figure 8.

The second word, ssCONTINUE, mimics the action of

.••. true ssUNTIL

and in addition causes an immediate exit from the : ssP ROC word. It acts by incrementing the
execution pointer and then loading it into the IP register. This causes an immediate jump back into
the main procedure. (Figure 9)

(+checksum code)

From ssBRANCH~

ps:::~rSUM 0~::::E

:ssPROC PrSUM 1sCHECK PsDONE IF ssCONTINUE

c
Figure 9

Ex it from
+checksum

52 The Journal of Forth Application and Research Volume 3 Number 4

A third technique would be to increment the execution pointer and then push it onto the return stack,
so that the return to the m~n procedure would not occur until an EX IT from the : ssPROC word.
This would be similar to (but not always more convenient than) ssCONTINUE, and it would also
be slower. We have not implemented such a command.

ssCONTINUE must be executed directly in the : ssPROC word. Since it causes an immediate
exit, the stacks must be in order before it is executed. In contrast, ssNEXT can be executed within
a DO loop Gust once), or by a called procedure. Since it does not cause an exit, stacks may be
cleaned up during the remainder of the : ssPROC word.

State Sequence Motor Handler
Screens 90 through 100 give an example of a fairly complex state sequence word and its

support. The main procedure is also shown in Figure 10. : ssPROC calls have been underlined.
Bach call corresponds to a state of the Mprocess state machine.

1 Mprocess
2 BEGIN ?mSEQnew ssENTRY mEPROCESS
3 mTIMER TWCANCEL mPgTIME V0=
4 IF ?mSTOP mTmWAIT ?mCOMMAND mLIMIT
5 IF mREVERSE mTmWAIT sPDYNAMIC mTmWAIT
6 mSTOP mTmWAIT
7 THEN mBUSY CV0! MOTOR-IDLE
8 ELSE -mCLIMIT
9 IF ?cSTOP mTmWAIT ?mCOMMAND ?cREVERSE mTmWAIT

10 ?mSTART mRUN-PROC
11 ELSE mSTOP_LOCAL
12 THEN
13 THEN
14 AGAIN

Figure 10

The code controls a motor which is turning an actuator shaft. The actuator moves a piece of
machinery back and forth between limits. Two limit switches, called the in-limit and the out-limit,
close at the ends of the mechanical travel range. Motor control uses a run relay and a reverse relay,
each controlled by an I/O bit.

The basic command is to run (in or out) for a given number of real-time clock ticks. A command
to run for longer than it takes to go from limit to limit gives the effect of a continuous run command.
A command to run for 0 ticks is interpreted as a stop command.

We must sense two errors. In order to detect a stalled motor, we start a timer whenever we start
the motor. If the motor runs for too long without reaching a limit, it is considered to be stalled. The
other error is a stuck limit switch. If a switch sticks open, the motor will stall against a mechanical
stop, and we have a stalled motor error. If the switch sticks closed, we will eventually have both
switches closed at once, and the code specificially tests for this condition.

The motor code must accept external commands at any time. It processes and then obeys these
commands as best it can, considering the current state of the hardware. New commands override
any actions which are in process. The current state of the motor is indicated by a busy flag and by
an error flag.

The main motor code (screen 100) has two major states, an idle state and a run state. Substates
needed to manage the run and reverse relays lead into the major states. At the end of a run
command, or when a limit is reached, the motor is stopped by going to the idle state.

State Sequence Handlers 53

Exit from a major state may occur because of a command, or because a limit or an end-of­
motion condition occurs. Mprocess has been written as an endless BEGIN ••• AGAIN loop. If
s s CON TI NUE is executed by one of the major state processes, an immediate re-entry occurs. This
allows Mprocess itself to handle the sequence of actions required when conditions change, without
the latency of waiting for the next invocation. Such a quick response is necessary, for example, when
reacting to a limit switch closure.

The state sequence design makes it natural for Mprocess to "fall through" unneeded substates
without significant latency as execution proceeds toward one of the major states. An exit from
Mprocess occurs only when the software must wait for some external event before continuing.

State sequencing design is important to code simplicity and clarity in a case such as this. Not
only can the software· be in several possible states when a command arrives, but the physical
hardware can be in several possible states. The universal reaction to an external event is to re-start
the Mprocess sequence, either by forcing a new sequence the next time Mprocess is called, or
by looping back to the initial BEG I N. The command value controls an initial branch. The
subsequences then deal with the hardware situation:

a) Does the motor need to be stopped? If so, stop it, and start the timer.
b) Wait for the timer to time out.
c) Does the motor need to be reversed? If so, reverse it, and start the timer.
d) Wait for the timer to time out.
e) Etc.

Procedures a) and c) may be noop's, and if either is, then the following wait is also a noop.
A conventional state machine could be built with the same state assignments that Mp ro c e s s

has. Our experience is that such designs are not the natural first approach with conventional
machines. The designer thinks of individual condition~, such as "waiting for the run relay to drop
out", and assigns states to them. In contrast, Mprocess has three states which fit this description,
corresponding to the mTmWAIT calls following stop commands on lines 4,6, and 9.

With a conventional state machine, the re-entry design of Mprocess is not obvious. The
designer's natural way of handling an external event is to determine what the next state should be,
carry out the state exit processing, and invoke the handler for the new state. The strategy of
retreating to an initial (software) state when an external event occurs, and then "falling through"
unneeded states seems wasteful and indirect. However, for Mpro ce s s, this strategy makes for a
great simplification of the state transition code. With the state sequence design, it is compact and
fast, as well as being a natural design approach.

Nesting State Machines
The state sequence words described above use an auxilliary variable, ssCURR, during the

operation of any s s control structure. If one of these words calls another, the called procedure will
destroy the callers information in s s CUR R. The proper place to protect this information is in the
called procedure, since the caller should not have to know whether the called procedure uses
ssCURR. We can do this by writing

: mPROCESS ssCURR @ Mprocess ssCURR

and then letting mPROCESS be the external entry point for servicing a motor. Since Mpro c e s s is
required to leave the parameter and return stacks unchanged, this will always work.

Comments
We have described a new form of control structure which is useful in building state machines

which have (mostly) sequential behavior combined with waits. The resulting code is easy to read,
compact, and fast.

54 The Journal of Forth Application and Research Volume 3 Number 4

In a normal state machine, an early and critical design activity is state assignment. State
sequencing must be considered at the same time. When the code is written, sequencing is hidden in
the individual state handlers, which usually contain explicit state variable manipulation code.

In contrast, state sequence state handlers never control selection of the next state. The handler
can only say "call me again", "start over", or "continue". Selection of the next state is always done
by the main procedure, using conventional FORTH control structures. This has a profound effect
on the ease with which the code can be read and understood.

The main procedure of a state sequence machine may be written without consideration of even
the idea of coded state numbers. The procedure is designed as a normal FORTH word, which has
the additional ability to "wait" at any point until it is proper to continue. The programmer need only
keep in mind that words prior to ssBRANCH (or ssENTRY) will be executed repeatedly, in addition
to the words in the ''wait" loop or procedure.

The facilities offered by state sequence machines suggest new designs which have proved to be
very useful in our applications. It is to be hoped that others will also find the scheme useful, and will
extend it and its applications.

Acknowledgement
The work reported here was done under contract to Butler Automatic, Inc., of Canton, MA.

The author is grateful for support and encouragement during the development work, and for
permission to publish this description of the software.

References
[SMA82] Small, C. "Finite-State Machines, Theory, Synthesis, and Minimization" 1982

Rochester Conference on Databases and Process Control. Rochest6f: Institute for
Applied Forth Research, 1982.

[BAS83] Basile, J. "A FORTH Finite State Machine" Journal ofForth Application and Research,
Vol. 1, No.2, December 1983.

[STA83] Starling, M. K. "A Hardware/Software Finite State Machine Implementation" 1983
Rochester Forth Applications Conference. Rochester: Institute for Applied Forth
Research, 1983.

Manuscript received June 1985.

Dr. Rawson received his B. A. degree from Swarthmore College in 1948. He received the Ph.D.
degree in physics from Yale University in 1953. He worked for several years at MIT Lincoln
Laboratory, on both radar and data handling systems. His work in these fields was continued at
Science and Engineering Institute, in Waltham, Mass. In 1968, Dr. Rawson was one ofthe founders
ofSearle Medidata, a firm specializing in medical data systems. He served as Vice President and
Engineering Director of the firm until 1974.

Since that time, Dr. Rawson has been in private practice as a consultant, data system designer,
and computer programmer. His clients have included government agencies, hospitals, and industrial
concerns. During the past few years, he has concentrated on software projects using the FORTH
language.

Dr. Rawson holds both U.S. andforeign patents. He is a member ofSigma Xi, the AAAS, the
ACM, and the IEEE.

EXIT
the CPM80 version of
Z80.
a full set of Z80

Points to PFA - 1 at entry into a word.
Otherwise it is a scratch register.

State Sequence Handlers

SCREEN: 20
o (Implementation notes - 5/85)
1 Development environment is based on
2 polyFORTH II tm Processor is a
3 Assembler is an 8080 assembler with
4 extensions.
5 Register assignments -
6 I BC High level instruction pointer (FORTH IP)
7 I I - C
8 W DE
9

10 W' - E
11 HL Scratch
12 Alternate register set -- scratch
13 The USER area pointer and the return stack pointer are
14 contained in the named variables U and R.
15 The CPU stack is used as the parameter stack.

SCREEN: 21
o (Implementation notes - 5/85) EXIT
1 UOFFSET returns the offset of any named user variable
2 US) is a macro for handling user variables.
3 : US) UOFFSET WLXI U LHLD WDAD M
4 For example: BASE US) A MOV moves BASE to the accumulator.
5
6 n :NBRAM Name defines a ram area. VARIABLE is 2 :NBRAM .
7
8 V0! CV0! V0= etc. are operations on memory locations.
9 Each takes an address as its only argument. Byte operation

10 names start with C. If a truth vaLue is returned, true = -1.
11
12
13
14
15

SCREEN: 22
o (Implementation notes - 5/85 EXIT
1 I/O bits are addressed by name. An input bit name returns
2 true or false. An output bit name returns an access constant,
3 which may be used to set, clear, or read the bit. These
4 operations are carried out by the words
5 1bit 0bit Getbit
6 respectively.
7
8
9

10
11
12
13
14
15

55

56 The Journal of Forth Application and Research Volume 3 Number 4

SCREEN: 31
o (State sequence documentation 10/84) EXIT
1 A state sequence definition is an ordinary: definition
2 containing the ssXXXX directives to control the execution
3 sequence during multiple invocations of the definition.
4 The syntax appears as:
5 : Name ..••.. tlf Execution_pointer ssENTRY ...•....
6 ssBEGIN .••....•••••.• tlf ssUNTIL ••••....••
7 ssBEGIN .•...•••• tlf ssUNTIL ..•...•
8 ssPAUSE ssBEGIN ..••••..••.. ssUNTIL
9 ssENO ;

10 where •...•.•.. stands for the application coce.
11 Code up to ssENTRY is executed on each invocation. If the
12 ssENTRY argument is true, execution continues. If it is false
13 execution jumps to after the last ssBEGIN executed during the
14 previous invocation. ssUNTIL with a false argument causes an
15 EXIT. With a true argument it is a NOOP.

SCREEN: 32
o (State sequence documentation 11/84) EXIT
1 To simplify application code, ss analogs of AGAIN and
2 REPEAT are also provided. The syntax is -
3 •.••..... ssBEGIN tlf WHILE•.. ssREPEAT
4•..•. ssBEGIN .••....••••.••.•..• ssAGAIN ;
5 State sequence directives may be used in combination with
6 normal conditional execution structures, provided that the
7 standard nesting rules are observed. Any conditional control
8 structure may be totally contained in a single ss clause.
9 Any ss loop must be totally contained in a control structure

10 clause.
11 The syntax ssENTRY tlf
12 IF ssBEGIN ••.. tlf ssUNTIL ELSE ssBEGIN ... t/f ssUNTIL THEN ..
13 avoids execution of the leading tlf after the first call to the
14 procedure. The loop chosen is executed until complete.
15

SCREEN: 33
o (State sequence documentation 10/84) EXIT
1 The word ssENO immediately before a ; causes the procedure
2 to be a NOOP if it is invoked after the sequence is complete.
3 The word ssPAUSE causes an EXIT, but when the procedure is
4 executed again, execution will start with the word following
5 the ssPAUSE.
6 Typical use of state sequence words is in handling 1/0 waits
7 under conditions where it is not practical to devote a task to
8 the 1/0 device, and where the complications of a state machine
9 are unnecessary.

10 Using different pointer variables, a single task can "tend"
11 many devices. When handling multiple devices of the same
12 type, the ss code will be re-entrant as long as a different
13 pointer variable is used for each device.
14
15

State Sequence Handlers 57

SCREEN: 34
1/85) EXIT

words
that each
The syntax

Execution_pointer ssBRANCH Proc1 ssPAUSE Proc2 ssPAUSE
Proc3 ssPAUSE etc •..••. sslNIT ;

An externaL initiaLization procedure must set the storage
pointer to zero. ssBRANCH is a NOOP on first entry, but on
subsequent entries, it causes a branch to after the most
recentLy executed ssPAUSE. sslNIT cLears the variabLe and
thus re-initiaLizes the sequence.

Other ss words may be used inside of such a sequence. sslNIT
may appear inside of conditionaL cLauses within the procedure,
or in a caLLed procedure.

o (State sequence documentation
1 An endLess Loop can easiLy be created with the
2 ssBRANCH and ssINIT. The Loop can be arranged so
3 time it is entered, another portion is executed.
4 is
5
6
7
8
9

10
11
12
13
14
15

SCREEN: 35
o (State sequence documentation 4/85) EXIT
1 In order to provide more compact main sequence words, a
2 speciaL: word is provided, defined with :ssPROC. One of these
3 words can behave as an entire ssBEGIN tlf ssUNTIL
4 cLause. It "captures" the execution point in the main word in
5 the same way that ssBEGIN does. It aLLows execution to continue
6 in the main word by executing one of the directives ssCONTINUE
7 or ssNEXT.
8 ssCONTINUE has the same effect as true sSUNTIL,
9 exiting immediateLy from the :ssPROC word, and continuing

10 in the main word without a pause.
11 ssNEXT does not exit immediateLy from the :ssPROC word, and
12 the main word execution continues onLy on the next caLL, just as
13 though it had contained .. true ssUNTIl ssPAUSE ssNEXT
14 may appear in a procedure caLLed by the :ssPROC word.
15

10/84)
36
State sequence definitions

ssCURR
Pointer_addr ssENTRY --) State sequence executed

t InitiaL entry
f Re-entry into state sequence Loop

ssENTRY U lHLD ssCURR UOFFSET WLXI WDAD
WPOP WI MMOV H INX WMMOV (Store var. ptr.)
XCHG WPOP WI A MOV WORA 0=
IF M II MOV H INX MI MOV
THEN NEXT JMP

FORTH

SCREEN:
o (
1
2 2USER
3 (tlf
4
5
6 CODE
7
8
9

10
11
12
13
14
15

58 The Journal of Forth Application and Research Volume 3 Number 4

12/84)sslNIT
37
ssBRANCH

Storage_Loc ssBRANCH --> State sequence executed
VariabLe = 0 - Initial entry
Variable = branch_loc - Re-entry)

ssBRANCH U LHLD ssCURR UOFFSET WLXI WDAD
WPOP W' MMOV H INX WMMOV (Store var. ptr.)
XCHG MA MOV H INX MORA 0= NOT
IF MI MOV H DCX MI' MOV (Branch)
THEN NEXT JMP

FORTH
: ssINIT ssCURR @ V0!

SCREEN:
o (
1
2 (
3
4
5 CODE
6
7
8
9

10
11
12
13
14
15

SCREEN: 38
o (State sequence control 10/84)
1
2 SUBROUTINE ssbegin U LHLD ssCURR UOFFSET WLXI WDAD
3 MW' MOV H INX MWMOV XCHG
4 I' MMOV H INX I MMOV RET
5 CODE ssBEGIN ssbegin CALL NEXT JMP
6 CODE ssPAUSE ssbegin CALL I EXIT JMP
7 CODE ssUNTIL WPOP W' A MOV WORA
8 0= IF I EXIT JMP THEN NEXT JMP
9 ssEND COMPILE ssBEGIN , IMMEDIATE

10 ssREPEAT COMPILE EXIT [COMPILE] THEN IMMEDIATE
11 ssAGAIN COMPILE EXIT ; IMMEDIATE
12 ssWHILE [COMPILE] WHILE IMMEDIATE
13
14
15

I DCX I DCX
MWMOV XCHG
I POP NEXT JMP

SCREEN: 39
o (:ssPROC 2/85)
1 :ssPROC -- Define a : procedure which "captures" the
2 execution point in the calling procedure, just as ssBEGIN
3 in that procedure would.
4 Execution in the calling procedure keeps jumping to a
5 :ssPROC word until the :ssPROC word itself executes
6 ssNEXT or ssCONTINUE.
7 :ssPROC words must appear in the procedure containing
8 ssBRANCH or ssENTRY. They cannot be called via intermediate
9 procedures.)

10 :ssPROC ;CODE WINX WPUSH
11 ssCURR US) W' MOV H INX
12 I' MMOV H INX I MMOV
13 FORTH
14
15

State Sequence Handlers 59

SCREEN: 40
(ssCONTINUE ssNEXT 2/85)

Use ssCONTINUE and ssNEXT inside of :ssPROC's to control the
execution point of the calling procedure.)

o
1
2
3
4 ssCONTINUE --> Exit from this procedure, continue in
5 calling procedure without pause. Must appear in the
6 :ssPROC word itself, not a called procedure.)
7 CODE ssCONTINUE ssCURR US) W' MOV H INX MWMOV
8 XCHG MI' MOV H INX M I MOV I INX I INX
9 NEXT JMP

10 (ssNEXT --> Increment pointer so that next execution of
11 catling procedure witl skip this code. May appear in
12 the :ssPROC word itself or in a called procedure.)
13 ssNEXT ssCURR @ V2+
14
15

SCREEN: 41
o (State sequence tests 10/84)
1 EXIT *************
2 VARIABLE SSSTATE
3 VARIABLE SSVAR
4 :ssPROC SScatl 200 MS 48. @KEY 68 =
5 IF ssNEXT THEN
6 :ssPROC SsCALL 200 MS 50 @KEY 69 =
7 IF ssCONTINUE THEN ;
8 : SST SSVAR ssBRANCH
9 SSSTATE @ 2 =

10 IF ssBEGIN 47 200 MS @KEY 66 =
11 ssUNTIL
12 THEN ssBEGIN 49 200 MS @KEY 67 = ssUNTIL
13 SScall SsCALL II Done II ssEND ;
14
15

12/84)

8 bit sum, overflow
is discarded)
A ORA
A XRA

SCREEN: 46
o (Memory checksum computation
1
2 (Start_addr #bytes cKsum -->
3
4 +LB> CODE cKsum WPOP W' A MOV
5 0= NOT IF WINR THEN H POP
6 BEGIN
7 BEGIN MADD H INX W' OCR 0= UNTIL WOCR 0=
8 UNTIL APUSH JMP
9 FORTH

10
11
12
13
14
15

60 The Journal of Forth Application and Research Volume 3 Number 4

SCREEN: 47
o (Checksum computation - dynamic 12/84)
1 CVARIABLE cScurr (Working checksum)
2 3 :NBRAM cSsave (3 byte ram area - cum. checksums)
3 : CsSAVE cSsave + cScurr SWAP 1MOVE
4 VARIABLE cSaddress (Working address)
5 VARIABLE cSlast
6 VARIABLE cHECKSUM-POINTER (Execution pointer - +checksum)
7 cSlength cSlast @ 1+ cSaddress @ - 64 MIN ;
8 (1sCHECK --> Next 64 bytes, or rest of prom, summed)
9 1sCHECK cSlength cSaddress @ OVER cKsum cScurr C+!

10 cSaddress +! ;
11 PsDONE cSaddress @ cSlast @ - 0>
12 (Start_addr last_addr PsSTART)
13 PsSTART cSlast ! cSaddress
14
15

SCREEN: 48
o (Checksum computation - dynamic) 12/84)
1
2 +checksum cHECKSUM-POINTER
3 ssBRANCH
4 cScurr CV0! IH> 100 IH> 1FFF PsSTART
5 ssBEGIN 1sCHECK PsDONE ssUNTIL 0 CsSAVE
6 IH> 2000 IH> 3FFF PsSTART
7 ssBEGIN 1sCHECK PsDONE ssUNTIL 1 CsSAVE
8 IH> 4000 IH> 5FFF PsSTART
9 ssBEGIN 1sCHECK PsDONE ssUNTIL 2 CsSAVE

10 cScurr CV0NOT IF 6 !kFLAG THEN
11 ssINIT
12
13
14
15

SCREEN: 90
o (Storage & constants) 5/85) EXIT
1 CVARIABLE mBUSY (Motor status)
2 VARIABLE mCpointer (Mprocess execution pointer storage)
3 (External command storage)
4 VARIABLE PGTIME (# of clock ticks to run motor)
5 VARIABLE mDIRECTION (Commanded direction - Positive - In)
6 CVARIABLE mCMDFLAG (Non-zero - New command available)
7 Local copies of command data)
8 VARIABLE pGtIME
9 VARIABLE mdirection

10 CVARIABLE mCmdflag
11 mSpTIME and mRvTIME are the # of clock ticks for operation
12 of the stop and reverse relays.
13 mSpDYNAMIC is the # of timer ticks for reverse plugging of the
14 motor when it has reached a physical limit - provides
15 dynamic braking.

State Sequence Handlers 61

SCREEN: 91
o (Timer operations 5/85) EXIT
1 A timer is a named ram area. When executed, a timer name
2 places a pointer to the ram area in a common working variable.
3 Timer operation words all operate on the ram pointed to by
4 this variable - that is, on the most recently executed timer
5 object.
6 All timer operations use ticks of the real-time clock as the
7 unit, to save computation.
8 n TWSTART --> Timer started for n ticks of running
9 TWCANCEL --> Timer stopped

10 TIMEOUT --> tlf t - timed out or not running
11 TIMEOUT actually "runs" the timer, stopping it if the clock
12 has passed the alarm time. Timing accuracy is no better
13 than the repetition rate at which TIMEOUT is executed.
14
15

SCREEN: 92
o (Action of words for which code is not shown) EXIT
1 mllm --> tlf Is motor at inner limit?
2 mOlm --> tlf Is motor at outer limit?
3 mRUN mREV 1/0 bits which control the run and reverse
4 relays. (See implementation notes)
5 >mlimit Set the vector for mLIMIT to sense the limit
6 switch corresponding to the mREV setting.
7 mLIMIT --> tlf Is motor at limit expected for present
8 motion direction?
9

10
11
12
13
14
15

of words for which code is not shown) EXIT
--> f - Current command would cause immediate limit

flag if executed.
t - Current command would not cause limit flag

If the new command requires a reversal or if
mLIMIT is true, and the motor is running, stop
the motor and start the operation timer to
allow relay oepration time.
If the new command requires a reversal, reverse
the motor and start the operation timer to
allow relay operation time.

mSTART-ACCOUNTING, mSTOP-ACCOUNTING -- Procedures which tally
motion of a motor, to maintain a pseudo-position value,
measured in timer ticks.

SCREEN: 93
o (Action
1 -mCLIMIT
2
3
4 ?cSTOP
5
6
7
8 ?cREVERSE
9

10
11
12
13
14
15

62 The Journal of Forth Application and Research Volume 3 Number 4

(Start the motor, do necessary accounting)
mSTART mRUN 1bit mSTART-ACCOUNTING

mToTIMER mToTIME TWSTART

(Start the motor if not already running, update plug time)
?mSTART mRUN Getbit 0= IF mSTART THEN

mPgTIME @ ABS mTIMER TWSTART

SCREEN: 94
o (Basic operations
1
2
3
4
5
6
7
8
9

10 (Wait for the motor operation timer)
11 :ssPROC mTmWAIT mTIMER TIMEOUT IF
12
13
14
15

5/85)

ssCONTINUE THEN

all housekeepingStop the motor if it is running, doing
except for mSTOP-ACCOUNTING)

mSTOP mRUN Getbit
IF mRUN 0bit mToTIMER TWCANCEL

mTIMER mSpTIME TWSTART
THEN

SCREEN: 95
o (Basic operations 5/85)
1 (Issue a local stop command to Mprocess, not affecting any
2 available external command.)
3 mSTOP-LOCAL mCmdflag CV1! mPgTIME V0!
4
5
6
7
8
9

10
11
12 (Stop the motor if it is running)
13 ?mSTOP mRUN Getbit IF mSTOP-ACCOUNTING mSTOP THEN
14
15

(Plug the motor for mSpDYNAMIC ticks)
sPDYNAMIC mSpDYNAMIC

IF mRUN 1bit mTIMER mSpDYNAMIC TWSTART THEN

5/85)

mREV bTOG >mlimit mTIMER mRvTIME TWSTART

96
Basic operations

(Reverse the motor &set the limit vector for the expected
limit)

mREVERSE

SCREEN:
o (
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

State Sequence Handlers 63

IF mlNIT THEN THEN

IF -1

mEFlAG @ SWAP mEFlAG
mStop_local THEN

!mERROR
IF

10/84)

0=

!mERROR THEN

ssCONTINUE THEN
lmERRORclear THEN;

=

IF
IF

SCREEN: 97
o (Error checks
1
2
3
4
5 ?lm-ERROR mOlm mllm and
6
7 lmERRORclear mEFlAG @ -1
8 IF mllm mOlm and NOT
9

10 ;ssPROC mEPROCESS mEFlAG V0=
11 ?mstop mTIMER TIMEOUT
12
13
14
15

(Process remote command. If present, make Mprocess recycle)
:ssPROC ?mCOMMAND ?McOMMAND

IF ssNEXT ELSE ssCONTINUE THEN

?mSEQnew --> tlf Pointer_addr --- args for ssENTRY
?mSEQnew mCmdflag C@ mCmdflag CV0! mCpointer

2MOVE

2185)
98
Sequence &command support

Process remote command. t/f - command present)
?McOMMAND 0 mCMDFlAG C@

IF 1- mCMDFlAG CV0! mCmdflag CV1!
PGTIME mPgTIME 2MOVE mDIRECTION mdirection

THEN

SCREEN:
o (
1
2
3
4
5 (
6
7
8
9

10
11
12
13
14
15

(Idle until an error or a command occurs)
:ssPROC MOTOR-IDLE ?lm-ERROR

mEFlAG CV0NOT IF ssNEXT EXIT THEN
?McOMMAND IF ssCONTINUE THEN

)

2185)

- Stop
- Error
- Obey it

lIMIT or mTIMER timeout
mToTIMER timeout
Command

mRUN-PROC mToTIMER TIMEOUT
IF -2 !mERROR ssCONTINUE THEN
mTIMER TIMEOUT mllMIT OR
IF mSTOP_lOCAl ssCONTINUE THEN
?McOMMAND IF ssCONTINUE THEN

SCREEN: 99
o (Motor-idle MRun-Proc
1
2
3
4
5
6
7 Run unti l
8
9

10 :ssPROC
11
12
13
14
15

64 The Journal of Forth Application and Research Volume 3 Number 4

SCREEN: 100
o (Mprocess 2185)
1 Mprocess
2 BEGIN ?mSEQnew ssENTRY mEPROCESS
3 mTIMER TWCANCEL mPgTIME V0=
4 IF ?mSTOP mTmWAIT ?mCOMMAND mLIMIT
5 IF mREVERSE mTmWAIT sPDYNAMIC mTmWAIT
6 mSTOP mTmWAIT
7 THEN mBUSY CV0! MOTOR-IDLE
8 ELSE -mCLIMIT
9 IF ?cSTOP mTmWAIT ?mCOMMAND ?cREVERSE mTmWAIT

10 ?mSTART mRUN-PROC
11 ELSE mSTOP_LOCAL
12 THEN
13 THEN
14 AGAIN;
15

