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Abstract
Governmental, industrial, and editorial acceptance of Forth requires that it conform to some

recognized, formal standard, (preferably sanctioned by ANSI). Proposed here are standard extension
wordsets for floating-point (FP) and complex (CP) arithmetic, based upon three years of extensive
use - and rewriting - of the MMSFORTH words with the 8087 numerical coprocessor. The models
for the proposed extensions are IEEE 754 for constraints and the HP-15C pocket calculator for scope.

Familiar words are merely preceded by F or C. Many words such as -F- and F\ (for
FSWAP F- and FSWAP F/) name single 8087 instructions. Short words are mandatory because of
the natural length of FP equations. Less familiar words include -F for negation and FRT2 for
FROT FROT, symmetrical with FROT and as often needed.

Left open for community discussion is the choice of FP number indication on input. Large
numbers are well represented by an embedded E, as 12 .34E56, but 3. E0 is prolix. 3E is confusible
with hex, 3. with double-length integer. The European decimal 3, is unique, but some do not like
the comma.

Adequate output formatting capability is essential and is provided. Over 100 data types are
subsumed under a single "grandfather" defining word, all stored with IS.

Not discussed are possible differences resulting from different IEEE 754 hardware
implementations (e.g.: Inters 8087 and 80287, etc.).

Why Floating Point?
The first question asked by nearly all Forth programers will be why Forth needs a floating-point

(FP) standard. If one works with digitized, bounded data, scaled-integer arithmetic is natural and
adequate. For predictable functions like sines and logarithms, a look-up table and integer
interpolation is fast and accurate. However, proponents of scaling have not persuaded scientific users
to abandon the perceived advantages of letting the machine do the scaling.

An unrelated, but indicative, reason for FP Forth is that 3 out of 4 FORTRAN compilers at the
URI Academic Computing Center give erroneous results for complex trigonometric functions of
small angles, forcing one to dismantle complex calculations and write them as real halves. The IBM
PC, with 8087, MMSFORTH and the CP wordset in the appendix, gives accurate answers.

An ultimately more compelling reason for an FP standard is the policy of many institutions of
avoiding non-standardized products. The absence of a formal standard prevents the US Government
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from recognizing, American industry from using, and professional journals from publishing, Forth
in FP applications. Thus, whether or not an FP standard seems desirable to us individually, it is
essential to the acceptability of the language in the real world.

The second question which will be asked is how our proposal differs from FVG, the Forth
Vendors' Group FP Standard (Tracy and Duncan, 1984). The easiest way to explain our position is
to call ours a Forth Users' Group Standard. The difference is fundamental: Vendors have a vested
interest in minimizing the amount of work they must do to produce and maintain a product.
Professional scientific users, on the other hand, want a product which maximizes their productivity.
This is an important distinction which is apparently not widely appreciated among the Forth
community, many of whom use Forth to explore computer languages rather than to crunch numbers
with serious intent. We suggest strongly that it is time for Forth to grow up in this one respect. The
fun and games - the exciting search for better approaches - may continue in other directions, but
the language of mathematics is a nearly closed field whose needs are well known. It presents a
standing target which we claim to have hit squarely with this proposal.

Forth and the IEEE 754 Standard
One of the avowed purposes of the ANSI/IEEE 754 Standard (IEEE 1985) is to allow programs

to run on "any computer that conforms to this standard," after "minor editing and recompilation."
Nearly all Forth experience to date with IEEE 754 hardware has been with Intel's realization, the
8087 numerical coprocessor. In order to ensure that editing is in fact minor, it might be well not to
adopt a software Standard until the Forth community has accumulated some experience on Intel's
80287 and the forthcoming Motorola and National Semiconductor implementations of IEEE 754.

Many of the choices we once agonized about on our own - precision, rounding, error-handling,
etc. - (Helmers 1981; Sand and Bumgarner 1983) have now been pre-empted. An aspect to which
IEEE 754 pays much attention is exception handling, saying (Sec. 7):

"There are five types of exceptions that shall be signaled when detected. The signal
entails setting a status flag [or] talcing a trap ... With each exception should be
associated a trap under user control. . . The default response to an exception shall be to
proceed without a trap. . .

"For each type of exception the implementation shall provide a status flag that shall
be set on any occurrence of the corresponding exception when no corresponding trap
occurs. It shall be reset only at the user's request. The user shall be able to test and to
alter the status flags individually, and should further be able to save and restore all five
at one time."

The five IEEE exceptions are invalid operations (e.g., square root of a negative number),
division by zero, overflow, underflow, and inexact rounding.

Having operated in the default mode for three years without feeling a need for anything more,
we are impressed with the careful planning behind the default options of the 8087. For all practical
problems yet encountered, the exponent range (::1::4932) is indistinguishable from zero at the low end
and infinity at the high, so that the "overflows" and "underflows" that so plague operations on 32-bit
mainframes simply do not occur.

Accordingly, we provide a minimal set of Processor Control reference words which allow the
user to put the status word on the stack lilSW, set exception flags and clear them SET-EXCEPTIONS
and CLEA R- EXC EPTI 0 NS, and put the "environment" on the stack lil ENV, where it may be
examined by an exception-handling routine. We also specify TOFS, an extension of the 8087
instruction FXAM, which reports the type of object (14 choices!) at the top of the F-stack in the form,
for instance, "TOFS is -Denormal". We designate these as reference words for the simple
reason that we have never had occasion to use them.

Similarly, we provide reference words which set the processor's rounding mode. FROUND+ and
FROUND- round toward + and - infinity, respectively. We also include infinity controls AFFINE
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(+00:'=-00) and PROJECTIVE (+00=-00), and words @CW and !CW to fetch the processor
control word to the stack and return it to the 8087.

More useful, and therefore not reference words, are the rounding controls FROUND, which
rounds toward nearest or even, and FTRUNC, which rounds toward zero. Essential is FIN IT to
initialize the processor, i.e., set the defaults and clear the F-stack.

It is clear that no Forth programmers worked on the IEEE 754 specifications or upon Intel's
8087, since the single most frequent exception is overflow of the 8-deep F-stack, and this fatal
exception is not signalled in any useful manner. It naturally results in the loss of the datum forced
"off the bottom". However, since the F-stack is really a ring-and-pointer, the effect is to attempt to
overwrite an occupied register. The attempt is unsuccessful but is not aborted and leaves garbage
in the register, but the only "flag" which is set is a 10 pattern in one of 8 locations along the
processor's tag word, which itself is relatively inaccessible and incapable of producing an interrupt.

We call attention to the overriding need for an interrupting hardware flag for this exception, and
discuss a possible software fix below, but do not suggest this as part of the Standard, preferring to
leave it to implementors in the same spirit with which Forth abjures bounds checking of arrays. We
also leave the "trapping" proposed by IEEE 754 to implementors. Those who need traps may install
them as they see fit.

Limitations of This Paper
Some reviewers felt that we should address wider questions such as "hardware versus software

implementations, the merits or demerits of a separate FP stack, the AM951 I , the Macintosh SANE
interface, and other FP packages. Benchmarks ... would be useful." We comment on these points
in tum.

Hardware vs. software. There is simply no contest here, but this fact may not be apparent to casual
users. In a loop which adds two numbers 10,000 times, the 8087 may be only twice as fast as single­
precision (32-bit) software FP. But in heavily numerical calculations, the 8087 may be 115 times
faster.

Similarly, the 80-bit precision of the 8087 may not seem useful, since one seldom needs 19
decimal digits in a practical calculation. But this misses the point: The function of the additional
precision is to reduce roundoff error in recursive calculations. Ricatti-Bessel functions, calculated
by about 100 recursions, are accurate to only I significant figure with 32-bit software, but to 6 (or
more) with the 8087 (MacIntyre 1984). We have not tried 80-bit FP software, which might solve
the roundoff problem - but only at the cost of taking 300 times as long as the hardware.

For these reasons we believe that software FP has no place in serious calculations - a point
which Moore has often made. This leads us to take the position that software FP should mimic the
IEEE 754 hardware (necessarily with a separate FP stack), on the grounds that the principal reason
to write such programs is in preparation for moving them to hardware.

Other approaches. Looking at the differences between our recommendations and those of the FVG
group, we feel that we are breaking enough new ground, so that we limit our comments to those
things that we have used professionally, where we compete successfully with FP operations on
mainframes and supercomputers. The proposed wordset, although based on MMSFORTH, differs
considerably from the version currently available, and this paper is not to be construed as
reconunending any particular implementation.

Having no experience with the AM9511, SANE, etc, we are not competent to discuss them. If
others who know these approaches feel that they have something to contribute to the Forth Standard,
we encourage them to write parti,san papers presenting their merits in the best possible light, so that
the Standards Team has some ideas to select from in making its decisions.

Benchmarks. We have done no benchmarking other than that incidental to getting our own numbers
out, mainly because our central interest lies in the numbers rather than in the way the numbers are
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obtained. Benchmarks are sensitive to hardware speed, to algorithmic efficiency, and to cleverness
of implementation, but it is not clear how they affect considerations about the Standard unless they
address very specific questions. Acarefully constructed benchmark might aid the Standards Team
in deciding between conflicting suggestions; in this case we welcome the opportunity to run some
tests.

Desiderata
Although many of the words in the Appendices have been around for years (Peterson and

Lennon 1981), the rationale for some of the less obvious choices is given below.

Short Words
Forth programmers are accustomed to "self-documenting" long names. But FP operations have
different requirements, and experience shows that approaching Moore's goal of one-line definitions
(Brodie 1984, p. 180) is difficult for the usual FP equation. Despite concurring with the one-line
optimum, the first pass at converting FORTRAN programs to Forth (of which more below),
invariably has words which cross block boundaries. Much of the problem is solved by factoring, but
long words simply take up too much space to be useful. Dowling's FVG-style FNEGATE was the
first word MacIntyre renamed, independently picking Harwood's (1981) obvious replacement, -F.
As an example (from an almanac program), the cosine of the angle between the meridians of the sun
at declination 0 and depression R, and the observer at latitude La is given by:

cos () = - (sin 0 sin La + sin R)/cos 0 cos La

This can be written as one 64-character line of compressed code:

: cos-th 0 SIN La SIN F* R SIN F+ 0 COS La COS F* F/ FNEGATE

but we prefer the more legible version with phrasing gaps:

: cos-th 0 SIN La SIN F* R SIN F+ o COS La COS F* F/ -F;

(Notice that the only way we got this equation on a single line at all was by exercising the option
of dropping the F from FP function names, in favor of I on the smaller number of integer versions
which might be simultaneously active. And yes, we realize that Moore's almanac probably took 6
blocks in scaled integer, but we suspect that it didn't deal with Milankovich cycles over geological
time spans.)

There are two reasons for long FP defInitions. The first is that some equations are best written
as 8-line defInitions simply to keep associated calculations together. More important is that 8087
arithmetic is fast, but 8-byte stores and fetches are slow. One never wants to store intermediate
results if they can be left on the F-stack till used, but leaving a number on the F-stack while
executing intermediate words makes for illegible code, and good practice suggests consuming such
intermediates inside the definition that created them.

"Logical" Choices
The most controversial names proposed below are probably those which move data between the

normal stack and the F-stack. These all have the form FxY, where x is an arrow pointing "from"
F<Y or "onto" F> Y the normal stack, and Y indicates the type of object being moved. Other
conventions may be equally logical, but the overriding objectives are two: To keep these words
together in the glossary so the user can fInd them (hence they all start with F), and to provide a
structure in which a given arrow keeps its name throughout (experiment with pronouncing the
original MMSFORTH names FS>, FS<,and FS>D if you don't see the problem). We reiterate that
for auditory clarity, the > arrow should be pronounced "onto" rather than ''two'', "too", or "to".

It goes without saying that any word which pushes an object onto the F-stack that does not
automatically occupy all 80 bits, should set the unoccupied bits to zero (this has not always happened
in the past).
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Indices
The sine qua non of scientific programming is manipulation of indexed arrays. Factoring out

short segments of such manipulations to keep definition length within bounds requires that the index
be available for words which are many jumps removed from the loop which established the value
of the index. Forth is clumsy at this. If the index is on the return stack, every jump to a new word
means that attention must be paid to the index. After the first jump, I I can be used (at least in
MMSFORTH, although Forth-83 seems to lack even this); after the second, things get complicated.
As a result, words which have been factored out of a long definition tend to be called with
I <name>; and to start with >R, and have R> DROP either as the last component or R> preceding
the last indexed word (replacing DROP). A decision must be made each time, and the variety of
approaches means that different symbols and different structures produce the same result,
guaranteeing illegible code. If the arrays are multiply indexed, the problem is worse, and one resorts
to the slower option of named index variables.

Although the 16-blt Novix NC4000 was nm designed with indexed operations in mind, when
it is used with a coprocessor its designers suggest that the first index be put in the "square root"
register, and a second in the "multiply" register (but a third index must be put in 2-cycle-access
memory). This suggestion also eases implementation of words such as 1+ (-> 1+1) and 1­
( -> 1-1), useful for the common situation in which adjacent members of an array are wanted.
Nonetheless, if there be a 32-bit Novix in the offing, a handful of true index registers would be
highly desirable!

A final need is for reference words like FI =I F<S which put indices directly on the F-stack,
for times when terms in an infinite series are multiplied or exponentiated by the index, but note that
if index-dependent terms are more complex (e.g.: n/n+1) it often pays to precompute them and store
them.

-F-, F\, FRT2, and FATN2
- F- is a direct translation of the single 8087 instruction FSUB, and F\ similarly translates

FDI V. (F - and FI translate FSUB R and FDI VR respectively.) Implementing them in Forth saves
an FSWAP, and the whole thrust of FP words should be to minimize tlle number of instructions
written and executed.

FRT2, which does the "complicated" ROT ROT to the F-stack, is no harder to implement, and
takes no longer, than FROT. Brodie calls ROT ROT a sign that the stack is too crowded (Brodie 1984,
p. 203), but it is symmetrical with ROT and needed about as often. We have not implemented
FPIC Kor FRO LL, but include them as reference words.

Note that we suggest both FAT AN, which provides the principal value of a single argument, and
FATN2, which is the two-argument, four-quadrant arctangent. Since FATAN uses FATN2 internally,
writing both into the Standard costs only about 10 cells of memory.

Comparison operators
Although the 8087 instruction FCOMP suffices for all FP comparisons, one often writes binary­

choice versions, because

F<= IF XXX THEN

is clearer than

FCOMP 0 <= IF XXX THEN.

However, because these require only a half line of trivial code, they are included as reference
words.

IEEE 754 calls for comparisons to signal an "unordered" result when one of the comparands is
not a properly formatted number (as might occur after division by zero, for instance).
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Representation ofFP Numbers
When the exponent is explicit, an embedded E suffices to indicate an FP number, as

1. 23E456. Often, however, one wants to enter non-exponented FP numbers from the keyboard,
and 1 • E0 is prolix and inelegant. 1E0 can be interpreted as a hex number; 1 .0 looks like a double­
length integer, and often both FP and double-length words must be active simultaneously. One
possibility is to use an embedded decimal to signify an FP number, and a tenninal decimal point for
a double-length integer, but this could cause difficulties with [mancial packages.

Another alternative is the "European decimal point" or comma, as 12,34. The trade-off here
is possible confusion with Forth's traditional use of the comma as a compilation operator.

We have experimented with these conventions, and now use the comma, but suggest that our
European colleagues be invited to discuss this particular point.

Printing and Formatting FP Numbers
Since output must be understood by a human before it becomes significant, formatting words

are essential to a floating-point package. The number-entry and -display routines on a hand calculator
use a large fraction of its total memory, devoting as much code to convenient formatting as to
"useful" mathematics. Even with the printing words described in the appendices, 70% of a recent
lO-block program (to belabor the acoustics of small bubbles) was devoted to I/O: 3 blocks of
parameter definitions and descriptions, 2 blocks of words to print out and label intermediates and
results, a block of input-acceptors, and a block for video graphs, all to support, debug, and tame
3 blocks of complex arithmetic, and every one of these supporting words written because it was
needed.

The I/O format which we have settled on after many permutations has two basic printing words,
E. R for right-justified exponential, and F. R for floating point. At a cost of two more lines of code,
one can add the FORTRAN-like G. R, in which the machine makes a choice between E. Rand F. R.
For two more lines of code, one can switch the exponential E. R between SCI. (with an ad lib
exponent) and ENG. (whose exponent is a multiple of three, as in a Hewlett-Packard calculator).
Another pair of lines get a choice for F. R between FLO. (with a fixed number of decimal places)
and FLW. (with a fixed number width). IEEE 754 Sec. 5.3 specifically requires rounding upon
conversion to narrower formats.

The three printing words also come with trivial non-justified variants E., F., and G., while
FE. and FF. print all 16 digits.

We omit "E" between mantissa and characteristic, leaving only the sign of the characteristic as
separator, just as calculators do. ("Feynman notation" avoids the "E" by writing the signed
characteristic as a subscript, an option which is increasingly available on small printers, and may
yet come to video displays.)

For complex numbers we normally use a single C. command which prints two numbers in G.
format. A useful touch for an implementation, if not the Standard, is to have the second number
followed by an indication of the modes in use: ; for rectangular, r for polar radians, and 0 for polar
degrees. This removes a source of confusion, since

3.000
5.000
5.000

4.000i
0.927r
53.13 0

are all the same number.
It goes without saying that to qualify as complying with the Standard, formatting words should

handle the many types of F-stack objects appropriately--that is, presenting whatever information is
contained in the F-stack location. MMSFORTH does not, for instance, cope optimally with
denormals, but the fact that no one seems to have noticed this in three years suggests a need for a
simple means of testing for compliance. A Standard is meaningless without a verification suite.
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Alas, Babylon
Babylonian numbers (hour:minutes:seconds and degrees:minutes:seconds), which inevitably

crop up in things like almanacs, solar design, and navigational programs, present a format problem.
The easy Forth convention is to enter these as three integer stack items, but this differs from the
wide-spread HP-15C convention in which the entry format is dd.mmss. Furthermore, we note that
while sextants normally read in decimal minutes dd:mm.mm, theodolites read in seconds dd:mm:ss,
offering three possible conventions--each of which will be seen as optimal by some users.

Our response is to suggest two reference words F<60 and F>60 to move FP Babylonian data
from and onto the normal stack. Since I/O words like this do not need speed, and since these are
clumsy to implement in assembler, we see these as existing only in high-level Forth. We suggest that
these words might come in three format-variants, with the user selecting the variant he desires. (Thus
in one program F<60 might move hh mm ss, but in another, hh.mmss. In the extreme case of
needing more than one format, a variant might be renamed.

Although this flexibility may sound confusing, it boils down to making a choice, at load time,
among the following possibilities:

Format
dd mm 5S

dd.mmss
dd.mmmm

3#IN
O#IN
O#IN

Input
12 34 56
12.3456
12.3456

F<60
F<60
F<60

F-stack
12.582222
12.582222
12.576000

Stack
F>60 5634 12
F>60 3456 12
F>60 3456 12

where 3# I N, not included in the Standard, would be something like

: 3#IN (-> hh mm 5S) "?" PAD 15 EXPECT PAD 1­
NUMBER NUMBER

NUMBER DROP ;

so that one could enter the three numbers as a single unit with a single carriage return. (0# I N is
MMSFORTH's double-length-number read-in word.)

As we implemented the Babylonian words, they are symmetrical in function but not in detail.
That is, if F<60 picks up an I/O format and puts a calculating number on the F-stack, then F> 60
returns an I/O number--but one whose stack order is most suited for printing, possibly with
punctuation marks. F>60 does not, that is, return a number in the same double-length format which
F<60 found it, since we didn't know what to do with it after we got it back in this format. This
asymmetry of form may be philosophically worrisome because while F<60 F> 60 is meaningful,
F>60 F<60 is not. Nevertheless, we find this eminently practical.

Similar asymmetric choices exist for other words, such as the F<O F>D pair. Should the
number returned be the number sent, possibly with many decimal figures? Or will one more often
plan to continue with integer calculations, and therefore desire truncation upon return? Because these
are points upon which rational people can reasonably disagree, the Standards Team must specifically
resolve them. We enter a strong plea for consideration of the most useful forms of asymmetry, with
documentation and a published explanation for the rationale behind the final choice.

QUANs
CONSTANT and VARIABLE have seldom been used as intended. If one is not concerned with

the possibility of putting code into ROM, the convention that CONSTANTs should not be changed
by the program loses its sig!"ficance, and one promptly adopts whichever data structure results in
a minimum littering of ' and @ about the program.

The QUAN (Rosen 1982, Dowling 1983), for "quantity", is a data structure with three CFAs,
one pointing to @, one to !, and one to AT, which returns the QUAN's address. Complicated as this
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seems, it does away with the problem of I and iii, and saves space if there are at least three uses of
the name. More to the point, it relieves the programmer of remembering how he has defined data.
Mentioning the QUAN by name puts its value on the stack. I S stores data into it, as in
54 IS <name>.

The most imporant feature of the QUAN is that it is intelligent to the extent that the programmer
need not worry about what kind of QUAN is being stored. Since over 100 kinds of QUANs are
proposed below, this feature eliminates scores of special words and the sort of unpleasant surprises
that result from ! when you meant C! .

No one in our experience who has used FQUANs has evinced any desire for other FP data types.
Unless there are applications which have not become evident to the people we know, we see no
reason to propose FCONSTANT or FVARIABLE, although we include them as reference words. FiiI
and F' are also included.

A Grandparent Deflning Word for Data types
In any serious application, one is likely to want a dozen or more data types, and experience

shows that very similar definitions proliferate with time. As an alternative, 144 distinct data types
can be built from 18 building blocks, subsumed under one patriarchal word which itself defines data­
type-defining words. This single word is in the standard and is named DATA-TYPE. It is used in the
form:

d w t a DATA-TYPE <quan-type>

where: d = dimension
w = width

t = type
a = address

0123;
o 1 2 = 8-, 16-, and 32-bit integers;,

or 32- and 64-bit FP numbers
and 80-bit temporary real or BCD numbers;

O=integer, 1= floating-point, 2=complex, 3=BCD;
O=in-line, 1= indirect, 2=outside 64kb.

Thus 0 1 0 0 DATA-TYPE QUAN and QUAN SIFAKA makes SIFAKA a single 16-bit integer
quan, while 3 2 2 2 DATA-TYPE 3TCLARRAY and 5 10 15 3TCLARRAY INDRI make
INDRI a three-dimensional, 80-bit-wide, complex array 15,000 bytes long, stored in high memory
outside of Forth's 64-kb sector. A number of self-consistent <q ua n- t ype> names are included in
the reference set.

On the address-segmented 8088, moving outside a 64-kb sector (with a=2) imposes a 23% time
penalty on memory references, a not inconsiderable trade-off swapping time for space. For arrays
it is the saving of space that is important, while single FLQUANs make it convenient to store
associated single parameters beside the large arrays in high memory, so that by judicious overlaying
of data space and a virtual disk, one can transfer all varieties of data to floppy disk with a single
block move (MacIntyre 1984b).

Both data stacks are used to store to an FAR RAY, the datum on the F-stack, and the indices on
the parameter stack, leading to structures like

0, I J IS DATA

to make DATA<I,J)=0.
Moore questions the utility of ARRAY (Brodie 1984, p.196), preferring to define his own

variations at will, and indeed, this is an option which advanced users take advantage of. But array
definition seems unfeasible in FP because the defining words are necessarily in machine language
in any serious implementation, and so complex that they need the attentions of a professional.

Matrices?
Having arrays, the 8087, and cookbook matrix routines almost available (Startz 1985), one

contemplates adding matrix operators to the Standard. We do not do this, preferring a separate
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Matrix-Manipulation extension, but note that a little forethought now will greatly simplify life later.
Taking the Hewlett-Packard 15C calculator as the conceptual model, we find that two-dimensional
arrays and matrices differ in only two important ways:

Arrays need remember only one dimension, while matrices need both;
Matrix calculations need dynamic memory management to provide workspace.

Any object defmed by MA r RI X should be usable as an ARRAY (but the reverse is not necessarily
true). One recommended option, which prepares for matrix operations, costs little, and eliminates
the defIDing word MAr RI X, is to store all dimensions with arrays.

Memory management may in actuality not be a problem, as memory become cheaper. The
program can report an incipient error if it is about to run out of room for intermediate results, and
for large data 'sets the programmer will know in advance that he must overwrite his own arrays.

Coding Conventions for FP
In writing long equations, clarity is aided by:

short words,
vertical alignment of operations,
judicious use of white space.

The goal of "one line per definition" is reasonably replaced by "one line per storage operation",
analogous to Harris's (1984) ending a phrase when the stack depth is reduced.

The structural differences between algebra and RPN are such that good FORTRAN can often
be translated into reasonable Forth by mindlessly working from right to left, making full use of - F­
and F\. Maximum stack occupancy is frequently only half as great as when translating from left to
right. A useful strategy is to do this consistently on the first pass, even when the equation is simple.
When the bugs are out is soon enough to think about and neaten up the code.

These suggestions are illustrated by the coding in Figs. I and 2, which also shows the
imaginative naming achieved by translating a FORTRAN program into Forth. (As an adjunct of the
"short names" philosophy, it would be a great boon if the ASCII standard had included the Greek
alphabet!)

It is helpful if vectored names are distinguishable from words that one can depend upon, and
we suggest the naming convention

INAME "disjunctive-name" (not "or-name"!) Vectored word

for forward references which will later be filled by a choice of executable words. If words are
created for the sole purpose of filling the vectored names, we suggest indicating the fact with
compound names such as:

aaalNAME bbb INAME Executable words to be vectored.

As an example, in MMSFORTH one might write

VEcr IEXP
ENG IEXP ••• ;
SCIIEXP ••• ;
SCI. [FIND] SCIIEXP
ENG. [FIND] ENGIEXP

to defme the vector,
and
to define the vectees, and then either

I S I EXP ; or
I S IEXP ; to fill the vector.

These provide the words by which one selects scientific or engineering notation, while

: $F.EXP . .. IEXP ••• ;

sets up the format for E. to print in either exponential format. (Something similar could doubtless
be done with Brodie's (1984) MAKE and DOER.)
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Fig. 1. Segment of a typical scientific FORTRAN program translated into Forth in Fig. 2. Name
changes made for the sake of brevity and logic include:

COEF(2,U -> L 1 CF
OIVOIF -> 10

ALPHA -> a ONEMZT -> 1-Z
5(1,1) -> I dt 5(1,4)

DEL -> (,
-> I R .

COEF(4,L-1)+6.*(1.-ALPHA)*C/5(1,1)*ONEMZT**3
COEF(3,L-1)+OEL*COEF(4,L-1)
COEF(2,L-1)+OEL*(COEF(3,L-1)+(OEL/2.)*COEF(4,L-1»
COEF(1,L-1)+OEL*(COEF(2,L-1)+(OEL/2.)*(COEF(3,L-1)

+(OEL/3.)*COEF(4,L-1)

62 COEF(2,L) = OIVOIF - 5(1,1)*(2.*5(1,4) + 5(1+1,4»/6.
COEF(4,L) = (5(1+1,4)-5(1,4»/5(1,1)
GO TO 68

63 ONEMZT = GAM*(1. - Z)
IF (ONEMZT .EQ. 0.)
ZETA = 1. - ONEMZT
ALPHA = ALPH(ZETA)
C = 5(1+1,4)*5(1,6)
o = 5(1,4)/6.
DEL = ZETA*5(1,1)
BREAK(L+1) = TAU(I) + DEL
COEF(2,L) = OIVOIF - 5(1,1)*(2.*0 + C)
COEF(4,L) = 6.*(C*ALPHA - 0)/5(1,1)
L = L + 1
COEF(4,L> =
COEF(3,L> =
COEF(2,L> =
COEF (1, L> =

*

Fig. 2. The FORTRAN segment of Fig. 1 rewritten in Forth, with some operations done elsewhere
in the Forth words 63! and L63. The words 2 I, 3 I, 4 I, and 3 F, are repetitive 0UPs or F0UPs,
to put multiple copies on the stack. *2, 16, etc., are floating-point operations. +L increments L.
Note: The imaginative naming; the surviving tendency for the Forth to represent a right-to-Ieft
reading of the FORTRAN; the storage protocol for FQUAN5; the "one line per storage operation"
convention; the vertical alignment; dragging the index along with the clumsy > R and R>; the use
of -F- and F\; the utility of short names; and the logic of long definitions.

\ 850219 FM Taut spline 22/28 Piecewise polynomial coeffi ci ents
\ Normal case.

L62 >R 3 I 1+ R R FOVER FOVER *2 F+ 16 dt F*
10 -F- L 1 15 CF

( R+ R) F- I dt FI L 3 IS CF R>
\ New knot inserted; Z > .5.

A63 >R 63 !
C 0 *2 F+ I dt F* 10 -F- L 1 IS CF
I dt 0 a C F* -F- *6 F\ L 3 IS CF +L
L 1- 3 CF 1, a F- C F* *6

1-Z 3F F* F* I dt F* FI F+ L 3 IS CF
L 1- 21 3 CF {, F* 2 CF F+ L 2 IS CF
L 1- 3 I 3 CF {, F* 12 2 CF F+ {, F* 1 CF F+ L 1 IS CF
L 1- 41 3 CF {, F* 13 2 CF F+ {, F* 12 1 CF F+

{, F* o CF F+ L 0 IS CF R>
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How Many Words in a Standard?
Many people at the '85 Rochester Conference were uncomfortable with the number of words

proposed here, preferring to see maybe 15 in an FP Standard. No doubt there are reasons for this
attitude, but we remind the minimalists that in the 8087 we have a device which is in many ways
more powerful, exact, and versatile than a mainframe, and it requires an extensive vocabulary to
take advantage of this machine. It has, for instance, 15 varieties of addition and subtraction
instructions alone, and while Forth does not need all of these, we include nothing in the standard
which we have not found useful. A number of apparently exotic words (e.g., FSPLIl) are in fact
"internal" words, originally called by others, whose accessibility has seemed useful. These add little
to complexity or length of code.

A useful criterion for the selection of a vocabulary is that the FP user should not be aware of
the hardware. He should be able to do everything needful without ever having to write a machine­
language word. Perhaps the easiest way to achieve this criterion is for an FP implementation to have
at least the power of the HP-15C. The reason is simple: The 15C represents the culmination of a
decade of Hewlett-Packard's market research into what people who do arithmetic need to do it with.
What one can carry in a shirt pocket, he certainly should be able to find at a terminal!

Admittedly there is a difference between implementation and Standard, and this proposal still
falls far short of reaching the capability of the 15C. By way of estimating the importance of the
proposed words, the Appendices include a column labelled "Level" (for want of a better name) which
refers each word to the following table.

Example Level

FINIT 0
FROl 1
FI 2
FSIN 3
F.R 4
REel

Description

One or two 8087 assembler instructions.
A line or two of 8087 assembler.
Average user could write a slow version in high-level Forth.
Complicated 8087. Left unfinished by 8087 designers.
Complicated 8087. Necessary for useful code.
Trivial word with sometimes complicated results.

Level 0 words are so simple, and necessary, that they will be written in by any user. Levell
words will be written in by any user who can, by trial and error, imitate similar examples in his
implementation. Since these words will appear in all implementations, they should be included in
the Standard.

Level 2 could be reduced to Reference words, as they can be written in high-level Forth, using
other available words. We include them because assembly-language versions of some are preferred
for speed, and because users tend to add those they do not fmd.

Level 3 words implement functions whose underlying value is calculated by the 8087, but whose
completion requires extensive coding and familiarity with the vagaries of the 8087: they would thus
seem to belong in the Standard.

Level 4 words are so complicated that they are best supplied by professionals.
Both ends of this scaling indicate words which should be in the Standard, but for opposing

reasons. Only the middle ground is truly negotiable, and we feel that we have made a utilitarian
choice for these.

Dealing with F-Stack Limitations
We mentioned above the Jack of an exception flag or interrupt for F-stack overflow.

Considering that some of the complex inverse trigonometric functions require 7 of the 8 F-stack
locations, it will be seen that careful attention must be paid to F-stack overflow. While dedicated
Forth hackers may accept this as one more challenge, the average FP user may find it an extreme
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annoyance. Unfortunately, the 8087 was not designed to deal with this problem, and there is neither
an elegant fix, nor anything which we can recommend by way of warning signals which we feel is
suitable for incorporation in the Standard.

To indicate what might be done in an implementation, we note that a zero tag word indicates
a full F-stack. Every operation which pushes data onto the F-stack (such as the F<Y words, DATA­
TYPE, FDUP, etc.) could include something like the following word:

: ?OVERFLOW @ENV ROT AAAA AND IF 2DROP 2DROP 2DROP ELSE ."
F-stack will overflow! .. HEX 6 0 DO U. LOOP DECIMAL ABORT THEN

However, this is too high an overhead for those whose objective is speed rather than safety, so the
overflow test should be made removable.

Several scientific users have requested not a trap, but a stack extension into which the F-stack
could overflow seamlessly without user attention. This would be a kilobyte or so of dedicated
memory logically continuous with the bottom of the F-stack, plus a couple of pointers and words
to move 80-bit data between F-stack and extension. But this is slow in operation and complicated
in detail, and every implementor we have talked to has felt that such a feature should be part of an
implementation and not part of a standard. (This is, no doubt, the sort of complexity which makes
Chuck Moore so wary of FP operations.) We do specify the words F>T and F<T to move 80-bit
temporary reals between stack and F-stack, to provide temporary storage with no loss of precision.

No viable implementation of integer Forth lacks a way of non-destructively printing the contents
of the parameter stack, and we should not expect FP users to do with less. It is a fact of life that the
F-stack gets used for I/O operations on FP numbers, making it impossible to print out the complete
contents of the F-stack in a straightforward way, but the 8087 does provide the tools needed, so we
deem it important to make F-stack printability a requirement of the Standard, for which we specify
the word. FS.

Thoughts on Complex Arithmetic
State-smart Rectangular IPolar CP words?

Some complex operators work best in rectangular representation; some in polar. One option is
to convert all results to rectangular mode, regardless of internal operation: A second option is to have
the words respond to a Rectangular IPolar flag Oike a Degree IRadian .flag for trigonometric
functions). We have insufficient experience to make a recommendation for the Standard on this
matter. The second option is sometimes convenient and has not, so far, gotten in the way of anything
we have tried, or slowed things down noticeably. The idea deserves further discussion.

Special words
We include CROT and CRT2 as reference words against the day when hardware advances offer an
F-stack deep enough to make them useful. The words RE, 1M, and CONJ to get the real and
imaginary part of a complex number, or take its complex conjugate, all have trivial high-level
synonyms, as do i and i *, but in practice we find the descriptive names essential for clarity of
code.

Festina Lente
Recent experience in implementing standards suggests that unfortunate choices can be

minimized by the participation of a larger section of the Forth community than can make it to a given
meeting. We suggest that proposed standards be published, used, and debated for a minimum of a
year before they are officially acted upon.
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Appendix I: Proposed FP Standard Extension
Unlike the parameter stack, the 8087 stack holds only 80-bit-wide normalized FP numbers or

lO-eharacter BCD strings. All flags, indices, addresses, etc. remain on the parameter stack. a band
e in stack comments below refer to normalized numbers on the FP stack, while items following a
colon are on the parameter stack. I is an address on the parameter stack. R in the "level" column
indicates a reference word.

Name Level Stack

Stack operations

FDUP 1 (a -) a a)
FSWAP 1 (a b -) b a)
FROT 1 (a b e -) b e a)
FRT2 1 (a b e -) e a b)
FOVER 1 (a b -) a b a)
FDROP 1 (a -»
FPICK 4R (a b . n. e n -) a b .n. e n)
FROLL 4R (a b .n. e n -) a b .. e n)

Arithmetic

F+ 0 (a b -) a+b)
F- 0 (a b -) a-b)

F* 0 (a b -) ab)
FI a (a b -) alb)
F\ a (a b -> b/a)
-F a (a -) -a)
-F- a (a b -> b-a)
*2 0 (a -> 2a)
12 0 (a -> a/2)

FABS 0 (a -> Ia I>
1/X 0 (a -> 1/a) (aLternate name: FINV )

Functions. The leading F is required for applications which also use similar integer functions, like
the rapid trigonometric functions of MMSFORTH's TGRAPH, but another option in the interest of
short names is to omit the F and rename the integer functions (e.g.: I SIN).

FINT
FRAC
FMOD
FSPLIT
FSGN
FSQRT
FLN
FLOG
FEXP
F10"X
F"

o
o
3
2R
4
o
3
3
4
4
4

(a -> [aJ)
(a -> a-[aJ)
(a b -> a moduLo b)
(a -> [aJ a-[aJ)
(a -> a : ?) a<0, ?=-1; a=0 ?=0; a>0 ?=1
(a -> a1/2 )
(a -> Ln{a})
(a -> L0910{a})
(a -> exp{a})
(a -) 10a )
(a b -) ab) (continued)
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FSIN 3 (a -) sin{a})
FCOS 3 (a -) cos{a})
FTAN 3 (a -) tan{a})
FASIN 2 (a -) arcsin{a})
FA COS 2 (a -) arccos{a})
FATAN 3 (a -) arc tan{a}) Principal value
FATN2 3 ( y x -) arctan{y/x}) 4-quadrant arctangent

FSINH 3 (a -) sinh{a})
FCOSH 3 (a -) cosh{a})
FTANH 3 (a -) tanh{a})
FASINH 2 (a -) arcsinh{a})
FACOSH 2 (a -) arccosh{a})
FATANH 3 (a -) arctanh{a}

DEGREES Set angle flag to degree mode
RADIANS Set angle flag to radian mode

Pseudorandom number generation being a subtle art (Knuth, 1981), its programming should be
handled by professionals. Generating Gaussian FP numbers, for instance, is not a trivial problem.
Consequently, we feel that any FP package worth its price should include:

FRAND

Constants

0,
1 ,
PI

4R

o
o
o

(a -) pseudorandom FP number, 0 <= # <= a)

( -) 0) Alternate names .0 0E0
( -) 1) Alternate names 1.0 1E0
( -) 3.141592653589793)

Processor Controls

FINIT 0
FROUND 2
FROUND- 2R
FROUND+ 2R
FTRUNC 2
AFFINE 2R
PROJECTIVE 2R
@CW 4
!CW 4
@SW 4R
SET-EXCEPTIONS 2R
CLEAR-EXCEPTIONS OR
@ENV 4R
TOFS 4R

Initialize processor, clear F-stack
Set rounding toward nearest
Set rounding toward - 00

Set rounding toward + 00

Set truncation mode
+Infinity *" - infinity
+Infinity = - infinity
Move processor control word from processor to stack
Move processor control word from stack to processor
Move processor status word from processor to stack
Set exception flags and interrupts with mask
Clear exception flags
Move 7-word 'envirorunent' from processor to stack
Determine type of object at TOFS via condition codes
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F-stack <- > Memory

81

<name> 4
IS <name> 4
AT <name> 4
F@ 4
F! 4

I/O

Fetch value of FQUAN <name>
Store value into FQUAN <name>
Return address of FQUAN <name>
(I : > a)

( a : I -»

. FS
F#IN
F#OR
FLW.
FLO.
SC I.
ENG.
E.
F.
G.
E.R
F.R
G.R
FE.
FF.

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

Non-destructive printout of FP stack.
Display ? and wait for FP number entry
Display ? and wait for FP or CR; if CR, use number on F-8087 stack
Set floating-point format of fixed number of numerals
Set floating-point format of fixed number of decimals
Set exponential format as x. nnn- p
Set exponential format as x x x • nnn- 3 p
( n -» Print TOFS in exponential format with n decimals
( n -» Print TOFS in floating-point with n decimals
( n -» Machine choice of E. or F.
( n w -» E. right-justified in field of width w
( n w -» F. right-justified in field of width w
( n w -» G. right-justified in field of width w
Full exponential format
Full floating-point format

Comparisons. Flag is left on parameter stack.

FCOMP 4 (a b _. ?) a<b -> -1 , a=b -> 0, a>b -> 1 , unordered ->
ABORT
F< 2R (a b _. ?) a<b -> 1
F= 2R (a b -. ?) a=b -> 1
F> 2R (a b -. ?) a>b -> 1
F0< 2R (a _. ?) a<0 -> 1
F0= 2R (a -. ?) a=0 -> 1
F0> 2R (a _. ?) a>0 -> 1
F<= 2R (a b _. ?) a<=b -> 1
F<> 2R (a b _. ?) a<>b -> 1
F>= 2R (a b _. ?) a>=b -> 1
FMAX 2 (a b -> Larger of a,b)
FMIN 2 (a b -> sma LLer of a,b)

Stack transfers. All begin with F to keep them together in the glossary. All are Level 4.

"F-from-Y"

F<S
F<O
F<T
F<SF
F<OF
F<B
F<60

"F-onto-Y"

F>S
F>O
F>T
F>SF
F>OF
F>B
F>60

Move:

Integer
Double-length integer
80-bit temporary real format
32-bit floating point. Reference word
64-bit floating point. Reference word
10-characters of BCD.
Hours IDegrees Minutes Seconds
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Index operations
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I J
1- J­
1+ J+
FI FJ

Data types

FVARIABLE
FCONSTANT

I
2
2
2

4R
4R

Inner- and outer- loop indices
Index-l
Index+1
Put indices on F-stack

Not recommended. See below.
Not recommended. See below.

Using a second-generation "grandparent" defining word, it is possible to reduce the number of data­
type words in the standard to one, with numerous controlled reference words.

DATA-TYPE
d = dimension
w=width

t=type
a = address

4 Cd w t a -> ), where:
0, 1,2, or 3 dimensions.
o 1 2 = 8-, 16-, or 32-bit integers; or 32- and 64-bit FP numbers and
80-bit temporary real numbers, or BCD numbers.
0= integer, 1= floating point, 2 = complex, 3= BCD.
O=in-line storage, 1= indirect, 2=long-address.

Used in the form d w t a DATA-TYPE <data-type-name> where <data-type-name> is a
defining word from the following reference list:

d w t a d w t a
III III III III QUAN III 1 III III DQUAN
III III III 1 IQUAN III 1 III 1 DIQUAN
III III III 2 LQUAN III 1 III 2 DLQUAN
III 1 1 III FQUAN III 2 1 III DFQUAN
III 1 1 1 FIQUAN III 2 1 1 DFIQUAN
III 1 1 2 FLQUAN III 2 1 2 DFLQUAN
III 1 2 III CQUAN III 2 2 III DCQUAN
III 1 2 1 CIQUAN III 2 2 1 DCIQUAN
III 1 2 2 CLQUAN III 2 2 2 DCLQUAN
III 1 3 III BQUAN III 2 3 III DBQUAN
III 1 3 1 BIQUAN III 231 DBIQUAN
III 1 3 2 BLQUAN III 232 DBLQUAN

For d=l, -QUAN is replaced by -ARRAY (or -QARRAY)
d=2, -QUAN is replaced by 2 •.. ARRAY
d=3, -QUAN is replaced by 3 ••• ARRAY

d w t a

III 3 1 III
III 3 1 1
III 3 1 2
III 3 2 III
III 3 2 1
III 3 2 2
III 3 3 III
III 3 3 1
III 3 3 2

TFQUAN
TFIQUAN
TF LQUAN

TCQUAN
TCIQUAN
TCLQUAN

TBQUAN
TBIQUAN
TBLQUAN
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Appendix II: Proposed Complex-Arithmetic Standard Extension
The CP extension assumes that the FP extension has been loaded.

Name Level Stack

Stack operations

COUP 0 (x yi -> x yi x yi) = FOVER FOVER
CSWAP 1 (x yi u vi -> u vi x yi)
CROT lR (x yi u vi w zi -> u vi w zi x yi)
CRT2 lR (x yi u vi w zi -> w zi x yi u vi)
COVER 1 (x yi u vi -> x yi u vi x yi)
CDROP 0 (x yi -> ) = FDROP FDROP
RE 0 (x yi -> x) = FDROP
1M 0 (x yi -> yi) = FSWAP FDROP

Complex arithmetic

C0 0 ( -> o 0)
C1 0 ( -> 1 0)
i 0 ( -> 0 1)
C+ 1 (x yi u vi -> {x+u} {y+v}i)
C- 1 (x yi u vi -> {x-u} {y-v}i)
C* 4 (x yi u vi -> {xu-yv} {xv+yu}i)
C1 4 (x yi u vi -> {xu+yv}/{u2-v 2} {yu-xv}i/{u2-v 2})
i * 0 (x yi -> -y xi) = -F FSWAP
CONJ 0 (x yi -> x -yi) = -F
-C 0 (x yi -> -x -yi)
-C- 1 (x yi u vi -> {u-x} {v-y)i)
C*F 2 (x yi f -> xf yfi)
MAG 4 (x yi -> r) (Used by R>P)
PHASE 4 (x yi -> () (Used by R>P)

Choice and conversion of coordinates. (A possibility for discussion).

83

RECT
POLAR
R>P
P>R

4
4

Set mode flag to rectangular. Expects and leaves x y i on F-stack.
Set mode flag to polar. Expects and leaves r () on F-stack.
(x yi -> r ()
(r () -> x Yi)

Functions. (Actual results should be converted to rectangular or determined by the RECT IPOLAR
state. z = x + yi, and is a two-entry complex number.)

CLN 2 (x yi -> Ln{z»
eEXP 2 (x yi -> exp{z»
eSQRT 2 (x yi -> z1/2)
1 1 e 2 (x yi -> z-1)
ell. 2 (x yi a -> za) (continued)



84 The Journal of Forth Application and Research Volume 3 Number 4

CSIN 2 (x y; -> s;n{z})
CCOS 2 (x y; -> cos{z})
CTAN 2 (x y; -> tan{z})
CASIN 2 (x y; -> arcs;n{z})
CACOS 2 (x y; -> arccos{z})
CATAN 2 (x y; -> arctan{z})

CSINH 2 (x y; -> s;nh{z})
CCOSH 2 (x yi -> cosh{z})
CTANH 2 (x y; -> tanh{z})
CASINH 2 (x y; -> arcsinh{z})
CACOSH 2 (x y; -> arccosh{z})
CATANH 2 (x y; -> arctanh{z})

I/O

C#IN 2 Display ? and wait for CP number entry
C#OR 2 Display ? and wait for CP or CR; if CR, use number on 8087 F-stack
C• 2 ( n - » Output complex number pair in G. format




