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Abstract

Two distinct programming methodologies —production systems and FORTH —have been com-
bined to form a unique system called FORPS. Production systems provide a practical and efficient
means for structuring knowledge applicable to the intelligent solution of specific problems. These
systems have been widely exploited by the Artificial Intelligence community in the creation of expert
systems to assist in such tasks as the diagnosis of disease, the design of computer systems, and the
search for natural resources. FORTH has found its domain largely in its application to real-time
control problems. Many of these applications are becoming increasingly difficult and complex, and
require at least a moderate degree of intelligence. FORPS (FORth-based Production System) was
developed to combine the intelligent, rule-based control of production systems with the real-time
control capabilities of FORTH. It is a complete production system offering high speed, extensibility,
and simplicity in a small package (object code <3K). This paper details the philosophy and design
of FORPS, and presents its capabilities by way of two examples: a fast solution to the Towers of
Hanoi and a simple robot obstacle avoidance program.

Introduction

A major focus in Artificial Intelligence (AI) in recent years has been the area of expert systems.
An expert system is intended to capture the knowledge of an expert in a given domain and then to
apply that knowledge to specific problems. Most expert systems are based in LISP, and many are
designed as production systems (see below). A few systems have been written in FORTH, most
notably the expert system for locomotive repair of Johnson and Bonissone [JOH83] and the more
general EXPERT-2 system [PAR84]. These systems, however, are closely modeled after LISP-
based production systems and as such fail to maintain the full flexibility of a FORTH-based system.

This paper presents the philosophy and design of FORPS, a FORth-based Production System.
FORPS was developed as part of the Advanced Integrated Maintenance System (AIMS) at Oak
Ridge National Laboratory [MAR84].! It was first applied in an obstacle avoidance program used
by the ASM, an Advanced Servo-Manipulator tele-robotic system (described in detail in [MAT86]).
FORPS was originally written in polyFORTH for the Motorola MC68000 microprocessor. Since
then it has been ported to other systems including F83 on an IBM PC and C-FORTH running under
UNIX? on a VAX 780. All code appearing in this paper is in polyFORTH? (79 Standard).

! This work was conducted under the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National
Laboratory (ORNL) in Oak Ridge, Tennessee. ORNL is operated by Martin Marietta Energy Systems.

2 UNIX is a registered trademark of Bell Laboratories.

3 polyFORTH is a registered trademark of FORTH, Inc.
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The intentions of this paper are to explain in greater detail the internal design of FORPS, to
elaborate on its features, and to point out some of its limitations. The explanation of the design
assumes that the reader is familiar with FORTH’s dictionary structure and understands the purposes
of the cfa, pfa, etc. To demonstrate some of its features, an example of FORPS applied to the classic
Towers of Hanoi problem is provided, along with a brief description of the ATMS obstacle avoidance
program. Throughout, FORPS is compared and contrasted with other production systems. A basis
for this comparison is established in the following general discussion of production systems.

What is a production system?

Production systems are receiving wide attention in the area of Al as an efficient and practical
means for solving well-defined yet complex problems. Many expert systems are built around pro-
duction systems because they provide an effective method for coding the knowledge of experts. The
distinguishing quality of a production system is that it represents knowledge in the form of “condi-
tion-action” pairs. A single pair is called a rule or “production”, and is usually represented in the
form: IF A THEN B. The literal meaning of such a rule is, if condition A is present or satisfied, then
action B should be executed. For example, the information “punt on fourth down and long yard-
age™ might be encoded in a production rule as:

IF (it is fourth down AND there is long yardage)
THEN punt

A complete production system might have several hundred related rules [BAR81, WIN77].

In addition to its rules, a production system also needs a set of “facts” to which the rules are
applied. A fact is simply an atomic piece of information. For example, “down = 4” or “down(fourth)”
might represent the fact “it is forth down.”

To make use of the knowledge of the rules and facts, a method is needed for drawing
meaningful inferences. This is the job of the “inference engine” (IE). There are two different types
of inference mechanisms commonly used: forward chaining and backward chaining. In forward
chaining, facts in the data base are matched against the conditional clauses of the rules; when a match
is found, the rule’s action is executed. The process terminates when none of the rules can be matched
to the existing facts. This type of inference mechanism is often referred to as “data driven” because
it is the data that determines the application of the rules.

Backward chaining on the other hand is “goal driven.” A “goal” is presented and the system
attempts to meet this goal by matching it to the action portion of the rules; when a rule’s action
matches a goal, its conditional statement then becomes the new subgoal(s). The backward chaining
process ends successfully when all goals and subgoals have been satisfied, or fails when no rules are
found to be applicable to the current goal.

This paper will concentrate on forward chaining, since that is what is used in FORPS.
Forward chaining inference engines differ between production systems, but a simple yet standard
method of rule evaluation is as follows:

1. condition scanning — mark all conditionally satisfied rules as “active”
2. rule selection — select the active rule of highest priority®
3. “fire” the rule — execute the “action” of the selected rule
4. repeat — repeat 1, 2 and 3 until there are no active rules

4 Example taken from The Al Handbook, Vol. 1, p. 190. “Punt on fourth and long yardage” is a piece of
common knowledge used in American football.

5 Backward chaining can be simulated by forward chaining, so nothing is necessarily lost by this concentration
on forward chaining. A demonstration on how this is accomplished is presented below in the Towers of Hanoi
example.

6 This priority can be based on many different factors such as specificity of the condition, recency of the
matched information, explicit priorities assigned by the programmer, etc. See [BAR81, WIN77] for examples.
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The IE repeatedly cycles through these steps until a cycle passes in which no rules were active or
an explicit HALT command was executed, at which time execution of the production system
terminates.

There are several advantages of production systems over conventional programming. Production
rules are a convenient and efficient means for representing knowledge in a highly structured yet
flexible format. Since all knowledge is represented within these well defined rules, the system
maintains a high degree of homogeneity. This is desirable because it implies that all knowledge,
independent of its source or specific application, can be treated similarily. Also, since IE contains
most of the procedural control for the system, the individual rules can be treated as independent.
This independence means new rules can be added to the system without significantly altering the
action of existing rules. It is also the case that the IF... THEN structure of productions is similar to
the way experts often express their knowledge—i.e. coding of expert knowledge can be facilitated
with production rules.

One disadvantage of (forward chaining) production systems is that they are often slow. Part of
the problem is the inefficiency of evaluating every rule’s conditional statement during each cycle.
The solution is to scan only a subset of the rules, such as only those rules that were active last cycle
or reference facts that changed or emerged since the last cycle. This method, however, requires
additional bookkeeping, adds to the time and space overhead, and slows execution when there are
only a few rules in the system. Many production systems also use extensive pattern matching cap-
abilities, and while this allows for more convenient and powerful rules it also sacrifices speed and
efficiency. Furthermore, many systems use data structures that are temporary and require garbage
collection schemes that can slow operations even further. As a result, traditional production systems
are generally too slow to be used in the solution of time critical problems, e.g. real-time control
processes.

The Philosophy of FORPS

FORPS was designed as a complete production system. It is unique in that it provides this ability
from within 2 FORTH environment, and all its components are FORTH words. Since many FORTH
applications involve real-time problems, FORPS was also designed to be as fast and efficient as
possible. The design philosophy was thus three-fold: FORPS should 1) provide the representative
power of a production system, 2) maintain the advantages of FORTH (including its extensibility and
its interpretive nature), and 3) run at speeds appropriate for many real-time applications.

FORPS contains a set of defining words for constructing production rules and an inference
engine for scanning and interpreting rules. The facts of FORPS are simply FORTH words that return
boolean values (e.g. variables, constants, functions, etc.). Rule construction is comparable to
standard production systems, i.e. RULE: (name) *IF* (condition) *THEN* (action) *END*. The
IE is a standard forward chaining inference mechanism as described above. The syntax and seman-
tics of the IE and the rule-defining words are described in the next sections.

The intention of maintaining a FORTH environment was for the rules to be definable by the
programmer using standard FORTH words. Furthermore, it was desired that any legal FORTH
word be executable at any point within a production rule. It was also seen as desirable to have the
ability to use previously written FORTH code in the rules, so that intelligent systems could be made
to overlay on top of existing FORTH software systems. The ultimate goal, therefore, was for an ex-
perienced FORTH programmer to be able to easily create useful production rules without first
learning a large set of new commands and techniques, and while being able to use previously written
FORTH code.

By allowing the execution of words throughout the rule, FORPS gains the additional feature of
having conditional clauses that can contain words that perform actions.” In many production

7 Some purists hold that conditions are by definition passive and thus argue that this feature encourages sloppy,
unstructured rules. But for practical matters, this relaxing of structured methods seems warranted by the added
flexibility.
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systems the condition portion of a rule can never perform an action other than the passive pattern-
matching of its conditional clause. In a real-time control situation it may be desirable to perform a
quick operation—such as the polling of an I/O port—during the condition scanning phase. The ability
to execute any FORTH word in either the condition phase or the action phase of a rule gives the
programmer a more flexible tool.

Since FORPS was intended for use in real-time applications, it was designed to be as nearly
short and simple as possible (without using code definitions).® Accomplishment of this goal is
evident in FORPS’s three screens of source code (see Appendix A). While a bare minimum system
requires that some features be left out of the design, FORPS’s extensibility allows modifications to
be made later should they become desired. A number of potential enhancements are described
below. None the less, the fundamental components of a full-fledged production system are comple-
tely subsumed within FORPS.

The Inference Engine

At the heart of any production system is its inference system (IE). The IE must accomplish three
tasks as described earlier: 1) test conditionals, 2) select one rule from the set of active rules, and 3)
execute the action of the chosen rule. To facilitate the processing of these tasks in FORPS, a rule-
table is constructed in which the important information concerning each rule is stored (see Table 1).

RULE || C-PFA | A-PFA | Fire-cell | Priority
Rule 1 4020 4134 0 10
Rulen || 4902 | 5030 1 0

Table 1. The RULE-TABLE

The first column of the table holds a rule’s conditional pfa, C~PFA.® This is a pointer to the
code that is executed to determine whether the rule’s conditionals are met. The second column
contains the action pfa, A-PFA, that points to the code to be executed should the rule be chosen to
be fired. The third column of the table is the location of the “active-cell” and holds the result of the
conditional test for that rule, i.e. the result of executing the C-PFA. A true (non-zero) value in this
cell indicates the rule is “active” and ready to fire. The priority of each rule—used as the basis for
conflict resolution—is stored in the fourth column. This priority takes on a value between 0 and
65343 and is explicitly (and optionally) set by the programmer when the rule is defined.0 These
priorities may be altered during program execution (for example, the action of one rule may change
its own or another rule’s priority value).

The rule-table is created as a named (RULE-TABLE) table 16 bytes wide by MAX-#RULES long
by allotting (MAX-#RULES * RULE-LEN) bytes of memory. MAX-#RULES is a constant set by the
programmer to the maximum number of rules in the system. RULE-LEN is also a constant and

8 Some of the time critical words in FORPS could be rewritten as code words resulting in increased execution
speed, but to maintain readability and transportability in this initial version, code definitions were excluded
by choice.

% The pfa is used rather than the cfa because polyFORTH’s @EXECUTE operates on a word’s pfa.

10 The limit on the value of the priority is dependent on the size of the cell used to store the value, in this case
a 16 bit word.
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specifies the number of bytes per rule (16 was chosen rather than the minimum 14 required because
this lends itself to a neat display using DUMP). Before defining a system’s rules the rule-table must
be cleared and the table’s pointers reset, and this is accomplished with the word *RESET~ FORPS*.

: FORPS  >RULE-TABLE & 4~ >LAST-RULE ! @ CYCLE !
BEGIN
1 CYCLE +!
CLEAR-FIRES
TEST-RULE-CONDS
SELECT-BEST-RULE
FIRE-RULE
NO-ACTIVITY @
UNTIL ;

Figure 1. FORPS’s Inference Engine

The convenience afforded by the rule-table becomes evident in the simplicity of the FORPS’s
interpreter or inference engine shown in Figure 1. The first action of the IE word FORPS is to set
a pointer to the end of the rule-table and to clear the cycle counter variable CYCLE (refer to com-
ments in Appendix A for variable and constant definitions). The inference loop is then entered, and
CYCLE is incremented. CLEAR-FIRES zeros the contents of the fire cells of all the rules in the
table. The conditional statements of the rules are then evaluated by TEST-RULE-COND (see Figure
2). Evaluation of the conditionals is simply a matter of executing the code pointed to by the C~PFA’s.
This is fast and simple, since it is accomplished with 8EXECUTE within a tight DO +LOOP.!! The
effect of executing a rule’s conditional clause is that the fire cell of the rule is updated with the result
of the conditional’s evaluation. The details of this effect will become more evident when the rule
definition words are described below.

: CLEAR-FIRES RT-LIMITS DO @ I >FIRE-CELL ! RULE~LEN +LOOP ;
: TEST-RULE CONDS RT-LIMITS DO I REXECUTE RULE-LEN +LOOP ;
: SELECT-BEST-RULE NO-ACTIVITY TRUE SET-DEFAULT
RT-LIMITS DO I DUP >FIRE-CELL @
IF DUP >PRIORITY Wa DUP HIGH-PRI @ >
IF HIGH-PRI ! >ACTION BEST-ACTIVE-RULE !
NO-ACTIVITY FALSE
ELSE 2DROP THEN
ELSE DROP THEN RULE~-LEN +LOOP ;
FIRE-RULE BEST-ACTIVE-RULE 8@ @QEXECUTE ;

Figure 2. Inference engine support words

After all the conditional pfa’s have been executed, each rule’s active-cell will contain either a
false (zero) or a true (non-zero) value. These values are used by SELECT-BEST-RULE to choose
the best rule for firing. Beginning at the top of the rule-table, the active-cell of each rule is tested
in turn for a true value indicating the rule is active and ready for firing. The first active rule found
becomes the “best-active-rule” and its A-PFA is stored in BEST-ACTIVE-RULE.

11 Again this could be made more efficient with code definitions at the cost of readability and transportability.
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Since additional rules may also be active, the rest of the active-cells must be tested for true
values. Each time another active rule is encountered, “conflict-resolution,” based on rule priority,
is used to select the best rule. As SELECT~BEST~RULE scans down the active-cell column and
finds an active rule, it fetches that rule’s priority value and compares it with the priority level of the
current best-active-rule stored in HIGH-PRI. If this rule’s priority is higher than the currently
selected best-active-rule, it takes that rule’s place as the best-active-rule. After the active-cells of all
the rules in the table have been scanned, BEST-ACTIVE-RULE contains the A-PFA of the rule
chosen to fire.

FIRE-RULE fires the best-active-rule by performing a 8EXECUTE on the contents of BEST~
ACTIVE-RULE. In the event that no rules are active, BEST~ACTIVE~RULE points to NOOP that
was set as its default by SET-DEFAULT.

The boolean variable NO~ACTIVITY will be true if all the fire cells contained false values or
if the word HALT was executed by the fired rule (HALT is defined as NO~ACTIVITY TRUE). NO~
ACTIVITY supplies the conditional termination flag for the BEGIN~UNTIL loop of the inference
engine. In other words, the inference engine continues until there is NO-ACTIVITY.

The main advantage of the rule-table is the efficiency realized in the IE. The loops for testing
conditionals and evaluating active rules are tight and constitute near minimal overhead.!? For the
most part these loops simply fetch or execute the contents of memory locations. The reason the rule-
table is able to be so efficient is that most of the computational work is accomplished in the creation
of the table. This removes the cpu intensive operations from the time critical inference loop. The
next section describes how the rule-table is constructed using FORPS’s rule defining words.

Rule definition

Rules in FORPS are defined much in the same way that words are defined in FORTH. Five
words are used in the definition of rules: RULE:, PRIORITY:, *IF*, *THEN* and *END*. A rule
is defined first by giving it a name with RULE: followed by an optional priority specification with
PRIORITY:. The conditional clause is provided between the words *IF* and *THEN*, and the
action statement occurs between *THEN* and *END*. The effect of defining a rule is to add its
name, its conditional parameter field, and its action parameter field to the normal FORTH dictio-
nary, and to add a row to the rule-table containing pointers back to the rule’s dictionary entry (see
Fig. 3).

To understand how these words function consider the following example:

RULE: FOURTH-&-LONG PRIORITY: 1
*IF* DOWN &4 =
YARDAGE LONG >
*THEN* PUNT
*END*

The name of this rule is FOURTH-&=LONG and it has a priority level of 1 (since priorities are
relative, this priority has meaning only after other rules are added). It represents the knowledge that
if DOWN is equal to 4 and YARDAGE is greater than LONG, then PUNT (the example given earlier).
Since all words used in the rule’s definition must exist in the FORTH dictionary, the words DOWN,
YARDAGE, LONG and PUNT must be predefined FORTH words. Presumably, in this example,
DOWN will return a value between 1 and 4, YARDAGE will return the number of yards needed for
a first down, LONG is a value for long yardage, and PUNT specifies the action to be carried out to
perform a punt.

12 On each cycle the IE performs to passes through the rule-table. It would be possible to reduce this to one
pass, thereby improving speed and reducing space (i.e. the active-cell would no longer be necessary). These
benefits would come at the cost of reduced flexibility in terms of future enhancements that might make use
of the active-cell contents (see below).
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fire-cell address
LFA NFA CFA PFA /—
/
# #FOURTH&LONG : LIT # *i‘Qf
C-PFA5
LIT 4 YARDAGE LONG > *t/hen*

pushes =1 on PS
saves addr of PS

EXIT : PUNT EXIT
AND’s PS back to -1 of *ifx*
stores result in fire-cell

A

Figure 3. Rule Dictionary Entry

RULE: is similar to the standard FORTH word : (see Fig. 4). It creates a normal colon defin-
ition in the dictionary with the name FOURTH-&-LONG. In addition, it adds an entry to the rule-table
(after testing for sufficient room). The pfa of this word is stored in the first column of the row of
the rule-table pointed to by >RULE-TABLE. This address is a pointer to the code to be executed by
TEST-RULE-COND in calculating the value of the conditional statement—i.e. it is the C-PFA.
RULE: terminates by putting the FORTH interpreter into compile mode to begin compiling the con-
ditional code into the dictionary.

: RULE: >RULE-TABLE RULE-LEN / MAX-RULES = ABORT" no roonm"
CURRENT Wa CONTEXT W! CREATE COND-PFA! -4 ALLOT
COLON-CFA , SMUDGE | ;

: PRIORITY: >RULE-TABLE @ -' IF NUMBER ELSE DROP EXECUTE
THEN SWAP >PRIORITY W! ; IMMEDIATE

o *ifx -1 'S 4~ 'SP-IF ! ;

: *xIF*x >RULE-TABLE @ >FIRE-CELL [COMPILE] LITERAL
COMPILE *ifx ; IMMEDIATE

: *then* ( *n) -1 'SP-IF @ 'S DO AND & +LOOP SHWAP ! ;

: *THEN* COMPILE *then* COMPILE EXIT COLON-CFA ,

ACTION-PFA! ; IMMEDIATE
: *END¥* RULE-LEN >RULE-TABLE +! COMPILE EXIT SMUDGE
R> DROP ; IMMEDIATE

Figure 4. Rule defining words
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PRIORITY: is an immediate word. Its effect is to store the value of the next word in the input
stream into the current rule’s priority cell within the rule-table.!3 Any executable word that returns
a value on the stack may appear after PRIORITY: — typically, however, this word is a number.
Inclusion of the PRIORITY : is optional; if omitted its default value is zero.

The FORPS word *IF* is also immediate. It first calculates the address of the current rule’s
active-cell within the rule-table (>RULE-TABLE @ >FIRE-CELL). This address is compiled into
the conditional definition as a literal so that at run-time (i.e. when the conditional clause is tested)
it will be pushed onto the parameter stack as the address where the conditional result will be stored.
*1f* is then compiled into the definition; it will also be executed by TEST-RULE-COND when the
rule’s condition is evaluated. At run-time, * i f* marks the current top of the parameter stack and
pushes a —1 onto it as a flag for later use by *then* (see next paragraph). All words following the
*IF* up until * THEN* are compiled straight into the dictionary just as in the definition of a normal
word —this is the reason all rule components must be predefined FORTH words.

*THEN* is another immediate word and compiles *then*, EXIT, and the cfa of : into the
definition of the rule. The word *then* will be executed each time the rule’s conditional clause is
tested; it has the effect of ANDing everything on the parameter stack back to the —1 stack element
put on the stack by the execution of *if*. This ANDing converts the elements left on the stack by
the words in the conditional clause into a single boolean value. After determining this value,
*then#* stores it into the rule’s active-cell, the address of which was put on the stack at the
beginning of the conditional clause. * THEN* also compiles an EXIT immediately after the *then*
so that execution of the conditional pfa will terminate after loading the active-cell. The cfa of : is
then compiled into the definition to mark the beginning of the action code. The address of the next
dictionary cell is loaded into the second column of the rule-table as the A~PFA, since this will be
the start of the action clause. All words following the *THEN* are compiled directly into the
dictionary just as in standard word compilation.

The word *END+* is identical in function to ; except it also increments the rule-table pointer
that points to where the next rule will be entered in the table.

The dictionary entry created for the rule can be thought of as two words possessing a common
head, i.e. the conditional word and the action word (Fig. 3). The rule’s head (name) is never spe-
cifically used by FORPS, but it is useful for debugging purposes (executing the rule outside of the
IE by invoking its name, effectively loads that rule’s active-cell with the value of the conditional
clause). It could also be useful in an enhanced FORPS system to possibly display the name of each
rule as it fires or print a list of the last few rules to fire (see enhancements below).

A word appearing in the condition or action clause of a rule can be any predefined FORTH
word. Some concern, however, must be given to the way FORPS processes the conditional clause.
Words in the conditional clause need not leave anything on the stack; if nothing is left on the stack
the rule will always be active as a result of the ANDing of the two — 1’s put on the stack by *1i f* and
*then*. Boolean values left on the stack should be either —1 for true or zero for false. There may
be times, however, when it is desirable to use other values for true.!4 In such an event, care must
be taken since it is not necessarily the case that several true (non-zero) values will AND to a true
value. For example if 5 and 2 were left on the stack by the conditional words, the ANDing of these
values with the two —1’s would result in a value of zero being stored in the rule’s active-cell. !

13 Interpreting the next word in the input stream is more complicated than if the value was simply put on the
stack before PRIORITY:, but the former lends itself to more readable rules.

14 One case would be if the conditional clause needed to pass a value to the action statement. The active-cell
could then be used for parameter passing, with the action code locating the active-cell through an address
compiled in its definition.

15 Conservative FORTH programmers may object to the implicit ANDing of the stack elements in this manner.
This mechanism was included in order to conform with the standard production rule convention of implicit
ANDing of conditional clauses, but it could be removed without loss of generality. The gain would be evident

in improved execution times, at a cost of putting greater responsibility of stack maintenance on the
programmer.
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Example 1: Towers of Hanoi

The Towers of Hanoi problem has been programmed in FORPS; the four screen source listing
appears in Appendix B. The Towers of Hanoi is a classic Al problem and was selected to
demonstrate FORPS’s capabilities in this area. The rules will be explained on a high level and the
reader is referred to [DWES8S] for further details of the algorithm used.

Many forward chaining production systems make use of “goals.” A goal is some condition that
needs to be met to solve the problem at hand. Rules in the production system are designed to look
for and resolve specific goals, and in the process may spawn other sub-goals. Goals in effect give
the inference engine some “direction” as to which rules are to be applied and in what order;
technically speaking this method simulates the effects of backward chaining.

The “goalstack” in the FORPS solution to the Towers of Hanoi is used to store goals and sub-
goals. It is a standard last-in, first-out stack operating on 16 byte goal elements. At any one time,
only a single goal—the one at the top of the goal stack—is active. Rules are not allowed to look at
any goal other than the currently active goal, although they may freely add new goals to the top of
the stack. With this convention, the system is forced to focus its attention on one goal at a time.

Each goal consists of four values: the type of move (MOVE-TOWER or MOVE-DISK), the
number of disks to move, the SOURCE peg, and the TARGET peg. Several words were written to
facilitate use of the stack within the productions. ADDGOAL and REMOVEGOAL add and remove
goals from the stack respectively. IS-GOAL and I1S~#~OF-DISKS are used to determine the type
of goal and the number of disks in the current goal. For example, MOVE-TOWER IS-GOAL will
return true if the current goal is to MOVE-TOWER.

START~TOWERS is the first rule; it fires once at the beginning to initialize the goalstack with
a null goal and to submit the first goal: MOVE~TOWER of height #DISKS from the HOME peg to the
GOAL peg. The next rule is the MOVE~TOWER-RULE, which is active whenever the top goal is to
MOVE-TOWER. It replaces the current goal with two MOVE~TOWER goals and a MOVE-DISK goal.

MOVE-SINGLE-DISK~TOWER is the rule that fires when the top goal is a MOVE~TOWER goal
and the number of disks to move is one. This rule has a higher priority than the MOVE-TOWER-
RULE because it is possible for both to be active at the same time, in which case the former should
fire. The rule MOVE-SINGLE-DISK fires when the current goal is MOVE-DISK. Its effect is to
remove the current goal and print a message to move a disk from the source peg to the target peg.

A high level word, TOWERS, is used as a user interface to the production system. TOWERS
prompts the user for the number of disks to move from the source to the target, and sets STARTED
to false. When FORPS is then called, the first rule matches to the value of STARTED and the system
begins solving the problem. When the problem is completed the top goal will be the null goal, which
will not match any of the rules, and as a result FORPS will terminate.

This program was run on a 68000 microprocessor operating at 10 MHz on problems with dif-
ficulty varying from five to ten disks. The results are listed below in Table 2. Included in this table
are the number of rules fired for each run alongside the results from a five rule solution used to
measure the minimum overhead of a rule. In these tests all I/O operations were removed so that the
results could potentially be compared with other systems and machines.

Solution Times (seconds)
#Disks | 4 rules | 5Srules | rules fired
5 .29 .33 64
6 .58 .66 128
7 1.15 1.33 256
8 2.31 2.66 512
9 4.63 5.31 1024
10 9.25 10.62 2048

Table 2. Towers of Hanoi Results
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The average time required for each inference made during the solution of a given problem can
be calculated by dividing the total time for the solution by the number of rules fired. This works out
to an overhead of approximately 4.5 ms per rule, or a little over 220 inferences per second. For
other problems, the overhead will vary depending on the number of rules, the complexity of the
conditional clauses, and the demands of the action statements.

The minimum overhead for any rule in any system is determinable by comparing the differences
in execution times between the four and five rule systems (Table 2). The extra rule added to the five
rule solution has the minimum conditional clause (the constant zero) which is always false. Since
this rule will never be active but will be scanned each cycle, the difference in time between this
solution and the four rule solution, divided by the number of cycles, reveals the minimum time
requirement for a single rule. The value obtained is roughly .7 ms, which implies that each rule
added to a system will consume at least .7 ms per cycle.

Timing results were not available for this problem running on the same machine under different
production systems. Results, however, were obtained for OPS5'6 running on a number of different
machines (e.g. DEC10, VAX 780). While a clear comparison cannot be made on these times, it is
somewhat significant that the fastest realized time on any machine was 28 seconds for the seven disk
problem.

1t is not here implied that a value judgement can be made between the systems on the basis of
this one example. This problem uses a small number of rules, and reveals nothing about how FORPS
will perform on more complex tasks. Since each rule in a FORPS system will require at least .7 ms
per cycle, a system with more than 700 hundred rules would require at least .5 seconds per
inference. OPS5, on the other hand, does not test each rule every cycle—only those conditionals
dependent on memory that changed since the last cycle are tested. With a very large rule base,
OPS5’s limited scanning schemes would probably excel. There are, however, ways of limiting the
number of rules scanned by FORPS as well (see below.)

Another reason for FORPS’s dramatic showing in these tests is in its use of the goalstack data
structure, which is much simpler than the structures employed by OPSS5 and similar systems. This
possible criticism, however, highlights one of the features of FORPS: the ability to create and
manipulate unique data structures from within rules.

Example 2: A simple obstacle avoidance system

A more practical application of FORPS is the real-time problem of obstacle avoidance. The
ASM tele-robot at ORNL is transported through its cell environment by way of an overhead
transport system. An operator controls the transporter with a joystick while observing the robot’s
motion through several cameras and with the aid of a computer generated cell map display. The cell
map shows the manipulator’s position as well as the location of potential obstacles within the cell.
Information concerning the height and location of potential obstacles is statically maintained within
the cell map’s data base.

A simple production system consisting of seven rules has been written to assist the operator in
obstacle avoidance during manipulator transportation (see [MAT86] for details). This obstacle
avoidance system sits on top of the existing transporter control software. Its function is to analyze
the operator’s direction requests and prevent the execution of commands which would run the
manipulator into an obstacle. The production system scans the data stored in the cell map data base
to decide if the manipulator is being directed towards an object of potentially dangerous height. If
the manipulator is being directed into an obstacle, a warning is displayed, but the operator is allowed
to proceed in the desired direction. If the object is an absolute obstacle (i.e. the manipulator would
make contact with the object), the operator is not allowed to continue in the requested direction;

16 OPSS5 is a popular production system written in LISP and frequently used in the development of expert
systems.
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instead, an obstruction message is displayed and the transporter is halted. In certain instances,
however, when it is necessary to proceed cautiously into an obstacle, an “over-ride” switch may be
used to overrule the system’s decision.

What is significant in this example is that the obstacle avoidance system was written using
existing FORTH code and data structures. Words to access and display the cell map’s data and to
move the transporter had already been written and were being used in an unintelligent cell-map/
transporter system. Because of the existence of these words, the design, implementation, and testing
of the obstacle avoidance production system was accomplished in a short time —roughly four man-
hours. Furthermore, this simple system can be easily extended by the addition of further rules to give
it greater intelligence. One enhancement being considered is the addition of an automated path-
finding routine, in which the operator specifies a destination and the program autonomously
transports the manipulator safely through the cell to that location.

Extensions to FORPS

Because FORPS was designed as a minimum system in order to make it as fast and simple as
possible, many features were left out. In this section, the implementation of a few of these features
will be discussed to give a flavor of the extensibility and versatility of FORPS.

One criticism against FORPS is that the IE executes the C~PFA of every rule each cycle. In a
system composed of many rules this expense would likely make the code too slow for real-time
application. Many popular production-based systems use some type of “recency control” to test only
those rules accessing the more recent facts. In FORPS, however, this approach would greatly restrict
the flexibility of the types of facts allowed and preclude “facts” in the form of words that perform
calculations on the spot. Another solution to this problem looks more promising. Almost any
problem can be divided into several sub-components, with rules specific to those components. It
would be a simple matter to construct multiple rule-tables for these different components and switch
between the tables by having high-level rules change the RULE-TABLE and >LAST-RULE pointers.
In this way a minimum number of rules would be scanned each cycle while maintaining the potential
for a large rule base.

FORPS’s conflict resolution procedure might also be enhanced. The priority criteria currently
used in FORPS for conflict resolution is very simple. Other priority systems exist that test, for
example, the recency of the facts, the number of cycles each rule has been active, and/or the spe-
cificity of the conditional matches. Implementing the recency test would restrict FORPS as men-
tioned above. Saving the active durations of rules, however, could be simply accomplished by adding
another column to the rule-table and extending the SELECT-BEST~RULE process to increment this
cell if the rule is active and to clear it if inactive. The criteria for selecting the highest priority rules
would have to be changed so as to become a function of this new activity value. A simple measure
of specificity (for example, the number of words) of each conditional clause could be added as
another column of the rule-table, and used in the event that two rules of equal priority were active.
The merit of these types of modifications, however, is debatable —while modeling other production
systems, they detract from the simplicity of FORPS.

Another potential alteration to the priority scheme, more in the spirit of FORPS, is to eliminate
the priority value altogether. Instead of a specified value, priority would be determined by the or-
dering of the rules. The first active rule encountered by BEST~ACTIVE-RULE would be selected
and fired. In a large rule base, this “enhancement” might greatly improve execution speeds. The cost,
however, would be a reduction in programming flexibility since the rules would need to be explicitly
ordered. An alternative to discarding the priority altogether is to keep it for programming conven-
ience but use it at compilation time to sort the rows in the rule-table according to relative priorities.
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An important component of many expert systems is the ability of the system to explain to the
user how or why a conclusion was drawn. A simplistic approach to this idea in FORPS might list
a history of the most recent rules that fired. A question of why a rule conclusion was made could
then be answered with an explanation such as “because rule X fired,” which in turn could be
explained “because rule Y fired.” This method might be implemented in FORPS by creating a ring
buffer into which the address of a rule’s name is stored when it fires. Depending on the size of the
buffer, the system could store an arbitrarily long history of fired rules. To explain a conclusion, the
most recent address could be fetched and its name displayed. While this would not provide an
extensive explanation, it would be helpful for system development and could be made more extensive
(e.g. supplement the rules with detailed explanations to be displayed instead of the names).

Two enhancements used during the development of the aforementioned examples were “trace”
and “single step” features. As a rule fired, its name was displayed and execution was halted until a
key was pressed by the operator. This was implemented simply by adding a word to FIRE-RULE.
This word used the address in BEST-ACTIVE-RULE to find the name of the rule just fired, after
which it displayed the name and waited for a key to be pressed. A more extensive development tool
could be created in a similar manner that might include features to begin and end the IE on any rule
and to alter the contents of variables before proceeding.

Summary

As FORTH is applied to increasingly more difficult problems, the need for intelligent control
is becoming accentuated. Intelligent methods of programming are being developed in Al, and many
are becoming applicable as practical solutions to real world problems. It is both desirable and
necessary to complement FORTH with AT programming ~this is the intention of FORPS. FORPS
integrates the AT programming technique of production systems with the many features of a FORTH
environment, to afford effective and more intelligent solutions to difficult problems.

FORPS is a complete production system, possessing an inference engine and tools for creating
production rules. It has been shown through two examples, the Towers of Hanoi problem and an
obstacle avoidance task, to be capable of both fast computation and practical real-time control. As
noted, it was designed for speed and simplicity, and as a result does not possess all the nice features
of slower, more extensive systems. What FORPS does possess, however, is extensibility —i.e. these
features can be added if necessary.

A unique quality of FORPS is that it exists within a complete FORTH environment; it is written
in FORTH and the components of the rules created by the programmer are all FORTH words.
Consequently, it is a system that should be easy to learn for FORTH programmers with little or no
prior knowledge of production systems. Experienced FORTH programmers should find FORPS
useful for adding “intelligent” control to existing FORTH systems.
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Appendix A

460 LIST

@ ( FORPS -- a FORth-based Production System ) ( CJM 8/19/85)
11 3 +THRU

2 EXIT

3

4 FORPS is under the copywrite of Martin Marietta Energy Systems.
5 It is in the public domain and may be used freely

6 as long as no false claims are made to its authorship.

7 Author: Christopher J. Matheus

8 University of Illinois

9 222 Digital Computer Lab

10 1304 W. Springfield Ave.

11 Urbana, IL 61801

12

13 This software was developed at Oak Ridge National Laboratory,
14 Oak Ridge, TN, under the Consolidated Fuel Reprocessing Program.
15

461 LIST

@ ( FORPS constants and variables ) ( CJM*8/15/85)
1 10 CONSTANT MAX-HRULES 16 CONSTANT RULE-LEN

2 VARIABLE NO-ACTIVITY VARIABLE 'SP-IF VARIABLE 'NOOP
3 VARIABLE >RULE-TABLE VARIABLE >LAST-RULE VARIABLE CYCLE
4 VARIABLE HIGH-PRI VARIABLE BEST-ACTIVE-RULE

S CREATE RULE~-TABLE MAX-#RULES RULE-LEN % ALLOT

6

7 : >ACTION (a=-3a) &+ ;

8 : >FIRE-CELL (a=-a) 8+ ;

9 : >PRIORITY (a-a) 12 +;

N
o
.

: HALT  NO-ACTIVITY TRUE ;

11 : *ERROR* 1 ABORT" NO RULES LOADED" ;

12 : *RESET-FORPS*  RULE-TABLE DUP >RULE-TABLE ! MAX-#RULES

13 RULE-LEN %= ERASE ['] *ERROR* RULE-TABLE ! ; *RESET-FORPS*

14 : NOOP ; ' NOOP 'NOOP i ' NOOP 4~ @ CONSTANT COLON-CFA
15
462 LIST
@ ( FORPS rule defining words ) ( CJM%x8/15/85)
1 : COND-PFA! HERE >RULE-TABLE @ ! ;
2 : ACTION-PFA! HERE >RULE-TABLE @ >ACTION ! ;
3 : RULE: >RULE-TABLE RULE-LEN / MAX-#RULES = ABORT" no room"
4 CURRENT W@ CONTEXT W! CREATE COND-PFA! -4 ALLOT
5 COLON-CFA , SMUDGE ] ;
6 : PRIORITY: >RULE-TABLE @ -' IF NUMBER ELSE DROP EXECUTE THEN
7 SWAP >PRIORITY W! ; IMMEDIATE
8 : *ifx =1 'S 4~ 'SP-IF | ;
9 : *IF*  >RULE-TABLE @ >FIRE-CELL [COMPILE] LITERAL
10 COMPILE *ifx ; IMMEDIATE
11 1 *then* ( *n) -1 'SP-IF @ 'S DO AND & +LOOP SWAP ! ;
12 : *THEN=* COMPILE *then* COMPILE EXIT COLON-CFA ,
13 ACTION-PFA! ; IMMEDIATE
14 1 *END* RULE-LEN >RULE-TABLE +! COMPILE EXIT SMUDGE

15 R> DROP ; IMMEDIATE
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1060 LIST

FORPS -~ FORth-based Production System
FORPS is a simple Production System designed to take full

advantage of the powers of FORTH. Basic production-like rules
are constructed using the words RULE:, *IF*, *THEN* and *END%*,
These rules are put into a table of the following format:

COND. pfa / ACTION pfa / FIRE cell / PRIORITY value

four bytes / four bytes / four bytes / two bytes
Rule 1 * * * *
Rule n * * * *

The COND. pfa is the pfa of the conditional portion of the
rule and the ACTION pfa is the action portion's pfa. The FIRE
cell holds the result of the conditional pfa's execution.
PRIORITY is a number between @ and 65534 used in the choosing
of the best-active-rule during 'conflict-resolution'.

1061 LIST
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FORPS constants and variables

MAX-#RULES maximum number of rules allowed in table
RULE-LEN Llength of a single rule table entry

NO-ACTIVITY true if no rules fired during the cycle

'SP-IF saves the parm. stack addr. at start of cond.
>RULE-TABLE pointer into the rule table

>LAST-RULE address of last rule in table

CYCLE number of cycles executed

HIGH-PRI highest priority of all rules fired
BEST-ACTIVE-RULE action pfa of highest priority active rule
>ACTION, >FIRE FLAG, >PRIORITY offsets into rule-table

HALT sets NO_ACTIVITY to true -- causes FORPS to terminate
*ERROR* stored as 1st rule when RESET - aborts from FORPS
*RESET~-FORPS* clears rule-table and loads *ERROR* as 1st rule
NOOP no-operation, used as default BEST-ACTIVE-RULE
COLON-CFA cfa of : -- the contents of the cfa of : words

1062 LIST
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FORPS rule words

COND-PFA! stores condition-pfa of rule into table

ACTION-PFA! stores action-pfa of rule into table

RULE: adds a rule to the dictionary -- creates two words
with one head: first is cond word, second is action word

PRIORITY: loads the rule's priority cell with the value of
the next word in the input stream (usually a number)

*if* runtime version of *IF*, saves stack pointer and puts

a -1 on stack for subsequent use by *then*

*IFx* compiles as a literal a pointer to the rule's
fire-cell (for use by *then*), and compiles *if*

*then* runtime version of *THEN* -- AND's the cond. stack
items and stores the result in the rule's FIRE cell

*THEN* compiles *then*, compiles EXIT to stop cond. word,
and compiles COLON-CFA to begin rule's action word

*END* incrms. rule counter and ends rule compilation
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463 LIST

2 ( FORPS Inference engine ) ( CJM*8/15/85)
1 : SET-DEFAULT -1 HIGH-PRI ! 'NOOP BEST-ACTIVE-RULE ! ;

2 : RT-LIMITS ( =n n) >LAST-RULE @ RULE-TABLE ;

3 : CLEAR-FIRES RT-LIMITS DO @ I >FIRE-CELL ! RULE-LEN +LOOP ;
& 3 TEST-RULE-CONDS RT-LIMITS DO I QEXECUTE RULE~LEN +LOOP ;

5 ¢ SELECT-BEST-RULE NO-ACTIVITY TRUE SET-DEFAULT

6 RT-LIMITS DO I DUP >FIRE~CELL @

7 IF DUP >PRIORITY Wa DUP HIGH-PRI a >

8 IF HIGH-PRI ! >ACTION BEST-ACTIVE-RULE !

9 NO-ACTIVITY FALSE

10 ELSE 2DROP THEN

11 ELSE DROP THEN RULE-LEN +LOOP ;

12 : FIRE-RULE  BEST-ACTIVE-RULE @ @®EXECUTE ;
13 : FORPS  >RULE-TABLE & 4- >LAST-RULE ! @ CYCLE !
14 BEGIN 1 CYCLE +! CLEAR-FIRES TEST-RULE-CONDS

15 SELECT-BEST-RULE FIRE-RULE NO-ACTIVITY @ UNTIL ;
Appendix B
480 LIST
@ ( TOWERS OF HANOI IN FORPS ) ( CJM*8/21/85)
1 ( FORPS must be loaded )
2 1 6 +THRU
3
4 EXIT
5 Benchmarks on 68000 10MHz cpu under polyFORTH (without I1/0)
6 #Disks Time (sec)
7 3 .07 Chris J. Matheus
8 4 A August 15, 1985
9 5 .29
10 6 .58
11 7 1.15
12 8 2.31
13 9 4,63
14 10 9.25
15
481 LIST
/) ( Constants and variables ) ( CIM*8/15/85)

1 10 CONSTANT MAX-#DISKS

2 1 CONSTANT HOME 2 CONSTANT GOAL

3 1 CONSTANT MOVE-TOWER 2 CONSTANT MOVE-DISK
4

S5 CREATE GOALSTACK MAX-#DISKS 1- DUP * 2+ 16 * ALLOT
6 VARIABLE GS.PTR GOALSTACK GS.PTR !

7

8

VARIABLE SOURCE VARIABLE TARGET  VARIABLE SPARE
VARIABLE #DISKS VARIABLE STARTED

0

10
1
12
13
14
15
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1063 LIST
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Inference engine
SET-DEFAULT sets BEST-ACTIVE-RULE to NOOP, clears priority
RT-LIMITS puts the rule-table's addr. limits on the stack
CLEAR-FIRES clears the fire flags of all rules
TEST-RULE-CONDS executes in order each rule's condition pfa
EXECUTE-ACTIVE-RULES executes the action of the highest
priority rule which has fired. If no rules fired NO-ACTIVITY
will be set to true and the FORPS loop will terminate
FIRE-RULE fires the BEST-ACTIVE-RULE
FORPS the main inference loop of the production system.
After resetting #RULES and CYCLES, the inference loop is
entered and continues until a cycle passes in which no
rules have fired. The inference loop has three functions: it
increments the cycle counter, clears all fire cells, tests
the conditional clauses, and executes the highest priority,
active rule.

1080 LIST
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The Towers of Hanoi in FORPS

The Towers of Hanoi is a classic AI problem and is presented
here as an example of FORPS's potential to function like a typical
production system. It also serves to demonstrate the Lightning-
fast fast speed of FORPS. The benchmarks given compare
favorably to an OPS5 system running on a DEC-10 solving the
problem with 7 disks in 28 seconds (1.15 for FORPS).

For further information concerning the algorithm used in the
solution of the Towers of Hanoi problem refer to A.K. Dewdney's
'Computer Recreations' column in the Nov '84 issue of Scientific
American.

1081 LIST
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Towers of Hanoi: constants and variables

MAX-#DISKS +the maximum number of disks allowed

HOME the original home peg

GOAL the original goal peg

MOVE-ENTER the code for a tower move

MOVE-DISK the code for a disk move

GOALSTACK the beginning of the goalstack (see next shadow)
its size is dependent on the max. number of disks allowed

GS.PTR a pointer to the current top of the goalstack

SOURCE the last goal's source peg

TARGET the last goal's target peg

SPARE the last goal's spare peg

#DISKS the last goal's number of disks

STARTED a flag to indicate that the problem has begun
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482 LIST
( GOALSTACK support words ) ( CJM%8/15/85)
: >GSTACK (nn-n) DUP ROT SWAP ! 4+ ;
: GSTACK> (n=-nn) &4 DUP B ;

)]
1
2
3
4 : SPARE! (~) SOURCE @ TARGET @ OR 7 XOR SPARE ! ;

5 : ADDGOAL (nnnn) GS.PTR ® >GSTACK >GSTACK >GSTACK

6 >GSTACK GS.PTR ! ; ,

7 : REMOVEGOAL ( - ) GS.PTR @ GSTACK> DROP GSTACK> H#DISKS !
8 GSTACK> SOURCE ! GSTACK> TARGET ! SPARE! GS.PTR | ;

9

10 : IS-GOAL (n) GS.PTRQ 4 -3 = ;
11 : IS-#-OF-DISKS (n) GS.PTR® 8 -3 =;

12

13 : .PEG (n) DUP 1 = IF ." A" DROP ELSE 2 = IF ." B" ELSE
14 ' C'" THEN THEN ;

15

483 LIST

( Start towers rule ) ( CJM%8/15/85)
*RESET-FORPS*

RULE: START-TOWERS  PRIORITY: 10
*IF*  STARTED @ NOT
*THEN* GOALSTACK GS.PTR !
@ ] @ ? ADDGOAL
MOVE-TOWER H#DISKS @ HOME GOAL ADDGOAL
STARTED TRUE
*END*
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484 LIST
( Move tower rules ) ( CJM*8/15/85)

RULE: MOVE-TOWER-RULE
*IF*  MOVE-TOWER IS-GOAL
*THEN* REMOVEGOAL
MOVE-TOWER #DISKS @ 1- SPARE @ TARGET @ ADDGOAL
MOVE-DISK  #DISKS @ SOURCE @ TARGET @ ADDGOAL
MOVE-TOWER #DISKS @ 1- SOURCE @ SPARE @  ADDGOAL
*END*

RULE: MOVE-SINGLE-DISK-TOWER PRIORITY: 1
*IF*  MOVE-TOWER IS~GOAL AND 1 IS-#-OF-DISKS
*THEN* REMOVEGOAL
MOVE-DISK 1 SOURCE @ TARGET @ ADDGOAL
*END*

T T S K QY
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1082 LIST

@ Towers of Hanoi: the goalstack

1 The goalstack is a normal last-in, first-out stack of items

2 called goals. Each goal consists of a target peg, a source peg,

3 the number of disks on the source peg, and the type of move.

4 The stack structure is as follows:

5 TARGET  SOURCE  #DISKS  TYPE-OF-MOVE

6 goal 1 (peg) (peg) n (move)

7 : : : : :

8 goal n (peg) (peg) n (move)

9 The top goal is the only goal that the rules in the PS every
10 look at. Goals are added to the stack with ADDGOAL and removed
11 from the stack with REMOVEGOAL.

12
13 IS~-GOAL references the goal type of the last goal to be removed

14 IS-#-OF-DISKS references the # of disks of the last goal
15 .PEG prints A, B, or C depending on the peg number (1,2, or 4)
1083 LIST
@ Towers of Hanoi: the rules
1
2 The first rule initializes the problem by making a goal to
3 move a tower of #DISKS size from the HOME peg to the GOAL peg.
4 The variable STARTED is set to TRUE which has the effect of
5 preventing START-TOWERS from every firing again.
6 (The first goal of @ @ @ @ simply serves to mark the bottom of
7 goal stack.)
8
9
10
11
12
13
14
15
1084 LIST
@ Towers of Hanoi: the rules
1
2 MOVE-TOWERS recognizes a goal to move a tower and replaces
3 this goal with three new goals (see Dwedney for explanation).
4 MOVE-SINGLE-DISK-TOWER matches a goal to move a tower where the
5 number of disks is one. It replaces this goal with a goal to
6 move a single disk from the source to the target peg.
7
8
9
10
11
12
13
14
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485 LIST
@ ( Move single disk ) ( CJM*8/15/85)
1
2 RULE: MOVE-SINGLE-DISK
3 *]F* MOVE-DISK IS-GOAL
4 *THEN* REMOVEGOAL
5 TARGET @ SOURCE a
6 .''  Move disk on peg " .PEG ." to peg " .PEG CR
7
8 *END*
9
10
11
12
13
14
15
486 LIST
@ ( High level TOWERS word ) ( CJM*8/15/85)
1
2 : .HEADER CR CR .'" TOWERS OF HANOI DISKS: " HDISKS @&
3 . CR CR ;
4 : 7NUM " Number of disks? ' QUERY 32 WORD NUMBER ;
5
6 : TOWERS CR 7NUM #DISKS | STARTED FALSE .HEADER FORPS CR CR ;
7
8
9
10
1
12
13
16
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1085 LIST
@ Towers of Hanoi: the rules
1

2 MOVE-A-DISK recognizes a goal to move a single disk from one
3 peg to another. It removes this goal and prints out the
4 desired move.

1086 LIST

@ Towers of Hanoi: high level word
1

TOWERS prompts the user for the number of disks and then
procedes to solve the problem.

2
3
4
5
6
7
8

O

10
1"
12
13
14
15
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