Tokenized Rule Based System
Steven M. Lewis

Department of Biomedical Engineering
University of Southern California
Los Angeles, CA 90089

Abstract

A rule processing system written in FORTH is described. Clauses may be strings of text words,
executable FORTH code or implicitly executable code allowing implicit access to variables and
supporting checks that data is known before it is used. Data structures for clauses and rules are
described which allow efficient forward or backward chaining. Finally principles of design of expert
systems are discussed.

Introduction

Expert systems are finding increasing application in a variety of fields. Park [PAR83] published
a simple expert system in FORTH, EXPERT?2. In using EXPERT? in a course, the author became
convinced that a better implementation would run faster, generate more readable code and add new
functions, specifically the ability to deal with variables and arrays without reverting to FORTH code.

This latter property is important in useable systems because neither the domain experts, who
supply knowledge to the system nor the knowledge engineers who encode that knowledge, can be
expected to have familiarity with the FORTH language. Because the converse is true—~FORTH users
cannot be expected to be familiar with the concepts and vocabulary in expert systems. The remainder
of the introduction is a short tutorial.

In the purest form, an expert system is a program capable of emulating the performance of a
human expert in a specific, tightly defined area of action called a domain. Usually knowledge about
the domain is codified in the form of rules. The program, or inference engine, can manipulate the
rules and apply them in specific situations. The engine contains no knowledge about the specific
problem, merely code for manipulating data and rules. All knowledge of the domain is in the specific
rule set. A rule-based system will typically consist of two parts: a rule compiler capable of reading
rules and compiling them as an appropriate data structure and a rule interpreter capable of drawing
conclusions from the rules and additional information supplied by the user.

A typical rule might look like the example below taken from a set of rules used to classify
animals:

IF THE ANIMAL IS A MAMMAL

AND IF THE ANIMAL CHEWS CUD

AND IF THE ANIMAL HAS TOED HOOFS
THEN THE ANIMAL IS AN UNGULATE

In the above example, each line constitutes a clause. The clauses starting with IF or AND IF are
called antecedents. The clause starting with THEN is a consequent. A rule can be fired by the system
if all antecedents are true. Firing a rule sets all consequents to true. In the above example the clauses
are strings of text having no meaning to the rule interpreter other than a string of characters or
words. These will be referred to here as text clauses to distinguish them from other types of clauses.

The Journal of Forth Application and Research Volume 4 Number 1
29

30 The Journal of Forth Application and Research Volume 4 Number 1

A more sophisticated rule might include other forms of clause including executable words. This
concept is discussed in greater detail below.

Rules must be distilled from knowledge of an expert in the field—if not written by the expert,
then at least in close consultation with him. In general, it is safe to assume that the expert is probably
not a programmer and certainly knows little about FORTH. Even the knowledge engineer who may
help an expert to codify knowledge cannot necessarily be expected to be highly familiar with
programming, especially in FORTH. With the above in mind, the following objectives can be
defined for a rule-based system:

1) The rules must be capable of being read and written by a non-programmer expert. A
corollary would state that use of FORTH code should be minimized. The inference engine
should provide rich enough data structures to allow most rules to be written in something
approaching natural language.

2) The inference engine should be capable of documenting its reasoning. When presenting
the user with a conclusion, it should be able to explain the sequence of logic leading it from
the user’s input to that conclusion. This allows the expert to compare the reasoning of the
computer with his own approach and, when conflicts arise, correct the computer.

3) The inference engine must have a means to access FORTH code. While there should not
be many rules in code, this allows a computer to gather data from its environment without
requiring input from the user. Inputs from instruments, data bases or previously stored
responses give real systems a greatly expanded range of capabilities.

The ability of FORTH to define data structures can be used to create a range of structures
required to deal with rules in a compact and efficient manner. Most of this paper is really a descrip-
tion of useful data types.

Methods

Rules (Figure 3) are lists of clauses. A rule is compiled when a) the vocabulary RULES is
current, and b) the words If or CAVEAT are encountered. IF is the usual rule initiator while
CAVEAT allows rules without antecedents which can be fired to initialize the system. When a rule
is compiling, the words IF, THEN, and BECAUSE will terminate the current clause and start a new
one. If the words IF or CAVEAT are encountered after a consequent starting with THEN has been
compiled, the current rule is terminated and a new rule started. The word DONE will stop all
compilation of rules. Thus IF, THEN, BECAUSE, CAVEAT and DONE are reserved by the rule
compiler. The words ELSE and AND have no special meanings except that the word AND may be
added before IF for readability.

The object of an inference engine is to determine the truth of propositions or clauses. In this
section two classes of clauses will be considered: text clauses which are statements in English and
must be proven using the logical reasoning processes described below and executable clauses which
are executable code and return truth by executing specific code. Executable clauses may be further
subdivided into explicitly and implicitly executable clauses. Explicitly executable clauses are simply
FORTH code executing to leave a flag on the stack. Implicitly executable clauses are more readable
and allow manipulation of numeric data and variables without dropping into FORTH. They also
perform more error checking for the user, an important feature.

Consider a sample collection of rules:

IF THE ANIMAL HAS FEATHERS
AND IF THE ANIMAL LAYS EGGS
THEN THE ANIMAL IS A BIRD

Tokenized Rule Based System 31

IF THE ANIMAL IS A BIRD

AND IF THE ANIMAL SWIMS

THEN THE ANIMAL IS A PENGUIN

BECAUSE PENGUINS ARE THE ONLY FLIGHTLESS SWIMMING BIRD

The clauses starting with IF are called antecedents. (The AND at the start of lines has no
meaning and is used purely to aid readability.) Clauses starting with THEN are consequents. If all
the antecedent clauses in a rule are true, then the inference engine can operate or ‘F IRE’ and set the
consequent clauses to true. Note that the clause “THE ANIMAL IS A BIRD” is a consequent in the
first rule and an antecedent in the second. If one wanted to prove that an animal was a bird, they
could do so by proving the first rule. In typical systems most clauses will be consequents in one rule
and antecedents in others. These will be referred to as intermediate clauses.

In the above example the following clauses: THE ANIMAL HAS FEATHERS; THE ANIMAL
LAYS EGGS; and THE ANIMAL SWIMS are used only as antecedents. Clauses used only as
antecedents are termed facts. Because a fact cannot be proven by firing a rule, the only way to
determine the truth of a fact is to ask the user.

The clause THE ANIMAL IS A PENGUIN is used only as a consequent. In a logically
constructed system such clauses are included because they are end points of a logical chain of
reasoning, although they may form the beginning of the reasoning process. Clauses which are
consequents but not antecedents are called hypotheses. The rule-based system will attempt to acquire
data to determine the truth of the hypotheses in the rules.

The clause BECAUSE PENGUINS ARE THE ONLY FLIGHTLESS SWIMMING BIRD is in the
rule only for explanation. It is treated like a comment by the system and used only when the system
is explaining its reasoning.

It is important that words which manipulate clauses be able to access rapidly the rules which
use those clauses. A logical clause data type will be able to access that information. Figure 2 shows
the clause data type.

The simplest form of clause is a text clause. All words in the clause are in a special vocabulary
called TEXT. Words in TEXT with very few exceptions execute as NOOPs. When the rule compiler
encounters a word which is not in the text vocabulary, it is simply created. Thus if the rule compiler
is presented with the clause:

THEN THE ANIMAL IS A TIGER

It will compile the words in the TEXT vocabulary. The unknown words will be created as
NOOPs and compiled with the clause. This requires that the word creation process have access to the
top of the dictionary. Clauses and rules must be assembled in other areas of memory and copied into
the dictionary at the end of compilation.

A second type of clause is written directly in FORTH code. The clause:

IFRUNA@Ba@=*Ca~100>ENDRUN

is of this form. The word RUN immediately invokes the FORTH interpreter until the word ENDRUN
turns it off. RUN also stores the word EXECUTE-ACTIONS (see code) in the action cell for that
clause causing execution when the system attempts to prove the clause. Executable clauses can
expect no arguments on the stack and must return a single boolean argument.

A variant on the executable clause will have the following form:

EVALUE FLOW
EVALUE PRESSURE
IF FLOW IS GREATER THAN (100 * PRESSURE)

Here FLOW and PRESSURE are declared as expert objects. When invoked they make the clause
executable and at run time place their contents on the stack. GREATER is an expert operation using

32 The Journal of Forth Application and Research Volume 4 Number 1

infix notation for readability which will cause execution of > at the end of the clause. This form
of clause is used to enhance readability of clauses for experts who would have difficulty with
FORTH code. EOBJECTSs are also tested to make sure that the contents have been set to some value.
If any object accessed by a clause has not been set, the clause returns false. Objects are set when
a consequent of the form:

THEN PRESSURE * RESISTANCE -> FLOW

sets FLOW to PRESSURE * RESISTANCE. Note that * is in infix notation. A sample rule set,
included in the appendix, illustrates these rules.

In the current system, there is little difference at run time between implicitly executable clauses
using EVALUEs and explicitly executable clauses using RUN ENDRUN with interposed code.
Implicitly executable clauses are compiled as FORTH code and at run time are executed. They are,
however, easier for inexperienced users to read and write.

Specific Code

The entire code of the system is too long to present here. Instead the inference engine code and
a sample rule base will be presented, leaving out the code for clause compilation and the explanatory
portions.

The general form of the coding presented here depends heavily on two LISP-like functions:
MAPCAR and MAPRULE. MAPCAR takes a FORTH word and applies it to all elements of a list. On
execution, the word is passed the address of a list element. If the word BREAK is executed by the
operation, further processing is terminated. On exiting, there is a means to test whether BREAK has
been used. MAPRULE is similar except the operation is applied to all clauses in a rule. Many words
will operate on a rule or a list with BREAK used to show success or irretrievable failure.

The code uses a few words which are not presented for reasons of length, but their use is de-
scribed in the first section. The system used is Bradley’s implementation of F83 under UNIX. This
system uses text files instead of screens. The code is presented in linear fashion with no specific line
numbers or screen breaks.

Operations

The language SMALLTALK [DUF84] introduced the idea of data objects. An object is a data
structure which can only be used for a limited number of operations. The object itself contains the
code for the operations which may act on it. In FORTH, objects may be implemented by including
within the object a pointer to a list of allowable operations. Clauses are implemented in this manner,
allowing the same operators to work on executable and non-executable clauses.

The allowable operations are as follows:

Operations returning a flag

QUERY-CLAUSE: Tell if the item is true, false or unknown. Attempt no operations. TEXT
clauses have a truth word which stores this information. Executable clauses execute and return the
value.
TEST-CLAUSE: Determine if the item is true, false or unknown based on the current state of the
system’s knowledge. In this operation backward chaining is permitted but not access to new facts
or data. Thus, if a clause is currently unknown, rules which prove that clause may be tested to see
if they are currently true. Rules are tested by testing all antecedent clauses to see if they are true.
This process can recurse until one of the following happens:

The system encounters a FACT, a clause which cannot be proven without querying the
operator. These queries are not permitted in test mode.

Tokenized Rule Based System 33

Some rule proving the clause is tested and found true.

All rules proving the clause are tested and cannot be proven.

Executable clauses are tested by execution.

PROVE-CLAUSE: Proof returns true or false depending on whether the clause is provable with all
knowledge available to the system and its operator. Proof is similar to testing except that, when facts
are encountered when attempting to prove a rule or clause, the operator will be queried as to the truth
or falsehood of the fact. In the proof operation, unprovable and false are identical.

Operations with ne return argument

SET-TRUE: The truth word is set to true. In this operation, no attempt is made to examine the im-

plications of the change.

SET-FALSE: Set the truth word to false. Note that false and unknown are not identical in expert

systems. False indicates that the system has data proving the proposition false.

MAKE-TRUE: Set the truth word true. Then test all rules using the clause as an antecedent. If the

rule becomes true, then apply the MAKE-TRUE operator to all consequents. Continue until no further

operations are allowed.

PRINT-CLAUSE: Print the clause. Printing clauses consists of decompiling the clause. Text clauses

are exactly reproduced by decompilation since in the TEXT vocabulary the words are simple dic-

tionary entries. Decompilation of RUN ... ENDRUN will produce the generating FORTH code

except for ambiguities about branch instructions (IF, THEN, ELSE, BEGIN, WHILE, UNTIL). De-

compilation of implicit clauses generates the underlying FORTH code rather than the generating text.
Thus:

IF PRESSURE IS GREATER THAN FLOW
decompiles as
IF 34089 @ IS THAN 35673 3@ >

since PRESSURE, FLOW and GREATER are immediate words compiling the desired operations.

The operations TEST and PROVE perform backward chaining, proving a clause by examining
rules which prove the clause and continuing backwards. MAKE-TRUE allows forward chaining,
carrying the implications of a fact to rules using that fact.

Data Structures

A basic structure used throughout the system is the linked list (Figure 1). An unhashed FORTH
dictionary is a good example of a linked list with each element containing a pointer to the next until
a terminating condition is reached. This implementation is similar to the FORTH dictionary in that
the object following the link is of unspecified size. Unlike LISP, operators on lists are necessarily
specialized to the specific structure which follows the link cell.

All clauses (Figure 2) are linked together in a linked list. Each clause has in its header a cell
indicating its truth. Currently only fixed values indicating known-true, known-false and unknown
are used but the same system can be used to estimate levels of certainty. Linked lists of rules which
use the clause as an antecedent and which prove the clause are included to allow for rapid forward
and backward chaining. When the system wishes to operate on the clause, it fetches the desired
operation from the structure pointed to by the ACTION cell. The body of the clause is identical with
the body of a FORTH word terminating in a NEXT operation. Executable clauses merely place the
address of the clause body on the return stack and perform a NEXT, which executes the body of the
clause. Execution should leave a single boolean flag on the stack,

34

The Journal of Forth Application and Research Volume 4 Number 1

LINKED LIST
first

element (m BODY ...
Q [LINK] BODY ...

last (BODY ...

element

EXAMPLE of a LINK: RULE LIST used by clauses

MEMORY CONTENTS COMMENTS
(::i LINK | | ARULE | Body contains the address of a rule
<>[LINK | | ~RULE |
<::1 NIL [ARULE | last rule in list
Figure 1

CLAUSE STRUCTURE

FIELD COMMENTS

Link | LINK | Next clause in clause list

Truth | TRUTH | @ unknown, 100 true

Used-by | ARULE LIST | If nonzero points to list of
rules where cause is antecedent

Set-by | ARULE LIST | If nonzero points to list of
rules where clause is consequent

Special | AEVALUE LIST| If nonzero points to a list of
EVALUES use in clause

Action | AACTION | Points to action structure

Body | 'word I first word in body

[() | Do NEXT to leave

Figure 2

Tokenized Rule Based System 35

RULE STRUCTURE

FIELD CONTAINS COMMENTS
Link | LINK | Link points to next rule in
global rule list

Truth | TRUTH | 100 says rule has been fired
Prop. | Properties | 1 says rule is a caveat
BODY | Logic FLAG | logic for first clause

| ACLAUSE 1 | address of first clause

| LOGIC FLAG | logic for second clause

| ACLAUSE 2 |

| 80H } End of RULE FLAG

L 0 |

Figure 3

Rules (Figure 3) are treated as lists of clauses together with flags describing the use of the
clause. The logic flag is one cell with bits indicating appropriate information. Rules consist of a link
field, a truth field which tells whether the rule has fired and a list of logic flags followed by clause
addresses. All rules are linked in a list which allows for initialization or sequential testing of all rules.

Logic Flag Bits

0 NOT reverse the flag returned by the clause
1 IF clause is antecedent

2 THEN clause is a consequent

3 BECAUSE clause is explanatory

4 RUN clause is executable

5,6 not used

7 LAST-CLAUSE terminates a rule

Inference Engine

The inference engine takes the rules and attempts to prove clauses from them. There are three
general schemes for inference engines. A backward chaining system will start with a hypothesis and
work backwards through the tree of rules and clauses proving the hypothesis. A forward chaining
engine will start with facts and prove rules until one or more hypotheses are proven. A looping
engine will test all rules and continue to fire rules until explicitly stopped. In this later case, the facts
will have to change or the looping is relatively pointless.

Backward Chaining
The word for backward chaining, DIAGNOSE, tests each clause in the clause list to see if it is
a hypothesis (that is a consequent which is not used as an antecedent). It attempts to prove each

36 The Journal of Forth Application and Research Volume 4 Number 1

hypothesis by testing each rule in the list of rules which prove that clause (see clause structure
above). A rule is proven by testing each antecedent clause. Executable clauses are executed and
return a flag. Facts, clauses which are used as antecedents but not consequents, can only be tested
by asking the user. These are immediately asked. Intermediate clauses are consequents of other
rules. These clauses are tested by attempting to prove a rule which uses them as a consequent. The
process of proof proceeded recursively until only executable clauses and facts are encountered.
Attempts to prove a rule continue until either all antecedents are satisfied, in which case the rule is
proven, or one antecedent cannot be satisfied, in which case the proof of that rule is abandoned and
the rule is considered false. Attempts to prove a clause proceed until either a rule fires which proves
that clause or all rules which might prove the clause are unsuccessfully tested. In the later case the
clause returns false.

If a single hypothesis is proven, the system tests the flag MUTUALLY-EXCLUSIVE to see
whether to test additional hypotheses or to stop and state the single conclusion.

Forward Chaining

In forward chaining, the system searches the clause list for facts. Facts are queried. Following
this, all rules which use the clause are tested to see if all antecedents are true. If so, the rule fires,
and sets consequents and the rules depending on how the consequents are set. In the code shown
below the process continues until some hypothesis has been proven.

Repeated Proof

In repeated proof mode, the system repeatedly searches the list of rules for rules which are
capable of firing. Several systems for ordering which rules are fired are possible, but currently the
system simply searches the rules in order. In most examples considered thus far, either only one rule
can fire at a time or the order is irrelevant. Two conditions can halt the process. Either the system
finds that no rules are capable of firing or a consequent with the single word STOP is executed. The
code for this mode is not shown.

Repeated proof allows the system to act like a state machine. This mode has been used to
construct benchmarks such as the Towers of Hanoi disk moving problem. Serious use of this mode
requires some thought about ordering the firing of candidate rules.

Discussion

The project began as a learning experience. The author and a student took an existing expert
system, EXPERT2 [PARS3] and attempted to implement an automatic registration system in an un-
dergraduate program in bioengineering. While the task could be performed with that inference
engine, virtually all clauses had to be written in FORTH code. The problem was that there was no
way to access a structure such as a table of prerequisite clauses and corequisite classes. Without this,
a separate rule had to be written for each class. Furthermore, to incorporate the assumption that if
a senior class had been taken the prerequisites for it had been fulfilled, required a completely
separate set of rules pointing backwards.

Three problems were examined: the PUFF pulmonary function system, a system for pulmonary
diagnosis based on the results of a specific class of pulmonary function measurements; a rule-based
solution for the Towers of Hanoi problem; and the registration problem. In all cases, simple text
clauses were inadequate for most rules. In PUFF, virtually all of the rules referred to measured
quantities. In Towers, the rules referred to the contents of poles, most usefully considered as stacks.
In the registration problem, text- based rules were adequate but highly inefficient for the reasons out-
lined above; most procedures naturally refer to tables of prerequisites and corequisites.

One solution would have been to descend to FORTH level in most clauses. While this is effi-
cient, it makes the rules unreadable for a non-FORTH programmer. Ideally the rules should be
readable and writable by a domain expert and able to be critiqued by experts. This suggests a strong
advantage for being able to write rules in at least pseudo-English. This work and others ([JOH83],
[PARBS3]) suggest that FORTH has the tools to support readable rules and this advantage ought not
to be lost.

Tokenized Rule Based System 37

A second consideration with EXPERT? is that the inference engine is inefficient. Clauses prove
themselves by searching for relevant rules at run time. Since the information is present at compile
time, it was felt that it is more efficient for clauses to keep track of relevant rules as they are
compiled.

A third consideration is that the clauses are stored as text strings, thus ignoring the advantages
of the FORTH compiler, both in storage and in simplification of expressions. Thus in EXPERT?2
clauses begin with words like IFNOT IFNOTRUN ANDIF etc. Allowing NOT and RUN to be
immediate and ignoring trailing ANDs improves readability.

Both systems deliberately leave out several possible features. ELSE is left off keeping with the
logic that false is unknown and only proven rules can act. Equivalent effects may be accomplished
with an added rule. OR is also left out. In the rules all antecedents are ANDed. Defining multiple
rules can easily allow the same meaning as ORing several clauses together. ANDing all AND clauses
in a rule to form an intermediate conclusion and then ANDing the intermediate with each clause in
a series of separate rules is a reasonable way to emulate an OR.

An additional property of both this system and EXPERT? is that rules are tested in the order
they are compiled. In situations where more than one rule may be invoked, this property may
influence the behavior of the system. While no systems have been examined where order of firing
is a problem, clearly in more complex systems with hundreds or thousands of rules this may be an
important consideration.

In backward chaining systems, the use of THEN ... NOT ... to set a clause to false is
discouraged. Clauses are assumed false if they cannot be set by any rule. By eliminating the use of
THEN ... NOT clauses to falsify a clause, one reduces the possibility of contradictory rules, with
one rule setting a clause false and another setting it true. In some situations, it is useful to allow
clauses to be falsified. In the Towers game, there are rules which conclude that a disk cannot be
moved. After the obstructing disks have been removed, it is necessary to negate that conclusion.
Similarly in systems which run in real time, it may be necessary to alter an early conclusion as the
system changes.

Conclusions

One of the most interesting conclusions of working with this system is that because of the rich-
ness of data structures available in FORTH, complex systems may run on smaller machines and run
faster than equivalent systems written in LISP. Workers at General Electric came to a similar
conclusion in developing a system for diagnosing problems in Diesel locomotives [JOH83]. In the
current system, lists are used extensively for storing permanent data about structures and their
relationships. Stacks are much more useful for storing temporary data used while running the
inference engine. When lists are used only for permanent storage with items added but never deleted
from lists, the need for extensive memory management and garbage collection is reduced.

Of course, there are disadvantages. It has been said of FORTH that you can do anything in the
language, but you must write it yourself. The complex data structures are not present in FORTH;
they must be added by the user. The system described here is an attempt to show the power of
FORTH in dealing with expert systems. Much added work is needed to make FORTH a true Al
language capable of challenging more conventional languages such as LISP and PROLOG.

References

[JOH83] Johnson, Harold E. and Piero P. Bonissone. “Expert System for Diesel Electric
Locomotive Repair.” Journal of Forth Application and Research 1 (1983): 7-16.

[PAR83] Park, Jack. EXPERT-2: A Knowledge Based System. Mountain View, CA: Mountain
View Press, 1983.

[DUF84] Duff, Charles B. and Norman D. Iverson. “FORTH meets SMALLTALK.” Journal of
Forth Application and Research 2 (1984): 7-26.

38 The Journal of Forth Application and Research Volume 4 Number 1

Appendix

Used But Not Listed

push (n,stack--<> push a number onto a private stack)

pop (stack -- n pop the top element off a private stack)

ask (clause -- f ask the operator if the clause is true.
If the answer is w for why, dump logical reasoning)

printclause (clause--<> decompile the clause and print it.

This handtes literals properly)
initialize~inference-engine (<>--<> housekeeping)

These Words Allow the Code to be Written Independent of Stack Width
\ CELL is the stack width in bytes

2 constant cell cell negate constant -cell

: cellx 2%; : cellt/ 2/ ;

: t/f if true else false then ; \ make a number into a boolean
Notation

\ A clause refers to a pointer to a clause, an address containing
\ the address of the object
\ rules and clauses are passed as the address of the link field

Mapping Words— Words to Apply a Forth Word to an Entire Data Structure
variable <done> \ flag to break out of map

: break <done> on ; \ set the flag

\ save the fact that a BREAK was used in a variable

: save-break (addr--<>) <done> & <done> off swap ! ;

Return Stack Access Words
: 2rd (<--n return next to top element of return stack)
r> r> r> dup >r swap >r swap >r ;

\ code version of return stack access word for 68000
code 2rd 4 rp d) sp =) move c;

List Access Words
variable nil \ a dummy address to terminate lists

\ mapcar works like the Llisp mapcar applying an operator
\ to each element of a linked list.

variable map-broken \ stores whether last map was broken

Tokenized Rule Based System 39

: mapcar (list,operation--<> operate on each element of list)
<done> off (initialize <done>)
over if (make sure this is a list)
>r >r (put operations on return stack)
begin
<done> @ rd@ nil = or @= while (done conditions?)
rd 2rd execute (operate) r> @ >r (next element)
repeat r> r>
then 2drop
map-broken save-break ; (remember if break invoked)

\ Map an operation to all clauses of a rule

variable rule-broken (flag used by map-rule for break)

\ map-rule apply an operation to a rule

\ NOTE >>

\ The words next-clause and first-if+ are defined below

\ in the rules section map-rule is listed here for continuity
: map-rule (rule,operation--<)

<done> off
>r first-if+ >r
begin (
<done> @ ra cell- @ rule-end and or not while (done conditions)
rd 2r@ execute \ do operation
r> next-clause >r \ go to next clause
repeat r> r> 2drop \ clean up

rule-broken save-break ; \ save break information

Pointers to Rule and Clause Lists

variable “clauses \ a pointer to a List of clauses
variable “rules \ a pointer to a list of rules
: first-clause ~clauses @ \ address of the first clause

H
: first-rule Arules a; \ address of first rule

\ offset words this creates words to take an address and
\ add an offset
: do-offset

create , (offset-- <>)
does> (addr -- addr+offset)
8+ ;

\ offsets for dealing with rules
cell constant Lf-size \ size of logic flag
cell do-offset truth+ \ move to truth field
2 cellx do-offset properties+ \ properties field @=rule 1 caveat
3 cell* lf-size + do-offset first-if+ \ move to first clause pointer
Lf-size cell + do-offset next-clause \ move from one clause to next

40 The Journal of Forth Application and Research Volume 4 Number 1

\ truth and falsehood tests identical for rules and clauses
100 constant truth \ this allows later versions to have scales

\ of truth from @=unknown to 100 = surely true
-100 constant falsehood \ in certain cases we want to mark a clause

\ false
: true? (rule == f returns t if rule fired)
truth+ @ truth = ; \ NOTE this also works for clauses
+ false? (rule == f if rule is known false

truth+ @ falsehood = ;

clause offsets

cell* do-offset use+
cell* do-offset set+
cell* do-offset special+
cell* do-offset actiont

wvi W

\ specific clause tests all take clause, return flag
: fact? dup use+ @ B= \ not consequent

set+ @ B= not and \ and if antecedent
: hypothesis? dup set+ & @= \ is consequent

use+ @ @= not and \ and not antecedent

\ action offsets and actions

: do-action (create> offset-to—-action does>clause -- 77)
create , (offset -- offset to action)
does> (clause~-?? return depends on action)
@ over action+ @ \ get offset, action field addr
+ @ execute ; \ and do the requested action
\ now create words to perform specific actions
0 do-action prove-clause \ prove the clause
1 cell* do-action guery-clause \ test truth of clause
2 cell* do-action print-clause \ print the clause
3 cell* do-action set-true \ set the clause true
4 cellx do-action set-false \ set the clause false
5 cell* do-action make-true \ set true and then forward chain
6 cell* do-action test-clause \ test truth and to see if proveable
\ tests of logic flag
: testlogic \ defining word for tests of logic flag
create , (bit to test)
does> (Aclause -~ ~clause,f true if bit is on)

a \ get the bit to test
over cell- @ \ get the logic flag in the previous cell
and t/f ; \ compare and make boolian

\ easy tests of clause logic all take clause in rule
\ clause-addr~-clauseaddr, logic

1 testlogig is~not?
2
4

\ negative logic
testlogic is-if? \ antecedent
testlogic is-then? \ consequent

8 testlogic is-cause? \ because clause
16 testlogic is-run? \ executable
128 testlogic is-end? \ rule end

Tokenized Rule Based System 41

Backward Chaining Section of the Engine

.

: do-proof (clause--f)

dup subhyps push \ save for why on private stack
dup gquery=-clause if drop true \ already done

else prove-clause then \ else do clause action
subhyps pop drop ;

prove-antecedent (“clause--<> break if antecedent false)

is-not? swap \ remember negative logic
is=if? if @ do-proof \ if antecedent prove
xor \ if NOT this reverses logic

not if break then \ false then break
else 2drop then ;

PROVE RULE

: prove-antecedents (rule--f)

['] prove-antecedent map-rule \ prove all antecedents
rule-broken a 0= ; \ break shows failure

set-consequent (“clause--<> set consequent)
is-then? if @ set-true then ;

: set-consequents (rule--<>)

['] set-consequent map-rule ;

: prove-rule (rule--f)

s =D o s

dup rulestack push \ save on private stack for why
dup prove-antecedents \ try to prove all antecedents
if dup set-truth \ remember the rule has fired
set-consequents true \ and set the consequents
else drop false then
rulestack pop drop ; \ clean up the trace stack

CAVEATS
caveats are rultes without antecedents and may be fired at
the beginning of operation to perform initialization
they are marked with a 1 in the rule's property field
constant caveat
caveat? (rule --)

properties+ @ caveat = ;

: do-caveat (rule-—-<> prove caveats)

dup caveat? if prove-rule then drop ;
execute all caveats
do-caveats first-rule ['] do-caveat mapcar ;

PROVE HYPOTHESES the basis of a backward chaining engine

NOTE if mutually-exclusive is true we prove at most one hypothesis
if not all are tested
prove-hypothesis (clause--<> if hypothesis prove)
dup hypothesis? if prove-clause \ return flag
if mutually-exclusive @ \ if mutually exclusive set
if break then then \ then break to quit
else drop then ;

42 The Journal of Forth Application and Research Volume 4 Number 1

: prove-hypotheses (<=-=<>)
first-clause ['] prove-hypothesis mapcar ;
: print-conclusion (clause==<>)
dup hypothesis?
if dup test=-truth
if print-clause
something-proven on
else drop then
else drop then ;

only consider hypotheses

if the clause is true

then print it

remember we proved something

P g

\ THIS WORD IS THE BACKWARDS CHAINING ENGINE
: diagnose

init-inference-engine \ housekeeping not listed
do-caveats \ execute caveats if any
prove-hypotheses \ prove 1 or more hypotheses
something-proven off \ flag to see if anything proven
first-clause ['] print-conclusion mapcar \ print conclusions
something-proven @ not \ message if nothing proven

if ¢r .'' cannot prove anythng '' then ;

Forward Chaining

! test-antecedent (“~clause--<> break on false)
is-not? swap \ remember negative logic
is=if? if @ test-clause \ test to see if clause true

xor not if break then \ break if antecedent not true
else 2drop then ;

: test-antecedents (rule -- f true if all antecedents known true)
['] test-antecedent map-rule \ test all antecedents
rule-broken 8@ 0= ; \ true of no breaks all clauses true

: test-rule (rule -- <> fire rule if all clauses true)
dup true? not \ if the rule has not fired
if dup test-antecedents \ are all antecedents true

if dup chain-consequents \ carry implications forward
set-truth \ remember rule has fired
else drop then
else drop then ;

: chain-consequent (“clause -- <> forward chain consequents)
is-then? \ consequent?
if 8 make-true then ; \ chain forward with set

: (chain-consequents) (rule--<> chain all consequents forward)
['] chain-consequent map-rule ;

now resolve forward reference

(chain-consequents) is chain-consequents

Tokenized Rule Based System

hypothesis-proven? (clause -- <> break if clause is true
“hypothesis)
dup hypothesis?
if true?
if break then
else drop then ;

: break-on-proof (<>--~<> if any hypothesis is proven break)
first-clause ['] hypothesis-proven? mapcar \ test all clauses

mapbroken @ \ any hypotheses proven
if break then ; \ if so break
: forward-fact (clause -- <> ask facts and forward chain)
dup fact?
if dup ask \ this returns true or false
if \ only true facts count in this system

set-clause \ set clause true and all implications
mutually-exclusive @ \ if only one hypothesis true

if break-on-proof then \ break if anything proven
else drop then
else drop then ;

\ THIS WORD IS THE COMPLETE FORWARD CHAINING ENGINE
forward-chain (<> -- < complete forward chaining system)
initialize-inference-engine
do-caveats
first-clause ['] forward-fact mapcar \ forward on all facts
print-conclusions ;

Action Vectors
\ TEXT CLAUSES
: set-truth (clause--<>) truth swap truth+ ! ;

: set-falsehood (clause--<>) falsehood swap truth+ | ;

set~forward (clause--<> set truth and chain forward)
dup set-truth

use+ @ \ get pointer to affected rule Llist
?2dup if \ if any
['] test-rule mapcar \ test all of them
then ;
: test-rule-break (rule -- <> break if antecedents all true)

fetch dup test-antecedents\ get rule and test
if dup chain-consequents \ set consequents true

set-truth break \ remember rule fired then break
else drop then ;

44 The Journal of Forth Application and Research Volume 4 Number 1

: do-query (clause -- f return if known facts prove the clause)
dup test-true \ is the clause known true
if drop true \ yes then done
else dup set+ fetch \ is clause a consequent?

?2dup if

fetch ['] test-rule-break mapcar \ any rule ready
mapbroken fetch \ break means true
else drop false then then \ not consequent then leave

: prove~rule~break (rule --<> generate break if rule proveable)
prove-rule if break then ;

: verify (clause -- f backward chaining proof)
dup true? \ is the clause alread known to be true
if drop true \ then report so
else dup fact? \ is this a fact? if so no proof possible
if dup ask \ so ask the operator
if set-true true \ remember clause is true
else set-false false then \ remember clause is false
else
set+ @ \ get rules which can prove this clause
['] prove-rule-break mapcar \ prove rule break if
\ proven

mapbroken & \ break shows proof else not provable
then then ;

\ MAKE TEXT CLAUSE ACTIONS

variable text—-actions -cell allot \ create header

' verify \ verify proves the clause

' true? test truth without proof

' printclause print the clause by decompilation
' set-truth set clause true

' set-falsehood set clause false

' set-forward set true and chain forward

' do-query query-clause does this

L N T
S

\ EXECUTABLE CLAUSE ACTION VECTORS

: do-run (clause -- <> execute body of the clause)
body+ >r ; \ point the return stack at the body and do semis
\ the body always ends with the word compiled by ;
\ in most systems this will properly execute and
\ return

variable executable-actions =-cell allot \ create header

' do-run . \ execute to prove

' do-run . \ execute to set

' printclause . \ print by decompilation

' drop . \ never remember truth always execute
' drop . \ the same for falsehood

' drop ' \ no forward chaining

' do-run . \ execute for truth query

Tokenized Rule Based System 45

A Sample Rule Set

This set of rules diagnoses simple problems in an artificial kidney. it is included to
demonstrate some of the arithmetic capabilities of the rule processing system. Parterial is
the inlet blood pressure, Pven is the outlet blood pressure and resistance is the resis-
tance of the artificial kidney. GETPART reads the arterial pressure and leaves the answer
on the stack. GETVEN and GETFLOW are equivalent operations for venous pressure and
flow respectively.

TEXT DEFINITIONS

EVALUE Parterial \ declare arterial pressure
EVALUE Pven \ venous pressure
EVALUE FLOW \ flow

EVALUE RESISTANCE \ resistance

RULES \ start compiling rules

\ This ‘rule’ reads in values for pressure and flows. As a CAVEAT it

\ has the following properties; 1) the rule starts without an If and may

\ have no if statement. 2) In most systems CAVEATS are executed once at
\ the start of rule processing and are thus useful for initialization of

\ variables .

CAVEAT

Then GETPART -> Parterial

Then GETPVEN -> Pven

Then GETFLOW -> Flow

Then (Parterial - Pven) / FLOW -> RESISTANCE

If RESISTANCE is greater than 2000
Then the kidney is clogged
Then Alarm

If Parterial is less than 50

and if flow is less than 10

then the arterial line is disconnected
then Alarm

If Pven is greater than 40
and if RESISTANCE is less than 2000
then the venous line is obstructed

If the kidney is not clogged

and if the arterial line is not disconnected
and if the venous line is not obstructed
then the system is normal

46

The Journal of Forth Application and Research Volume 4 Number 1

