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Abstract

Knowledge Engineering — a rapidly growing segment of Artificial Intelligence — is transforming
the way computers interact with the world. Machines can now mimic highly trained specialists in
various fields, hence the designation Expert Systems. The greatest proliferation of Expert Systems
will be seen in the development of microprocessor-based knowledge systems or personal expert oper-
ators. This paper focuses on personal expert operators; it briefly introduces microprocessor-based
expert systems and describes how these systems can be made to “think” and “behave” in real-time;

language environments that promote Knowledge Engineering are also discussed with an emphasis on
Forth.

Introduction

The increasing computational power of the 16 and 32 bit personal computers provides an op-
portunity for applying the tools of Knowledge Engineering to real-world problems previously left
to larger computer systems. These newer and smaller computers will enable the development of in-
telligent instruments. Hayes-Roth [HAYES84B] predicts that we can anticipate an emphasis in
Knowledge Engineering on intelligent instruments that couple data collection with expert data inter-
pretation. These instruments with machine intelligence can be referred to as expert operators and
are the focus of this paper. The goals of this paper are to briefly review Knowledge Engineering and
Expert Systems as they can be applied with microprocessor technology to real-time applications and
introduce personal experts with emphasis on expert operators. Software environments that promote
real-time expert systems are also touched upon.

Knowledge Engineering

The rapidly evolving field of Artificial Intelligence (AI) can be divided into several sub-fields
[BARRE1]. Two important sub-fields are Cognitive Science which is concerned with the science of
human intelligence, and Knowledge Engineering (KE) which is concerned with the application of
cognitive science to the construction of machine intelligence. Cognitive Science and Knowledge
Engineering complement each other. Both sub-fields rely on the computer as a central vehicle for
construction and exploration of computational models.

The computer’s protean nature is such that it is a flexible machine environment which can be
molded and utilized [KAY84]. For Cognitive Science the computer provides a way of understanding
the physical basis of mind [PYLY84]. For Knowledge Engineering the computer provides a means
of developing machine intelligence applications aimed at the real-world.
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Intelligence can be emulated in a machine environment. Cognitive Science focuses on primitive
cognitive operations [PYLY84]. Knowledge Engineering focuses on how machine programs can
utilize the intelligent behavior of humans [NEGO8S5]. The focus in this paper is on this latter sub-
field of Al, although knowledge of psychology is essential to KE. (An overview of KE is found in
[HAYERB4A].)

Knowledge Engineering can be divided into three kinds of activities: knowledge representation,
inference generation, and knowledge acquisition {BUCHS83; STEF83]. Knowledge representation
is concerned with the way data structures are used to depict a small domain of knowledge within a
machine. Inference generation is concerned with (software) engines that work on data structures and,
as a result, generate new information. Knowledge acquisition is concerned with the translation of
domain specific experience of humans into usable machine representations.

Additionally, there are two requirements for Knowledge Engineering [NEGO85]. First, there
must exist modularity in a domain specific knowledge. Modular knowledge enables incremental
development and revision in a domain base. Second, the primary focus of programming in KE is
the construction of knowledgeware in contrast to software. Knowledge programming is directed
towards symbolic computational processes, for example, construction of knowledge engines and in
establishing the knowledge base. The fundamental use of programming in KE is not to create
software, i.e., sequences of machine instructions directed to specific tasks. An example of a com-
puter incorporating a modular knowledge base and knowledgeware is an Expert System.

Expert Systems

Expert systems are knowledge engineered machine programs that solve “real-world” problems
usually performed by (human) specialists. They simulate an expert’s cognitive process. Some char-
acteristics of Expert Systems are: a problem solving ability near or better than human experts in spe-
cific (and restricted) domains of knowledge; a heuristical and symbolic reasoning ability; and, a
“npatural” interaction with humans [HAYEB84B]. They are in a sense the “designer jeans” of computer
science [KAY84]; the idiot savants of machine intelligence [BRACS83]. Expert Systems can be
divided into two generic classes for the purposes of this article.

The first class of knowledge engineered systems are referred to as expert consultants and are
more widely known [DUDAS3]. Examples of large Expert Systems include PUFF [AIKI84],
Internest-1 [MILL84], MYCIN [BUCHS84; DAVI77], DENDRAL, R1, and PROSPECTOR
[BARRS2]. Examples of personal expert consultants include TK!Solver [KANO84], EXPERT-2
[PARK84A], and DELTA [JOHNS83]. Expert consultants emulate their human doppelganger; they
converse with a human via standard input (usually a terminal) and eventually derive a solution,
although not necessarily in real-time. It is important to emphasize that a consultant does not actually
go out into the real-world and collect data first hand but must rely on a human consultee.

The second class of knowledge engineered systems are referred to as expert operators and are
less widely known. Examples of expert operators are HEARSAY-I and HEARSAY-II [ERMAS0],
RC2 {GRUMBS3], and FORTES [REDI84]. Expert operators differ from robots — microcomputer
driven industrial devices that are either programmed to perform a repetitive task, or are remotely
controlled by a larger computer not in the environment. Expert operators interface directly to the
real-world; they should perform problem solving in real-time and then may act on their solution and
modify the environment directly. While it is interesting to interact with a consultant, problems are
tackled by operators in the environment; thus, the latter generic class of Expert Systems may
ultimately have a more profound impact in the real world.

Structure of Expert Systems

The structure of an Expert System can be divided into three fundamental knowledge parts: a
knowledge-base, knowledge-engines, and a knowledge-slate (See Figure 1). Each part of an Expert
System is composed of several components. Hayes-Roth, Waterman, and Lenat [HAYES83] indicate
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that no existing Expert System contains every component. However, in every Expert System some
form of a knowledge-base, knowledge-engines, and a knowledge-slate are present. These three parts
of a machine expert and their sub-components are briefly described.
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Figure 1. Expert System Structure

The knowledge-base represents the intelligence embodied in the computer and is encoded in
plausible reasoning and symbolic manipulation [NEGO85]. The knowledge-base can be further
divided into two sub-parts: facts and rules. Facts represent specific information about a domain of
knowledge. The rule-base contains heuristics and problem solving rules that aid in planning and in
the solution of a problem in a specific domain. The analogy in a human might be the sum total of
experience as represented in long term memory [GEOR73; PRIB71].

The so-called knowledge-engines are the software motors that run machine intelligence. Five
general engine types are found in an ideal Expert System: a language processor, a justifier, an
interpreter, a scheduler, and a consistency enforcer [HAYE®83]. One additional engine can be added
to these, a sensor/motor engine. The language engine provides “natural” communication between
the human user and the computer expert. A justifier engine explains the cognitive behavior of the
Expert System. The interpreter or inference engine applies the knowledge-base rules. The scheduling
engine regulates the order of rule processing. The consistency enforcer engine modifies previous
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conclusions as the knowledge-base expands. The sensor/motor engine extends an Expert System into
the real world; it senses the world and provides feedback to the world directly. Engines can derive
their power from a variety of sources including: synthesis, analysis, evaluation, search, learning,
history of previous experience, analogy, parallel processing, and serendipity [LENAS84].

The knowledge-slate, referred to as a blackboard [ERMASI], is a segmented workspace where
intermediate hypotheses and decisions are kept. The blackboard can be further divided into three
components: plan, agenda, and solution [HAYES3]. A plan describes the meta-strategy for the
cognitive behavior of the machine expert. The agenda is quite simply a list (maybe a stack) of the
most likely future execution behavior of the expert. The final component, the solution, is a slate of
candidate hypotheses and record of past cognitive behavior. A direct analogy in humans would be
the equivalent of short term memory [GEOR73; PRIB71].

The cognitive activity of an Expert System is built on different knowledge representations, e.g.,
formal logic, procedural representation, semantic networks, frames and scripts, and production rules
[BARRSI1]. The latter representation scheme is the most well known and is found in Expert Systems,
such as MYCIN, HEARSAY, PROSPECTOR [BARRS2], and EXPERT-2 [PARK84A].

In production systems the fundamental proposition of a machine expert’s thought is the IF-
THEN rule construct. Knowledge is represented in a conditional rule where an antecedant — data
in short-term memory — is directed to some consequence — an action or a conclusion. The inter-
preter or inference engine evaluates propositions and in one sense this process can be viewed as
machine thinking.

There are two simplistic directions of machine thought or inference mechanisms in a deductive
knowledge-based system. The direction depends on how rules are evaluated. The inference engine
applies a rule-base to specific cases as those cases arise; the engine selects which rules to evaluate.
In the selection of rules the inference engine can be backward driven, a consequent driven inference
mechanism. Rules with the current case as the consequence are selected. Each rule is evaluated to
confirm that the antecedant portion is present, a process of backward chaining. Examples of
consequent driven knowledge-based systems are EMYCIN, AGE [WATES3], and EXPERT-2 in
Forth [PARKS84A].

An alternative to backward chaining is to establish inference in the opposite direction, i.e., to
be forward chained or antecedant (data) driven. Here, the occurrence of a particular situation is used
to infer a likely consequence. The forward-chaining inference engine selects one rule to execute at
a time based upon the current data frame and previous “cognitive state”. Real-time evaluation of a
person’s wake/sleep state [REDI84] is an example. In this case, a person’s physiological data is
captured periodically, that is, a particular data frame is grabbed at certain intervals. The data, as an
antecedant case, must be found among the set of sleep staging rules; each rule with a resulting state
as a consequence is evaluated. In all Expert Systems some form of backward or forward chaining
is present. In some cases both directions of chaining are present, e.g., DELTA [JOHNS83] or
ONCOCIN [BUCHS&4].

Considerations for Expert Operators

There are considerations for machine expert operators. The size of the computer system is a
major concern. A computer must be “big” enough to act intelligently within a reasonable amount of
time to avoid the Turing tar pit [KAY84]. The contrast between a consultant and an operator is that
the latter must respond in real-time. One measure of a computer’s speed from the perspective of
Knowledge Engineering is the number of logical inferences processed per second (LIPS). A logical
inference is a primitive cognitive process, e.g., the evaluation of a simple IF-THEN proposition.
Clearly, a super computer such as the CRAY X-MP, super minicomputers, or microcomputers using
custom processors (for example LISP and FORTH machines) are the best candidates for “state-of-
the-art” AT applications. One aim of fifth generation computers is to perform in the millions of LIPS
range [FEIG83]. However, such computers cannot be directly placed in remote or unprotected
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environments; they could be used to direct robots. Additionally, the more important problem for Al
is to resolve the limitations in Expert System performance due to knowledge acquisition and
representation. Thus, ultimately “big” (logical) computers will be limited to a small number of real-
world and real-time applications. Custom and microprocessor based personal computers, on the
other hand, may open real-world expert applications if they can be made to “think” in real-time, i.e.,
perform a reasonable number of LIPS.

Another consideration for machine expert operators is the type of programming language envi-
ronment. Beyond C there are six programming languages that are well-established with a sizable
population of programmers: Cobol, Basic, Pascal, APL, Lisp, and Forth. {TESL84]. An Al appli-
cation can be developed, in principle, with any programming environment, e.g., Basic [AIKI84] —
although Basic is not an optimal programming language for implementing Expert Systems: it does
not support recursion [DUDAR&1]. However, the considerations of programming effort, development
time, degree of interaction, and execution speed on a microprocessor come into play in selecting the
most likely candidates: the latter two languages, Lisp and Forth, are the best candidates and will be
examined more closely.

Lisp is the penultimate programming environment for Al applications on “big” computer systems
[BARRS82; WINS84; WINS81]. Almost every significant knowledge based system has been
developed via Lisp or its derivatives [CLAN84]. Lisp is a “list processing” language; both program
and data are structured as lists. More importantly, Lisp has only one kind of statement, the function
call. As Tesler [TESL84] suggests, Lisp’s great source of power is derived from the fact that the
value returned by a function can be another function. An additional feature of Lisp is a built-in ability
for recursion.

Lisp has not been widely applied on smaller microprocessor systems. This is due primarily to
speed and memory requirements. The current evolution of 16 and 32 bit personal computers should
promote the usage of Lisp; several micro-computer implementations of Lisp are available
[BORT84]>.

A significant disadvantage of Lisp is that Al applications consume a great deal of memory and
there is a continual requirement for “garbage collection” — the freeing up of memory. However, vast
memory usage may be a requirement for symbol manipulation.

A recent Lisp derivative is a logical programming language, Prolog; it is being used in Europe,
Japan, and the United States for Al applications. However, Prolog suffers from two deficiencies
[FEIG83]. It uses a first-order predicate calculus to represent knowledge, but knowledge is tersely
encoded in Prolog. The problem-solving process in Prolog — this language environment solves
problems through evaluation of theorems in its calculus — is, for the most part, hidden from the
knowledge user. Thus, Prolog may become a cul de sac in the development of Expert Systems as
the problems of knowledge acquisition and representation become more highly evolved.

Forth is a concise microcomputer language environment. Programs are not written in Forth,
instead an application evolves as words are added to the dictionary in contrast to “subroutines” in
Fortran and Basic, “procedures” in Pascal, or “functions” in C. Reading programs in Forth is much
like learning a new language for each application; by understanding a dialect, or comprehending the
words and their interaction, the Forth application becomes known.

Like Lisp, Forth is ideally suited for Al applications, although for strikingly different reasons;
it has been used to implement Lisp [SPEN80; TRACSS]. Forth is an example of an interactive
threaded interpretive language [LOELS81]. The history of the system’s vocabulary is backward
chained with respect to “age of the system”. Forth is extensible; the environment is molded to fit an
application. In the current case the environment is configured for micro-machine intelligence.

2 Examples of personal computer implementations of Lisp include: ExperLisp (ExperTelligence, Santa
Barbara, CA), Golden Common Lisp (Gold Hill Computers, Cambridge, MA), 1Q-Lisp (Integral Quality,
Seattle, WA), and TLC-Lisp (The LISP Company, Los Gatos, CA).
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Although recursion is not, yet, a standard feature of Forth, an ability for recursion is quite easily
installed [GOTS82; GWILS84; SOMMS83]; recursion is a candidate for standardization [FORT83]°.

Forth enables near total and direct access to the computer, which may be its most detrimental
feature to novices, yet, its most salient ability for the initiated. The rigidity of system software is
minimized in Forth; there is the ability to redefine words (procedures) which is not as easily
accomplished in other languages, such as Basic or Pascal [REDI&3]. This implies that the system
may evolve — learning by another name — at the cost of additional memory space. Consequent-
reasoning [PARK84B], representation of facts [REDI85], and steps towards natural language parsing
[PARKS8S] demonstrate the extensibility of Forth towards incorporating artificial intelligence.
Hofstadter’s strange loops aptly describe Forth: “an interaction between levels in which the top level
reaches back down towards the bottom level and influences it, while at the same time being itself
determined by the bottom level.” [HOFS79, p 709]. Finally, Forth is stack oriented, fast, and ideally
suited for real-time applications [MOOR74].

The use of Forth as an efficient environment for knowledge-based systems is rarely acknowl-
edged and infrequently applied in Al research.* However, Forth becomes the most feasible
implementation environment when a knowledge-based system, typically in Lisp, is transferred into
a micro-processor system [JOHNS83]. The application of Forth to the development of Expert Systems
is a fledging area; Table 1 shows generic Expert Systems in Forth: ANIMALS [CASS83], DELTA
[JOHNB83], RC2 [GRUMS3], EXPERT-2 [PARKS83A & 83B], MacKit’, and FORTES [REDI84]
(see this Volume). Most applications have been in developing expert consultants; some that are used
in the field, e.g., DELTA. Forth also provides a unique opportunity to develop expert operators that
interact with the environment in an intelligent way, as in laboratory data collection, e.g., FORTES
[see this Volume], and systems that can respond to real time events [DRES85].

Table 1: Generic Expert Systems in Forth.

Name Chaining Type System Forth  Application
Forward Backward Type

ANIMALS no yes consultant  16-bit  Animal identification

DELTA yes yes consultant  16-bit  Advice on Diesel Electric
Locomotive Repair

RC2 yes yes operator 16-bit  Preliminary word recognition
using HEARSAY
architecture.

EXPERT-2 no yes consultant  16-bit =~ Weather prediction example

MacKIT no yes consultant  32-bit  Production Rule Development
System.

FORTES yes no operator 32-bit  Sleep staging.

3 The word RECURSE is part of the main vocabulary in some 32-bit implementations of Forth, e.g., PC-
Forth+ (Laboratory Microsystems, Inc., Marina del Rey, CA).

4 Computer searches on Knowledge Index in COMP1 yields 509 citations indexing Expert Systems; only 4 of
these cross index Forth (15 January 1985). Recent computer searches (28 June 1986) in COMP1 yield 2408
citations indexing Expert Systems and 2019 citations indexing Forth and only 10 citations indexing both Expert
Systems and Forth.

5 MacKIT is produced by Knowledge System Environments, Inc., (Dillsburg, PA).
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Conclusion

The future of intelligent machine behavior as disseminated by computer software will be
influenced by computer language environments. All Expert Systems require a large software kernal
upon which the knowledge base is built to satisfy specific applications; the KE kernal for MYCIN
has been applied to a variety of related expert applications [FAGA84]. There is very little difference
in an Expert System kernal for real-time sleep staging — the laboratory monitoring of a human
subject and simultaneous assessment of sleep state — and other applications such as real-time process
control [SPEC84] or the monitoring and alignment of laser beams. The large kernal may be
relatively stable over different applications in much the same way as Forth is now.

An emerging trend in the development of Artificial Intelligence is to use a large fairly stable
kernal: classically a Lisp (-like) environment. However, as smaller although not necessarily less
powerful computers develop, other environments will become available. A newly emerging, yet
stable, alternative for Knowledge Engineering is Forth. Larger KE applications using classical Al
environments have been successfully translated to microprocessor systems using Forth, e.g.,
DELTA [JOHNS83] and RC2 [GRUMS3]. Thus, Forth may provide a viable alternative of pursuing
machine intelligence and focusing on the development of knowledge-bases for future expert
consultants, and more importantly, for the application of expert operators once a KE architecture
becomes standardized. Ultimately, a knowledge environment in Forth may process natural language
[PARKS5] and act in real-time thus enabling true interaction between human and expert operator.
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