
Proceedings of the 1986 Rochester Forth Conference 203

DEFINING WORDS WITH CLASS

Alan T. Furman

1634 Roll Street
Santa Clara, CA 95050

ABSTRACT

Defining words can be implemented that collect new words in
a set or class as they are being created. One can then
automatically apply functions to the entire class. This
technique leads to more concise and expressive code, and
works very synergistically with symbolic self-labeling
output. It finds practical use with surprising frequency.

INTRODUCTION

Very often one performs the same operation on a number of
similar things: executing a sequence of pass-fail t~sts,
clearing variables, displaying parameters, polling input
bi ts, and so on. Going by conventional programming-language
insight, there are only two ways to do this. The first is
to.have a Forth word for each thing. Then, to operate on
all of them, explicitly invoke the first word, the
operation, the second word, the operation...etc. The second
is to make an array of things. To operate on all of them,
wri te a DO loop. Nei ther approach is appealing. The first
i s lab 0 r i 0 usa n d verb 0 se, and r e qui res a lot 0 fed i tin g
when adding or removing things. The second sacrifices the
benefits of having a Forth word for each thing : the ability
to invoke, test, read, etc. each thing symbolically.

Since Forth gives the programmer control over the
mechanism of word creation, one can use a technique that
combines the advantages of botb of the above methods. This
paper describes tools for creating words that have both
individual and group identity. I will use the term "class"
for such a group. (It is not the same usage of the term as
a "clasá" in object-handling environments such as the
Smalltalk languáge.) The result is an easy way of
automatically converting operations on individual class
members to operations on the whole class, wi thout further
testing required.

The next section describes the words with which the
technique is implemented. It is followed by a simple
example of the technique's use. The paper concludes with
some other suggested applications, and general obServations.

The Journal of Forth Application and Research Volume4 Number 2204

THE TECHNIQUE

The words CLASS ,)CLASS , and APPLY suffice for nearly all
practical cases . They are defined as follows.

CELLS (#cells -- address increment)
2 *

CLASS (max#cells --)
CREATE 0 , DUP , CELLS ALLOT

INCSIZE (class pfa --)
1 SWAP +! ; -

?CLASSFULL (class pfa --)
DUP 8 SWAP 1 CELIs + 8 (0=
If ." CLASS OVERFLOW" ABORT THEN ;

LATESTCELL (class pfa -- address)
DUP 2 + CELLS + ;

)CLASS (class_pfa --)
DUP ?CLASSFULL DUP INCSIZE LATESTCELL HERE SWAP

MEMBER8 (class pfaindex n)
2 + CELLS + ê-

APPLY (add ress c lass_pf a --)
SWAP OVER 8 0 DO

OVER I MEMBER8 OVER EXECUTE
LOOP 2DROP ;

The code above follows the 83 standard. For 32-bit systems,
replace the 2 in the definition of CELLS by 4.

The defining word CLASS creates a Forth word that is like a
string of cells ("string" msaning a one-dimensional array
with a built-in element count). It is initially empty, but
it can accomodate up to "max#" members. The first two cells
in a CLASS word's parameter field are, respectively, the
number of members and the capacity . The remainder are
pointers to the members' parameter fields.

Elements are added using the word)CLASS which, when
embedded i n a d e fin i n g w or d, g i ve s the la t t er' s of f s pr i n g
membership in a class. In the case of a class called
WHATEVER we use)CLASS thus:

DEFINING\WRD
CREATE WHATEVER)CLASS ...

)CLASS reads HERE, which points to the pfa of the word just
made by CREATE .

Proceedings .of the 1986 Rochester Fort Conference 205

APPLY takes a word's execution address and a class as
arguments. The word is applied to each member of the class.
More specifically, itis executed with a pointer to each
member's pfa on the stack. For example, suppose the word
MUMBLE operates on the pfa of a single member of the class
WHATEVER. Then

, MUMBLE WHATEVER APPLY

will invoke MUMBLE on each member of the WHATEVER class.

AN EXAMPLE

The user of a simulator wants to learn the system's behavior
for various inputs and system parameters. If the system is
an automa tic motorized posi tioner, typical parameters might
be load inertia, feedback controller gain, and output
voltage swing of the motor driver. The user will vary these
numbers while re-running the simulator ,and will often want
to have all their values displayed. This example will
demonstrate how convenient classes can be for displaying
these parameters.

The first step is to create the class PARAMS .

la CLASS PARAMS

allows room for up to la members. Next, use the compiler
word PARAM to create the needed words:

P ARAM
CREATE PARAMS)CLASS
1 CELLS ALLOT

PARAM INERTIA
P ARAM GAIN
PARAM VOLTAGE

By itself, a PARAM behaves in the same manner as a var~able.
The user can interactively read or alter it by name.

We now turn to the matter of displaying the value
of these

parameters. First we define a word .PARAM

.PARAM (pfa)
CR DUP .NAME ." - "? .- .,

This word generates a labeled output of a variable's
value.

The definition of .NAME is system-dependant; NFA COUNT
TYPE

is a typical implementation.

The word .PARAM may be used--and tested--with an individual
PARAM in, for example, this way: typing

206 The Journal of Forth Application and Research Volume 4 Number 2

10 GAIN ! GAIN .PARAH

will give the output GAIN = 10 To display all of the
params requires only the following:

: .PARAMS (') .PARAM PARAMS APPLY

Here redundancy has been eliminated in two stages: first,
with self labeling output (replacing ." GAIN ='" GAIN?
b Y G A IN. PA R AM in which t he wo r dG A IN a p pea r a 0 ne e ins tea d
of twice); second, with the APPLY operator (doing all the
PARHS without explicity mentioning them). Now imagine the
savings with perhaps 20 parameters.

CONCLUSION

Many possible applications of this technique come to mind.
One of them is the control of a number of actuators in a
system (valves, shutters, etc.). They are usually best
assigned Forth words for individual control, but one often
wishes to close all of them with a single command. Another
is a set of colon definitions that all must be done at
some point, such as pass/fail tests. One can define a
"class-smart : "as follows:

: TEST : TESTS)CLASS

This automatically collects :TEST words in the class TEST.
To perform all tests, just apply EXECUTE to TEST. Yet
another application is in a system simulator, where each
state variable (flip-flop state in a logic simulator,
position or velocity in a dynamic simulator) is a Forth
word. Every timestep, the "next value" of each state
variable is computed from the "current value" of the
variables. By putting all these state words in a class,
one can apply an "update" operator (which shifts the
content s 0 f the " n e x t " to "current" fie Id in a s tat e)
to all state variables, without having a state array as
such.

The use of classes and APPLY shows how powerful the general
principle of "factorin~ out" redundancy in programs can ~e.
In the case of APPLY , a control structure has been ,factored
out, and the resulting code is not only more concise, but
clearer: APPLY explains what is going on without the clutter
of the loop construct. Extensibility leads tp higher levels
of abstraction embodied in Forth words. Abstraction,
correctly applied (namely: with well-chosen names~ good
documentation, and a dedication to simplicity), is the
ultimate tool for maximizing readability.

