
Proceedings of the 1986 RochesterPort Conference 265

A Stand-alone Forth System
by

\

D. B.Bnnnm
Michigan Technological

University
Electrical Ehgrg. D:pt.
Houghton, MI 49931

ABSTRCT
A general purpose, diskless microprocessor system operating in

Forth has been implemented. It behaves just like a norml disk-based
system. The Forth kernel, contained in EPRa1s, was generated with the
Labora tory Microsystems metacomplier.

This system has the following features:
Forth 83 standard (except for vocabularies)
nonvola tile source code storage
nonvolatile retention of compiled code
interrupt support (written in Forth)
stand-alone opera tion
buil t-in edi tor

Z8Ø STD bus
low power consumption
no mechanical devices

The source code storage area consists of up to 64 K bytes of
nonvola tile memory on a separa te bord which is accessed through
I/Oprts. I\wsource code can be enteredinto the screen memory by
using the buil t-in edi tor, downloading through a serial link, or
plugging the board into a disk-based STD bus system. liy block can be
designa ted as a boot screen, permi tting any sequence of words to be
executed automatically at power-on.

The use of CMOS chips for the main memorypermi ts the nonvola tile
retention of compiled code as well, so that any application words are
ready to run immdiately after turning the system on.

The system is being used to control an automa tic tree harvesting
machine designed by the U. S. Forest service ~ it can easily be adapted
for other tasks.
INTODUCTION

That Forth is nearly ideal for thedevelopint of dedicated,
real-time controllers has been pointed out by other authors (1,2). It

permi ts one to build a very versa tile stand-alone system upon which
the application can be developed and tested interactively in the
actual hardwre environment in which it must run. Forth is also
faster than most other interpreters, an essential property for many
real-time applications.

Conventional Forth implementations require some sort of mass
storage, usually a magnetic disk. The mass storage is needed to
provide a mechanism for editing and testing new routines and for
saving the results of the work. An alternative to disks must be
found, however, if their use is prevented by excessive vibration, dust
and dirt, low-power requirements, or temperature extremes.

This paper describes a Forth. system in Ra1 that implements mass
storage with non-volatile semiconductor memory. It appears to the
user to be a conventional (but small) disk-based system. Compiled
code can be saved in nonvolatile memory, an application word can run

Upendra D. Kulkarni
Informtion Processing

Systems of California
7Ø Glenn Way
Belmont, CA 94ØØ2

266 The Journal of Fort Application and Research Volume 4 Number 2

automtically at power-on or reset, and the service routine for
hardwre interrupts can be written in high-level Forth. The system is
constructed entirely with CMOS logic to achieve low power, high noise
immunity, large power supply tolerances, and a wide operating
tempera turerange.

METACOMPILING FORTH
A metacompilermarketed by laboratory Microsystems, Inc., (LMI)

and running on an IBM PC host was used to generate this stand-alone
Z80 Forth system. The definitions of words such as KEY, EMIT, and
?TERMINAL in the source file are . edited as required by thè target
hardwre, and any routines needed for system-specific initialization
are added to COLD (the cold boot routine). From this source file the
metacompiler then produces a disk filetha t is ready to dump into
RCMs. The resulting system basically meets the Forth-83' standard
except for thè absence of all words re la ted to disk access and the
lack of vocabularies.

The system genera ted from the source file as supplied by IMI

permi ts new words to be added to the dictionary by keying them in from
the terminal. Of course, the newdefini tions are lost when the power
is turned off or the system is reset. There is no means of
interactively creating, testing, and saving new definitions' as one
normlly does with a disk-based system. The hardware and software
additions presented here overcom these problems and yield 'a system
that is still RCM based while permitting the usual interactive
debugging and software developnnt associated with a disk-based
system.
HARLWARE

Magnetic bubbles, ba ttery-backed CMOS RA, or EEPROMs could
readily be used for mass storage. Using .semiconductor memory chips

permits adding screen memory in smller increments (8 blocks, using 8
K byte chips), is simpler to design, and costs much less to tryout.
Bubbles have the advantage of a larger memory space, if needed.

The screen memory was implemented as a 64 K, byte arrayaccessed
through I/O ports. Eight 28-pin sockets connected in thestandard
JEDEC configuration were used, permitting 8 K byte EEPROMs or CMOS
RAMS to be used interchangeably. The EEPROMs require considerably
more time for writing, resulting in a noticeable delay when a block is
saved.
SOF'lARE

Adding the required block support words was fàirly
straightforward: they were essentially copied from the disk-based
source file provided by IMI. Of course, new words for accessing the
screen were needed. Primitive code words S~ and SI were written to
read and write one byte from and to the screE!n ~mory,respectively.
The EEPROM's used will flot return the same data byt~ written to them
until the end of the internally-timed write cycle. Thus SI writes a.
byte, then reads it bai:k contin~lly ,until the byte returned matches
the one written. Thisapproach (rathei: than using a timing loop)

permi ts the interchangeable use. of nonvolatile. Rls as well as faster
or slower EEPRCls wi th no software chaflges: extra' time for writing is
taken only if it is required. More power~ul wOI;ds that read and write
a block at a time were then defined in terms of these

Proce~dings of the 1986 Rochester Forth Conference 267

simple pr imi ti ves.
Three locations in block ø have been set aside for störing a bot

screen number. These locations are read by COLD: if a valid non-zero
decimal number is found, then the corresponding block is loaded. This

permits the execution of any desired set of words automtically at
turn-on without requiring user action and greatly facilitates
tailoring the system to different stand-alone applications without
requiring the EPROMs to be reprogrammd.

SCREEN GENERATION AND MAINTENANCE
Several ways of generating, maintaining, and editing the screen

memory contents have been implemented. A smll screen editor based on
the one described by Kelly and Spies (3) was included in the EPROMs so
it is always instantly available without consuming any screen memory
space.

Words derived from Ericson and Beucht (4) for transferring
screens to and from a conventional disk-based system via a serial link
were also included in the EPROMs. The screens can be initially
generated using the more powerful capabilities of the lp.rger system,
then downloaded to the screen memory as needed. This capabili ty

permits the screen memory contents to be backed up ona disk and
alleviates any difficulty caused by the relatively smll capacity of
the screen memory system.

The screen memory was constructed on a single bord that plugs
into the backplane. Thus the entire bord can be moved to any disk-
based system that uses the same bus (STD in this case). This gives
instant access to both the screen memory and a disk on the same system
and permits one to move screens between the two very easily and
quickl y .
OPERATION WITHOUT A TERMINAL

If the final application program is written such that the
terminal is not needed, i.e., no keybord or video display I/O is
used, then it can be run with the terminal unplugged. This may be
necessary in environmnts that are unfriendly to terminals. If the
autom tic running of an applica tion program upon power-up wi thout
terminal control is desired, then all terminal I/O must be disabled,
including the sign-on message.' . This can be done by using a flag to
enable all terminal I/O routines, . with the state of the flag being
determined by COLD from the posi tion of a swi tch.

HA~ARE INTERUPTS
Real-time controllers generally require the use of

hardware interrupts. Others (1,2,5,6) have described methods of
implementing interrupts in a Forth system. Some approaches have
either required that the entire interrupt service routine be written
in machine language or that the system wait for the current Forth word
to finish execution before responding. The general scheme described
by Melvin (5) permits the interrupt service routine to be written (and
tested) directly in high-level Forth while still achieving an
immdiate response to the interrupt request.

An array is defined that contains two compilation addresses: it
simulates the boy of a colon definition containing two words. The
first cell contains the compilation address of the Forth word to be
executed as an interrupt service routine while the second is for the

268 The Journal of Forth Application and Research Volume 4 Number 2

word that returns the processor to the state that was interrupted.
When an interrupt occurs the processor jumps to a particular address.
A sirll amount of irchine code at this address saves the state of the
processòr, loads the IP with .the address of the first cell in the
array and jumps to NEXT. The desired word is then executed followed
by the word that returns the processor to its previous sta te.

NONVOLATILE COMPILED CODE
The system as described so far can function almost like a disk-

based system in most respects. It cannot save a file containing a
compiled application, however. The applica tion must be loaded from
screen memory (or typd in) each time the system is reset or turned
on. All that is needed. to permit compiled code to reirin viab1e.after
the pJwer has been off is to use nonvolatile RA for the memory in
which the compiled code is stored and to provide for the proper
initialization of two pointers. The hardware modification is easily
achieved by replacing one or more of the RA chips in the irin memory
space with l:ttery-l:cked CMOS memory chips.

The variables DP and CONTEXT must be initialized to pJint to the
next available RA location and the top word in the dictionary,
respectively. The desired initial values can be saved in nonvolatile
memory and stored in the proper locations by COLD.

REFERENCES
i. Pernier, C'rald E., "Forth Pased COntroller."WESCON Conf. Record,

1982, p. l7B/4
2. Dumse, Pandy M., and Dune E. Smith. "High Level language

Solutions for ledicated Applications." WESCON ConL Record, 1982,
p. l7B/2

3. Kelly, Mahlon G., and Nicholas Spies. "Forth: A Text and
Reference." Prentice HEll, 1986, chap. 12 and 13

4. Ericson, Keith, and lennis Feucht. "Simple i:ta Transfer
Protocol." Forth Dimensions, Vol. 6, No. 2,p. 32

5. Melvin, Stephen. "H:mdling Interrupts in FORTH." Forth
Dimensions, Vol. 4, No. 2, p. 17

6. Winterle, R. G., and W. F. S. Pohlirn. "Asynchronous WOrds for
Forth." 1984 Rochester Forth Conference, p. 32

