FACS - A FORTH ANALOG COMPUIER SIMULATOR

Nicholas G. Lordi
College of Pharmacy
Rutgers University
Piscataway, N.J. 08854

Forth provides a natural programming environment for creating special purpose simulation languages. FACS is a block-oriented continuous-system simulation language implemented in both integer and floating-point versions. Forth versions of CSSL's (including FDARE, a Forth equation-oriented CSSL) have the following advantages over CSSL's written in Pascal and Fortran: minimal memory requirements; keyboard alteration of model parameters without recompilation, and extensibility. Only the integer version, programed in F83 Forth, will be discussed.

In developing a FACS simulation, all state variables should be scaled so that they do not exceed one unit ($=100,000,000$) during a simulation run. Scalars, in contrast to state variables, are defined so that 1 scalar unit $=10000$. All numbers except integers are entered and displayed in decimal format, using no more than 4 decimal places. This restriction is consistent with the degree of accuracy attainable with reasonable integration step sizes (ca., 0.01). The current version allows output to be displayed or printed as well as low resolution character plotting on a printer.

Table 1 lists the FACS vocabulary included in the integer version. Transcendental functions, which have been implemented using series approximations, are generally accurate to 7 decimal places in the range 0 to l. Unlike other block-oriented CSSL's, there is no limit on the number of or specific blocks which may be used in a simulation. Special block-defining words are used to define integrators, arbitrary function generators, tables, differentiators, track/store elements, and delays. The integrator block implements the second-order Runge-Kutta algorithm.

Definitions of the three principal FACS data types are listed below. Bartholdi's "TO" solution is used to simplify use of FACS variables. DIO? is a double number version of TO?. \#IN converts a decimal number to a scaled integer.
: INTEGER ($\mathrm{S}-\mathrm{n}$) CREATE , DOES> TO? ;
: SCALAR (S - n) \#IN INIEGER ;
: VECTOR ($\mathrm{S} \mathrm{n}-\mathrm{d}$) $1+$ CREATE 4 * DUP HERE SWAP ERASE ALIOT DOES $>$ SWAP 4 * 4 DTO? ;

The Van der Pol equation simulation outlined in Figure 1 illustrates how FACS is used as well as some of the implementation details. The FACS user should first scale the problem so that state variables do not exceed 1 unit, then construct an analogous block diagram. The first step in developing a FACS program is to set the number of nodes to $3+$ the number of blocks required by the simulation. The first 3 nodes are reserved for system use. The user must define 2 vectors: one to store current block outputs, e.g., $Z()$, and a second which stores initial conditions assigned to integrator blocks, e.g., ZO() . These definitions have been deferred to minimize system memory allocation, thereby avoiding recompilation for large problems. Execution of SET-Y and SET-IC resolve the deferred vectors.
: SET-Y (S -) DEFINED DROP IS Y() ;
Two system parameters must then be set. COMINP is the communication interval, i.e., the number of integration steps executed before output is requested. DT/2 is one-half the integration step interval. TO is used to assign values to scalars (always in decimal format) or integers. Model parameters are defined as scalars (e.g., K); initial conditions other than 0 are assigned (e.g., integrator block 5 is set to 0.5 unit); and the specific blocks for which output is requested are identified by PR-NODE.

Each integrator block must be separately named using the word RK2; thus, only those integrators required by the simulation need be defined. Execution of $n l n 2$ <name> twice replaces $Y(n)$ with the integral of $Y(n 2)$, since the $2 n d$-order integrator requires two passes. Each integrator allocates memory space for a flag which identifies the pass and for temporary storage of the previous integrator output.

```
: RK2 (S nl n2 - ) CREATE 0 , 4 ALLOT DOES> TO PFA ( stores pfa )
    Y() DT/2 10000 M*/ ( multiplies input vector by scalar )
    PFA @ 0= IF ( lst pass ) 2 PICK Y() 2DUP PFA 2+ 2! D+
    ELSE ( 2nd pass ) D2* PFA 2+ 2@ D+ 0 PFA ! ( restore flag )
    THEN >- ROT Y() ( update output ) ;
```

The simulation model (e.g., VDPOL) is defined using MODEL: (a redefinition of ":"). The general format for block program statements is: scalar out-node in-nodel in-node2 ... word. Figure 2 shows an example of displayed output. SIMULATE <model name> selects the named model for simulation by vectoring to the system defined dumnty word "model".
: model NOOP ;
: SIMULATE (S —) DEFINED DROP ['] model 2+ ! ;
: RUN (S n -) RESET INITIALIZE CONIINUE MESSI ;
: INITIALIZE (S -) DT/2 TO DT' 0 TO DT/2 model model DT' TO DT/2 CR output ;
: CONIINUE ($\mathrm{S} \mathrm{n}-$ -) 0 DO HALT COMINT 0 DO model TIME model TIME LOOP output LOOP ;

DISPLAY selects output in tabular form on the current output device; alternatively, PLOT would provide low resolution character plotting of selected blocks. RUN controls the simulation: it sets all initial conditions (RESET), it calculates the output of all other blocks by calling "model" twice with DT/2 temporarily set to 0 (INITIALIZE), and executes the simulation (CONIINUE) $n * C O M I N I$ times (in this case, 500). The 2nd-order integrator requires that "model TIME" be executed twice. TIME increments $Y(0)$ by $D T / 2$ (node 0 is reserved for the time function). HALT suspends a run when any key is pressed, continues if any key is pressed again except for CR which aborts the run. Each time "output" is called, results will be displayed (or plotted). When a run is completed, execution of n CONIINUE will provide further output. Parameter changes may be made or initial conditions altered without recompilation.

In FACS, one may easily collapse complex problems into single
words, which can subsequently be used as blocks in more complicated simulations. For example, FIN-DIF (Figure 3) is a block-defining word (really a special purpose integrator) which solves the 1-dimensional diffusion problem using the difference-differential equation method. It is used in the form n FIN-DIF <name>, where n is the number of stations. Execution of RECT/SPHER/CYLIN nl n2 <name> (where nl is the output and n 2 is the input boundary node) solves Fick's Second Law in rectangular, spherical, or cylindrical coordinates, depending on which word is first executed. DX and D/DX2 are user modifiable parameters.

TABLE 1 - FACS VOCABULARY

Data Types		System Control		I/O	Block-Defining Words
INIEGER	NODE	ASSIGN-IC	INITIALIZE	DISPLAY	DELAY RK2
LABEL	SCALAR	ASSIGN-Y	RUN	PLOT	DIF TABLE
MATRIX	VECIOR	CONIINUE	SIMULATE	PR-NODE	FIN-DIF T/S
		HALT	TIME	T0	FUNCTGEN
		Blocks			System Nodes
ABSV	GAIN	INV OFFSET	POT RAND	STOP	T
DIV	MULT	SQR SQRT	SUM $\mathrm{Y} * * \mathrm{X}$	10**	+REF
ARCT	cos	EXP LN	LOG SIN		OREF
BANG	CMP	DEAD LIMIT	SWITCH +CLIP	-CLIP	-REF

Figure 1 Van der Pol Equation

$$
\frac{d^{2} Z}{d t^{2}}+k\left(Z^{2}-1\right) \frac{d Z}{d t}+Z=0
$$

BLOCK DIAGRAM

FACS PROGRAM 11 NODES
11 VECIOR Z()$\quad 11$ VECIOR ZO()
SET-Y Z() SET-IC ZO()
0.001 TO DT/2 $\quad 100$ TO COMINr
0.5 SCALAR K
50.5 ASSIGN-IC 5411 PR-NODE RK2 DZ/DT RK2 Z

MODEL: VDPOL 411 DZ/DT 54 Z 65 SQR 76 -REF SUM K 87 POT 948 MULT 1095 SUM 1110 INV ;

Figure 2
SIMULATE VDPOL DISPLAY 5 RIN
T
$5(z) \quad \frac{\text { Blocks }}{4(d z / d t)} \quad 11\left(d^{2} z / d t^{2}\right)$

0	0.5000	0	-0.5000
0.2	0.4896	-0.1031	-0.5288
0.4	0.4582	-0.2104	-0.5413
0.6	0.4052	-0.3186	-0.5383
0.8	0.3307	-0.4247	-0.5198
1.0	0.2354	-0.5254	-0.4836

Figure 3

27 LIST 28 LIST
Scr \# 27
A:FACS.BLK
0 special functions - finite-difference block 9May86ngl
10 INIEGER II 0 INTEGER BNO 0 INTEGER BNN
2 : CIN ($\mathrm{S}-\mathrm{n}$) BNO Il + BNN BNO -+ ;
3 : COUT (S - n) BNO Il + ;
4 : POUT (S - n) PFA $2+\mathrm{Il} 1-4$ * + ;
5 0. SCALAR X0 1. SCALAR DX 0.01 SCALAR D/DX2
6 VARIABLE CORD-TYPE
: CALC-RDR (S -)
8 COUT $1+\mathrm{Y}()$ COUT 1-Y() D- DX $10000 \mathrm{M} * / 10000 \mathrm{Il} \mathrm{DX}$ *
$9 \mathrm{XO}+\mathrm{M}$ * ;
$10:(\mathrm{RECT})(\mathrm{S}-\mathrm{d})$ NOOP ;
: (SPHER) (d d - d) CALC-RDR D + ;
: (CYLIN) (S d - d) CALC-RDR $12 \mathrm{M} / \mathrm{D}+$;
: RECT (S -) [1] (RECT) CORD-TYPE ! ;
: SPHER (S -) ['] (SPHER) CORD-TYPE ! ;
: CYLIN (S -) [1] (CYLIN) CORD-TYPE ! ;
Scr \# 28 A:FACS.BLK
0 \finite-difference block
9May86ngl
1 : FIN-DIF (S nl n2 -)
2 CREATE 0 , DO 0., LOOP DOES> TO PFA TO BNO
3 TO BNN BNN BNO - 1 DO I TO Il CIN Y() DT/2 $10000 \mathrm{M*} /$
4 PFA @ 0= IF COUT Y() 2DUP POUT 2! D+
5 ELSE 2 l M*/ POUT 2@ D+ THEN 2DUP
6 COUT TO Y() 2 l M */ DNEGATE COUP l- Y() D+ COUT l+ Y()
7 D+ CORD-TYPE @ EXECUTE D/DX2 $10000 \mathrm{M} /$ CIN TO Y()
8 LOOP PFA @ 0= PFA! ;
9 \A 2nd-order Runge-Kutta integrator which simulates a 2nd-order
10 \partial differential equation by solving n equations of the
11 (form (e.g., in rectangular co-ordinates):

$$
\frac{d U_{i}}{d t}=\frac{D}{\Delta x^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)
$$

