
Proceedings. of the .1986 Rochester Fort Conference 331

FACS - A FORl AN c: SIMUR
Nicholas G. Lordi
College of Pharmcy
Rutgers University
Piscataway, N.J. 08854

Forth provides a natural prOgramg environmt for creating
speial purpose simlation languages. FACS is a block-oriented
continuous-system siration languagei.lemted in. both integer and
floating-point versions. Forth versions of CSSL' s (including FD, a
Forth eqation-odentedCSSL) have the. fOllowing advantages over CSL' s
written .. in PasCa and Fortran: mini. mery reqiremts, keybrd
alteration of moel paramters without recmpilation, and extenibility.
Ory the integer version, progran in F83 Forth, will be discussed.

In developing a FACS simlation, all state vadables should be
scaed so tht they do not excee one unit (= 100,000,000) during a
simlation run. Scars, in contrast to. state vadables, are defined so
that 1 scaar unit = 10000. All murbers except integers are entered and
displayed in deci.l formt, using no rore th 4 qeèi. places. This
restriction is consistent with the degree of accuracy attainable with
reasonale integ rat ion step sizes (ca., 0.01). The current version
allows output to be displayed or printed as well as low resolution
character plotting on a printer.

Table 1 lists the FACS voculary included in the integer version.
Trancendental functions, which have ~ i.lemted using se des
approximtions, are generally accurate to 7 deci. places in the .range
o to 1. Unlike other block-oriented CSSL's, there is no limt on the
numr of or speific blocks which may be used in a simlation. Spial
block-defining words are used to define integrators, arbitrary function
generators, tales, differentiators, track/store elemts, and delays.
The integrator block i.lemts the second-order Ruge-Kutta algoritl.

Definitions of the three principa FACS data typs are listed below.
Bartholdi 's "TO" solution is used to si.lify use of FACS. variables.
DI? is a doUble nunr version of TO? #IN converts a deci. numr to
a scaed integer.

INlER (S - n) CR , OOES) '1?SC (S - n) UN IN!;
VER (S n - d) 1+ CR 4 * DUP HE SW ERE
AI OOES) SWAP 4. * 4 DI? ;

The Van der Pol eqation simlation outlined in Figure 1 illustrates
how FACS is used as well assome of the i.lemtation details. The FACS
USer should firs.t scae the problem so tht state variabl~s. do not
excee 1 unit, then. construct an analogous block. diagram. . The first
step in developing a FACs program is to set the nunr of nodes to 3+
the nunr of blocks reqired bythe.simation. The first 3 nodes are
reserved for system use. . The user must define 2 vectors: one to store
current block outputs, e.g., Z(), and a second which stores initial
conditions assigned to integrator blocks, e.g., ZO (). These definitions
have been deferred to miimze system mery alloction, thereby
avoiding recompilation for large problem. Execution of SETY and SET ie
resolve the deferred vectors.

332 The Journal of Forth Application and Research Volume 4 Number 2

: SElY (S -) DEFINE DIDP is yo ,

Tw system paramters nut then be set. muNl is the conmication
interval, i.e., the ni.r of integration steps executed before output
is reqested. DT/2 is one-haf the. i.t:egration step interval. 'I is
used to assign values to scaars (alwCiysln decim fornt) or integers.
Moel paramters are defined as scaars (e.g., K), initial conditions
other th 0 are assigned (e.g. ,integrator block 5 is set to 0.5 unit),
and the speific blocks for whiCh output is reqested are identified by
PR-:oE.

Each integrator block must be separately na using the word RK,
thus, only those integrators reqired by the simlation nee be defined.
Execution of nl n2 (n) twice replaces Y(nl) with the integral of
Y(n2), since the 2nd-order integrator reqires two pases. Each
integrator alloctes mery space for a flag which identifies the pas
and for temrary storage of the previous integrator output.

RK (S nl n2-) CRE 0 , 4 AU OOES) 'I PFA (stores pfa)
yo DT/210000M*/ (mutiplies input vecor by scaar)
PFA ~ 0= IF (1st pas) 2 PiCK Y() 2D PFA 2+ 21 Dt
ELE (2nd pas) D2* PFA 2+ 2~ Dt 0 PFA 1 (rastore flag
THEN -) RO Y 0 (updte output) ,

Th simlation roel (e.g., VOroL) is defined using tmEL: (a
redefinition of ":"). The general fornt for block program statemts
is: scaar out-node in-nodel . in-node2 ... word. Figure 2 shows an
exale of displayed output. SIM (ne-l na) selects the na
noel for simlation by vectoring to the system defined dur word"roel" . . .

noel llP ,
SiMU (S -) DEFINE DIDP (i) roodel 2+ 1 ,
RU (S n -) REEl INITIAZE CONlINUE MESl ,
INITIAI ZE (S -) DT/2 'I DT i 0 'I DT/2 roel noel
DT i 'I DT/2 CR output ,
CONlINU (S n -) 0 00 HAT muNl 0 00 roel TIM
roel TIM LOP output LOP ,

DISPLA selects output in taular form on the current output device,
alternatively, PWl would provide low resolution chracter plotting of
selected blocks. RU controls the simation: it sets all initial
conditions (REEl), it caculates the output of all other blocks by
caling "noel" twice with DT/2 temrarily set to 0 (INITIAZE), and
executes the simlation (CONlINU) n*a:Nl tirs(in this cae, 500) .
The 2nd-order integrator reqires tht "roel TIME" be executed twice.
TIM incremts Y(O) by DT/2 (node 0 is reserved for the tim function).
HAT. suspeds a run when, any key is pressed, continues if any key is
pressed again except for CR which abrts the run. . Each tim "output" is
caled, results will be displayed (or plotted). Wher a run is
corrleted, execution of n CONlINU will provide further output.
paramter chages may be made or initial conditions altered withoutrecorrilation. .

In FACS, one may easily collapse complex problem into single

Proceedings of the 1986 Rochester Forth Conference 333

words, which ca subseqently be used as blocks in Ilre conpl;cated
sinlations. For exl~, FIN-DIF (Figure 3) is a block-defining word
(really a speial purpse integrator) which solves the I-dimional
diffusion problem using the difference-ifferential eqation meth. It
is used in the form n FIN-DIF o(~, where n is the nunr of stations.
Execution . of RE/SPHECYNnl. n2 o(~ (where nl is the output . and
n2 is the input boundary node) solves Fick' s Send Law in rectangular,
spherica, or cylindrical cordintes, depeding on which word is first
executed. DX and D/DX2 are user Itifiableparamters.

Data 'rs
INlEX NJELA SCMAX væR

AB
DIVAI
BA

GAN
MUT
CO
æP

Figure 1

BIO DIA

FACS PRX

TA 1 - FACS VOUl
System Control

ASSIGNIC INITIAZE
ASIGNY RU
OONlINU SIM
HAT TIM

Blocks
INV OFFSEI
SQR SQRl
EX LN
DEA LIMIT

I/O
DISPIA
PID
PR-NJE

. 'I

Block-Defining WordsDEI RKDIF ~LE
FIN-DIF T/S~

System Noes
T
+RE
ORE
-RE

ro
SU
ID
SWTC

RA SlP
y**X 10**
SIN
+CIP ~P

Van der Pal Equation

i.

d Z + k(Z1_ l)dZ + Z 0
dt;l dt

11 NJES
11 væR Z()
SEl Y Z ()
0.001'1 DT/2
0.5 SC K
5 0.5 ASIGN IC
RK DZ/DT

11 væR ZO ()
SEI-IC ZO ()

100 '1 a:Nl

5. 4 11 PR-NJE
RK Z

MOEL: , VDooL 4 11 DZ/DT 5 4 Z 6 5 SQR 7 6 -RE SUM
K 8 7 ro 9 4 8 MUT 10 9 5 SUM 11 10 INV ;

334 The Journal of Forth Application and Research Volume 4 Number 2

Figure 2
SIM VDPOL
DISPLA 5 RU

Blocks
(d2Z/dt2)T 5 (Z) 4 (dZ/dt) 11

0 o .5000 0 -0 .5000
0.2 o . 4896 -0.1031 -0.5288
0~4 o .4582 -0.2104 -0.5413
0.6 o .4052 -0.3186 -0.5383
0.8 o .3307 -0.4247 -0.5198
1.0 o .2354 -0.5254 -0.4836

Figure 3

27 LISl 28 LISl
Scr # 27 A: FACS.BLK

o \ speial functions - finite-ifference block 9May86ngl
1 0 INl Il 0 INIEXER BNO 0 INIEG BN
2 : eIN (S -' n) BNO 11 + BNN BNO - + ;
3 : mur (S - n) BNO Il + ;
4 : POur (S - n) PFA 2+ Il 1- 4 * + ;
5 O. SC XO 1. SC DX 0.01 SC D/DX2
6 VALE CORDTYE
7 CA-RDR (S -)
8 mur 1+ Y 0 mur 1- Y 0 i: DX 10000 M* / 10000 Il DX *
9 XO + M*/ ;
10 (RO) (S - d) trP;
11 (SPHE) (S d - d) CA-RDR Dt ;
12 (CYIN) (S d - d) CA-RDR 1 2 M*/Dt
13 RO (S -) (') (RO) mRDE 1 ;
14 SPHE (S -) (') (SPHE) mRDTYE 1
15 CYIN (S -) (') (CYIN) mRDE

Scr # 28 A:FACS.BLK
o \ finite-ifference block
1 FIN-DIF (S nl n2 -)
2 eREE 0 , 00 O. " IrP OOES) 'I PFA 'I BNO
3 'I BNN BNN BNO - 1 00 I 'I Il eIN YO DT/2 10000 M*/
4 PFA (ê 0= IF mur Y () 2DUP mur 21 Dt
5 ElE 2 1 M* / POur 2 (ê Dt TH 2DUP
6 mur 'I Y 0 2 1 M* / DNETE mur 1- Y 0 Dt mur 1+ Y 0
7 Dt mRDTYE (ê EXCUE D/DX2 10000 M*/ eIN 'I YO
8 IrP PFA (ê 0= PFA 1 ;
9 \ A 2nd-order Ruge-Kutta integrator which simulates a 2nd-order
10 \ partial differential eqation by solving n eqations of the
11 \ form (e.g., in rectangular co-rdinates):
12 \
13 \
14 \
15 \
ok

9May86ngl

dUi -J2i (Ui-L - 2Uí + Ui+i)

dt - ÂX . .

