Proceedings of the 1986 Rochester Forth Conference - 349

Signal Space, Address Space, & Symbol Space
» James C. Brakefield
Technology Incorporated, Life Sciences Division
300 Breesport, San Antonio, Texas 78216

Abstract:

Three major engineering disciplines (computer or hardware, software, and
knowledge) can be abstracted so that they deal with vector spaces. The
three abstract spaces can be mapped into one another such that concepts in
one take ,another form in one of the others. This leads to insights into the
nature of various problems. ‘

Boolean signal space is a variation of the binary hyper-cube. It can be
used as a framework for logic design.

Address space is a variation of Forth. It can be used as a framework for
the programming of computers.

Symbol space is an approach to the artificial intelligence paradigm. Its
intuitive appeal is as a model of thought.

The talk will describe each of these in greater detail, show the mappings
from one to another, and show some problems which benefit from the recasting
of their context.

A. Binary Signal Space

Binary signal space is acollection of binary inputs, outputs, and inter-
mediate signals considered as a whole. Usually each is considered an
orthogonal axis giving rise to the hyper-cube. This is the usual starting
point for logic circuit design. My concern'is with the entire system, such
as a complete computer with all its memory modeled as gates. Thus the area
of interest is thousands, millions, or even billions of signals.)

Some questions can be asked in the presence of such large numbers: Is it
possible to fully specify the complete truth table with so many signals?
How does one know a particular circuit is correct? What happens to the
circuit as truth table entries are added? What happens to the circuit when
signals are added?

My interest is mapping the pattern recognition and learning situations into
logic design. Each pattern or learning example is a single truth table
entry. Any mechanism that "learns" is then doing circuit design where
entries and/or signals are added one at a time to the truth table. The
truth table entries can be thought of as lTabels of the veriticies of the
hyper-cube. ‘ p

In such acircuit design environment the truth table is extremely sparse.
With only one hundred signals there are 2**100 or 10**30 entries. Even a
million entries (say 10 by 10 binary raster images) is an insignificant
portion of the hyperspace. These unfilled entries are essentially "don't
cares". The circuit design software or hardware assigns them so as to
simplify the circuit.

350 The Journal of Forth Application and Research Volume 4 Number 2

B. Address Space

Address space is an abstraction of the programming paradigm. Forth is very
suitable for this. Programs consist of address strings referencing either
other address strings or primitives. The interpretation of the strings is
sequential whereas the signal space merely computes a function.

A feature common to both address space and signal space is decomposition.
There is a hierarchy of gates and subroutines. If a subroutine calls itself
directly or indirectly one has recursion. If a gate is fed by itself
directly or indirectly one has a feedback 1oop.

A pure functional approach will map recursion and feedback into an infinite
tree structure. This gets rid of the 1oops by macro expans1on. The other
approach is to name at least one s1gna1 or address in a recursion or feed-
back Toop so in one's mind the Toop is broken.

It is in some sense most 1mportant to know the decompos1tion Structure. The
really "hard" part of programm1ng is choosing an appropriate decomposition
of the problem. Likewise in circuit design. .

There is Tittle said about the expression of decompos1t1on structure. How-
ever, it is critical. Modern circuit design is hierarchial and structured
witnessed by the acceptance of CAD systems using this approach. Al11 the
more "advanced" languages (Forth, L1sp, Prolog) support tree structures both
as program and as. data.

Another term used is "factoring". If one can consider a hardware circuit
description language or a programm1ng language as an algebra, then the
structure of a program or circuit is the factoring of a problem into
"terms". The real advantage of Forth is the ease and generality of its
factor1ng ability.

There appears to be a duality between hardware and software when expressed
as signal space and address space. Feedback circuits form the backbone of
memory and are the most prominent s1gnals to have names. Recursion Toops in
address space are usua]]y broken by naming, thus there is a duality between
feedback and recursion. In the s1gna1 space implementation of address space
the feedback loops are enumerated via address decoders. These then become
the "units" of the address space. In the address space implementation of
signal space the recursion of routines calling one another is broken by the
symbol table which enumerates the signals.

The dual of time is space. Thus the hardware operates all signals in
parallel over time. Software operates s1gna1s sequentially in time with
memory being in parallel over space.

1 make the case that much of human "learning” is the search for such de-
compositions or structure. That this is the expression of generalization
and knowledge. One can even make the case that this is the core of
philosophy: Abstract philosophy is the study of decomposition in and of
itself. Applied philosophy is the study of decompositions occurring in
certain areas or fields. Science is the search for decomposition structures
in reproducible phenomena. Engineering is the application of known
decomposition structures. v

Proceedings of the 1986 Rochester Forth Conference 351

C. Symbol Space

Symbol space is the hoped-for algebra of thought. We all know what symbols
are. . They are the tokens representing our experiences. Il.e., the intuitive
meaning of a symbol is what is considered a single thought. The progress of
civilization is measured in our ability to make real these thoughts. Thus
speech, writing, and graphics. Symbol processing is the basis of language.
Two symbol spaces are similar when they can communicate. The implications
are that a government must ensure similar "symbol spaces" in its citizens,
and thus the real purpose of our educational -institutions. . :

The Turing test can be rephrased as the task of building a symbol spacé
equivalent to that of an average person. - I think this phrasing gives a
better understanding of the problem of simulating human conversation.

Most of the programming languages used in Al work allow structure to.be
expressed easily, the dictionary of Forth, the CAR-CDR 1ists of LISP, and
terms of Prolog. These:.are all ways of creating and naming tree structures.
They are all also executable in some sense. ,

D. Mappings

Since computers, the mechanism implementing address space is built from
gates, signal space can implement address space. The major technique is the
enumeration of a large number of feedback circuits, i.e., memory. This
enumeration is implemented by address decoders and associated read and write
circuits. The cost of these auxiliary circuits is such that usually only a
single path to memory is provided, and hence the von Neuman bottleneck.

When address space implements signal space it is called a logic simulator.
Interestingly enough the Forth code string representation of a logic circuit
is about the same as the data structures used, in say, a Fortran-based logic
simulator, i.e., there is a code string for each gate which when
evaluated/interpreted updates the output of the gate.

The net result is that a subset of the memory Tlocations represent the state
of the logic circuit. This is the dual of the logic circuit representing a
computer where a subset of the gates represent the memory contents.

Symbol space is a set of symbols and their algebra. In address space
symbols are memory locations, and their algebra is the executable tree
structures they reference. 1In signal space the symbols are signals and
their algebra is their effect on the rest of the circuit. Thus, a symbol
space can be implemented by either signal space or address space. So far
symbol spaces have been implemented as programs and the programs implemented
by computers. This need not be so, the compilation of silicon being the
means for going directly from specification to hardware.

A given signal space or address space is finite. Thus the symbol spaces
either can simulate will also be finite. - This can be expected to give rise
to an interesting set of aliasing or truncation phenomena of which the next
several decades will present many examples. The most common expression of
this is the Timited context which Al programs are able to use, i.e., their
lTack of common sense.

352 The Journal of Forth Application and Research: Volume 4 Number 2

There are several relations between all three: If we take Prolog as a means
of expressing things in symbol space, then translate this into signal or
address space: The clauses of Prolog can-be directly made into Forth code
strings or emulated by a hardware logic simulator. The clauses are also a
means of specifying a truth table. :

E. Summary

Much as physics gives rise to several engineering disciplines (Mechanical,
Civil, Industrial) so'may what is legitimately called computer science gives
rise to computer, software, and knowledge engineering. It is still a
science in its infancy whose boundaries and areas of application are
unresolved. - A better name might be the science of information structure.

Much exploration of symbol algebras needs to and will be done. The mere
idea of what constitutes computation is being debated. The duality between
signal space and address space offers opportunity for a more scientific
analysis of the trade-offs between the two. The effects of finiteness of
the implementation of symbol spaces needs analytical treatment. '

