
Proceedings.of the 1986. Rochester Forth Conference 349

Signal Space, Address Space, & Symbol Space
James C, Brakefield

Technology Incorporated, Life Sciences Division
300 Breesport, San Antonio, Texas 78216

Abstract:

Three major engineering discipl ines (computer or hardware, software, an~
knowl edge) can be abstracted so that they deal withvectof spaces. The
three abstract spaces can be mapped into one another such that concepts in
one take ,another form in one of the others. This 1 eads to insights into the
nature of various probl ems,

Boolean signal space is a variation of the binary hyper-cube. It can be
.used as a framework for logic design,

Address space is a variation of Forth, It can be used as a framework for
the programmi ng of computers,

Symbol space is an approach to the artificial intell igence paradigm. Its
i ntui ti ve appeal is as a model of though~

The talk will describe each of these in greater detail, show the mappings
from one to another, and show some probl ems which benefit from the recasting
of thei r context,

A. Binary Signal Space

In such a circuit design environment the truth table is extremely sparse,
With only one hundred signal s there are 2**100 or 10**30 entries, Even a
mill ion entries (say 10 by 10 binary raster images) is an insignificant
portion of the hyperspace. These unfilled entries are essentially "don't
cares". The ci rcui t desi gn software or hardware assi gns them so as to
simplify the circuit,

350 The Journal of Forth Application and Research. Volume 4 Number 2

B. Address Space

Address space is an abstracti on of the programmi ng paradi gm. Forth is very
sui tab1 e for thi s, Programs consist of address stri ngs referenci ng ei ther
other address strings or primitives, The interpretation of the strings is
sequential whereas the signal space merely computes a function.

A feature common to both address space and signal space is decomposition.
There is a hierarchy of gates and subroutines. If a subroutine call s itse1 f
di rect1 y or i ndi rect1 y one has recursion. I f agate is fed by i tse1 f
directly or indirectly one has a fe.edback loop,

A pure functi ona 1 approach will map recursi on and feedback into an i nfi ni te
tree structure. This gets rid of thel oops by macro expansion. The other
approach is to name at least one signal or address in a recursion or feed-
back loop so in one's mi nd the loop is broken.

It is in some sense most important to know the decomposition structure. The
really "hard" part of programming is choosing an appropriate decomposition
of the problem, Likewise in circuit design,

There is 1 ittle said about the expression of decomposition structure. How-
ever, it is critical, Modern circuit design is hierarchial and structured
witnessed by the acceptance of CAD systems using this approach. All the
more "advanced" languages (Forth, .Lisp, Prolog) support tree structures both
as program and as data.

Another term used is "factoring". If one can consider a hardware circuit
description 1 anguage or a programming 1 anguage as an algebra, then the
structure of a program or circuit is the factoring of a problem into
"terms". The real advantage of For.th is the ease and general ity of its
factoring ability,

There appears to be a duality between hardware and software when expressed
as si gna 1 space and address space. Feedback cfrcui ts form the backbone of
memory and are the most prominent signal s to have nameS, Recursion loops in
address space are usually broken by naming, thus there is a dual ity between
feedback and recursion. In the signal space impl ementation of address space
the feedback loops are enumerated v i a address decoders,. These then become
the "units" of the address space. In the address space impl ementation of
signal space the recursion of routines calling one another is broken by the
symbol table which enumerates the signals.

The dual of time is space. Thus the hardware operates all signal s in
parall el over time. Software operates signal s sequential1y in time with
memory being in para11 e1 over. space,

I make the case that much of human "1 earni ng" is the search for. such de-
compositions or structure, That this is the expression of general ization
and knowl edge, One can even make the case that this is the core of
phil osophy: Abstract phil osophy is the study of decomposition in and of
itself, Appl ied philosophy is the study of decompositionsoccurring in
certain areas or fiel ds, Science is the search for decomposition structures
in reproduci b 1 e phenomena. Engineeri ng is the app 1 i cati on of known
decomposi tion structures,

Proceedings of the 1986 Rochester Forth Conference 351

C, Symbol Space

Symbol space is the hoped-for a1 gebra of thought, We all know what symbol s
are, They are the tokens representing our experiences, Le" the intuitive
meani ng of a symbo 1 is what is consi de red a sing1 e thòught, The progress oJ
civilization is measured in our ability to make real these thoughts, Thus
speech, writing, and graphics. Symbol processing is the basis of language,
Two symbol spaces are simi 1 ar when they can communicate. The imp1 ications
are that a government must ensuresimi 1 ar "symbol spaces" in its citizens,
and thus the real purpose of our educational institutions,

The Turing test can be rephrased as the task of buil~ing a symbol space
equivalent to that of an average person. I think this phrasing gives a
better understanding of the probl em of simu1 ating human conversation.

Most of the programmi ng 1 anguages used i ~AI work all owstructure to be
expressed easily, the dictionary of Forth, the CAR-COR 1 ists of LISP, and
terms of Pro10g, These are all ways of creating and naming tree structures,
They are all al so executabl e in some sense,

O. Mappi ngs

Since computers, the mechanism implementing address space is built from
gates, signal space can implement address space, The major technique is the
enumerati on of a 1 arge number of feedback ci rcui ts, i ,e., memory, Thi s
enumerati on is imp 1 emented by address decoders and associ ated read and wri te
circuits. The cost of these auxil iary circuits is such that usually only a
singl e path to memory is provided, and hence the von Neuman bottl eneck.

When address space implements signal space it is called a logic simulator.
Interestingly enough the Forth code string representation of a logic circuit
is about the same as the data structures used, in say, a Fortran-based logic
simulator, i.e., there is a code string for each gate which when
eva1 uated/interpreted updates the output of the gate,

The net result is that a subset of the memory locations represent the state
of the logic circuit, This is the dual of the logic circuit representing a
computer where a subset of the gates represent the memory contents,

Symbol space is a set of symbols and their algebra, In address space
symbols are memory locations, and their algebra is the executable tree
structures they reference. In signal space the symbol s are signal sand
their al gebra is their effect on the rest of the circuit. Thus, a symbol
space can be implemented by either signal space or address space. So far
symbo 1 spaces ha ve been implemented as programs and the programs imp 1 emented
by computers. This need not be so, the compilation of silicon being the
means for going directly from specification to hardware,

A given signal space or address space is finite. Thus the symbol spaces
either can simulate will also be finite, This can be expected to give rise
to an interesting set of a1iasing or truncation phenomena of which the next
severa 1 decades wi 11 present many examples, The most common expressi on of
this is the limited context which AI programs are able to use, i.e., their
1 ack of common sense.

The Journal of Forth Application and Research Volume 4 Number 2352

There are several rel ations between all three: If we take Prolog as a means
of expressing things in symbol space, then transl ate this into signal or
address space: The cl auses of Prolog can be directly made into Forth code
strings or emul ated by a hardware logic simul ator. The cl auses are al so a
means of speci fyi ng a truth tab 1 e,

E, Summary

Much as physics gives rise to several engineering discipl ines (Mechanical,
Civil, Industrial) so may what is legitimately called computer science gives
rise to computer, software, and knowledge engineering, It is still a
science in its infancy whose boundaries and areas of appl ication are
unresol ved, A better name might be the science of information structure.

Much exploration of symbol algebras needs to and will be done. The mere
idea of what constitutes computation is being debated, The dual ity between
signal space and address space offers opportunity for a more scientific
analysis of the trade-offs between the two. The effects of finiteness of
the implementation of symbol spaces needs analytical treatment.

