
Proceedings of the 1986 Rochester Forth Conference 241

_ ORPHANS
An Unreferenced Code Finder

Jamison H. Abbott
ibidinc

Sui te 6Ø7
179 All yn St.

Hartford, CT Ø61Ø3

ABSTRACT

For a variety of reasons a program may contain
compi 1 ed code that is not used by it. Thi stool,
. ORPHANS, allows the Programmer to find that unused or
'orphan' code so that it may be removed. The choi ce of
a very 'Forth-like' implementation of this tool,
reI yi ng heavi 1 y on the data stack and the di cti onary,
instead of a more cl assi cal approach, usi ng a symbol
table, results in trade-offs in speed versus
generality. This paper also briefly discusses how
.ORPHANS can be used for pruning a Forth nucleus; this
can be particularly useful in target-compiling.

I NTRODUCT I ON

Th is tool was developed as a resul t of both the all too
common need to fit more code into a 64K dictionary and my
suspicion that some of the compiled code that was already in the
dictionary was not being used. One reason that some of the code
in the dictionary might have become unused is due to human error
on the Programmer's part--usually as a side effect of revising
the source code. Moreover, if one is utilizing some unfamiliar
lib~ary routines, it is quite possible that some of the routines
in the library are not needed by the final application. The
detection of those unreferenced routines is not an easy task for
the Programmer if the library is large; with this tool, it
becomes semi-automated. In addition, much of the nucleus code
may also be unreferenced by an application; this tool can ~ind
that code as well.

DESIGN & IMPLEMENTATION

The design is bas~d on knowledge of the implementation of
the dictionary structure. We traverse the dictionary from top
(latest compiled word) to bottom. For each word encountered in
the dictionary we look at the data stack to see if that word's
CFA is in it. If it is, we remove the CFA and continue down to
the next word in the dictionary. If it's not there, we print out
a message flagging that word as an orphan and continue down to
the next word in the dictionary.

However, bef ore cont i nui ng down to the nex t word in the
dictionary we check to see if the current word is a colon

242 The Journal of Forth Application and Research Volume 4 Number2

definition. If it is, we take all the CFAs that make up the
body of t he word (the 'const i tuent' CFAs) and put them on
the stack. To prevent the stack from growing too large we
check the stack for CFAs that match the consti tuent ones so
that we never put any dupl icate CFAs on the stack.

Thi s process cont i nues unt i I ei ther the FENCE is reached or
unti 1 the bottom of the diction.ary is reached (see 1 isting). For
those whose implementation does not include FENCE, it may be
defined as:

FENCE --- addr A vari able that contai ns an
address below which FORGETting is trapped. (LMI84l

APPLICATION

To use .ORPHANS follow the instructions (see listing) on
screens four and five respectively for finding unreferenced code
and for pruning the nucleus. Because .ORPHANS doesn't always
handle certain cases correctly (see below) any words that
references with the search function of your editor.
CONCLUS I ON

. ORPHANS has been used sucessfull y in the development of
several programs. However, since .ORPHANS makes such intimate
use of the dictionary, the source code for it may have to be
modified to conform to a particul.ar user's implementation of
Forth. Although an implementation of .ORPHANS which used a sym-
bol table instead of relying on the dictionary would probably
more accurately handle such cases as~ Vectored execution, QUANs
and other multiple-CFA words, Children of defining words, Words
that are only referenced inside Code words, Recursive definit-
ions and Vocabularies (these cases are not usually handled cor-
rectly by . ORPHANS) ; a symbol table implementation would, most
likely, also be much slower (FEI85l.

REFERENCES

(LMIB4l Laboratory Microsystems Incorporated,
PC/FORTH Language Reference Hanual

(FEI85l Gary Fei erbach and Paul Thomas,
Forth tools and applications,
Reston Publishing Company, Inc., 1985
(CONCORDANCE program: pp. 30-34)

APPENDIX Non Forth-83 Words -- (LMI84J

. NAME addr --- Gi ven the address of the name f i el d
of a dictionary header, displays the name on the
current output devi ce.

ALIGN addr1 --- addr2 If addr1 is odd, round it up
to the next higher address

)NAME,)LINK,)BODY, NAME) (field address conversion words)

Proceedings of the 1986 Rochester Forth Conference 243

Screen # 4
(. ORPHANS: UN-REFERENCED CODE FINDER 14:1311/12/85 I

To use .ORPHANS to find unreferenced code:

First, clean out the dictionary by perforiing a COLD.

Then, load the ,ORPHANS screens. Next, load your prograls

source code on top of .ORPHANS. Last, invoke the utility by ty-

ping the ~ord .ORPHANS and ans~ering the proipts. When the ~ord

.ORPHANS is interpreted the NFAof your prograls last (top-most

in the dictionary) ~ord should be on top of the stack: (e.g.
LATEST .ORPHANS!, You ~ill then be asked if you ~ant the trace

on. Answer 'Y' if you ~ant to see the full execution of the

utility including the CFA's of all the ~ords that it encounters

in the dictionary. If you ans~ered 'Y, then you will also be

asked if ~ant to single-step thru the execution of the uti 1 i ty.

Screen # 6
(.ORPHANS: UN-REFERENCED CODE FINDER jha 17:01 Ø4/12/85)

(Laboratory Hicrosystems -- Pc/FORTH 3.0 n FORTH '83)

(Hodified jha B/9/85: added skip-over on literal strings I

'unnest CONSTANT j -CFA

VARIA8LE CURR-CFA

VAR I ABLE SAVE -PF A

o CONSTANT DUHHY

I BELOH: Get CFA's of non code-type definitions !

FORTH ~ CONSTANT vocabulary-CFA (0327h I

S0 ~ CONSTANT usercCFA I Ø3Bh)
CURR-CFA ~ CONSTANT vari able-CFA (0300h)

DUHHY a CONSTANT constant-CFA (0308h)

HORDS ~ CONSTANT colon-CFA

SOURCE ~ CONSTANT source-CFA

, litq CONSTAtlT (.'l-FA

Screen # 8
(,ORPHANS: UN-REFERENCED CODE FINDER jha 17:01 04/12/85)

(Laboratory Hicrosystm -- Pc/FORTH 3.0 -- FORTH '83)

VARIABLE SINGLE-STEP

VARIABLE TRACE

N. I n --) DUP U. HEX 0 (I 41 HOLD 104 HOLD l l 1 l I)

TYPE DEe I HAL ;

NAHE&CFA (CFA n 1 displays the naie and CFA)
DUP)NAHE .NAHE ." (CFA= ' N. ;

. ORPHAN (--) CURR-CF ~ CR DUP DUP)NAHE . NAHE

.' --is AN ORPHAN' .' (CFA=' N. . TYPE;

HESSAGE! CR .' No~ Below the Fence -- Qui Hi ng..." CR ;

HESSAGE2 (--) CR CR .' Starting the Run... . SINGLE-TEP ~

IF CR ." (Press any key to continue the trace) , THEN;

HESSAGE3 In) CR eR CR .' Do you mt trace on? (Y IN) ,
HESSAGE4 CR CR .' Do you ~ant single-step on ? (Y/N) ';

Laboratory Hicrosyste.s PC/FORTH 3.ØØ

Screen # 5
(. ORPHANS: UN-REFERENCED CODE FIDER 14: 13 11/12/85 L

To use .ORPHANS to prune the Forth nucleus:

The procedure in this case is siiilar to that ~hen find-

ing unreferencedcodej ho~ever, in this case you should load

your progral s source code FIRST and then load . ORPHANS on top

of it' BUT, be careful to invoke .ORPHANS with the NFA of the

topiost Mord of your application (use WORDS or IJLIST to see) and

NOT the topmost word of .ORPHANS' (Note: this procedure will

prevent .ORPHANS froi 'seeing' itselíso it Mon't be counted in

the referenced code.)

Also, since .ORPHANS stops when it encounters the 'fence' marker

you should deactivate the fence by setting to zero (the bottom

D.t the di~tionary).

Screen # 7
(,ORPHANS: UN-REFERENCED CODE FINDER jha 17:01 ~411!85

I Laboratory Hicrosysteis -- PC/FORTH3.0 -- FORTH '83)

,TYPE (cfa -- 1 display type of definition
SPACE DUP DUP ~ 2- =

IF DROP." (code)'
ELSE ~

CASE

colon-CFA

variable-CFA
constant-CFA
user-CFA

vocabulary-CFA
source-eFA
." (unknOMn)

ENOCASE

THEN j

OF .' (colon l END OF

OF .' I variable l ENDOF

OF .' I constant). ENDOF

OF ," (user)' ENDOF

OF .' (vocabul ary)' ENDOF

OF .' (source)' ENDOF

. 7.EHI

Screen # 9
(.QRPHANS: UN-REFERENCED CODE FINDER jha 17:01 ~4/12185)

I Laboratory Microsystems -- PC/FORTH 3.0 -- FORTH '83 L

EHPTY I a be". --- ! empties the stack of àll items
DEPTH 0 ?DO DROP LOOP;

.AT I --- / DISPLAY THE DEF. THAT HE ARE CURRENTLY AT)

TRACE ~

IF CURR-CF ~ DUP

CR 12 SPACES .' AT: . ~~AHE~CFA . TYPE

THEN;

Ø9: 13 ØS/12/86 T :orphans. scr

244 The Journal of Forth Application and Research Volume 4 Number 2

Screen # 1Ø
I . ORPHANS: UN-REFERENCED CODE FINDER jha 17:01 94/12/85 ì

(Laboratory Hicrosysteis -- PC/FORTH 3.9 -- FORTH '83)

VARIABLE NOT-N-STACK-FLA6

VARIABLE S-HATCH

?NOT-ON-STACK (n -- f 1 Search the data stack for a latch,

drop it froi the stack if found. Leave a result flag.)

S-HATCH 1 i NOT-ON-STACK-FLA6 '

DEPTH 0

')DO

I PICK S-MATCH a =

IF I ROLL DROP 0 NOT-ON-STACK-FLAG

ELSE 1

THEN

+LOOP

NOT-N-STACK-FLA6 ~

Screen # 12
I ,ORPHANS: UN-REFERENCED CODE FINDER jha 17:06 Ø4/12/85)

I Laboratory Hicrosystems -- PC/FORTH 3.0 -- FORTH '83)

PUSH-EH (-- ab... Ileaves the CFA's on, the stack)

CURR-CFA ~ ¡BODY DUP BEGIN ~ (curr-PFA call -eFA ì

OUP I.")-CFA = (check for stringslcurr-PFA càll-CFA flag)

IF DROP 2+ DUP C~ + 1- ALIGN DUP a THEN I curr-PFA call-CFA)

DUP ;-CFA 0 (-- curr-PFA ca! l-FA flag)
WHILE (-- curr-PFA call-CFA i

DUP CURR-CFA a U(NOT (check for fwd branchi

OVER)NAHE FENCE ~ U(OR (beloN fence? I

IF DROP

ELSE SWAP SAVE-PF 1 ALREADY-ON-STACK IF DROP THEN

SAVE -PF ~

THEN 2+ DUP

REPEA T DROP DROP ;

Screen # 14
I .ORPHANS: UN-REFERENCED CODE FINDER iha 17:01 04/12/85)

(Laboratory Hicrosysteis -- Pc/FORTH 3.0 -- FORTH '83 ,

.ORPHANS (nfa -- 1 prints the naies of uncalled definitions)

DUP FENCE ~ U(NOT

IF HESSA6E3 KEY ASCI Y =

IF HESSA6E4 KEY ASCII Y = IF 1 ELSE 0 THEN 1 ELSE 0 0

THEN TRACE ' 5I6L-STE 1

HESSA6E2 NAHE) CURR-FA ' . AT . ORPHAN

BE6IN

PUSH-FA'S NEX -DEF. CURR-CFA ~)NAME FENCE ~ U(NOT

WHILE

SIN6LE-STE ~ IF PCKEY ?DUP 2DROP THEN .AT

CURR-CFA ~ ?NOT-ON-STACK IF .ORPHAN THEN

REPEAT

ELSE DROP

THEN EHPTY HESSA6E! I . S)

Laboratory Hicrosyste.s PC/FORTH 3.ØØ

Screen i# 11
I .ORPHANS: UN-REFERENCED CODE FINDER jha 17:91 0412/65)

I Laboratory Hicrosysteis -- PC/FORTH 3.9 -- FORTH '83)

VARI ABLE ALREADY-ON-ST ACK -FLA6

VARIABLE CFA-HATCH

: ALREADY-ON-STACK (n -- n f / Search the data stack f or a

iatch. Leave then iatch value and a result flag.)

CF-HATCH 1 0 ALREADY-ON-STACK-FLA6 !

DEPTH 9

?DO

I PICK CFA-HATCH l =

IF 1 ALREADY-ON-SmK-FLA6 '

THEN

LOOP

CF-HATCH a ALREADY-N-STACK-FLA6 ~

Screen # 13
(.ORPHANS: UN-REFERENCED CODE FINDER jha 17:01 04!l/85)

(Laboratory Hicrosysteis -- PC/FORTH 3.0 -- FORTH '83)

o CONSTANT 80TTOH (Bottoiof Dictionary? J

NEXT-DEF. I n_ 1 put cfa of next definition in CURR-CFA)

CURR-CFA ~ :'LINK ~

DUP BOTTOH U) NOT ABORT' Bottoi of Oictionary'

NAHE) (-- nextCFA)
CURR-CF ! j

: PUSH-CFA'S (--" a be... 1 pushes CFA' s on the stack unless
the current definition is not a colon deíinition,)

CURR-FA ~

DUP DUP ~ 2- =

I F DROP

ELSE ~ colon-CFA = IF PUSH-EH THEN

THEN

Screen # 15
(.ORPHANS: UN-REFERENCED CODE FINDE~ jha 89:579411/85)

(Laboratory Hicrosysteis c_ Pc/FORTH i .25)

(Hodi fied iha 8/9/85: added skip-over on literal strings!

HEX 0B61 CONSTANT ; -CFA DEC ¡HAL

o VARIABLE SAVE-PFA

o VARIABLE CURR-FA

o CONSTANT DUHHY

. FORTH CFA l CONSTANT vocabulary-CFA

, S0 CFA ! CONSTANT user-CFA

, CURR-CF CFA a CONSTANT variable-CF

, DUHHY CFA ! CONSTANT constant-CFA

, VLIST CFA ~ CONSTANT colon-CFA

(.') CFA CONSTANT (,'HFA I 183E)

)PFA (cfanpfa) 2+;

Ø9:14 ØS/12/86 r:orphans.scr

