
Proceedings of the 1986 Rochester Fort Conference 173

F I FTH-GENERAT I ON FORTH
James C. Bender

Texas Instruments
Dallas, Texas

1 . ABSTRACT
Fifth-Generation Forth is a language which combines

character istics of, both Lisp and Forth. The core vocabulary
includes built-in functions supporting object-oriented
programming (the Simple system, developed for Prolog), and
forward and backward chaining functions. Other built-in
functions support list-processing, string-processing, and frames
(as defined in Winston' s Artificial Intelligence i 2nd Edition.
Fifth-Generation Forth, then, has many attributes of an .expert
system building tool. An interpreter is under development for
the IBM PC and compatibles.

2 . PH I LOSOPHY
Fifth-Generation Forth is a high-level language which

combines a Forth-like syntax with the list notation of LISP, and
wi th an object-oriented view. Fifth-Generation Forth uses the
Simple Object-oriented system as the basis for a frame-based
knowledge representation system and for a production rule system.
In effect, then. Fifth-Generation Forth has all the features of
an expert system bui Idi ng tool, wi th the addition of a
procedural, Forth-like programming language.

The fundamental components of Fifth-Generation Forth are a
stack of pointers to objects (symbols, numbers, and lists), and a
dictionary of symbols and values. The values in the dictionary
can be either program or data: there is no distinction. The
dictionary is structured so that function definitions, data,
production rules, and facts are stored in separate areas.
Functions are provided for defining and manipulating each type.

Despi te the mixture of features, a uniform notation is used
which will look very familiar to Forth programmers.

3 . FUNCT IONS
Function names were chosen from several sources: Forth i

Lisp, and Flavors. Flavors is the Object-oriented programming
system for the Lisp machine environment. Stack-manipulation
functions use the standard Forth names while list-handling
functions use the Lisp names. Built-in functions are provided
for object-oriented programming, for the frame-based knowledge
representation, and for the production rule system, in addition
to the usual I/O, string-handling, and list processing functions.

~ . CONTROL STRUCTURES
Besides sequential and procedural abstractions, three

control structures are provided: "cond," a Lisp-like case
structure; "loop," an iteration with an "exit" at an arbitrary
position in the loop; and "for," a loop which is executed an
integer number of i terat ions.

a. Conditional (COND)
The format of the "cond" function is as follows:

174 The Journal of Fort Application and ResearchVolumè 4 Number 2

cond (((Condi tion-l) (Action-l))

((Condition-i) (Action-i)))

Each condition is executed in turn with a fla~ left an the stack
each time. The value of the flag must be either TRUE or FALSE,
or an error has occured. When a TRUE flag has been encountered,
the corresponding action is executed and control falls through to
the end of the 1 ist of condi tion~action pairs. A default is
denoted by the use of TRUE as the only item in the condition.
Bath TRUE and FALSE are pushed to the stack when they are
executed.

b. Iteration (loop)
The format of the "loop" is as follows:

loop (functions) fn-i
The li~t following "loop" is executed indefinitely, or until an
"exit" is executed . "exit" causes control to tran~fer to the
function after the list following "loop."

c . "far" Loop
The format of the "far" lOop is very similar to that of the

"loop," except that the list following the "far" is executed a
definite number of times. "far" expects an integer number an the
stack which specifies the number of loop iterations to be
executed. The format is as follows:

. .. far (functions)

The stack is assumed here to have an integer number left an the
stack.
5. OBJECT-ORIENTED PROGRAMMING

The Simple abject-oriented programming system, as
implemented in Fifth-Generation Forth, is derived from bath
Sn¡alltalk and Flavors. Classes of objects, subc:lasses, and
instances of classes can be defined. Software entities are used
to correspond to physical or conceptual entities in the problem
space. Generic messages are defined far classes which are
inherited by instances of thec:lasses. Messages may be sent to
instances, which invoke the execution of an associated function
or "method." Methods are stared in class obJects.

Only five functions are necessary to use
Simple: "defclass, " "make_instance," "defmethod," "defvlr," and
"send_.message. "

a. "defc:lass" is used to define classes and subclasses. The
format for "defclass" is as follows:

'Classname ' Superclasses defclass...

Proceedings of the 1986 Rochester Forth Conferenc~ 175

If the class is a root class, with no super classes, the
super class parameter must be a null list~-"()" (the Lisp "NIL"),
The apostrophe (') is a function (like the Lisp QUOTE) which
inhibi ts the execution of a symbol or iist which immediately
follows, The result .is that a pointer t6 the item following the
quote is pushed to the stack,

b, "make__instance" is a function which defines an object
which is a member of a class, The format of "make instance" is
as fol lows:

i Class 'I nstance__name make_instance

An instance is a member of onl~ one class, although classes can
have multiple superclasses, An instance inherits methods and
instance variables from the class to which it belongs, When an
instance is created, methods are automatically created for all
instance variables which it inherits. If an instance variable
has an initial value, that value is stored as the value of the
variable in the instance obJect,

c. "defmethod" is a function which defines
attached to a class to perform a generic function,
"defmethod" is as fo 11 ows :

a function
The forma t of

i Function-name 'Message 'Classname defmethod '"

The "Message" parameter is the generic message name which is used
to invoke the execution of the method function,

d, "defvar" is used to define instance variables, Instance
variable values are stored in instance objects, using methods
th.at are created when the objects are instantiated, The format
of "defvar" is as follows:

, I nstance-var i Class defvar

Using the names in this example, the method for reading the value
of an instance variable looks like : Instance-var, The method for
setting the value is of the form: : set- I nstance-var,

e, "send__message" is a function used to pass a message and,
optionally, arguments i to an instance obJect. Any returned value
is left on the top of the stack . The format of "send_message "is
as follows:

, (Arg- 1 i st) 'Message-name 'I nstance-name send_message

The arguments must be contained in a list. This is done for ease
of implementation and efficiency,

6. FRAME-BASED KNOWLEDGE REPRESENTATION SYSTEM
A frame-based knowledge representation system

Fifth-Generation Forth. Frames are used to build
network. This system allows the dynamic creation

accompanies
a semantic
of frames,

176 The Journal of Forth Application and Research Volume 4 Number 2

slots, facets, and values. A quadruple of a frame name, a slot
name, a facet name, and a value can be thought of as a relation.
A slot is an attribute of the frame. A facet is an attribute of
a slot. Ualues are usually stored in the value facet of a slot.

There are a large number of frame-handling functions in
Fifth-Generation Forth. The most often-used functions are:
"fput" (to put a value into a frame-slot-facet-value relation),
"fget" (to retrieve a value), and "fremove" (to remove a value).
Fora more complete explanation of frames see Winston and Horn's
Lisp book (2nd edition).
7. PRODUCT I ON RULE SYSTEM

The production rule system included as part of Fifth-
Generation Forth allows the definition of "if-then-do" rules with
variables, and unstruct~red facts. The rules can be driven
ei ther backward or for-ward. Rules and facts can be added
dynamically during execution. Usable systems must allow the set
of rules and facts (a knowledge base) to be modified during
program execution. The forward chaining inference engine
requires this capability in order to work. As rules fire, the
consequents of rules (the "then" part) are added to the knowledge
base. Fúnctions are provided to define rules and facts, to
remove them, and to initiate the forward and backward chaining
reasoning processes.
8. IMPLEMENTATIONS

A prototype interpreter was written to aid development of
language concepts, and for an IEEE-~88 control application. This
interpreter did include support for the fundamental frame
operations at the core of the Simple obJect-oriented system, but
did not have built-in forward and backward chaining functions.
Built-in functions were provided for IEEE-~88 control.

A Fifth-Generation Forth interpreter is under development
for IBM PC's and true compatibles. This interpreter will support
the full definition of the language. It is likely that graphics
will also be available, since the underlying implementation
language prOVides graphics support.

9 . CONCLUS I ON
Fifth-Generation Forth is a procedural language which uses a

Forth-like syntax and a Lisp-like list notation. Features
included in the language include the Simple object-oriented
system, a frame-based knåwledge representation system , and a
production rule system. Fifth-Generation Forth is sui table fordeveloping a wide variety of artificial intelligence
applications, including expert systems and natural language
processing. Real-time efficiency is sacrificed in the design and
implementation in exchange for a powerful knowledge
representation system and the facility for expressing both
domain-related rules and meta-rules. The design of the language
has evolved out of an earlier, high-level language implementation
of Forth.

