Proceedings of the 1986 Rochester Forth Conference - _ 173

FIFTH-GENERATION FORTH
James C. Bender
Texas Instruments .
Dallas, Texas

1. ABSTRACT , .
Fifth-Generation Forth- is ~a language which combines

characteristics of both Lisp and Forth. - The core vocabulary
includss built-in functions supporting object-oriented
programming (the Simple system, developed for Prologl, and
forward and backward chaining Ffunctions, Other built—-in

functions support list-processing, string-processing, and framss
(as defined in Winston’s Artificial Intelligence, 2nd Edition.
Fifth-Generation Forth, then, has many attributes of an expert
system building tool. An interpretsr is under development Ffor
the IBM PC and compatibles.

2. PHILOSOPHY

Fifth—-Generation Forth is a high-level language - which
combines a Forth-like syntax with the list notation of LISP, and
with an object-coriented view. Fifth-Generation Forth uses the
Simple object-oriented system as the basis for a frame-based
knowledge representation system and for a production rule system.
In effect, then, Fifth-Generation Forth has all the features of
an expert system building tool, with the addition of a
procedural, Faorth-like programming language. :

The Ffundamental. components of Fifth-Generation Forth are a
stack of pointers to obJects (symbols, numbers, and lists), and a
dictionary of symbols and values. The values in the dicticnarg
can. be either program or data: there is no distinction. The
dictionary 1is structured so that function definitions, data,
production rules, and facts are stored in separate areas.
Functions are provided for defining and manipulating each type.

Despite the mixture of features, a uniform notation is used
which will look very familiar to Forth programmers. .

3. FUNCTIONS _ _ . :
Function names were chosen from several sources: Forth,
Lisp, and Flavors. Flavors is the object-criented programming
system for the Lisp machine environment. Stack-manipulation
Functions wuse .the standard Forth names while list-handling
functions use the Lisp names. Built~-in functions are provided
for object-oriented programming, . for the frame-based knowledge
representation, and for the production rule system, in addition
to the usual I1/0, string-handling, and list processing functions.

4. CONTROL STRUCTURES

Besides sesquential and procedural abstractions, three
control structures are provided: . "cond,” a Lisp-like case
structurs; "loop,” an iteration with an “exit” at -an arbitrary
position in the loop; and "for,” a loop which is executed an

integer number of iteratiaons.

a. Conditional (COND))
The format of the "cond” function is as follous:

174 The Journal of Forth Application and Research Volumé 4 Number 2

cond (((Condition-1)CAction-1))

((Condition-i)(Action—-i)J)

Each condition is executed in turn with a Flag left on the stack
each time. The value of the flag must be either TRUE or FALSE,
‘or an error has occured. When a TRUE flag has been encountered,
the corresponding action is executed and contrel falls through to
the end of the list of condition-action pairs. A default is
denoted by the use of TRUE as the only item in the condition.
Both TRUE and FALSE are pushed to ths stack when they are
executed. :

b. Iteration (loop)
The format of the "loop” is as follous:

loop C fFunctions) £n-i

The 1list following "loop” is executed indefinitely, “or until an
"exit"” is executed. "exit?” causes ccntrol to transfer to the
functlcn after the llSt following "loop.

c. "for” Loop =

The FfFormat of the ”"for” loop is very similar to that of the
“loop,” except that the list following the "for” is executed a
definite number of times. "for” expects an integer number on the
stack uwhich specifies the number of *loop iterations to be
executed. The format -is as follouws:

.. For C Functions J ...

The stack is assumed here to have an integer number left on -thse
stack.

5. OBJECT-ORIENTED PROGRAMMING

The Simple object-ariented programming system, as
implemented in Fifth-Generation Forth, is derived Ffrom both
Smalltalk and Flavors. Classes ‘of objects, subclasses, and
instances of classes can be defined. Software entities are used
to correspond to physical or conceptual entities in the praoblem
space. Generic messages are defined for classes which are
inherited by instances of the tlasses. Messages may be sent to
instances, uwhich invoke the exscution of an associated fFunction
or "method.” Methods are stored in class objscts.

Only five functions are necessary to use
Simple: "defclass,” Tmake_instance,” "defmethod,” "defvar,” and
"send_message.” : ' S

a. "defclass” is used to define classes and subclasses. The
Format for "defclass” is as follows:

... 'Classname ’Superclasses defclass

Proceedings of the 1986 Rochester Forth Conference 175

If the. class is a root class, with no super classes, the
super class parameter must be a null list--"(3" (the Lisp ”NIL”).
The. apostrophe (') is a functiaon (like the Llsp RUOTEY ‘which
inhibits the execution of a symbeol or list which immediately
follows. The result is that a pointer to the item following the
quote is pushed to.the stack.

. b. "make instance” . is a fFunction which defines an obhject
which is a member of a class. The format of "make_instance” is
as follows:

.. 'Class ’Instance_name make_instance

An instance is a member of only one class, although classes can

have multiple superclasses. An instance inherits methods and
instance variables from the class to which it belongs. When an
instance is created, methods are automatically created for all
instance variables which it inherits. If an instance variable

has an initial value, that value is stored as the value of the
varlabls in the 1nstancs object.

&. "defmethad” is a Ffunction which defines- - a Ffunction
attached to a class to perform a generic function. The format of
"defmethod” is as follouws:

... 'Function—-name ’'Message ’'Classname defmethad ...

The "Message” parameter is the generic message name which is used
to invoke the execution of the method function.

‘d. "defvar” is used to define instance variables. Instance
variable values are stored in instance objects, using methods
that are created when the objects are instantiated. The Format
of "defvar” is as follows:

v ’Instanbe—var 'Class defvar ...

Using the names in this example, the method for reading the value
of an instance variable locks like :lnstance-var. The method for
setting the value is of the form: :set-Instance-var.

e, -"send_message” is a functlon used to pass a message and,
optionally, arguments toc an instance object. Any returned valua
is left on the top of the stack. The format :.of "send_message” is
as follouws:

voo.C Arg-list) ’Hassags—nams"Instance—name~send_message

The arguments must be contained in a list. This is done for ease
of implementation and efficiency. '

6. FRAME-BASED KNOWLEDGE REPRESENTATION SYSTEM

A frame-based knowledge representation system accompanies
Fifth-Generation Forth. Frames are used to build a semantic
network. This system allows the dynamic creation of Fframes,

176 The Journal of Forth Application and Research Volume 4 Number 2

slots, facets, and values. A quadruple of a frame name, a slot
name, a facet name, and a value can be thought of as a relation.
A slot is an attribute of the frame. A facet is an attribute of
a slot. Values are usually stored in the value facet of a slot.
Thers are a large number of frame-handling Ffunctions in

Fifth-Generation Forth. The most often-used Ffunctions are:
"Fput” (to put a value into a frame-slot-facet-value relation),
"Fget” (to retrieve a value), and "fremove” (to remove a value).

For a more complete explanation of frames see Winston and Horn’s
Lisp hook (2nd editionl.

7. PRODUCTION RULE SYSTEM

The production rule system included as part of Fifth-
Generation Forth allows the definition of "if-then-do” rules with
variables, and unstructured facts. The rules can be driven
either backward or forward. Rules and facts can be added
dynamically during exscution. Usable systems must allow the set
of rules and Facts (a knowledge base) to be modified during
program executian. The forward chaining inference engine
requires this capability in order to work. As rules fire, the
consequents of rules (the "then” part) are added to the knowledge
base. Functions are provided to define rules and Ffacts, to
remove them, and to initiate the forward and backward chaining
reasgning processes.

8. IMPLEMENTATIONS

A prototype interpreter was written to aid development of
language concepts, and for an [EEE-488 control application. This
interpreter did include support’ For tha fundamental frame
operations at the core of the Simple object-orisnted system, bhut
did not have built-in forward and backward chaining Ffunctions.
Built-in fFunctions were provided for IEEE-4B8 control.

A Fifth-Generation Forth interpreter is under development
for IBM PC’s and true compatibles. This interpreter will support
the full definition of the language. It is likely that graphics
will also be available, since the underlying implementation
language provides graphics support.

S. CONCLUSION

Fifth-Generation Forth is a procedural language which uses a
Forth-like syntax and a Lisp-like list notation. Features
included in the language include the Simple object-oriented
system, a frame-based knowledge representation system, and .- a
production rule system. Fifth-Generation Forth is suitable for
developing a wide variety of artificial intelligence
applications, including expert systems and natural language
processing. Real—time efficiency is sacrificed in the design and

implementation in aexchange for a powerful knowledge
representation system and the Facility Ffor expressing both
domain-related rules and meta-rules. - The design of the language

has evaolved out of an earlier, high—level language implementation
of Forth.

