
Proceedings of the 1986 Rochester Forth Conference 177

FOR.TH for AI?

Harold Carr and Robert R. Kessler

Uta Portle Arficial Intellgence Support Systems Prject

Deparent of Computer Science

University of Uta
Salt Lae City, Uta 84112

Abstract: Is FORTH a viable language for Artficial Intellgence (An? At firs glance, one
would be inclied to anwer yes since FORTH has severa features in common with Lisp and
Prolog, the languages preominantly used in AI. Al thee have some fonn of rutime symbol
table (dictionar, database) makng it possible to incrementay (re)define fuctions. Ths
promotes interactive prograing, where sttements in the language seiveàs the command
language. They ar al weaky ty: any varable (or stack location) may have as its value any
object. Ths makes it possible to write routines that can work on any kind of data or do generic

dispatches. Both Lisp and FORTH provide methods to create. new defiÏ1g y,ords so the
prograer is not limited to the defining words in the language kerneL. Are these (and other)
similarties enough? To anwer ths, we show the beginnngs of a simple symbolic differentiation

progra in both Lisp and Prolog. We then discuss th built-in features of Lisp and Prolog that
are used to an advantage by th progr. The laclc of these features makes standard FORTH a

por choice for AI research, at least for symbolic proessing. However, we do point out that
FORTH may be usefu as a "delivery vehicle" for well understoo progrs.

Common Features: Al the languages provide an interactive user interface. In FORTH, ths
interface is based on a reader which either compiles and instas words into the dictionar, or

finds and ru previously defined words. Ths is analogous to Lisp's !'time symbol table and

Prolog's database. Ths promotes a style of incrementa program development in which paral
progras are ru and debugged, relying on stubs or the debugger. to provide res~ts from

undefined fuctions. When a bug is found, the offending wordfuction/clause is fixed and the
dictionary/symbol table/database is chaged to include the con-cted definition.

Al th languages are weaky typd. Ths mean that storage locations are not restricted to
certn typs: they may hold integers, characters, stng pointers, etc. In Lisp and Prolog, rutime

tags cause the system to dispatch to the corrct routie. In FORTH, it is the programer's
respnsibilty to know how he wants to use an item at any partcular time.

One of the most powerf features of FORTH is its abilty to define new defining words. The
stadar example is definig a definig word CAR Y to create automatic vectors:
: carray (array-size --name)

create allot
does~ (index -- byte-address) + (Add index to base.) ;

With ths word you can define a 52 element arry: 52 carray cards. Storig and retreving

from ths automatic ary is then done by: 0 17 card c! and 17 card c~. Lisp's macro
facility can be used to provide ths capabilty:
(defmacro carray (name size)

. (progn
(setf ,name (make-array, size))
(defmacro ,name (index)

. (aref ,', name ,index))))
The equivalent Lisp usage would be (without the need for addresses): (carray cards 52)

178 The Journal of Forth Application and Research Volume 4 Number 2

to create the ary; (setf (cards 17) 0) and (cards 17) to store and retreve.

Al the language promote a style of progrming in which programs are composed of many

smal futions. Ths is ba.on the fact that fucton'cas ar implemented very efficiently in
FORTH, Lisp and Prlog. A more in-depth look at similarties between FORTH. Prolog and Lisp
is beyond the scope of ths papr, but we do point out that most of the common feabJres ar

feabJres that support interactive programming. Is ths enough for Alprogring? To anwer
ths we now bJrnour attention to symbolic processing, a critical component of any AI language.

Support forSymboHc Processing: The key to symbolic processing is the abilty to create and
manpulate aiitr strctures of symbols. We begin ths section with an example: symbolic

differentiation - ,an operation that convert an algebraic expression into another algebrac

expression. We write the derivative of expression U with respect to variable x as: dU / dx. Some
"roes" or "trfonnation templates" for differentiation are:
dc/dx =' 0 (c a constant or variable different from x)
dx/dx 1
d (U+V) /dx =
d (U-V) /dx =
d(U*V)/dx =

dU/dx + dV/dx
dU/dx - dV/dx

U*dV /dx + V*dU/dx

Both Prlog and Lisp can easily express these trfonnations:

Prol:
deriv(C,X,O)
deriv(C,X.O)
deriv(X,X,l) .
deriv (u+v, x, A+B)
deriv(U-V.X,A-B)
deri v (u*v, x, U*B+V*A)

number (C) .
atom(C), C \== x.

deriv(U,X,A), dei;iv(V,X,B).
deriv(U,X,Aj, deriv(V,X,B).
deriv (U, x, A), deriv (V, X, B) .

LI:
(defun deriv (exp var)

(cond ((numberp exp) 0)
((atom exp)
(if (equal exp var) 1 0))

((equal exp var) 1)
(t
(case (car exp)
(+ (list' + (deriv (second exp) var)

(deri v (third exp) var)))
(- (list' - (deriv (second ~xp) var)

(deriv (third exp) var)))
(* (list '+

(list' * (second exp)
, (deri v (third exp) var))

(list' * (third exp)
(deriv (secònd exp) var))))))))

By runnng these progras on some sample input:
Prolog:
deriv(lO.x,A) .
deriv(y,x,A) .
deriv(x,x,A) .
deriv(x+1,x,A) .
deriv(x*y,x.A) .
deriv((x+10)*(x*y),x,Al ;

=':. A =
=:. A =
=:. A =
=:. A =
=:. A =
=:. A =

o
o
1
HO
x*O+y*l
(x+10) * (x*O+y*l) +x*y* (1+0)

=:. 0

=:. 0

=:. 1

=:. (+ 1 0)
=:. (+ (* X 0) (* Y 1))
=:. (+ (* (+ X 10)

(+ (* X 0) (* Y 1)))
(* (* x Y) (+ 1 0)))

. we see corrct results. We could add other operations (such as algebraic simplification. data-

Lis:
(deriv 10 'x)
(deriv 'y 'x)
(deriv 'x 'x)
(deriv '(+ x 1) 'x)
(deriv '(* x y) 'x)
(deriv '(* (+ x 10) (* x y)) 'x)

Proceedings of the 1986 Rochester Forth Conference 179

driven dispatchig, data abstcton, and a çomplete set of trfomiatons) but these short
prototy progrs ar sufficient for our purpses. The question we wish to anwer is: What

built-in featres of Usp and Prolog are used in these program. and are these features present in
FORTH?

Symbls: Both. Lisp and Prlog have automatic facilties for the creation an manpulation of
symbols. Symbols ar distinct frm varables. In the progrs above: the C and X in

deriv(C,X,O). and the exp and varin (detun deriv (exp var)) are

varables used to pass infòmiation into the procedures. The symbols are most clearly seen when
we ru the progra. They and xis deriv(y,x,A),andthe

, x,andyin (deriv ' (x
y) 'x) are symbols. A FORTH prograer may declare named constats and then use their
symbolic name thoughout the program, but it is the programer's responsibilty to make sure
that no two distinct. symbols have the same value. Furter, if it is possible for the user of the
progra to input any arbitrry symbol, the FORTH progrer wil have to explicitly make
provisions for ths possibility, whereas ths facilty is built-in to both Lisp and Prolog. For
example, we can input der i v (a *b, a, A) . to our der i v program and obtain an anwer (A =
a *O+b*l) even thugh the symbols a and b ar not explicitly declare in the program. The
system takes car of ths for us. Strctures of symbols may be used to represent relations as in:

(is-a-fruit pear), which brings us to our
next point

Usts: We see strctues of symbols in both the input and output of our der i v program.
InternY, these strctures are represented by list strcture. Any kid of strctured data can be
represented by ths single genera. ty. Th Lisp and Prolog readers/priters automaticaly

convert between the exttrnal and internal representation of list so that a u,ser may simple enter

, (* x y) to create a specific list List constrctor and selector fuctions (cons, car, cdr)

are an integra par of Lisp and Prolog systems as well as automatic reclaimation of lists no longer
accessible by the progra. There have ben a number of implementations of the heap data
strcture in FORTH (Dress 86), but our point is that it is not part of the standard. Therefore
FORTH programers must tae the time to find a copy of an implementation or redo it
themselves.

Automatic Dereferencing: Al values in Prolog and Lisp can be viewed as pointers
to some

object. These languages drop the phrse "a pointer to" since pointers are explicitly dereferenced

everywhere in the progra. We see ths in the above program: when we input' (* xl) to

der i v we ar passing a pointer to the internal list representing , (* xl). In the der i v

fuction, referenceS to the exp pareter automaticaly dereference the pointer. The same thg
happens in Prolog~ Contrt ths with FORTH where pointers to variables or arys must be
explicitly dereference (~, !) to get at their contents.

Named Paramters: Although ths feature is not directly related to supportng symbolic
processing, we point out the fact that standard FORTH programers must concern themselves
with the intellectual burden of managing the parameter stack. Traditionaly,

AI progras have

ben large and complex. Lisp and Prolog support complex progr development by freing the
progrer frm ths unecessar detail by automaticaly handli~g the pareter stack.

180 The Journal of Forth Application and Research Volume 4 Number 2

Besides these salent featre, we shuld mention even mo,r powerf featus found in Lisp and
Prlog which ar missing frm FORTH. Prlog: bi-direonal pareters; procedures may

return reults contanig unbound varables; unfication (which combines the effect of both
conditiona an assignent); backtckig (which alows the generation of multiple solutions to
a problem .and eay restoration of th progr state when failed path have ben pursued). Lisp:
the combination of quoting with the user accessibilty of eva.l and apply makes it possible to
manpulate progrs ,as data and to execute data as progrs ,(which faciltates the
implementation of embeded languages); syntax extensibilty via readtables; fu lexical seoping
encapsulates data (which may be used to create infnite data object LOdett 84)).

Since stadard FORTH is missing the features discussed in ths section one is inclined to
conclude tht it is a por choice for AI programing. However, both Lisp and Prolog have some
drawbacks which th use of FORTH can solve in some circustaces. That is the subject of the
next section.

FORTH as a Delivery Vehicle: One advantage that FORTH has over Lisp and Prlog at ths
tie is scalabilty: once a program has ben developed it is fairly easy to produce a stadalone,
executable object from FORTH coe, whereas both Lisp and Prlog require eiitensive nintime

support We would not recommend using FORTH for AI research because of the limitations
cited above. But once a progra is well-behaved and well-understoo there may be some benefit

rewriting it in FORTH for delivery on smaler machies. Another advantage of FORTH over

Lisp and Prlog (although ths advantage is shrng with the availabilty of better Lisp and

Prolog compilers LKessler 86)) is its abilty pack data into bit and multi-bit fields without

superfuous pointers, and to access ths data though "open-coed" fuctions.

Conclusion: Both Lisp an Prolog provide built-in facilties that promote, symbolic
prograing. The lack of these features in stadard FORTH makes symbolic programing a

more time-consuming and error-prone task, and therefore a por choice for AI programming.
FORTH may be usefu as a delivery vehicle for well-undersood programs.

Acknowledgments: Work support in par by th Burughs Corpration, th Hewlett Packad Compay,
the International Business Machines Corpration, the National Science Foundation under Grant Numbers
MCS81-21750 and MCS82-0424 7, and the Defense Advaned Resch Projects Agency undercontrct

number DAAll-84-K-0017.

References:

(Dress 86)

LOdett 84)

Dress, W. B.
A FORTH Implementation of the Heap Data Strcture for Memory

Management.
Journal of Forth Application and Research 3(3):39-49, July, 1986.

Kessler, R. R.; Carr, H.; et. al.
EPIC - A Retargetable, Highy Optimizing Lisp Compiler.
In Proceedings of the SIGPLA 1986 Symposium on Compiler Construction.

ACM SIGPLAN, Jun, 1986.

Odette, L. L.
Computing with Strams.
Dr. Dobb's Journal 9(9):50-67, September, 1984.

(Kessler 86)

