Proceedings of the 1986 Rochester Forth Conference A » 177

FORTH for AI?
Harold Carr and Robert R. Kessler
Utah Portable Artificial Intelligence Support Systems Project
Department of Computer Science
~ University of Utah
Salt Lake City, Utah 84112

Abstract: Is FORTH a viable language for Artificial Intelligence (AD)? = At first glance, one

would be inclined to answer yes since FORTH has several features in common with Lisp and

Prolog, the languages predominantly used in AL All three have some form of runtime symbol

table (dlcuonary database) making it pos51ble to incrementally (re)define functions. This

promotes interactive programming, where statements in the language serve as the command

language. They are all weakly typed: any variable (or stack location) may have as its value any

object. This makes it possiblé to write routines that can work on any kind of data or do generic

dispatches. Both Lisp and FORTH provide methods to create new defining words so the

programmer is not limited to the defining words in the language kernel. Are these (and other)

similarities enough? To answer this, we show the beginnings of a simple symbolic differentiation

program in both Lisp and Prolog. We then discuss the built-in features of Lisp and Prolog that

are used to an advantage by the program. The lack of these features makes standard FORTH a
- poor choice for Al research, at least for symbolic processing. However, we do point out that

FORTH may be useful as a "delivery vehicle" for well understood programs.

Common Features: All three languages provide an interactive user interface. In FORTH, this
interface is based on a reader which either compiles and installs words into the dictionary, or
finds and runs previously defined words. This is analogous to Lisp’s runtime symbol table and
Prolog’s database. This promotes a style of incremental program development in which partial
programs are run and debugged, relying on stubs or the debugger to provide results from
undefined functions. When a bug is found, the offending word/function/clause is fixed and the
dictionary/symbol table/database is changed to include the corrected definition.

All three languages are weakly typed. This means that storage locations are not restricted to
certain types: they may hold integers, characters, string pointers, etc. In Lisp and Prolog, runtime
tags cause the system to dispatch to the correct routine. In FORTH, it is the programmer’s
responsibility to know how he wants to use an item at any particular time.

One of the most powerful features of FORTH is its ability to define new defining words. The
standard example is defining a defining word CARRAY to create automatic vectors:

: carray ( array-size --name)
create allot
does> ( index -- byte-address ) + { Add index to base. } ;

With this word you can define a 52 element array: 52 carray cards. Storing and retrieving
from this automatic array is then done by: 0 17 card c!and 17 card c@. Lisp’s macro
facility can be used to provide this capability:

(defmacro carray (name size)
* (progn
(setf ,name (make-array ,size))
{(defmacro ,name (index)
‘(aref ,’,name ,index))))

The equivalent Lisp usage would be (without the need for addresses): (carray cards 52)



178 The Journal of Forth Application and Research Volume 4 "Number 2

to create the array; (setf (cards 17) 0) and (cards 17) to store and retrieve.

All three language promote a style of programming in which programs are composed of many
small functions. This is based on the fact that function calls are implemented very efficiently in
FORTH, Lisp and Prolog. A more in-depth look at similarities between FORTH, Prolog and Lisp
is beyond the scope of this paper, but we do point out that most of the common features are
features that support interactive programming. Is this enough for AI programming? To answer
- this we now tum our attention to symbolic processing, a critical component of any Al language.

Support for Symbohc Processmg The key to symbohc processing is the ablhty to create and
manipulate arbitrary structures of symbols. We begin this section with an example: symbolic
differentiation - an operation that converts an algebraic expresswn into another algebraic
expression. We write the derivative of expression U with respect to variable x as: dU/dx. Some
"rules” or "transformation templates” for differentiation are: '

dc/dx ="0 (c a constant or variable different from x)
dx/dx =1 o : :
d(U+V)/dx = dU/dx + dV/dx

d(U-V)/dx = -dU/dx - dV/dx

d(U*V}/dx = U*dV/dx + V*dU/dx

Both Prolog and Lisp can easily express these transformations:

Prolog

deriv(C,X,0) . 1= number(C).

deriv(C, X, 0) = atom(C), C \==
deriv(X,X,1).

deriv(U+V, X, A+B} :- deriv(U,X,A), deriv(V,X,B).
deriv (U-V, X, A-B) :- deriv(U,X,A), deriv(V,X,B).
deriv(U*V, X, U*B+V*A) :~ deriv(U,X,A), deriv(V,X,B).

(defun deriv (exp var)
{(cond ((numberp exp) .0)
{{(atom exp)
(if (equal exp var) 1 0))
((equal exp var) 1)
(t
(case (car exp) -
(+ (list "+ (deriv (second exp) var)
(deriv (third exp) var)))
(- (list '~ (deriv (second exp) var):
(deriv (third exp) var)))
(* {list '+ ’
(list ’'* (second exp)
."{deriv (third exp) var))
(list ** (third exp)
(deriv (second exp) var))))))))

By running these programs on some sample input:

Prolog:

deriv(10,x,A). - = A =20
deriv(y,x,A). => A =20
deriv(x,x,A). =>A=1
deriv(x+1l,x,A). => A = 1+0
deriv(x*y,x,A). => A = x*0+y*l
deriv({(x+10)*(x*y),x,A) . => A = (x+10) * (x*0+y*1) +x*y* (1+0)
Lisp: B

(deriv 10 ’x) => 0

(deriv 'y 'x) = 0

(deriv 'x ’x) =>1 .

(deriv ’ (+ x 1) 'x) => (+ 1 0)

(deriv * (* x y) ’'x) => (+ (* X 0) (* Y 1))
(deriv ’ (* (+ x 10) (* x y)) *x) => (+ (* (+ X 10)

(+ (* X 0) (*Y 1)))
(* (*XY) (+10)))

‘we see correct results. We could add other operations (such-as algebraic simplification, data-




Proceedings of the 1986 Rochester Forth Conference : 179

driven dispatching, data abstraction, and a complete set of transformations) but these short
prototype programs are sufficient for our purposes. The question we wish to answer is: What
built-in features of Lisp and Prolog are used in these programs, and are these features present in
FORTH?

Symbols: Both Lisp and Prolog have automatic facilities for the creation and manipulation of
symbols. - Symbols are distinct from variables. In the programs above: the C and X in
deriv (C,X,0), and the exp and var in (defun deriv (exp var) ... ) are
variables used to pass information into the procedures. The symbols are most clearly seen when
we run the program. The y and x is deriv (y,x,A), and the *, x, and y in (deriv ' (* X
y) ’x) are symbols. A FORTH programmer may declare named constants and then use their
symbolic name throughout the program, but it is the programmér’s responsibility to make sure
that no two distinct symbols have the same value. Further, if it is possible for the user of the
program to input any arbitrary symbol, the FORTH programmer will have to explicitly make
provisions for this possibility, whereas this facility is built-in to both Lisp and Prolog. For
example, we can input deriv (a*b,a,A) . to our deriv program and obtain an answer @A =
a*0+b*1) even though the symbols a and b are not explicitly declared in the program. The
system takes care of this for us. Structures of symbols may be used to represent relations as in:
(is~a-fruit pear), which brings us to ournext point.

Lists: We see structures of symbols in both the 'input and output of our deriv program.
Internally, these structures are represented by list structure. Any kind of structured data can be
represented by this single general type. The Lisp and Prolog readers/printers automatically
convert between the external and internal representation of lists so that a user may simple enter
r (* x y) to create a specific list. List constructor and selector functions (cons, car, cdr)
are an integral part of Lisp and Prolog systems as well as automatic reclaimation of lists no longer
accessible by the program. There have been a number of implementations of the heap data
structure in FORTH [Dress 86], but our point is that it is not part of the standard. Therefore
FORTH programmers must take the time to find a copy of an implementation or redo it
themselves.

Automatic Dereferencing: All values in Prolog and Lisp can be viewed as pointers to some
object. These languages drop the phrase "a pointer to" since pointers are explicitly dereferenced
everywhere in the program. We see this in the above program: when we input ' (* x 1) to
deriv we are passing a pointer to the internal list representing * (* x 1). In the deriv
function, references to the exp parameter automatically dereference the pointer. The same thing
happens in Prolog.  Contrast this with FORTH where pointers to variables or arrays must be
explicitly dereferenced (@, !) to get at their contents.

Named Parameters: Although this feature is not directly related to supporting symbolic
processing, we point out the fact that standard FORTH programmers must concem themselves
with the intellectual burden of managing the parameter stack. Traditionally, Al programs have
been large and complex. Lisp and Prolog support complex program development by freeing the
programmer from this unnecessary detail by automatically handling the parameter stack.



180 The Journal of Forth Application and Research Volume 4 Number 2

Besides these salient features, we should mention even more powerful features found in Lisp and
Prolog which are missing from FORTH. Prolog: bi-directional parameters; procedures may
return results containing unbound variables; unification (which combines the effect of both
conditionals and assignment); backtracking (which allows the generation of multiple solutions to
a problem and easy restoration of the program state when failed paths have been pursued). Lisp:
the combination of quoting with the user accessibility of eval and apply makes it possible to
manipulate programs as data and to execute data as programs (which facilitates the
implementation of embedded languages); syntax extensibility via readtables; full lexical scoping
encapsulates data (which may be used to create infinite data objects [Odette 84]).

Since standard FORTH is missing the features discussed in this section one is inclined to
conclude that it is a poor choice for Al programming. However, both Lisp and Prolog have some
drawbacks which the use of FORTH can solve in some circumstances. That is the subject of the
next section.

FORTH as a Delivery Vehicle: One advantage that FORTH has over Lisp and Prolog at this
time is scalability: once a program has been developed it is fairly easy to produce a standalone,
executable object from FORTH code, whereas both Lisp and Prolog require extensive runtime
support. We would not recommend using FORTH for Al research because of the limitations
cited above. But once a program is well-behaved and well-understood there may be some benefit
rewriting it in FORTH for delivery on smaller machines. Another advantage of FORTH over
Lisp and Prolog (although this advantage is shrinking with the availability of better Lisp and
Prolog compilers [Kessler 86]) is its ability pack data into bit and multi-bit fields without
superfluous pointers, and to access this data through "open-coded” functions.

Conclusion: Both Lisp and Prolog provxde built-in facilities that promote. symbolic
programming. The lack of these features in standard FORTH makes symbolic programming a.
more time-consuming and error-prone task, and therefore a poor choice for Al programming.
FORTH may be useful as a delivery vehicle for well-understood programs.

Acknowledgments: Work supported in part by the Burroughs Corporation, the Hewlett Packard Company,
the International Business Machines Corporation, the National Science Foundation under Grant Numbers
MCS81-21750 and MCS82-04247, and the Defense Advanced Research Projects Agency under contract
number DAAK11-84-K-0017.

References:
[Dress 86] Dress, W. B.
A FORTH Implementation of the Heap Data Structure for Memory
Management.

Journal of Forth Application and Research 3(3):39-49, July, 1986.

[Kessler 86] Kessler, R. R,; Carr, H.; et. al. -
EPIC - A Retargetable, Highly Optimizing Lisp Compiler.
In Proceedings of the SIGPLAN 1986 Symposium on Compiler Construction.
ACM SIGPLAN, June, 1986.

[Odette 84} Odette, L. L.
Computing with Streams
Dr. Dobb' s Journal 9(9):50-67, September, 1984.




